Completely revised for standards
compliance, including CSS 2.1
and XHTML 1.0

e

IN A NUTSHELL

A Desktop Quick Reference

O, RE I LLY® Jennifer Niederst Robbins

WEB DESIGN IN A NUTSHELL

Web Design in a Nutshell, Third Edition, is a thorough, vet concise
reference on everything you need to know to create web pages. This
edition has been completely rewritten and expanded to reflect the state
of the art in standards-driven web design.

The third edition of Web Design in a Nutshell features:

e A complete HTML 4.01 and XHTML 1.0 and 1.1 reference, with an emphasis
on proper semantic markup practices

e Ten all-new chapters covering the use of Cascading Style Sheets for
presentation, as well as an Appendix listing every property in CSS Level 2.1

* Discussions on the web environment, including the importance of web
standards, designing for a variety of browsers and displays, and how to make
your site accessible to all users and devices

e Introductions to using JavaScript and DOM scripting for adding interactivity to
your pages, including syntax, control structures, object-orientation,
unobtrusive scripting, and also a brief introduction to Ajax

* Chapters on creating lean and mean GIF, JPEG, PNG, and animated GIF
images for web delivery

* Information on adding audio, video, and Flash movies to web pages, as well
as approaches to printing content from the Web

“This edition of Web Design in a Nutshell is required reading for anyone designing,
developing, or publishing content on the Web. Beginners and experts alike will
learn the state of the art of essential web design technologies, and bow to avoid
common misconceptions and abuses that modern practices bave made obsolete.”

—Tantek Celik (fantek.com), senior technologist, Technorati; formerly
primary representative to the World Wide Web Consortium (W3C)
Cascading Style Sheets (CSS) working group and HyperText Markup
Language (HTML) working group

“lennifer Niederst Robbins bas rewritten Web Design in a Nutshell, Third Edition
to be completely in step with the most contemporary web technologies and
techniques available. A valuable reference for any web designer or developer.”

—Molly E. Holzschlag (molly.com), steering committee member for the Web
Standards Project (WaSP); author, instructor, and web designer

O’RE"_LYQ www.oreilly.com

ISBN 0-596-00987-9 US $34.99 CAN $48.99

Includes
U Safar s

80596 Online Edition

WEB DESIGN

IN A NUTSHELL

Other web design resources from 0’Reilly

Related titles

oreilly.com

¥/ SO REILLY
y/i) ENETWORK“

Conferences

O'REILLY NETWORK
Safari
Bookshelf

Head Rush Ajax CSS Pocket Reference
Ajax Hacks™ Head First HTML with
Learning Web Design CSS and XHTML
HTML and XHTML CSS Cookbook™
Pocket Reference Dreamweaver 8: The
Creating Web Sites: The Missing Manual
Missing Manual
Cascading Style Sheets:
The Definitive Guide

oreilly.com is more than a complete catalog of O’Reilly
books. You’ll also find links to news, events, articles,
weblogs, sample chapters, and code examples.

oreillynet.com is the essential portal for developers inter-
ested in open and emerging technologies, including new
platforms, programming languages, and operating
systems.

O’Reilly brings diverse innovators together to nurture the
ideas that spark revolutionary industries. We specialize in
documenting the latest tools and systems, translating the
innovator’s knowledge into useful skills for those in the
trenches. Visit conferences.oreilly.com for our upcoming
events.

Safari Bookshelf (safari.oreilly.com) is the premier online
reference library for programmers and IT professionals.
Conduct searches across more than 1,000 books. Sub-
scribers can zero in on answers to time-critical questions
in a matter of seconds. Read the books on your Book-
shelf from cover to cover or simply flip to the page you
need. Try it today for free.

WEB DESIGN

IN A NUTSHELL

Third Edition

Jennifer Niederst Robbins

O’REILLY"

Beijing + Cambridge « Farnham « KéIn « Paris « Sebastopol « Taipei * Tokyo

Web Design in a Nutshell, Third Edition
by Jennifer Niederst Robbins

Copyright © 2006, 2001, 1999 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact
our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Steve Weiss Proofreader: Sada Preisch
Developmental Editor: Linda Laflamme Indexer: Lucie Haskins
Technical Editors: Tantek Celik and Cover Designer: Edie Freedman
Molly E. Holzschlag Interior Designer: David Futato
Production Editor: Mary Brady Cover lllustrator: Lorrie LeJeune
Copyeditor: Linley Dolby lllustrator: Christopher Reilley

Printing History:

January 1999: First Edition.
September 2001: Second Edition.
February 2006: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. The In a Nutshell series designations,Web Design in a
Nutshell, the image of a least weasel, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

%" This book uses RepKover', a durable and flexible lay-flat binding.

ISBN-10: 0-596-00987-9
ISBN-13: 978-0-596-00987-8
[M] [9/06]

Table of Contents

Forewordl XV
Contributors Xvii
Technical Reviewers Xix
Preface XXi

Partl. The Web Environment

1. WebStandardsl 3
What Are Standards? 3
Current Web Standards 6
Standards-Driven Design
For Further Reading 11

2. Designing for a Variety of Browsers 12
Browser History 12
Browser Roll-Call 14
Gathering Usage Statistics 19
Learning from Browser Statistics 20
Dealing with Browser Differences 22
Know Your Audience 25
Test! 25

3. Designing for a Variety of Displays

Designing for Unknown Monitor Resolutions
Fixed Versus Liquid Web Pages

Designing “Above the Fold”

Mobile Devices

28
30
37
37

4. ABeginner’s Guide totheServer 42
Servers 101 42
Unix Directory Structures 46
File Naming Conventions 50
Uploading Documents (FTP) 50
File (MIME) Types 53

5. Accessibility ... 56
Types of Disabilities 56
Overview of Assistive Technology 57
Who Is Responsible for Accessibility? 59
Web Content Accessibility Guidelines 60
Web Content Accessibility Guidelines 2.0 (WCAG 2.0) 64
Standards Variations and Section 508 64
Web Accessibility Techniques 65
Testing for Accessibility 68

6. Internationalization 72
Character Sets and Encoding 73
Character References 78
Language Features 80
Style Sheets Language Features 84
For Further Reading 85

Partll. The Structural Layer: XML and (X)HTML

7. Introductionto XML 89
XML Basics 90
How It Works 91
XML Document Syntax 93
Well-Formed XML 96
Document Type Definition (DTD) 97

vi

Table of Contents

10.

11.

12.

XML Namespaces

XML on the Web

Web-Related XML Applications
Where to Learn More

HTML and XHTML Overview
The Role of HTML

Markup Basics

Introduction to XHTML

Which Standard Is Right for You?

Well-Formed XHTML

Web Authoring Tools

Good Authoring Practices

DocumentStructure
Minimal Document Structure

Document Type Declaration

The Root Element

The Document Header

The Document Body

TextElements
Choosing Text Elements

The Building Blocks of Content

Inline Elements

Deleted and Inserted Text

Generic Elements (div and span)

Lists

Presentational Elements

Character Entity References

CreatingLinks
Simple Hypertext Links

Linking Within a Document

Targeting Windows

Alternative Protocols

Linking Documents with link

ImagesandObjects
Inline Images
Image Maps

103
104
105
112

114
115
119
122
123
126
128

130
132
135
136
142

145
146
149
152
153
156
161
167

169
171
173
173
175

178
186

Table of Contents

vii

Embedded Media 192
Java Applets 201
Inline (Floating) Frames 203
13. Tables 205
Table Uses 206
Basic Table Structure 207
Row Groups 213
Columns and Column Groups 214
Table Presentation 216
Accessible Tables 220
Responsible Layout Tables 226
14. Frames 232
Introduction to Frames 232
Basic Frameset Structure 234
Frame Function and Appearance 239
Targeting Frames 241
Frame Design Tips and Tricks 244
15. Forms 247
The Basic Form Element 248
Form Controls 250
Accessibility Features 263
disabled and readonly 267
Affecting Form Appearance 267
Part lll. The Presentation Layer: Cascading Style Sheets
16. Cascading Style Sheets Fundamentals 273
CSS in a Nutshell 273
The Benefits of CSS 274
How CSS Works 275
Rule Syntax 275
Adding Styles to a Document 278
Key Concepts 283
Specifying Values 291
Browser Support 293
For Further Reading 294

viii

Table of Contents

17.

18.

19.

20.

21.

Selectors
Type (Element) Selector

Contextual Selectors

Class and ID Selectors

Attribute Selectors

Pseudoselectors

Fontand Text Properties
Typography on the Web

Font Family

Font Size

Other Font Settings

Text Transformation (Capitalization)
Text Decoration

Line Height

Text Alignment Properties

Text Spacing

Text Direction

BasicBox Properties
The Box Model, Revisited

Width and Height

Margins

Borders

Padding

ColorandBackgrounds
Foreground Color

Background Color

Background Images

Floating and Positioning
Normal Flow

Floating

Positioning Basics

Absolute Positioning

Fixed Positioning

Relative Positioning

297
298
299
301
302

307
310
312
318
322
323
325
327
332
335

338
341
344
347
352

355
357
358

368
369
375
385
389
390

Table of Contents

| ix

22. (SSforTables il 392
The Essence of Tables 392
Styling Tables 396
Borders 398
Table Layout (Width and Height) 401
Table Display Values 403

23. Listsand Generated Content 406
CSS for Lists 406
Generated Content 412

24. (SSTechniques, 419
Centering a Page 419
Two-Column Layouts 421
Three-Column Layouts 424
Boxes with Rounded Corners 432
Image Replacement 436
CSS Rollovers 440
List-Based Navigation Bars 443
CSS Techniques Resources 446

25. Managing Browser Bugs: Workarounds, Hacks,and Filters 448
Working with “Troubled” Browsers 448
The Browsers 449
Hack and Workaround Management 101 459

PartIV. The Behavioral Layer: JavaScript and the DOM

26. IntroductiontoJavaScript 465
A Little Background 465
Using JavaScript 466
JavaScript Syntax 468
Event Handling 484
The Browser Object 486
Where to Learn More 487

27. DOMScripting 488
A Sordid Past 488
Out of the Dark Ages 489
The DOM 489

X | Tableof Contents

Manipulating Documents with the DOM 491
Working with Style 501
DOM Scripting in Action 502
Supplement: Getting Started with Ajax 507
PartV. Web Graphics

28. Web Graphics Overview 515
Web Graphic File Formats 515
Image Resolution 517
Color on the Web 519

Web Graphics Production Tips 524

29. GIFFormatl 529
8-Bit Indexed Color 530
LZW Compression 531
Interlacing 533
Transparency 534
Minimizing GIF File Sizes 536
Designing GIFs with the Web Palette 541

30. JPEGFormat 544
24-Bit Color 544
JPEG Compression 545
Progressive JPEGs 547
Creating JPEGs 548
Minimizing JPEG File Size 548

31. PNGFormat......... 552
When to Use PNGs 552
PNG Features 554
Platform/Browser Support 558
Creating PNG Files 559
PNG Optimization Strategies 561

For Further Reading 563

32. AnimatedGlFsl 564
How They Work 564
Using Animated GIFs 565

Table of Contents | xi

Tools 565
Creating Animated GIFs 566
Optimizing Animated GIFs 570

PartVl. Media

33. AudioontheWebl 575
Basic Digital Audio Concepts 575
Using Existing Audio 577
Preparing Your Own Audio 578
Streaming Audio 581
Audio Formats 583
Choosing an Audio Format 590
Adding Audio to a Web Page 590

34. VideoontheWebl 595
Basic Digital Video Concepts 595
Compression 596
Video File Formats 598
Adding Video to an HTML Document 603

35. TheFlashPlatform 609
Using Flash on Web Pages 610
Creating Flash Movies 612
ActionScript 615
Adding Flash to a Web Page 616
Integrating Flash with Other Technologies 622
The Flash Player 623
Flash Resources 625

36. PrintingfromtheWeb 626
Browser Print Mechanisms 626
Cascading Style Sheets for Print 627
Portable Document Format (PDF) 634
Flash Printing 637

Xii | Tableof Contents

Part VIl. Appendixes

A. HTMLElementsand Attributes 641
B. CSS2.1Properties 684
C. CharacterEntities 722
D. SpecifyingColorl 733
E. Microformats: Extending (X)HTML 742
Glossary 747
Index 757

Table of Contents | xiii

Foreword

I recall sitting at my desk many years ago, struggling with a piece of HTML
markup, when someone walked by and dropped off a floppy disk. Written in
block letters across the label was “Netscape .9b”—a pre-release beta version of
what would soon become the most widely used browser of that time. I installed it
and clicked around my company’s web site, and I remember thinking to myself,
“Huh. My job just completely changed.”

Up to that point in the nascent history of the World Wide Web, there had really
been only one browser to worry about. Nearly everyone used Mosaic, and as long
as my pages were also functional in a text-only browser like Lynx, I could safely
forget about that aspect of web design. But suddenly there was competition. And
with competition came new concerns about rendering, feature support, and bugs.

That would prove to be one of innumerable watershed events in more than a
decade of growth and evolution of the Web as a world-changing technological
platform. Soon after Netscape shipped its browser, my job would completely
change over and over again. First came fonts and colors; then frames, JavaScript,
database-driven dynamic web applications, XML, Cascading Style Sheets, Flash,
semantic markup—and all of those innovations have iterated through countless
new versions. If there’s one thing that is certain in the life of a web designer, it’s
that every day something you thought you knew will change. And then change
again.

Yet in any journey—whether literal or metaphorical—it pays to occasionally find
a vantage point and take stock of where you’ve been and how far you have to go.
We’ve come a long way on the Web, but we also have so much more to learn.

The earliest days of the Web were the domain of the webmaster. At that time, the
Web was viewed as another service provided as technical infrastructure—much
like the email server or firewall. The webmaster’s duties included maintaining the
HTTP server, keeping things secure, monitoring bandwidth usage, and—oh,
yeah—creating the HTML pages for this new service. Web design back then was

XV

simply the output of a web server. And the IT department found itself in the posi-
tion of building pages and even occasionally using Photoshop. Those were crazy
times.

By the mid ’90s, the Web had moved from IT to marketing. Every company
needed a web site if they expected to survive, and there was a mad scramble to
develop an “interactive strategy.” This was the era of the transitional web
designer—when people with experience in more traditional media design came to
the Web and tried to bend it to fit. No control of typography? Build the whole
page as an image. Page layout not up to our standards? We’ll hack on tables and
invisible GIFs until things look exactly like they should. The Web didn’t respond
very well to this onslaught. The cornerstones of digital design—usability, content
reuse, accessibility—buckled under the hubris of graphic artists.

But today holds both tremendous opportunity and significant trepidation for
those who call themselves web designers. The legacy of the so-called “Browser
Wars” is behind us; we have a strong and stable platform for building with
increasing sophistication. A foundation of accepted and well-implemented
industry standards offers a constancy we once could only dream of. But at the
same time, the Web has factions of innovation racing off in countless directions.
Good designers now worry as much about semantics, device-agnosticism, and
Ajax-style interactions as they do about color, typography, and layout. It is an
understandably intimidating time.

The weight of this book in your hands is a testimony to that complexity. And if it
seems daunting, at least take comfort in the fact that the author could not
possibly be a more capable guide. Jennifer Robbins has been designing web sites
longer than anyone else I know. For years she has been the one we’ve all turned to
for reassurance and clarity as our industry propels itself into the future.

There is nobody I would trust more than Jennifer to show us where we’ve been,
and where we’re heading next. You should, too.

—Jeffrey Veen
December 2005, San Francisco

xvi | Foreword

Contributors

Tantek Celik

Tantek Celik contributed Appendix E, Microformats: Extending (X)HTML. He is
also a Lead Technical Editor for this book. His bio is listed on the Technical
Reviewers page.

Derek Featherstone

Derek is a well-known instructor, speaker, and developer with expertise in web
accessibility consulting and training. He advises many government agencies, educa-
tional institutions, and private sector companies, providing them with expert
accessibility testing, and review and recommendations for improving the accessi-
bility of their web sites to all people. As a member of the Web Standards Project
(webstandards.org), Derek serves on two task forces: Accessibility/Assistive Devices
and DOM Scripting. He is a dedicated advocate for standards that ensure simple,
affordable access to web technologies for all. Derek wrote Chapter 5, Accessibility.

Aaron Gustafson

Aaron Gustafson has been working on the Web since 1996, plying his trade for
many top companies including Delta Airlines, Gartner, IBM, Konica Minolta, and
the U.S. EPA. He is an advocate for web standards and open source languages,
often writing on those topics and more for A List Apart, Digital Web Magazine,
and on his blog, easy-reader.net. When not behind a desk, he can sometimes be
found publicly preaching the web standards gospel alongside Molly E.
Holzschlag. He and his wife, Kelly, reside in Connecticut, where he works as Sr.
Web Designer/Developer for Cronin and Company. Aaron wrote Chapter 25,
Managing Browser Bugs: Workarounds, Hacks,and Filters, Chapter 26, Introduc-
tion to JavaScript, and Chapter 27, DOM Scripting.

xvii

Todd Marks

Todd Marks is an avid developer, designer, instructor, author, and manager of
information display technologies. In 2002, Todd founded MindGrub Technolo-
gies, LLC where he created Flash information display systems for clients such as
Oracle, Zurich, and ARINC. Todd currently works as a Products Manager for the
mediaEdge division of Exceptional Software, where he oversees development of
Media Edge’s training applications. Todd is a Macromedia Certified Developer,
Designer, and Subject Matter Expert and has written and contributed to several
books including Flash MX Video (Peer Information), Beginning Dreamweaver MX
2004 (Wrox), Advanced PHP for Flash MX (Glasshaus), Flash MX Most Wanted
Components (Friends of Ed), and other Dreamweaver and Flash-related titles.
Todd wrote Chapter 35, The Flash Platform.

xvii | Contributors

Technical Reviewers

Lead Technical Editors

Tantek Celik

Tantek Celik is Chief Technologist at Technorati (www.technorati.com) where he
leads the design and development of new standards and technologies. Prior to
Technorati, he was a veteran representative to the World Wide Web Consortium
(W3C) for Microsoft, where he also helped lead the development of the award-
winning Internet Explorer for Macintosh. As cofounder of the microformats.org
community and the Global Multimedia Protocols Group (gmpg.org), as well as
Steering Committee member of the Web Standards Project (WaSP, www.
webstandards.org) and invited expert to the W3C Cascading Style Sheets working
group, Tantek is dedicated to advancing open standards and simpler data formats
for the Web.

Molly E. Holzschlag

Molly E. Holzschlag is a well-known web standards advocate, instructor, and
author. She is Group Lead for the Web Standards Project (WaSP) and an invited
expert to the GEO working group at the World Wide Web Consortium (W3C).
Among her thirty-plus books is the recent The Zen of CSS Design (PeachPit Press,
coauthored with Dave Shea. The book artfully showcases the most progressive
csszengarden.com designs. A popular and colorful individual, you can catch up
with Molly’s blog at—where else>—molly.com.

Technical Reviewers

The following people also reviewed chapters and contributed their expertise to the
final product: Bill Sanders (Part Il and Chapter 35), Aaron Gustafson (Chapters 7
and 24), Jeremy Keith (Chapters 26 and 27), Jason Carlin (Chapters 16 and 24),
Jeffrey Robbins (Chapter 33), and Matthew Klauschie (Chapter 34).

Xix

Preface

If you think you can take a web design book written in 2001 and “tweak” it for
release in 2006, guess again. [know...I tried.

In my first draft of the XHTML chapters, I took the content from the last edition
and just added some pointers to Cascading Style Sheet alternatives for font and a
few other elements and attributes. After all (I figured), the (X)HTML Recommen-
dations hadn’t changed since 1999, right?

As it turned out, while I was busy doing things like designing corporate identities
and having babies (just one baby, actually), a major sea change had taken place in
the web design world. My little pointers to CSS alternatives amounted to “band-
aids on a gaping wound,” as so aptly noted by Molly Holzschlag in her tech
review of those initial chapters. I had fallen out of step with contemporary web
design, and I had some catching up to do.

I learned that while it was true that the Recommendation was the same, what had
changed was how the professional web design community was using it. Designers
were actually complying with the standards. They were no longer using (X)HTML
as a design tool, but as a means of defining the meaning and structure of content.
Cascading Style Sheets were no longer just something interesting to tinker with,
but rather a reliable method for handling all matters of presentation, from fonts
and colors to the layout of the entire page. That ideal notion of “keeping style
separate from content” that I had been writing about for years had not only
become a possibility, it had become a reality.

I spent the next several months immersing myself in the world of standards-driven
web design: reading every book I could get my hands on, exploring oceans of
online resources, and of course, poring over the details of the W3C (X)HTML and
CSS Recommendations themselves.

As a result, Web Design in a Nutshell has not been tweaked; it has been trans-
formed. The book now opens with an overview of web standards and the

Xxi

measurable advantages of designing standards-compliant sites. The (X)HTML
chapters have all been rewritten from scratch, in a way that promotes the proper
semantic use of each element and radically downplays presentational HTML and
how elements are rendered by default in browsers. There are now 10 chapters on
CSS (the prior edition had only one). Two new chapters on JavaScript and the
DOM, written by Aaron Gustafson, treat these topics in a more detailed and
useful manner than the previous editions ever offered.

All other sections of the book have been brought up to date as well, reflecting
some significant advancements (such as approaches to accessibility, support for
the PNG graphic format, and print-specific style sheets, to name a few) as well as
minor shifts (such as the guidelines on web graphics and multimedia production)
that have taken place since the last edition.

The tale of transformation does not end with the book. This author has been
transformed as well. Knowing what I know now, I shudder when I look at that
first draft of the book. I shudder more when I look at my sites with their layers of
nested tables, spacer-GIFs, and meaningless markup. Am I ashamed? Not espe-
cially...I was no different from most other web designers in the late ’90s. You have
to learn sometime, and for me, writing this book was my wake-up call.

I suspect that for every new web designer who comes along who has never used a
table for layout, there are many more like me who need to relearn their craft.
That’s to be expected in a medium as new and quickly evolving as the Web. I've
written this book to be the definitive resource for designers who are onboard with
standards-driven web design as well as those who are still making the transition.

Now, if you’ll excuse me, I have some sites to redesign.

What’s in the Book

This Nutshell book focuses on frontend matters of web design and development:
markup, style sheets, image production, multimedia, and so on. Ironically, despite
its title, there is little in the way of “design” advice, per se. Rather, it strives to be a
thorough reference for all the technical details and requirements that we face in
our day-to-day work designing and developing web content.

The book is divided into six parts (plus appendixes), each covering a general
subject area.

Part I: The Web Environment

Chapter 1, Web Standards, describes the current approach to web design and
sets the stage for the entire book. It is essential reading. Chapters on
designing for varying browsers and displays provide useful overviews of the
unique challenges web developers face. Chapter5, Accessibility, and
Chapter 6, Internationalization, both serve as introductions to the ways web
content may be created to reach all users, regardless of ability, browsing
device, or language. Chapter 4, A Beginner’s Guide to the Server, is a primer
on basic server functions, system commands, uploading files, and file types.

xxii | Preface

Part 1I: The Structural Layer: XML and (X)HTML

This part of the book is about document markup, commonly referred to as
the structural layer because it provides the foundation upon which presenta-
tion (styles) and behaviors (scripting) are applied. I highly recommend
starting with Chapter 7, Introduction to XML, as it covers critical concepts
that guide the way (X)YHTML is handled in contemporary web design. Chap-
ters 8 through 15 focus on HTML and XHTML markup, including detailed
descriptions of all the elements and the way they should be used in stan-
dards-based web design.

Part I1I: The Presentation Layer: Cascading Style Sheets

Part III provides a thorough guide to using CSS for controlling the presenta-
tion of web content with a focus on visual media. It begins with an overview
of the fundamentals (Chapter 16) and an introduction to CSS selectors
(Chapter 17). Chapters 18 through 23 provide detailed descriptions of all the
visual properties in the CSS 2.1 specification. Finally, examples of how CSS is
used in the real world are provided in CSS Techniques (Chapter 24) and
Managing Browser Bugs: Workarounds, Hacks, and Filters (Chapter 25).

Part IV: The Behavioral Layer: JavaScript and the DOM

Part IV is all about adding interactivity to your pages with JavaScript.
Chapter 26 is an introduction to JavaScript, covering, syntax, control struc-
tures, object-orientation, and the whys and hows of unobtrusive scripting.
Chapter 27 introduces the Document Object Model and shows you how to
tap into it to manipulate both content and design. As a supplement to
Chapter 27, we’ve included a brief introduction to Ajax techniques that will
help you on your way to building rich Internet applications.

Part V: Web Graphics
The chapters in Part V contain essential information on working with RGB
color and choosing the appropriate graphic file formats. The chapters dedi-
cated to GIF, JPEG, and PNG graphics offer practical tips for graphic
production and optimization based on the compression schemes used by
each format. The Animated GIFs chapter is a further examination of GIF’s
animation capabilities.

Part VI: Media
Because the Web is not limited to text and images, Part VI is included to
provide a basic introduction to adding audio, video, and Flash movies to web
pages. There is also a chapter on printing from web pages using print-specific
CSS style sheets as well as an introduction to the PDF format for document
distribution.

Appendixes

The Appendixes in this book are sure to get a lot of use. Appendix A is an
alphabetical listing of all elements and attributes in the HTML 4.01 Recom-
mendation, as well as a few nonstandard elements that are well supported
and in common use. Appendix B is an alphabetical listing of all properties
defined in the CSS 2.1 specification. Appendix C lists all the character enti-
ties defined in HTML 4.01 and XHTML 1.0 with their numerical references.
Appendix D provides a detailed explanation of the color names and RGB
color values used both in (X)HTML and CSS. Finally, Appendix E, contrib-
uted by Tantek Celik, describes the future of XHTML and Microformats.

Preface | xxiii

Using Code Examples

This book is here to help you get your job done. In general, you may use the code
in this book in your programs and documentation. You do not need to contact
O’Reilly for permission unless you’re reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s documen-
tation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Web Design in a Nutshell, by
Jennifer Niederst Robbins. Copyright 2006 O’Reilly Media, Inc., 0-596-00987-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact the publisher at permissions@oreilly.com.

Conventions Used in This Book

The following typographical conventions are used in this book:

Constant width
Used to indicate code examples, code references in text (including tags,
elements, variables, and so forth), and keyboard commands.

Constant width italic
Used to indicate replaceable text in code.

Constant width bold
Used to highlight the code that is being discussed.

Italic
Used to indicate filenames, directory names, URLs, and glossary terms.
&
Y This icon designates a tip, suggestion, or a general note that is an

P . . .
PN important aside to its nearby text.
15

This icon designates a warning relating to the nearby text.

(SS Property Conventions

The CSS chapters in this book use the same syntax for indicating allowable prop-
erty values that are used in the W3C CSS 2.1 Recommendation. A few examples
are shown here:

xxiv | Preface

Value: [<family-name>,]* <family-name>

Value: <uri> [mix || repeat]? | auto | none | inherit

Value: [<border-style> || <border-width> || <border-color>] | inherit
Value: [<color>|transparent]{1,4}|inherit

The notation indicates the value options and requirements, but it is not always
intuitive. The various conventions are explained briefly here.

* Words that appear on their own (for example, inherit) are keyword values
that must appear literally, without quotes.

* When punctuation such as commas and slashes (/) appear in the option, they
must be used literally in the value as indicated.

* Words in brackets give a type of value (such as <color> and <uri>) or a refer-
ence to another property (as in <border-style>).

* If a vertical bar separates values (for example, X | Y | Z), then any one of
them must occur.

* A double vertical bar (X || Y) means that X, Y, or both must occur, but they
may appear in any order.

* Brackets ([...]) are for creating groups of values.
Every word or bracketed group may be followed by one of these modifiers:

* An asterisk (*) indicates the preceding value or group is repeated zero or
more times.

* A plus (+) sign indicates that the preceding value or group is repeated one or
more times.

* A question mark (?) indicates that the preceding value or group is optional.

* A pair of numbers in curly braces ({X,Y}) indicates that the preceding value or
group is repeated at least X and at most Y times.

Given these syntax rules, the examples above would be interpreted like this:

Value: [<family-name>,]* <family-name>
The value may be a font family name, preceded by zero or more additional
font family names, each followed by a comma.

Value: <uri> [mix || repeat]? | auto | none | inherit
The value may be one of the keyword options auto, none, and inherit, or it
may be a URI followed (optionally) by the keywords mix, repeat, or both.

Value: [<border-style> || <border-width> || <border-color>] | inherit
The value may be the keyword inherit, or it may be any combination of
values for border-style, border-width, and border-color, in any order.

Value: [<color>|transparent]{1,4}|inherit
The value may be the keyword inherit, or it may be one, two, three, or four
“color” wvalues. Each “color” value is provided as either the keyword
transparent or one of the standard methods for specifying <color> (such as a
color name or RGB value).

Preface | xxv

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is a web page for this book, which lists errata and additional information.
You can access this page at:

http:/lwww.oreilly.com/catalog/wdnut3/
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and
the O’Reilly Network, see the O’Reilly web site at:

http:/fwww.oreilly.com

Safari® Enabled

= When you see a Safari® Enabled icon on the cover of your favorite
saial'l technology book, it means the book is available online through the
gooKsomtE O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual
library that lets you easily search thousands of top tech books, cut and paste code
samples, download chapters, and find quick answers when you need the most
accurate, current information. Try it for free at http://safari.oreilly.com.

Acknowledgments

As always, this book is a product of the efforts of a small army of people. First, I
want to thank my executive editor, Steve Weiss, who kept the big wheels rolling
and bought me more time when life got in the way of deadlines. A standing
ovation goes to Linda Laflamme, the developmental editor, who kept numerous
plates spinning and went above and beyond the call of duty repeatedly without
complaint. She was my ally and hero, and I could not have managed this book
without her.

Next, I am thrilled to have had two of the most prominent experts and advocates
in standards-based web design as technical editors of this edition. I owe heaps of
gratitude to Molly Holzschlag, who is the one responsible for turning this ship
around. She gave me a firm kick in the pants in the first round of reviews, but it
was exactly what the book (and I) needed to get up to speed with contemporary
thinking and terminology. I am also enormously grateful to Tantek Celik for not
only the “fine-toothed-comb” treatment he gave the chapters, but also for the

xxvi | Preface

positive support and the feeling that I could always rely on him for help. In my
most defeated moments, that kept me going.

It’s tough writing a book about everything, and I know when I'm out of my
league. I consider myself very fortunate to have chapters contributed by some of
the top experts in their respective fields. Thanks go to Derek Featherstone for
bringing real-world experience and advice to his “Accessibility” chapter and to
Todd Marks, a leading author on Flash and Dreamweaver for his solid chapter,
“The Flash Platform” (Chapter 35). Last, but by no means least, I want to say a
special and heartfelt thanks to Aaron Gustafson who gallantly and competently
saved the day more than once. His three consecutive chapters (Chapter 25,
Managing Browser Bugs: Workarounds, Hacks,and Filters,” Chapter 26, Introduc-
tion to JavaScript,” and Chapter 27, DOM Scripting”) are like an information-
packed drum solo in the middle of the book. He also contributed by reviewing
chapters and always being available to answer the “CSS question of the day.”

Thanks also go to the other really smart people who applied their areas of exper-
tise in reviewing miscellaneous chapters: Bill Sanders, for taking on Flash and all
of Part II, Jeremy Keith for his careful review of the JavaScript and DOM chap-
ters, Jason Carlin for reviewing CSS chapters and being my go-to guy for CSS
information (as well as what music I should be listening to), and Matthew Klaus-
chie, who knows more than a thing or two about video on the Web.

I want to acknowledge the fine help I received with the figures for this book.
Travis Young created the streamlined CSS examples and screenshots for Chapters
18 through 23. A round of applause goes to illustrator Chris Reilley, who took my
raw materials and spun them into gold. I've worked with Chris on all my books
and am always impressed by his top-notch work.

Producing a book of this size is no small feat, and to do so in record time faced
with rounds of later-than-last-minute changes is worthy of applause. Thanks go to
my attentive copyeditor, Linley Dolby, and the rest of the production team for
bearing with me and making the book look great.

I want to say thanks to Alan, Courtney, Dan, Danielle, Jessica, Jillian, Kate,
Megan, Melanie, and the whole gang at Starbucks in Seekonk, MA for pouring the
gallons of iced chai that fueled the writing of this edition and doing so in a way
that made me feel at home. Thanks also to Jamie, Diane, Joanna, and the other
women at Rumford Day Nursery for taking good care of my little boy so his
mama could work overtime without worrying. And thank you Seekonk Public
Library for getting wireless Internet.

As always, I'd like to thank my Mom, Dad, Liam, and Audrey for the boundless
support and inspiration they each provide. Endless thanks and at least a few foot-
rubs go to my husband, Jeff Robbins, who put up with a lot this year. I am fortu-
nate to have a husband who will go into “Super-dad” mode to free up my
evenings and weekends for writing. Jeff also updated Chapter 33, Audio on the
Web. Finally, 1 thank my darling Arlo for the joy he brings me every single day and
for reminding me of what is important.

—Jennifer Niederst Robbins
December 2005, Massachusetts

Preface | xxvii

The Web Environment

Web Standards

A great sea change has taken place in web development in the last six or seven
years (and since the last edition of this book). Standards compliance is the name
of the game in web design these days. After years of browser competition, HTML
hacking, and other practices born out of the lack of guiding principles, we are all
finally recognizing the benefits of abiding by the rules. That means using clean
and logical HTML or XHTML for marking up content, Cascading Style Sheets for
all matters of presentation, and a single Document Object Model for scripting.

As of this writing, we are still in a period of transition. New approaches need to be
learned; old habits need to be shaken. Eventually, standards-based design will be
second nature. The good news is that the developers of the tools we use to view
and create web pages are making strides toward full standards support. With
everyone on the same page, web production has the potential to be more effi-
cient, less costly, and forward compatible.

This chapter introduces the current web standards and the way they impact web
design.

What Are Standards?

The World Wide Web Consortium (W3C) creates and oversees the development
of web technologies, including XML, HTML, and their numerous applications.
They also keep their eye on higher-level issues such as making content accessible
to the greatest number of devices and users, as well as laying a common founda-
tion for future development, thus making web content “forward compatible.”

The W3C is not an official standards body, but rather a joint effort by experts in
web-related fields to bring order to the development of web technologies. The
W3C releases its final word on how various tasks (such as HTML markup) should
be handled in documents called “Recommendations.” Most of their reccommenda-
tions become the de facto standards for web development. There are other
standards bodies that also affect the Web and the Internet at large, including
those described next.

ISO (International Organization for Standardization)
The ISO is a true standards organization that manages more than 10,000
standards, including everything from information systems and character sets
to the dimensions of 220-size film and the grain size of coated adhesives.
Their seal of approval helps keep commerce and information technologies
compatible world wide.

IETF (Internet Engineering Task Force)
The IETF is an international community of network designers, operators,
vendors, and researchers concerned with the evolution of the Internet as a
whole. It publishes Request for Comments (RFCs) that define how things are
done over the Internet, including FTP, TCP/IP, HTTP, and email.

Ecma International
Previously known as ECMA (European Computer Manufacturers Associa-
tion), this is a European association for standardizing information and
communication systems. Ecma International manages information tech-
nology standards, including ECMAScript, the standardized version of
JavaScript.

The Unicode Consortium
This body manages the Unicode standard for multilingual character sets.

ANSI (American National Standards Institute)
The ANSI covers a wide range of true standards including ASCII, the Amer-
ican Standard Code for Information Interchange.

The Standards Process

The Internet was built on standards. Because the Internet isn’t owned and oper-
ated by one person or company, decisions regarding how best to accomplish tasks
have traditionally been made by a cooperative effort of invention, discussion, and
finally adoption of the way to handle a particular task.

Since even before the Web, Internet standards such as protocols, naming systems,
and other networking technologies have been managed by the IETF. The process
begins when a need for functionality is identified (email attachments, for example)
and a person or group proposes a system to make it work. After a discussion phase,
the proposal is made public in the form of an RFC. Once the kinks are worked out
and agreed upon, the technology becomes the standard. This, of course, is a greatly
simplified explanation. If you are interested in learning more about the standards
approval process or in finding out what new technologies are currently in develop-
ment, the IETF site (www.ietf.org) provides an excellent overview.

A Bumpy Beginning

The Web was subject to the same development process as any other Internet
protocol. The problem was that the explosion of excitement and opportunism of
the early Web caused the development of HTML and other technologies to
outpace the traditional rate of standards approval. So while the W3C began
working on HTML standards in 1994, the browser software companies didn’t
wait for them.

4 | Chapter1: Web Standards

To gain control of the browser market, the Netscape browser popped up on the
scene with its own set of proprietary HTML tags that vastly improved the appear-
ance of web pages. Microsoft eventually responded with its own set of tags and
features to compete with Netscape, and thus the Browser Wars were born. Both
companies are guilty of give-the-people-what-they-want mentality with little
regard for how that would impact the medium in the long term. The problem only
got worse as web design grew beyond simple HTML to encompass richer web
technologies such as Cascading Style Sheets, JavaScript, and DHTML.

As a result, we have inherited a slew of tags and technologies that work only in
one browser or another as well as elements (being the most notorious) that
do nothing to describe the structure of the document. This flew in the face of the
original intent of HTML: to describe the structure of a document’s contents, not
its visual presentation. While web standards are better established now, the W3C
is still compensating for years’ worth of bogus code still in use.

1”

It didn’t take long for the development community to say, “Enough is enough
and demand that browser creators slow down and abide by the Recommenda-
tions set forth by the W3C. The champion of this effort is the Web Standards
Project (WaSP, www.webstandards.org), a collective of web developers estab-
lished in 1998. They pushed hard on the browser developers, tool developers, and
the design community to get on the same page. Their actions seem to be paying
off, as over the past several years, the standards effort has certainly gained steam.

Standards Support Today

The good news is that the current version browsers have gotten their acts together
in supporting the available HTML and XHTML markup standards. Some
browser-specific tags are still rattling around out there, but at least they aren’t
creating any new ones. The new challenge is consistent support for Cascading
Style Sheets. Fortunately, the full Level 1 specification is supported by the latest
browsers (and the vast majority of browsers in use). Unfortunately, there is still a
bit of chaos around the implementation of Level 2 features such as absolute posi-
tioning, and no browser currently supports every available property and value in
the CSS 2.1 Recommendation. Nearly every browser out there, even the stan-
dards-conformant versions, are known to have quirks and bugs, but all eyes turn
to Microsoft Internet Explorer for consistent support, because it makes up the
lion’s share of web traffic. Browser bugs and the workarounds necessary for
dealing with them are treated in detail in Chapter 25.

The Advantages of Standards

We're all still waiting for that ideal day when all browsers faithfully adhere to the
W3C Recommendations, but that’s no reason to put off creating standards-
compliant content yourself. Standards offer wonderful benefits that you can begin
taking advantage of right away.

Accessibility

Your web content will certainly be viewed by a variety of browsers and devices. In
addition to the graphical browsers we’re most familiar with today, it may be
displayed by alternative devices such as mobile phones, handheld computers, or

What Are Standards? | 5

[
o
w
-
o
=
(=3
Y
-
(-3
w

assistive devices such as screen readers for the visually impaired. By creating well-
structured and logically marked up documents according to the guidelines for
accessibility, you provide a better experience for the greatest number of users. See
Chapter 2 for a look at issues related to competing browsers. Chapter 5 discusses
ways in which the current web standards are being developed with accessibility in
mind.

Forward compatibility

Future standards will build on current standards; therefore, content that is strictly
compliant today will enjoy longevity into a day when deprecated elements and
attributes are no longer supported. Everyone will need to part with their table-
based layouts eventually. Why not start building sites the right way immediately?

Simpler and faster development

For years, web developers have needed to jump through hoops to compensate for
the differences in browser support, sometimes resorting to creating several
different versions of the whole site to cater to browser support quirks. Properly
marking up the structure of documents and the strategic use of style sheets
enables you to create one version of your content that serves all your visitors. And
because the document controlling visual style is separate from the content, the
design and editorial development can happen in tandem, potentially shortening
production schedules. By cutting time from development schedules, standards
compliance can make good business sense.

Faster download and display

Documents that use nonstandard HTML to control presentation (such as tables,
font tags, and transparent images) tend to get bloated. Stripping out these
elements and using style sheets for controlling presentation typically results in
much smaller files that download more quickly and may add up to significant
bandwidth savings. On top of that, modern browsers render pages faster in stan-
dards mode than in backward-compatible mode. Faster pages mean happier
visitors. For additional information on the benefits of style sheets, see Chapter 16.

Current Web Standards

Okay, so standards are great, but what standards are we talking about? This
section looks at the current standards for the structural, presentational, and
behavioral aspects of web design.

Web design and development is commonly discussed in terms of “layers” (and
sometimes, even as a “layer cake,” which is more enticing), borrowing a layer
model from one commonly used for describing network protocols. The marked
up document forms the structural layer, which is the foundation on which other
layers may be applied. Next comes the presentation layer, specified with
Cascading Style Sheets, that provides instructions on how the document should
look on the screen, sound when it is read aloud, or be formatted when it is
printed. On top of these layers, there may also be a behavioral layer, the scripting
and programming that adds interactivity and dynamic effects to a site. This

6 | Chapter1: Web Standards

edition of Web Design in a Nutshell is organized according to this new mental
model of web design.

The following is a summary of web technology Recommendations (what the W3C
calls its final published standards) as of this writing. You can check in with further
developments of these technologies at the W3C site (www.w3.0rg).

Structural Layer

After years of browser developers getting jiggy with tag creation, the web commu-
nity is returning to HTML’s original intent as a markup language: to describe the
structure of the document, not to provide instructions for how it should look. The
structural markup of the document forms the foundation on which the presenta-
tional and behavioral layers may be applied.

These are the current standard languages for structural markup:

XHTML 1.0 (Extensible Hypertext Markup Language) and XHTML 1.1

XHTML 1.0 is simply HTML 4.01 rewritten according to the stricter syntax
rules of XML. XHTML 1.1 finally does away with deprecated and legacy
elements and attributes and has been modularized to make future expan-
sions easier. XHTML 2.0 is currently in development. The last version of
HTML was HTML 4.01, which is still universally supported by today’s
browsers, but is not forward compatible. Part II looks at these languages in
detail. Links to the full XHTML 1.0, XHTML 1.1, and HTML 4.01 specifica-
tions can be found on this page: www.w3.org/MarkUp!/.

XML 1.0 (Extensible Markup Language)
XML is a set of rules for creating new markup languages. It allows developers
to create custom tag sets for special uses. See Chapter 7 for more informa-
tion, or go to the source at www.w3.0rg/XML/.

Presentation Layer

Now that all presentation instructions have been removed from the markup stan-
dard, this information is the exclusive job of Cascading Style Sheets. Style sheets
standards are being developed in phases, as follows.

Cascading Style Sheets (CSS) Level 1
This style sheet standard has been a Recommendation since 1996 and is now
fully supported by current browser versions. Level 1 contains rules that
control the display of text, margins, and borders.

CSS Level 2.1
This Recommendation is best known for the addition of absolute positioning
of web page elements. Level 2 reached Recommendation status in 1998, and
the 2.1 revision is a Candidate Recommendation as of this writing. Support
for CSS 2.1 is still inconsistent in current browser versions.

CSS Level 3
Level 3 builds on Level 2 but is modularized to make future expansion
simpler and to allow devices to support logical subsets. This version is still in
development.

Current Web Standards | 7

[
o
w
-
o
=
(=3
Y
-
(-3
w

You can find links to all three CSS specifications on this page: www.w3.0rg/Style/
CSS. Style sheets are discussed further in Part I1I in this book.

Behavioral Layer

The scripting and programming of the behavioral layer adds interactivity and
dynamic effects to a site.

Object models

The Document Object Model (DOM) allows scripts and applications to access
and update the content, structure, and style of a document by formally naming
each part of the document, its attributes, and how that object may be manipu-
lated. In the beginning, each major browser had its own DOM, making it difficult
to create interactive effects for all browsers.

Document Object Model (DOM) Level 1 (Core)
This version covers core HTML and XML documents as well as document
navigation and manipulation. The DOM Level 1 Specification can be found
at w3c.org/TR/REC-DOM-Level-1/.

DOM Level 2
Level 2 includes a style sheet object model, making it possible to manipulate
style information. Links to the core and other modules of the DOM Level 2
Specification are available at www.w3.0rg/DOM/DOMTR.

Scripting

Netscape introduced its web scripting language, JavaScript, with its Navigator 2.0
browser. It was originally called “Livescript” but was later co-branded by Sun, and
“Java” was added to the moniker. Microsoft countered with its own JScript while
supporting some level of JavaScript in its Version 3.0 browser. The need for a
cross-browser standard was clear.

JavaScript 1.5/ECMAScript 262

The W3C is developing a standardized version of JavaScript in coordination
with the Ecma International, an international industry association dedicated
to the standardization of information and communication systems.
According to the Mozilla site, Netscape’s JavaScript is a superset of the
ECMAScript standard scripting language, with only mild differences from the
published standard. In general practice, most developers simply refer to
“JavaScript,” and the standard implementation is implied.

The full specification can be found at www.ecma-international.org/publications/
standards/Ecma-262.htm.

Other XML-Based Technologies

XML is a meta-language used to create other markup languages and applications.
This powerful tool has enabled the development of some specialized standards.
These are just a few. To see other XML technologies, visit the W3C site. With the
modularization of XHTML and other XML specifications, it may be possible to

8 | (Chapter1: Web Standards

mix and match XML modules within a single document, for example: XHTML,
SVG, and MathML.

SVG 1.1 (Scalable Vector Graphics)
This is an XML language for defining two-dimensional vector and mixed
vector/raster graphics. SVG is discussed briefly in Chapter 7. For in-depth
information, read the specification at www.w3.0rg/TR/SVG11/.

MathML 2.0 (Mathematical Markup Language)
Just as it sounds, this is an XML language for defining the elements of mathe-
matical notation, in both structure and content, for mathematics to be
communicated and processed on the Web. More information and the specifi-
cation can be found at www.w3.org/Math/.

SMIL 1.0 (Synchronized Media Integration Language) and SMIL 2.0
SMIL is an XML language for creating multimedia presentations that
combine images, text, audio, and video in timed displays. More information
and specifications can be found at www.w3.org/AudioVideo/.

Standards-Driven Design

Now that standards-compliant browsers are used by the vast majority of web visi-
tors (see Chapter 2 for statistics), it is definitely time for designers and developers
to start creating standards-compliant content. The following sections present
some quick tips for making the transition to standards-based design.

Separate Presentation from Structure

For web designers and developers, the biggest mind shift towards making stan-
dards-compliant sites is keeping presentation separate from structure.

It was difficult to recognize HTML as a structural language when it was full of
elements and attributes (like bgcolor, align, and of course, font) that define how
elements look on the page. The W3C has deprecated those elements in the HTML
4.01 Recommendation and removed them entirely from XHTML 1.1. What
remains is a markup language suited for the original purpose of logically
describing the meaning of content elements (semantic markup) and establishing
the basic hierarchical outline (or structure) of the document. The way the docu-
ment is visually (or aurally, in the case of speech browsers) presented should be
handled entirely by style sheets.

Following are some guidelines that will get you on the right track for designing
with web standards.

Don’t choose an element based on how it looks in the browser.
Now that you can make any element look the way you want with a style sheet
rule, there is no reason to use an h3 because it looks less clunky than an h1, or
a blockquote just because you want an indent. Take the time to consider the
meaning or function of each element in your document and mark it up
accurately.

Standards-Driven Design | 9

1)
-
wv
-
o
3
o
(Y]
=
(=5
[

Don’t leave elements undefined.
Don’t merely typeset a page using and
 tags to create the appear-
ance of headings or lists. Again, consider the meaning of the text and mark it
up accordingly. Documents with meaningful semantic markup make sense to
the greatest number of viewing devices, including web browsers, cell phones,
or screen readers.

Avoid deprecated elements and attributes.
There is a well-supported CSS property to replace every element and attribute
that has been deprecated in the HTML 4.01 Specification. Using a style sheet
will give you greater control and can potentially make future changes easier.

Avoid using tables for layouts.

Ideally, tables should be used exclusively for tabular data. It is now entirely
possible to create rich page layouts using CSS alone with no tables.
Chapter 24 includes several examples of multicolumn layouts along with
references to CSS design showcases online. In addition to being semantically
incorrect, nested tables result in bloated files and take browsers several passes
to display. For those accustomed to thinking in terms of tables, it requires
relearning page layout from the ground up, but now is the time to start the
process.

Use a DOCTYPE Declaration

Every HTML or XHTML document should begin with a DOCTYPE declaration
that tells the browser which language your document was written in. An example
of a DOCTYPE declaration for a document written in strict XHTML 1.0 looks
like this:

<! DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

Not only is it the correct thing to do according to the W3C, but current browsers
have the ability to switch into different rendering modes (e.g., “Standards”
“Almost standards,” “transitional,” and “quirks”) based on the DOCTYPE. Omit-
ting the DOCTYPE may adversely affect the way your page renders in the
browser. Available DOCTYPE declarations and DOCTYPE switching are
discussed in more detail in Chapter 9.

Validate Your Markup

You can’t play fast and loose with the strict standards the way you could with old
HTML. Code written incorrectly may render strangely or not at all. While HTML
was always meant to be validated, it is now more important than ever to validate
your markup before you publish your content on the Web.

Some HTML editors, like BBEdit by BareBones Software, have built-in validators.
You may also use the W3C’s free validation tools for HTML/XHTML (validator.
w3.org) and CSS (jigsaw.w3.org/css-validator).

Be forewarned: the error reports a validator spits out can be overwhelming. One
of the problems is that errors are inherited, so if you make a mistake early on
(such as forgetting to close a tag) the validator gripes about it in multiple error

10 | Chapter1: Web Standards

lines. Try fixing early mistakes and then validating again; chances are, the error
list will reduce.

Error messages can also be confusing. The W3C has published a list of common
error messages and how to interpret them at validator.w3.org/docs/errors.html.

For Further Reading

If this introduction to standards has left you hungry for more detail, you can find
plenty of in-depth discussions on the bookshelves and the Web.

Books

Additional books regarding accessibility, HTML, XHTML, CSS (including invalu-
able books by CSS guru, Eric Meyer) are listed at the ends of the appropriate
chapters of this book. For more information on standards, consider these two
volumes.

Designing with Web Standards, by Jeffrey Zeldman (New Riders)
This is the place to start if you need guidance and practical advice regarding
making the switch to standards. Not only is it extremely thorough and infor-
mative, it’s actually really fun to read.

Web Standards Solutions: The Markup and Style Handbook (Pioneering Series),
by Dan Cederholm (Friends of Ed)
This book offers practical advice on how to create web content with stan-
dards, including multiple solutions to common issues.

Web Resources

With so many professionals in the online community learning to design with stan-
dards, it’s no surprise there are plenty of tips, tutorials, and resources available.

The Web Standards Project (www.webstandards.org)
The Web Standards Project is an organization founded in 1998 to push the
industry toward standardization. This site provides numerous compelling
articles and helpful resources.

A List Apart (www.alistapart.com)
A List Apart is an online magazine by and for web designers with hundreds of
excellent articles on a variety of topics.

“Developing with Web Standards; Recommendations and Best Practices” (www.
456bereastreet.com/lab/developing_with_web_standards/)
This article contains lots of practical information and links to additional
online resources. It was essential for the creation of this chapter. Roger
Johansson’s 456bereastreet.com site is a recommended resource for issues
regarding standards.

The World Wide Web Consortium (www.w3.0rg)
If you want to know the details about current web standards, go right to the
source.

For FurtherReading | 11

[
o
w
-
o
=
(=3
Y
-
(-3
w

Designing for a Variety
of Browsers

Most web authors agree that the biggest challenge (and headache) in web design
is dealing with a multitude of browsers and their varying support of web stan-
dards. Does a page that is designed to be functional on all browsers necessarily
need to be boring? Is it possible to please everyone? And if not, where do you
draw the line? How many past browser versions do you need to cater to with your
designs?

The situation is better than it was a few years ago, but the struggle is not over. For
instance, you can now be confident that at least 99% of users have browsers that
support nearly all of HTML 4. Unfortunately, there are still inconsistencies in the
way Cascading Style Sheets are implemented. And of course, older browser
versions that pre-date the current standards take a long time to fade away entirely.

This chapter provides background information, statistics, and current wisdom
from professional web designers that may help you deal with browser differences.
It focuses on the traditional graphical computer-based browsers that developers
generally keep in mind. Web browsing clients for mobile devices are discussed in
Chapter 3, and assistive browsing devices for the disabled are addressed in
Chapter 5.

Browser History

The story of the browser provides useful context for the way web sites are
currently designed and developed. This brief and simplified timeline highlights a
few of the significant events in the development of the major browsers that have
led to the current web design environment.

12

& @
iy If you are interested in the history of browsers and the Web, take a
0‘;‘. . look at the thorough timeline and the old browser emulators at
" o Deja Vu (www.dejavu.org).

1991 to 1993: The World Wide Web is born.
Tim Berners-Lee started his hypertext-based information management at the
CERN physics research labs. Text-only pages could be viewed using a simple
line-mode browser.

1993: NCSA Mosaic is released.

The Mosaic browser was created by Marc Andreessen, a student at the
National Center for Supercomputing Applications (NCSA). Although it was
not the first browser to allow graphics to be placed on the page, it was
certainly the most popular due to its cross-platform availability. The ability to
add images to documents was one of the keys to the Web’s rapid rise in
popularity. Mosaic also supported sound, video, bookmarks, and forms. All
web pages at this time were displayed in black text on a gray background.

1994: Netscape 0.9 is released.

Marc Andreessen formed Mosaic Communications Corp. (which later
became Netscape Communications) and released the Netscape 0.9 browser.
The early browsers were not free (except to students and teachers). To offer a
superior experience over such freely available browsers as Mosaic and thereby
attract customers, Netscape created its own HTML tags without regard for
the traditional standards process. For example, Netscape 1.1 included tags
for changing the background color of a web page and formatting text with
tables.

1996: Microsoft Internet Explorer 3.0 is released.
Microsoft finally got into the Web game with its first competitive browser
release, complete with its own set of tags and features. It was also the first
browser to support style sheets, which at the time were an obscure authoring
technique.

1996 to 1999: The Browser Wars begin.
For years, the web development world watched as Netscape and Microsoft
battled it out for browser market dominance. The result was a collection of
proprietary HTML tags and incompatible implementations of new technolo-
gies, such as JavaScript, Cascading Style Sheets, and Dynamic HTML. On the
positive side, the competition between Netscape and Microsoft also led to the
rapid advancement of the medium as a whole.

1998: Netscape releases its Communicator code under an open source license.
This bold move enabled the thousands of developers to participate in
improving Communicator. In the end, they decided to scrap it all and start
from scratch. The Mozilla group, made up in part of Netscape employees,
guided the development of the open source browser and soon expanded to a
complete application platform.

Browser History | 13

SI19sMoig

=
<
o
=
n
~*

<
[
=

2000: Internet Explorer 5 for the Mac is released.

This is significant because it is the first browser to fully support the HTML 4.01
and CSS 1 Recommendations, setting the bar high for other browsers in terms
of standards compliance. It is also the first browser to fully support the PNG
format with alpha transparency.

2000: Netscape is sold to AOL.

This was regarded as Netscape’s official loss to Microsoft in the Browser
War. Entwined in the operating system of every PC running the Windows
operating system, Internet Explorer was a formidable foe. Netscape lost
important ground by releasing bloated all-in-one applications and taking
several years off to rewrite its browser from scratch for the Netscape 6
release. As of this writing, Netscape is just a blip on the browser usage charts
at a mere 1% for all combined versions, compared with approximately 90%
for all combined versions of Internet Explorer.

2003: The Mogzilla Foundation is formed.

Open source Mozilla code continued development under the newly formed
Mozilla Foundation (funded in part by AOL).

2005: Moxzilla’s Firefox browser is released.

Firefox 1.0 caused much fanfare in the development community due to its
strong support of web standards and its improved security over Internet
Explorer. Firefox is important because it was the first browser to make a
significant dent in Microsoft’s share of the browser market.

A rendering engine, also known as a layout engine, is the code that tells the
browser how to display web content and available style information in the
browser window. The rendering engine is responsible for the size of an unstyled
h1 heading or how a horizontal rule looks on the page. It’s also the key to the
correct implementation of CSS and other web standards.

T

Mozilla developers in 1998. It was notable for its small size and excellent
support for standards. Now web developers pay attention to underlying
rendering engines as a key to understanding a browser’s performance.

T
is

wikipedia.org/wiki/Comparison_of _layout_engines.

Rendering Engines

he first separate and reusable rendering engine was Gecko, released by the

he Wikipedia, an online collaborative encyclopedia, has a detailed compar-
on of rendering engines, where they are used, and what they support at en.

Browser Roll-Call

It is critical that professional web developers be familiar with the most popular
browsers in current use and not just the ones on their own desktops. This section
provides basic information about the browsers that web developers care about

14

Chapter 2: Designing for a Variety of Browsers

most, whether because of total share of web usage (Internet Explorer 6 for
Windows) or because its technology and standards support is important to the
development community (Opera). The browsers listed here make up more than
99% of total usage as of this writing.

&

¢y

There are scores of less common browsers, some with loyal follow-
ings, as well as older browser versions that are still in use. Unfortu-
nately, it is not possible to list them all in this chapter. Evolt.org, a

site for the web development community, keeps a complete archive
of browsers old and new at browsers.evolt.org.

Table 2-1 lists the browsers and their release dates, platforms, rendering engines,
and level of standards support, while the following sections describe each browser

in more detail.

Table 2-1. Various web browsers

Browser

Microsoft Internet
Explorer 6

Microsoft Internet
Explorer 5and 5.5
(Windows)

Microsoft Internet
Explorer 5 (Macintosh)

Netscape Navigator 7

Netscape Navigator 4

Firefox 1.0

Opera 8.5

Safari

Release date
2001

1999 (5),
2001 (5.5)

2000

2002

1997

2005 (pre 1.0
release versions
available in 2004)

2005

2002

Platform

Windows, Linux,
Unix

Windows, Linux,
Unix

Macintosh

Windows, Macin-
tosh, Linux, Unix

Windows, Linux,
Macintosh, Unix

Windows, Linux,
Macintosh, Unix

Windows, Linux,
Macintosh, Unix

Macintosh 0S X

Rendering engine
Trident IV

Trident Il (5) and Il
(5.5)

Tasman

Gecko

N/A

Gecko

Presto

KHTML

Standards
support

(551, some (SS 2,

some (SS 3, ECMA-

Script, DOM (with
proprietary imple-
mentations and
quirks)

Most CSS 1, some
(S5 2 (with bugs),
partial support of
ECMAScript/DOM

(551, some (SS 2,

some (SS 3, ECMA-

Script, DOM
(buggy and not
complete)

(SS 1, most (SS 2,
ECMAScript, DOM

Some basic (SS 1,
JavaScript,no DOM
because it was
written after NN4's
release

(SS 1, most (SS 2,

some (SS 3, ECMA-

Script, DOM

(S5 1, most CSS 2,
ECMAScript, DOM
(Opera 7 was the

first version with

DOM support)

most (SS 1, some
(552, some (SS 3,
ECMAScript, DOM
(with bugs)

Browser Roll-Call |

15

SI19sMoig

=
<
o
=
n
~*

<
[
=

Table 2-1. Various web browsers (continued)

Standards
Browser Release date Platform Rendering engine support
America Online Various Windows (thereisa Trident (551, some (SS 2,
Mac version, but it ECMAScript, DOM
isn't as well (same as Internet
supported) Explorer, but
expect additional
buggy behavior)
Lynx 1993 Unix, Windows, N/A N/A

Macintosh

Microsoft Internet Explorer 6

Internet Explorer 6 is the browser that comes with Windows XP, although it is also
available for older Windows versions. As this book goes to press, Version 6 alone
currently accounts for more than half of all web usage. Unfortunately, it is also
notorious for inconsistent standards support. Microsoft has plans to release IE 7,
which promises better security (the Achilles’ heel of previous versions) and better
standards support, with special attention to Cascading Style Sheets Level 2.1.

For information on designing for Internet Explorer, visit Microsoft’s Internet
Explorer Developer Center (part of its MSDN online developer’s network) at
msdn.microsoft.com/fie/default.aspx. Additional information is available on the
Microsoft product pages at www.microsoft.com/windows/ie/.

Microsoft Internet Explorer 5 and 5.5 (Windows)

Released in early 1999, IE 5 was the first major browser with XML support.
Because it is tied to several older Windows versions, it still accounts for 5 to 10%
of browser usage as of this writing.

Microsoft Internet Explorer 5 (Macintosh)

Internet Explorer 5 for the Macintosh was released in 2000 and offered never
before seen high levels of standards compliance and features that even IE 6 for
Windows has yet to match. Microsoft stopped development with Version 5.2.3
but still offers free downloads of the latest versions of IE 5/Mac for OS X (5.2.3)
and OS 9 (5.1.7).

Netscape Navigator 7

This latest version of Navigator was released in 2002, with additional 7.x releases
in 2003 and 2004. It is essentially the Mozilla browser wrapped in the Netscape
brand. It accounts for a startlingly small share of web traffic (less than 1%).
Netscape’s previous meaningful release was Version 6, which was years in the
making, had numerous problems with standards and failed to gain back the
market share gobbled up by Internet Explorer during its overlong development. A
beta of Version 8 is available as of this writing.

16 | Chapter2: Designing for a Variety of Browsers

For information about the Netscape browser, go to browser.netscape.com. Starting
in October 2004, Netscape shut down its online developer resources. Mozilla.org
is trying to gain rights to archive and publish those documents.

Netscape Navigator 4

Netscape Navigator and Communicator 4 was once the king of the browser
world. Now its user base has dwindled to a fraction of a percent. Even so, web
developers may consider a site’s performance in Navigator 4 because it is typical
of browsers with minimal support for current standards such as Cascading Style
Sheets. Also, web developers can assume that users who still use Netscape 4 really
have no alternative, for instance, because it is installed by their organization or is
built into an application. While designers generally don’t worry about matching
layouts exactly in Netscape 4, it is critical that no content gets lost and that
advanced CSS or scripting techniques don’t crash the browser.

Firefox 1.0

Firefox (previously Firebird) is an open source browser based on Mozilla code. Its
popularity exploded in the development community for being small, fast, and
highly standards compliant. It also offers features such as tabbed browsing, pop-
up blockers, integrated Google search, and better security than Internet Explorer,
enabling Firefox to be the first browser to take a bite out of IE’s market share.
Because it is open source, many useful extensions have been created for it (see the
sidebar, “Web Developer Extension for Firefox”).

Download and find out more about Firefox at the Mozilla web site, www.
mozilla.org.

Web Developer Extension for Firefox

Web developers are raving about the Web Developer extension for Firefox
created by Chris Pederick. The extension adds a toolbar to the browser with
tools that enable you to analyze and manipulate any page in the window. For
example, you can edit the style sheet for the page you are viewing or apply your
own. You can get information about the HTML and graphics on the page. It
also allows you to validate the CSS, HTML, and accessibility of a web page.

Download the Web Developer extension at chrispederick.com/work/firefox/
webdeveloper/.

For a complete list of Firefox extensions, including others for web developers,
g0 to hitps://addons.update.mozilla.org/extensions/?application=firefox/.

Opera 8.5

Opera is a lean and mean browser created by Opera Software in Oslo, Norway.
Opera is respected for its exact compliance with HTML and CSS standards,

Browser Roll-Call | 17

SI19sMoig

=
<
o
=
n
~*

<
[
=

extremely quick download times, and a small minimum disk requirement. It is
free if you don’t mind ad banners as part of the interface. To register the browser
and get rid of the ads, the price is $29. The general public is not likely to flock to
Opera, and it never so much as blips in the browser statistic charts; however,
many developers continue to test their sites in Opera to make sure their code is
clean. The Opera browser is also an important player in the handheld device
market.

For more information about Opera, see www.opera.com.

Safari

Safari is the browser that comes with Mac OS X. It uses the KHTML rendering
engine originally developed for the Konqueror desktop environment. It is very fast
and offers fairly solid support of standards, although it does have its own bugs.

For more information and downloads, go to www.apple.com/safari/.

America Online

Beginning with Windows AOL 3.0 (32 bit), the AOL client does not have a
browser embedded, but instead uses the Internet Explorer browser users already
have installed in their systems. Therefore, browser compatibility is mostly inde-
pendent of a user’s specific AOL version. The scant 1 to 2% of AOL subscribers
with Macintoshes use an AOL browser that is built on Gecko.

As of this writing, approximately 97% of AOL users view the Web on Windows
machines using Internet Explorer 5.0 or higher. Unfortunately, Internet Explorer’s
functionality is limited somewhat when used in conjunction with the AOL client.
This is due to the way the specific AOL clients interact with the browser and
AOL’s reliance on proxy servers and image compression techniques.

AOL publishes a site specifically for web developers who want their sites to be
accessible and attractive to AOL users. AOL’s web developer site can be found at
webmaster.info.aol.com.

Lynx

Lynx is the best-known text-only browser. It has been around since the beginning
of the Web and has been updated to include support for tables, forms, and even
JavaScript. Lynx is useful to developers for testing a site’s basic functionality in a
non-graphical environment. This is important to ensure accessibility for visitors
with disabilities who may be using Lynx with a speech or Braille device.

Lynx is not kept current for all platforms, so you may find only a beta or out-of-
date version. Another alternative is to view your page in a Lynx emulator online at
www.delorie.com/web/lynxview.html.

The Extremely Lynx page (www.subir.com/lynx.html) is a good starting point for
finding developer information for Lynx.

18 | Chapter2: Designing for a Variety of Browsers

An excellent resource for tracking browser releases and history is
Browser News (www.upsdell.com/browsernews/).

v
'

Gathering Usage Statistics

Web developers pay attention to the breakdown of browser usage, for the Web at
large and more relevantly for their specific sites, because it directly affects the way
they create their pages. There are several methods for tracking browser usage: free
general statistics listings, log analysis tools that you run on your own server, and
professional statistics services.

Global Browser Statistics

If you are interested in a general breakdown of overall browser usage, there are a
number of web sites that provide listings for free. They also offer usage statistics
on other useful criteria such as screen resolution and various web technologies.

The Counter (www.thecounter.com/stats) bases its global statistics on millions of
visitors using thousands of web sites registered with their service. This is an easy
(and free) way to get a good general overview of browser usage.

Another useful resource for browser information, as well as for tutorials on a
number of web topics, is the W3 Schools site (www.w3schools.com/browsers).
Their statistics seem skewed toward the development and technically savvy
community, as evidenced by the fact that the Firefox browser makes up nearly
20% of all usage, compared with only 8% at the more general Counter.com as of
this writing (September 2005).

Server Log Analysis

The most meaningful statistics are those culled from your own site’s usage. There
are software tools designed just for this purpose, all of which work basically the
same way.

When a browser accesses files from a server, it leaves a record of that transaction
on the server, including a little data about itself: specifically, its version and the
platform it is running on. This information is known as the user agent string, and
it is used by analysis software to generate statistics about the browser usage for a
site. A typical user agent string might look like this:

Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)

There are dozens of log analysis tools available at a wide variety of costs. Many
hosting companies include some level of server statistics as part of their hosting
packages. You may also install special statistics software for better reporting. A
web search for “web statistics analysis” will turn up many companies offering
statistics analysis.

Another option is to sign up with a service such as The Counter (mentioned
earlier) that puts a counter on your web page and provides usage stats in exchange
for ad placement on your page.

Gathering Usage Statistics | 19

SI19sMoig

=
<
o
=
n
~*
<
[
=

The Mozilla Legacy

Today, we know Mozilla as the foundation that guides the development of the
open source Mozilla software. So it may be confusing to see Mozilla at the
beginning of a user agent string for Internet Explorer, as shown in the earlier
example.

The Morzilla identifier at the beginning of a typical user agent string is an inter-
esting artifact from the earliest days of the Browser Wars. Netscape first released
its browser under the codename Mozilla (a shorthand combination of Mosaic
killer and Godzilla). Mozilla, for its time, was a fairly turbo-powered browser, so
webmasters began targeting their content to it specifically.

When competing browsers (most significantly, Microsoft Internet Explorer)
began featuring similar capabilities, they didn’t want to be left out of the
targeting action, so they put the word “Mozilla” in their user agent identifica-
tion as well. Eventually, everyone was doing it, so the only way to truly identify
the browser version was to include it in parentheses (such as MSIE 5.5 in the
previous example).

The name Mozilla stuck with the Netscape browser through its glory days and
continued to its release as open source software. For more information on the
Mozilla Foundation, see www.mozilla.org.

Targeted Statistics Consulting

If you want fairly accurate browser usage statistics, but your own site isn’t up and
running yet, you may hire the services of a user trends consultant to analyze usage
on similar sites or within a specific business sector. A place to start is the Web
Analytics Association (www.webanalyticsassociation.org), which offers a listing of
members who provide usage trend reports.

Learning from Browser Statistics

However you gather your statistics, they can tell you some important things about
your audience and how they may experience the Web. Consider Table 2-2, which
provides a set of browser statistics typical of the end of 2005. These statistics may
not necessarily be meaningful as you read this book, but if you are completely unfa-
miliar with the typical browser breakdowns, these will give you a ballpark idea.

Table 2-2. Browser statistics for December 2005 from The Counter.com

Browser Usage
Microsoft Internet Explorer 6 83%
Microsoft Internet Explorer 5 3%
Mozilla/Firefox 8%
Safari 2%
Unknown 1%

20 | Chapter2: Designing fora Variety of Browsers

Table 2-2. Browser statistics for December 2005 from The Counter.com (continued)

Browser Usage
Opera x.x 1%
Netscape 7 1%
Netscape compatible <1%
Microsoft Internet Explorer 4.x <1%
Netscape 4.x <1%
Konqueror <1%
Netscape 6 (and older versions) <1%
What You Can Learn

Once you have statistics in hand, what conclusions can you draw from them?
Even statistics as general as those in Table 2-2 provide a jumping off point for
thinking about how they might impact design.

Standards support

The good news is that 99% of browsers in use today support some level of current
standards, at least on paper. Unfortunately, the reality is that even browsers with
strong standards support have their own quirky implementations and bugs that
require developers to jump through hoops, particularly when it comes to CSS,
ECMAScript (JavaScript), and the DOM. That’s where web design and develop-
ment can feel like a black art. Techniques for addressing CSS browser bugs are
covered in detail in Chapter 25.

Dominance of Windows and Internet Explorer

As of this writing, the vast majority (83%), according to these statistics; others
vary) of web traffic is happening on Windows machines running Internet Explorer
6. That means you cannot afford to ignore its unique behaviors and require-
ments. For example, knowing that more than 80% of your visitors will not be able
to zoom text when its size has been specified in pixel units should influence the
way you size text with style sheets. Other examples of Internet Explorer’s special
needs are listed in Chapter 25.

Version 7 is nearing its final release as of this writing, and IE 6 will eventually fall
to second in the rank, but it takes several years for old browser versions to fade
from use completely.

Persistence of old browser versions

Speaking of old browser versions, the statistics above show that browsers such as
Netscape 4, originally released in 1997, are still hanging around. In fact, statistics
show that there are still a handful of hits from Netscape 2.

With the vast volume of web traffic, even less than 1% could amount to millions
of users. If your revenue depends on them, you must continue to keep them in
mind and make sure that your site is, at the very least, functional on even the
oldest browsers.

Learning from Browser Statistics | 21

SI19sMoig

=
<
o
=
n
~*

<
[
=

Browser Usage Trends

What the statistics above do not show us are some important browser develop-
ments over time. The most drastic trend, of course, is Microsoft’s complete
domination of the browser arena. In mid-1997, Netscape Navigator enjoyed a
comfortable 70 to 80% of overall browser usage (according to statistic sites such
as those listed earlier); by 1998, that share was down to 50%. Now, all versions
combined make up just 1%.

It seemed Internet Explorer was unstoppable, that was until 2005, when it
suffered its first drop in browser usage to Mozilla’s free Firefox browser. There
was a grass-roots campaign to promote Firefox (www.spreadfirefox.com) as an
alternative browser to people fed up with IE’s security holes. Firefox usage quickly
expanded to 5 to 10% of all browser usage (depending on whose stats you use).
As of this writing, its rise is slowing. Even so, it has caused Microsoft to recognize
the need to improve its security and to continue development of a standalone
browser application. Microsoft has plans to integrate web browsing functions so
fully into its operating system that browser software as we know it may be
obsolete.

Dealing with Browser Differences

How do professional web designers and developers cope with the multitude of
browsers and their varying capabilities?

In the past, it required some tough decisions or a lot of extra work. It was
common to create multiple versions of a site to ensure similar functionality. Some
designers played it safe and avoided any web technology more advanced than
basic HTML. On the other end of the spectrum were designers who chose to
design cutting edge sites exclusively for the latest version of one specific browser.
We can thank the Browser Wars of the late ’90s for that chaos.

Web standards—or more important, the fact that the major browser developers
have finally started to support them—have simplified the way designers cope with
the multitude of browsers in use. Gone are the days of choosing sides or building
several versions of the same site. Todays, it is possible to create sites that are acces-
sible to 100% of browsers and that look good in the vast majority of them. The
trick is following the standards yourself in the way you write, style, and program
your content.

Note that I said “possible” in the last paragraph, and not “easy,” to create sites for
all browsers. As of this writing, the web environment, although inching towards
standards compliance, is not there yet. There are still inconsistencies, even in the
current browser versions, that require some fancy coding to deliver a consistent
cross-browser experience. While we are in this period of transition, there are still
some old-school techniques that are common practice or even necessary despite
going against W3C recommendations.

Bugs aside, sticking with standards is still the primary tool to ensuring your site is
usable for all users on all browsers. Following are some specific strategies for
addressing varying browser capabilities.

22 | (Chapter2: Designing for a Variety of Browsers

A Little Help from Authoring Tools

Both Adobe GoLive and Macromedia Dreamweaver provide tools that give you
feedback on your design’s performance in various browsers. GoLive provides a
complete list of browser profiles that change the appearance of the document in
the Layout window. Simply select a profile from the View palette and the
Layout window simulates how your page will look when viewed with that
browser. This can allow you to make certain adjustments in real time, without
the need to open multiple browsers for testing.

Dreamweaver has a Check Target Browser feature that checks your code against
a list of browser profiles to see if any tags or attributes are unsupported and then
generates a report with its findings. To take some of the guesswork out of
browser support for scripting, Dreamweaver allows you to set a target browser.
Dreamweaver then limits the behaviors you can select to just those supported in
that browser. The program also includes built-in functions for performing
browser detection.

Dreamweaver users may also be interested in the book Build Your Own Stan-
dards Compliant Website Using Dreamweaver 8, by Rachel Andrew (Sitepoint).

Document Authoring

It is important to keep in mind that your primary goal on the Web is to communi-
cate. While it may not be possible to make your site look exactly the same on all
browsers, you can be sure your content is accessible and usable, at the very least,
by following standards recommendations for marking up your content.

Start with good markup
When an HTML document is written in logical order and its elements are
marked up in a meaningful way, it will be usable in even Mosaic 1.0 (try it
yourself on the Mosaic emulator at Dejavu.org). Plus, you have to figure that if
a visitor is using Netscape 2.0, your page won’t look any worse than any other.

Follow accessibility guidelines
The techniques that make your site accessible to people with disabilities also
ensure that your site can be viewed on all browsers, including old versions,
text-only browsers, and micro-browsers in handheld devices. See Chapter 5
for more information on accessibility.

Style Sheet Tactics

Now that HTML has resumed the role of providing document structure,
Cascading Style Sheets bear the burden of delivering consistent page layouts and
formatting. The good news is that the vast majority of browsers support CSS Level
1, so you can do basic text formatting with peace of mind that the majority of
your visitors will see it the way you intend.

The bad news is that there are still inconsistencies in the way much of the specifi-
cation is implemented, even by those browsers who claim full CSS support. So

Dealing with Browser Differences | 23

SI19sMoig

=
<
o
=
n
~*

<
[
=

CSS implementation still requires some extra effort to achieve consistent results.
In some cases, it is necessary simply to live with one browser displaying items a
few pixels off. Remember, the goal is to communicate. A few pixels shouldn’t
matter.

The specifics of known bugs, limitations, and workarounds are covered in
Chapter 25, so I won’t go into detail here. But I can show you a general style sheet
strategy for addressing the special needs of all browsers. This technique comes
from web standards guru Jeffrey Zeldman. In his book, Designing with Web Stan-
dards (New Riders), he describes the Best-Case Scenario Design Method.

The crux of the method (in addition to the proper use of XHTML and CSS) is to
design for your favorite full-featured, standards-compliant browser. This is a
departure from the past practice of checking how pages looked in the lowest
common denominator browsers first. Then test your page to make sure it looks
and works the same in comparable standards-compliant browsers. If it doesn’t
look the same, you may need to use some fancy CSS tricks to work out the kinks.

Once you have the design working acceptably in the modern browsers (which are
used by the vast majority of users), take a look at it in a noncompliant browser,
such as Netscape 4. If it looks okay, you’re done. If not, the solution is to sepa-
rate your style sheet into two separate sheets: one with just the basic CSS features
and another with advanced rules features for browsers that understand them.
Link the advanced style sheet using @import to hide it from browsers that
wouldn’t know what to do with it.

Knowing which rules are basic and which are advanced takes research, testing,
and practice. With some trial and error, you should be able to design a site that
looks the way you want it to in the top-model browsers but still is acceptable in
older versions.

Programming

The standards that govern web behaviors are the scripting language ECMAScript
(so close to JavaScript 1.5 that it is usually just referred to by the less technical
sounding moniker, JavaScript) and the Document Object Model (DOM), which
defines the components of a web page that can be manipulated.

There is the same good news/bad news scenario for JavaScript and the DOM.
Although 99% of compliant browsers profess to support the standards, they are
fraught with bugs and inconsistencies. Some browsers do not support certain
JavaScript functions. Microsoft has added its own extensions to the DOM that
work only in Internet Explorer. And so on.

For the remaining 1% of browsers that do not support the DOM at all (namely
Version 4 browsers), there are no simple workarounds. It is usually necessary to
serve an alternative version of the page that uses scripting functions those
browsers can understand, or to provide an explanatory page without scripts at all
that would work on any browser.

24 | (Chapter2: Designing for a Variety of Browsers

Know Your Audience

Although by following standards-driven development techniques, you ensure that
your site is usable for all visitors, you may decide to embrace or steer clear of
certain technologies based on knowledge of your audience. Before designing a
new site, be sure to spend time up front researching the likely platforms,
browsers, technical savviness, and connection speeds of the users you are
targeting. If you are redesigning an existing site, spend time with the server logs to
analyze past site usage.

There are no browser-support guidelines that can anticipate every design situa-
tion; however, the following scenarios should start you thinking:

* If your site is aimed at a consumer audience—for instance, a site that sells
educational toys to a primarily parent audience—don’t ignore your site’s per-
formance and presentation in the AOL browsers or older browser versions
over dial-up connections.

* If you are designing for a controlled environment, such as a corporate intra-
net or, even better, a web-based kiosk, you’ve got it made! Knowing exactly
what browser and platform your viewers are using means you can take full
advantage of the bells and whistles (and even proprietary features) appropri-
ate to that browser. If you are designing a standalone kiosk, you may even
have the luxury of loading the fonts you want to use. Just be sure your design
won’t crash the browser, because there won’t be anyone there to restart it for
you immediately.

* If your site is about the technology being used, such as SVG graphics or Flash
animations, you have every right to expect users to use the appropriate
browser or plug-in to catch up with your content. But it might still be nice to
at least provide some screenshots or other alternative content to let the oth-
ers know what they’re missing.

* If you are designing a government site, you are required by law under Section
508 to make your pages accessible to all browsing devices. For more informa-
tion, see Chapter 5.

Test!

The final word in the dilemma of designing for a variety of browsers is test!
Always test your site on as many browsers, browser versions, and platform config-
urations as you can get your hands on.

Professional web design firms run their sites through a vigorous quality assurance
phase before going “live.” They generally keep a bank of computers of varying
platforms and processing powers that run as many versions of browsers (including
Lynx) as possible.

Another option is to subscribe to a screen capture service such as Browser Cam.
For a monthly fee, you can enter the URL of a page you want to check, and
Browser Cam creates screen captures of the page in all the operating systems and

Testt | 25

SI19sMoig

=
<
o
=
n
~*

<
[
=

browsers you select. This makes it easy to see which browsers are having prob-
lems without needing to run copies of all of them yourself. Read more at
browsercam.com.

If you have extremely limited resources, make the site available on a private test
site and take a look at it on your friends’ computers. You might view it under
corporate conditions (a fast Windows machine with a 6.0 browser and a T1
connection), and then visit a friend at home to see the same site on AOL with a
56K modem. (If nothing else, this is a good excuse to get away from your
computer and visit your friends.)

Although your pages will certainly look different in different environments, the
idea is to make sure that nothing is outright broken and your content is communi-
cated clearly.

26 | (Chapter2: Designing for a Variety of Browsers

Designing for a Variety
of Displays

A simple fact of web publishing is that your page is at the mercy of the software
and hardware configuration of each individual user. A page that looks great on
your machine may look radically different when viewed on another user’s setup.
This is partly due to the browser’s functionality (as discussed in Chapter 2) and
the individual user’s preferences (font size, colors, etc.), but the display device
itself also plays a large part in the user’s experience.

This chapter looks at the ways in which design decisions are influenced by a wide
range of displays and viewing conditions. The variation in display is a function of
the monitor’s size (or, more accurately, its resolution), color capabilities, and
user’s personal preferences. However, it is important to keep in mind that the
diversity does not end there. Some users may be watching your web page on TV.
Still others may be viewing it in the palm of their hand on a PDA (personal digital
assistant) or cell phone. Sight-impaired users may be listening to your page, not
viewing it.

How do you create a page that works in a cinema-display computer monitor and a
postage-stamp sized cell phone? Once again, web standards are the answer. The
W3C guides the development of web technologies in a way that ensures that the
Web is accessible to all manner of devices. As designers and developers, our job is
to author documents in a way that they make sense in any environment. That
means logical, well-structured markup, uncluttered by presentation instructions
that may not be appropriate for a particular medium. In fact, Cascading Style
Sheets include a function that allows you to create different style sheets targeted
to particular media such as print, screen, and handheld.

As most web viewing does take place on computer monitors, this chapter starts
with a look at how monitor resolution impacts web page design.

27

Designing for Unknown Monitor Resolutions

Browser windows can be resized to any dimension, limited only by the maximum
size of the monitor. Designing for an unknown amount of browser real estate is a
challenge unique to web design and one that is particularly troublesome for
designers who are accustomed to the printed page.

Many web designers want to know which monitor resolution to design for. As
with most web design issues, there is no “right” way to design for the Web, and
your decisions should always be guided by your knowledge of your target audi-
ence and the purpose of your site. Still, it is helpful to understand the
environment and to know how others are maneuvering within it.

This section looks at the range of monitor resolutions and presents the current
wisdom on making appropriate design decisions.

Standard Monitor Sizes and Resolutions

The first step in determining the likely size of your web page is to look at the
maximum amount of space provided by the computer monitor. Computer moni-
tors come in a variety of standard sizes, typically measured in inches, ranging from
12" laptop displays all the way up to 30" cinema displays.

A more meaningful measurement, however, is monitor resolution: the total
number of pixels available on the screen. The higher the resolution, the more
detail can be rendered on the screen. Resolution is related to but not necessarily
determined by monitor size. Depending on the video card driving it, a single
monitor can display a number of different resolutions. For instance, a 17" monitor
can display 800 x 600 pixels, 1024 x 768 pixels, or even higher. The following is
a list of some standard monitor resolutions supported by Windows and Macin-
tosh platforms. This is not a complete listing, merely the most commonly
occurring configurations.

* 640 x 480

* 800 x 600

* 1024 x 768

* 1152 x 870

* 1280 x 1024

* 1600 x 1200
It is important to keep in mind that the higher the resolution on a given monitor,
the more pixels are packed into the available screen space. The result is smaller
pixels, which will make your images and page elements appear smaller as well.
For this reason, web measurements are made in pixels, not inches. Something that

appears to be an inch wide on your system may look smaller or larger on other
screens. Chapter 28 further discusses resolution as it applies to graphics.

28 | (Chapter3: Designing fora Variety of Displays

Live Space in the Browser Window

Knowing the size of the monitor is just the beginning. The operating system and
the interface components of the browser itself (known as the browser chrome)
occupy a fair amount of screen space. The amount of space that is actually avail-
able within the browser window, (the browser canvas), is dependent on the
computer’s operating system, the browser being used, and the individual user’s
preference settings.

Table 3-1 lists the amount of canvas space that is available at standard monitor
resolutions. Measurements were taken with the browser maximized to fill the
monitor and with all possible chrome elements such as buttons, location bars, and
scrollbars visible. In a way, this can be considered a worst case scenario for avail-
able space (with the browser maximized).

Bear in mind that these are theoretical extremes, and actual browser window
dimensions will vary. Users may have some of the buttons showing, but not all of
them. Scrollbars turn on and off automatically, so they are difficult to anticipate.
Users with high monitor resolutions (1024 pixels wide and higher) do not neces-
sarily open their browser windows to fill the whole area, but may keep several
narrow windows open at the same time.

Table 3-1. Minimum canvas dimensions at various monitor resolutions

Browser 640 x 480 800 X 600 1024 % 768 1280 x 1024
Windows

Internet Explorer 6 620 x 309 780 x 429 1004 x 597 1260 x 853
Firefox 1.0 621 x 291 781 x 421 1005 x 579 1261 x 835
Netscape 72 625 x 258 785 x 378 1009 x 546 1265 x 802
Macintoshb

Safari 625 x 352 785 x 472 1009 x 640 1265 x 896
Firefox 1.0 625 x 328 785 x 448 1009 x 616 1265 x 872
Internet Explorer 5.2 625 x 334 785 x 454 1009 x 622 1265 x 878
Netscape 72 625 x 340 785 x 460 1009 x 628 1265 x 884

o

Netscape measurements are taken with MySidebar hidden. MySidebar takes up 170 pixels of horizontal space.
Macintosh widths are measured with no launch bar visible on the side of the screen.

o

The dimensions for Microsoft Internet Explorer on an 800 x 600 monitor are in
bold because they represent the available canvas area for a typical lowest common
denominator user. Because as much as 80% of web traffic uses Internet Explorer
on Windows, and because as many as a quarter of users have 800 x 600 moni-
tors, it is current web design practice to make sure pages fit comfortably within
780 x 429 pixels in order not to alienate this significant percentage of users.
Designing to fit specific window sizes is discussed later in this chapter.

Designing for Unknown Monitor Resolutions | 29

skejdsiq

=
<
o
=
n
~
<
[
=

Fixed Versus Liquid Web Pages

Closely related to the issue of varying monitor resolutions is the question of
whether web pages should be designed to be liquid (resizing and adapting to
various window sizes, also called “fluid” design) or fixed at a particular size
(giving the designer more control of the page’s dimensions). There are very strong
opinions on both sides, and there are good reasons for and against each approach,
naturally.

You may find that you choose a fixed structure for some sites and allow others to
be liquid, or you may have strong convictions that one or the other approach is
the only way to go. Either way, it is useful to be familiar with the whole picture
and the current opinions of professional web designers (see “The Layout Debate”
sidebar). This section attempts to present a balanced overview of the possibilities
and the pitfalls.

The Layout Debate

The question of whether fixed or liquid page layouts are most appropriate for
web pages has sparked impassioned debate among professionals in the web
design community. There is an undeniable trend toward fixed-width layouts
(presumably due to the desire to control line lengths), but there are still staunch
proponents of liquid designs as best for a medium where the canvas size is
unknown. To get caught up with both sides of the debate, start with these arti-
cles and blog entries (they all have links to additional points of view):

* “On Fixed vs. Liquid Design,” by Doug Bowman (experimenting with fixed-
width design at www.stopdesign.com/log/2003/12/15/fixedorliquid. html)

* “More on fixed widths,” by Richard Rutter (pro-liquid design article at
clagnut.com/blog/269/)

* “Fixed Fashion,” by Jeremy Keith (pro-liquid design post at www.adactio.
com/journal/display.php/20050415012704.xml)

* “The Benefits of a Fixed Width Design,” by Mike Golding (www.notestips.
com/80256B3A007F2692/1/TAIO-5TT34F)

Liquid Layouts

Web pages are fluid by default. The behavior of the “normal flow” of a web docu-
ment is to flow into the browser window, filling all available space in the canvas
area. When the browser window is resized, the elements reflow to adapt to the
new dimensions. Many designers make a conscious decision to construct pages
that adapt to the stretching and shrinking of browser windows. This approach
comes with advantages and disadvantages.

30 | Chapter3: Designing fora Variety of Displays

Advantages and disadvantages of fluid web pages
The advantages of a flexible design include:

* You don’t need to worry about choosing a target monitor resolution.

* The whole window is filled, without the potentially awkward empty space
left over by many fixed-width designs.

* Designing liquid pages is in keeping with the spirit and the nature of the
medium. A “good” web page design by these standards is one that is func-
tional to the greatest number of users.

Keep in mind, though, these potential pitfalls of a flexible design:

* On large monitors, the text line length can get out of hand when the text fills
the width of the browser. Long lines of text are particularly uncomfortable to
read on a screen. (Note, line length on liquid designs could be controlled by
the max-width CSS property, but it is not supported by Internet Explorer 6 or
earlier. One day, it will be a tool for addressing the line-length issue.)

* Elements float around on large monitors, making the design less coherent
and potentially more difficult to use. Likewise, on very small monitors, ele-
ments can get cramped.

* The results of flexible design are unpredictable, and users will have varying
experiences of your page.

Creating flexible pages

The key to creating web pages that resize proportionally to fill the browser is
using relative measurements, such as percentages) in your style sheets, tables, or
frames or not specifying measurements at all and allowing elements to size
automatically.

As an example, let’s consider a web page that is divided into two sections: a main
content column and a links column (Figure 3-1). By using percentage values for
the divs, table cells, or frame measurements, the columns and elements will
remain proportional to one another. In this example, the main content column
takes up 75% of the screen regardless of the size of the browser window. Note
that the content of that column reflows to fill the available width.

Using style sheets, you can also set the contents of the page to flex based on the
user’s text size preference by setting measurements in ems, a unit used in printing
to refer to the width of one capital letter M. In CSS, an em is equal to the font size;
in other words, an em unit in 12-point text is 12 points square. Using em
measurements for element dimensions, margins, line-height, and so on ensures
that page elements scale proportionally with the user’s chosen text preference.

Fixed-Width Design

If you want more control over the layout of a page, you may opt to design a web
page with a fixed width that stays the same for all users, regardless of monitor
resolution or browser window size. This approach to web design is based on
design principles learned in print, such as a constant grid, the relationship of page
elements, and comfortable line lengths. It is a popular approach among the stan-

Fixed Versus Liquid Web Pages | 31

skejdsiq

=
<
o
=
n
~
<
[
=

LOREM IPSUM LOREM IPSUM
Dula %t et dul
e e Convechstim: adipiog 6. Sail £ i eget magns ditem
e s e vouste comegie, Nom WACoR. CotUhesn f wghtan, By mokete mugen vithe Kem wiputain
saibero

L Peenteson comana. M 3
i, VA 369, S4piLe 3, gaam

Fisus. Enam
‘arei. Eram at &
Apasm erak oAzl

Aliquam mollis.
Oul st amek s Pron Kac inesse s i froi cokor S, scRceudn

m«w.m Phultam 1 ol 5 St i M0 Mo

Firum. Curabious 3 neque et e BiScHE adpiang. VesBUn
st Emenius, 30t KTy MBS G0, Vst AP e hares et i

Binuar e MR, IrTneil Sl shisin ner. lacei b, Bern. Inbta il it

Figure 3-1. A flexible web page with proportional columns

dards-based design crowd as of this writing, but that may only indicate a trend,
not that it is the superior approach to web page layout.

Advantages and disadvantages of fixed-width design

These are the advantages of fixed-width design:

* The basic layout of the page remains the same regardless of canvas size. This
may be a priority for companies interested in presenting a consistent corpo-
rate image for every visitor.

* Fixed-width pages and columns provide better control over line lengths, pre-
venting them from becoming too long when the page is viewed on a large
monitor.

Consider also these disadvantages:

* If the available browser window is smaller than the grid for the page, parts of
the page will not be visible and may require horizontal scrolling to be viewed.
Horizontal scrolling is a hindrance to ease of use, so it should be avoided.
(One solution is to choose a page size that serves the most people, as dis-
cussed later in this section.)

* Elements may shift unpredictably if the font size in the browser is larger or
smaller than the font size used in the design process.

* Trying to exert absolute control over the display of a web page is bucking the
medium. The Web is not like print; it has its own peculiarities and strengths.

Creating fixed pages

Fixed web page designs are created by using exact pixel measurements for all the
elements on the page. Figure 3-2 shows a two-column web page similar to the one
in Figure 3-1; however, this one has been sized to exactly 900 pixels wide, with
the two columns set to 700 and 200 pixels, respectively.

Style sheets offer the best set of tools for fixed-measurement layouts. In the past,
designers resorted to tricks such as sized transparent graphics to hold

32 | (Chapter3: Designing for a Variety of Displays

ann Tt i 0 it : ann Pl s a1 ot

2

LOREM IPSUM LOREM IPSUM

Consmciutons adpachg vt Sed pu nkh eget magne dkbem spreter. bus Coavectaturr sdscng al. Sad ey S aget magew i agesas. D

adpincing. Reokiers ey o, Vivarmuis dodor, In filkes wrat, lesis o amat,

variua ale, suckor hec, wheken s, wecknr nac b,

Nulla facilisi.

e]

Supererine i Mam al whi o2 e [euglet vshipa faune v o
Tibs, AEN®AN Fu et S AT 1% accumson M Dr«m!nx Bugue.
VeRl, uSsmenrper Bt Qravida i, warkis nan, odie.

sttt non,

Figure 3-2. A fixed-width web page with exact pixel measurements viewed on large (left)
and small (right) monitors

“whitespace” on the page and multiple nested tables to control spacing around
elements. Thankfully, these workarounds are no longer necessary.

Style sheets allow you to set specific pixel measurements for the page, columns,
margins, indents, and so on. You can also specify the font size in pixels, ensuring
the text will wrap similarly for most users.” The CSS Level 2 specification provides
tools for the precise positioning of elements on the page, right down to the pixel.
For designers looking for control over layout, style sheets are great news.

Some visual HTML authoring tools make it easy to create fixed-width designs.
Adobe GolLive (www.adobe.com/products/golive/main.html) has an option for
designing your page on a grid as though it were a page-layout program. GoLive
then automatically generates the corresponding (and often complicated) table.
Macromedia Dreamweaver (www.macromedia.com/software/dreamweaver/) also
includes a layout mode with the option of generating your design using tables or
style sheets with absolute positioning.

Left-aligned or centered?

When you set your content to a specific width, you need to consider where it
should appear in the browser window. By default, it will be aligned on the left
margin, with the extra space in the browser window on the right. Some designers
opt to center the page, splitting the extra space over the left and right margins.
Centering the page may make it feel as though the page better fills the browser
window. Figure 3-3 provides examples of each approach. Neither of these
approaches is necessarily better than the other; it’s just a design decision you’ll
need to make.

* Using pixel measurements for font size is problematic, because Internet Explorer users (Version
6 and earlier on Windows) cannot resize text set in pixels in the browser window. This could cre-
ate accessibility problems for sight-impaired users who need to zoom text. Internet Explorer 7 will
support this feature, but in the meantime, em units are the best choice for font size. For a more
detailed discussion, see Chapter 18.

Fixed Versus Liquid Web Pages | 33

skejdsiq

>
<
o
=
n
~
<
[
=

=

Aliguam mollis.

Figure 3-3. Positioning fixed-width content on the page

Be aware that there are a few issues regarding centering content in
% the browser window in modern browsers. This is discussed in

l; Chapter 21.

Pop-up and resized windows

For the ultimate in control-freak, fixed-width page design, you can specify not
only the size of your web page, but also the size of the browser window itself.

One way to get the browser window “just so” is to open a new browser window
automatically (known as a pop-up window) set to specific pixel dimensions. The
drawback to this technique is that pop-up windows have become associated with
annoying, force-fed advertising banners. Many users have learned to close a pop-
up window before the content even has time to load. The seriously annoyed folks
may have taken the time to install a pop-up window blocker on their browser.
Others may simply have JavaScript turned off for security or whatever reasons.
The lesson here is not to put critical content in a pop-up window, and if you do,
label the link accordingly to let people know what to expect.

Another, more drastic, approach is to run a JavaScript that resizes the user’s
current browser window to accommodate your design. In my opinion, this is just
bad manners—Ilike visiting a stranger’s house and rearranging their furniture
without asking. But I will qualify this statement by saying that no technique is
entirely off limits. Sometimes an otherwise bad practice may be the appropriate
solution. In this case, automatically resizing the browser window might be a good
backup technique to make sure a web-based kiosk window is always sized
appropriately.

Combination Pages

Of course, web pages need not be all-fixed or all-flexible. It is certainly possible to
create pages that are a combination of the two by setting a specific pixel size for
one critical element and allowing the rest of the page to resize to fill the browser
window. In Figure 3-4, the right column has been set to stay at 200 pixels so the
list of links is always visible, but the main content column is allowed to resize to
fill the available browser window space.

34 | (hapter3: Designing fora Variety of Displays

LOREM IPSUM LOREM IPSUM

Comanchesoat adochg o Sec iy rih apet mages

Setues agestar o moleine sugur

bt et Nam s Eorib nu-_1 1A migna
siresr it

Commcaton scowcing WB. Sad w i aget mages dctan ppesan Dl oy
Wt magns

ww
Huscenss pubants peberiasiaot s, ELam G4t
e pe ki ey P
ks 34 i, Pram af felis. M
ot B T, e B o i
vt vobitpat.

Tals. Mauns pede Solar, NENGHET ¢, vt 385, Japbs AL (R, Abguam 1s
valtpat.

Aliguam maollis.

Aliquam mollis.

Dt o k. Pt skl rises
. pekatudn o,

ottt
Aguarm GOGHAE, s B¢ Tonsmmy o

wm e b i

Figure 3-4. A web page with a liquid left column and a fixed-width right column

Choosing a Page Size

Obviously, if you decide to design a web page at a fixed size, you need to make a
decision regarding how big to make it. If the page is too wide, you run the risk of
users with lower resolution monitors missing some of your content as shown in
Figure 3-2. It makes sense to design the page to fit comfortably in the smallest
monitors and eliminate the need for horizontal scrolling. This is where web traffic
statistics come in handy.

The statistics

Table 3-2 shows the breakdown of users browsing the Web with various monitor
resolutions in late 2005, according to TheCounter (www.thecounter.com).

Table 3-2. Resolution statistics as of December 2005 (thecounter.com)

Resolution Usage
640 x 480 <1%
800 x 600 20%
1024 x 768 56%
1152 x 864 3%
1280 x 1024 14%
1600 x 1200 <1%
Unknown 2%

Of course, this is only an approximation based on traffic to a limited set of web
sites. The only worthwhile statistics are those culled from your own server logs.
You can install software to check browser resolution yourself, or sign up for a
tracking service such as TheCounter (free in exchange for ad placement).

Fixed Versus Liquid Web Pages | 35

skejdsiq

>
<
M
=
m
-
<
Q
£

Current practice

Based on these statistics, the only definitive conclusion is that it is finally time not
to worry about how your page will appear in 640 x 480 monitors (unless, of
course, you know the target audience for your site is likely to have outdated hard-
ware setups).

As of this writing, professional web developers tend to design pages that fit in 800
x 600 monitors. Although the percentage of people with this monitor resolution
is steadily shrinking, with just a fifth of all traffic, it is still too large a population
to risk alienating. For this reason, you will find that most fixed-width consumer-
or business-oriented web sites are designed to be approximately 750 pixels wide.

If you know that the majority of your visitors will have a higher monitor resolu-
tion (such as graphic designers), or if the right edge of your design does not
contain critical content, then it may be safe to design to fill the live space of a
1024 x 768 monitor. Very few sites today are designed to fill 1280 x 1024.

I suspect as 800 x 600 monitors go the way of 640 x 480, we’ll be seeing larger
and larger web pages. For now, however, consider 800 x 600 the lowest common
denominator monitor resolution.

“Design-to-Size” Developer Tools

There are a few developer tools available that allow you to see how your page
will look at varying browser sizes without needing to change the resolution on
your monitor.

One of the niftiest tools out there is the Web Developer Extension for Firefox
and Mozilla browsers. The extension adds a toolbar to the browser that has a
number of useful tools for web developers. One of the tools is Resize, which
automatically changes the dimensions of the browser window to your specifica-
tions. You can download Web Developer Extension for free at www.
chrispederick.com/work/firefox/webdeveloper/.

Macromedia Dreamweaver provides a Window Size tool that resizes the docu-
ment window to a number of standard monitor resolutions. This allows you to
see how your page is fitting the available live space as you design it. The window
size is listed as a pixel dimension (say, 760 x 420) in the bottom-right corner of
the document window. Clicking on the button opens a pop-up menu of stan-
dard resolutions.

In Adobe GoLive CS, the dimensions of the page you are working on are
displayed in the lower-right corner. There is a pull-down menu that lets you set
the layout window to the available space for several standard widths (such as
720 pixels to fit in an 800 x 600 monitor) or add your own. Selecting a resolu-
tion resizes the layout window.

36 | (Chapter3: Designing fora Variety of Displays

Designing “Above the Fold”

Newspaper editors have always designed the front page with the most important
elements “above the fold,” that is, visible when the paper is folded and sitting in
the rack.

Likewise, the first screenful of a web site’s homepage is the most important real
estate of the whole site, regardless of whether the page is fixed or flexible. It is
here that the user makes the decision to continue exploring the site or to hit the
Back button and move along. Web designers have adopted the term “above the
fold” to apply to the contents that fit in that important first screen.

As discussed throughout this chapter, a “screenful” can be quite different
depending on the resolution of the monitor. To play it absolutely safe, consider
the space available for the lowest common denominator 800 X 600 monitor—
approximately 780 x 400 pixels. That’s not much room.

Some elements you should consider placing above the fold include:

¢ The name of the site.
* Your primary marketing message.

* Some indication of what the site is about. For instance, if it is a shopping site,
you might place the credit card logos or shopping cart in the top corner to
instantly communicate that “shopping happens here.”

* Navigation to other parts of the site. If the entire navigation device (such as a
list of links down the left edge of the page) doesn’t fit, at least get it started in
the first screen; hopefully users will scroll to see the remainder. If it is out of
sight completely, it is that much more likely to be missed.

* Any other information that is crucial for visitors to the site, such as a toll-free
number or special promotion.

* Banner advertising. Advertisers may require that their ads appear at the top of
the page.

Monitor Color Issues

Differences in the number of colors a monitor can display (color depth) and
how bright or dark it is (gamma) may also influence your design decisions.
Dealing with color issues in web design is discussed in Chapter 28.

Mobile Devices

The increased popularity and usefulness of the Web combined with the growing
reliance on handheld communications devices (such as palm-top computers,
PDAs, and cellular telephones) has resulted in web browsers squeezing into the
coziest of spaces. Advancing technology and lower production costs have made
high-resolution color displays and embedded web browsers standard issue on

Mobile Devices | 37

skejdsiq

=
<
o
=
n
~
<
[
=

nearly all new phones and PDAs. This comes as a big improvement over the
black-and-white, text-only displays of only a few years ago, and it is creating a call
for mobile-appropriate web content.

Mobile Display Resolution

Because each manufacturer creates its own displays, there are no clear standard
screen resolutions for mobile devices the way there are for computer monitors.
But to get you in the ballpark, take a look at some current specifications. On the
low end are standard mobile phones with screen dimensions of 128 x 128 pixels.
Fuller-featured phones typically have resolutions of 176 x 208, 176 x 220, 208 X
208, or as large as 240 x 320. Handheld devices, such as the ubiquitous Black-
Berry, sport screen sizes of 240 x 160 or 240 x 240.

Mobile Browsers

The browsers embedded in mobile phones and PDAs (also known as micro-
browsers) are designed to accommodate the lower memory capacity, low
bandwidth abilities, and limited display area of handheld devices. Some are WAP
browsers with limited HTML support (see the sidebar, “WAP and WML”), and
some are full-featured browsers that support the current web standards and allow
access to all the same web content that is available from a PC browser. (Some of
the best-known mobile browsers and their web addresses are listed at the end of
this section.)

Support for standards

The significant development in mobile browsing technology is the abandonment
of WAP (Wireless Application Protocol) and its authoring language WML (Wire-
less Markup Language) in favor of the same web authoring standards set forth by
the W3C for web content. The Open Mobile Alliance (www.openmobilealliance.
org), the organization that guides standards for the mobile industry, has been
working in cooperation with the W3C to ensure that web technologies take into
account the needs of the mobile environment. In fact, the W3C has formed the
Device Independence Working Group (www.w3c.org/2001/di) to promote access
to a “unified Web from any device in any context by anyone.”

Modern mobile phones and other handheld devices will support XHTML Mobile
Profile XHTML minus the tags that don’t make sense for the mobile environ-
ment), ECMAScript Mobile Profile, Wireless CSS, SVG Tiny (a version of Scalable
Vector Graphics especially for mobile devices), among other standards. This is big
news, because web content developers no longer need to learn a special language
to make content accessible to the growing mobile audience. The devices may also
continue to support less strictly authored HTML pages as well as legacy WML.

Adapting web content for small screens

What happens when a cell phone accesses a traditional web page? Basically, it
does the best it can. One of the biggest challenges for mobile browsers is

38 | (Chapter3: Designing fora Variety of Displays

WAP and WML

WAP, the Wireless Application Protocol, is a collection of protocols and specifi-
cations that work together to give mobile phones access to Internet-like
information. WAP uses Wireless Markup Language (WML) to create wireless
applications just as HTML is used to create web pages. WML is an application
of XML, meaning that it is defined in a document type definition.

WAP is generally used for creating applications tailored to handheld devices
rather than web pages as we think of them. That is why you often see the phrase
“Internet-like information” used in regards to WAP. WAP is good for delivering
short, pithy bits of data, such as stock prices, sports scores, movie times, and so
on. It is not useful for complex documents with visual layouts.

WAP and WML are becoming obsolete now that the mobile industry has
embraced standard web technologies on mobile devices.

rendering big web pages on small screens. Browser and device developers have
created a few solutions to this problem.

Shrink-to-fit
The most sophisticated method is to reduce the web page to fit the available
width of the device display. They accomplish this by intelligently displaying
the contents of the source HTML document sequentially and shrinking
graphics to fit. The best known browsers that use this technique are Opera’s
Small-Screen Rendering technology and Access System’s NetFront browser
with its SmartFit Rendering.

Allow horizontal scrolling
Another option is to simply display the web page at its actual size and enable
horizontal and vertical scrolling to view it all. Some devices offer an option
for users to decide whether they want to scroll the page horizontally (which
may be necessary for wide tabular content such as time tables) or make pages
flow into the narrow screen width.

Designing for Mobile Devices

It should come as no surprise that the prescription for optimizing your visitors’
experience in the mobile environment is creating standards-compliant content.
Here are just a couple of tips.

Write clean HTML

The best ways to accommodate the limitations of handheld browsers are to mark
up documents semantically and logically and to avoid sinking text in graphics
(which you should be avoiding anyway). The goal is to create a page that works
and makes sense even with all the graphics and tables stripped away.

One example of how logical semantic markup can serve all audiences is the prac-
tice of marking up navigation options as an unordered list in the document

Mobile Devices | 39

skejdsiq

=
<
o
=
n
~
<
[
=

source. Cascading Style Sheets can be used to present the list as a horizontal navi-
gation bar (with graphics, too, if you choose) for graphical browsers, but
microbrowsers and other alternative browsing devices will see a bulleted list of
links. This technique is demonstrated in Chapter 24.

Use media types

What looks good on a PC monitor may not work at all on the small screen of a
PDA. Fortunately, you can give the PDA its own set of presentation instructions
by creating a style sheet crafted specifically for handheld devices. The HTML
media attribute allows you to target a number of media including (but not limited
to) screen, print, projection, and handheld. CSS media types are discussed in
further detail in Chapter 16.

To create a link to a style sheet that is used only by handheld devices, use the
code:

<link rel-"stylesheet" href="smaller.css" media="handheld" />

Online Resources

For more information on what is happening in the mobile browsing world, see
these useful sites.

Mobile standards

These organizations oversee the technology that is continuing to improve the
mobile web experience.

* Open Mobile Alliance (www.openmobilealliance.org)
* W3C’s Device Independence group (www.w3.org/di)

Mobile browsers

The following are some of the most popular embedded mobile browsers.

* Opera (Opera Software, www.opera.com)

* NetFront (Access Systems, www.access-sys-eu.com)

* Nokia (Nokia, www.forum.nokia.com)

* Openwave Mobile Browser (Openwave, www.openwave.com)
* Pocket Internet Explorer (Microsoft, www.microsoft.com)

* Picsel (Picsel Technologies, www.picsel.com)

Mobile device manufacturers

The major information appliance manufacturers publish information about their
products and technologies for developers. To get you started, a few of the most
popular are:

40 | Chapter3: Designing fora Variety of Displays

* Forum Nokia (www.forum.nokia.com)
* Ericsson Mobility World (www.ericsson.com/mobilityworld)

* BlackBerry Developers pages (www.blackberry.com/developers)

The Webon TV

Some people access the Web via their television sets using a set-top box that
connects to the television and either a cable or modem Internet connection.
Although it is not as full-featured or versatile as browsing on PCs, it may offer a
convenient and more affordable alternative for some users. Gaming consoles are
another option for using the TV as the display for Internet content.

The only significant player in the web TV arena is MSN TV (formerly WebTV,
which hit the market in 1996). As of this writing, it remains barely a blip on the
radar screen of overall browser usage, but it still has millions of users. Some sites
are designed specifically for MSN TV.

MSN TV uses a television rather than a monitor as a display device. The canvas
area in the MSN TV browser is a scant 544 x 372 pixels. Principles for designing
legible television graphics apply, such as the use of light text on dark back-
grounds rather than vice versa and the avoidance of any elements less than two
pixels in width. These and other guidelines are provided on MSN TV’s special
developer site at developer.msntv.com/.

Of particular interest is MSN-TV Viewer, which shows you how your web page
will look on MSN TV, right from the comfort of your computer. It is available for
free for both Windows and Mac (although the Mac version is antiquated and will
not be updated). For information on MSN-TV Viewer, go to developer.msntv.com/
TOOLS/msntvvwr.asp.

Mobile Devices | 41

skejdsiq

=
<
o
=
n
~
<
[
=

A Beginner’s Guide
to the Server

Even if you focus primarily on what’s commonly referred to as frontend web
development—HTML documents and web graphics—the server and the way it is
configured may impact the way you work. In most cases, there is no way to avoid
making firsthand contact with the server, even if it’s just to upload files.

For this reason, all web designers should have a basic level of familiarity with
servers and what they do. At the very least, this will enable you to communicate
more clearly with your server administrator. If you have permission for greater
access to the server, it could mean taking care of certain tasks yourself without
needing to wait for assistance.

This chapter provides an introduction to server terminology and functions, path-
names, and file (MIME) types. It also discusses uploading files and setting
permissions, which designers often need to do.

Servers 101

A server is any computer running software that enables it to answer requests for
documents and other data. The programs that request and display documents
(such as a browser) are called clients. The terms server-side and client-side, in
regard to such specific functions refer to which machine is doing the processing.
Client-side functions happen on the user’s machine; server-side functions occur
on the remote machine.

Web servers answer requests from browsers (the client program), retrieve the
specified file (or execute a script), and return the document or script results. Web
browsers and servers communicate via the Hypertext Transfer Protocol (HTTP).

0

Popular Server Software

Any computer can be a server as long as it is running server software. Today, there
are many server packages available, but the overwhelming leaders are Apache and
Microsoft Internet Information Server (1IS).

Apache
The majority of servers today (approximately 70%) run Apache. Powerful
and full-featured, it has always been available for free. It runs primarily on the
Unix platform but is also available on other platforms, including Windows
NT/2000 and Mac OS X.

The core installation of Apache has limited functionality, but it can be
expanded and customized easily by adding modules. Apache calls on each
module to perform a dedicated task, such as user authentication or database
queries. You can pick up a copy of the Apache server and its documentation
from the Apache home page at www.apache.org.

Internet Information Server (I1S)

This is Microsoft’s server package, which is also available without charge. IIS
runs on the Windows NT platform. IIS has developed into a powerful and
stable server option that is somewhat easier to set up and maintain than its
Unix competitor. It has many advanced server features, including ASP (Active
Server Pages) for server-side scripting. As of this writing, approximately 20%
of sites run on IIS servers. For more information, see the Windows Server
System pages at www.microsoft.com/windowsserversystem/.

Two good sites for information and statistics on popular servers are ServerWatch
(www.serverwatch.com) and Netcraft (www.netcraft.com/surveyl/).

The particular brand of server does not impact the majority of things designers
do, such as making graphics or developing basic HTML files. It certainly influ-
ences more advanced web site building techniques, such as Server Side Includes,
adding MIME types (discussed later in this chapter), and database-driven web
pages. Be certain to coordinate with your server administrator if you are using
your server in ways beyond simple HTML and graphic files storage.

Basic Server Functions

As a web designer, it is important that you have some level of familiarity with the
following elements of the web server.

Web root directory

When a browser requests a document, the server locates the document, starting
with the server’s root directory. This is the directory that has been configured to
contain all documents intended to be shared via the Web. The root directory does
not necessarily appear in the URL that points to the document, so it is important
to know what your root directory is when uploading your files.

For example, if the root directory on example.com is /users/httpd/www/ and a
browser makes a request for http://www.example.com/super/cool.html, the server
actually retrieves /users/httpd/www/super/cool.html. This, of course, is invisible to
the user.

Servers101 | 43

Index files

A slash (/) at the end of a URL indicates that the URL is pointing to a directory,
not a file. If no specific document is identified, most servers display the contents
of a default file (or index file). The index file is generally named index.html, but on
some servers, it may be named welcome.html or default.html. Often, there is a
hierarchy of index file names that the browser checks for and uses the one that
has been given the highest priority. For example, if a directory contains both
index.html and index.php, the server may be set up to display index.php automati-
cally. This is another small variation you will need to confirm with your server
administrator.

Some servers may be configured to display the contents of the directory if an
index file is not found, leaving files vulnerable to snooping. For this reason, it is a
good idea always to name some page (usually the main page) in each directory
index.html (or another specified name). One advantage is that it makes URLs to
the index page of each directory more tidy (www.littlechair.com rather than www.
littlechair.com/homepage.html, for example).

&

s Another variable to confirm with your server administrator is

0‘;‘. p whether your server has been configured to be case sensitive. For

b case-sensitive servers, the files index.htm and Index.htm are not
equivalent, and can result in missing file errors.

¢y

HTTP response header

Once the server locates the file, it sends the contents of that file back to the
browser, preceded by some HTTP response headers. The headers provide the
browser with information about the arriving file, including its media type (also
known as its content type or MIME type). Usually, the server determines the
format from the file’s suffix; for example, a file with the suffix .gif is taken to be an
image file.

The browser reads the header information and determines how to handle the file,
either displaying it in the window or launching the appropriate helper application
or plug-in. MIME types are discussed further at the end of this chapter.

Server-Side Programming

Web pages and sites have gotten much more interactive since the early days of
simple HTML document sharing. Now web sites serve as portals of two-way
information sharing, e-commerce, search engines, and dynamically generated
content. This functionality relies on programs and scripts that are processed on
the server. There are a number of options for server-side programming, of which
CGI, ASP, PHP, and Java servlets/JSP are the most common.

(Gl (Common Gateway Interface)

Instead of pointing to an HTML file, a URL may request that a CGI program be
run. CGI stands for Common Gateway Interface, and it’s what allows the web
server to communicate with other programs (CGI scripts) that are running on the
server. CGI scripts are commonly written in the Perl, C, or C++ language.

44 | Chapter4: ABeginner’s Guide to the Server

CGI scripts are the traditional methods for performing a wide variety of functions
such as searching, server-side image map handling, and gaming; however, their
most common use is form processing (information entered by the user through
entry fields in the document). As other more powerful options for interfacing with
databases become available (such as ASP, PHP, and Java servlets), traditional CGI
programming is getting less attention.

Most server administrators follow the convention of keeping CGI scripts in a
special directory named cgi-bin (short for CGl-binaries). Keeping them in one
directory makes it easier to manage and secure the server. When a CGI script is
requested by the browser, the server runs the script and returns the dynamic
content it produces to the browser.

ASP (Active Server Pages)

ASP (Active Server Pages) is a programming environment for Microsoft’s Internet
Information Server (IIS). It is primarily used to interface with data on the server to
create dynamically generated web pages. It can also be configured to process form
information.

Often, you’ll come across a web document that ends in the .asp suffix (as opposed
to .html). This indicates that it is a text file that contains HTML and scripting
(usually written in VBScript) that is configured to interact with ASP on the server.

For more information on ASP, see Microsoft Developer Network’s page entitled
“ASP from A to Z” at msdn.microsoft.com/workshop/server/asp/aspatoz.asp.
Another good resource is ASP 101 (www.asp101.com).

PHP

PHP is another scripting language that allows you to create dynamically gener-
ated web pages (similar to ASP). PHP is a project of the Apache Software
Foundation, so it is open source and available for free. PHP works with a variety
of web servers, but it is most commonly used with Apache.

PHP code, which is similar to Perl or ASP, can be embedded into the HTML
document using special PHP tags. PHP’s advantage over CGI scripting is that it is
very easy to include short bits of PHP code directly in a web page, to process form
data or extract information from a database, for example.

For more information on PHP, go to www.php.net, the official PHP web site.

Java servlets and JSP

Although Java is known for its small applications (known as applets) for the Web,
it is a complete and complex programming language that is more typically used
for developing large, enterprise-scale applications. With a Java-enabled web
server, a programmer can write Java servlets that produce dynamic web content.

JavaServer Pages (JSP) is a related technology that is similar to ASP. JSP code is
embedded directly in web pages; it provides a simple way for web authors to
access the functionality of complex servlets that are running on the web server.

Servers101 | 45

LAMP

In your web design travels, you may come across the acronym LAMP, which
stands for four separate open source programs:

* Linux: an operating system

* Apache: web server software

* MySQL: a database server

* PHP (or Perl or Python): a scripting language
Although not designed specifically as a package, these programs are often used

in conjunction to create dynamic web content and applications. For more infor-
mation on LAMP development, visit O’Reilly Media’s OnLamp.com.

For more information on Java servlets and JSP, consult java.sun.com/products/
servlet/ and java.sun.com/products/jsp/.

Unix Directory Structures

Because the Web was spawned from the Unix environment, it follows many of the
same conventions. Directory structure and pathname syntax are prime examples.
It is important for all web designers to have an understanding of how directory
structures are indicated on the Unix platform, because pathnames are used in
hyperlinks and pointers to images and other resources.

Directories (“places” to store files) are organized into a hierarchical structure that
fans out like an upside-down tree. The topmost directory is known as the root and
is written as a forward slash (/). The root can contain several directories, each of
which can contain subdirectories; each of these can contain more subdirectories,
and so on. A subdirectory is said to be the child of the directory that holds it (its
parent). Figure 4-1 shows a system with five directories under the root. The direc-
tory users contains two subdirectories, jen and richard. Within jen are two more
subdirectories, work and pers, and within pers is the file art.html.

A pathname is the notation used to point to a particular file or directory; it tells
you the path of directories you must travel to get to where you want to go. There
are two types of pathnames: absolute and relative.

Absolute Pathnames

An absolute pathname always starts from the root directory, which is indicated by
a slash (/). So, for example, the pathname for the pers directory is /users/jen/pers,
as shown in Figure 4-2. The first slash indicates that you are starting at the root
and is necessary for indicating that a pathname is absolute.

The advantage to using absolute pathnames in links, image tags, and other places
where you provide the URL of a file on the server is mobility. Because the path-
name starts at the top of the server hierarchy, you can move the file to another

46 | Chapter4: ABeginner's Guide to the Server

I I I]

| bin Il etc Ilusers Il Il lib I

—1
I |richard|

1
| work I | pers I | work I

| art.html |

Figure 4-1. Example of a directory hierarchy

/users/jen/pers

.

[1
|hin||elc||users||tmp|| IibI

r"J———————1

I | richard i

%

work i I pers work i

Figure 4-2. Visual representation of the path /users/jen/pers

HHH]

directory on the server and the links won’t break. The downside is that it makes it
more difficult to test pages on your local machine, because your machine is likely
to have a different root directory than the final destination server.

Relative Pathnames

A relative pathname points to a file or directory relative to your current working
directory. When building a web site on a single server, relative pathnames are
commonly used within URLs to refer to files in other directories on the server.

Unless you specify an absolute pathname (starting with a slash), the server
assumes you are using a relative pathname. Starting in your current location (your
working directory), you can trace your way up and down the directory hierarchy.
This is best explained with an example.

Unix Directory Structures | 47

If T am currently working in the directory jen and I want to refer to the file art.
html, the relative pathname is pers/art.html, because the file art.html is in the
directory pers, which is in the current directory, jen. This is illustrated in

Figure 4-3.

pers/art.html [T

1
bin etc users tmp lib
I: | | | | | |

current directory
/\rl | | richard i
| pers I
| work i I pers | | work i

Figure 4-3. The path pers/art.html relative to the jen directory

Going back up the hierarchy is a bit trickier. You go up a level by using the short-
hand of two dots (..) for the parent directory. Again, consider an example based
on Figure 4-1.

If T am currently in the jen directory, and 1 want to refer to the directory richard/
work, the pathname is ../richard/work. The two dots at the beginning of the path
take me back up one level to the to the users directory, and from there, I find the
directory called richard, and then the subdirectory called work, as shown in
Figure 4-4.

../richard/work (root)

users (..)

[I I I 1
| bin ” etc Husers” tmp ” lib l

| I | richard I richard

current directory
| work l

Figure 4-4. The path ../richard/work, relative to the jen directory

| work i | pers i I work |

If I am currently in my pers directory and I want to refer to Richard’s work direc-
tory, I need to go up two levels, so the pathname would be ../../richard/work, as
shown in Figure 4-5.

48 | (Chapter4: ABeginner's Guide to the Server

../../richard/work (root)
[users(.) |

[I I I 1
| bin ” etc Husers” tmp ” lib I

[jen()] | richard | er] e

k X
I | I work | | D’l | el
current directory —

Figure 4-5. The path ../../richard/work, relative to the pers directory

Note that the absolute path /users/richard/work accomplishes the same thing. The
decision whether to use an absolute versus a relative pathname generally comes
down to which is easiest from where you are and how likely it is that you will be
moving files and directories around. Relative pathnames can break if files or direc-
tories are moved.

Using relative pathnames in HTML

When pointing to another web page or resource (such as an image) on your own
server, it is common to use a relative URL, one that points to the new resource
relative to the current document. Relative URLs follow the syntax for pathnames
described above. For example, a hypertext link to art.html from another docu-
ment in the pers directory would look like this:

The URL for the link could also be written starting from the root directory:

Image tags also use pathnames to point to the graphic file to be displayed. For
instance, this image tag in the art.html document:

points to a graphic named daisy.gif located in the jen directory. Two uses of ../
indicate that the graphic file resides in a directory two levels higher than the
current document (art.html).

If you plan on doing your HTML markup by hand, pathname syntax will come
naturally after a little practice. If you are using a WYSIWYG authoring tool (such
as Macromedia Dreamweaver, Adobe GoLive, or Microsoft FrontPage), you have
the luxury of letting the tool construct the relative URL pathnames for you. Some
even have site management tools that automatically adjust the pathnames if docu-
ments get moved.

Unix Directory Structures | 49

File Naming Conventions

For your files to traverse the network successfully, you must name them in accor-
dance with established file naming conventions:

* Avoid character spaces in filenames. Although this is perfectly acceptable for
local files on a Macintosh or Windows machine, character spaces are not rec-
ognized by other systems. It is common to use an underscore or hyphen char-
acter to visually separate words within filenames, such as andre_bio.html or
andre-bio.html. Hyphens are sometimes preferred because they tend to better
enable search engines to index the individual words in a filename.

* Avoid special characters such as ?, %, #, /, and : in filenames. It is best to
limit filenames to letters, numbers, underscores (in place of character spaces),
hyphens, and periods.

* Use proper suffixes. HTML documents should use the suffix .html (.htm also
works on most servers). GIF graphic files take the suffix .gif, and JPEGs
should be named .jpg or .jpeg. If your files do not have the correct suffix, the
server might not send the proper HTTP Content-Type header, and thus the
browser may not recognize the files as web-based files. Suffixes for a large
number of common file types are listed later in this chapter.

* Consistently using all lowercase letters in filenames, while certainly not nec-
essary, may make them easier to remember. In addition, filenames are case-
sensitive on some servers, so keeping them all lowercase avoids potential has-
sles.

* Keep filenames as short as possible. They add to the size of the file (and they
can be a nuisance to remember).

Uploading Documents (FTP)

The most common transaction that a web designer will have with a web server is
the uploading of HTML documents, graphics, and other media files. Files are
transferred between computers over a network via a method called FTP (File
Transfer Protocol).

If you are working in a Telnet session on Unix, you can run the FTP program and
transfer files with a hefty collection of command-line arguments (not covered in

this book).

Fortunately, if you work on a Mac or PC, there are a number of FTP programs
with graphical interfaces that spare you the experience of transferring files using
the Unix command line. In fact, FTP functions are now built right into full-
featured web authoring tools, such as GoLive, Dreamweaver, and FrontPage,
among others. On the Mac, dedicated programs that allow drag-and-drop file
transfer, such as Fetch and Interarchy (previously Anarchie) are quite popular. On
the PC, there are numerous simple FTP programs, such as CuteFTP, WS_FTP,
AceFTP, and Transmit. These (and many others) are available for download at
www.shareware.com; search for “ftp.”

50 | Chapter4: ABeginner's Guide to the Server

The FTP Process

Regardless of the tool you use, the basic principles and processes are the same.
Before you begin, you must have an account with permission to upload files to the
server. Check with the server administrator to be sure you have a login name and
a password.

You don’t necessarily need an account to upload and download files if the server
is set up as an “anonymous” FTP site. However, due to obvious security implica-
tions, be sure that your personal directories are not configured to be accessible to
all anonymous users.

1. Launch the FTP program of your choice and open a connection with your
server. You'll need to enter the exact name of the server, your account name,
and password.

2. Locate the appropriate directory into which you want to copy your files. You
may also choose to create a new directory or delete existing files and directo-
ries on the remote server using the controls in your FTP program. (Note that
some servers allow you to enter the complete pathname to the directory
before logging in.)

3. Specify the transfer mode. The most important decision to make during
uploading is specifying whether the data should be transferred in binary or
ASCII mode.

ASCII files are composed of alphanumeric characters. Some FTP programs
refer to ASCII files as “text” files. Most HTML documents may be trans-
ferred as ASCII or text. However, more and more HTML documents are
written using Unicode (UTF-8 in particular), and Unicode files may be
corrupted if sent as ASCII or text. For such files, see the next section on
binary.

Binary files are made up of compiled data (ones and zeros); some examples
are executable programs, graphic images, movies, and so on. Some programs
refer to the binary mode as “raw data” or “image.” All graphics (.gif, .jpeg,
and so on), multimedia files, and Unicode (e.g., UTF-8) encoded (X)HTML
files should be transferred as binary or raw data. Table 4-1 includes a listing
of the transfer mode for a number of popular file types.

In Fetch (available at www.fetchsoftworks.com), you may see a MacBinary
option, which transfers the file with its resource fork (the bit of the file
containing desktop icons and other Mac-specific data) intact. It should be
used only when transferring from one Mac to another. This resource fork is
appropriately stripped out of Mac-generated media files when transferred
under the standard raw data mode.

Some FTP programs also provide an Auto option, which enables you to
transfer whole directories containing files of both types. The program exam-
ines each file and determines whether it should be transferred as text or
binary information. This function is not totally reliable on all programs, so
use it with caution until you are positive you are getting good results.

Uploading Documents (FTP) | 51

4. Upload your files to the server. Standard FTP uses the terminology put
(uploading files from your computer to the server) and get (downloading files
from the server to your computer), so these terms may be used in your FTP
program as well. You can also upload multiple files at a time.

5. Disconnect. When you have completed the transfer, be sure to disconnect
from the server. You may want to test the files you’ve uploaded on a browser
first to make sure everything transferred successfully.

Setting Permissions

When you upload files to a web server, you need to be sure that the files’ permis-
sions are set so that everyone is able to read your files. Permissions control who
can read, write (edit), or execute (if it is a program) the file, and they need to be
established for the owner of the file, the file’s group, and for “everyone.” Usually,
when you create or upload a file, you are automatically the owner, which may
mean that only you can set the permissions. Most web servers honor the oper-
ating system’s default permissions to determine which files can be read, written,
and executed.

Some FTP programs enable you to set the default upload permissions via a dialog
box. Figure 4-6 shows Fetch’s dialog box for doing this. For most web purposes,
you want to grant yourself full permissions but restrict all other users to read-only.
You may want to confirm that your server administrator agrees with these
settings.

Permissions

Set file/folder permissions to:

Search/

Read Write Execute
Owner: 4 il i
| Group: C k] [
! Everyone: v 2 8

Equivalent UNIX™ command: chmod 744

. (cancel) oK)

Figure 4-6. Standard permissions settings (using Fetch)

The server needs to be specially configured to recognize these permissions
commands, so check with your administrator to see if you can use this easy
method. The administrator will give you instructions if any special permissions
settings are necessary.

52 | (Chapter4: ABeginner's Guide to the Server

If a CGI or script file does not work properly, permissions are often
the culprit. You’ll need to enable execution to run these files. Resist
the urge to enable all permissions for all files and directories,
because it could become possible for users to upload their own
script files and run them, allowing them to do such things as delete
all of your files, deface your site, or create their own mail server to
send out spam.

File (MIME) Types

Servers add a header to each document, which tells the browser the type of file it
is sending. The browser determines how to handle the file based on that informa-
tion—for example, whether to display the contents in the window, or to launch
the appropriate plug-in or helper application.

The system for communicating media types closely resembles MIME (Multipur-
pose Internet Mail Extension), which was originally developed for sending
attachments in email. The server needs to be configured to recognize each MIME
type to successfully communicate the media type to the browser.

If you want to deliver media beyond the standard HTML files and graphics (such
as a Shockwave Flash movie or an audio file), you should contact your server
administrator to be sure the server is configured to support that MIME type. Most
common formats are built into current versions of server software, but if the
format isn’t there already, the administrator can easily set it up if you provide the
necessary information.

The exact syntax for configuring MIME types varies among server software;
however, they all require the same basic information: type, subtype, and exten-
sion. Types are the most broad categories for files. They include text, image,
audio, video, application, and so on. Within each category are a number of
subtypes. For instance, the file type image includes the subtypes gif, jpeg, and the
like. The extension refers to the file’s suffix, which the server uses to determine
the file type and subtype. Not all extensions are standardized.

Table 4-1 lists the MIME type and subtype for common media types. The ASCII/
binary information is provided to aid in making upload decisions.

Of course, new technologies and file types are emerging every day, so keep in
mind that it is the web designer’s responsibility to make sure that for any new
media type, the appropriate information is communicated to the server adminis-
trator. For a complete listing of registered MIME types, see the IANA (Internet
Assigned Numbers Authority) site at www.iana.org/assignments/media-types/.

Table 4-1. MIME types and subtypes

AScll/
Type/subtype Extension Description binary
application/excel .x1 Microsoft Excel B
application/mac-binhex40 .hgx Mac BinHex archive B
application/msword .doc, .dot, .word, Microsoft Word document B

. wbw

File (MIME) Types | 53

Table 4-1. MIME types and subtypes (continued)

Type/subtype
application/pdf

application/postscript
application/postscript
application/postscript
application/powerpoint

application/rtf

application/vnd.ms-excel
application/xml
application/xml+xhtml
application/x-director

application/x-gzip
application/x-msdownload

application/x-perl

application/x-sea

application/x-sit

application/x-shockwave-
flash

application/x-stuffit
application/x-tar
application/x-zip or
application/x-zip-
compressed

audio/aifc
audio/basic

audio/basic

audio/midi or audio/x-midi

audio/x-aiff
audio/x-mpeg
audio/x-ms-wma

audio/x-ms-wax

audio/x-pn-realaudio

audio/x-pn-realaudio-plugin

audio/x-wav
image/gif
image/jpeg

Extension
-pdf

.ai

.eps

.ps

.ppt, .pot
.rtf

.x11, .xIs
.xml
.htm, .html

.dcr, .dir, .dxr

.gz, .gzip

.exe

.pr1
.sea

.sit

.swf

.sit
.tar

.zip

.aifc

.au

.snd

.mid

.aif, .aiff
.mp3

.wma

.wWax
.ra, .ram

.rpm
.wav, .aiff

.gif

-Jpg, -jpeg, .jpe,
-Jfif, -pireg, -pjp

Description

Portable Document
Format (Adobe Acrobat
file)

PostScript viewer
Encapsulated PostScript
PostScript file
PowerPoint file

Rich Text Format
(Microsoft Word)

Microsoft Excel File
Generic XML
XHTML document
Shockwave files

GNU zip (Unix decom-
pressor)

Self-extracting file or
executable

Perl source file

Self-extracting archive
(Stufflt file)

Stufflt archive
Shockwave Flash file

Stufflt Archive
Compressed file

Compressed file (decom-
press using WinZip or
Stufflt on Mac)

Compressed AIFF file
-law sound file
Digitized sound file

MIDI audio file

AIFFfile

MP3 audio file

Windows Media audio file

Windows Media audio
metafile

RealAudio file (and meta-
file)

RealAudio (plug-in)
Windows WAV audio file
Graphicin GIF format
Graphicin JPEG format

Ascll/
binary

B

> ™™ > = =

Do W = = W

@

54 | Chapter4: ABeginner’s Guide to the Server

Table 4-1. MIME types and subtypes (continued)

Ascll/

Type/subtype Extension Description binary
image/tiff Jtif, (tiff TIFF image (requires B

external viewer)
image/x-MS-bmp .bmp Microsoft BMP file B
image/x-photo-cd .pcd Kodak Photo (D image B
image/x-pict .pic PICT image file B
image/x-png or image/png .png Graphicin PNG format B
image/x-portable-bitmap .pbm Portable bitmap image B
text/html .htm HTML document A
text/plain Jtxt ASCll text file A
text/richtext .rtx Rich Text Format A

(Microsoft Word)
text/xml .xml Generic XML document A
video/avi or video/x-msvideo .avi AVl video file B
video/mpeg .mpg, .mpe, .mpeg, MPEG movie B

.miv, .mp2, .mp3,
.mpa

video/quicktime .mov QuickTime movie B
video/quicktime .qt QuickTime movie B
video/x-ms-asf .asf Windows Media (legacy) B
video/x-ms-asx .asx Windows Media metafile B

(legacy)
video/x-ms-wmv . wmv Windows Media videofile ~ B
video/x-ms-wmx . wmx Windows Media video B

metafile
video/x-sgi-movie .movie Silicon Graphics movie B
x-world/x-vrml wrl, .wrz VRML 3D file (requires B

VRML viewer)

File (MIME) Types | 55

Accessibility

— Dby Derek Featherstone

At its core, web accessibility is about building web sites, applications, and pages
so that there are as few barriers to use as possible for anyone, regardless of ability
and the device used to access the information. Web accessibility goes beyond
creating a more usable Web for persons with disabilities, too. Many of the tech-
niques and principles designers apply to make web content more accessible to
people with disabilities also improve accessibility for those using slower connec-
tions who might have the images off as well as increase interoperability with

handhelds.

For sites to be accessible, we have to let go the notion that we know how people
use our web sites. We have to understand the nature of the medium in which we
work. And, we have to be willing to embrace “universal design” and to use web
development techniques and code that support accessibility.

Types of Disabilities

There are four broad categories of disabilities that have an impact on how a
person interacts with a web site: vision impairment, mobility impairment, audi-
tory impairment, and cognitive impairments.

Vision impairment
People that are blind or have low vision use a variety of assistive technology
to get content from the screen, including screen readers, Braille displays,
screen magnifiers, and even some combination of these.

Mobility impairment
Mobility challenges range from having no use of the hands at all to difficul-
ties with fine motor control. Various hardware solutions include modified
mice and keyboards, single-button “switches,” foot pedals, head wands, and
joysticks, while software solutions range from full voice recognition to face
tracking to simple keyboard macros.

56

Auditory impairment
Auditory impairments may seem to have little to no impact on how people
use the Web, as most content is text and images. A person who has never
been able to hear, however, may process language completely differently than
a hearing person or someone with hearing loss that occurred later. There are
requirements for captioning for multimedia and audio files to make this type
of media accessible to everyone.

Cognitive impairment

Cognitive impairments, which involve memory, reading comprehension,
mathematical processing, visual comprehension, problem solving, and atten-
tion, are the least understood of the various accessibility issues. Although
there isn’t a large body of literature and research available, the common
advice is to focus on simplicity and clarity to help address some of these
issues. Thinking this way also helps make your web pages, sites, and applica-
tions more readily understood by everyone.

Overview of Assistive Technology

Assistive technology is any tool that helps a person with a disability accomplish
everyday tasks more easily. A specially designed “rocker” knife that makes it
easier to cut food with the use of one hand is considered assistive technology. In
computer terms, assistive technology helps people accomplish two fundamental
tasks: input and output. These tools are not web specific; web usage is just one
component of their overall utility.

& @
Don’t overlook your own computer’s capabilities. Windows XP
,'3 - and Mac OS X both include a lot of support for accessibility by
* #k" default, and Sun Microsystems’ Solaris 10 includes full accessibility
support with voice capabilities, screen magnification, and onscreen
keyboard functions.
Input Devices

Assistive technology for input works to provide the same type of functionality that
a keyboard and mouse provide. This means that for the most part, you as a web
designer or developer simply need to ensure that what you create is operable by
both keyboard and mouse. If you can do that, generally the assistive technology
will take care of the rest (although some input considerations are discussed later
in the chapter).

Some example technologies are:

Alternative keyboards
Alternative keyboards may provide a more functional key layout, be color-
coded for cognitive disabilities, include larger keys, have a keyboard overlay
or guide that aids in selection of the proper key, or be designed for one-

handed use.

Overview of Assistive Technology | 57

=
a
a
m
“©
2.
=5
=
<

Virtual keyboards

A virtual keyboard is one that is displayed on the screen to help people who
may have difficulty typing but are able to use a mouse or some other pointing
device effectively. Windows XP comes with a basic onscreen keyboard.

Voice recognition software

Voice recognition software makes use of a computer’s audio capabilities to
detect a person’s voice for two main purposes: transcribing voice to text and
listening for operating commands. Voice command recognition is available at
the operating system level (Mac OS X) as well as in voice-capable web
browsers, such as the most recent versions of the Opera browser.

vV

activate a web link, you might simply say the link text. The voice recognition
software then searches through the links it finds in the page, finds the correct
one, and simulates a “click” on that link. So, what happens if you have multiple
links with the same text? The software might highlight all of the links and
overlay a number beside each, allowing you to speak the number of the link
you’d like to follow.

T

the cursor will automatically be placed in the appropriate text box or form
control. As you will see in Chapter 15, form controls must be labeled properly
so that the voice recognition software knows exactly which form field should
receive the focus.

Some recognition packages enable users to overlay a numbered 3 x 3 grid on the
computer screen by saying “mouse grid.” The user then speaks the number of
the grid portion of interest. The software overlays another numbered 3 X3 grid
within that space and the mouse cursor moves on the screen. This process
continues until the grid is sufficiently small to put the mouse cursor where the
user desires and the user issues the command to click or double-click. For
example, to click on a radio button, you might have to say the following:
“Mouse grid. Four. Three. Eight. Two. Five. Mouse click.”

Voice Recognition Approaches

oice recognition software has evolved significantly over the last decade. To

o fill in a form, you could speak the name of the field you wish to fill in, and

Head and mouth wands

These wands amount to a stick that is used to type on a regular or modified
keyboard. These input devices are regularly used with a common operating
system feature known as “sticky keys” that enables the user to press and
release a modifier key, such as Ctrl, and then press another key, treating the
sequence of keystrokes as if they happened in unison.

Face and eye tracking

This technology generally uses software to follow the eyes or face of a person
who has limited mobility and is unable to speak clearly enough to use voice
recognition software. As users move their eyes, the mouse cursor follows.
Various other actions may be used as a click or double-click. For an example,
visit www.qualilife.com.

58

Chapter 5: Accessibility

Switches
Adaptive switches are highly specialized mechanisms that may simply serve as a
single button mouse or may allow for greater flexibility with a set of foot
switches, or a sip and puff mechanism. Again, these may be used in conjunc-
tion with specialized software to allow people to have full control of all the
functions on their computer, including typing with automatic word-prediction.

Output Devices

The normal sources of output for most everyday computer usage are the monitor
and speakers. Captioning or transcripts can be of assistance, or users can turn to:

Screen readers

Most screen readers are programs that interpret and interface with the actions
that occur within the operating system and the applications that run on it.
They provide extensive functionality through keystroke combinations and
offer specific modes for specific functions. For example, Freedom Scientific’s
JAWS (www.freedomscientific.com) has normal reading, tables reading, and
forms modes. They generally read some combination of the rendered HTML
on the screen and do so based on source order. Other screen readers include:
Window Eyes (GW Micro, www.gwmicro.com), HAL (Automated Living,
www.automatedliving.com), and SuperNova (Dolphin Computer Access,
www.dolphincomputeraccess.com).

Screen magnifiers
Used by people with low vision, screen magnifier software simply provides an
enlarged view of the onscreen text and graphics. Examples include Zoom-
Text (Ai Squared Software, www.aisquared.com), SuperNova, and MAGic
(Freedom Scientific).

Aural browsers
Similar in function to screen readers, aural browsers are specialized for web
use and provide less functionality than a full screen reader. Some examples
are Home Page Reader (IBM, www-3.ibm.com/able/solution_offerings/hpr.
html), which is a standalone program, and Connect Outloud (Freedom Scien-
tific) and Browsealoud (Texthelp Systems, www.browsealoud.com), which are
plug-ins for Internet Explorer.

Braille display
These devices convert computer output to Braille, displaying the words via a
set of movable pins that represent the current line of display. These devices
are often used in conjunction with a screen reader. For example, the speech
output from JAWS could be sent to a Braille display.

Who Is Responsible for Accessibility?

Generally speaking, there are four “groups” of people responsible for accessi-
bility. These include:

Web designers
That’s right, us: the people who design, program, and build web sites. Using
the W3C’s Web Content Accessibility Guidelines (WCAG) we can make
informed decisions as to how to make sites accessible.

Who Is Responsible for Accessibility? | 59

=
a
a
m
“©
2.
=5
=
<

Browser, screen reader, and other user agent manufacturers
This group is responsible for ensuring the accessibility of their tools for using
the Web. The User Agent Accessibility Guidelines (UAAG) help browser
manufacturers build their tools so that they can leverage the good content
that developers produce.

Software vendors
Playing a critical role in accessibility, this group creates the tools that devel-
opers, designers, and authors use to create web content. This group looks at
the Authoring Tool Accessibility Guidelines (ATAG) when they are building
their software.

Users
People with disabilities are not without some responsibility. It is quite reason-
able that we expect people using assistive technology to know how to use it
properly and efficiently.

So if we as developers, designers, and authors are partly responsible, how do we
go about living up to those responsibilities to make our web sites accessible? First,
we start with an understanding of what we’re trying to achieve, and then we apply
that to the way we build our sites. Fortunately, we are guided by the W3C’s Web
Content Accessibility Guidelines 1.0 (WCAG 1.0).

Web Content Accessibility Guidelines

The Web Content Accessibility Guidelines were created by the Web Accessibility
Initiative (WAI) at the W3C. The guidelines were formally made Recommenda-
tions in 1999, and a lot has changed since then. Some of the techniques that are
advocated in the WCAG 1.0 Techniques resource are outdated and may no longer
apply in the same way as when the guidelines were released.

These guidelines have several related checkpoints organized according to three
different priority levels from Priority 1 (most critical for web accessibility) to
Priority 3 (important but having less impact on overall accessibility). At www.w3.
org/TR/1999/WAI-WEBCONTENT-19990505, each of the checkpoints are listed
following their related guidelines along with their priority level. For a view of the

checkpoints organized according to their priority level, go to www.w3.0rg/TR/
WCAGI10/full-checklist.html.

Guideline 1: Provide equivalent alternatives to auditory and visual content.
Following this rule ensures that visually or aurally impaired people have
access to the content that they are unable to perceive. “Equivalent alterna-
tives” refers to ensuring that images have appropriate alt text that represents
the image, that audio content has captions provided, and that video includes
audio description. Remember, when deciding what an equivalent alternative
is, you must consider both the content and function of the original.

Guideline 2: Don’t rely on color alone.
When you rely on color alone to present information on a web page, you
limit the usefulness of that information. Rather than using color alone to
show which fields of a form are required, mark the labels in red and bold, or
with an asterisk beside them to ensure that people who can’t see the red color

60 | Chapter5: Accessibility

have some other means of getting the same information. Further, provide
sufficient contrast between the foreground color and the background color to
ensure that text (even as part of a graphic, Flash movie, or other multimedia
component) is readable.

Guideline 3: Use markup and style sheets and do so properly.

In other words, validate your code to ensure it has the correct syntax, use
appropriate HTML elements for the tasks for which they were designed, and
use HTML for your content, CSS for presentation, and ECMAScript for inter-
action and behavior (JavaScript is the most commonly known
implementation of ECMAScript). Not only does this mean using markup the
correct way (using <blockquote>...</blockquote> to surround a quote, for
example) and enhance accessibility, but it also means not using markup the
wrong way (using <blockquote>...</blockquote> to indent text, for example),
which can actually reduce accessibility.

Guideline 4: Clarify natural language usage.
Identify the language of the document and mark up such exceptions as
foreign words, abbreviations, and acronyms. This makes it easier for speech
devices and other assistive technologies to interpret the content. In fact, some
screen readers change their language on the fly to speak the content with the
correct pronunciation and accents. Of course, a limited number of languages
are supported. For further details on language codes, refer to Chapter 6.

Guideline 5: Create tables that transform gracefully.
Five years ago it was common to see tables used for layout purposes, simply
because browser support for CSS-based layouts was less than satisfactory.
Modern, standards-based web development techniques suggest that we limit
the use of tables to the display of tabular data—after all, that is what tables
were designed for! Chapter 13 includes tips to help ensure that your tables
are as accessible as possible.

=
a
a
m
“©
2.
=5
=
<

Guideline 6: Ensure that pages featuring new technologies transform gracefully.
Think of this guideline as preparing your web page for the worst, ensuring
that it is both compatible with future/new technologies as well as backward
compatible with technologies.

Following this guideline is like making a contingency plan, preparing for the
reality that we don’t really know how people will use our sites and web
pages. Does the site still work if CSS is disabled, or overridden? Does the site
work appropriately when JavaScript is disabled? What about when a partic-
ular plug-in is not available? Is there an appropriate alternative in that case?

This guideline is also about making sure that the web pages you implement
don’t require the use of any specific input device. For example, in addition to
allowing a mouse to control or activate certain scripts or controls (such as
playing a movie) you must allow a keyboard.

Guideline 7: Ensure user control of time-sensitive changes.
At its most fundamental level, this guideline is about providing all users the
control that they need to take in content at their own pace. Consider a web
site that includes a news ticker that displays a new headline every two

Web Content Accessibility Guidelines | 61

seconds. What if someone can’t finish reading the headline in the allotted
time? Allowing the user control over this type of content helps everyone.
Another common scenario is the web page that employs a <meta> tag and
http-equiv="refresh" to redirect users to a new page after an allotted time
after displaying the message “This page has moved. You will be redirected in
five seconds. If you aren’t, then click this link.” This technique isn’t good
practice, because it makes the assumption that everyone will be able to read
the message that quickly.

In addition to these issues with reading pace and readability in general, this
guideline suggests avoiding “flickering” or other blinking and moving
content. Not only can these be a distraction to those with reading difficul-
ties, but flickering or flashing in the 4 to 59 flashes per second range may
trigger seizures in those with photosensitive epilepsy.

Guideline 8: Ensure direct accessibility of embedded user interfaces.

Essentially this means that if you create your own interface within the
browser using Flash or similar technology, the interface should follow all of
the basic accessibility principles. The embedded interface should provide
device-independent access to any content and controls that it contains, and
the content of the embedded interface should be made available to assistive
technology such as screen readers.

Guideline 9: Design for device independence.

Generally speaking, web pages written in HTML or XHTML are device inde-
pendent. You can activate links, move to form fields, and submit forms using
either the mouse or keyboard. HTML is device independent by default. It is
only when we add non-HTML based elements to the mix—Flash, Java, or
even scripting with JavaScript—that the trouble starts. When implementing
scripts and other items that go beyond basic HTML, remember that some
people rarely use a mouse; they “click” on links with the Enter key on their
keyboards or push submit and other buttons with their spacebars. Keep this
in mind. Head wands, switches, alternative keyboards, voice recognition, and
other input devices generally emulate basic mouse and keyboard typing and
clicking. If you can ensure that these two actions are allowed, you don’t
necessarily have to make other adjustments for assistive technology and alter-
nate input devices.

&

Many of this chapter’s guidelines and associated techniques are
coming under question as we more fully understand how people
using screen readers and sighted keyboards use the Web. With the
growing popularity of standards-based techniques that use CSS for
layout, we rarely require the use of the once-common tabindex
attribute. In most cases, it simply isn’t required anymore. There are
also several arguments that the use of access keys as recommended
by Guideline 9 is not as useful as it first appears.

¢y

62

| Chapter5: Accessibility

Guideline 10: Use interim solutions.
One of the most difficult areas of making accessible web pages, this guideline
seems to suggest the use of outdated techniques that are designed to compen-
sate for older browsers and screen readers. This is due to literal interpretation
of the guidelines without recognizing why the guideline existed in the first
place.

All of the guidelines in this section include the phrase “until user agents.”
This means that when the guidelines were published, the interim solutions
suggested were valid and useful, but it was fully recognized that these tech-
niques may no longer be recommended once user agents and assistive
technology had “caught up.” Ensure that when you read through these solu-
tions, you check to make sure that the techniques are still valid and useful.

Guideline 11: Use W3C technologies and guidelines.
The W3C specifications were designed with accessibility features built into
them. So, following these specifications should result in greater accessibility
for all.

At its core, this guideline suggests that the lowest common denominator—
HTML—is the best and most accessible delivery format. And for the most
part, it is true.

However, we know that this is not always possible, nor is it reality. The best
advice, then, based on this guideline is to use W3C technologies and make
them accessible, and when you use other technologies, use their built-in
accessibility features, and provide an alternative version to the non-W3C
version that is accessible.

Guideline 12: Provide context and orientation information.
This guideline encompasses using titles for frames to ensure that the purpose
of each frame is clearly stated, to use elements, such as optgroup, within a
select form control to group related options together, to use fieldset to
group related form controls together, to describe the fieldset contents with a
legend, and to explicitly associate form controls with their labels.

All of these techniques improve accessibility for everyone by providing infor-
mation about the components and their relationships to one another.

Guideline 13: Provide clear navigation mechanisms.
Clearly marked navigation menus that are consistent across a site can be
enhanced by using a site map, providing metadata by using link relationships
and other information about the author, date of publication, and the type of
content they contain.

There are implications here for content creation as well: link text should be
clear and identify where the link leads, and headings, paragraphs, and lists
should provide their distinguishing phrase or content near the beginning.

Guideline 14: Ensure documents are clear and simple.
This guideline is designed to help everyone by making documents more read-
able and more readily understood. Clarity is often achieved through not
words alone, but through the combination of words and well-designed illus-
trations or images that help get the point across (with appropriate alt text, of
course).

Web Content Accessibility Guidelines | 63

Web Content Accessibility Guidelines 2.0 (WCAG 2.0)

At the time of this writing, the W3C’s Working Draft of Web Content Accessi-
bility Guidelines 2.0 was entering its final stages of approval.

WCAG 2.0 revolves around four basic principles for web accessibility:

* Content must be perceivable.
* User interface components in the content must be operable.
* Content and controls must be understandable.

* Content must be robust enough to work with current and future
technologies.

This is not a radical departure from WCAG 1.0, and the same general principles
apply. In many ways, it is a reorganization to make the full gamut of accessibility
guidelines more understandable. Further, WCAG 2.0 attempts to provide better
guidance to web content authors by eliminating some of the ambiguity in WCAG
1.0. For a comparison of WCAG 1.0 and WCAG 2.0, see www.w3.0rg/WAI/GL/
2005/06/30-mapping.html.

Keep in mind, however, that the WCAG 2.0 Working Draft is subject to revision
based on review and public comment.

Standards Variations and Section 508

Various other countries have their own versions of web accessibility standards,
most of which are derived from WCAG 1.0. Canada, Australia, the U.K., and
Europe, for example, have accessibility standards that generally agree with the
most important points (Priority 1 and Priority 2) of WCAG 1.0. One of the most
well-known standards that is a deviation from this is Section 508 in the U.S.,
which uses Priority 1 checkpoints, as well as a few other selectively chosen
checkpoints.

Many view Section 508 as a more literal and strict interpretation of the Priority 1
and 2 checkpoints. Fundamentally, though, Section 508 principles are generally
consistent with Priority 1 of WCAG 1.0, though the wording may be slightly
different.

The following list is excerpted from subsection 1194.22 of Section 508 standards
for Web-based intranet and Internet information and applications (www.
section508.gov/index.cfm?FuseAction=Content&ID=12#Web). You’ll notice that
the items (a) through (k) consistently map to the Priority 1 checkpoints of WCAG
1.0, whereas the subsequent items do not.

* (a) A text equivalent for every nontext element shall be provided (e.g., via
alt, longdesc, or in element content).

* (b) Equivalent alternatives for any multimedia presentation shall be synchro-
nized with the presentation.

* (c) Web pages shall be designed so that all information conveyed with color is
also available without color, for example, from context or markup.

64 | Chapter5: Accessibility

* (d) Documents shall be organized so they are readable without requiring an
associated style sheet.

* (e) Redundant text links shall be provided for each active region of a server-
side image map.

* (f) Client-side image maps shall be provided instead of server-side image
maps except where the regions cannot be defined with an available geomet-
ric shape.

* (g) Row and column headers shall be identified for data tables.

* (h) Markup shall be used to associate data cells and header cells for data
tables that have two or more logical levels of row or column headers.

* (i) Frames shall be titled with text that facilitates frame identification and
navigation.

* (j) Pages shall be designed to avoid causing the screen to flicker with a fre-
quency greater than 2 Hz and lower than 55 Hz.

* (k) A text-only page, with equivalent information or functionality, shall be
provided to make a web site comply with the provisions of this part, when
compliance cannot be accomplished in any other way. The content of the
text-only page shall be updated whenever the primary page changes.

* () When pages utilize scripting languages to display content, or to create
interface elements, the information provided by the script shall be identified
with functional text that can be read by assistive technology.

* (m) When a web page requires that an applet, plug-in, or other application be
present on the client system to interpret page content, the page must provide
a link to a plug-in or applet that complies with [subsection]1194.21(a)
through (I).

* (n) When electronic forms are designed to be completed online, the form
shall allow people using assistive technology to access the information, field
elements, and functionality required for completion and submission of the
form, including all directions and cues.

=
a
a
m
“©
2.
=5
=
<

* (0) A method shall be provided that permits users to skip repetitive naviga-
tion links.

* (p) When a timed response is required, the user shall be alerted and given suf-
ficient time to indicate more time is required.

Web Accessibility Techniques

Official guidelines and checkpoints are vital, but they don’t give us much in the
way of best practice advice or implementation techniques. To help you, the W3C
provides reference documents with overviews of HTML, CSS, and core tech-
niques at www.w3.org/WAl/intro/wcag.php.

Here are some good starting points that will help you make your web sites more
accessible.

Web Accessibility Techniques | 65

Start with meaning.
In other words, use HTML elements for the purposes for which they were
designed: to provide a semantic description of a document’s content. As
discussed in the guidelines earlier in this chapter, make use of headings (h1
through h6), lists, quotes, and blockquotes to provide structure to your pages.
Use table markup appropriately as shown in Chapter 13. Screen readers and
other software infer meaning and provide functionality based on this markup.

Provide alternatives.
Ensure that you provide some type of alternative—alt text, longdesc, tran-
scripts for audio files, and captions for video—for users with various
disabilities. Formerly cost prohibitive, captioning and transcripting can now
be outsourced at a very reasonable cost and provide significant benefit to
users that require alternative media types.

Use Zoom layouts.
Typically used by low-vision users, a Zoom layout is an alternative view of
the same content. Users of screen magnification software have a limited view
of what is on the screen, making multiple columns difficult to follow. A
single-column format can be very useful. For more information on Zoom
layouts, Joe Clark’s web site (www.joeclark.org/access/webaccess/zoom/to) is
an excellent starting point.

Remember that order counts.
Ensuring a logical order within a page and the components within the page
makes your life simpler and can be very beneficial to users of screen readers
and Zoom layouts. A screen reader or aural browser tends to read things in
the order of the source (although there are exceptions). Ensure that a logical
order applies not only to the entire page, but also to components of the page,
such as groups of links or form fields.

Make your forms explicit.

Although various pieces of assistive technology can make guesses as to which
form fields go with which labels, you’re better off making the relationship
explicit than relying on a guess. Best practice for forms also includes using
fieldset and legend to group related form controls. If nothing else, use the
label element for every form control. For more information, see Chapter 15.
Where it is undesirable to have the label visible on the screen, either hide the
label from the visible screen using CSS positioning, or use the title attribute
instead to provide a prompt text for the form control.

Test JavaScript extensively.

When using JavaScript in your pages, you should test with JavaScript support
both on and off to ensure greatest interoperability. Do not let this fool you
into thinking that if the page works under both of these conditions that you
are finished, however. Remember that screen reader users are likely using
Internet Explorer with scripting on. The interaction between what happens
with the scripts and the screen reader might surprise you; testing with real
people using screen readers is a must if you are doing any serious scripting in
your pages or applications.

66 | Chapter5: Accessibility

Facilitate users moving around the page.
This includes all users, but it is particularly useful for visually impaired and
mobility impaired people who rely on keyboard navigation. Providing “in-
page” links to various parts of the page has become a best practice. This
includes a “skip to main content” link or “skip to navigation” link, depending
on whether you present content or navigation first in the source order of your
page. A skip-to-main content link can be visible on the page to everyone:

Skip to main content
visible only to screen readers through CSS positioning:

Skip to
main content

or visible only to screen readers through using an image-based alt text:

Each of these techniques has its advantages and disadvantages. The most
accessible and useful is when the link is available to all users and not just
focused on screen readers.

Allow text to scale.
Despite the fact that pixels are a relative unit, specifying text in your CSS
using pixel units means that users of Internet Explorer for Windows
(Versions 6 and earlier) will not be able to scale their text without what
amounts to an intervention. Specifying text sizes in em or % units allows text
to scale in IE for Windows as well as other modern browsers and is consid-
ered to be current best practice.

Make use of the focus state for links.
When a keyboard user navigates a page’s links via a browser’s built-in mecha-
nism, we can provide visual feedback to show the user which link is currently
selected or has the focus. This makes the web page easier to use. This is typi-
cally seen in menu bars that add in a CSS hover effect for mouse users:
a:link {
color: #000;
background-color: #fff;

=
a
a
m
“©
2.
=5
=
<

}
a:hover {
color: #fff;
background-color: #000;
}

To provide the same feedback for keyboard users, add the code:

a:focus {
color: #fff;
background-color: #000;

Web Accessibility Techniques | 67

Although the :focus technique works for links in modern stan-
dards-compliant browsers, Internet Explorer for Windows doesn’t
recognize the :focus pseudoclass selector. Instead, you must use
the :active pseudoclass to provide the same visual feedback:

a:active {
color: #fff;
background-color: #000;

}

Handle colors intelligently.

Declare your colors in pairs and to do so only in CSS. If you are specifying a
background color in the CSS and a foreground color in the HTML, there is
room for conflict if style sheets are off, not supported, or overridden by the
end user. In addition, when you declare your background and foreground
colors in CSS, be sure that there is a reasonable contrast between them. (See
the color contrast analyzers available at JuicyStudio for more: http://
juicystudio.com/services/colourcontrast.php.)

Use CSS background images carefully.

Creative techniques for using background images in CSS help provide for
accessibility as they allow us to use text for buttons, tabs, and other places
formerly the province of graphics. This provides for scaling of text and
doesn’t require alt text. There is one catch: if the image contains content, do
not use it as a background image, as there is no means to specify alternative
text for background images as there is for images placed inline with the img
element. The exceptions are various image replacement techniques, whose
usefulness is often debated.

When using a CSS background image, be sure to specify a background-color
as well, to ensure that there is enough contrast between the foreground text
and the background while images are off, or do not load.

Testing for Accessibility

One of the best ways to ensure successful implementation of these guidelines is
through testing. How else will you know when you’ve hit the mark in terms of
providing accessible content? There are four primary methods of testing for acces-
sibility: by developers, by expert review, with real users, and with automated
tools.

Testing by Developers

You can find accessibility testing tools online and on the desktop for everything
from smaller scale testing to enterprise level tools that allow you to track progress
over time, automate reporting, and allow for manual review in conjunction with
automated tests.

These items should be in every web developer’s toolkit. In addition to their use for
informal accessibility testing, they are often useful for general web development as
well.

68 | Chapter5: Accessibility

Web Developer Toolbar for Firefox/Mozilla (addons.mozilla.org/extensions/
moreinfo.php?id=60)
An extension for Firefox and Mozilla, the Web Developer Toolbar provides a
host of tools that are useful for low-level accessibility testing. It allows you to
easily disable CSS and JavaScript, as well as replace images with their alt
text. Quick access to these tools helps assess your work against the guide-
lines presented in this chapter.

Accessibility Toolbar for Internet Explorer (www.nils.org.au/ais/web/resources/

toolbar/)

Similar to the Web Developer Toolbar, the Accessibility Toolbar is designed
to work in Internet Explorer for Windows. It provides quick access to many
of the same types of tools found in the Web Developer Toolbar, as well as
one-click launching of several online services that allow you to roughly
analyze readability of passages of text, color contrast analysis, various other
vision-related disabilities, and online automated testing tools.

Opera browser (www.opera.com)
The Opera browser is actually quite a good testing tool on its own. It includes
quick access to various browser “modes” that are useful for demonstrating
and testing a text-based view of the web site. It also includes both voice
recognition of commands and speech capabilities in its browser, which are
useful for quick demonstration and testing.

WAT-C online tools and services (www.wat-c.org/tools/)
In September of 2005, a group of web developers and accessibility specialists
formed the Web Accessibility Tool Consortium (WAT-C) to provide a series
of tools under a general public license agreement that can be used for both
testing accessibility and educational purposes. These tools include the Acces-
sibility Toolbar for IE and many useful online services developed by Gez
Lemon of Juicy Studio (www.juicystudio.com).

Expert Review

Expert review testing involves one or more accessibility specialists reviewing a
web site, page, or set of pages to perform a heuristic analysis and evaluation of
conformance against a set of criteria, such as W3C or Section 508 standards. The
analysis is based on experience and common “rules of thumb” in terms of accessi-
bility issues.

Once the review is completed, the reviewers usually prepare a report that outlines
specific accessibility issues, methods for improving accessibility, and areas that
need to be tested further by users with various disabilities (often referred to as
“pan-disability” testing). They may or may not assign a “severity” to each issue,
but will likely make prioritized recommendations on those items that should be
fixed first and those that should be fixed but may be less critical.

Testing for Accessibility | 69

=
a
a
m
“©
2.
=5
=
<

Testing with Users

Although it is fine for an expert to review a site, feedback is that much more
meaningful and powerful when it comes from people who use assistive tech-
nology every day.

User testing falls into two categories: general review and testing of specific tasks.
General review tends to be focused on providing a general impression of the
accessibility of a site but without particular goals in mind. Although this can be
useful for finding “obvious” accessibility issues such as missing alt text, spelling
mistakes, and confusing content or reading order, it may not be as useful as
testing for such specific tasks as:

* Logging into the application
* Finding the email address for support/help

* Performing a typical transaction, such as determining your current bank bal-
ance or purchasing a specific item and having it shipped to your address

* Creating a new account

User testing that provides an overall impression of the accessibility of a site can be
useful, but it pales in comparison to actually watching users attempt to complete
tasks that are critical to their use of the application or site.

Several things often happen during these facilitated tests: an observer makes notes
about difficult areas, ranks task completion (completed, completed with diffi-
culty, completed with assistance, not completed, for example), and code is
reviewed to identify areas for improvement.

User testing should not be seen as a final stage of development; it should be done
early in the development process, conducted with multiple users with various
disabilities, and repeated after improvements are made.

In some cases, however, we don’t have that luxury. So, how much accessibility
testing should you do? As much as you can! Some is better than none. If all you
can manage is expert review, or testing with a handful of users, then do that, and
do it well.

Automated Testing Tools

If used with appropriate caution and judgment, automated tools can be very
useful in determining accessibility problems in a site, in tracking progress over
time, and for identifying possible issues that bear further investigation. The W3C
maintain an extensive list of tools that are available for use in testing at www.w3.
org/WAI/ER/existingtools.html. Keep in mind, however, that ability and disability
are relative terms, so testing with black-and-white absolutes is sometimes prob-
lematic and always controversial.

It is important to remember with all of the automated testing tools that in some
cases, you may see issues that do not apply to your particular site or that are diffi-
cult to test. For example, after scanning a page with JavaScript, many automated
testing tools will state that you have used JavaScript in the page and therefore
must include an alternate by using a <noscript>...</noscript> block in your page.

70 | Chapter5: Accessibility

The problem is that the automated test does not know what the script is doing,
and what the result will be if the page is used with JavaScript both on and off.

As another simple example to illustrate the point: an automated testing tool can
test for the presence of alternative text for an image. It can even test to see if there
are other images with the same alternative text, and it can test to see if that image
is part of a link. However, it cannot run any test that will determine whether or
not the alternative text is appropriate for the image in question.

Therein lies the problem with automated testing. Human judgment is still
required and must be factored into testing time as automated testing on its own is
simply not the answer.

For best testing, a combination of automated testing methods, browser-based
tools, expert review, and user task completion should be what you aim for.

Testing for Accessibility | 71

>
a
a
m
“©
2
=
<

Internationalization

If the Web is to reach a truly worldwide audience, it needs to be able to support
the display of all the languages of the world, with all their unique alphabets and
symbols, directionality, and specialized punctuation. The W3C’s efforts for inter-
nationalization (often referred to as “i18n”—an i, then 18 letters, then an n)
ensure that the formats and protocols defined by the W3C are usable worldwide
in all languages and writing systems.

You often hear the terms internationalization (or globalization) and localization
used together. The W3C defines localization as the process of adapting a tech-
nology or content to meet the language, cultural, and other requirements of a
particular culture, region, or language. Internationalization refers to the design
and development of web content and technologies that enables easy localization
for target audiences. Localization entails more than simple language translation. It
also takes into account details including, but not limited to:

* Date and time formats

* Currency

* Keyboard usage

* Cultural interpretations of symbols, icons, and colors

* Content that may be subject to misinterpretation or viewed as insensitive

* Varying legal requirements
Creating multilingual web sites and localized versions of site content is well beyond
the scope of this Nutshell book. This chapter addresses two primary issues related
to internationalization. First is the handling of alternative character sets that take
into account all the writing systems of the world, including character encoding and

character references. Second is the features built into HTML 4.01 and CSS 2.1 for
specifying languages and their unique presentation requirements.

72

Character Sets and Encoding

The first challenge in internationalization is dealing with the staggering number of
unique character shapes (called glyphs) that occur in the writing systems of the
world. This includes not only alphabets, but also all ideographs (characters that
indicate a whole word or concept) for such languages as Chinese, Japanese, and
Korean. There are also invisible characters that indicate particular functionality
within a word or a line of text, such as characters that indicate that adjacent char-
acters should be joined.

To understand character encoding as it relates to HTML, XHTML, and XML, you
must be familiar with some basic terms and concepts.

Character set
A character set is any collection or repertoire of characters that are used
together for a particular function. Many character sets have been standard-
ized, such as the familiar ASCII character set that includes 128 characters
mostly from the Roman alphabet used in modern English.

Coded character set
When a specific number is assigned to each character in a set, it becomes a
coded character set. Each position (or numbered unit) in a coded character set
is called a code point (or code position). In Unicode, (discussed in more detail
later) the code point of the greater-than symbol (>) is 3E in hexadecimal or
62 in decimal. Unicode code points are typically denoted as U+hhhh, where
hhhh is a sequence of at least four and sometimes six hexadecimal digits.

Character encoding
Character encoding refers to the way characters and their code points are
converted to bytes for use by computers. The character encoding transforms
the character stream in a document to a byte stream that is interpreted by
user agents and reassembled again as a character stream for the user.

The number of characters available in a character set is limited by the bit
depth of its encoding. For example, 8 bits are capable of describing 256 (28)
unique characters, 16 bits can describe 65,536 (216) different characters, and
so on.

Many character sets and their encodings have been standardized for worldwide
interoperability. The most relevant character set to the Web is the comprehensive
Unicode (ISO/IEC 106460-1), which includes more than 50,000 characters from
all active modern languages. Unicode is discussed in appropriate detail in the next
section.

Web documents may also be encoded with more specialized encodings appro-
priate to their authoring languages. Some common encodings are listed in
Table 6-1. Note that all of these encodings are 8-bit (256 character) subsets of
Unicode.

Character Setsand Encoding | 73

5
~*
I
]
E
o
-3
°
S
2
=

Table 6-1. Common 8-bit character encodings

Encoding Description

150 8859-1 (a.k.a. Latin-1) Latin characters used in most Western languages (includes ASCII)
150 8859-5 Cyrillic

150 8859-6 Arabic

1S0 8859-7 Greek

150 8859-8 Hebrew

150-2022-JP Japanese

SHIFT_JIS Japanese

EUC-JP Japanese

HTML 2.0 and 3.0 were based on the 8-bit Latin-1 (ISO 8859-1) character set.
Even as HTML 2.0 was being penned, the W3C was aware that 256 characters
were not adequate to exchange information on a global scale, and it had its sights
set on a super—character set called Unicode. Unfortunately, Unicode wasn’t ready
for inclusion in an HTML Recommendation until Version 4.0 (1996). Without
further ado, it’s time to talk Unicode.

Unicode (ISO/IEC 10646-1)

SGML-based markup languages are required to define a document character set
that serves as the basis for interpreting characters. The document character set for
HTML (4 and 4.01), XHTML, and XML is the Universal Character Set (UCS),
which is a superset of all widely used standard character sets in the world.

The USC is defined by both the Unicode and ISO/IEC 10646 standards. The code
points in Unicode and ISO/IEC 10646 are identical and the standards are devel-
oped in parallel. The difference is that Unicode adds some rules about how
characters should be used. It is also used as a reference for such issues as the bidi-
rectional text algorithm for handling reading direction within text. The Unicode
Standard is defined by the Unicode Consortium (www.unicode.org).

&
iy In common practice, and throughout this book, the Universal
. Character Set is referred to simply as “Unicode.”
AN Y
2

Because Unicode is the document character set for all (X)HTML documents,
numeric character references in web documents will always be interpreted
according to Unicode code points, regardless of the document’s declared
encoding.

Unicode code points

Unicode was originally intended to be a 16-bit encoded character set, but it was
soon recognized that 65,536 code positions would not be enough, so it was
extended to include more than a million available code points (not all of them are
assigned, of course) on supplementary planes.

74 | Chapter6: Internationalization

The first 16 bits, or 65,536 positions, in Unicode are referred to as the Basic Multi-
lingual Plane (BMP). The BMP includes most of the more common characters in
use, such as character sets for Latin, Greek, Cyrillic, Devangari, hirgana, kata-
kana, Cherokee, and others, as well as mathematical and other miscellaneous
characters. Most ideographs are there, too, but due to their large numbers, many
have been moved to a Supplementary Ideographic Plane.

Unicode was created with backward compatibility in mind. The first 256 code
points in the BMP are identical to the Latin-1 character set, with the first 128
matching the established ASCII standard.

Unicode encodings

Many character sets have only one encoding method, such as the ISO 8859 series.
Unicode, however, may be encoded a number of ways. So although the code
points never change, they may be represented by 1, 2, or 4 bytes. The encoding
forms for Unicode are:

UTEF-8
This is an expanding format that uses 1 byte for characters in the ASCII set, 2
bytes for additional character ranges, and 3 bytes for the rest of the BMP.
Supplementary planes use 4 bytes. UTF-8 is the recommended Unicode
encoding for web documents and other Internet technologies.

UTF-16
Uses 2 bytes for BMP characters and 4 bytes for supplementary characters.
UTF-16 is another option for web documents.

UTF-32
Uses 4 bytes for all characters.

So while the code point for the percent sign is U+0025, it would be represented by
the byte value 25 in UTF-8, 00 25 in UTF-16, and 00 00 00 25 by UTF-32. There
are other things at work in the encoding as well, but this gives you a feel for the
difference in encoding forms.

Choosing an encoding

The W3C recommends the UTF-8 encoding for all X)HTML and XML docu-
ments because it can accommodate the greatest number of characters and is well
supported by servers. It allows wide-ranging languages to be mixed within a single
document.

Not all web documents need to be encoded using UTF-8 however. If you are
authoring a document in a language that uses a lot of non-ASCII characters, you
may want to choose an encoding that minimizes the need to numerically repre-
sent (“escape”) these special characters.

Bear in mind, however, that regardless of the encoding, all characters in the docu-
ment will be interpreted relative to Unicode code points.

Character Setsand Encoding | 75

5
~*
I
]
E
o
-3
°
S
2
=

For more information on how character sets and character encod-
ings should be handled for web documents, see the W3C’s Charac-
ter Model for the World Wide Web 1.0 Recommendation at www.
w3.0rg/TR/charmod/.

Specifying Character Encoding

The W3C encourages authors to specify the character encoding for all web docu-
ments, even those that use the default UTF-8 Unicode encoding, but it is
particularly critical if an alternate encoding is used. There are several ways to
declare the character encoding for documents: in the HTTP header delivered by
the server, in the XML declaration (for XHTML and XML documents only), or in
a meta element in the head of the document. This section looks at each method
and provides guidelines for their use.

HTTP headers

When a server sends a document to a user agent (such as a browser), it also sends
information about the document in a portion of the document called the HTTP
header. A typical HTTP header looks like this:

HTTP/1.x 200 OK

Date: Mon, 14 Nov 2005 19:45:33 GMT
Server: Apache/2.0.46 (Red Hat)
Accept-Ranges: bytes

Connection: close

Transfer-Encoding: chunked
Content-Type: text/html; charset=UTF-8

Notice that one of the bits of information that the server sends along is the
Content-Type of the document using a MIME type label. For example, HTML
documents are always delivered as type text/html. (The MIME types for XHTML
documents aren’t as straightforward, as discussed in the sidebar, “Serving
XHTML.”) The Content-Type entry may also contain the character encoding of the
document using the charset parameter, as shown in the example.

The method for setting up a server with your preferred character encoding varies
with different server software, so it is best to consult the server administrator for
assistance. For Apache servers, the default character encoding may be set for all
documents with the .html extension by adding this line to the .htaccess file.

AddType 'text/html; charset=UTF-8' html

The advantages to setting character encodings in HTTP headers are that the infor-
mation is easily accessible to user agents and the header information has the
highest priority in case of conflict. On the downside, it is not always easy for
authors to access the server settings, and it is possible for the default server
settings to be changed without the author’s knowledge.

It is also possible for the character encoding information to get separated from the
document, which is why it is recommended that the character encoding be
provided within the document as well, as described by the next two methods.

76 | Chapter6: Internationalization

Serving XHTML

XHTML 1.0 documents may be served as either XML or HTML documents.
Although XML is the proper method, many authors choose to deliver XHTML
1.0 files with the text/html MIME type used for HTML documents for reasons
of backward compatibility, lack of browser support for XML files, and other
problems with XHTML interpretation. When XHTML documents are served in
this manner, they may not be parsed as XML documents.

XHTML 1.0 files may also be served as XML, and XHTML 1.1 files must always
be served as XML. XHTML documents served as XML may use the MIME types
application/xhtml+xml, application/xml, or text/xml. The W3C recommends
that you use application/xhtml+xml only.

Whether you serve an XHTML document as an HTML or XML file type
changes the way you specify the character encoding, as covered in the upcoming
“Choosing the declaration method” section.

XML declaration

XHTML (and other XML) documents often begin with an XML declaration
before the DOCTYPE declaration. The XML declaration is not required. The
declaration may include the encoding of the document, as shown in this example.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

The XML declaration may be provided even for XHTML documents served as
text/html.

Because the default encoding for all XML documents is UTF-8 or UTEF-16,
encoding information in the XML declaration is not required for these encodings,
and thus can be omitted as a space-saving optimization.

In addition, although it is technically correct to include the XML declaration in
such documents, Appendix C of the XHTML 1.0 specification, “HTML Compati-
bility Guidelines,” recommends avoiding it, and many authors choose to omit it
because of browser-support issues. For example, when Internet Explorer 6 for
Windows detects a line of text before the DOCTYPE declaration, it converts to
Quirks Mode (see Chapter 9 for details), which can have a damaging effect on
how the documents styles are rendered. (This is reportedly fixed in IE 7.) It is
required only if your document uses an encoding other than UTF-8 or UTF-16
and if the encoding has not been set on the server.

The meta element

For HTML documents as well as XHTML documents served as text/html, the
encoding should always be specified using a meta element in the head of the docu-
ment. The http-equiv attribute passes information along to the user agent as

Character Setsand Encoding | 77

5
~*
I
]
E
o
-3
°
S
2
=

though it appeared in the HTTP header. Again, the encoding is provided with the
charset value as shown here:

<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<title>Document Title</title>

</head>

Although the meta element declaring the content type is not a required element in
the HTML and XHTML DTDs, it is strongly recommended for the purpose of
clearly identifying the character encoding and keeping that information with the
document. This is particularly helpful for common text editors (such as BBEdit),
which use the meta element to identify the character encoding of the document
when opening the document for editing. With this method, all character encod-
ings must be explicitly specified, including UTF-8 and UTF-16.

Choosing the declaration method

The declaration method you use depends on the type of document you are
authoring and its encoding method.

HTML documents
The encoding should be specified on the server and again in the document
with a meta element. This makes sure the encoding is easily accessible and
stays with the document should it be saved for later use.

XHTML 1.0 documents served as HTML
The encoding should be specified on the server and again in the document
with a meta element. If the encoding is something other than UTF-8 or UTF-
16, and the document is likely to be parsed as XML (not just HTML), then
also include the encoding in an XML header. Be aware that the inclusion of
the XML declaration may cause rendering problems for some browsers.

XHTML (1.0 and 1.1) documents served as XML
The encoding should be specified on the server and by using the encoding
attribute in the XML declaration. Although not strictly required for UTF-8
and UTF-16 encodings, it doesn’t hurt to include it anyway.

& @
This strategy for declaring character encodings is outlined in a
:‘:‘,‘“ tutorial on the W3C’s Internationalization site (www.w3.org/
" International/tutorials/tutorial-char-enc/). For another approach,
see the article “WaSP Asks the W3C: Specifying Character Encod-
ing” on the Web Standards Project site (webstandards.org/learn/
askw3c/dec2002.html).
Character References

HTML and XHTML documents use the standard ASCII character set (these are
the characters you see printed on the keys of your keyboard). To represent charac-
ters that fall outside the ASCII range, you must refer to the character by using a
character reference. This is known as escaping the character.

78 | Chapter6: Internationalization

Declaring Encoding in Style Sheets

It is also possible to declare the encoding of an external style sheet by including
a statement at the beginning of the .css document (it must be the first thing in

the file):
@charset "utf-8";

It is important to do this if your style sheet includes non-ASCII characters in
property values such as quotation characters used in generated content, font
names, and so on.

In HTML and XML documents, some ASCII characters that you intend to be
rendered in the browser as part of the text content must be escaped in order not
to be interpreted as code by the user agent. For example, the less-than symbol (<)
must be escaped in order not to be mistaken as the beginning of an element start
tag. Other characters that must be escaped are the greater-than symbol (>),
ampersand (&), single quote ('), and double quotation marks ("). In XML docu-
ments, all ampersands must be escaped or they won’t validate.

There are two types of character references: Numeric Character References (NCR)
and character entities.

Numeric Character References

A Numeric Character Reference (NCR) refers to the character by its Unicode code
point (introduced earlier in this chapter). NCRs are always preceded by &# and
end with a ; (semicolon). The numeric value may be provided in decimal or hexa-
decimal. Hexadecimal values are indicated by an x before the value.

For example, the copyright symbol (©), which occupies the 169th position in
Unicode (U+00A9), may be represented by its hexadecimal NCR 8#xA9; or its
decimal equivalent, ©. Decimal values are more common in practice. Note
that the zeros at the beginning of the code point may be omitted in the numeric
character reference.
&
Y Handy charts of every character in the Basic Multilingual Plane are
0‘;‘. p maintained as a labor of love by Jens Brueckmann at his site J-A-B.
" #}’ net. The Unicode code point and decimal/hexadecimal NCR is pro-
vided for every character. It is available at www.j-a-b.net/web/char/
char-unicode-bmp.

¢y

Character Entities

Character entities use abbreviations or words instead of numbers to represent
characters that may be easier to remember than numbers. In this sense, entities
are merely a convenience. Character entities must be predefined in the DTD of a
markup language to be available for use. For example, the copyright symbol may
be referred to as ©, because that entity has been declared in the DTD. The

Character References | 79

5
~*
I
]
E
o
-3
°
S
2
=

character entities defined in HTML 4.01 and XHTML are listed in Appendix C (a
list of the most common is also provided in Chapter 10). XML defines five char-
acter entities for use with all XML languages:

&l1t;
Less than (<)

>
Greater than (>)

&
Ampersand (&)

'
Apostrophe ()

"
Quotation mark (")

Escapes in CSS

It may be necessary to escape a character in a style sheet if the value of a property
contains a non-ASCII character. In CSS, the escape mechanism is a backslash
followed by the hexadecimal Unicode code point value. The escape is terminated
with a space instead of a semicolon. For example, a font name starting with a
capital letter C with a cedilla () needs to be escaped in the style rule, as shown
here.

p { font-family: \C7 elikfont; }

When the special character appears in a style attribute value, it is possible to use
its NCR, entity, or CSS escape. The CSS escape is recommended to make it easier
to move it to a style sheet later.
&
s For guidelines on declaring character encodings and using escapes,
0‘;‘. . see the W3C’s Authoring Techniques for XHTML & HTML Inter-
o}’ nationalization available at www.w3.0rg/TR/i18n-html-tech-char/.

Language Features

Coordinating character sets is only the first part of the challenge. Even languages
that share a character set may have different rules for hyphenation, spacing,
quotation marks, punctuation, and so on. In addition to character shapes
(glyphs), issues such as directionality (whether the text reads left to right or right
to left) and cursive joining behavior have to be taken into account. This section
introduces the features included in HTML 4.01 and XHTML 1.0 and higher that
address the needs of a multilingual Web.

Language Specification

Authors are strongly urged to specify the language for all HTML and XHTML
documents. To specify a language for XHTML documents, use the xml:lang

80 | Chapter6: Internationalization

attribute in the html root element. HTML documents use the lang attribute for the
same purpose. To ensure backward compatibility, the convention is simply to use
both attributes, as shown in this example, which specifies the language of the
document as French.

<html xml:lang="fr" lang="fr" xmlns="http://www.w3.0rg/1999/xhtml" >

&
Y Users can set language preferences in their browsers. This language
0‘;‘. p preference information is passed to the server when the user makes
At & .
1) a request for a document. The server may use it to return a docu-

ment in the preferred language if there is a document available that
matches the language description.

The language attributes may be used in a particular element to override the
language declaration for the document. In this example, a long quotation is
provided in Norwegian.

<blockquote xml:lang="no" lang="no">...</blockquote>

Language Values

The value of the lang and xml:1ang attributes is a language tag as defined in “Tags
for the Identification of Languages” (RFC 3066). Language tags consist of a
primary subtag that identifies the language according to a two- or three-letter
language code (according to the ISO 639 standard), for example, fr for French or
no for Norwegian. When a language has both a two- and three-letter code, the
two-letter code should be used.

The complete list of ISO 639 language codes is available at the Library of
Congress web site at www.loc.gov/standards/iso639-2/langcodes.html. The more
common two-letter codes are provided in Table 6-2 at the end of this section.

A language tag may also contain an optional subtag that further qualifies the
language by country, dialect, or script, as shown in these examples.

en-GB
English as spoken in Great Britain

en-scouse
English with a scouse (Liverpool) dialect

bs-Cyrl
Bosnian with Cyrillic script (rather than Latin script, bs-Latn)

Codes for country names are provided by the standard ISO 3166 and are avail-
able at www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-enl.
html. Dialect and script language tags are registered with the IANA (Internet
Assigned Numbers Authority) and are available at www.iana.org/assignments/
language-tags.

Language Features | 81

5
~*
I
]
E
o
-3
°
S
2
=

Table 6-2. Two-letter codes of language names

Country
Afar
Abkhazian
Avestan
Afrikaans

Akan
Ambharic
Aragonese
Arabic
Assamese

Avaric
Aymara
Azerbaijani
Bashkir
Belarusian
Bulgarian
Bihari
Bislama
Bambnara
Bengali; Bangla
Tibetan
Breton
Bosnian
(atalan
Chechen
Chamorro
Corsican
Cree
(zech

0ld Slavic
Chuvash
Welsh
Danish
German
Divehi
Dzongkha
Ewe
Greek
English

Code
aa
ab
ae
af

ak
am
an
ar

as

av

ca
ce
ch
co
cr
cs
cu
cv
cy
da
de
dv

ee
el

en

Country
Armenian
Herero
Interlingua

Indonesian
(formerly in)

Interlingue
Igbo
Sichuan Yi
Inupiak
Icelandic

[talian
Inuktitut
Japanese
Javanese
Javanese
Georgian
Kongo
Kikuyu
Kuanyama
Kazakh
Greenlandic
Cambodian
Kannada
Korean
Kanuri
Kashmiri
Kurdish
Komi
Cornish
Kirghiz
Latin
Luxembourgish
Ganda
Limburgan
Lingala
Lingala
Laothian
Lithuanian
Luba Katanga

Code

Country
Oriya
Ossetian
Punjabi
Pali

Polish

Pashto, Pushto
Portuguese
Quechua

Rhaeto-
Romance

Kirundi
Romanian
Russian
Kinyarwanda
Sanskrit
Sardinian
Sindhi
Northern Sami
Sangho
Serbo-Croatian
Sinhalese
Slovak
Slovenian
Samoan
Shona
Somali
Albanian
Serbian
Swati
Sesotho
Sundanese
Swedish
Swahili
Tamil

Telugu

Tajik

Thai

Tigrinya
Turkmen

Code
or
0s
pa
pi

pl
ps
pt
qu
m

m
10
Tu
™
sa
sc
sd
se
Sg
sh
si
sk
sl
sm
sn
S0
sq
ST
ss
st
su
sV
sw
ta
te
tg
th
ti
tk

82 | (hapter6: Internationalization

Table 6-2. Two-letter codes of language names (continued)

Country Code Country Code Country Code
Esperanto eo Latvian lv Tagalog tl
Spanish es Malagasy mg Setswana tn
Estonian et Marshallese mh Tonga to
Basque eu Maori mi Turkish tr
Persian fa Macedonian mk Tsonga ts
Fulah f Malayalam ml Tatar tt
Finnish fi Mongolian mn Twi tw
Fiji fj Moldavian mo Tahitian ty
Faroese fo Marathi mx Uighur ug
French fr Malay ms Ukrainian uk
Frisian fy Maltese mt Urdu ur
Irish ga Burmese my Uzbek uz
Scots Gaelic gd Nauru na Venda ve
Galician gl Nepali ne Vietnamese vi
Guarani gn Ndonga ng Volapuk Vo
Gujarati gu Dutch nl Walloon wa
Manx gv Nynorsk nn Wolof wo
Hausa ha Norwegian no Xhosa xh
Hebrew he Ndebele nr Yiddish yi
(formerly iw) (formerly j1)
Hindi hi Navaho nv Yoruba yo
Hiri Motu ho Chichewa ny Zhuang za
Croatian hr Occitan oc Chinese zh
Haitian ht Ojibwa o] Zuni zu
Hungarian hu (Afan) Oromo om

Directionality

HTML 4.01 and XHTML take into account that many languages read from right
to left and provide attributes for handling the directionality of text. Directionality
is part of a character’s encoding within Unicode.

The dir attribute is used for specifying the direction in which the text should be
interpreted. It can be used in conjunction with the lang attribute and may be
added within the tags of most elements. The accepted value for direction is either
1tr for “left to right” or rtl for “right to left.” For example, the following code
indicates that the paragraph is intended to be displayed in Arabic, reading from
right to left:

<p lang="ar" xml:lang="ar" dir="rtl">...</p>

The bdo element, introduced in HTML 4.01, also deals specifically with docu-
ments that contain combinations of left- and right-reading text (bidirectional text,
or bidi, for short). The bdo element is used for “bidirectional override,” in other

Language Features | 83

5
~*
I
]
E
o
-3
°
S
2
=

words, it specifies a span of text that should override the intrinsic direction (as
inherited from Unicode) of the text it contains. The bdo element uses the dir
attribute as follows:

<bdo dir="1tr">English phrase in an otherwise Hebrew text</bdo>...

Cursive Joining Behavior

In some writing systems, the shape of a character varies depending on its position
in the word. For instance, in Arabic, a character used at the beginning of a word
looks completely different when it is used as the last character of a word. Gener-
ally, this joining behavior is handled within the software, but there are Unicode
characters that give precise control over joining behavior. They have zero width
and are placed between characters purely to specify whether the neighboring char-
acters should join.

HTML 4.01 provides mnemonic character entities for both these characters, as
shown in Table 6-3.

Table 6-3. Unicode characters for joining behavior

Entity Numeric Name Description

8zwnj; ‌ zero-width non-joiner Prevents joining of characters that would otherwise
be joined.

dzwj; ‍ zero-width joiner Joins characters that would otherwise not be joined.

Style Sheets Language Features

The first version of Cascading Style Sheets (CSS) did not include any mechanisms
for dealing with anything but standard western, left-to-right languages.

CSS Level 2 introduced a few controls that specifically address multilingualism.

Directionality
The direction and unicode-bidi properties in CSS 2 allow authors to specify
text direction, similar to the dir and bdo elements in HTML.

Quotation marks
The quotes property is used to specify quotation marks appropriate to the
current language of the text. Generated quotation marks are discussed in
Chapter 23.

CSS Level 3 addresses advanced foreign language attributes such as detailed speci-
fication of international numbering schemes, vertical text, and language-based
text justification. International numbering schemes are published in the CSS 3
Lists Module (www.w3.0rg/TR/css3-lists/). Text effects that accommodate interna-
tionalization efforts are published in the CSS 3 Text Effects Module (www.w3.org/
TR/css3-text/).

CSS 3 also includes a module for dealing with Ruby text. Ruby text is a run of text
that appears alongside another run of text (the base). It serves as an annotation or
pronunciation guide, as in the case of phonetic Japanese characters that run above

84 | (hapter6: Internationalization

the pictorial kanji symbols to aid readers who do not understand the symbols.
More information can be found at www.w3.0rg/TR/css3-ruby/.

For Further Reading

If you are interested in learning more, the W3C Internationalization Activity
Home Page (www.w3.org/International/) makes a great jumping-off point for
further exploration.

Another good resource is Babel, an Alis Technologies/Internet Society joint
project to internationalize the Internet. It is available at alis.isoc.org/index.en.html.

5
~*
I
]
E
o
-3
°
S
2
=

For Further Reading | 85

The Structural Layer:
XML and (X)HTML

Introduction to XML

If you are thinking about skipping this chapter, please reconsider. While you may
never need to be an XML expert, the basic concepts covered here will illuminate
why things are done the way they are in the world of web document authoring.
Furthermore, if you “get” XML, you’ll understand the reasoning that influences
all contemporary web design and related W3C Recommendations, from XHTML
to CSS 2 and beyond.

XML (Extensible Markup Language) is a W3C standard for text document
markup. It is not a language in itself (like HTML), but rather a set of rules for
creating other markup languages. In other words, it is a meta-markup language.
Languages written according to XML syntax are called XML applications (a
confusing use of the word “application” to be sure, but such is the legacy jargon
that SGML has left us). If this sounds a bit abstract, think of it this way: XML
provides the tools for making up custom sets and subsets of tags.

Although XML began as an effort to improve information structure and handling
on the Web, it has quickly taken the entire computing world by storm. In fact,
today there is more XML used outside the Web than on it. XML is used for docu-
ment sharing and data storage in fields as diverse as finance, retail, physics, travel,
insurance, and academia, just to name a few. There are also XML files working
behind the scenes in an increasing number of software applications, such as
Microsoft Office, Macromedia Flash, and Apple iTunes. This is just a testament to
the flexibility and robust nature of XML.

XML is having some of its intended impact on the Web as well. It is the corner-
stone of the W3C’s vision for the future of information exchange over networks.

XML is a complex topic, well beyond the scope of this web design book. This
chapter provides an introduction to XML, focusing on the aspects of XML that
are useful to web designers and developers, such as how it works, the basic
syntax, terminology, and web-based XML applications.

The best way to get a feel for XML is to look at a quick example.

89

XML Basics

Here is a very simple XML document that is marked up with tags I made up to
describe the liner notes for my famous end-of-the-year music compilations. (I
could call it JenML).

<?xml version="1.0"?>
<compilation >
<title>Oh Baby! Jen's Favorites</title>
<year>2005</year>
<image source="ohbabycover.jpg"/>
<tracklist>
<track number="1">
<artist>The Wrens</artist>
<song>
<song_title>Hopeless</song_title> from
<album title>The Meadowlands</album title>,
<label>Absolutely Kosher Records</label>,
<release_date>2003</release_date>
</song>
<comments>I love The Wrens, both musically and personally.</comments>
</track>
<!--more tracks added here -->
</tracklist>
</compilation>

Certain things about this example should look familiar to anyone who has seen an
HTML document. First, it is a plain-text document. As such, it can be created or
edited in any text editor. It also uses tags in brackets to indicate the start and end
of content elements in the document. Consider this element from the example:

<artist>The Wrens</artist>

The element includes the content (in this case, the character data “The Wrens”)
and its markup (the start tag <artist> and end tag </artist>). In XML, tags are
case-sensitive, so <ARTIST>, <Artist>, and <artist> would be parsed as three
different elements. Elements may contain character data, other elements, or both.
Some elements are empty, which means they have no content. <meta/> is an
example of an empty element in XHTML. Elements may be clarified or enhanced
with attributes that provide extra information about that element. In the example,
the image element uses the source attribute to provide the location of the image
file.

Meaningful Markup

The most significant thing to note here is that the tags describe the information
they contain in a meaningful way. In XML, element names are intended to be
simple, descriptive, and easily readable by human beings as well as machines.
Notice also that the tags do not provide any indication of how the document
should look when it is displayed. Their purpose is to provide a semantic descrip-
tion (the meaning) of their contents. XML documents rely on style sheets to
handle all matters of presentation.

90 | Chapter7: Introductionto XML

Together, the elements in a document create its structure. Notice in the example
that some elements contain other elements, which may contain yet more
elements. This hierarchy is referred to as the document tree. It starts with a root
element (compilation in the example) and branches out in layers of parent/child
relationships. Every XML document must have exactly one root element, and the
root element has no ancestors. Document structure is covered in more detail in
Chapter 16.

The concepts of semantic markup and document structure are
directly relevant to web design. HTML and XHTML are markup
languages for describing text documents whose “data” consists of
paragraphs, headings, lists, and so on. In proper HTML markup,
elements should accurately describe their contents, and should not
be chosen to achieve a particular visual effect in a browser. Addi-
tionally, an awareness of a document’s structure will be a major
advantage when planning and writing style sheets.

Text as Data, Data as Text

It is easy to see even from our simple example how XML markup treats content in
a text document like data. So while this document can be displayed in a page
format, it can just as easily be stored in a database (which is a common use of
XML-formatted information).

On the flip side, XML allows data to be stored in a plain-text format. This is the
key to XML’s rampant success in the computing world. Data that had previously
been stored in proprietary, device-specific formats can now be marked up in a text
file and shared between incompatible systems. Longevity is improved as well.
XML documents are self-defining, intuitive, and not tied to a format or system
that may grow obsolete.

How It Works

XML has four basic components:

* A document marked up in an XML language

* An optional Document Type Definition or XML Schema that defines the ele-
ments and the rules for their use in that language

* Style sheets for presentation instructions

* Parsers that interpret the XML document

Take a closer look at each.

XML Documents

XML documents may be used for a wide variety of content. A document might be
text based (such as a magazine article), or it might contain only numerical data to
be transferred from one database or application to another. An XML document
might also contain an abstract structure, such as a particular vector graphic shape
(as in SVG) or a mathematical equation (as in MathML).

HowltWorks | 91

A Brief XML History

Both XML and HTML have roots in SGML (Standard Generalized Markup
Language). SGML is a comprehensive set of syntax rules for marking up docu-
ments and data that has existed as an ISO standard since 1986. It is the big
kahuna of meta-languages. For information on SGML, including its history, see
www.oasis-open.org/cover/general.html.

When Tim Berners-Lee needed a markup language that told browsers how to
display content, he used SGML to create HTML. In other words, HTML is an
SGML application, albeit a very simplified one.

As the Web matured, there was a clear need for more versatile markup
languages. SGML provided a good model, but it was too vast and complex; it
had many features that were redundant, overly complicated, or simply weren’t
useful. XML is a simplified and reduced form of SGML.

Much of the credit for XML’s creation can be attributed to Jon Bosak of Sun
Microsystems, Inc., who started the W3C working group responsible for scaling
down SGML to its portable, Web-friendly form. Other big players include
James Clark, the technical lead of the working group, and Tim Bray, Michael
Sperberg-McQueen, and Jean Paoli, the co-editors of the XML specification.

XML 1.0 became a W3C Recommendation on February 10, 1998 and it was
revised three times, with the third edition released in 2004. At that time, the
W3C released XML 1.1, which addressed issues with Unicode, among other
things. Developers are still encouraged to use XML 1.0 if they do not need the
newer features. Various aspects and modules of XML are still in development.
For more information and updates on XML progress, see the W3C'’s site at
www.w3.org/XML.

It is important to note that an XML document is not limited to one physical file. It
may be made up of content from multiple files that are integrated via special
markup, or it may exist only as records in a database that are assembled on the
fly. The end result is always marked-up text content.

Document Type Definition (DTD)

Some XML languages also use a Document Type Definition (DTD) that defines
each element allowed in the document along with its attributes and rules for use.
An XML-compliant application may check the document against its DTD to
“decode” the markup and make sure that it follows its own rules. A document
that conforms to its DTD is said to be valid. DTDs are discussed in detail later in
this chapter.

An updated method for defining XML elements and document structure is XML
Schemas. A particular instance of an XML Schema is called an XML Schema Defi-
nition (XSD). The difference is that XSDs are XML-based, while DTDs (an older
form of schema) are created according to the rules of SGML. XSDs are more
powerful in describing XML languages, but the price is that they also tend to be

92 | Chapter7: Introductionto XML

more complicated and difficult to read and write. XML Schemas are outside the
scope of this introductory chapter, but you can find information on the W3C site
at www.w3c.org/XML/Schema.

Style Sheets and XML

A markup language describes only the structure of a document; it is not
concerned with how it looks. Like HTML, XML documents can use Cascading
Style Sheets for presentation. In fact, the CSS Level 2 Recommendation has been
broadened for use with all XML applications, not just web documents. CSS is
covered in Part I1I of this book.

Another style sheet language called the Extensible Stylesheet Language (XSL) exists
for XML documents. XSL creates a large overhead in processing, whereas CSS is
fast and simple, making it generally preferable.

XSL is useful when the contents of the XML document need to be “transformed”
before final display. Transforming generally refers to the process of converting one
XML language to another, such as turning a particular XML language into
XHTML on the fly, but it can also be used for transformations as simple as
replacing words with other words. An Extensible Stylesheet Language for Transfor-
mations (XSLT, a subset of XSL) style sheet works as a translator in the
transformation process. XSL is not covered in this chapter; for more information,
see the XSL information on the W3C site at www.w3.0rg/Style/XSL/.

Parsers

Software that interprets the information in XML documents is called an XML
parser or processor. Parsers are generally built into other XML-compliant applica-
tions (such as web browsers or database servers), although standalone, command-
line XML parsers do exist. It’s the parser’s job to pass elements and their contents
to the application piece by piece for display or execution.

One of the things the parser does is make sure that the XML document is well-
formed, that is, that it follows all of the rules of XML markup syntax correctly. If a
document is not well-formed, parsers are instructed not to process it (although
some are more forgiving than others). Well-formedness is discussed in the
following section. Some parsers are also validating parsers, meaning they check
the document for validity against a DTD.

XML Document Syntax

Now let’s look at some of the particulars of XML syntax using this simple XML
document:

<?xml version="1.0" encoding="US-ASCII" standalone="no"?>
<IDOCTYPE accounts SYSTEM "simple.dtd">
<accounts>
<customer>
<name>
<firstname>Bobby</firstname>
<lastname>Five</lastname>

XML Document Syntax | 93

Well-Formed Versus Valid

In short, well-formed documents comply with the rules for marking up docu-
ments according to XML, independent of a specific language. For instance, all
elements must be correctly nested and may not overlap.

Valid documents are well-formed and abide by the rules of a DTD for a partic-
ular XML language. For instance, in XHTML, it is invalid to put a body element
in an a element.

An XML document must be well-formed, and should be valid, but validity is not
required.

</name>
<accountNumber>4456</accountNumber>
<balance»111.32</balance>
</customer>
<!-- more customers will be added soon -->
<?php print date ('Fj,Y"') 2>
</accounts>
&
8 Because XHTML is an XML application, all of the following syntax

Q. conventions apply to web documents written in XHTML.
INSP
15

XML Declaration

The first line of the example is the XML declaration.
<?xml version="1.0" encoding="US-ASCII" standalone="no"?>

The XML declaration contains special information for the XML parser. First, the
version attribute tells the parser that it is an XML document that conforms to
Version 1.0 of the XML standard (which, incidentally, is the only available
option).

In addition, the encoding attribute specifies which character encoding the docu-
ment uses. By default, XML use the UTF-8 encoding of the Unicode character set
(the most complete character set including glyphs from most of the world’s
languages). Alternate encodings may also be specified, such as ISO-8859-1 (Latin-
1), which is a set containing characters from most Western European languages.
Character encodings are discussed in more detail in Chapter 6.

Finally, the optional standalone="no" attribute informs the program that an
outside DTD is needed to correctly interpret the document. If the value of
standalone is yes, it means there is no DTD or the DTD is included in the
document.

XML documents should begin with an XML declaration, but it is not required.

94 | (Chapter7: Introductionto XML

In XHTML documents, the presence of an XML declaration will
cause Internet Explorer 6 for Windows to render in Quirks mode,
even when a proper DOCTYPE declaration is provided (see
Chapter 9 for information on Quirks versus Standards mode and
DOCTYPE switching). For this reason, it is commonly omitted.
This problem has been fixed in IE 7. Some other browsers may ren-
der the XML declaration or have other problems. Avoid using the
XML declaration in your XHTML documents if possible.

Document Type Declaration

The example also includes a document type (DOCTYPE) declaration.
<IDOCTYPE accounts SYSTEM "simple.dtd">

The purpose of the DOCTYPE declaration is to refer to the DTD against which
the document should be compared for validity. The declaration identifies the root
element of the document (accounts, in the example). It also provides a pointer to
the DTD itself. DOCTYPE declarations are discussed in the “DTD Syntax”
section later in this chapter and again in Chapter 9 as they apply to XHTML.

Together, the XML declaration and DOCTYPE are often referred to as the docu-
ment prolog. For XML languages that don’t use DTDs, the entire prolog is
optional. For languages with DTDs, the DOCTYPE declaration is required for the
document to validate.

Comments

You can leave notes within an XML document in the form of a comment.
Comments begin with <!-- and end with -->. If you’ve used comments in HTML,
this syntax should be familiar. The example document contains the comment:

<!-- more customers will be added soon -->

Comments are not elements and, therefore, do not affect the structure of the
document. They may be placed anywhere in a document except before an XML
declaration or within a tag or another comment.

Processing Instructions

A processing instruction is a method for passing information to applications that
may read the document. It may also include the program or script itself. Unlike
comments, which are intended for humans, processing instructions are for
computer programs or scripts. Processing instructions are indicated by <? at the
beginning and ?> at the end of the instruction.

The example document includes a processing instruction for a simple PHP
command that displays the current date.

<?php print date('Fj, Y'); >

XML Document Syntax | 95

Entity References

Isolated markup characters (such as <, &, and >) are not permitted in the flow of
text in an XML document and must be escaped using either a Numeric Character
Reference or a predefined character entity. This is to avoid having the XML parser
interpret any < symbol as the beginning of a new tag. In addition to using entity
references in the content of the document, you must use them in attribute values.

XML defines five character entities for use in all XML languages, listed in
Table 7-1. Other entities may be defined in a DTD.

Table 7-1. Predefined character entities in XML

Entity Char Notes

& & Must not be used inside processing instructions

< < Use inside attribute values quoted with "

> > Use after]] in normal text and inside processing instructions
" " Use inside attribute values quoted with '

' ! Use inside attribute values quoted with "

If you have a document that uses a lot of special characters, such as an example of
source code, you can tell the XML parser that the text is simple character data
(CDATA) and should not be parsed. To protect content from parsing, enclose it
in a CDATA section, indicated by <![CDATA[...]]>. This XHTML example uses a
CDATA section to display sample markup on a web page without requiring every
< and > character to be escaped:

<p>This is sample SMIL markup:</p>
<![CDATA[
<audio src="audio file.mp3" begin="0s" />
<seq>

</seq>

1

The five reserved characters (listed in Table 7-1) are also put to frequent use when
writing scripts (such as JavaScript), making it necessary to designate those blocks
of content as CDATA so they will be ignored by XML parsers.

Well-Formed XML

Browsers often recover from sloppily written or illegal HTML. This is not the case
with XML documents. Because XML languages vary, the rules for coding the
document need to be followed to the letter to ensure proper interpretation by the
XML client. In fact, the XML specification strictly prohibits XML parsers from
trying to read or render documents with syntax errors. When a document follows
the XML markup syntax rules, it is said to be well-formed. Documents that have
incorrect syntax are referred to as malformed.

96 | Chapter7: Introduction to XML

The primary rules for a well-formed XML document are:

* There may be no whitespace (character spaces or line returns) before the
XML declaration, if there is one.

* An element must have both an opening and closing tag, unless it is an empty
element.

* If an element is empty, it must contain a closing slash before the end of the
tag (for example,
).

* All opening and closing tags must nest correctly and not overlap.

* There may not be whitespace between the opening < and the element name in
a tag.

* All element attribute values must be in straight quotation marks (either sin-
gle or double quotes).

* An element may not have two attributes with the same name.
» Comments and processing instructions may not appear inside tags.

* No unescaped < or & signs may occur in the character data of an element or
attribute.

* The document must have a single root element, a unique element that
encloses the entire document. The root element may be used only once in the
document.

This is by no means a complete list. There are over a hundred criteria that must be
met for a document to be well-formed, but many of them follow common sense;
for example, there must be at least one character between the brackets <>. But
because the syntax rules must be read by machines (without common sense), the
rules need to be explicit.

You can check whether the syntax of your XML document is correct using a well-
formedness checker (also called a non-validating parser). There is a list of them at
the Web Developer’s Virtual Library at wdvl.com/Software/XML/parsers.html.

Document Type Definition (DTD)

A Document Type Definition (DTD) is a file associated with SGML and XML
documents that defines how markup tags should be interpreted by the applica-
tion reading the document. The DTD uses SGML syntax to explain precisely
which elements and attributes may appear in a document and the context in
which they may be used. DTDs were briefly introduced earlier in this chapter. In
this section, we’ll take a closer look.

A DTD is a text document that contains a set of rules, formally known as element
declarations, attlist (attribute) declarations, and entity declarations. DTDs are most
often stored in a separate file (with the .dtd suffix) and shared by multiple docu-
ments; however, DTD information can be included inside the XML document as
well. Both methods are demonstrated later in this section.

Document Type Definition (DTD) | 97

Reading DTDs

While you may never be required to write a DTD, knowing how to read one is a
useful skill if you plan on getting cozy with XHTML or any other DTD released
by the W3C. This chapter should give you a good start, but you may also want
to check out these online resources.

* “How to Read W3C Specs” by J. David Eisenberg at www.alistapart.com/
articles/readspec/.
* W3Schools DTD Tutorial at www.w3schools.com/dtd/default.asp.

Document Type Declarations

XML documents specify which DTD they use via a document type declaration
(also called a DOCTYPE declaration).

When the DTD is an external document, the DOCTYPE declaration identifies the
root element for the document, lists the method used to identify the DTD (SYSTEM
or PUBLIC), and then finally provides the location or name of the DTD itself. When
using an external DTD, it is recommended that you include the standalone
attribute set to “no” in the XML declaration.

A SYSTEM identifier points to the DTD file by location (its URI), as shown in this
example:

<?xml version="1.0" standalone="no"?>
<IDOCTYPE compilation SYSTEM "http://www.littlechair.com/notreal/comp.dtd">

DTDs that are shared by a large community or are hosted at multiple sites may
have a PUBLIC ID that specifies the XML application. When public IDs are used, it
is common practice to supply an additional SYSTEM URI because it is better
supported. Web developers who write documents in XHTML will be familiar with
the following DOCTYPE declaration that indicates the root element (html) and
the public identifier for XHTML Strict. This declaration also specifies its URL as a
backup method.

<?xml version="1.0" standalone="no?">
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

As an alternative, the DTD may be included in the XML document itself, rather
than as an external .dtd document. This is done by placing the DTD within square
brackets in the document type declaration as shown here:

<?xml version="1.0"?>

<IDOCTYPE phonebook [
<!ELEMENT listing (name, number)>
<!IELEMENT name (#PCDATA)>
<!ELEMENT number (#PCDATA>

1>

An XML document may combine external and internal DTD subsets.

98 | Chapter7: Introductionto XML

Valid XML

When an XML document conforms to all the rules established in the DTD, it is
said to be valid, meaning that all the elements are used correctly.

&
iy A well-formed document is not necessarily valid, but if a document
,'3 4. Provesto be valid, it follows that it is also well-formed.
> .

When your document uses a DTD, you can check it for mistakes using a vali-
dating parser. The parser checks the document against the DTD for contextual
errors, such as missing elements or improper order of elements. Some common
parsers are Xerces from the Apache XML Project (available at xml.apache.org) and
Microsoft MSXML (msdn.microsoft.com/xml/default.asp). A full list of validating
parsers is provided by Web Developer’s Virtual Library at wdvl.com/Software/
XML/parsers.html.

As an alternative to downloading your own parser, you can use a free online
parsing service. Just enter the locations of your documents at these sites:

* The Brown University Scholarly Technology Group’s XML Validation Form
at www.stg.brown.edu/service/xmlvalid/

e W3Schools XML Validator (based on MSXML) at www.w3schools.com/dom/
dom_validate.asp

XML Names

When naming elements and attributes (and other less common XML
constructs), you must follow the rules for XML names:

* Names may contain letters, numbers, or non-English character glyphs (such
as &).

* Names may contain these three punctuation characters: _ (underscore), -
(hyphen), or . (period). No other punctuation characters are permitted.

* Names may not start with a number or punctuation (exception: _ (under-
score) is allowed at the start).

¢ Names must not start with “xml.”

* Names may not contain whitespace of any kind (space, carriage return, line
feed, or non-breaking space).

DTD Syntax

The following example is made up of lines taken from the XHTML Strict DTD
(the full DTD is over 1,500 lines long). It contains samples of element, attlist
(attribute), and entity declarations.

Document Type Definition (DTD) | 99

<IELEMENT title (#PCDATA)>
<IELEMENT meta EMPTY>
<IELEMENT ul (1i)+>

<IENTITY % i18n

"lang %LanguageCode; #IMPLIED
xml:lang %LanguageCode; #IMPLIED
dir (ltr|rtl) #IMPLIED"
>

<IATTLIST title
%118n;
id 1D #IMPLIED
>

<IATTLIST meta

%118n;

id ID #IMPLIED
http-equiv CDATA #IMPLIED
name CDATA #IMPLIED
content CDATA #REQUIRED
scheme CDATA #IMPLIED

>

Element declarations

Element declarations are the core of the DTD. Every element must have an
element declaration in order for the document to validate. Consider the parts of
this declaration for the title element.

<IELEMENT title (#PCDATA)>

IELEMENT identifies the line as an element declaration (no surprise there). The next
part provides the element name (in this case, title) that will be used in the
markup tag. Finally, the material within the parentheses identifies the content
model for the element, or in other words, what type of content it may contain. In
this example, the content model for the title element must be #PCDATA, which
stands for parsed character data. This means the content is character data that
may or may not include escaped character entities (such as 81t; and & for <
and &, respectively), but it may not include other elements.

Other content models include:

Single child elements
You may also put other element names in the parentheses. In the following
(non-XHTML) element declaration, the content of the birth element must be
exactly one year element.

<!ELEMENT birth (year)>

Sequences
More often, elements will contain multiple elements. When element names
are separated by commas in the parentheses, it means they must appear in
exactly the provided order. No listed element may be omitted or the docu-
ment will be invalid.

<!ELEMENT birth (month, year)>

100 | Chapter7: Introduction to XML

The number of child elements
DTD syntax allows you to indicate varying numbers of element instances
using the following suffixes:

? Permits zero or one of the element
* Permits zero or more of the element
+ Permits one or more of the element

In the XHTML example, the following declaration indicates that the unor-
dered list element (ul) may contain one or more list item elements (1i), as
indicated by the + suffix. A ul with no 1i elements would be invalid.

CIELEMENT ul (1i)+>
A list of options
A list of elements separated by vertical bars indicates available options, only
one of which may be used. In this (non-XHTML) example, the season

element may contain exactly one of the child elements named winter, spring,
summer, or fall.

<!ELEMENT season (winter|spring|summer|fall)>

Combinations of options and/or sequences
Options and sequences may be grouped in parentheses to be combined with
other options or suffixes. In this (non-XHTML) example, the martini element
starts with either a gin or vodka element, followed by zero or more of either
olive or onion, followed by an optional vermouth element.

<!ELEMENT martini ((gin|vodka), (olive|onion)*,vermouth?)>

Mixed content

It is common for elements to contain a mix of character data and child
elements. This is declared by combining #PCDATA and the permitted child
elements in an option group. The * suffix permits zero or more of the chosen
element, in no specified order. In this (non-XHTML) example, the
description element may include text and/or any number of date children.
There is no method for specifying the particular order or number of child
elements for an element with mixed content.

<!ELEMENT description (#PCDATA|date)*>

Empty elements
Empty elements don’t have any content. They are indicated by the keyword
EMPTY. In the XHTML example, the meta element is empty.

<!ELEMENT meta EMPTY>

Attlist (attribute) declarations

ATTLIST (attribute) declarations are used to declare the attributes permitted for a
particular element. The following attribute declaration from the previous XHTML
example says that the meta element may use the attributes id, http-equiv, name,
content, and scheme. %i18n is an entity that represents still more available
attributes (more on entities next).

Document Type Definition (DTD) | 101

<IATTLIST meta

%118n;

id ID #IMPLIED
http-equiv CDATA #IMPLIED
name CDATA #IMPLIED
content CDATA #REQUIRED
scheme CDATA #IMPLIED

>

After each attribute name is its attribute type, which provides an indication of the
type of information its value may contain. The most common attribute types are
CDATA (character data) and an enumerated list of possible values (for example
(left|right|center)). Other attribute types include ID, IDREF, IDREFS, NMTOKEN,
NMTOKENS, ENTITY, ENTITIES, NOTATION, and xml: (a predefined XML value).

Finally, a default value is provided for each attribute. The default value itself may
be listed, or there may be an indication of whether the attribute is required within
the element (#REQUIRED), optional (#IMPLIED), or fixed (#FIXED value).

Entity declarations

In XML, an entity is a string of characters that stands for something else. An entity
can be used to represent a single character or a selection of marked up content,
such as a footer containing copyright information. Entity declarations provide the
name of the entity (which must be a legal XML name; see the earlier sidebar
“XML Names”) and its replacement text. The five character entities proved by
XML were listed in Table 7-1.

General entities insert replacement text into the body of an XML document. The
syntax for declaring general entities is:

<IENTITY address "1005 Gravenstein Highway, North Sebastopol, CA 95472">

As a result, wherever the author places an 8address; entity in the XML source, it
will be replaced by the full address upon display. The content may include
markup tags. (Be sure that when double quotes are used to delimit the entity
value, single quotes are used in the enclosed content, or vice versa.) The content
of an entity may also reside in a separate, external file that is referenced in the
entity declaration by its URL.

The XHTML sample at the beginning of this section includes another kind of
entity called a parameter entity, shown here:

<IENTITY % i18n

"lang %LanguageCode; #IMPLIED
xml:lang %LanguageCode; #IMPLIED
dir (ltr|rtl) #IMPLIED"

>

Parameter entities are used only within the DTD itself to declare groups of
elements or entities that are repeated throughout the DTD. They are indicated by
the % symbol (rather than &). The entity declaration above creates a parameter
entity called %i18n (shorthand for “internationalization”) that includes three
language-related attributes. Because these three attributes apply to nearly every
XHTML element, instead of repeating them in every ATTLIST declaration, a param-

102 | Chapter7: Introduction to XML

eter entity is used instead to reduce repetition. You can see it in use in the
attribute declaration for the meta element.

When to Use a DTD

If you create a markup language in XML, it is not mandatory that it have a DTD.
In fact, DTDs come with a few disadvantages. A DTD is useful when you have
specific markup requirements to apply across a large number of documents. A
DTD can ensure that certain data fields are present or delivered in a particular
format. You may also want to spend the time preparing a DTD if you need to
coordinate content from various sources and authors. Having a DTD makes it
easier to find mistakes in your code.

The disadvantages to DTDs are that they require time and effort to develop and
are inconvenient to maintain (particularly while the XML language is in flux).
DTDs slow down processing times and may be too restrictive on the user’s end.
Another problem with DTDs is that they are not compatible with the namespace
convention (discussed next). Elements and attributes from another namespace
won’t validate under a DTD unless the DTD explicitly includes them. If you are
creating just a few XML documents, you may choose not to create a DTD. If you
are using namespaces and it is necessary to have documentation of your XML
vocabulary, you must use an XML Schema.

&

Because XHTML is a markup language that is used on a global
scale, it was necessary to define the language and its various ver-
sions in DTDs. An XHTML document must include a DOCTYPE
declaration to specify which DTD it follows in order to validate.

¢y

XML Namespaces

An XML document may use tags that come from different XML applications or
vocabularies. For example, you might have an XHTML document that also
contains some math expressions written using MathML. But in this case, the
parser needs to differentiate between an a element coming from XHTML (an
anchor) and an a element that might come from MathML (an absolute value).

The W3C anticipated such conflicts and responded by creating the namespace
convention (see the Recommendation at www.w3.0rg/TR/REC-xml-names). A
namespace provides a name for a particular XML vocabulary, the group of element
and attribute names used in an XML application. This allows several XML vocab-
ularies to be used in a single XML document.

When you reference elements and attributes in your document, the browser looks
them up in the namespace to find out how they should be used. Namespaces have
names that look just like URLs (they are not links to actual documents, however)
to ensure uniqueness and provide information about the organization that main-
tains the namespace.

Namespaces are declared in an XML document using the xmlns attribute. You can
establish the namespace for a whole document or an individual element. Typi-
cally, the value of the xmlns attribute is a reference to the URL-like namespace.

XML Namespaces | 103

This example establishes the default namespace for the document to be transi-
tional XHTML:

<html xmlns="http://www.w3.0rg/1999/xhtml">

If you need to include math markup, you can apply the xmlns attribute within the
specific tag, so the browser knows to look up the element in the MathML DTD
(not XHTML):

46/100

If you plan to refer to a namespace repeatedly within a document, you can declare
the namespace and give it a label just once at the beginning of the document.
Then refer to it in each tag by placing the label before the tag name, separated by a
colon (:). For example:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:math="http://www.w3.0rg/1998/Math/MathML" >

The full namespace can now be shortened to math later in the document, resulting
in tidier code and smaller file sizes:

<math:a>46/100</math:a>

XML on the Web

As mentioned earlier, XML turned out to have uses that reach far beyond web
documents, but it is still the W3C’s primary tool for optimizing information
exchange over the Web. XML is put to use on the Web in several ways.

The most common is XHTML, a reformulation of HTML according to the stricter
syntax rules of XML. XHTML is formally introduced in the next section and is
discussed in detail in the Chapters 8 through 15.

XHTML 1.1 can be combined in documents with other XML vocabularies such as
MathML and SVG (Scalable Vector Graphics; discussed next). Namespaces help
the parser keep track of which elements belong to which application (note that
this requires a browser that supports namespaces).

XML documents may also be displayed directly in web browsers that support
XML. The “Browser Support” section provides more information on how
browsers deal with XML.

Finally, one of the most widespread uses of an XML-based format for web content
is in the form of RSS feeds that allow summaries of web content (or the content
itself) to be shared on other sites or read with a special reader. RSS is discussed in
detail in the following section.

&

iy The W3C keeps a directory of Recommended DTDs to use in web
a . documents at www.w3.0rg/QA/2002/04/valid-dtd-list. html.

R

w4
{]

104 | Chapter7: Introduction to XML

Browser Support

All of the current browser versions produced by Microsoft, Mozilla, and Opera
support XML in some form. Table 7-2 lists each of the browsers and the XML
features they support.

Table 7-2. Browser support for XML

Browser XML 1.0 XML+CSS XSL Namespaces
Internet Explorer 6 Yes Yes Yes Yes
for Windows

Internet Explorer 5 Yes Yes Yes No
for Macintosh

Internet Explorer 5 Yes No No No
and 5.5 for

Windows

Firefox 1.0 Yes Yes Yes Yes
Mozilla 1.8 Yes Yes Yes Yes
Netscape 8 Yes Yes Yes Yes
Netscape 6 and 7 Yes Yes No Yes
Opera7and8 Yes Yes No Yes
Safari 2.0 Yes Yes Yes Yes

Viewing XML in Web Browsers

When an XML-compliant browser encounters an XML document that doesn’t
have a style sheet, it typically displays the contents of the file, including the
markup. All of the browsers in Table 7-2 also use some sort of color-coding to
improve readability, either to make markup stand out from the content or to indi-
cate parent/child relationships (Netscape 6 color-codes only when you select View
Page Source). All of them except Opera also display plus (+) and minus (-) signs
next to parent elements that allow the user to expand or collapse the element’s
contents. Figure 7-1 shows an unstyled XML document in Firefox 1.0.

If the XML document has a CSS style sheet, browsers that support XML+CSS use
the style sheet to display the document’s contents according to the presentation
instructions. When a style sheet is in use, the markup is hidden. Figure 7-2 shows
the same XML document, this time referencing a CSS style sheet. XML docu-
ments with XSLT style sheets may be converted to XHTML before being
displayed in the browser.

Web-Related XML Applications

XML is already being put to powerful uses on the Web. Some languages, like
XHTML and RSS, are expanding the possibilities of web-based content and
changing the way we use the Web itself. Others have found small niche uses (such
as SMIL and MathML) or have yet to live up to their promised potential (such as
SVG). This section introduces these XML languages and others that are relevant
to the Web.

Web-Related XML Applications | 105

annm Maoziila Firefox)

This XML {ike docs not appear 1o have any stybe mifomuton associated with i, The docoment tree 15 shown below,

- coompilations
«<titheOh Baby! Jen's Favorines-<itle-
<year=2<vears
- <lrucklist>
<track number="1">
curlist>The Wiens</arlist>
- <ROTE>
<simg_title-Hopeless</song_tithe>
lruan
<albhum_title>The Meadow lands<alhnm_title

- erelease>
<label=Absolutely Kosher Records<lahels

<release_date=203<releass_dates
</relenses

ommente>T love The Wrens, hoth musically and personally </eommentss>
Aracks>

<track number="1">

<arlist>John Vanderslee <furlists

= <Song--

<song titkesMe and My 424</cong tith

from

<albm_tithe-Eife and Death of an Amernican Fourtracker<alhum_titles

= arelease
<hibel>Barsuk </labek>

<relense_iate=03</release_dates>
<frelese>
/T
arommentssThis i g love song 0w ek reconding device. <fcommin o

ek
<fracklist-
levmpibition>

Figure 7-1. An unstyled XML document displayed in Firefox 1.0

e00n Mozilla Firefox (=)

Oh Baby! Jen's Favorites
2004

The Wrens
Hopeless from The Meadowlands,
Absolutely Kosher Records, 2003

I love The Wrens, both musically and personally.

John Vanderslice

Me and My 424 from Life and Death of an American
Fourtracker,

Barsuk, 2003

This is a love song to a 4-track recording device.

Figure 7-2. An XML document with a CSS style sheet displayed in Firefox 1.0

XHTML (Extensible Hypertext Markup Language)

In the context of XML, XHTML is a language for describing the content of hyper-
text documents intended to be viewed or read in some sort of browsing client. It

106 | Chapter7: Introduction to XML

uses a DTD that declares such elements as paragraphs, headings, lists, and hyper-
links. It uses the namespace http://www.w3.0rg/1999/xhtml.

In the context of web design, XHTML is the updated version of HTML and is the
current W3C recommendation for authoring web pages. It has all the same
elements and attributes as the HTML 4.01 Recommendation, but where HTML
was written according to the broader rules of SGML, XHTML has been rewritten
according to XML syntax. That means that XHTML documents need to be well-
formed, requiring more stringent markup practices. XHTML is by far the domi-
nant use of XML on the Web.

XHTML is discussed in great detail in Chapters 8 through 15.

RSS (Really Simple Syndication or RDF Site Summary)

RSS is an XML language and file format for syndicating web content. The
elements in the RSS vocabulary provide metadata about content (such as its head-
line, author, description, and originating site) that allows content to be shared as
data, known as an RSS feed. While originally intended for headlines and short
summaries, some RSS feeds now contain the full content of each posting,
including marked-up XHTML content. The content of the feed is up to the discre-
tion of the author.

RSS feeds can be used to display information from other sites on a web page, such
as headlines from Slashdot on a technology-related site. RSS feeds can also be read
using special programs called feed readers (or news readers). Readers may be web-
based or standalone desktop applications. Web sites that combine feeds from
many sources in one place are sometimes called aggregators.

Some popular RSS feed readers include SharpReader (Windows), NetNewsWire
(Mac), and the web-based Bloglines. A web search for “RSS readers” will turn up
many more. Some browsers, such as Firefox 1.0 and Safari RSS, come with built-
in RSS readers.

How it works

To understand how RSS works, consider this possible scenario. Say you have a
favorite news site that is updated frequently throughout the day and you want to
make sure you don’t miss their Oscar nomination announcement. You could use
your web browser to visit the site every 20 minutes and scan through it for new
posts, but that would waste a lot of time. But, if that site is RSS-enabled (and most
news sites are), every time they post an article to the site, a listing of that article
simultaneously appears in RSS feed readers that have subscribed to the site and
are themselves checking the site once an hour or so. Using a news reader, you
could keep an eye on new articles as they are posted and take a break only when
you see Oscar in the title.

Originally developed to create web “channels” during the days of web push tech-
nologies, news sites were the first to put RSS to widespread use. But it wasn’t until
the weblog (or blog) phenomenon that the RSS acronym became as familiar as
HTML.

Web-Related XML Applications | 107

Because blog creation software such as Blogger and Movable Type made it easy to
publish content as an RSS feed, most bloggers make their site content available
both on a web page and via an RSS feed (watch for the ubiquitous orange RSS or
XML icon). That means that you can use a news reader to see when your friends
post without having to check every blog, every day. Furthermore, you can often
read the content right there in the reader, without skipping from site to site.

Many web users have integrated spending time with their RSS feed readers into
their daily routines. Bloggers are finding that an increasing number of visitors are
reading their sites via RSS feeds rather than in the context of a designed page. In
this way, RSS has made a significant impact on how information is produced and
consumed.

Trouble over an RSS standard

The story of the development of RSS has all the makings of a daytime drama.
Along the way, RSS developers divided into two camps, both claiming right to the
initials “RSS” for their specifications. The result is that we, indeed, now have two
recent standards, RSS 1.0 and RSS 2.0, that sound sequential, but are actually
conflicting. In addition, there are several older incompatible flavors of RSS (0.91,
0.92, 0.93, and others) that are still in use.

&

The history of the RSS “fork” is well documented, and it makes

0‘;‘. - for some interesting reading. Check out Mark Pilgrim’s blow-by-
" o blow account taken from actual message board and mailing list

posts at diveintomark.org/archives/2002/09/06/history_of _the_rss_
fork. You can also find a more general RSS history by Joseph Rea-
gle at goatee.net/2003/rss-history.html.

RSS 1.0 is the product of the RSS-DEV Working Group, a committee of individ-
uals, some of whom had worked on various incarnations of RSS since its
inception. Their vision for RSS (RDF Site Summary) is that it should take full
advantage of RDF (a metadata syntax discussed below) and XML namespaces in
order to harness the full power of XML. They added these features into the devel-
oping RSS 0.91 spec in development and called the result RSS 1.0.

On the other side of the debate is David Winer (of Userland Software) who main-
tains that the reason RSS became so popular in the first place is because it was so
simple to author and use. It achieved this simplicity specifically because it didn’t
include RDF or namespaces, and David and others wanted it to stay that way.
David made minor changes to RSS 0.91 and called the result RSS 2.0 (for Really
Simple Syndication). RSS 2.0 is not RDF based, but does address namespaces.

Developers on both sides of the RSS controversy agree that the technology is far
too useful to suffer from conflicting and confusing standards. As of this writing,
everyone has agreed to work toward a unified method, or at least distinctive
names, for web syndication.

Enter Atom

In June 2003, Sam Ruby set up a wiki to discuss and design “a well-formed log
entry.” Many of those frustrated with both the political drama and technical limi-

108 | Chapter7: Introduction to XML

tations of RSS joined the effort, and in June 2004 formally set up the Atompub
Working Group at the IETF (Internet Engineering Task Force, a volunteer organi-
zation that develops Internet standards) to develop and formalize a new feed
format and publishing protocol called Atom (formerly Echo). The Atompub
Working Group’s goal is to create a single standard for syndicated content feeds
based on experience gained with RSS.

As of this writing, Atom 1.0 has been published and accepted as a proposed stan-
dard. Atom is being backed and implemented by some important syndication tool
developers and indexers (e.g., Google and Technorati).

For further reading

For more information on RSS and Atom, visit these online resources:

web.resource.org/rss/1.0/
RSS 1.0 specification

blogs.law.harvard.edu/tech/rss
RSS 2.0 specification

www.intertwingly.net/slides/2003/rssQuickSummary.html
A comparison of RSS specifications

ietf.org/html.charters/atompub-charter.html
IETF’s Atom Publishing Format and Protocol Charter

www.intertwingly.net/wiki/pie/FrontPage
The Atom Project

RDF (Resource Description Framework)

RDF is an XML application used to define the structure of metadata for docu-
ments; for example, data that is useful for indexing, navigating, and searching a
site. A standard method for describing the contents of a web site, page, or
resource could be useful to automated agents that search the Web for specific
information.

Metadata could be used in the following ways:

* For descriptions of resources to provide better search engine capabilities

* In cataloging, for describing the content and content relationships available
at a particular web site, page, or digital library

* In describing collections of pages that represent a single logical “document”

» For digital signatures that allow electronic commerce, collaboration, and
other “trust”-based applications

A simple RDF document that provides author information about a book looks
like this (this example is taken from and describes the O’Reilly book XML in a
Nutshell):

<rdf: RDF xmlns:rdf="http://www.w3.01rg/1999/02/22-rdf-syntax-ns#">
<rdf:Description about="urn:isbn:0596000588">
<author>Elliotte Rusty Harold</author>

Web-Related XML Applications | 109

<author>W. Scott Means</author>
</rdf:Description>
</rdf:RDF>

The first line of code declares the namespace for RDF as http://www.w3.0rg/1999/
02/22-rdf-syntax-nsi#.

For more information about RDF, see the W3C'’s pages at www.w3.0rg/RDF/.

SVG (Scalable Vector Graphics)

The W3C is developing the Scalable Vector Graphics (SVG) standard for
describing two-dimensional graphics in XML. SVG allows for three types of
graphic objects: vector graphic shapes (paths consisting of straight lines and
curves), images, and text. The following sample SVG code (taken from the W3C
Recommendation) creates an SVG document fragment that contains a red circle
with a blue outline (stroke):

<?xml version="1.0" standalone="no"?>
<IDOCTYPE svg PUBLIC "-//W3C//DTD SVG 20001102//EN"
"http://www.w3.0rg/TR/2000/CR-SVG-20001102/DTD/svg-20001102.dtd" >
<svg width="12cm" height="4cm">

<desc>Example circleol - circle expressed in physical units</desc>

<circle cx="6cm" cy="2cm" r="1cm"

style="fill:red; stroke:blue; stroke-width:0.1cm" />

</svg>

The SVG standard provides ways to describe paths, fills, a variety of shapes,
special filters, text, and basic animation. When using SVG within another XML
document type, identify its namespace as http://www.w3.0rg/2000/svg.

To view SVG graphics, you must have an SVG viewer installed. The most popular
is Adobe’s SVG Viewer (available as a free download at www.adobe.com), which
allows SVG documents to display in a browser window. Adobe also includes tools
for creating SVG files in Illustrator and GoLive. (As of this writing, it is unclear
whether Adobe will continue to support GoLive now that it has acquired Macro-
media.)

For more information on SVG and lists of all available viewers, editors, and
converters, see the W3C pages at www.w3.0rg/Graphics/SVG. Or, if you want
your information in book form, try SVG Essentials by J. David Eisenberg
(O’Reilly) or Fundamentals of SVG Programming: Concepts to Source Code by
Oswald Campesato (Charles River Media).

SMIL (Synchronized Multimedia Integration Language)

SMIL (pronounced “smile”) is an XML language for combining audio, video, text,
animation, and graphics in a precise, synchronized fashion. A SMIL file instructs
the client to retrieve media elements that reside on the server as standalone files.
Those separate elements are then assembled and played by the SMIL player.

The SMIL 1.0 Recommendation, released in June of 1998, was one of the first
XML-based DTDs proposed by the W3C. The SMIL 2.0 Recommendation,

110 | Chapter7: Introduction to XML

released in January 2005, greatly expands upon the functionality established in
the initial specification. It is broken into modules to be used with XHTML 1.1.

How SMIL works

The best way to get a quick understanding of SMIL is to look at a simple example.
The following SMIL code creates a 15-second narrated slideshow, in which an
audio track plays as a series of three images displayed in sequence.

<par dur="15s">
<audio src="audio file.mp3" begin="0s" />
<seq>

</seq>
</par>

Looking at the code, it is easy to pick out the audio and image elements. Each
points to a separate media file on the server.

All elements contained within the <par> element are played in parallel (at the same
time); therefore, the audio will continue playing as the images are displayed. The
image elements are contained in the <seq> element, which means they will be
played one after another (in sequence). The begin attribute gives timing instruc-
tions for when each element should be displayed. In the example, the images will
display in slideshow fashion every five seconds.

For more information on SMIL, take a look at SMIL 2.0: Interactive Multimedia
for Web and Mobile Devices by Dick C.A. Bulterman and Lloyd Rutledge
(Springer). Or you can check out these online resources.

W3C SMIL resources
Go right to the source for a good starting place for research or to keep up to
date on the latest developments. See www.w3.org/AudioVideo/. For a thor-
ough explanation of all SMIL elements and their supported attributes and
values, make your way through the SMIL 2.0 Recommendation at www.w3.
org/TR/smil20/cover.html.

JustSMIL Home (now part of Streaming Media World)
This is a great site containing tutorials, product reviews, news, tips, and other
useful SMIL information. See smw.internet.com/smil/smilhome.html.

MathML (Mathematical Markup Language)

MathML is an XML application for describing mathematical notation and
capturing both its structure and content. The goal of MathML is to enable mathe-
matics to be served, received, and processed on the World Wide Web. The
MathML 2.0 Recommendation was released by the W3C Recommendation in
October 2003.

Because there is no way to reproduce mathematical equations directly using
HTML, authors had resorted to inserting graphical images of equations into the
flow of text. This effectively removes the information from the structure of the

Web-Related XML Applications | 111

document. MathML allows the information to remain in the document in a mean-
ingful way. With adequate style sheets, mathematical notation can be formatted
for high-quality visual presentation. Several vendors offer applets and plug-ins
that allow the display of MathML information in browser windows.

For examples of MathML, see the Recommendation at www.w3.0rg/TR/2003/
REC-MathML2-20031021. The main MathML page (www.w3.org/Math) is a good
starting place for information.

Other XML Applications

There are far too many XML applications to list in a book. However, you may
find that the more languages you are aware of, the better your grasp of XML’s
possibilities. The following are just a handful of the XML applications you may
hear about.

DocBook
DocBook is a DTD for technical publications and software documentation.
DocBook is officially maintained by the DocBook Technical Committee of
OASIS, and you can find the official home page located at www.oasis-open.
org/committees/docbook/.

Chemical Markup Language (CML)
CML is used for managing and presenting molecular and technical informa-
tion over a network. For more information, see www.xml-cml.org.

Open Financial Exchange (OFX)
OFX is a joint project of Microsoft, Intuit, and Checkfree. It is an XML appli-
cation for describing financial transactions that take place over the Internet.
For more information, see www.ofx.net/ofx/default.asp.

Where to Learn More

If you are interested in learning more about XML, you will want to check out
Learning XML by Erik T. Ray and XML in a Nutshell by Elliotte Rusty Harold and
W. Scott Means, both published by O’Reilly.

The growth and development of XML is well documented online in resources
such as the following:

World Wide Web Consortium (www.w3.0rg)
The World Wide Web Consortium’s official web site is the best place to go
for the latest news on new XML standards and proposals.

XML.com (www.xml.com)
XML.com, part of the O’Reilly Network, is a clearinghouse of great articles
and information on XML.

The XML Cover Pages (www.oasis-open.org/cover/xml.html)
The Cover Pages hosted by Oasis provide a comprehensive reference on all
XML-related topics.

112 | Chapter7: Introduction to XML

HTML and XHTML Overview

HTML (Hypertext Markup Language) is the markup language used to turn text
documents into web pages. HTML allows authors to identify elements that give
the document structure, such as headings, paragraphs, lists, and so on. Other
elements act as mechanisms for adding hypertext links, interactive forms, and
media such as audio and video to web pages.

HTML has undergone quite a journey since its creation by Tim Berners-Lee in
1991 as a simple way to indicate the meaning and structure of hypertext docu-
ments. It didn’t take long for competing browser developers to add on to the
initial minimal set of HTML elements or for the first crop of web designers to co-
opt HTML as a visual design tool.

XHTML is a reformulation of HTML in XML. In other words, it uses the same
vocabulary (the same elements and attributes) as HTML, but the syntactical rules
are pulled from XML, which is stricter than HTML. XHTML is discussed in detail
later in this chapter.

Before we delve into HTML and XHTML syntax, let’s take a moment to look at
the important role (X)HTML plays as well as the recent groundswell of respect it
has earned in the new standards-driven web design environment.

The W3C

Seeing the need to bring order to the development of HTML, Berners-Lee
founded the World Wide Web Consortium (W3C) in 1994. The W3C
continues to oversee HTML and related web technologies and has been
releasing updated and standardized versions of HTML in publications known as
“Recommendations” since 1995. The current standards are HTML 4.01 (1999)
and XHTML 1.0 (2000).

113

The Role of HTML

The marked up HTML document is said to be the structural layer of a web page.
It is the foundation upon which the presentation layer (instructions for how the
elements should be delivered or displayed) and the behavioral layer (scripting and
interactivity) are applied.

Did you happen to read the preceding XML chapter? It may seem off the topic of
HTML, but there are some critical XML-based concepts there that guide the way
HTML is perceived and handled in contemporary web design. One guiding
concept is that the fundamental purpose of HTML as a markup language is to
provide a semantic description (the meaning) of the content and establish a docu-
ment structure. It is not concerned with presentation, such as how the document
will look in a browser. Presentation is the job of Cascading Style Sheets, which is
covered in Part I11.

That presentational instructions should be kept separate from the semantic and
structural markup is nothing new. It has been the intent of HTML from its begin-
ning as an application of SGML (Standardized General Markup Language) as
noted in the upcoming sidebar. What is new is that the web community is recog-
nizing that there are measurable advantages (in terms of time and money) to using
HTML for what it was designed to do, and nothing more.

Keeping Presentation Separate from Document Structure

Before HTML, there was SGML (Standard Generalized Markup Language),
which established a complex language for describing documents in terms of
their structure, independent of appearance. SGML is a vast set of rules for devel-
oping markup languages such as HTML, but it is so all-encompassing that
HTML uses only a small subset of its capabilities.

Because HTML is one instance of an SGML markup system, this principle of
keeping presentation information separate from the structure of the document
remains inherent to the HTML purpose. Over the early years of the Web’s
development, this ideal was compromised by the creation of HTML tags that
contain explicit style instructions, such as the font element and bgcolor
attribute.

The W3C has been taking measures to get HTML back on track. First, the
creation of Cascading Style Sheets gives authors a robust solution for specifying
style information and keeping it out of the document’s content. In addition,
with each new HTML Recommendation, the elements and attributes related to
presentation have been deprecated and finally eliminated.

With this system in place, the W3C is more diligent than ever to clean up the
HTML standard to make it work the way it was intended. Slowly the browser
and authoring tool developers are getting on board. Now it is up to web devel-
opers and designers to start creating clean content.

114 | Chapter8: HTMLand XHTML Overview

Starting with “Good” Markup

In the interest of building a solid foundation, writing presentation-free, logical, and
well-structured (X)HTML documents has become a cornerstone of modern stan-
dards-compliant web design. Web authors are encouraged to work toward four
separate, yet related, goals when marking up content for distribution on the Web.

Write standards-compliant documents

That means using HTML or XHTML markup according to the rules set forth in
the Recommendations and making sure that your documents validate against a
declared DTD. Following the standards will ensure your documents are forward
compatible as web technologies and browser capabilities evolve.

Use semantic markup

It is also important to mark up elements in your document semantically, that is, in
a way that is descriptive and meaningful. There is a renewed emphasis on
choosing elements to appropriately describe the content and not purely for their
presentational effects in the browser. Techniques that once were common, such as
marking up content as a list just to get the text to indent, are now deemed
completely unacceptable.

Semantic markup is not the same as standards compliance. It is possible to create
a document out of font, br, and i elements that validates entirely, but that does
zilch for making the content meaningful. A semantically marked up document
ensures accessibility in the widest range of browsing environments, from desktop
computers to cell phones to screen readers. It also allows nonhuman readers, such
as search engine indexing functions, to correctly parse your content and make
decisions about how to handle it.

Structure documents logically

Make sure that your content reads in a logical order in the source to improve its
readability across all browsing environments. Information that should be read first
should be at the beginning of the document. You can always use style sheets to
position elements where you want them for visual display.

Keep presentation separate from structure

Use style sheets to control presentation. Keeping all presentation information in a
separate style sheet document makes it easier to redesign or repurpose content. In
terms of markup, this means avoiding presentational (X)HTML elements and
attributes that are still hanging around in the Recommendations (such as b for
bold text), and using an appropriate semantic alternative (e.g., strong) with a style
sheet rule.

Markup Basics

An HTML or XHTML document is an ASCII (plain text), or more often, Unicode
(e.g., UTF-8) document that has been marked up with tags that indicate elements

Markup Basics | 115

=
=
=
H
[-']

=

(-5

and other necessary declarations (such as the markup language it is written in).
An element is a structural component (such as a paragraph) or a desired behavior
(such as a line break). This section introduces the key components and behaviors
of HTML documents, including elements, attributes, how elements may be
nested, and information in a document that is ignored by browsers.

Elements

Elements are denoted in the text source by the insertion of special bracketed
HTML tags. Most elements follow this syntax.

<element-nameycontent</element-name>

The element name appears in the start tag (also called the opening tag) and again
in the end (or closing) tag, preceded by a slash (/). The end tag works something
like an “off” switch for the element. Nothing within the brackets is displayed by
the browser or other user agent. It is important to note that the element includes
both the content and its markup (the start and end tags).

&
. In XHTML, all element and attribute names must be lowercase.
HTML is not case sensitive.

Consider this example of HTML markup that identifies the content at the begin-
ning of this section as a second-level heading element and a paragraph element:

<h2>Elements</h2>
<p>Elements are denoted in the text source by the insertion of special
bracketed HTML tags. Most elements follow this syntax.</p>

&

In HTML 4.01 and earlier, the end tag for some elements is
optional, and the browser determines when the tag ends by con-
text. This practice is most common with the p (paragraph) ele-
ment. Most browsers automatically end a paragraph when they
encounter a new start tag. In XHTML, end tags are always
required.

¢y

Some elements do not have content because they are used to provide a simple
directive. These elements are said to be empty. The image element (img) is an
example of such an element; it tells the browser to call a graphic file from an
external location into the current page. Other empty elements include the line
break (br), horizontal rule (hr), and elements that provide information about a
document and don’t affect its displayed content, such as the meta and base
elements. Table 8-1 lists all the empty elements in HTML.

In HTML 4.01 and earlier, empty elements simply didn’t have a closing tag. In
XML, termination is required for all elements. The convention is to use a trailing
slash within the tag to signify the element’s termination, as in ,
, and
<hr/>. For reasons of backward compatibility, it is recommended to add a space
before the slash, as shown in Table 8-1. The space is necessary if you are sending
your XHTML with the HTTP Content-Type of text/html.

116 | Chapter8: HTMLand XHTML Overview

Table 8-1. Empty elements

<area /> <frame /> <link />
<base /> <hr /> <meta />
<basefont /> <param />

 <input />

<col /> <isindex />

An excellent resource for HTML element information is Index
DOT Html (www.blooberry.com/indexdot/html/), which was cre-
ated and is maintained by Brian Wilson. It provides an alphabetical
listing of every HTML element and its attributes, with explana-
tions, standards details, and browser support information.

Attributes

An attribute clarifies or modifies an element’s actions. Attributes are indicated by
attribute name and value pairs added to the start tag of the element (end tags
never contain attributes). Attribute names and their accepted values are declared
in the DTD; in other words, you cannot make up your own. You can add multiple
attributes within a single opening tag. Attributes, if any, go after the tag name,
each separated by one or more spaces. Their order of appearance is not important.

The syntax for an element with attributes is as follows:
<element attribute="value">content</element>
The following are examples of elements that contain attributes:

<head profile="http://gmpg.org/xfn/11">...</head>

<table summary="This is a conference schedule.">...</table>

Most browsers cannot handle attribute values more than 1,024 characters in
length. Values may be case-sensitive, particularly filenames or URLs.

XHTML requires that all attribute values be enclosed in quotation marks. Single
or double quotation marks may be used, as long as they are used consistently
throughout the document.

In HTML 4.01 and earlier, some values are permitted to go unquoted; for
instance, if the value is a single word containing only letters (a—z or A-2), digits
(0-9), hyphens (-), periods (.), underscores (_), and colons (:). It is the best prac-
tice to quote all values, regardless of the Recommendation you are following.

Be careful not to leave out the closing quotation mark, or all the
content from the opening quotation mark until the browser
encounters a subsequent quotation mark will be interpreted as part
of the value and won’t display in the browser. This is a simple mis-
take that can cause hours of debugging frustration.

Markup Basics | 117

=
=
=
H
[-']

=

(-5

Nested Elements

HTML elements may contain other elements. This is called nesting, and to do it
propetly, the entire element (including its markup) must be within the start and
end tags of the containing element (the parent). Proper nesting is one of the
criteria of a well-formed document (a requirement for XHTML).

In this example, list items (11) are nested within an unordered list element (ul).

Example 1</1i>
Example 2</1i>

A common mistake made when nesting elements is to close the parent element
before the element it contains (its child) has been closed. This results in an incor-
rect overlapping of elements that would make an XHTML document malformed
and may cause rendering problems for HTML documents. In this example, the
elements are incorrectly nested because the strong element should have been
closed before the a (anchor).

INCORRECT: Click here.

Information Browsers Ignore

Some information in an HTML document, including certain markup, is ignored
or has little to no impact on presentation when the document is viewed in a
browser or other user agent. These include:

Line breaks
Line returns in the HTML document are treated as spaces, which then typi-
cally collapse with other spaces (see next point). Text and elements wrap
continuously until they encounter a p or br element within the flow of the
document text. Line breaks are displayed, however, when text is marked up
as a preformatted (pre) element or styled with the white-space: pre property
in a style sheet.

Tabs and multiple spaces
When a user agent encounters more than one consecutive blank character
space in an HTML document, it displays it as a single space. So, if the docu-
ment contains:

far, far away
the browser displays:

far, far away

Extra spaces can be added within the flow of text by using the non-breaking
space character entity (). Multiple spaces are displayed, however, when
text is marked up as preformatted text (pre) or with the white-space: pre
property in a style sheet. Tabs in the source document are problematic for
some browsers and are best avoided.

118 | Chapter8: HTMLand XHTML Overview

Empty p elements
Empty paragraph elements (<p>...</p> or <p> alone) with no intervening text
are interpreted as redundant by all browsers and displayed as though they
were only a single paragraph break. Most browsers display multiple br
elements as multiple line breaks.

Unrecognized element
A browser simply ignores any element it doesn’t understand or that was
incorrectly specified. Depending on the element and the browser, this can
have varied results. Browsers typically display the contents of the element and
its markup as though it were normal text, although some older browsers may
display nothing at all.

Text in comments
Browsers do not display text between the special <!-- and --> elements used
to denote a comment. Here is a sample comment:

<!-- This is a comment -->
<!-- This is a

multiple line comment
that ends here. -->

There must be a space after the initial <!-- and preceding the final -->, but
you can put nearly anything inside the comment otherwise. You cannot nest
comments. Comments are useful for leaving notes within a long HTML file,
for example:

<!-- navigation table starts here -->

HTML markup that is contained within comments will not display, therefore
comments may be useful for temporarily hiding content without perma-
nently removing it from the document.

Introduction to XHTML

With the finalization of the XML Recommendation in hand (see Chapter 7), the
W3C had a streamlined and web-friendly standard for defining markup
languages. It should come as no surprise that one of the top priorities was refor-
mulating HTML (an SGML application) into an XML application. XHTML is the
result.

XHTML 1.0 contains the same list of elements and attributes as HTML 4.01. It
even has the same three associated DTDs: Strict, Transitional, and Frames. The
difference is that, as for all XML applications, correct syntax is suddenly critical.
So while browsers are forgiving of a certain amount of looseness in HTML,
XHTML documents are required to be well-formed. The syntax requirement
differences between HTML and XHTML are listed in the upcoming “Well-
Formed XHTML” section. The W3C recognizes the benefit of having a stricter
professional standard and a more relaxed standard that is accessible to anyone
who wants to publish on the Web, so both HTML and XHTML standards are
currently maintained and supported by current browsers.

Introductionto XHTML | 119

>
T
=
=
=

pue TWLH

The XHTML Family

XHTML is not just one, but a family of document types. Between January 2000 and
June 2001, the W3C turned out four XHTML Recommendations: XHTML 1.0,
XHTML Basic, the Modularization of XHTML, and XHTML 1.1. They are
currently reviewing XHTML 2.0 and XHTML-Print, both based on modular
XHTML. This section takes a brief look at each one. You can find detailed and up-
to-date information on the W3C site at w3c.org/MarkUp. (For example, on May 27,
2003, the seventh working draft of XHTML 2.0 was published.)

XHTML 1.0

The XHTML 1.0 Recommendation (released in January 2000) is just a reformula-
tion of the HTML 4.01 specification according to the rules of XML. Like HTML
4.01, XHTML 1.0 comes in three varieties—Strict, Transitional, and Frames—
each defined by a separate Document Type Definition (DTD). These are discussed
in the next section.

The Modularization of XHTML

In a world where HTML content is being used on devices as varied as cell phones,
desktop computers, refrigerator panels, dashboard consoles, and more, a “one-
size-fits-all” content markup language will no longer work. Modularization is the
solution to this problem. Instead of one comprehensive set of elements, this
Recommendation defines a way to break XHTML into task-specific modules. A
module is a set of elements that handle one aspect or type of object in a document.

Modularization is the way of the future for markup standards. This approach has
a number of benefits:

* Special devices and applications can mix and match modules based on their
requirements and restraints.

* It prevents spin-off, device-specific languages. Authors can create their own
XML modules, leaving the XHTML standard unscathed.

* It allows “hybrid” documents in which several DTDs are used in combina-
tion. For instance, in theory, it allows web documents to have SVG (Scalable
Vector Graphics) modules or MathML modules mixed in with the XHTML
content, though the details of making this work have yet to be figured out as
of the time of this writing.

The Modularization of XHTML Recommendation was initially released in April
2001. A Second Edition of the Recommendation was introduced as a Working
Draft in February 2004.

XHTML Basic

The XHTML Basic Recommendation (released in December 2000) is a stripped-
down version of modularized XHTML. It is a subset of XHTML elements that are
appropriate to such mobile web clients as cell phones, handheld devices, and
other information appliances. The definition of a standard, yet extensible, set of
XHTML modules for developers of mobile applications and clients allows this

120 | Chapter8: HTMLand XHTML Overview

document type to be shared across those development communities. It gives them
a common starting point. See www.w3.0rg/TR/xhtml-basic/ for more information.

XHTML 1.1

The XHTML 1.1 Recommendation, released in 2001, is a reformulation of
XHTML 1.0 (Strict) using the XHTML modules. It is also the first markup
language to be fully liberated from legacy functionality of HTML by completely
eliminating the elements and attributes that control presentation. Authors are
required to put all style and layout information in Cascading Style Sheets.

Some examples of modules in XHTML 1.1 include structure, text, hypertext, lists,
object, image, forms, tables, objects, and image maps.

As of this writing, few browsers support an XHTML 1.1 document when it is
properly identified as an XML application media type. For this reason, although
XHTML 1.1 is the most recent Recommendation, most professional developers
use XHTML 1.0 because it can be labeled as HTML text. XHTML media types are
discussed further in Chapter 9.

XHTML-Print

This document specifies a simple XHTML-based data stream suitable for printing
in environments where it is not feasible or desirable to install a printer-specific
driver and where some variability in the formatting of the output is acceptable. It
is designed to print basic content without regards to layout or presentation. This
Recommendation is in development.

XHTML 2.0

XHTML 2.0 is a markup language intended for rich, portable web-based applica-
tions. It is not intended to be backward compatible with its earlier versions. As of
this writing, XHTML 2.0 is in development as a Working Draft.

Three Flavors of HTML 4.01 and XHTML 1.0

Although the W3C has ideas on how HTML should work, they are also aware that
it is going to be a while before old browsers are phased out and web authors begin
to mark up documents properly. For that reason, both the HTML 4.01 and
XHTML 1.0 Recommendations encompass three slightly different specification
documents: one “Strict,” one “Transitional,” and one just for framed documents.
These documents, called Document Type Definitions (or DTDs), define every
element, attribute, and entity along with the rules for their use. The XHTML
DTDs are written following the rules and conventions of XML (Extensible
Markup Language), while the HTML DTDs follow SGML syntax. See Chapter 7
for more on XML. The browser uses the DTD to “decode” the markup and check
it for validity.

Introduction to XHTML | 121

>
T
=
=
=

pue TWLH

Strict DTD
This version excludes all deprecated elements and attributes (such as font
and align) to reinforce the separation of document structure from presenta-
tion. Ideally, documents should be tagged strictly for meaning and structure,
leaving all presentation to be handled by style sheets.

Transitional DTD

The Transitional DTD includes all deprecated elements and attributes in
order to be backwards compatible with the legacy behavior of most browsers.
Deprecated elements and attributes are permitted but discouraged from use.
This DTD provides a way to ease web authors out of their current habits and
toward abiding by standards. Many web authors today choose to use the
Transitional DTD while the industry waits for current browsers to offer
perfect and consistent CSS support and for older browsers to fade away.

Frameset DTD
The Frameset DTD includes the same elements as the Transitional DTD,
with the addition of elements for creating framed web pages (frameset, frame,
and noframe). The Frameset DTD is kept separate because the structure of a
framed document (where frameset replaces body) is fundamentally different
from regular HTML documents. Frames are discussed in Chapter 14.

It is important to specify which version you are using in your document using a
DOCTYPE declaration, as modern browsers can use this information to turn on
“strict” standards-compliant formatting (Standards Mode), as opposed to the
“quirky” behavior of older, nonstandard HTML (Quirks Mode). Of course, if you
do specify the DTD, you must stick to it exactly so that your document will be
valid (in other words, don’t break any rules defined by the DTD). DOCTYPE
declarations and switching are discussed further in Chapter 9.

Which Standard Is Right for You?

With so many co-existing Recommendations, it may be difficult to choose which
one is best for your purposes. The following is a quick summary that will put all
of these options into perspective.

XHTML 1.0 Transitional
Use this standard if your authoring style makes use of any of the deprecated
elements (such as font) or attributes (such as bgcolor or align) and you have
the discipline (or authoring tools) it takes to make sure the document is well-
formed. This is the most popular choice for professional web developers
because it is forward compatible, yet still allows some of the legacy tech-
niques required to control presentation in current browsers.

XHTML 1.0 Strict
Use XHTML Strict if you are committed to using style sheets for all presenta-
tion and layout because all of those deprecated tags have been removed from
this Recommendation. Documents must be well-formed as well, of course.

122 | Chapter8: HTMLand XHTML Overview

HTML 4.01
Use Transitional, Strict, or Frames if you aren’t concerned with site longevity,
if you are not using updated authoring tools, or if you can’t bring yourself to
close an 11 element.

XHTML 1.0 Frames or HTML 4.01 Frames
Use if you are creating a framed site. All deprecated attributes are still in
there.

XHTML 1.1
This is available for use, but it is difficult to make it work effectively due to
lack of browser support for the XML identifiers that a compliant XHTML 1.1
document requires. For this reason, it is not commonly used by developers as
of this writing.

Well-Formed XHTML

Web browsers are forgiving of sloppy HTML, but XHTML (being an XML appli-
cation) requires that you play by the rigid rules of XML markup syntax. What
makes XHTML documents different from HTML documents is that you need to
be absolutely sure that your document follows the syntax rules of XML correctly
(in other words, that it is well-formed). The sections below summarize the require-
ments of well-formed XHTML as well as some tips for backward compatibility
with older browsers.

All-Lowercase Element and Attribute Names

In XML, all elements and attribute names are case-sensitive, which means that
, , and are parsed as different elements. In the reformulation of
HTML into XHTML, all elements were interpreted to be lowercase. When writing
XHTML documents (and their associated style sheets), be sure that all tags and
attribute names are written in lowercase. Attribute values are not required to be
case-sensitive.

&

Y If you want to convert the upper- and mixed-case tags in an existing

0‘;‘. 4. HIML file to well-formed, all-lowercase tags, try the HTML Tidy

- utility (tidy.sourceforge.net/) or Barebones Software BBEdit (Macin-
tosh only, www.bbedit.com), which can automate the process.

¢y

Quoted Attribute Values

XHTML requires that all attribute values be contained in quotation marks.
Double or single quotation marks are acceptable, as long as they are used consis-
tently throughout the document. So where previously it was okay to omit the
quotes around single words and numeric values, now you need to be careful that
every attribute value is quoted.

Well-Formed XHTML | 123

>
T
=
=
=

pue TWLH

Element Termination

In HTML, it is okay to omit the end tag for certain block elements (such as p and
1i). The beginning of a new block element is enough to trigger the browser to
parse the previous one as closed. Not so in XHTML. To be well-formed, every
container element must have its end tag, or it registers as an error and renders the
document noncompliant.

Empty Elements

This need for termination extends to empty elements as well. So instead of just
inserting a line break as
, XHTML requires the element to be terminated. You
can simply add a slash before the closing bracket, indicating the element’s ending.
So in XHTML, a line break is entered as
.

The notion of closing empty elements can cause some browsers (namely Netscape
4) to complain, and even new browsers to have problems when content is sent as
text/html, so to keep your XHTML digestible to those browsers, be sure to add a
space before the closing slash (
). This allows the closed empty tag to slide
right through. See Table 8-1 for a complete list of empty elements.

Explicit Attribute Values

XML (and therefore XHTML) does not support attribute minimization, the SGML
practice in which certain attributes can be reduced to just the attribute value. So
while HTML has many minimized attributes such as checked and nowrap, in
XHTML, the values need to be explicitly declared as checked="checked" and
nowrap="nowrap". Table 8-2 lists the attributes that were minimized in HTML but
require values in XHTML.

Table 8-2. Explicit attribute values

checked="checked" disabled="disabled" noresize="noresize"
compact="compact" ismap="ismap" nowrap="nowrap"

declare="declare" multiple="multiple" readonly="readonly"
defer="defer" noshade="noshade" selected="selected"

Nesting Requirements

It has always been a rule in HTML that elements should be properly nested within
one another. The closing tag of a contained element should always appear before
the closing tag of the element that contains it. In XHTML, this rule is strictly
enforced. So be sure that your elements are nested correctly, like this:

<p>I can flyl</p>
and not overlapping like this:

<p>I can flyl</p>

124 | Chapter8: HTMLand XHTML Overview

In addition, XHTML enforces other nesting restrictions that have always been a
part of the HTML specification. The XHTML DTD includes a special “Content
Models for Exclusions” note that reinforces the following:

¢ An a element cannot contain another a element.

* The pre element cannot contain img, object, applet, big, small, sub, sup, font,
or basefont.

* The form element may not contain other form elements.

* A button element cannot contain a, form, input, select, textarea, label,
button, iframe, or isindex.

e The label element cannot contain other label elements.

Character Entities

XHTML (as a function of XML) is extremely fussy about special characters such
as <, >, and &. All special characters should be represented in the XHTML docu-
ment by their character entities instead. Common character entities are listed in
Table 10-3, and the complete list appears in Appendix C.

Character entity references should be used in place of characters such as < and & in
regular text content, as shown in these examples:

<p> the value of A &1t; B </p>
<p> Laverne & Shirley </p>

In places where it was common to use special characters, such as in the title of a
document or in an attribute value, it is now necessary to use the character entity
instead. For instance, the following worked just fine in HTML, despite being
invalid:

But in XHTML, the value must be written like this:

This applies to ampersands that occur in URLs as well.

Email Jen<a/>

Protecting Scripts

It is common practice to enclose scripts and style sheets in comments (between
<!-- and -->). Unfortunately, XML software thinks of comments as unimportant
information and may simply remove the comments from a document before
processing it. To avoid this problem, use an XML CDATA section instead.
Content enclosed in <![CDATA[...]]> is considered simple text characters and is
not parsed (for more information, see Chapter 7). For example:

<script language="JavaScript">
<! [CDATA[
...JavaScript here...

1

</script>

Well-Formed XHTML | 125

=
=
=
H
[-']

=

(-5

The problem with this method is backward compatibility. HTML browsers ignore
the contents of the XML CDATA section, while XML browsers ignore the
contents of comment-enclosed scripts and style sheets. So you can’t please
everyone. One workaround is to put your scripts and styles in separate files and
reference them in the document with appropriate external links. The common
practice is to avoid CDATA and comments altogether and keep scripts and style
externalized. Although not required, it is heavily recommended as part of
XHTML and document management.

id and name Attributes

In HTML, the name attribute may be used for the elements a, applet, form, frame,
iframe, img, and map. The name attribute and the id attribute may be used in
HTML to identify document fragments.

In XML, only id may be used for fragments and there may only be a single id
attribute per element. XHTML documents must use id instead of name for identi-
fying document fragments in the aforementioned elements. In fact, the name
attribute for these elements has been deprecated in the XHTML 1.0 specification.

Once again, we run into an issue with browser compatibility. Some legacy browsers
(namely Netscape 4) do not recognize the id attribute as an identifier for a docu-
ment fragment (current standards-conformant browsers handle it just fine). If your
fragment identifiers must work in Netscape 4, use both name and id. Unfortunately,
this is likely to cause validation errors if you are complying to XHTML 1.0 Strict or
XHTML 1.1, and therefore you should use only the id attribute when possible for
fragment identifiers. The only remaining valid use of the name attribute is for form
submission semantics on form control elements like input.

Web Authoring Tools

HTML documents are simple text files, which means you can use any minimal
text editor to write them. Fortunately, there are a number of tools that make the
process of generating HTML documents more quick and efficient. They fall into
two main categories: HTML editors and WYSIWYG (What-You-See-Is-What-
You-Get) web authoring tools.

HTML/XHTML Editors

HTML editors are text editing tools designed especially for writing HTML. They
require that you know how to compose HTML by hand; however, they save time
by providing shortcuts for such repetitive tasks as setting up documents,
compiling tables, or simply applying styles to text.

There are scores of simple HTML editors available, and many of them are free.
Just enter “HTML Editor” in the search field of Shareware.com (www.shareware.
com) and wade through the results. For purposes of brevity, I'm going to cut to
the chase.

Windows users should check out Macromedia HomeSite. For more information
and to download a demo copy, see www.macromedia.com/software/homesite/.

126 | Chapter8: HTMLand XHTML Overview

If you’re working on a Macintosh, check out BBEdit, a commercial HTML editor
from Bare Bones Software, Inc. For more information and to download a demo
version, see www.bbedit.com.

WYSIWYG Authoring Tools

WYSIWYG HTML editors have graphical interfaces that make writing HTML
more like using a word processor or page layout program. So for instance, if you
want to add an image, just drag it from the desktop onto the page; the authoring
tool creates all the HTML coding needed to accomplish the effect on the screen.
In addition to simple style and format shortcuts, many of these tools automate
more complex tasks, such as creating Cascading Style Sheets, adding JavaScript,
and adding PHP functionality.

WYSIWYG tools offer several benefits:

* They offer considerable time savings over writing code by hand.

* They are good for beginners. They can even be useful for learning HTML,
because you can lay out the page the way you want and then view the result-
ing code.

* They are good for quick prototyping. You can try out design ideas on the fly.

* They provide a good head start for creating style sheets, JavaScript behav-
iors, and other features.

On the downside, they are expensive and have steep learning curves. Some experi-
enced web authors feel that the markup these tools spit out is not as efficient as
markup carefully crafted by hand.

If you are a professional web designer and developer, a web authoring tool won’t
excuse you from learning HTML altogether. In many cases, you will need to do
some manual fine-tuning to the resulting HTML code.

Some of the most popular tools as of this writing are:

Macromedia Dreamweaver
Dreamweaver has emerged as the industry-standard HTML authoring tool
due to its advanced features and better standards compliance. For more infor-
mation, see www.macromedia.com/software/dreamweaver.

Adobe GoLive
Another powerful and professional-level authoring tool, GoLive is well inte-
grated into the suite of Adobe design tools. For more information, see www.
adobe.com/products/golive/main.html.
&
iy In April, 2005, Adobe announced that it would be acquiring Mac-
0‘;‘. p romedia. As of this writing, there is no word on the future of the
. Dreamweaver and GoLive products and brands. It is unclear
whether they will both be maintained, if only one will survive, or if
they will be rolled together into some turbo-charged hybrid. Con-
sult the Adobe web site for updates. In this edition, all Adobe and
Macromedia product names are listed as they currently exist in the
market.

¢y

Web Authoring Tools | 127

>
T
=
=
=

pue TWLH

Microsoft FrontPage (Windows only)

FrontPage, part of the Microsoft Office software package, is easy for begin-
ners to learn and is popular with the business community. It offers wizards,
themes, and tools that make web page creation easy. FrontPage still produces
code that many professional web authors consider to be unsatisfactory due to
inefficient and proprietary code. Some FrontPage functions are closely inte-
grated with Microsoft’s Internet Information Server (IIS), so check with your
hosting service for possible conflicts. For more information, see www.
microsoft.com/frontpage/.

Good Authoring Practices

This section offers some guidelines for writing “good” HTML documents—
markup that will be supported by a wide variety of browsers, handled easily by
browsers expecting correct syntax, and extensible to emerging technologies built
on the current HTML specification.

Choose elements that accurately and meaningfully describe the content. Making
sure that your document is semantically sound improves accessibility under
the wide range of web browsing environments. If something is a list, mark it
up as a list. If you don’t want bullets, it’s not a problem. You can use a style
sheet to change the presentation of the list to be anything you want, be it
bullet-less or a graphical horizontal navigation bar (see Chapter 24 for this
technique).

Avoid choosing elements based on the way that they render in the browser. For
example, don’t use a blockquote just to achieve indented text and don’t use a
series of brs or <p>8nbsp;</p> for extra whitespace. Again, you can use a style
sheet for such presentational effects.

Avoid using deprecated elements and attributes. This is actually a round-about
way of saying “use style sheets instead of presentational HTML,” because
most elements and attributes have been deprecated in favor of style sheet
controls.

Write compliant, valid documents. . Even if you are using HTML 4.01, it is a
good idea to follow the XHTML Recommendations for a compliant, valid
document. Although once it was fine to omit closing tags and quotation
marks, browsers in the future may not be so forgiving.

Validate your HTML. To be absolutely sure about how you’re doing conform-
ance-wise, you should run your HTML code through an HTML validator,
such as the one at the W3C site (validator.w3.org). For a list of other vali-
dator services, see The Web Design Group page at www.htmlhelp.com/links/
validators.htm.

Avoid extra returns and character spaces. These extra keystrokes add to the size
of your document because blank spaces are transmitted just like all other
characters. Not only that, line breaks and extra spaces can create unwanted
whitespace in certain contexts. For instance, extra spaces within and between
table cells (td elements) can add unwanted spaces in a table. Adding a line
break between consecutive img elements will introduce whitespace between
the images. It is best to keep your file as compact as possible.

128 | Chapter8: HTMLand XHTML Overview

Use comments to delineate sections of markup so that you can find them
quickly. HTML documents can get long and complicated. Adding comments
to label portions of the document can make things easier to find at a glance
and may allow you to keep the document compact without a lot of extra
space.

Follow proper filenaming conventions. Consider these guidelines:

* Use the proper HTML document suffix .html or .htm. Suffixes for a
number of common file types can be found in Table 4-1.

* Avoid spaces and special characters such as ?, %, #, and so on in file-
names. It is best to limit filenames to letters, numbers, underscores (in
place of spaces), hyphens, and periods.

* Filenames may be case-sensitive on your server. Consistently using all
lowercase letters in filenames, although certainly not necessary, may help
avoid confusion and make them easier to remember.

* Keep filenames as short as possible. Extra characters add to the file size
of the document.

=
=
=
H
[-']

=

(-5

Good Authoring Practices | 129

Document Structure

Before marking up your actual content, it is necessary to establish the proper
global structure of the (X)HTML document itself. An (X)HTML document is
composed of three parts: a declaration of the HTML or XHTML version used, a
header containing information about the document, and the body containing the
document’s content.” This chapter takes a look at each of these components and,
in doing so, introduces these elements used for establishing the global structure of
the document:

html Root element of an (X)HTML document
head Header

body The body of the document

title Document title

meta Meta data (information about the document)

If you use a professional web authoring tool to create web pages, chances are
you’re accustomed to the minimal document structural markup inserted for you
when you select “New File.” This chapter will give you the tools necessary to peek
under the hood and decide if the automatically generated declarations accurately
represent the mode in which you intend to author.

Minimal Document Structure

This markup sample shows the structure of a minimal XHTML document as spec-
ified in the XHTML 1.0 Recommendation. It provides important context to
upcoming discussions of global document structure.

* Not all documents have a body. Framed documents are composed of a declaration, header, and
a frameset that establishes the number and structure of its frames. Framed documents are dis-
cussed in Chapter 14.

130

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

<head>
<title>Document Title</title»
</head>

<body>
<p>Content of document...</p>
</body>

</html>

&

This example begins with an XML declaration that identifies the
version of XML and the character encoding of the document. XML
declarations are encouraged for XHTML documents; however, they
are not required when the character encoding is the UTF-8 default
as in the above example. Because XML declarations are problem-
atic for current browsers as of this writing, even those that are stan-
dards-compliant, they are generally omitted.

¢y

Now, take a closer look at the four major components of XHTML (and HTML)
documents.

Document type declaration
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

The document type (DOCTYPE) declaration tells the browser which DTD to
use to parse the document. This example specifies XHTML Strict. If this
example were an HTML document, it would use one of the HTML DTDs.
The upcoming “Document Type Declaration” section provides more infor-
mation on the DTD options and uses for this information.

Root element
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">...
</html>

html is the root element for all HTML and XHTML documents. The html
element and its declarative attributes shown here are discussed in the
upcoming section, “The Root Element.”

Document header
<head>
<title>Document Title</title>
</head>

The head element, or header, contains information about the document that
is not considered part of the document content. The header must include a
descriptive title in order to validate. Document headers are covered in more
detail later in this chapter.

Minimal Document Structure | 131

w
~*
=
e
a2
=
s
o

o
S
[a}
c
3
m
S
-~

Document body
<body>
Content of Document...
</body>

The body element contains all of the content of the document—the part that
displays in the browser window or is spoken in a speech browser. The body of
an (X)HTML document might consist of just a few paragraphs of text, a
single image, or a complex combination of text, images, tables, and multi-
media objects. What you put on the page is up to you.

Document Type Declaration

To be valid, an X)HTML document must begin with a document type declara-
tion that identifies which version of HTML or XHTML is used in the document.
This is done using a DOCTYPE declaration that names the document type defini-
tion (DTD) for the document. A DTD is a text document that lists all the
elements, attributes, and rules of use for a particular markup language. See
Chapter 7 for more information on DTDs.

The inclusion of a document type declaration has always been a requirement of
valid HTML documents. With no DOCTYPE declaration, there is no set of rules
to validate against. In the years of fast and loose HTML authoring, the DOCTYPE
declaration was commonly omitted. However, now that standards compliance is a
priority in the web development community, and because there are so many
DTDs to choose from, authors are strongly urged to include the DTD declaration
and validate their documents. The DOCTYPE declaration (or its omission) also
triggers different browser behaviors, as discussed in the upcoming “DOCTYPE
Switching” section.

DTD Options
HTML 4.01 and XHTML 1.0 offer three DTD versions:

e Strict
¢ Transitional

* Frameset

XHTML 1.1 has only one DTD. The DTD documents live on the W3C server at a
stable URL.

The <!DOCTYPE> (document type) declaration contains two methods for pointing to
DTD information: one is a publicly recognized document identifier; the other is a
specific URL in case the browsing device does not recognize the public identifier.
Descriptions and specific markup for each HTML and XHTML version are listed
here.

HTML 4.01 Strict
The Strict DTD omits all deprecated elements and attributes. If you are
authoring according to the strict DTD, use this document type definition:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/HTML4.01/strict.dtd">

132 | Chapter9: Document Structure

HTML 4.01 Transitional
The Transitional DTD includes everything from the Strict DTD, plus all
deprecated elements and attributes. If your document includes some depre-
cated elements or attributes, point to the Transitional DTD using this
DOCTYPE declaration:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/HTML4.01/1o0se.dtd">

HTML 4.01 Frameset
If your document contains frames—that is, it uses frameset instead of body
for its content—then identify the Frameset DTD. The Frameset DTD is the
same as the Transitional version (it includes deprecated yet supported
elements and attributes), with the addition of frame-specific elements. The
content-containing HTML documents that are displayed within the frames
do not need to use the Frameset DTD.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.0rg/TR/HTML4.01/frameset.dtd">

XHTML 1.0 Strict
The same as HTML 4.01 Strict, but reformulated according to the syntax
rules of XML.

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

XHTML 1.0 Transitional
The same as HTML 4.01 Transitional, but reformulated according to the
syntax rules of XML.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

XHTML 1.0 Frameset
The same as HTML 4.01 Frameset, but reformulated according to the syntax
rules of XML.

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-frameset.dtd">

XHTML 1.1
There is only one DTD for XHTML 1.1. It omits every deprecated element
and attribute. It differs from XHTML 1.0 Strict in these ways:

* The lang attribute has been replaced with the xml:1ang attribute.
* The name attribute for the a and map elements has been replaced with id.

* A ruby collection of elements has been added. The W3C defines ruby as
“short runs of text alongside the base text, typically used in East Asian
documents to indicate pronunciation or to provide a short annotation.”

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml11.dtd">

Document Type Declaration | 133

w
~*
=
e
a2
=
s
o

o
S
[a}
=
3
m
S
-~

& @

' The W3C makes these document type declarations and more avail-
0‘;‘. - able for your copy-and-paste convenience at www.w3.0rg/QA/2002/
0 04/valid-dtd-list. html.

DOCTYPE Switching

Years of lax authoring practices and techniques for dealing with inconsistent
browser behaviors resulted in millions of web pages built in a way that worked,
but were far from valid against the current standards. Browser developers were
faced with a difficult dilemma: get rigorous about standards conformance and
break nearly every web site in existence, or maintain the status quo.

When building Internet Explorer 5 for the Macintosh, development lead Tantek
Celik invented and coded a stop-gap solution that served two communities of
authors: those writing standards-compliant documents and those who were
authoring web documents based on familiar browser rendering behaviors.

The method now known as DOCTYPE switching uses the inclusion and content
of a DOCTYPE declaration to toggle the rendering mode in certain browsers. If a
modern DOCTYPE declaration is detected, it indicates that the author is stan-
dards-aware, and the browser switches into a standards-compliant rendering
mode (Standards mode). If no (or if an older) declaration is detected, the browser
reverts to Quirks mode. Quirks mode mimics the rendering behavior of old
browsers, allowing for nonstandard code, hacks, and workarounds that are
common in legacy web authoring practices. There is a third mode that some
browsers implement known as Almost Standards mode that is different from true
Standards mode in that it implements vertical sizing of table cells traditionally and
not according to the CSS 2 specification.

Browser support

You can use the DOCTYPE declaration to switch rendering modes in the
following browsers:

* Internet Explorer 6 and 7 (Windows)

* Internet Explorer 5 (Mac)

* Netscape 6 and higher

* Opera 7 and higher

¢ Mozilla (and Mozilla-based browsers like Firefox)

* Safari

* Konqueror 3.2 and higher

Making the switch

Although all of the browsers listed above do some sort of switching, the require-
ments for switching them into Standards or Almost Standards mode varies
somewhat by browser and is influenced by the DTD version and the presence of
the complete URL for that DTD. For XHTML documents, the presence of the
XML declaration will cause Internet Explorer 6 for Windows and Konqueror to

134 | Chapter9: Document Structure

switch into Quirks mode even if the proper DOCTYPE declaration has been
provided.

Figuring out which DOCTYPE triggers which mode in every browser can get
pretty confusing. For a thorough comparison of browsers’ responses to every
possible (XY)HTML DTD and URL combination, see the chart created and main-
tained by Henri Sivonen at hitp://hsivonen.iki.fi/doctype/.

To summarize here, these are your best bets for triggering Standards or Almost
Standards mode in the most browsers that do DOCTYPE switching:

* XHTML 1.0 Strict or Transitional or XHTML 1.1, with a complete URL
(including http://) and without the XML declaration. If the URL is omitted
or incomplete, some browsers revert to Quirks mode. Including the XML
declaration causes Internet Explorer 6 to revert to Quirks mode, however,
this has been corrected in IE 7.

* HTML 4.0 or 4.01 Strict DTD, with or without the URL. (Omitting the URL
triggers Quirks mode in IE 5/Mac with the 4.01 Strict DTD only.)

* HTML 4.0 or 4.01 Transitional DTD, with the URL http://www.w3.0rg/TR/
html4/loose.dtd (for all browsers but Konquerer 3.2). Including http://www.
w3.0rg/TR/1999/REC-htm1401-19991224/1oose.dtd triggers Quirks mode in
Netscape 6 and Konqueror.

The Root Element

XML and SGML documents have one and exactly one root element. It is the
element that encloses all following elements. XHTML and HTML define html as
the root element.

html

<html>...</html>

Attributes
Internationalization attributes: 1lang, xml:1lang, dir
id="text" (XHTML only)
xmlns="http://www.w3.0rg/1999/xhtml" (Required; XHTML only)
version="-//W3C//DTD HTML 4.01//EN" (Deprecated in HTML 4.01)

All elements in the document are contained within the root element (they are said
to be descendants of the root element). As the root element, html may have no
ancestors (in other words, it may not be contained within any other element).

This example shows the root element from a minimal XHTML document:
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en" >

Because this example is an XHTML document, the html element is also used to
identify the XML namespace and language for the document, as discussed next.
HTML documents do not use namespaces.

The Root Element | 135

w
~*
=
e
a2
=
s
o

o
S
[a}
c
3
m
S
-~

Namespace

An XML namespace is a collection of element and attribute names as defined by
the DTD of a particular markup language. In XML documents, you must explic-
itly identify the namespace so the client (in this case, the browser) knows that you
intend the q element in your document to be a “quote” and not a “question” from
some other (theoretical) XML language for exams.

The namespace is specified using the xmlns attribute in the html root element. The
value is the location of an online documentation of that namespace. The
namespace identifier for XHTML 1.0 and 1.1 is xmlns="http://www.w3.0rg/1999/
xhtml".

Language

Because this Web of ours is “World Wide,” the HTML specifications take into
account that documents are published in a variety of languages. For that reason, it
is important to identify the language in which the document is written (as in
lang="en") and the language of the XML version (as in xml:lang="en"). These
attributes are placed in the html root element along with the namespace identifier.
The XHTML 1.0 Recommendation suggests you include both attributes in the
interest of backward compatibility. See Chapter 6 for a complete list of two-letter
language codes.

The Document Header

The header provides a place to include important information about the docu-
ment to users, browsers, and search engines. It is also a common place to stow
scripts and embedded style sheets. This section looks at the head element and the
elements it contains.

head

<head>...</head>

Attributes
Internationalization attributes: 1lang, xml:1lang, dir
id="text" (XHTML only)
profile="URLS"

Every head element must include a title element that provides a description of
the document. The head element may also include any of the following elements
in any order: script, style, meta, link, object, isindex, and base. The head
element merely acts as a container of these elements and does not have any
content of its own.

It is recommended that HTML documents (and XHTML documents without an
XML declaration) also include a meta element that specifies the content type and
character encoding for the document, although this element is not required. The
meta element is discussed in the upcoming “Providing Meta Data section.

136 | Chapter9: Document Structure

Titles

The most important (and only required) element within the header is the docu-
ment title, which provides a description of the page’s contents.

title

<title>...</title>
This element is required.

Attributes
Internationalization: lang, xml:lang, dir

Starting in HTML 4.01, the title element is required, which means that every HTML
document must have a meaningful title in its header in order to be valid. The title is
typically displayed in the top bar of the browser, outside the regular content window.

Titles should contain only ASCII characters (letters, numbers, and basic punctua-
tion). Special characters (such as &) should be referred to by their character
entities within the title, for example:

<title>The Adventures of Peto & Fleck</title>

The title is what is displayed in a user’s bookmarks or favorites list. Descriptive
titles are also a key tool for improving accessibility, as they are the first thing a
person hears when using a screen reader. Search engines rely heavily on docu-
ment titles as well. For these reasons, it’s important to provide thoughtful and
descriptive titles for all your documents and avoid vague titles, such as
“Welcome” or “My Page.” You may also want to keep the length of your titles in
check so they are able to display in the browser’s title area.

Other Header Elements

Other useful HTML elements also placed within head of the document include:

base
This element establishes the document’s base location, which serves as a
reference for all pathnames and links in the document. For more informa-
tion, see Chapter 11.

isindex
Deprecated. This element was once used to add a simple search function to a
page. It has been deprecated by HTML 4.01 in favor of form inputs.

link
This element defines the relationship between the current document and
another document. Although it can signify such relationships as index, next,
and previous, it is most often used to link a document to an external style
sheet (see Chapter 16).

script
JavaScript and VBScript code may be added to the document within its
header using this element. For examples of using the script element, see
Chapter 27.

The Document Header | 137

w
~*
=
e
a2
=
s
o

o
S
[a}
c
3
m
S
-~

style
One method for attaching a style sheet to an HTML document is to embed it
in the head of the document with the style element. For more information,
see Chapter 16.

meta
The meta element is used to provide information about a document, such as
keywords or descriptions to aid search engines. It is discussed in detail in the
next section.

Providing Meta Data

The meta element has a wide variety of applications but is primarily used to
include information about a document, such as the character encoding, creation
date, author, or copyright information.

meta

<meta />

Attributes

Internationalization: lang, xml:lang, dir
id="text" (XHTML only)
content="text" (Required)
http-equiv="text"

name="text"

scheme="text"

The data included in a meta element is useful for servers, web browsers, and
search engines but is invisible to the reader. It must always be placed within the
head of the document.

A document may have any number of meta elements. There are two types of meta
elements, using either the name or http-equiv attribute. In each case, the content
attribute is necessary to provide a value (or values) for the named information or
function. These examples show the syntax of both meta types:

<meta http-equiv="name" content="content" />
<meta name="name" content="content" />

http-equiv

Information provided by an http-equiv attribute is processed as though it had
come from an HTTP response header. HTTP headers contain information the
server passes to the browser just before it sends the HTML document, such as
media type information and other values that affect the action of the browser.
Therefore, the http-equiv attribute provides information that will, depending on
the description, affect the way the browser handles your document.

138 | Chapter9: Document Structure

& @

iy An HTTP header is not the same as the header indicated by the head
0‘;‘. p element within the HTML document. HTTP headers exist outside
" a’ the HTML text document and are tacked on by the server. When a
document is requested via an HTTP request (that is, via the Web),
the HTTP header goes along for the ride to give the browser a
heads-up on what kind of document to expect. Its contents are not

displayed.

¢y

There is a large number of predefined http-equiv types available. This chapter
introduces just a few of the most useful. For a complete listing, see the Dictionary
of HTML META Tags at vancouver-webpages.com/META.

name

The name attribute is used to insert hidden information about the document that
does not correspond to HTTP headers. For example:

<meta name="author" content="Jennifer Niederst Robbins" />
<meta name="copyright" content="2006, 0'Reilly Media" />

You can make up your own names or use one of the names put forth by search
engine and browser companies for standardized use. A few of the accepted and
more useful meta names are discussed later in this section.

Identifying media type and character encoding

It is recommended (although not required) that the media type and character
encoding be specified within (XYHTML documents as a way to keep that informa-
tion with the document. (For more information on declaring character encodings,
see Chapter 6.)

This is done using the meta element, as shown in this example:
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
The parts are broken down as follows:

Media type identification
The media type, very similar to MIME types used for sending email attach-
ments, is another bit of information sent in the HTTP header. For HTML
documents, the media type is always text/html. That one is easy. XHTML
documents, on the other hand, are not as straightforward.

XHTML 1.0 documents may be served as either XML or HTML documents.
Although XML is the proper method, due to lack of browser support for
XML files, many authors choose to deliver XHTML 1.0 files with the text/
html MIME type used for HTML documents. When XHTML documents are
served in this manner, they may not be parsed as XML documents.

XHTML 1.0 files may also be served as XML using the MIME types
application/xhtml+xml, application/xml, or text/xml. The W3C recom-
mends that you use application/xhtml+xml only.

XHTML 1.1 documents are not permitted to use the text/html media type.
This poses a problem because some browsers do not know what to do with

The Document Header | 139

o
%S
c 2
a3
S m
]
mﬂ

the non-text/html media types. This is another reason why XHTML 1.1 is
still difficult to implement properly and why developers generally opt for the
XHTML 1.0 standard.

For more information on the W3C’s recommended media types, see www.
w3.0rg/TR/xhtml-media-types/.

Character encoding

It is recommended, although not required, that the character encoding be
specified for all documents. The character encoding describes the set of
actual glyphs, or character shapes, that your document uses. Sets of charac-
ters are standardized: you can refer to them by identifying standard numbers.
For example, in documents written in English, the most common character
encoding is ISO-8859-1, which consists of all the characters in Western Euro-
pean languages. For more information on character encoding, see Chapter 6.

Character encoding should be set on the server as part of the HTTP header. It
may also be set in the XML declaration for XHTML documents that use a
character encoding other than the XML standard UTF-8 or UTF-16. For
instances when it is necessary to override or guarantee the server setting (and
if the XML declaration is not used), the character encoding may be provided
with a meta element, as shown in the example.

&
® For more information on the preferred methods of specifying char-
,'3 4. acter encoding, see Chapter 6 and the Web Standards Project arti-
*a cle at www.webstandards.org/learn/askw3c/dec2002.html.

Using the meta element for client-pull

Client-pull refers to the ability of the browser (the client) to automatically request
(pull) a new document from the server. The effect for the user is that the page
displays, and after a period of time, automatically refreshes with new information
or is replaced by an entirely new page. This technique can be used to automati-
cally redirect readers to a new URL (for instance, if an old URL has been retired).

Be aware, however, that the W3C strongly discourages the use of
% this method for automatic forwarding in favor of server-side redi-
rects for reasons of accessibility.

Client-pull uses the refresh attribute value, first introduced by Netscape. It tells
the browser to wait a specified number of seconds (indicated by an integer in the
content attribute) and then to load a new page. If no page is specified, the browser
just reloads the current page. The following example instructs the browser to
reload the page after 15 seconds (assume there’s something fancy happening on
the server side that puts updated information in the HTML document):

<meta http-equiv="refresh" content="15" />

To reload a different file, provide the URL for the document within the content
attribute:

<meta http-equiv="refresh" content="1; url=http://doc2.html" />

140 | Chapter9: Document Structure

Note that there is only a single set of quotation marks around the value for
content. Although URLs usually require their own quotation marks, these are
omitted within the context of the content attribute.

Other uses of http-equiv

Here are some other uses of the http-equiv attribute:

expires
Indicates the date and time after which the document should be considered
expired. Web robots may use this information to delete expired documents
from a search engine index. The date and time format (as shown below)
follows the date/time standard for HTTP headers because the http-equiv
attribute is intended to mimic an HTTP header field.

<meta http-equiv="expires" content="Wed 12 Jun 2001 10:52:00 EST" />

content-language
This may be used to identify the language in which the document is written.
The browser can send a corresponding Accept-Language header, which causes
the server to choose the document with the appropriate language.

This example tells the browser that the document’s natural language is
French:

<meta http-equiv="content-language" content="fr" />

The W3C now recommends using the lang and xml:lang attributes in the
html element for language specification, but this method may be used for
backward compatibility. For more information on internationalization and a
listing of two-letter language codes, see Chapter 6.

meta names for search engines

Search engines introduced several meta names that aid their search engines in
finding pages. Note that not all search engines use meta-data, but adding them to
your document won’t hurt. There is a blurry distinction between name and http-
equiv in this case, so most of these meta names also work as http-equiv
definitions.

description
This provides a brief, plain-language description of the contents of your web
page, which is particularly useful if your document contains little text, is a
frameset, or has extensive scripts at the top of the HTML document. Search
engines that recognize the description may display it in the search results
page. Some search engines use only the first 20 words of descriptions, so get
to the point quickly.
<meta name="description" content="Jennifer Robbins’ resume
and web design samples" />

keywords
You can supplement the title and description of the document with a list of
comma-separated keywords that would be useful in indexing your docu-
ment. Note: Search engines have largely abandoned meta keywords in

The Document Header | 141

w
~*
=
e
a2
=
s
o

o
S
[a}
c
3
m
S
-~

practice due to both spam and deterioration. There is a larger trend away
from invisible metadata in general for these reasons, and toward more visible
data in the contents themselves of web pages.

<meta name="keywords" content="designer, web design, branding,
logo design" />

author

Identifies the author of the web page.

<meta name="author" content="Jennifer Robbins" />

copyright

Identifies the copyright information for the document.

<meta name="copyright" content="2005, 0'Reilly Media" />

robots

This value was created as an alternative to the robots.txt file, and both are
used to prevent your page from being indexed by search engine “spiders.”
This value is not as well supported as the robots.txt file, but some people like
to include it anyway. The content attribute can take the following values:
index (the default), noindex (prevents indexing), nofollow (prevents the search
engine from following links on the page), and none (the same as setting
"noindex, nofollow"). The advantage of using this attribute instead of the
robots.txt file is that it can be applied on a page-by-page basis (whereas robot.
txt applies to an entire site if it’s located in the root directory).

<meta name="robots" content="noindex, nofollow" />

The Document Body

The body of the document comes after the document header. Although the body
element markup is optional in previous versions of HTML, in XHTML it is
required. The content of the body element is what gets displayed in the browser
window (or read by a speech browser).

body

<body>...</body>

Attributes

Core attributes: id, class, style, title

Internationalization: lang, xml:lang, dir

Intrinsic Events: onload, onunload, onclick, ondblclick, onmousedown,
onmouseup, onmouseover, onmousemove, onmouseout, onkeypress, onkeydown,
onkeyup

Deprecated Attributes

alink="#rrggbb" or "color name"
background="URL"
bgcolor="#rrggbb" or "color name"
link="#rrggbb" or "color name"

142

| Chapter9: Document Structure

text="#rrggbb" or "color name"
vlink="#rrggbb" or "color name"

The body element may include any combination of block-level elements, inline
elements, and forms. In other words, it contains all the elements in the normal
document flow. For visual browsers, the body acts as a canvas where the content
appears. Audio user agents may speak the content of the body.

The HTML 3.0 Recommendation added a number of presentational attributes for
the body element that had been introduced by browser developers and were in
common use. At the time, they were the only mechanism for setting the color for
all the links and text in the document or for adding a background color or image
to the page. A single body opening tag may contain a number of specific attributes,
as shown here:

<body text="color" link="color" vlink="color" alink="color">

Today, of course, style sheets are the correct way to handle matters of presenta-
tion, so all of the presentational attributes for the body element are officially
deprecated and are discouraged from use.

Because they are still in the Transitional DTD and universally supported in
browsers, brief explanations of the deprecated body attributes are provided in
Table 9-1. The CSS alternatives are provided.

Table 9-1. Deprecated body attributes

Body attribute Description Equivalent CSS style

text="color" Sets the color for all the regular text in the body {color: color}
document

link="color" Sets the color for hyperlinks a:link {color: color}

vlink="color" Sets the color for links that have alreadybeen a:visited {color: color}
clicked

alink="color" Sets the color for a link while it is in the a:active {color: color}
process of being clicked

bgcolor="color" Sets the color of the background for the body {background-color:
entire page color}

background="url" Specifies an image to be used as a tiling body {background-image:
background for the page url(filename.gif)}

The DocumentBody | 143

wv
-
=
[
2
s
=
™

o
S
[a}
c
3
m
S
-~

10

Text Elements

This chapter gets to the real meat and potatoes of document markup: elements
used to structure text content. It’s no surprise that nearly half of all the elements
in the (X)HTML Recommendation are introduced in this chapter. The elements

and discussions are organized as follows:

Block elements
htt

p

pre

address
blockquote
Inline elements
abbr
acronym
cite

code

dfn

em

q

strong

samp

kbd

var

sub
sup

144

Heading

Paragraph
Preformatted text
Contact information
Lengthy quotation

Abbreviation
Acronym

Citation or reference
Code fragment
Defining term
Emphasized text
Short inline quotation
Strongly emphasized
Sample output

Text entered by a user

Variable or program
argument

Subscript
Superscript

Generic elements
div

span

Lists

ul

ol

1i

dl

dt

dd

menu

dir
Presentational elements
b

big

i

s

strike

tt

u

Block division
Span of inline content

Unordered list
Ordered list
List item
Definition list
Term
Definition
Menu list
Directory

Bold

Big text

Italic
Strike-through
Strike-through

Teletype
Underlined

Line breaks Presentational elements (continued)
br Inserts line break font Font face, color, and size
Edit notation basefont Sets default font face
ins Inserted text nobr No break
del Deleted text wbr Word break

hr Horizontal rule

Choosing Text Elements

This chapter, jam-packed as it is with text elements, is a good opportunity for a
reminder about the importance of well-structured and meaningful (semantic)
markup.

In the early years of web design, it was common to choose elements based on their
default formatting in the browser. Don’t like the size of the h1? Hey, use an h4
instead. Don’t like bullets on your list? Make something list-like using br
elements. Need indents? Blockquote it! Those days are over and gone.

Now we have Cascading Style Sheets (CSS) to visually format any element any
way we like, at last liberating us from the browsers’ default rendering styles. That
means you must choose elements that accurately describe your content. If you
don’t like how it looks, change it with a style sheet. If you don’t see an HTML
element that fits, use a generic div or span element to add appropriate structure
and meaning.

Additional tips on good markup are listed in Chapter 8.

A Word on Deprecated Elements

Many elements and attributes in this book are marked as “deprecated,” which
means they are being phased out of HTML and are discouraged from use. Most
of the deprecated elements and attributes are presentational and have analo-
gous style sheet properties that should be used instead. Others are simply
obsolete or poorly supported.

The W3C needed a way to get the HTML specification back on track while
acknowledging legacy browser capabilities and the authoring methods that
catered to them. Rather than yanking them all at once, causing virtually every
site in the world to be invalid, they put the deprecated elements and attributes
in a “transitional” DTD that is available while browsers get up to speed with
standards and web authors (and authoring tools) change their markup practices.

Now that style sheet alternatives to presentational HTML are widely supported,
it is time to start phasing deprecated elements out of your documents as well.

Choosing Text Elements | 145

~
o
x
~*
m
o
3
)
S
-
w

The Building Blocks of Content

Text elements fall into two broad categories: inline and block. Inline elements
occur in the flow of text and do not cause line breaks by default (they are covered
later in this chapter). Block-level elements, on the other hand, have a default
presentation that starts a new line and tends to stack up like blocks in the normal
flow of the document. Block elements make up the main components of docu-
ment structure.

Compared to inline elements, there are relatively few block elements. This section
looks at heading levels, paragraphs, blockquotes, preformatted text, and
addresses. Lists and list items are also block elements, and they are discussed later
in this chapter, as is the generic div element used for defining custom block
elements. The other block-level elements are tables and forms, which are treated
in their own respective chapters.

Headings

Headings are used to introduce ideas or sections of text. (X)HTML defines six
levels of headings, from h1 to h6, in order from most to least important.

h1 through hé

<hn>...</hn>

Attributes
Core (id, class, style, title), Internationalization, Events

Deprecated attributes

align="center|left|right"
This example defines the element as a first-level heading.

<h1>Camp Sunny-Side Up</h1>
HTML syntax requires that headings appear in order (for example, an h2 should
not precede an h1) for proper document structure. Doing so not only improves
accessibility, but aids in search engine optimization (information in higher

heading levels is given more weight). Using heading levels consistently throughout
a site—using h1 for all article titles, for example—is also recommended.

Browsers generally render headings in bold text in decreasing size, but style rules
may be applied to easily change their presentation.

Paragraphs

Paragraphs are the most rudimentary elements of a text document. They are indi-
cated by the p element.

146 | Chapter10: TextElements

p
<p>.. . </p>
Attributes

Core (id, class, style, title), Internationalization, Events

Deprecated attributes
align="center|left|right"

Paragraphs may contain text and inline elements, but they may not contain other
block elements, including other paragraphs. The following is an example of a
paragraph marked up as a p element.

<p>Paragraphs are the most rudimentary elements of a text
document. They are indicated by the p element.</p>

Because paragraphs are block elements, they always start a new line. Most
browsers also add margins above and below block elements. Text is formatted
flush-left, ragged right for left-to-right reading languages (and flush-right for right-
to-left reading languages). Style sheets may be used to override any default
browser rendering.

HTML 4.01 allows the end </p> tag to be omitted, leaving user agents to parse the
beginning of a new block element as the end of the previous paragraph. In
XHTML, however, all elements must be terminated, and omitting end tags will
cause the document to be invalid. For reasons of forward compatibility, it is
recommended that you close paragraphs and all elements regardless of the
markup language you are using.

Quotations (blockquote)

Use the blockquote element for lengthy quotations, particularly those that span
several paragraphs and require line breaks.

blockquote

<blockquote>...</blockquote>

Attributes

Core (id, class, style, title), Internationalization, Events
cite="URL"

It is recommended that content within a blockquote be contained in other block-
level elements, such as paragraphs, headings, lists, and so on, as shown in this
markup example.

<blockquote cite="http://www.jenandtheneverendingstory.com">

<p>This is the beginning of a lengthy quotation (text continues...) </p>
<p>And it's still going on and on (text continues...) </p>
</blockquote>

The Building Blocks of Content | 147

~
o
x
~*
m
o
3
)
S
-
w

The cite attribute is intended to be used to provide information about the source
from which the quotation was borrowed, but it has very limited browser Ul
support (only Netscape 6+ as of this writing) and is not currently in common use.

The HTML specification recommends that blockquotes be displayed as indented
text, which, in fact, they usually are. The blockquote element should not be used
merely to achieve indents.

Preformatted Text

Preformatted text is used when it is necessary to preserve the whitespace in the
source (character spaces and line breaks) when the document is displayed. This
may be useful for code or poetry where spacing and alignment is important for
meaning. Preformatted text is indicated with the pre element.

pre

<pre>...</pre>

Attributes
Core (id, class, style, title), Internationalization, Events

Deprecated Attributes
width="number"

Preformatted text is unique in that it displays exactly as it is typed in the HTML
source code—including all line returns and multiple character spaces. Long lines
of text stay intact and are not reflowed. The pre element in this example displays
as shown in Figure 10-1. The second part of the figure shows the same content
marked up as a p element for comparison.

<pre>
This is an example of
text with a lot of
curious
whitespace.
</pre>
<p>
This is an example of
text with a lot of
curious
whitespace.
</p>

Preformatted text is meant to be displayed in a fixed-width font to preserve the
alignment of columns of characters. Authors are discouraged from changing the
font face and whitespace settings with style sheets. Preformatted elements may
include any inline element with the exception of img, object, big, small, sub, sup,
and font, all of which would disrupt the column alignment of the fixed-width
font.

148 | Chapter10: TextElements

|
m
This i 1 =
This is an example of m
[)
text with a lot of 3
curious 2

whitespace.

This 1s an example of text with a lot of curious whitespace.,

Figure 10-1. Preformatted text compared to a paragraph

Addresses

The address element is used to provide contact information for the author or
maintainer of the document. It is not appropriate for all address listings. It is
generally placed at the beginning or end of the document, or associated with a
large section of content (such as a form).

address

<address>...</address>

Attributes
Core (id, class, style, title), Internationalization, Events

An address might be used as shown in this markup example.

<address>

Contributed by Jennifer Robbins,
0'Reilly Media

</address>

Inline Elements

Most text elements are inline elements (spans of characters within the flow of
text). Inline elements by default do not add line breaks or extra space.

This section introduces the semantic text elements that describe the enclosed
text’s meaning, context, or usage. These elements leave the specific rendering of
the element to style sheets, either the author’s or the browser’s default rendering.
There are other inline elements in the XHTML specification that are concerned
with presentation (for example, the b element for bold text). They are briefly
discussed at the end this chapter.

Phrase Elements

HTML 4.01 and XHTML 1.0 and 1.1 define a collection of phrase elements (also
called logical elements) for adding structure and meaning to inline text. Because
phrase elements share syntax and attributes, they are aggregated into one element
listing here.

Inline Elements | 149

abbr, acronym, cite, code, dfn, em, kbd, samp, strong, var

<abbr>...</abbr>, <acronym>...</acronym>, etc.

Attributes
Core (id, class, style, title), Internationalization, Events

Phrase elements may contain other inline elements. The meaning and use of each
element is listed here. When elements have a standardized presentation in
browsers (for example, em elements universally display in an italic font), it is also
noted. Authors are reminded, however, to choose elements based on meaning,
not a desired rendering effect.

em
Indicates emphasized text. em elements are nearly always rendered in italics.

strong
Denotes strongly emphasized text. Strong elements are nearly always
rendered in bold text.

abbr
Indicates an abbreviated form.

acronym
Indicates an acronym.

cite
Denotes a citation: a reference to another document, especially books, maga-
zines, articles, and so on. cites are commonly rendered in italics.

dfn
Indicates the defining instance or first occurrence of the enclosed term. It can
be used to call attention to the introduction of special terms and phrases.
Defining terms are often rendered in italics.

code
Denotes a program code sample. By default, code is rendered in the browser’s
specified fixed-width font (usually Courier).

kbd
Stands for “keyboard” and indicates text entered by the user. It may be useful
for technical documents. Keyboard text is typically rendered in a fixed-width
font.

samp
Indicates sample output from programs, scripts, etc. It may be useful for

technical documents. Sample text is usually rendered in a fixed-width font by
default.

var
Indicates the instance of a variable or program argument. This is another
element that will be most useful for technical documents. Variables usually
render in italics.

150 | Chapter10: TextElements

Indicating emphasis

The em and strong elements are used for indicating emphasis and even stronger
emphasis, as demonstrated in this example.

<p>We really need to leave right now!</p>

Although emphasized text renders reliably in italics, it is not always an appro-
priate substitute for the i element. For example, if you want to italicize the title of
a book, the cite element is the better choice. If there is no good match, create
your own meaningful element using a generic span element and apply italics with
the font-style style property. To use another example, it is a convention to
display words from another language in italics, but that doesn’t necessarily mean
that those words are emphasized.

A good rule of thumb is to consider how your document would sound if it were
read aloud (as it might be). Do you want the italic words to be read louder or at a
different pitch from the rest of the sentence? If the answer is no, then it is prob-
ably best to find an alternative to em. The same logic applies to the strong element.

Acronyms and abbreviations

The abbr element indicates that text is an abbreviation: a shortened form of a
word ending in a period, such as Mass., Inc., or etc. Acronyms (indicated with the
acronym element) are abbreviations formed from the initial letters or groups of
letters of words in a phrase, such as WWW and USA. An acronym may be
pronounced as a word (NATO) or letter by letter (FBI).

The title attribute may be added to either element to provide the full name or
longer form. The value of the title attribute may be displayed as a “tool tip” by
visual browsers, or read aloud by a speech device.

<acronym title="National Aeronautics and Space Administration">NASA
</acronym>
<abbr title="Tablespoons">Tbs.</abbr>

Marking up shorthand terms such as abbreviations and acronyms provides useful
information on how they should be interpreted by user agents such as
spellcheckers, aural devices, and search-engine indexers. It also improves the
accessibility of the content.

&

" The CSS 2.1 specification provides the informative speak aural
property that allows authors to specify whether an acronym should
be read as a word or spoken letter by letter, as shown here:

ep

acronym#FBI {speak: spell-out;}
The speak property is documented in Appendix B.

Short Quotations

HTML 4 introduced the q element for indicating short inline quotations, such as
“To be, or not to be.” Longer quotations should use the blockquote element listed
earlier.

Inline Elements | 151

~
o
x
~*
m
o
3
)
S
-
w

q

Q.. </

Attributes

Core (id, class, style, title), Internationalization, Events
cite="url"

The HTML Recommendation suggests that user agents should automatically
insert quotation marks before and after q elements, therefore, authors are advised
to omit them in the source. As of this writing, Internet Explorer 5 for Macintosh,
Netscape 6, and Opera do insert generic double quotation marks, but Internet
Explorer 6 for Windows does not.

As mother always said, <q>a guest is no one to criticize.</q>

Ideally, when used with the lang (language) attribute, the browser may insert
language-specific quotation marks. Contextual quotation marks will be better
handled with CSS-based generated text, as described in Chapter 23, once browser
support improves.

The cite attribute is intended to provide a link to additional information about the
source of the quote, but it is not well supported as of this writing. Netscape 6.1
makes the cite link available in a contextual menu accessed by right-clicking the
quotation.

Deleted and Inserted Text

The ins and del elements are used to mark up changes to the text and indicate
parts of a document that have been inserted or deleted (respectively). They may
be useful for legal documents and any instance where edits need to be tracked.

As HTML elements, ins and del are unusual in that they may be used to indicate
both block-level and inline elements. They may contain one or more words in a
paragraph or one or more elements like paragraphs, lists, and tables. When ins
and del are used as inline elements (as in within a p), they may not contain block-
level elements because that violates the allowable content of the paragraph.

del, ins

..., <ins>...</ins>

Attributes
Core (id, class, style, title), Internationalization, Events
cite="URL"
datetime="YYYY-MM-DDThh:mm:ssTZD"

The following markup indicates that one name has been deleted and another one
inserted in its place.

Chief Executive Officer: <del title="retired">Peter Pan <ins>Pippi
Longstockings</ins>

152 | Chapter10: TextElements

Browsers that support the ins and del elements may give it special visual treat-
ment (for example, displaying deleted text in strike-through text), but authors are
encouraged to use style sheets to provide presentational instructions.

The title attribute may be used with del or ins to provide a short explanation for
the change that may be displayed as a “tool tip” on visual browsers. The cite
attribute provides a way to add links to longer explanations, but it is poorly
supported as of this writing.

The datetime attribute may be used to indicate the date and time the change was
made (although it, too, is poorly supported). Dates and times follow the format
listed above where YYYY is the four-digit year, MM is the two-digit month, DD is the
day, hh is the hour (00 through 23), mm is the minute (00 through 59), and ss is the
seconds (00 through 59). The TZD stands for Time Zone Designator and its value
can be Z (to indicate UTC, Coordinated Universal Time), an indication of the
number of hours and minutes ahead of UTC (such as +03:00), or an indication of
the number of hours and minutes behind UTC (such as —02:20). This is the stan-
dard format for date and time values in HTML. For more information, see www.
w3.0rg/TR/1998/NOTE-datetime-19980827.

Generic Elements (div and span)

The generic div and span elements provide a way for authors to create custom
elements. The div element is used to indicate block-level elements, while span
indicates inline elements. Both generic elements rely on id and class attributes to
give them a name, meaning, or context.

The Versatile div

The div element is used to identify and label any block-level division of text,
whether it is a few list items or an entire page.

div

<div>...</div>

Attributes
Core (id, class, style, title), Internationalization, Events

Deprecated attributes
align="center|left|right"

By marking a section of text as a div and giving it a name using id or class
attributes, you are essentially creating a custom HTML element. In this example,
a heading and a list are enclosed in a div identified as “sidebar.”

<div id="sidebar"»
<h1>List of links</h1>

Resource 1</1i>

Generic Elements (divand span) | 153

~
o
x
~*
m
o
3
)
S
-
w

Resource 2</1i>
Resource 3</1li>

</div>

Because a div is a block-level element, its contents will start on a new line (even
text not contained within other block-level elements). Otherwise, div elements
have no inherent presentation qualities of their own.

The div really shines when used in conjunction with Cascading Style Sheets. Once
you’ve marked up and named a div, you can apply styles to all of its contents or
treat it as a box that can be positioned on the page, for instance, to form a new
text column. A div may also be called on by script, applet, or other processing by
user agents.

The Useful span

Like the div element, span allows authors to create custom elements. The differ-
ence is that span is used for inline elements and does not introduce a line break.

span

...

Attributes
Core (id, class, style, title), Internationalization, Events

This is a simple example of a span used to identify a telephone number.
Jenny: 867.5309

Markup like this has a number of uses. Most commonly, it is a “hook” that can be
used to apply style sheet rules. In this example, all elements labeled as telephone
may receive the same presentational instructions, such as to be displayed in bold,
blue text.

The span also gives meaning to an otherwise random string of digits to user agents
who know what to do with telephone information. This is discussed a bit more in
the next section.

Element Identifiers (class and id)

The previous examples show how the id and class attributes are used to turn
generic div and span elements into elements with specific meanings and uses. It
should be pointed out that class and id attributes may be used with nearly all
(X)HTML elements, not just div and span. This section discusses the id and class
element identifiers and their distinct uses.

id identifier

The id attribute is used to give an element a specific and unique name in the
document. In the earlier div example, id was used to label a section of the page as
“sidebar.” That means there may be no other element with id="sidebar" in that

154 | Chapter10: TextElements

document (although, it is okay if it appears in other documents on the same site).
ID values must be unique.

The HTML 4.01 Recommendation specifies the following uses for id attribute:

* As a style sheet selector

* Asa target anchor for links (with the same functionality as)
* Asameans to access an element from a script

* As the name of a declared object element

* For general purpose processing by user agents, essentially treating the ele-
ment as data

class identifier

The class attribute is used for grouping similar elements. Multiple elements may
be assigned the same class name, and doing so enables them to be treated
similarly.

In the span example above, the telephone number was identified as telephone with
the class attribute. This implies that there may be many more telephone numbers
in the document. A single style sheet rule could then be used to make them all
bold and blue. Changing them all to green requires editing just one line of code.
This offers an obvious advantage over changing color one by one with the depre-
cated font element. In addition to being inefficient to maintain, font doesn’t add
any semantic cues for user agents.

According to the HTML 4.01 specification, the class attribute may be used:

* As a style sheet selector

* For general purpose processing by user agents

In HTML 4.01, id and class attributes may be used with all elements except base,
basefont, head, html, meta, param, script, style, and title. In XHTML, id support
has been added to those elements.

Tips on using class

There is a heady exhilaration that comes with the ability to create your own
custom elements using id and class. The class attribute in particular is prone to
misuse. These tips should provide some basic guidance for keeping your markup
clean.

Keep class names meaningful.

The value of the class attribute should provide a semantic description of a
div or span’s content. Choosing names based on the intended presentation of
the element—for example, class="indented" or class="bluetext"—does little
toward giving the element meaning and reintroduces presentational informa-
tion to the document. It is also short-sighted. Consider what happens when,
in an inevitable future design change, all elements classified as bluetext are
rendered in green.

Generic Elements (divand span) | 155

~
o
x
~*
m
o
3
)
S
-
wv

Don’t go class-crazy.
It’s easy to go overboard in assigning class names to elements. In many
cases, other types of selectors, such as contextual or attribute selectors, may
be used instead. For example, instead of labeling every hi element in a
sidebar as class="sideread", a contextual selector could be used, like this:

divitsidebar h1 {font: Verdana 1.2em bold #444;}

Lists

Humans are natural list-makers, so it makes sense that mechanisms for creating
lists of information have been part of HTML since its birth. This section looks at
the types of lists defined in (X)yHTML.:

¢ Unordered information
¢ Ordered information

¢ Terms and definitions

Unordered Lists

Unordered lists are used for collections of related items that appear in no partic-
ular order. Most lists fall into this category. Just about any list of examples,
components, thoughts, or options should be marked up as an unordered list.
Most notably, unordered lists are the element of choice for navigational options.
Unordered lists for navigation are discussed later in this section.

In X)HTML, unordered lists are denoted with the ul element. The content of a ul
is limited to one or more list items (11). List items may contain either block-level
or inline elements, or both. Unordered lists and their list items are block elements,
so each will display starting on a new line.

ul
...
Attributes

Core (id, class, style, title), Internationalization, Events

Deprecated attributes

compact
type="disc|circle|square"

...</1i>

Attributes
Core (id, class, style, title), Internationalization, Events

156 | Chapter10: TextElements

Deprecated attributes
type="format"
value="number"

~
o
x
~*
m
o
3
)
S
-
w

Unordered list syntax

This example shows the markup for a basic unordered list.

<uly
Unordered information</1i>
Ordered information</1iy
Terms and definitions</1li»

In HTML 4.01, the end tags for list items are optional, but in XHTML, all end
tags are required. It is good practice to close all elements regardless of the version
of HTML you are using.

Unordered list presentation

By default, user agents insert a bullet before each list item in an unordered list.
Leaving an unordered list unstyled (that is, applying no style sheet properties to it)
is a reliable shortcut to having your information appear as an indented bulleted
list.

But that sells the usefulness of the unordered list element short. By applying style
properties, an unordered list may be presented however you like. You can change
the shape of the bullets with the list-style-type property (this property replaces
the deprecated type attribute that is discouraged from use). The list-style-image
property allows you to use your own image as a bullet. Style properties for lists are
discussed in Chapter 23.

And that’s just the beginning. You can set lists to display horizontally, too. You
can even use unordered list markup as the structure underlying a rich graphical
navigation toolbar with rollover effects, all accomplished with Cascading Style
Sheets. These techniques are outlined in Chapter 24.

Ordered Lists

Ordered lists are used for lists in which the sequence of the items is important,
such as step-by-step instructions or endnotes. Ordered lists are indicated by the ol
element and must include one or more list items (1i). Like all lists, ordered lists
and their list items are block-level elements.

ol

...

Attributes
Core (id, class, style, title), Internationalization, Events

Lists | 157

Deprecated attributes
compact
start="number"
type="1|A|a|I|i"

Ordered lists have the same basic structures as unordered lists, as shown in this
simple example.

<li»Get out of bed</1li>
Take a shower</li»
<lis>Walk the dog</1i>

By default, user agents automatically number the list items in ordered lists. There
is no need to add the number in the source.

Style sheets may be used to change the numbering system (list-style-type) as
described in Chapter 23. The list-style-type property replaces the deprecated
type attribute that specifies the numbering system for lists, as shown in
Table 10-1.

Table 10-1. Values of the deprecated type attribute

Type value Generated style Sample sequence
1 Arabic numerals (default) 1,2,3,4

A Uppercase letters ABCD

a Lowercase letters a,b,¢d

| Uppercase Roman numerals 1AL IV

i Lowercase Roman numerals i, ii, ii, iv

Use the deprecated start attribute to start the counting of the list items at a
particular number. This markup example creates an ordered list using lowercase
letters that starts counting at 10.

<ol type="a" start="10">

<1li>See quirksmode.org/css/tests/</1i>
According to the W3C Working Group
See the XHTML 1.1 Working Document

w:»

The resulting list would look like this, because “j” is the tenth letter in the
alphabet:

j. See quirksmode.org/css/tests/
k. According to the W3C Working Group
1. See the XHTML 1.1 Working Document

There is a CSS alternative to the start attribute using the counter-reset property,
but it is poorly supported by browsers at this time.

158 | Chapter10: TextElements

Definition Lists

Use a definition list for lists that consist of term and definition pairs.

Definition lists are marked up as d1 elements. The content of a d1 is some number
of terms (indicated by the dt element) and definitions (indicated by the dd
element). The dt (term) element may contain only inline content, but a dd may
include block-level or inline elements. All three elements used in definition lists
are block-level elements and will start on a new line by default.

~
o
x
~*
m
o
3
)
E
-
w

dl
<dl>...</dl>

Attributes
Core (id, class, style, title), Internationalization, Events
compact

dd
<dd>...</dd>

Attributes
Core (id, class, style, title), Internationalization, Events

dt
<dt>...</dt>

Attributes
Core (id, class, style, title), Internationalization, Events

The markup structure for definition lists is a little different from the lists discussed
so far. The entire list, made up of dt and dd elements, is contained within the d1
element, as shown here.

<dl>

<dt>em</dt>

<dd>Indicates emphasized text. em elements are nearly always rendered in
italics.</dd>

<dt>strong</dt>
<dd>Denotes strongly emphasized text. Strong elements are nearly always
rendered in bold text.</dd>

<dt>abbr</dt>
<dd>Indicates an abbreviated form.</dd>

<dt>acronyme/dt>
<dd>Indicates an acronym.</dd>
</d1>

Lists | 159

Terms and definitions are not required to appear in alternating order. In other
words, it is fine to introduce two terms and apply one definition, or supply two or
more definition elements for a single term. The HTML 4.01 Recommendation
provides an informal example of definition list dialogues, where the speaker corre-
sponds to the term and the spoken words correspond to the definition. Many
semantic (X)HTML experts consider this particular example to be an abuse of the
semantics of definitional lists and thus it should be avoided.

The presentation of definition lists should be controlled with style sheet proper-
ties. By default, user agents generally display the definitions on an indent.

Nesting Lists

List elements may be nested within other lists. For example, you can add an unor-
dered list within a definition list, or a numbered list as an item within an
unordered list. This example shows just one variation. The resulting list is shown
in Figure 10-2.

Mix Marinade

2 slices ginger (smashed)</1i>
<1i>1 T. rice wine or sake
1 t. salt</1i>
<1i>2 T. peanut oil</1i>

</1i>
Saute the seasonings</1i>
<1i>Add fish sauce</1i>

1. Mix Marinade
o 2 slices ginger (smashed)
o | T.rice wine or sake
o | 1. salt
o 2T, peanut oil
2. Saute the scasonings
3. Add fish sauce

Figure 10-2. Nested lists

Note that in order for the list markup to be valid, ul and ol ele-
ments may contain only 1i elements. That means the nested list
must be contained within a list item (1i) and may not be a child of
the ul or ol element. Authors should also be careful to close all ele-
ments so they are nested properly and do not overlap.

When unstyled unordered lists (ul) are nested within each other, browsers auto-
matically display a different bullet for each consecutive level, usually disc, then

160 | Chapter10: TextElements

circle, then square. Nested ordered lists all receive the default Arabic numbering
system (1, 2, 3, etc.). Use style sheets to specify the marker system for each nested

list level, as appropriate.

~
o
x
~*
m
o
3
)
S
-
w

Deprecated List Elements

The HTML and XHTML Transitional Recommendations include two depre-
cated list elements, dir and menu. The dir (directory) element was designed for
use in multicolumn displays. The menu element was designed to be used as a
single-column list of menu options. The W3C strongly discourages the use of
these elements and instructs authors to use unordered lists (ul) instead.

Presentational Elements

There are a handful of (X)HTML elements that are explicitly presentation
oriented. Sometimes called “physical” styles, they provide instructions for the
size, weight, or style of the font used to display the element.

If you’ve been paying attention, you already know that Cascading Style Sheets are
now the preferred way to specify presentation instructions. Table 10-2 lists the
presentational inline elements, along with the preferred alternative for achieving
the same visual effect.

Table 10-2. Presentational inline elements and style sheet alternatives

Element
b

big

s (deprecated)

small

strike (deprecated)

Description
Bold

Big

Italic

Strike-through

Small

Strike-through

Alternative
Use the strong element instead if appropriate, or use the font-
weight property:

font-weight: bold
Use a relative font-size keyword to make text display slightly
larger than the surrounding text:

font-size: bigger
Use the em element instead if appropriate, or use the font-style
property:

font-style: italic
Use the text-decoration property to make text display with a
line through it:

text-decoration: line-through
Use a relative font-size keyword to make text display slightly
smaller than the surrounding text:

font-size: smaller
Use the text-decoration property to make text display with a
line through it:

text-decoration: line-through

Presentational Elements | 161

Table 10-2. Presentational inline elements and style sheet alternatives (continued)

Element Description Alternative
tt Teletype Use the font-family property to select a specific or generic
fixed-width font:
font-family: "Andale Mono", monospace;
u (deprecated) Underline Use the text-decoration property to make text display with a
line underit:
text-decoration: underline

Font Elements

The font element—an inline element used to specify the size, color, and font face
for the enclosed text using the size, color, and face attributes, respectively—is
the poster child for what went wrong with HTML. It was first introduced by
Netscape Navigator as a means to give authors control over font formatting not
available with HTML at the time (and for good reason). Netscape was rewarded
with a temporary slew of loyal users, but the HTML standard and web develop-
ment community paid a steep price in the long run.

Another deprecated font-related element, basefont, is used to set the font face,
color, and size for an entire document when it is in the head of the document or
for subsequent text when it is placed in the body.

The font element is emphatically deprecated, and you will be ridiculed by your
peers for using it. 'm not kidding. Don’t use it. For the sake of historical refer-
ence and thoroughness in documenting the HTML and XHTML Transitional
DTDs, it is included in this chapter with some basic explanation.

font

...

This element is deprecated.

Attributes
Core (id, class, style, title), Internationalization

Deprecated attributes

color="#RRGGBB" or "color name"
face="typeface" (or list of typefaces)
size="value"

basefont

<basefont>

This element is deprecated.

Attributes
id="text"

162 | Chapter10: TextElements

Deprecated attributes
color="#RRGGBB" or "color name"
face="typeface" (or list of typefaces)
size="value"

~
o
x
~*
m
o
3
)
E
-
w

The font element adds no semantic value to a document and mixes presentation
instructions in with the document structure. Furthermore, it makes updating a
site more labor intensive, because each and every font element needs to be hunted
down and changed, unlike style sheets that enable elements throughout a site to
be reformatted with one simple edit.

The font element has three attributes, all of which have been deprecated as well:

color
Specifies the color of the text using a hexadecimal RGB value or color name.

face
Specifies a font or list of fonts (separated by commas) to be used to display
the element.

size
Specifies the size for the font. The default text size is represented by the value
“3.” Values may be provided as numbers (1 through 7) or as values relative to
3 (for example, the value —1 is the same as the value 2, the value +3 is the
same as 6).

A single font element may contain all of these attributes as shown:
...

All of the functionality of the font element has been replaced by style sheet prop-
erties. The font element in the example could be handled with these style
properties:
em {font-family: sans-serif;

font-size: 120%;

color: white; }
For more information on using style sheets to control the presentation of fonts,
see Chapter 18, and kiss your font tags goodbye forever.

Subscript and Superscript

The subscript (sub) and superscript (sup) elements cause the selected text to
display in a smaller size and positioned slightly below (sub) or above (sup) the
baseline. These elements may be helpful for indicating chemical formulas or
mathematical equations.

sub, sup

_{...}, ^{...}

Attributes
Core (id, class, style, title), Internationalization, Events

Presentational Elements | 163

Figure 10-3 shows how these examples of subscript and superscript render in a
browser.

<p>H₂0</p>

<p>E=MC²</p>

H,0

E=MC?

Figure 10-3. Subscript and superscript

Line Breaks

Line breaks may be added in the flow of text using the br element. The text
following the br element begins on a new line with no extra space added above. It
is one of the few presentational elements preserved in the XHTML 1.0 Strict and
XHTML 1.1 DTDs.

br

Attributes
Core (id, class, style, title)

Deprecated Attributes
clear="none | left | right | all "

The br element is straightforward to use, as shown in this example.

<p>This is a paragraph but I want
this text to start on a new line in
the browser.</p>

The clear attribute is used with the br element to specify where the next line
should appear in relation to floated elements. For example, if an image has been
floated to the right, then adding the markup <br clear="right" /> in the flow of
text causes the new line to begin below the image on the right margin. The value
left starts the next line below any floated objects on the left margin. The value
all starts the next line below floats on both margins. The default, none, causes the
next line to start where it would normally.

Word Wrapping

Another text quality that is inherently presentational is word wrapping: the way
lines break automatically in the browser window. In CSS, you can prevent lines
from wrapping by setting the white-space property to nowrap. The HTML and

164 | Chapter10: TextElements

XHTML Recommendations define no element for preventing lines from wrap-
ping. However, there are two nonstandard elements, nobr and wbr, that were
introduced by Netscape and are sometimes used to control whether and where
lines wrap.

The nobr element, which stands for “no break,” prevents its contents from wrap-
ping. The wbr (word break) element allows authors to specify the preferred point
at which a line should break. These have never been adopted into an HTML
Recommendation, but they are still in use and supported by Internet Explorer (all
versions) and Mozilla. They are not supported in Safari and Opera.

Text and graphics that appear within the nobr element always display on one line,
and are not wrapped in the browser window. If the string of characters or
elements within the nobr element is very long, it continues off the browser
window, and users must scroll horizontally to the right to see it. Adding a br
within a nobr element text causes the line to break.

The esoteric word-break element (wbr) is used to indicate a recommended word-
break point within content if the browser needs to do so. This may be useful if
you have long strings of text (such as code or URLs) that may need to fit in tight
spaces like table cells. If the table cell is wide enough, the text stays on one line,
but if it is scaled smaller on someone’s browser, the browser will wrap the line at
the wbr. All of these nonstandard presentational elements should be avoided as
well.

There are standard character entities for “soft hyphen” that should perform the
same function, but they are inconsistently supported (the following section
provides more information on character entities). The ​ entity causes a
conditional line break in Mozilla, Safari, and Opera, but not Internet Explorer.
The ­ entity works for Opera and Internet Explorer on Windows but is buggy
on Safari and is not supported by Mozilla.

&
Y Thanks go to Peter-Paul Koch for his wbr testing and summary on
qs ;
PR Quirksmode.org.
2

Horizontal Rules

In some instances, it is useful to add a visual divider between sections of a docu-
ment. (X)HTML includes the hr element for adding a horizontal rule (line) to a
web page.

hr

<hr />

Attributes
Core (id, class, style, title), Internationalization, Events

Presentational Elements | 165

~
o
x
~*
m
o
3
)
S
-
wv

Deprecated attributes
align="center|left|right"
noshade="noshade"
size="number"
width="number" or "number%"

The hr element is a block-level element, so it always appears on its own line,
usually with a bit of space above and below as well. By default, browsers render a
horizontal rule as a beveled dimensional line, as shown in Figure 10-4.

<p>These are some deep thoughts.</p>
<hr />
<p>And this is another paragraph of deep thoughts.</p>

These are some deep thoughts.

And this is another paragraph of deep thoughts.

Figure 10-4. A horizontal rule (default rendering)

The hr element includes a number of deprecated attributes for controlling the
presentation of the rule.

size
Specifies the length of the rule in pixels or percentages.

width
Specifies the thickness of the rule in pixels.

align
Specifies the horizontal alignment of horizontal rules that are not the full
width of the containing element.

noshade
Turns off the dimensional shading on the rule and renders it in black.

It is possible to control the presentation of an hr with style sheets, as shown in
this example, that make the rule a one-pixel solid blue line. Note that the color
and background colors are specified for cross-browser compatibility.

hr {height: 1px;
width: 100%;
color: blue;
background-color: blue; }

The preferred method is to keep the presentational hr element out of the docu-
ment entirely and specify horizontal dividers using borders on the top or bottom
edges of specific block elements, such as before his.

h1 {border-top: 1px solid blue;
padding-top: 3em; }

166 | Chapter10: TextElements

Character Entity References

Characters not found in the normal alphanumeric character set, such as < and &,
must be specified in HTML and XHTML documents using character references.
This is known as escaping the character. Using the standard desktop publishing
keyboard commands (such as Option-G for the © symbol) within an HTML
document will not produce the desired character when the document is rendered
in a browser. In fact, the browser generally displays the numeric entity for the
character.

In (X)HTML documents, escaped characters are indicated by character references
that begin with & and end with ;. The character may be referred to by its Numeric
Character Reference (NCR) or a predefined character entity name.

A Numeric Character Reference refers to a character by its Unicode code point in

either decimal or hexadecimal form (for more information on Unicode and code

points, see Chapter 6). Decimal character references use the syntax &tnnnn;. Hexa-
w_m,

decimal values are indicated by an “x”: 8#xhhhh;. For example, the less-than (<)
character could be identified as < (decimal) or < (hexadecimal).

Character entities are abbreviated names for characters, such as &1t; for the less-
than symbol. Character entities are predefined in the DTDs of markup languages
such as HTML and XHMTL as a convenience to authors, because they may be
easier to remember than Numeric Character References.

&

XHTML includes the XML entity declaration for the apostrophe
('). In HTML, the apostrophe character entity was curiously
2" omitted, so its numeric reference (8039;) must be used instead.

Table 10-3 presents the (XYHTML character entities and numeric character refer-
ences for commonly used special characters. The complete list of character
entities defined in HTML 4.01 and XHTML 1.0/1.1 appears in Appendix C.

Table 10-3. Common special characters and their character entities

Character Description Entity Decimal Hex
Character space (nonbreaking space)
Ampersand Bamp; & 3ittx26;
Less-than sign (useful for displaying 81t; 8#060; 8#x3C;
markup on a web page)

> Greater-than sign (useful for displaying 3gt; 8#062; 8#x3E;
markup on a web page)

' Apostrophe ' ' &ttx27;

(XHTML only)

“ Left curly quotes 81ddquo; “ &#tx201C;

" Right curly quotes 8rdquo; ” &#tx201D;

™ Trademark ™ &18482; &ttx2122;

f Pound symbol £ £ 8#HxA3;

Character Entity References | 167

~
o
x
~*
m
o
3
)
S
-
w

Table 10-3. Common special characters and their character entities (continued)

Character Description Entity Decimal Hex

¥ Yen symbol ¥ ¥ QittxAS;
© Copyright symbol © © 8ittxA9;
® Registered trademark dreg; ® QttxAE;

XML Character Entities

XML 1.0 defines five character entities that must be supported by all XML
processors. The XHTML DTDs explicitly declare these entities as well, in
keeping with recommended practice for XML languages.

Less than (<) &1t; <
Greater than (>) 8gt; 8#62;
Ampersand (&) 8amp; 8#38;
Apostrophe (') 8apos; '
Quotation mark (") " "

The only significant change is that XHTML includes an entity for the apos-
trophe character (8apos;), which was curiously omitted from HTML. For
backward compatibility, it is reccommended that authors use the numeric refer-
ence for apostrophe (8#39;) instead.

168

| Chapter10: Text Elements

11

Creating Links

The HTML 4.01 specification puts it simply and clearly: “A link is a connection
from one web resource to another.” This ability to create hyperlinks from one
document to another is what makes HTML unique among document markup
languages and is the key to its widespread popularity. You can create a link to any
web resource, including (but not limited to) another HTML document, an image,
a program, or a particular element within an HTML document.

This chapter focuses on these HTML elements related to linking and building
relationships between documents.

a Anchor (link)
base Provides a base pathname
link Establishes relationship between documents

Simple Hypertext Links

The anchor (a) element is used to identify a string of text or an image that serves
as a hypertext link to another document.

a

<ay...

Attributes
Core (id, class, style, title)
Internationalization
Events (plus onfocus, onblur)
accesskey="character"
charset="charset"
coords="x,y coordinates"

169

href="URL"

id="text"

hreflang="1language code"
name="text"

rel="relationships"
rev="relationships"
shape="rect|circle|poly|default”
tabindex="number"

target="text"

type="media type"

The href attribute provides the pathname (URL) of the document to which you
want to link. URLSs can be absolute or relative, as discussed in the next sections.

A text link is marked up like this:
I am 1linking to you!

To make an image a link, enclose the image element in an anchor as follows:

By default, most graphical browsers display linked text underlined and in blue,
but this presentation can be altered with style sheets. Linked images appear with a
blue border by default unless you change this setting with the border style prop-
erty or the deprecated border attribute in the img element.

Absolute URLs

An absolute URL is made up of the following components: a protocol identifier, a
hostname (the name of the server machine), and the path to the specific filename.
When you are linking to documents on other servers, you need to use an absolute
URL. The following is an example of a link with an absolute URL:

...

Here, the protocol is identified as http (HyperText Transfer Protocol, the stan-
dard protocol of the Web), the host is www.littlechair.com, and the pathname is
web/index.html.

Relative URLs

A relative URL provides a pointer to another document relative to the location of
the current document. The syntax is based on pathname structures in the Unix
operating system, which are discussed in Chapter 4. When pointing to another
document within your own site (on the same server), it is common to use relative
URLs.

For example, if T am currently in resume.html (identified here by its full
pathname):

www.littlechair.com/web/work/resume.html

and I want to put a link on that page to a document named bio.html that is in the
same directory:

170 | Chapter11: Creating Links

www. littlechair.com/web/work/bio.html
I could use a relative URL as the href attribute value as follows:
...

Using the same example, to link to the file index.html in a higher-level directory
(web), 1 could use the relative pathname to that file as shown:

This relative URL is the equivalent to the absolute URL http://www.littlechair.com/
web/index.html.

Establishing a base

By default, a relative URL is based on the current document. You can change that
by placing the base element in the document header (head) to state explicitly the
base URL for all relative pathnames in the document.

base

<base />

Attributes
id="text" (XHTML only)
href="url" (Required)
target="name"

The base element may appear only in the head of the document, and it should
appear before any other element with an external reference. The browser uses the
specified base URL (not the current document’s URL) to resolve relative URLs.
The base element is also useful in specifying a target frame for relative links in a
framed document (see Chapter 14).

Linking Within a Document

By default, when you link to a page, the browser displays the top of that page.
You may also link to a particular point in a web page (called a fragment).

Linking to document fragments is most often used as a navigational aid by
creating a hyperlinked table of contents at the top of a very long scrolling web
page. Users can see the major topics at a glance and quickly get to the portions
that interest them. When linking down into a long page, it is generally a good idea
to add links back to the top of the page or to the table of contents. You can also
link to fragments in other documents (as long as they have been named).

Linking to specific destinations in a document is a two-step process in which you
give an identifying name to an element and then make a link to that marker.

Naming a Fragment

HTML provides two ways to identify a document fragment: by inserting an
anchor (a) element with the name attribute (instead of href) or by adding the id

Linking Within a Document | 171

n
-
[]
Y]
=3
3
(-]
=
S
=
7]

attribute to any HTML element. Both methods act as a marker that can be refer-
enced from a link later.

XHTML documents must use the id attribute for all fragment identifiers in order
to be well-structured XML. Unfortunately, the id attribute is not universally
supported by all browsers for this purpose (support is lacking in Version 4
browsers). To ensure maximum backward and forward compatibility, the
XHTML Recommendation suggests redundant markup using both id and name in
the a element.

In this example, a named anchor is used to let users link directly to a “Stock
Quotes” section of a web document called dailynews.html. First, the heading is
marked up as a named anchor with the name “stocks.” Named anchors receive no
special style treatment by default (in other words, they are not underlined like
anchors with the href attribute).

<h1>Daily Stock Quotes</h1>

The same fragment might also be identified right in the h1 element as shown here
(if Version 4 browsers don’t need to be supported).

<h1 id="stocks">Daily Stock Quotes<hi>

The value of the name and id attributes must be unique within the document (in
other words, two elements can’t be given the same name).

Linking to a Fragment

The second step is to create a link to the fragment using a standard anchor
element with its href attribute. Fragment identifiers are placed at the end of the
pathname and are indicated by the hash (#) symbol (formally known as an
octothorpe).

To link to the stocks fragment from within dailynews.html, the markup would

look like this:

Check out the Stock Quotes

Linking to a Fragment in Another Document

You can create a link to a named fragment of any document on the Web by using
the complete pathname immediately followed by the fragment identifier. Of
course, the fragment identifiers would have to be in place already. To link to the
stocks section from another document in the same directory, use a relative path-
name as follows:

Go to today's Stock Quotes
Use an absolute URL to link to a fragment on another site, as in:

...

172 | Chapter11: Creating Links

Targeting Windows

The problem with a hypertext medium is that when users click on an interesting
link that takes them off your page, they might never come back. One solution to
this problem is to make the target document appear in a second browser window
that opens automatically. In that way, your page is still readily available in the
background.

This technique is not without controversy, however. Windows that open auto-
matically, also known as pop-up windows, are now strongly associated with
intrusive web advertising. The population’s distaste for them is so strong that
there are a slew of pop-up blocker programs on the market and even built right
into browsers. Consider whether a pop-up window is the best solution given the
fact that some users may not see that content. Pop-up windows are also problem-
atic from the standpoint of usability and accessibility. If you do use a pop-up
window, it is advised that you let users know what to expect by adding a
comment such as “link opens in new window.”

& @
4
A0

The following technique simply opens a new browser window but

. does not control its size. To do that, you must use JavaScript.
AN Y
05

To launch a new browser window for the linked document, use the target attribute
in the a element. Setting the target attribute to the standardized " blank" value
causes the browser to open a fresh browser window. For example:

...

Note that _blank opens a new browser window every time. So if you set every link
on your page to target a _blank window, every link will launch a new window,
potentially leaving your user with a mess of open windows.

A better method, especially if you have more than one link, is to give the targeted
window a specific name, which can then be reused by subsequent links. The
following link will open a new window called “display”:

...

All links that target a window called “display” will now load into that same
browser window.

The target attribute is most often used in conjunction with framed documents.
The syntax and strategy for using the target attribute with framed documents is
discussed in Chapter 14.

Alternative Protocols

Linking to other web pages using the HTTP protocol is by far the most common
type of link, but there are several other types of transactions that can be made
using other standard Internet protocols.

Alternative Protocols | 173

n
-
[]
Y]
=3
3
(-]
=
S
=
7]

Mail Link (mailto:)

The mailto protocol can be used in an a element to automatically send an email
message to the recipient, using the browser’s email application or an external
email application. Note that the browser must be configured to support this
protocol, so it will not work for all users. The mailto protocol has the following
components:

mailto:username@domain
A typical mail link might look like this:
Send Jennifer email

You can also experiment with adding information within the mailto URL that
automatically fills in standard email fields such as Subject or cc:.

mailto:username@domain?subject=subject
mailto:username@domain?cc=personi
mailto:username@domain?bcc=person2
mailto:username@domain?body=body

Additional variables are appended to the string with an ampersand (8) symbol as
shown:

mailto:username@domain?subject=subject&cc=personi&body=body

In XHTML, the ampersand (&) symbol must be escaped—that is, expressed as a
character entity (&) in the string—for the document to be valid. The same link
in XHTML would be marked up like this:

mailto:username@domain?subject=subject8amp;cc=personi&body=body

Spaces within subject lines need to be written as %20 (the space character in hexa-
decimal notation). The following sample mail link employs these additions:

Email for
Jen

When you put a link to an email address on a web page, the
address is prone to getting “spidered” (automatically indexed) and
added to spam mailing lists. To avoid getting spammed, do not put
your intact email address in the source document, either as a mailto
link or in the content itself. An alternative is to spell out the email
address (such as “jen at oreilly dot com”) so it is understandable to
humans but not recognizable to spambots.

FTP Link (ftp://)

You can link directly to a file on an FTP server. When the user clicks on the link,
the file downloads automatically using the browser’s built-in FTP functions and is
saved on the user’s machine. If the document is on an anonymous FTP server (no
account name and password are required), the FTP link is simple:

...

To link to an FTP server that requires the user to log in, the format is:

174 | Chapter11: Creating Links

...

For security purposes, it is highly recommended that you never include both the
username and password to a server within an HTML document. If you use the
syntax user@server/path, the users will be prompted to enter their passwords in a
dialog box.

By default, the requested file is transferred in binary format. To specify that the
document should be transferred as an ASCII file, add ;type=a to the end of the
URL:

...

The variable type=d identifies the pathname as a directory and simply displays its
contents in the browser window. The variable type=i specifies image or binary
mode, which is the default but may also be given explicitly.

Here are some examples of FTP links:

...
...

Other Links

Table 11-1 lists URL types that are not as well known or useful as mailto or ftp://,
but are available. As with other links, place these URLs after the href attribute
within the anchor element.

Table 11-1. Alternative link protocols

Type Syntax Use

File file://server/path Specifies a file without indicating the protocol. This is
useful for accessing files on a contained site such as a (D-
ROM or kiosk application, but it is less appropriate over
networks (such as the Internet).

News News : newsgroup Accesses either a single message or an entire newsgroup
news :message_id within the Usenet news system. Some browsers do not
- support news URLS, so you should avoid using them.
NNTP nntp://server:port/ Provides a complete mechanism for accessing Usenet
newsgroup/article news articles. The article is served only to machines that

are allowed to retrieve articles from this server, so this
URL has limited practical use.

Telnet telnet:// Opens a Telnet session with a desired server. The user
user:password@server:port/ and password@ elements are optional and follow the
same rules as described for ftp://.

Gopher gopher://server:port/path Accesses a document on a gopher server. The gopher
document retrieval system was eclipsed by the World
Wide Web, but some gopher servers are still operating.

Linking Documents with link

The link element defines a relationship between the current document and
another external document. It is not the same as a hypertext link because it is not
accessible by clicking or otherwise selecting a hyperlink. It is always placed in the

Linking Documentswithlink | 175

n
-
[]
Y]
=3
3
(-]
=
S
=
7]

header (head) of the document. There can be multiple link elements in a
document.

link
<link />

Attributes
Core (id, class, style, title), Internationalization, Events
charset="charset"
href="URL"
hreflang="1language code"
media="all|screen|print|handheld|projection|tty|tv|projection|braille|
aural”
rel="relationships"
rev="relationships"
target="name"
type="resource"

The most important attributes are href, which points to the linked file, and rel,
which describes the relationship(s) from the source document to the target docu-
ment. The rev attribute describes the reverse relationship(s) (from the target back
to the source).

A variety of attributes make the link element very versatile, but it is not currently
used to its full potential. By far, the most popular application of the link element
is for referring to an external style sheet. In this example, the type attribute identi-
fies the MIME content type of the linked document as a Cascading Style Sheet,
which is required in XHTML.:

<head>
<link href="wholesite.css" rel="stylesheet" type="text/css" />
</head>

Note the use of the “/” at the end of the link element to explicitly mark it as an
empty element for XHTML, while leaving a space before the “/” for compatibility
with Version 4 browsers.

Another use as recommended in the HTML 4.01 specification is to refer to an
alternate version of the document in another language. The following example
creates a link to a French version of the document:

<head>

<link rel="alternate" href="translations/french.html"
type="text/html" hreflang="fr" />

</head>

By using the next and prev values for the rel attribute, you can establish the docu-
ment’s position in a sequence of documents, as shown in the next example. This
information could be used by browsers and other tools to build navigation menus,
tables of contents, or other link collections.

<head>
<title>Chapter 11: Creating Links</title>

176 | Chapter11: Creating Links

<link rel="prev" href="chapter10.html" />
<link rel="next" href="chapteri2.html" />

</head>

Table 11-2 lists the accepted values for the rel and rev attributes and their uses.
These attributes and values can be used in the a element as well as link to define
relationships for a specific link. Again, these features are not widely used, nor are
they well supported by browser user interfaces.

Table 11-2. Link types using the rel attribute

Value
alternate

stylesheet
start

next

prev
contents (or toc)
index
glossary
copyright
chapter
section
subsection
appendix
help
bookmark

Relationship

Substitute version of the current document, perhaps in another language or optimized for
another display medium. This value is used frequently in style sheet switching.

External Cascading Style Sheet; used with type="text/css".
The first document in a collection or series.

The next document in a series.

The previous document in a series.

A document providing a table of contents.

A document providing an index for the current document.

A document containing a glossary of terms.

A document containing copyright information for the current document.
A document serving as a chapter in a collection of documents.

A document serving as a section in a collection of documents.

A document serving as a subsection in a collection of documents.
A document serving as an appendix.

A help document.

A document that serves as a bookmark; the tit1e attribute can be used to name the book-
mark.

Linking Documentswithlink | 177

n
S
I
o
-3
3
=
E
=
w

12

Images and Objects

In addition to text content, web pages may include a wide range of multimedia
objects, including images, image maps, Java applets, video, Flash movies, even
other HTML documents. This chapter focuses on the (X)HTML elements defined
for adding images and media objects, including:

img Adds animage

map The map used for an image map

area A geometric region in an image map

object A generic media object

param Specifies values for an object necessary at runtime
embed Embeds media requiring plug-ins (nonstandard)

noembed Content displayed if embedded media is not supported (nonstandard)
applet Adds an applet (deprecated)
iframe A floating frame that displays an external HTML document

Inline Images

Inline images are images that occur in the normal flow of the document’s content.
As inline elements, they affect the visual display of other elements in the flow,
unlike background images, which render behind elements. Images are added to
the document with the img element. Images are considered to be replaced
elements because the actual content resides in external files rather than in the
source document.
&
=5 The HTML 4.01 Recommendation allows images to be added using
0‘;‘. p the generic object element, as demonstrated later in this chapter.
- Because the object method is not universally supported, the img
element is still the primary element used to place images in web
documents.

¢y

178

img

Attributes
Core (id, class, style, title), Internationalization, Events
alt="text" (Required)
ismap
height="number"
longdesc="URL"
lowsrc="URL"
name="text"
src="URL" (Required)
usemap="URL"
width="number"

[=]
k=2
m
[
-
7y

pue sabew]

Deprecated attributes
align="absbottom|absmiddle|baseline|bottom|center|left|middle|
right|top"
border="number"
hspace="number"
vspace="number"

Image Formats and Usage

Web images must be in one of the three web-compatible formats: GIF, JPEG, or
PNG. Furthermore, the files should be named with the proper suffixes—.gif, .jpeg
or .jpg, and .png, respectively—so that your web server sends the proper Content-
Type—image/gif, image/jpeg, and image/png, respectively—which the browser
uses to recognize the image format. These graphic file formats, as well as other
requirements for putting images online, are discussed in detail in Part V.

Inline images are used in a variety of ways:

As a simple image
An image can be used on a web page much as it is used in print—as a static
image that adds information, such as a company logo or an illustration.

As alink
An image can also be used to link to another document as an alternative to
text links.

As an image map
An image map is a single image with multiple “hotspots” that link to other
documents. There is nothing special about the image itself; it is an ordinary
inline image. Special HTML markup and map files link pointer coordinates
with their respective URLs. The upcoming “Image Maps” section of this
chapter includes a full explanation of how image maps work and how to
create them.

Inline Images | 179

Images (transparent GIFs, in particular) have also been used as
spacing devices, but now that we have better control of space and
alignment with Cascading Style Sheets, this use of spacer images is
outdated and must be avoided in contemporary web design.

With the emergence of standards-driven web design in recent years, there has
been a shift away from using inline images for purely decorative purposes. Images
that are not part of the content and only contribute to the presentation of the page
are commonly placed as background images using CSS instead. Images may be
applied to the background of any element (not just body) using the background-
image or shortcut background style properties and they don’t need to tile.
Chapter 24 includes examples of several CSS image replacement techniques.

There are several benefits to specifying decorative images only in an external style
sheet and keeping them out of the document structure. Not only does it make the
document cleaner and more accessible, it also makes it easier to make changes to
the look and feel of a site than when presentational elements are interspersed in
the content. See Chapter 20 for more details on CSS background images. For
inspiration on how visually rich a web page can be with no img elements at all, see
the CSS Zen Garden site at www.csszengarden.com.

Without further ado, it is time to look at an example of img element markup.

img Element Syntax

There are over a dozen attributes that can be applied to the img element to affect
its display, but the only required attributes are src, which provides the URL of the
image file, and alt for providing text for browsers that cannot (or have been asked
not to) display images. The syntax for a minimal image element looks like this:

The URL provided by the src attribute may be absolute (including the protocol
and domain name) or relative to the current document (using a relative path-

name). The conventions for relative pathnames are described in detail in
Chapter 4.

Figure 12-1 shows an inline image resulting from this markup.

<p>Star light Star bright.</p>

X

Star light Star bright.

Figure 12-1. An image placed within a line of text

Default presentation

As the example makes clear, because img is an inline element, it does not intro-
duce any line breaks or extra space. By default, the bottom of an image aligns with

180 | Chapter12: Imagesand Objects

the baseline of surrounding text. The alignment and position of the image may be
changed with style sheet rules as discussed in Chapters 18 and 21. There are also a
number of deprecated attributes for controlling the presentation of images that
are briefly introduced later in this chapter.

Alternative text

There is no guarantee that an image will be displayed. It may be corrupted or not
found, or users may be using a text-only or speech browser that doesn’t support
images. When an image is not displayed, graphical browsers display a generic
broken image icon in its place. Non-graphical browsers generally just write out
“[image].” Either of these instances can be a dead end for users and make certain
content inaccessible.

The alt attribute allows you to specify a string of alternative text to be displayed
in place of the image when the image is unavailable. It is also what non-graphical
browsers write in place of images. Figure 12-2 shows one possible rendering for
this markup if the image file should fail to load.

<p>First star I see tonight.
</p>

e Totar 1 i
First star Z|[star illustration] I see tonight.

Figure 12-2. Alternative text may be displayed when an image is unavailable

Firefox displays the alternative text as though it were in the text flow. The Safari
browser does not display alternative text for missing graphics. Some browsers
display alternative text as a pop-up “tool tip” when the mouse rests on the image
area, but such behavior is nonstandard is not something to depend on.

The HTML 4.01 specification declared alt to be a required attribute within the
img element (although an image will still display without it). Taking the extra time
to provide alternative text for your images is the simplest way to make your page
accessible to the greatest number of readers.

The W3C recommends that alternative text be provided only when the image
contains content relevant to the document, not when the image is purely decora-
tive. For example, the alternative text “red line” is not useful and only slows down
document processing and may be frustrating for users using spoken browsing
devices. An alt attribute with an empty string (alt="") is recommended instead.

Specifying Width and Height

Although src and alt are the only required attributes in the img element, width
and height are often used because they speed up page display. The width and
height attributes simply indicate the dimension of the image in pixels, such as:

Inline Images | 181

[=]
k=2
m
[
-
7y

pue sabew]

With this information, the browser can lay out the page before the images
download.

&

: CSS width and height properties are preferred to the presentational
. atributes, and will also ensure that the page can be assembled
' before the images arrive.

Without width and height values, the page may be redrawn several times, first
without images in place, and again each time new images arrive. It is worthwhile
to take the time to include accurate width and height information in every img
element.

If the width and height values specified are different than the actual dimensions of
the image, the browser resizes the image to match the specified dimensions. If you
specify a percentage value for width and height, some later browsers resize the
image to the desired proportions.

Although this effect may be convenient and prevent an extra trip to the image
editor, in some browsers, it just results in a pixelated, poor quality image, as
shown in Figure 12-3.

I

Figure 12-3. Resizing an image with width and height attributes

Reducing the dimensions of an image with markup is a bad prac-
tice and is strongly discouraged. In addition to resulting in poor
image quality, it forces an unnecessarily large file download on the
user when a much smaller file would do. Changing the image
dimensions for the final presentation does not reduce the file size.

Deprecated img Attributes

There are a number of attributes in the Transitional DTDs that have been depre-
cated because they control presentational aspects of the image. As with most
deprecated attributes, they have been replaced with more versatile style sheet
properties. This section provides an introduction to these attributes and suggests
style sheet alternatives.

If you are authoring using the XHTML Strict or XHTML 1.1 DTDs, using any of
these attributes will cause your document to be invalid. Use the style sheet
methods listed instead.

182 | Chapter12: Imagesand Objects

Vertical alignment

By default, the bottom of an image aligns with the baseline of the surrounding
text (see Figure 12-1), but there are ways to change the vertical alignment. The
preferred method is to use style sheets. Using HTML markup alone, the HTML
4.01 Recommendation includes the deprecated align attribute with the values
top, middle, and bottom for vertical alignment. The HTML 3.2 Recommendation
also included the values texttop, absmiddle, baseline, and absbottom, but they
were dropped from future specifications and are only partially supported by
modern browsers. Figure 12-4 shows the effects of these alignment values.

top T \ | texttop T
. \\ /:
----m-ldd|ﬁ-¥---------------- ----------------- absmiddle-y-—
Ry

_bhottomy. .t absbottomy

Figure 12-4. Vertical alignment values

The preferred CSS method for specifying vertical alignment is via the vertical-
align property, which may be used to change the alignment of an image relative
to the baseline or the height of the line it occupies. The accepted values are top,
text-top, bottom, text-bottom, middle, sub, super, and baseline (the default), as
well as specific length or percentage values. See Chapter 18 for explanations of
vertical alignment with CSS.

Horizontal alignment

The align attribute is also used to align an image on the left or right margin of the
page by using the values left or right, respectively. What makes left and right
alignment special is that, in addition to placing the image on a margin, it allows
the text to wrap around it. This is called floating the image. Figure 12-5 shows
how images are displayed when set to align to the left and right.

<p>An Oak and a Reed were arguing
about their strength...</p>
<p>An Oak and a Reed were arguing
about their strength...</p>

The CSS float property is the preferred method for positioning images (or any
element) against the right or left edges of the containing block and allowing the
following content to wrap around it. Chapter 21 discusses floating elements.

Adding space around aligned images

When text flows around an image, browsers allow it to bump up against the
image’s edge. Usually, it is preferable to have a little space between the image and
the surrounding text. In HTML, you provide this space by using the vspace and
hspace attributes within the img element.

Inline Images | 183

[=]
k=2
m
[
-
7y

pue sabew]

carne up, the Eeed avoided being

uprooted by bending and leamng with
the gusts of wind, but the Oak stood firm and
was tornup by the roots,

an Cak and a Reed were arguing atiout
their strength. %hen a strong wind
carme up, the Eeed avoided being
uprooted by bending and leamng with

the gusts of wind, but the Oak stood firm and
wras torn up by the roots.

An Cak and a Eeed were arguing about
their strength. “When a strong wind

Figure 12-5. Text wraps around floated images

Right Alignment Without Text Wrap

Using the align="right" attribute to place an image against the right margin
automatically results in text wrapping around the image. If you want to move an
image to the right without the wrap, put the image in a paragraph (p), and then
align the paragraph to the right, as shown:

<p align="right"></p>

<p>An Oak and a Reed were arguing...</p>
In CSS, to align an element with no text wrap, apply the text-align property to
a block-level element that contains the image.

The vspace (vertical space) attribute holds a specified number of pixels of space
above and below an aligned image. Space to the left and the right is added with
hspace (horizontal space). Note that space is always added symmetrically (both
top and bottom, or on both sides), and it is not possible with these attributes to
specify an amount of space along a particular side of the image (you can, however,
do this with style sheets). Figure 12-6 shows an image aligned with the hspace

attribute set to 12.
An Oak and a Eeed were arpuing
ahout their strength. When a strong
wind carme up, the Reed avoided

being uprooted by bending and
leaning with the gusts of wind, but the Cak stood
firm and was torn up by the roots:

Figure 12-6. Image alignment with horizontal spacing

184 | Chapter12: Imagesand Objects

The preferred CSS method for adding space around the sides of the image is to
simply apply an amount of margin around it. The various margin properties allow
you to apply different amounts of space to each side of the floated image. CSS
margins are discussed in Chapter 19.

Stopping text wrap

Text automatically wraps to fill the space along the side of an aligned image (or
other inline object). To stop the text from wrapping and start the next line against
the margin (instead of against the image), insert a line break (br) with the clear
attribute.

The clear attribute gives the browser directions on where to place the new line. It
has three possible values: left, right, and all. If an image is aligned right, insert
<br clear="right" /> to begin the text below the image against the right margin.
For left-aligned images, use <br clear="left" />. The <br clear="all" /> element
starts the text below the image on both margins, so it may be the only value you’ll
ever need. Figure 12-7 shows the result of this markup.

<p>An
Oak and a Reed were arguing about strength. <br clear="all" />When a strong
wind came up,...

An Oak and a Eeed were arguing
@ about their strength.

When a strong wrind carne up, the Reed avodded
being uprooted by bending and leaning with the
gusts of wind, but the Oak stood firm and was
torn up by the roots.

Figure 12-7. The clear attribute starts the next line below an aligned image

The preferred CSS method for preventing the following element from starting next
to the floated image is to apply the clear property to the following element and
specify the side (left, right, or both) that you want to start below any floated
objects. Clearing is discussed in Chapter 21.

Borders

By default, when an image is linked, most browsers display a two-pixel-wide
border around the image in the same color as the text links on the page (bright
blue by default). In most cases, this blue border is visually unappealing, particu-
larly around an image with transparent edges, but it is quite simple to turn it off
using the border attribute.

The border attribute specifies the width of the border in number of pixels. Speci-
fying a value of zero turns the borders off:

Inline Images | 185

[=]
k=2
m
[
-
7y

pue sabew]

Of course, if you are fond of the borders, you could just as easily make them really
wide by setting a higher number value.

In the preferred CSS method, you set the border width for all the images in a
document with one simple style rule using the border property:

img {border: 0;}

For more information on controlling the borders around images, see Chapter 19.

Image Loading Techniques

A couple of simple practices, which may not be obvious from simply looking at
HTML markup, can help you optimize your pages and improve response time.

Reuse images whenever possible

When a browser downloads an image file, it stores it in the disk cache (a space for
temporarily storing files on the hard disk). That way, if it needs to redisplay the
page, it can just pull up a local copy of the HTML and image files without making
a new trip out to the remote server.

When you use the same image repetitively in a page or a site, the browser only
needs to download the image once. Every subsequent instance of the image is
grabbed from the local cache, which means less traffic for the server and faster
display for the end user.

The browser recognizes an image by its entire pathname, not just the filename, so
if you want to take advantage of file caching, be sure that each instance of your
image is pointing to the same image file on the server (not multiple copies of the
same image file in different directories).

Link to large images

Remember that when designing for the Web, you must always consider the time it
takes to download files. Images are particularly bandwidth-hungry, so you should
use them with care. One successful strategy for providing access to very large
images (with correspondingly large file sizes) is to provide a postage-stamp—size
preview image that links to the full-size image. Be sure to provide information
necessary to help users decide whether they want to spend the time clicking the
link, such as a description of what they’re going to get and the file size of the
image (so they can make an estimate of how long they’ll need to wait).

Image Maps

Ordinarily, placing an image within an anchor element makes the entire image a
link to a single document when the user clicks anywhere on the image. As an
alternative, you can create an image map that contains multiple links, or
“hotspots,” within a single image. The effect is created with HTML markup (some
image maps also use scripts on the server) and an ordinary image that serves as a
backdrop for the pixel coordinates.

186 | Chapter12: Imagesand Objects

Favicons

Another type of image you often see in association with web sites is the favicon,
a small icon that appears with the name or URL of a site in the Favorites list (in
Internet Explorer 6), or the location bar and tabs in a tabbed browsing interface
(Mozilla and Safari). Favicons are not related to (XYHTML image markup as
discussed in this chapter, but this is as logical a point as any to discuss how to
create a favicon for your site.

Creating the Icon

A favicon must be saved in the Windows .ico format. The .ico format is capable
of storing several images and is typically used to hold several size variations of
the same image. The favicons that appear in the browser location bar or favor-
ites list are 16 x 16 pixels. Some designers also include a 32x32 pixel version
that may be used for as desktop shortcut icon.

Once you have designed an icon, it is recommended to save it as a PNG (to take
advantage of transparency) and then convert it to .ico format. File converters for
both Windows and Mac are listed at the end of the sidebar. When you save the
file, it must be named exactly favicon.ico to be recognized by all favicon-
supporting browsers.

Installing the Favicon

The simplest way to install a favicon is simply to upload the favicon.ico file to
the root directory of the site. It is also possible to install favicons to other direc-
tories for instances when you wish to use different icons for different areas of
the site. While some browsers will find the favicon with no markup at all, to
play it safe, include link elements in the head of the document that point to the
icon you intend to use. A relative URL may also be provided, such as /favicon.
ico.

<link rel="shortcut icon" href="http://domain.tld/path/favicon.ico"
type="1image/x-icon" />
<link rel="icon" href=" http://domain.tld/path/favicon.ico" type="image/x-
icon" />
Providing links for “icon” and “shortcut icon” covers all bases of browser
compatibility. A relative URL may also be provided, such as /favicon.ico.

Favicon Resources

For an in-depth tutorial on creating favicons, I recommend www.decemberl14.
net/ways/rest/favicon.shtml.

To convert a graphic to ICO format on a Macintosh, try the IconBuilder plug-in
for Photoshop, available from IconFactory (www.iconfactory.com/iconbuilder.
asp).

—Continued—

Image Maps |

187

[=]
k=2
m
[
-
7y

pue sabew]

Windows users have more options, including RealWorld Icon Editor (www.rw-
designer.com/3D_icon_editor.php) and IconCool Studio (www.iconcool.com/
iconcoolstudio.htm). There is also a free command-line converter, called png2ico,
by Matthias Benkmann, which is available at www.winterdrache.de/freeware/
png2ico/index.html.

There are two types of image maps: client-side and server-side. For client-side
image maps, the coordinate and URL information necessary to create each link is
contained right in the document. The process of putting the pieces together
happens in the browser on the user’s machine (thus, client-side). For server-side
image maps, as the name suggests, the map information resides on the server and
is processed by the server or a separate CGI script.

Client-side image maps are far more prevalent than server-side, which are rarely
used due to critical accessibility issues. In fact, due to new techniques and philos-
ophies in web design, even client-side image maps are waning in popularity.
Image maps generally require text to be sunk into an image, which is sternly
frowned upon. In terms of site optimization, they force all regions of the image to
be saved in the same file format, which may lead to unnecessarily large file sizes.

That said, take a look at what it takes to make a client-side image map.

Creating Image Maps

The key to making image maps work is a text-based map that associates pixel
coordinates with URLs. This map is handled differently for client-side and server-
side (as outlined in the following sections), but the outcome is the same. When
the user clicks somewhere within the image, the browser passes the coordinates of
the mouse pointer to the map, which, in turn, generates the appropriate link.

Available tools

Although it is possible to put together image map information manually, it is
much easier to use a tool to do it.

If you use any of the Macromedia or Adobe web design software packages, you’re
in luck, because there are image map tools built into both their HTML editors and
web image programs. The image map tools in Dreamweaver and GoLive are
particularly handy because you can create the image map right in the current
document window.

As of this writing, the future of these specific products is unclear
based on the initial announcement of Adobe’s acquisition of Mac-
romedia. It is fairly certain that some sort of image map tool will be
available when the dust settles.

There are also standalone image map creation utilities available as shareware. One
popular option is MapEdit, by Tom Boutell, available at www.boutell.com/
mapedit/. It costs $10 and is available for Windows, Mac OS X, and Unix. A

188 | Chapter12: Imagesand Objects

search for “image map tool” on your search engine of choice will turn up many
more options.

Creating the map

Regardless of the tool you’re using, and regardless of the type of image map you’re
creating, the process for creating the map information is basically the same. Read
the documentation for your image map tool to learn about features not listed
here.

1. Open the image in an image map program.

2. Define areas within the image that should be clickable by using the appro-
priate shape tools: rectangle, circle, or polygon (for tracing irregular shapes).

3. While the outline of the area is still highlighted, enter a URL for that area in
the text entry field provided, as shown in Figure 12-8.

4. Continue adding shapes and their respective URLs for each clickable area in
the image.

5. For server-side image maps, you also need to define a default URL, which is
the page that displays if users click outside a defined area. Many tools have a
prominent field for entering the default URL, but on others, you may need to
look for it under a pull-down menu.

6. Select the type of image map (client- or server-side) you want to create. Note
that server-side image maps are strongly discouraged.

7. Save or export the map information. Server-side image maps are saved in a
map definition file (.map) that resides on the server. For client-side image
maps, you may need to copy and paste the resulting map code into your
HTML file.

Hotspot Link http://www.nasa.gov @

] ol ol &

2L Target Al satellite

Map spacey

k| ORI i

Figure 12-8. Creating map information (shown in Dreamweaver MX)

If you do not have an image map tool, it is possible to write out the map informa-
tion by hand following the examples in this chapter. Simply note the pixel
coordinates of the shapes as indicated in an image editing program (in Photo-
shop, they are provided in the Info palette) and type them into the appropriate
place in the map file.

Image Maps | 189

[=]
k=2
m
[
-
7y

pue sabew]

Client-Side Image Maps
Client-side image maps have three components:
* An ordinary image file (.gif, .jpeg, or .png)
* A map delimited by the map element containing the coordinate and URL

information for each clickable area (described by area elements contained
within the map element)

* The usemap attribute within the image element (img) that indicates which map
to reference

map

<map>...</map>

Attributes

Core (id, class, style, title), Internationalization, Events
id="text"
name="text"

area

<area />

Attributes
Core (id, class, style, title), Internationalization, Events, Focus
alt="text" (Required)
coords="values"
href="url"
nohref
shape="rect|circle|poly|default”
target="text"

There are many advantages to using client-side image maps. They are self-
contained within the HTML document and do not rely on a server to function.
This means you can test the image map on your local machine or make working
site demos for distribution on disk. It also cuts down on the load on your server
and improves response times. In addition, complete URL information displays in
the status bar when the user mouses over the hotspot (server-side image maps
display only coordinates).

Sample client-side image map

This is the markup for the client-side image map pictured in Figure 12-9. While
most authors use a web authoring tool to generate map markup such as this, it is
helpful to have an understanding of what is happening in the map, area, and img
elements. Each component of the image map will be discussed in turn.

<map name="spacey">

<area shape="rect" coords="203,23,285,106"

href=http://www.nasa.gov alt=""/>

190 | Chapter12: Imagesand Objects

<area shape="circle" coords="372,64,40" href="mypage.html" alt=""/>
<area shape="poly"

coords="99,47,105,41,94,39,98, 34,110, 35,115, 28,120,35,133,38,133,
42,124,42,134,58,146,56,157,58,162,63,158,67,141,68,145,72,155,
73,158,75,159,80,148,83,141,83,113,103,87,83,72,83,64,80,64,76,
68,73,77,72,79,63,70,59,67,53,68,47,78,45,89,45,99,47"
href="yourpage.html" alt=""/>

</map>

yourpage.htm/ http://www.nasa.gov mypage.html

[=]
k=2
m
[
-
7y

pue sabew]

orbit.gif

Figure 12-9. An image map

<map name="spacey">
This marks the beginning of the map. You must give the map a name. Within
the map element there are area elements for each hotspot within the image.

<area shape="rect" coords="203,23,285,106" href=http://www.nasa.gov alt=""/>
Each area element contains the shape identifier (shape), pixel coordinates
(coords), and the URL for the link (href). In this case, the shape is the rect-
angle (rect) that corresponds to the black square in the center of the image.
The value of the coords attribute identifies the top-left and bottom-right pixel
positions of the rectangle (coords="x1,y1,x2,y2"). Some browsers also
support the nonstandard rectangle as an equivalent to rect, but this is not
widely supported.

In each area element, the alt attribute provides the alternative text for that
region of the image. The alt attribute is a required attribute for the area
element.

<area shape="circle" coords="372,64,40" href="mypage.html" alt=""/>
This area corresponds to the circular area on the right of the image in
Figure 12-9. Its shape is circle. For circles, the first two coordinates identify
the position of the center of the circle and the third value is its radius in pixels
(coords="x,y,r"). Some browsers also support the nonstandard circ as an
equivalent to circle.

Image Maps | 191

<area shape="poly"

coords="99,47,105,41,94,..additional coordinates omitted to save space.."
href="yourpage.html" alt=""/>
This is the area element for the irregular (polygon) shape on the left of the
image in Figure 12-9. For polygons, the coordinates are pairs of x,y coordi-
nates for each point or vertex along the path that surrounds the area
(coords="x1,y1,x2,y2,x3,y3..."). At least three pairs are required to define a
triangle; complex polygons generate a long list of coordinates. Some browsers
also support the nonstandard polygon as an equivalent to poly.

<img src="orbit.gif" width="500" height="125" border="0" usemap=
"#spacey" />
The usemap attribute is required within the image element to indicate that this
image is an image map that uses the map named “spacey.”

Server-Side Image Maps

In the first years of the Web, all image maps were server-side image maps (client-
side image maps were introduced later). Because they rely on the server, they are
less portable and the information is not self-contained, which introduces serious
accessibility problems if the server is not available. As of this writing, the use of
server-side image maps is strongly discouraged.

For historical interest, a description of how they work is provided here. Server-
side image maps have four elements:

* An ordinary image file (.gif, .jpeg, or .png).

* HTML markup in the document: the ismap attribute within the img element
and an anchor (a) element that links the image to the .map file on the server.

* A map definition file (.map) containing the pixel coordinate and URL infor-
mation for each clickable area; the .map file resides on the server, usually in a
directory called cgi-bin. The map file format is server-dependent and may be
formatted as either “NCSA” or “CERN.”

* A CGI script that runs on the server (or a built-in function of the server soft-
ware) that interprets the .map file and sends the correct URL to the HTTP
server.

Within the HTML file, the image map is set up as shown in this example:

Embedded Media

Images aren’t the only things that can be displayed as part of a web page. You can
also include content such as QuickTime movies, interactive Flash files, all manner
of Java applets, and more. The browser renders embedded media files using the
provided self-contained code (as in the case of an applet), using its built-in display
devices (as for GIF or JPEG images), or by taking advantage of a plug-in or helper
application (as for Windows Media or Flash).

192 | Chapter12: Imagesand Objects

The elements that embed media in (X)HTML are:

object
The W3C recommended element for all media

applet
For Java applets; deprecated in HTML 4.01 and XHTML 1.0

There is a third nonstandard (and therefore, nonvalidating) element for embed-
ding media that is still used by browsers that use Netscape’s plug-in architecture:

embed
For plug-in dependent media; not part of any HTML Recommendation

Now, take a closer look at each of these elements and their uses.

The object Element

[=]
k=2
m
[
-
7y

pue sabew]

According to the HTML 4.01 Recommendation, the object element is an all-
purpose object-placer. It can be used to place a variety of object types on a web
page, including applets, movies, interactive objects (Flash), and even plain old
images. As of this writing, browser support does not quite fulfill the W3C’s vision
for this element (for example, it still may not be used reliably as a replacement for
the img element), however, the object element is still used for a wide range of

embedded media.

object

<object>...</object>

Attributes
Core (id, class, style, title), Internationalization, Events
archive="URLs"
classid="URL"
codebase="URL"
codetype="codetype"
data="URL"
declare="declare"
height="number"
name="text"
standby="message"
tabindex="number"
type="type"
usemap="URL"
width="number"

Deprecated attributes
align="baseline|bottom|left|middle|right|top"
border="number"
hspace="number"
vspace="number"

Embedded Media | 193

param

<param />

Attributes
id="text"
name="text" (Required)
value="text"
valuetype="data|ref|object"
type="content type"

The object element began as a proprietary element in Internet Explorer to support
ActiveX and later Java applets. Netscape Navigator initially supported only embed
and applet (discussed later in this chapter) for embedding media, but added
limited object support in its Version 4 release, and improved (yet still improperly
implemented) support in Version 6. The W3C intends the object element, now
part of the HTML 4.01 and XHTML Recommendations, to be a replacement for
the more specific img and applet elements as well as the nonstandard embed and
bgsound (used for background sounds).

The attributes required for the object element vary with the type of content it is
placing. The object element may also contain a number of param elements that
pass important information to the object when it displays or plays. Not all objects
require additional parameters.

The object and param elements work together to allow authors to specify three
types of information:

The implementation of the object. That is, the executable code that runs in order
to render the object. This may be a tool or player required to display an
external file (such as the QuickTime plug-in for showing a .mov file), or it
may be the object itself, such as a self-contained clock applet. The implemen-
tation is specified with the classid attribute.

The data to be rendered. The data attribute specifies the URL of the data; in
most cases, an external file, such as a movie or a PDF file. According to the
HTML 4.01 spec, the data attribute may also be used to provide the raw data
right there in the object element.

Additional settings required by the object at runtime. Some embedded media
objects require additional settings that get called into play when the object
plays or is rendered. For example, when placing a Windows Media movie,
authors have the option of adding a variety of controls, turning the
“AutoStart” feature on or off, and many more features specific to the
Windows Media Player. The runtime settings are provided with param
elements within the object. Examples of the param element are provided later
in this section.

Authors may not need to provide all three types of information for an object. For
example, for a self-contained applet, you may only need to specify the implemen-
tation. If you know that the browser has built-in capacities to render an object
(such as a GIF image), then only the data for the image and a description of the
data type are required. And as noted above, not all objects require additional
parameters.

194 | Chapter12: Imagesand Objects

Specifying data and type

To get a basic idea of how the object element works, take a look at this minimal
markup example that uses the object element to place an inline image.

<object data="daffodil.gif" type="image/gif">

A color photograph of a daffodil.

</object>

Here, the data attribute provides the URL for the source for the embedded object
(in this case an image file) and type tells the browser that the content type is a GIF
image. When a type attribute is provided, the browser uses that information to
determine how (and if) to render the object. The browser’s preferences contain a
list that specifies how to handle each content type, be it via native support, a plug-
in player, or an external helper application. If the type is not recognized, the
browser may not be able to render the object. In this example, the browser can
render a GIF image without the need of a special player.

While the syntax exists for adding images with the object element,
the img element is still the most common way to go due to lack of
browser support of object for image placement.

Specifying an implementation

The object element is also commonly used with the classid attribute for speci-
fying the implementation, such as an ActiveX control, Java applet, or Python
applet. This example shows an object element used to place a Java applet on a
page. (Note that some applets require placement with the applet element for
proper functionality.)

<object classid="java:calendar.class" codetype="application/java"
standby="Calendar loading..." width="200" height="150" title="basic
calendar">...</object>

The Java applet is called with the classid attribute. The optional codetype
attribute specifies the content type of the data that will be downloaded by the
classid. A browser may use the value of the codetype attribute to avoid down-
loading information for a content type it does not support. The optional standby
attribute provides a message to be displayed while the applet is loading.

Some plug-in media and applets require width and height values in order to play
correctly, so be sure to read any documentation provided for your media type. It is
good practice to provide width and height measurements for every object
element.

Adding parameters

These days, it is more common to see the object element used to place an ActiveX
control (Internet Explorer’s version of plug-ins) than an applet. ActiveX controls
are identified by the naming scheme clsid, followed by a long string of characters
specific to the ActiveX control required to render the media object. ActiveX
controls typically require additional settings used to control the display or play-

Embedded Media | 195

[=]
k=2
m
[
-
7y

pue sabew]

back of the object. These settings are provided by param elements as shown in this
example for embedding a Windows Media movie.

<object classid="clsid:6BF52A52-394A-11d3-B153-00C04F79FAA6" height="280"
width="320" codebase="http://activex.microsoft.com/activex/controls/mplayer/
en/nsmp2inf.cab#version=6,4,7,111">

<param name="URL" value="movies/europe.wmv" />

<param name="autoStart" value="false" />

<param name="UIMode" value="full" />
</object>

Here, the classid attribute points to the ActiveX control for the Windows Media
Player 9. The codebase attribute is intended to be used to provide a base path used
to resolve relative URIs specified by the classid, data, and archive attributes. In
practice, however, it has come to be (mis)used as a pointer to a location for down-
loading the current ActiveX control or plug-in if it is not installed on the user’s
computer, as is the case in this example.

Within the object element, there are three param elements that pass important
information to the ActiveX control. The parameters and values are provided by
the name and value attributes, respectively. In this example, the URL parameter
provides the location of the movie itself, autoStart is set to false, so the user
needs to click to start playback, and the UIMode setting instructs the player to
display the full control panel for playing the movie.

Parameter names and their values are specific to the media object, so these name/
value pairs do not work with any other media type (not even older versions of
Windows Media Player).

Providing alternate content

If the browser determines that it cannot render the specified object, it then
proceeds to render the content of the object element. In the example from earlier
in this section, should the browser not have the capacity to render the GIF, it will
display the alternative content (“A color photograph of a daffodil”) instead.

<object data="daffodil.gif" type="image/gif" width="150" height="125">
A color photograph of a daffodil.
</object>

The alternative content may also be another object element. Authors may provide
several layers of alternate content by nesting objects with different implementa-
tions. The user agent will keep looking inside each object element until it finds an
object that it can render.

In this example, borrowed from the HTML 4.01 Recommendation, a Python
applet is embedded on the page with the object element. If the browser can’t
render the applet, an MPEG video is provided as a backup. If the video cannot be
rendered, there is a static GIF image, and finally, a text description is provided if
all else fails.

<object title="The Earth as seen from space" classid="http://www.observer.
mars/TheEarth.py">
<object data="TheEarth.mpeg" type="application/mpeg">
<object data="TheEarth.gif" type="image/gif">

196 | Chapter12: Imagesand Objects

The Earth as seen from space.
</object>
</object>
</object>

Cross-browser compatibility

In an ideal world, authors could embed objects by simply specifying the data and
data type for the media file and perhaps a few additional parameters, as shown in
this example that should be sufficient for placing a QuickTime movie:

<object type="video/quicktime" data="/movies/arlo.mov" width="320"
height="256">

<param name="autostart" value="false" />

<param name="controller" value="true" />
</object>

Unfortunately, while most standards-compliant browsers correctly interpret the
object element, the markup required to make embedded media play correctly
with all their features on all browsers is determined by the individual media
players, not the browsers. For example, as of this writing, the QuickTime plug-in
player does not accept settings from param elements, so it still requires the
nonstandard embed element for all but the default playback settings. The embed
element is discussed further in the next section.

To ensure that the embedded media renders or plays for the widest range of
browsers and platforms, developers use this strategy that takes advantage of
nesting within object elements for providing alternate content:

* Typically, the top-level object element contains the classid for an ActiveX
control that will do the trick for the 80% or so of users with Internet Explorer
on Windows.

* Within that object, provide an alternate object specifying the data and data
type that allows other browsers to choose their own method for rendering the
object based on the data type.

There is a bug in Internet Explorer for Windows that causes both
object elements to be rendered, even though according to the
HTML 4.01 Recommendation, only the first supported object ele-
ment should appear. Therefore, it is necessary to take measures to
make sure only one object appears, such as those in these examples:

* A tutorial on standards-compliant QuickTime embedding uses
style sheets to hide the redundant object element (realdevl.
realise.com/rossalrendertest/quicktime.html).

* This exploration on the “right” way to embed Flash movies
uses Internet Explorer’s conditional comments to display just
one object based on browser version (see weblogs.
macromedia.com/accessibility/archives/2005/08/in_search_of _a.
¢fm). The resulting code is provided in the example below.

Embedded Media | 197

[=]
k=2
m
[
-
7y

pue sabew]

* At this point, the page should be tested for full functionality on all the brows-
ers that must be supported. If the object renders or plays fine, you're done. If
not, there is one more option...

* The ultimate fallback is the embed element that works with all browsers that
use the Netscape plug-in architecture. An embed element with attributes for
controlling runtime parameters may be used within or in place of the inner
data/type object. While this ensures that the media will play in most brows-
ers, the trade-off is that it is a nonstandard element that will cause your docu-
ment to be invalid. Authors must determine whether their greatest priority is
a valid X)HTML document or complete media support for users without IE
for Windows.

The following examples show two approaches to providing alternate content for
an embedded Flash movie that ensures the widest browser support. The first uses
the default code generated by the Flash authoring tool for embedding the Flash
object on the page. It uses the object element with an ActiveX classid for Internet
Explorer and the nonstandard embed element for browsers that use plug-ins.

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.
cab#version=6,0,40,0"
width="300" height="120">
<param name="movie" value="/flash.swf" />
<param name="quality" value="high" />
<param name="bgcolor" value="#FFFFFF" />

<embed src="/flash.swf" type="application/x-shockwave-flash"
quality="high" bgcolor="#FFFFFF" width="300" height="120"
pluginspage="http://www.macromedia.com/go/getflashplayer">
<noembed>You need the Flash player</noembed>
</embed>
</object>

This version uses standards-compliant nested objects with Microsoft’s propri-
etary conditional comments to make sure only the correct object renders in
Internet Explorer. The inner object may be used by Gecko-based browsers.

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.
cab#version=6,0,40,0"
width="300" height="120">
<param name="movie" value="/flash.swf" />
<param name="quality" value="high" />
<param name="bgcolor" value="#FFFFFF" />

<I--[if IE]> <-->
<object data=" /flash.swf" type="application/x-shockwave-flash"
width="300" height="120" >
<param name="quality" value="high" />
<param name="bgcolor" value="#FFFFFF" />
<param name="pluginurl" value="http://www.macromedia.com/go/
getflashplayer" />

198 | Chapter12: Imagesand Objects

You need the Flash player.
</object>

<l--> <![endif]-->

</object>
&
iy There are other methods for ensuring cross-browser compatibility
0‘;‘. . that use JavaScript and browser-sniffing techniques, but they are
" o beyond the scope of this chapter.

The embed Element

The nonstandard embed element was addressed briefly in the previous section.
Here it is covered in more detail. The embed element was originally created by
Netscape for use with plug-in technologies. It is currently supported by most
browsers; however, because it is not included in any HTML Recommendation, it
will cause (X)HTML documents to be invalid. Whenever possible, authors are
advised to use object for multimedia objects and use embed as a last resort fall-
back. All available attributes for the embed element are described in Appendix A.

[=]
k=2
m
[
-
7y

pue sabew]

embed

<embed>. . .</embed> or (<embed />)

Attributes
align="left|right|top|bottom"
height="number"
hidden="yes|no"
name="text"
palette="foreground|background"
pluginspage="URL"
src="URL" (Required)
width="number"

Netscape Navigator only
border="number"
frameborder="yes|no"
hspace="number"
pluginurl="URL"
type="media (MIME) type"
vspace="number"

There is conflicting documentation inline as to whether the embed element
requires an end tag. Some sources say an end tag is required, as shown here:

<embed src="url" type="content-type" height="n-pixels" width="n-pixels">
</embed>

Embedded Media | 199

Microsoft documentation shows embed as an empty element and modern browsers
seem to support the empty embed syntax, shown here:

<embed src="url" type="contenttype" height="n-pixels" width="n-pixels" />

The src attribute is required to tell the browser the location of the media file to be
played. The type attribute specifies the content type of the embedded media. The
browser uses the content-type information (or the suffix of the media file) to find
the appropriate plug-in to render or play the file. Many media types require that
width and height values (the dimensions of the plug-in element in pixels) be speci-
fied in order for the plug-in to function.

The optional pluginspage attribute provides the URL of a page where the user can
download information for the required plug-in should it not be found on the
client machine. Netscape 4.0 introduced the pluginurl attribute, which specifies a
link to a function that installs the plug-in automatically. To hide the media file or
object from view, use the hidden attribute with a value of yes.

The embed element uses special attributes and their values for additional runtime
settings (the same settings provided with param elements in the object element).
These attributes are specific to the media type and the plug-in. For example, the
autoplay and playeveryframe attributes are used by the QuickTime player only.
(The attributes listed for the embed element work for all embedded media.)

noembed

The noembed element is used within the embed element and provides alternative
content that displays if the browser cannot display the specified media file.

noembed

<noembed>. ..</noembed>

Attributes
None

In the following example, the browser would display a GIF image and brief
message in place of the media object.

<embed src="movies/vacation.mov" width="240" height="196" autoplay="false"
pluginspage="http://www.apple.com/quicktime/download/">
<noembed> You do not seem to have the plugin.
</noembed>
</embed>

Using embed

Although the embed element is still in common use as of this writing, and is actu-
ally recommended by multimedia format developers such as Macromedia and
Apple, eventually full plug-in functionality will be possible using the standard
object element alone. If you do use embed elements, consider making a note of
where they appear so you can clean up your documents and make them valid
when that day arrives.

200 | Chapter12: Imagesand Objects

Java Applets

Java is an object-oriented programming language developed by Sun Microsys-
tems. It is not related to JavaScript, which is a scripting language developed by
Netscape to run within an HTML document in a browser. Because Java is a full
programming language (like C or C++), it can be used to create whole
applications.

Java’s primary contribution to web content, however, has been in the form of Java
applets, which are self-contained, mini-executable programs. These programs,
named with the .class suffix, can be placed right on the web page, like an image.
Java applets can be used for all sorts of interactive and multimedia gadgets, such
as clocks, calculators, spreadsheets, scrolling marquees, games, text effects, and
digital “guitars,” just to name a few.

There was a great buzz among web developers when Java applets first hit the
scene, but since then, enthusiasm has waned in the face of performance issues
(applets take a long time to initialize and tend to crash browsers) and the domi-
nance of Flash for multimedia and interactivity.

Where to Get Applets

If you need a customized applet for your site, your best bet is to hire a
programmer to create one to your specifications. However, there are a number of
applets available for free or for a licensing fee that you can download from
libraries on the Web.

A good place to start is the applets section of Sun’s Java site at java.sun.com/
applets/. This page provides a list of links to applet-related resources.

If you are looking for cool applets you can use right away, try the JavaBoutique at
javaboutique.internet.com. Here you will find hundreds of applets available for
download as well as clear instructions for their use. It’s a great way to add interac-
tivity to your site without learning any programming.

Adding an Applet to a Page

There are currently two methods for adding an applet to a web page: the object
element, recommended by HTML 4.01, and the better supported, though depre-
cated, applet element.

applet

<applet>...</applet>

This element is deprecated.

Attributes
Core (id, class, style, title)
alt="text"
archive="URLs"
code="class" (Required)

JavaApplets | 201

[=]
k=2
m
[
-
7y

pue sabew]

codebase="URL"
height="number"
name="text"
object="text"
width="number"

Deprecated attributes
align="left|right|top|middle|bottom"
hspace="number"
vspace="number"

The W3C has deprecated the applet element and all its attributes in favor of the
object element. Despite this, the applet element may still be the better choice,
because browser support for object-embedded applets is so inconsistent that it is
difficult to find an approach that works in all browsers. In addition, some applets
require that applet be used, so read the documentation for the applet first. This
section looks at both methods.

Adding applets with applet

The applet element is a container for any number of parameter (param) elements.
The following is an example of how an applet element for a game might look:

<applet codebase=class code="Wacky.class" width="300" height="400">
<param name="Delay" value="250" />
<param name="Time" value="120" />
<param name="PlaySounds" value="YES" />

</applet>

The applet element contains a number of standard attributes:

code
Tells the browser which applet will be used. Applets end with the suffix .class
or .jar. This attribute is required.

codebase
This tells the browser in which directory to find the applets. If the applets are
in the same directory as the page, the codebase attribute is not necessary.

width, height
These specify the pixel dimensions of the “window” the applet will occupy.
These attributes are required for the Java applet to function properly.

The applet element may also use many of the same attributes used for images,
such as alt for providing alternative text if the applet cannot be displayed, and
presentational attributes such as align (for positioning the applet in the flow of
text), and hspace/vspace (used in conjunction with align).

Special parameters for the applet are provided by any number of parameter
elements (sometimes there are none). The param element always contains the
name of the parameter (name) and its value (value). Parameters provide special
settings and controls that are specific to the particular applet, so you need to
follow the parameter coding instructions provided by the programmer of the

applet.

202 | Chapter12: Imagesand Objects

Adding applets with object

You can add a simple, self-contained applet to an HTML document using the
object element like this:

<object classid="applet.class" codebase="http://somedomain.com/classes/">
An applet with some useful function should display in this space.
</object>

The classid attribute points to the applet itself (its implementation). It has the
same function as the code attribute in the applet element when used for Java
applets. classid may not contain any pathname information, so the location of
the class file is provided by the codebase attribute.

When using object for Java applets, the object element may contain a number of
parameter (param) elements, as with the applet element. (Note that Netscape 4.0
does not support param elements within object, so it may not play applets
correctly if placed this way.)

Inline (Floating) Frames

Microsoft Internet Explorer 3.0 introduced a feature called inline frames (also
called floating frames) that are identified with the iframe element. They enable an
HTML document to be embedded within another HTML document, viewed in a
scrollable frame. An iframe is placed in the document flow as an inline element,
much like an image.

iframe

<iframe> ... </iframe>

Attributes
Core (id, class, style, title)
frameborder="1|0"
height="number"
longdesc="URL"
marginheight="number"
marginwidth="number"
name="text"
scrolling="yes|no|auto"
src="URL"
width="number"

Deprecated attributes
align="top|middle|bottom|left|right"

Nonstandard attributes

hspace="number"
vspace="number"

Inline (Floating) Frames | 203

[=]
k=2
m
[
-
7y

pue sabew]

The iframe element is part of the HTML 4.01 and XHTML 1.0 Transitional DTD.
As such, it is also included in the Frameset DTD, but it is not a frameset-related
element. It is supported by standards-compliant browsers. It is however depre-
cated, and the preferred strict alternative is to use the object element instead, its
type attribute explicitly set to text/html, and its data attribute set to the URL of
the external document. Inline frames do not work in Netscape 4, but that
accounts for a less than .5% of users as of this writing.

The iframe element places an external HTML document on a web page in a
scrolling window. The src attribute provides the URL of the external document.
The width and height attributes provide the dimensions of the floating frame.
Figure 12-10 shows the resulting inline frame specified in this markup example.

<body bgcolor="black" text="white">
<h1>Inline (Floating) Frames</h1>

<p><iframe src="list.html" width="200" height="100" align="left">
Your browser does not support inline frames. Read the list <a href="list.
html">here.</iframe></p>

<p>Consectetuer adipiscing elit. Sed eu nibh eget magna dictum egestas...
</p>
</body>

806 Inline Frame (=

Inline (Floating) Frames

Maecenas pulvinar
pellentesque risus.

Duis sit amet dui.
Suspendisse mi.

Nulla facilisi.

h"uh 1d uln a
liquam nnudum
d interdum elit 1i

In tellus

Figure 12-10. Inline (floating) frame

204 | Chapter12: Imagesand Objects

13

Tables

HTML table elements, first introduced in Netscape 1.1, were developed to give
authors a way to present rows and columns of tabular data. In fact, that has
always been and remains their intended use. But it didn’t take long for designers,
fed up with the one-column, full-width web pages, to co-opt tables as a tool for
controlling page layout. For the last 10 years, complex table-based layouts have
been the norm. Nobody cared much that it was a misuse of the table elements—
there weren’t any other options. Today, we do have an option. Cascading Style
Sheets offer the ability to create multicolumn pages and sophisticated layouts that
were previously achievable only with tables. With improved browser support,
pure style sheet layouts are finally a viable solution.

So tables-for-layout are out, but that doesn’t mean that the whole set of table
elements has been tossed in the dustbin. In fact, tables are still the appropriate
markup choice for real tabular data, such as schedules, statistics, and so on.

This chapter takes on the topic of HTML tables, starting with their basic struc-
ture and markup and moving on to methods that make data tables accessible
when rendered non-visually. Tips for using layout tables responsibly are included
as well. Along the way, the following table-related elements will be addressed.

table Establishes a table

tr Table row

td Table cell

th Table header cell

caption Provides a table caption
thead Identifies a table header
tbody Identifies the body of the table
tfoot Identifies a table footer

col Declares a column

colgroup Declares a group of columns

205

Table Uses

HTML tables fall into two broad categories: data tables and layout tables. This
section takes a look at both types.

Data Tables

Data tables, the arrangement of information in rows and columns, are the
intended use of HTML table elements. In visual browsers, the arrangement of
data in rows and columns gives users an instant understanding of the relation-
ships between data cells and their respective header labels. These relationships
may be lost for users without the benefit of visual presentation unless care is taken
to author the data table with accessibility in mind. These techniques are discussed
in the upcoming “Accessible Tables” section.

Tables may be used to present calendars, schedules, statistics, or other types of
information as shown in Figure 13-1. Note that “data” doesn’t necessarily mean
numbers. A table cell may contain any sort of information, including numbers,
text elements, even images or multimedia objects.

Default Depr. DTD Commant
FMPLIED abbedakon e
IMPLIED fstol sipporied
FMPLIED h’llcﬂﬂt‘._t; Upes

SREQUIRED sever&id forn
wic.org

Browser Statistics Month by Menth

=
C

-
e
o
1

w3$:hnuls om

mbto.com

Figure 13-1. Examples of data tables

Layout Tables

Layout tables, unlike data tables, are used purely as a presentational device for
controlling the layout of a page. The HTML 4.01 Recommendation specifically

206 | Chapter13: Tables

discourages this use of tables, but it wasn’t until CSS became a viable alternative
that they have been condemned by the professional web community at large as well.

You can’t turn around on the Web without bumping into a site—even big-name
sites—that still uses tables for layout. Some sites use tables as a minimal frame-
work; others have complex tables nested several layers deep to hold things
together. Figure 13-2 shows just a few examples of layout tables of varying levels
of complexity. The borders have been enhanced to reveal the table structure. (As
not to point any fingers, these “old-school” examples are all my own work; 1
assure you, I've changed my ways.)

=

LOVE

ot o0 I

“The E&?ﬂ% om

Figure 13-2. Examples of layout tables

While we are still in a period of transition from table-based design to totally CSS-
based design (with flawless browser support, of course), some authors still choose
to use tables to establish the basic column structure of the page. While not ideal,
it can be done responsibly by using style sheets to keep the table markup minimal
and with a mind toward accessibility. These strategies are discussed in the
“Responsible Layout Tables” section at the end of this chapter.

Basic Table Structure

Put simply, web tables are made up of cells (which is where the content goes),
arranged into rows. The HTML table model is said to be “row primary” because

Basic Table Structure | 207

rows are identified explicitly in the document structure, while columns are just
implied. The following examples illustrate the basic structure of an HTML table.

Rows and Cells

The minimum elements for defining a table are table, for establishing the table
itself, tr for declaring a table row, and td for creating table cells within the row.
Explanations and examples of how these elements fit together follow these
element and attribute listings.

table
<table>...</table>

Attributes
Core (id, class, style, title), Internationalization, Events
border="number"
cellpadding="number of pixels or %"
cellspacing="number of pixels or %"
frame="void|above|below|hsides|1lhs|rhs|vsides|box|border
rules="all|cols|groups|none|rows"
summary="text"
width="number, percentage"

Deprecated attributes
align="left|right|center"
bgcolor="#rrggbb" or "color name"

Nonstandard attributes
height="number, percentage"

tr

<tr>...</tr>

Attributes
Core (id, class, style, title), Internationalization, Events
align="left|center|right|justify|char"
char="character"
charoff="Iength"
valign="top|middle|bottom|baseline"

Deprecated attributes
bgcolor="#rrggbb" or "color name"

208 | Chapter13: Tables

td

<td>...</td>

Attributes
Core (id, class, style, title), Internationalization, Events
abbr="text"
align="left|right|center|justify|char"
axis="text"
char="character"
charoff="Iength"
colspan="number"
headers="id references"
rowspan="number"
scope="row|col|rowgroup|colgroup”
valign="top|middle|bottom|baseline"

Deprecated attributes
bgcolor="#rrggbb" or "color name"
height="pixels, percentage"
nowrap="nowrap"
width="pixels, percentage"

To see how the basic table elements are applied, consider a simple table with two
rows and two columns (four content or “data” cells). The diagram on the left in
Figure 13-3 shows the table with its cells and rows labeled in the way they are
recognized in HTML. The diagram on the right shows the HTML elements that
correspond with each component.

Table <table>
Row <tr> <td> <ftd> <td> </td> <ftr>
Row <tr> <td> <ftd> <td> <ftd> <ftr>
</table>

Figure 13-3. Basic table structure

Written out in an HTML source document, the markup for the table in
Figure 13-3 would look more like this:

<table>
<tr>

<td>cell 1</td><td>cell 2</td>
</tr>
<tr>

<td>cell 3</td><td>cell 4</td>
</tr>
</table>

Basic Table Structure | 209

The entire table is indicated by the table element, which has no content of its
own, but acts as a containing element for one or more of table row elements (tr).
The table in the example contains two rows. Each tr element, in turn, contains
two data cells, which are indicated by the td elements. The cells are the elements
that contain real content; the table and tr elements are purely for table structure.
A table cell may contain any data that can be displayed in a document, including
formatted text, images, multimedia elements, and even other tables.

As mentioned earlier, the table system in HTML is row-primary. Rows are labeled
explicitly, but the number of columns is just implied by the number of cells in the
longest row. In other words, if all the rows have three cells (three td elements),
then the table has three columns. If one row contains four td elements and all the
others contain two, the browser displays the table with four columns, adding
blank cells to the shorter rows. HTML 4.01 introduced an advanced standard
system for describing table structure that includes explicit column elements. This
system is discussed in the “Columns and Column Groups” section of this chapter.

Spanning Rows and Columns

Data cells in a table can occupy more than one space in the grid created by the
rows and columns. You expand a td element horizontally or vertically using the
colspan and rowspan attributes, respectively.

Column span

In Figure 13-4, <td colspan="2"> tells the browser to make “cell 1” occupy the
same horizontal space as two cells—to make it “span” over two columns. The
resulting spanned cell is indicated in Figure 13-4. Note that the row containing
the spanned cell now only has one td element instead of two.

<table>

<tr>

<td colspan="2">Cell 1</td>
</tr>

<tr>

<td>Cell 3</td><td>Cell 4</td>
</tr>

</table>

<table>

<tr> <td colspan="2"> </td> <ftr>

<tr> <td> </td> <td> </td> </tr>

</table>

Figure 13-4. The colspan attribute expands cells horizontally to the right

210 | Chapter13: Tables

Setting the colspan to a number greater than the actual number of columns (such
as colspan="4" for the example) may cause some browsers to add empty columns
to the table, possibly throwing your elements out of alignment.

Row span

Similar to colspan, the rowspan attribute stretches a cell to occupy the space of
cells in rows below. Include the rowspan attribute in the row where you want the
cell to begin and set its value equal to the number of rows you want it to span
downward.

In Figure 13-5, note that the bottom row now contains only one cell. The other
has been incorporated into the vertical spanned cell. Browsers ignore overex-
tended rowspan values. There can never be more rows than explicitly stated tr
elements.

<table>

<tr>

<td rowspan="2">Cell 1</td><td>Cell 2</td>
</tr>

<tr>

<td>Cell 4</td>

</tr>

</table>

<td rowspan="2"> </td>

<table>

<tr> <td> </td> </tr>

<tr> <td> </td> </tr>

</table>

Figure 13-5. The rowspan attribute expands cells vertically

&

You may combine colspan and rowspan attributes to create a cell
that spans both rows and columns.

Descriptive Elements

The basic table model also includes two elements that provide descriptions of the
table’s contents. Table header cells (th) are used to describe the cells in the row or
column that they precede. The caption element gives a title to the whole table.

Basic Table Structure | 211

Table headers

Table header cells (indicated by the th element) are used to provide important
information or context about the cells in the row or column that they precede.
The th element accepts the same list of attributes as td.

th
<th>. .. </th>
Attributes
Core (id, class, style, title), Internationalization, Events
abbr="text"
align="left|right|center|justify|char"
axis="text"

char="character"

charoff="Iength"

colspan="number"

headers="id references"
rowspan="number"
scope="row|col|rowgroup|colgroup"
valign="top|middle|bottom|baseline"

Deprecated attributes
bgcolor="#rrggbb" or "color name"
height="pixels, percentage"
nowrap="nowrap"
width="pixels, percentage"

In terms of markup and table structure, headers are placed in the tr element, the
same as a td, as shown in this example.

<table>

<tr><ths>Planet</th><ths>Distance from Earth</th></tr>
<tr><td>Venus</td><td>pretty darn far</td></tr>
<tr><td>Neptune</td><td>ridiculously far</td></tr>
</table>

User agents usually render the contents of table headers slightly differently than
regular table cells (most often in bold, centered text); however, their appearance
may easily be changed with style sheets.

The difference between th and td elements is not merely presentational, however.
Table headers perform an important function in binding descriptive labels to table
cells for non-visual browsers. They are discussed in more detail in the “Accessible
Tables” section later in this chapter. Table header elements should not be used in
layout tables.

Captions

The caption element provides a title or brief description of the table.

212 | Chapter13: Tables

caption

<caption>...</caption>

Attributes
Core (id, class, style, title), Internationalization, Events

Deprecated attributes
align="top|bottom|left|right"

The caption element must immediately follow the opening table tag and precede
all other table elements, as shown in this example and Figure 13-6.

<table>

<caption>Planetary Distances</caption>
<tr><th>Planet</th><th>Distance from Earth</th></tr>
<tr><td>Venus</td><td>pretty darn far</td></tr>
<tr><td>Neptune</td><td>ridiculously far</td></tr>
</table>

Planctary Distances

Planet Distance from Earth
Venus pretty dam far

Neptune || ridiculously far

Figure 13-6. A table with a caption

By default, the caption appears at the top of the table. Its width is determined by
the width of the table. You can use the caption-side style property to move the
caption below the table. There is also a deprecated align attribute that does the
same thing. The left and right values are not well supported, so authors gener-
ally have the option of putting the caption above or below the table.

Captions are a useful tool for table accessibility and will be addressed again briefly
in the “Accessible Tables” section later in this chapter.

Row Groups

HTML and XHTML define three “row group” elements that enable authors to
organize rows into a table header (thead), footer (tfoot), and a table body (tbody).
Because these elements share syntax and attributes, they have been aggregated
into one element listing, presented here.

Row Groups | 213

thead, tbody, tfoot
<thead>...</thead>, <tbody>...</tbody>, <tfoot>...</tfoot>

Attributes

Core (id, class, style, title), Internationalization, Events
align="left|center|right|justify|char"
char="character"

charoff="Iength"

valign="top|middle|bottom|baseline"

Internet Explorer 3.0 first introduced this system for grouping rows so they can be
treated as units by user agents or style sheets. The W3C included the row group
elements in the HTML 4.0 Recommendation as a way to allow more meaningful
labeling, improve accessibility, and provide more flexibility for applying style
sheet properties. Row groups are advantageous for data tables but should be
avoided for layout tables.

The rows in a table may be grouped into a table head (thead), a table footer
(tfoot), and one or more table bodies (tbody). The head and footer should contain
information about the document and may someday be used to display fixed
elements while the body scrolls independently. Another possibility is that the
table head and foot would print on every page of a long table that has been
divided over several pages.

The W3C requires that the tfoot element (if there is one) appear before tbody in
the markup so the table can render the foot before downloading all the (poten-
tially numerous) rows of data. An example of a simple table marked up with row
groups is shown here.

<table>

<thead>
<tr><th>Employee</th><th>Salary</th><th>Start date</th></tr>
</thead>

<tfoot>
<tr><td colspan="3">Compiled by Buster D. Boss</td></tr>
</tfoot>

<tbody>

<tr><td>Wilma</td><td>5,000</td><td>April 6</td></tr>
<tr>... more data cells...</tr>

<tr>... more data cells...</tr>

</tbody>

</table>

Columns and Column Groups

As mentioned earlier in this chapter, the columns in a table are just implied by the
number of cells in the longest row. In some instances, however, it is desirable to

214 | Chapter13: Tables

identify conceptual columns of data cells or groups of columns. The col (column)
and colgroup (column group) elements allow authors to conceptually join a group
of cells that appear in a column (or columns).

Column and column groups offer a number of conveniences. Their original intent
was to speed up the display of tables in visual user agents. By specifying the width
of each column, the user agent does not need to parse the contents of the entire
table in order to calculate column and table. Columns and column groups are also
useful for applying attributes (such as width or align) to all the cells they include.
They may also be used as “hooks” for a limited number of style properties (see
note). When used with the scope attribute (discussed in the upcoming accessi-
bility section), they may also provide helpful context for screen readers and other
non-visual browsing devices.

&

Y The CSS 2.1 Recommendation states that only the following four

. p style properties may be applied to the col and colgroup elements:

? border, background, width, and visibility. For an in-depth explana-
tion of why this is the case, read lan Hickson’s blog entry, “The
mystery of why only four properties apply to table columns” at In.
hixie.ch/?start=1070385285& count=1. See also Chapter 22 of this
book for more information on style properties for tables.

col
<col />
Attributes

Core (id, class, style, title), Internationalization, Events
align="left|center|right|justify|char"
char="character"

charoff="Iength"

span="number"

valign="top|middle|bottom|baseline"

width="pixels, percentage, n*"

colgroup

<colgroup>...</colgroup>

Attributes
Core (id, class, style, title), Internationalization, Events
align="left|center|right|justify|char"
char="character"
charoff="Iength"
span="number"
valign="top|middle|bottom|baseline"
width="pixels, percentage, n*"

The col element is used to label or to apply attribute specifications to an indi-
vidual column (or across several columns via the span attribute) without actually

Columns and Column Groups | 215

grouping the columns together structurally or conceptually. An empty element,
col is used only to apply attributes or styles to the columns to which it refers.

The colgroup element defines a conceptual group of columns. The number of
columns included in the group is indicated with the span attribute or by the total
of col elements (with their span values) within the column group. Attributes, such
as width or align, applied to the colgroup element apply to every column within
that group.

The colgroup and/or col elements must appear before any row or row group
elements. They are placed either immediately after the table start tag or immedi-
ately after the caption element, if there is one. In this example, column group
information has been added to the previous sample table markup.

<table>

<colgroup id="employinfo">

<col span="2" width="100" />

<col span="1" width="50" class="date" />
</colgroup>

<thead>
<tr><th>Employee</th><th>Salary</th><th>Start date</th></tr>
</thead>

<tfoot>
<tr><td colspan="3">Compiled by Buster D. Boss</td></tr>
</tfoot>

<tbody>

<tr><td>Wilma</td><td>5,000</td><td>April 6</td></tr>
<tr>... more data cells...</tr>

<tr>... more data cells...</tr>

</tbody>

</table>

The colgroup element identifies the three columns as part of the same structural
group. (There may be many column groups in a table, but for simplicity’s sake,
this example has just one.) Within the colgroup, the first col element identifies
two columns (span="2"), each with a width of 100 pixels. The remaining col has a
width of 50 pixels. If all the columns in the table were to be the same width, the
width could have been specified in the colgroup element. The third column is
identified with a class attribute that could later be targeted with a style property

(such as background).

Table Presentation

As for all matters of presentation, style sheets are the preferred method for
changing the appearance of tables and offer more fine-tuned control than HTML
attributes. See Chapter 22 for more information on CSS specifically for tables.

216 | Chapter13: Tables

That said, there are a number of non-deprecated attributes that may be used to
control cell spacing, dimensions, borders, and alignment (although, even most of
those have style sheet alternatives). This section takes a look at those presenta-
tion-related attributes and also points out the preferred CSS methods.

Table Cell Spacing

There are two types of space that can be added in and around table cells: cell
padding and cell spacing. The cellpadding and cellspacing attributes are used
with the table element and apply to the whole table; you can’t specify padding or
spacing for individual cells using HTML alone.

Cell spacing

Cell spacing refers to the amount of space that is held between the cells in a table.
It is specified with the cellspacing attribute in the table element. Values are spec-
ified in number of pixels. Increasing the cell spacing results in wider shaded
borders between cells. In the second image in Figure 13-7, the darker gray areas
indicate the 10 pixels of cell spacing added between cells. The default value for
cellspacing is 2; therefore, if no cellspacing is specified, browsers will automati-
cally place two pixels of space between cells.

=——cellspacing
cell 1 cell 2——cellpadding

cell 3 = cell &——cell contents

cell 17 cell 2

<table
cell3 cell 4 cellpadding="1">
cell1 cell2 <table cellspacing="1"
cell3 cell4 >

Figure 13-7. Cell spacing versus cell padding

Cell padding

Cell padding refers to the amount of space between the cell’s border and the
contents of the cell (as indicated by the third image in Figure 13-7). It is specified
using the cellpadding attribute in the table element. Values are specified in
number of pixels; the default value is 1. Relative values (percentages of available
space) may also be used.

(5SS alternatives

Cell padding may be handled by applying the padding property to the td element.
By using class, id, or more specific selectors, it is possible to apply different

Table Presentation | 217

amounts of padding to different cells within a table (the cellpadding attribute
applies the same amount of padding to all cells).

There is no CSS property that is exactly equivalent to the cellspacing attribute,
although you can adjust the amount of space between cells by setting the border-
collapse property for the table to separate and then use the border-spacing prop-
erty to specify the amount of space between cell borders. The difference is that
with the cellspacing attribute, the border is rendered thicker between cells, while
the border-spacing property adds empty space between them.

Unfortunately, the border-spacing property is not supported by Internet Explorer
6 and earlier (support in IE 7 is not documented as of this writing), so authors are
left with no practical CSS cellspacing substitute for the time being.

&
Many authors also explicitly set both the cellspacing and
0‘;‘. p cellpadding to O (zero) to override default browser settings and
" ot clear the way for style sheet properties.

Table and Cell Dimensions

By default, a table will render just wide enough to contain all of its contents. You
can explicitly specify the width of a table using the width attribute in the table
element. The HTML specifications provide no way to specify the height of a table,
preferring the height to be automatically determined by the table’s contents.
However, there is a nonstandard height attribute that is well-supported for
providing minimum height for the overall table.

You can control the width and height of individual cells by using the (you guessed
it) width and height attributes in the td or th element. Height values are consid-
ered to be minimum heights and cells may expand downward to accommodate
their contents.

&
s The width and height attributes have been deprecated for td and th
0‘;‘. a- elements, but they are not deprecated for use in the table element.
" a3 Style sheet properties are still the preferred method for specifying

table dimensions.

(5SS alternative

Use the width and height properties to set the size of any table-related element.
Heights set on table and table cells are considered minimum heights, and the
actual height may expand to fit the content.

Borders

The table element accepts the following attributes for controlling borders and
rules between cells and around the table. All of the attributes introduced here
apply to the table element only. None of these attributes are deprecated, but
authors are urged to use CSS for drawing borders around table elements instead.

218 | Chapter13: Tables

border
Controls the width of the frame around the table. The default value is 1.

frame
Specifies the sides of the table on which the frame should render. By default,
the frame is rendered as a shaded, 3D style rule. The frame attribute uses
these keyword values: void (no frame), above (top side only), below (bottom
side only), hsides (horizontal sides), 1hs (lefthand side), rhs (righthand side),
vsides (vertical sides), box (all four sides), and border (all four sides).

rules
Specifies which rules render between the cells of the table. One use for this
attribute might be to display rules only between certain sets of columns or
rows, as defined by colgroup or the row group elements (thead, tbody, and
tfoot). The accepted values for the rules attribute are all, cols, groups, none,
and rows.

(5SS alternative

The collection of border properties in CSS allows you to specify the style (such as
solid, dotted, dashed, and so on), color, and width of borders around any table-
related element. With style sheets, it is possible to apply different borders to
different sides of tables, their rows, or cells. See Chapter 19 for details on the
border properties and Chapter 22 for how borders are handled in tables
specifically.

Cell Content Alignment

The align and valign attributes are used to specify the horizontal and vertical
alignment (respectively) of content within cells. Alignment may be specified for
the following elements: td, th, tr, thead, tbody, tfoot, col, and colgroup.
&
Adding the align attribute to the table element aligns the entire
0‘;‘. . table in the width of its containing element and does not affect the
" o alignment within the cells.

Horizontal alignment

The align attribute accepts the usual values left, right, center, and justify. Text
is left-justified by default in left-to-right reading languages.

The align attribute also includes the char value that specifies that the table
contents should be aligned on a specific character, such as a decimal point for a
column of currency amounts. The character used for alignment is provided by the
char attribute. The charoff attribute specifies the offset distance to the first align-
ment character. Although it’s a nifty idea, the char and charoff attributes are not
supported by current browsers.

Alignment settings for individual cells (td or th) always override settings at the
higher levels. Alignment set on elements within a cell (a p element, for example)
override the cell’s alignment. If the table includes a col or colgroup, the align

Table Presentation | 219

settings on the columns override any alignment applied to a row or row group
element.

Vertical alignment

The valign attribute is used to vertically position the contents of the cell at the
top, bottom, or middle of the cell. The baseline value of valign ensures that the
first lines of each cell in a row share the same baseline.

(SS alternatives

Authors may use the text-align property to specify the horizontal alignment for
the contents of any table element (including the table element itself). The text-
align property may also be applied to any element contained within a table cell,
thus overriding the cell- or row-level alignment settings.

For vertical centering, applying the vertical-align style property to the td or th
element has the same effect as the valign attribute. The available values for
vertical-align when applied to table cells are baseline, top, middle, and bottom.

Backgrounds

The (X)HTML Recommendations have deprecated the bgcolor attribute used to
apply background colors to cells, rows, and tables. Use the background style sheet
property to apply colors and background images instead. The background prop-
erty is explained in Chapter 20, and background behavior in tables is covered in
Chapter 22.

Accessible Tables

Presenting data in rows and columns is a highly effective device in visual media for
adding meaning to data. Consider the simple table example in Figure 13-8.

Planet |Diameter measured in earths | Orbital period in years | Moons
Mercury | .38 .24 0
Venus |[.95 62 0
Jupiter [317.8 11.9 63

Figure 13-8. A simple table example

Sighted users can easily trace up a column or across a row to a header cell that
explains the data’s meaning and context. Blind or severely sight-impaired users do
not have this luxury. When using a screen reader or Braille device, the contents of
each cell may be read one after another (a process called linearization). The table
in Figure 13-8 might be presented like so: “Planet Diameter measured in earths
Orbital period in years Moons Mercury .38 .24 0 Venus .95 .62 0 Jupiter 317.8 11.
9 63.” It’s easy to lose track of the meaning of each statistic for a table as simple as

220 | Chapter13: Tables

this. For complex data tables, such as those pictured in Figure 13-1, it’s nearly
impossible.

The (X)HTML specification provides several mechanisms for adding meaning to
cell data even when the table is presented non-visually. This section outlines the
basics of authoring accessible data tables. For more in-depth tutorials, see these
online resources:

* “Techniques for Accessible HTML Tables” (from Papers on Section 508), by
Steve Ferg (www.ferg.org/section508/accessible_tables.html)

»

* “Bring on the Tables,” by Roger Johansson (www.456BereaStreet.com/
archive/200410/bring_on_the_tables/)

* “Creating Accessible Tables,” at WebAIM (www.webaim.org/techniques/
tables/2)

Table Metadata

The first step in making a table accessible is to provide descriptions of the table
using the caption element and summary attribute.

The caption element introduced earlier in this chapter provides a short descrip-
tive title for the table. Visual browsers display the contents of the caption element
above or below the table, as specified by an attribute or style property.

The summary attribute in the table element may provide a more lengthy descrip-
tion of the table. It is analogous to the alt attribute for images. Unlike the caption
element, the value of the summary attribute is not rendered by visual browsers.

The summary may give visually impaired users a better understanding of the
table’s contents and organization that sighted users could understand at a glance.
This alleviates the need to read through several rows of data to decide whether a
table will be useful. Although the summary is available for longer descriptions,
authors are advised to keep summary descriptions clear and succinct and use
them only when necessary.

The table in Figure 13-8 might be given the following caption and summary (note
that summaries are more useful for tables that are more complex than this one).

<table summary="A comparison of major features for each planet in the solar
system, relative to characteristics of the Earth."»>

<caption>Solar System Summary</caption>

<tr> (table continues...)

Table Headers

The most important element in creating accessible data tables is the table header
(th). Table headers provide a description or context for the data cells in a column
or row. Non-visual user agents rely on the th element for descriptions of each
table cell. While it is possible to use styles to make the first row of table cells (td)
look like headers (for example, by making them bold and arranging them in
shaded boxes), a td element alone will not perform the same function as a th, and
important information will be lost.

Accessible Tables | 221

Here is the same table from the previous figure rewritten with table headers
(Figure 13-9). Notice that by default, browsers render headers in bold, centered
text, but you can easily change the way they look with CSS properties. By all
means, do not avoid using th elements properly just because you don’t like the
browser’s default rendering.

<table summary="A comparison of major features for each planet in the solar
system, relative to characteristics of the Earth.">
<caption>Solar System Summary</caption>
<tr>
<th>Planet</th>
<th abbr="diameter"s>Diameter measured in earths</th>
<th abbr="orbit">Orbital period in years</th>
<th>Moons</th>
</tr>
<tr>
<td>Mercury</td><td>.38</td><td>.24</td><td>0</td>
</tr>
<tr>
<td>Venus</td><td>.95¢/td><td>.62¢</td><td>0</td>
</tr>
<tr>
<td>Jupiter</td><td>317.8</td><td>11.9</td><td>63</td>
</tr>
</table>

Solar System Summary

Planet | Diameter measured in earths | Orbital period in years | Moons
Mercury | .38 24 0
Venus |.95 .62 0
Jupiter |317.8 11.9 63

Figure 13-9. A table with a caption and table header elements

With headers in place, a screen reader may be configured to read each row of data
like this: “Planet: Mercury, Diameter measured in earths: .38, Orbital period in
years: .24, Moons: 0,” and so on. It is clear how headers alone go a long way
toward attaching meaning to the data in each cell.

It is also easy to see how this might be cumbersome, particularly if the header
titles are long. The abbr attribute allows authors to provide an alternate version of
the header title that may be used instead, as shown in example.

<th abbr="diameter"s>Diameter measured in earths</th»

Instead of repeating “Diameter measured in earths” before each measurement, a
screen-reader could say simply “diameter” instead.

222 | Chapter13: Tables

Associating Headers with Data

As table structure gets more complex, additional markup is required to keep the
associations between table headers and their respective data clear. The remaining
attributes for the th element, scope and headers, are used to conceptually attach
headers to groups of data cells.

Scope

In the simple table shown in Figure 13-9, it is easy to tell that the headers apply to
their respective columns of data. In more complex tables, the relationships
between headers and data may not be so straightforward. The scope attribute in
the th element is used to explicitly declare associations between table headers and
the rows, columns, row groups, or column groups in which they appear (using the
values row, column, rowgroup, and colgroup, respectively)

The table example in Figure 13-10 has been altered slightly to include table
headers for each row.

Solar System Summary

Diameter measured in earths | Orbital period in years | Moons
Mercury | .38 24 i}
Venus |.95 .62 0
Jupiter |317.8 11.9 63

Figure 13-10. Table with row and column headers

In this case, it is desirable to make it clear that the headers in the left column
apply to each data cell in the rows in which they appear. It is helpful to indicate
the relationship of the cells with their respective column header as well. This
revised markup shows how the scope attribute is used to indicate these
relationships.

<table summary="A comparison of major features for each planet in the solar
system, relative to characteristics of the Earth.">
<caption>Solar System Summary</caption>
<tr>
<td></td>
<th scope="column" abbr="diameter"s>Diameter measured in earths</th>
<th scope="column" abbr="orbit">Orbital period in years</th>
<th scope="column">Moons</th>
</tr>
<tr>
<th scope="row">Mercury</th>
<td>.38</td>
<td>.24</td>
<td>o</td>
</tr>

Accessible Tables | 223

<tr>
<th scope="row">Venus</th>
<td>.95¢/td>
<td>.62</td>
<td>o</td>

</tr>

<tr>
<th scope="row">Jupiter</th>
<td>317.8</td>
<td>11.9</td>
<td>63</td>

</tr>

</table>

This line from the table markup example extends the description “Mercury” to all
the cells in that row. The relationship may be visualized as shown in Figure 13-11.

<th scope="row">Mercury</th>

scope="row"

Solar System Summary
| |Diameter measured in earths| Orbital period in years | ans|

| Mercury | 38 | .24 E |
Venus .95 62 0
Jupiter |[317.8 119 63

Figure 13-11. A header is associated with a row with the scope attribute

The scope attribute may also be used in a data cell element (td) to apply its
content as a label to the remaining cells in its row, column, row group, or column
group. This is useful for cells that contain data themselves but also carry meaning
about other data cells, such as the planet names in the sample table. If the
“Planets” table header were reinserted, the planet names could go back to being
regular td elements yet still be associated with each row.

ID and headers

In Figure 13-11, it was possible to indicate the scope of the header by drawing a
box across the row. The same would be true when applying scope to columns or
groups: the scope extends in a rectangle that encompasses the specified table cells.

For very complex tables with spanned and/or nested table headers, the relation-
ships between headers and the data they describe may not fit into neat rectangles.
The headers attribute is used to associate data cells with specific table headers by
referencing them by name (provided in an id value).

The solar system table has been altered once again to include a (fairly contrived)
nested header as shown in Figure 13-12.

224 | Chapter13: Tables

Solar System Summary

Measurements relative to Earth
Moons
Diameter measured in earths | Orbital period in years
Mercury | .38 24 0
Venus [.595 52 0
Jupiter |317.8 11.9 63

Figure 13-12. Table with a nested header

The first step in using this method to associate headers and cells is to give each
table header (th) element a name using the id attribute. Then, each td uses the
headers attribute to specify the table headers that apply to it. The value may
include several header names, separated by spaces, as shown in this example.

<table cellpadding="4" summary="A comparison of major features for each
planet in the solar system, relative to the Earth's characteristics.">
<caption>Solar System Summary</caption>
<tr>
<td rowspan="2"></td>
<th colspan="2" id="measure" abbr="measurements">Measurements relative
to Earth</th>
<th rowspan="2" id="moons">Moons</th>
</tr>
<tr>
<th id="diameter" abbr="diameter">Diameter measured in earths</th>
<th id="orbit" abbr="orbit">Orbital period in years</th>
</tr>
<tr>
<th id="mercury">Mercury</th>
<td headers="mercury measure diameter">.38</td>
<td headers="mercury measure orbit">.24</td>
<td headers="mercury moons">0</td>
</tr>
<tr>
<th id="venus">Venus</th>
<td headers="venus measure diameter">.95</td>
<td headers="venus measure orbit">.62</td>
<td headers="venus moons">0</td>
</tr>
<tr>
<th id="jupiter">Jupiter</th>
<td headers="jupiter measure diameter">317.8</td>
<td headers="jupiter measure orbit">11.9</td>
<td headers="jupiter moons">63</td>
</tr>
</table>

The headers method is complicated—even for a simple table such as the one in
this example—and should be used only when scope won’t adequately do the trick.

Accessible Tables | 225

Responsible Layout Tables

You’ve surely heard (throughout this book and elsewhere) that table-based layout
has been replaced by CSS for positioning elements on the page. However, during
this time of transition, as browser developers work out the kinks in CSS support,
some authors still choose to use tables to establish the basic grid of the page. It is
possible to rely on a table for layout, but be in line with the current trends of stan-
dards compliance and accessibility in contemporary web design.

Layout tables are not inherently evil (or even inaccessible), as long as they are
handled the right way. This section recommends ways to use layout tables that do
the least harm.

Stick to Basic Table Elements

When using a table strictly for layout, use only the minimal table elements:

table

Use to establish the table
tr

Use for table rows
td

Use for table cells

Captions, table headers, row groups, and all features for improving table accessi-
bility as listed in the previous section should be avoided. They will only serve to
confuse or slow down readers with assistive devices.

Keep It Simple and Lightweight

The problem with most layout tables in terms of accessibility is complexity. It is
not uncommon for tables aiming to achieve pixel-precise layouts to use tech-
niques such as:

* Tables nested within tables, some many levels deep

* Empty rows inserted for the sole purpose of establishing column widths

* Table cells that contain only one-pixel GIFs used for spacing

* Numerous spanned rows and columns

* Repetitive presentational table attributes
These typically result in overly complicated table structures and bloated markup.
Non-sighted users may become disoriented trying to navigate from cell to cell in

an attempt to make sense of the content. The complexity and size of the source
document isn’t doing any favors for visual browsers either.

An example of a typically convoluted table-based layout is shown in Figure 13-13
(another one of my own old-school designs). The borders have been enhanced to
reveal the complexity of the table structure.

By contrast, responsible layout tables are simple and lightweight. The table in
Figure 13-14 contains similar content to the example in Figure 13-13, but a single

226 | Chapter13: Tables

The Jenville Shou .« s
DOAIND UL RSLO combination of two passions:

eooking
indie rodk music

Figure 13-13. An overly complex nested table layout

stripped-down layout table is used to establish the basic grid structure of the page.
The borders have been turned on to reveal the table structure. There are no nested
tables, and every table cell is filled with real content. All matters of visual format-
ting are handled with style sheets (as discussed in the next section).

* %
: iTI-HE JENVILLE SHOM . bk

tﬂﬂHiﬂﬂ lllll:fl mthstﬂfﬁ J Cooking and Indie Rock Music

I've been conducting interviews e A ritos... piday pri
< Teiiitta ot Attty

with my, favorite bands on the

Videos of our co
posted here. In

artists have ge

contributed th

Thank them by buying their
records. Ban appetit!

... mac-n-chee... korma nirvana.

Al concent copyrl

Figure 13-14. A lightweight table used for layout

Responsible Layout Tables | 227

The markup for the table in Figure 13-14 is shown here. It has been simplified to
reveal the structure of the table markup.

<table>
<tr>
<td colspan="2" id="masthead">
<div id="welcome">The Jenville Show is ...</div>
</td>
</tr>

<tr>
<td id="intro">
<p>I've been conducting interviews...</p>
</td>

<td id="bandlist">

<1i id="wrens">...</1i>
<1i id="gibbard">...</1i>
<1i id="beulah">...</1i>
<1i id="jackblack">...</1i>

</td>

</tr>

<tr>
<td colspan="2"><p class="copyrt">All content...</p></td>
</tr>
</table>

Use Style Sheets for Presentation

The secret to keeping a layout table simple and streamlined is to use it only to
establish a basic layout grid and to use Cascading Style Sheets for everything else
related to presentation. The good news is with style sheets, the need for most of
the layout table hacks listed earlier is eliminated.

For example, one of the main reasons for nesting tables was to get different
amounts of cell padding in different parts of the table. With CSS, padding can be
applied on a cell-by-cell basis. Similarly, where once it was necessary to put text in
a single-celled table to display it in a colored box, style sheets now allow any
element to be presented in that fashion by setting dimensions and a background
color.

In the complicated layout in Figure 13-13, the list of artists is held together in a
two-part nested table. In the lightweight example in Figure 13-14, the bands are
now marked up semantically as an unordered list. The one-pixel rules that had
been created with table cells filled with one-pixel transparent GIFs and back-
ground colors are now created simply by applying borders to the bottom of list
item (1i) elements.

228 | Chapter13: Tables

Using the background images, image replacement, and rounded-corner tech-
niques listed in Chapter 24, this single-table layout could be made to approximate
the look and feel of the original even further.

These are just a few examples of how style sheets could be used in tandem with a
minimal layout table. The table takes care of the structure, and style sheets handle
the presentation of all the content in a way that alleviates the need for additional
tables and table cells. Once you’ve weaned yourself this far, it’s not a big leap to
CSS positioning and table-free design.

Check for Linearization

When creating a layout table, it is important to be aware of how well your table
will linearize when presented in a non-visual browser. Linearization refers to the
order of the content when all the table formatting is removed. Screen readers read
content in the order in which it appears in the source document, as though there
were no markup there at all.

Tables are said to linearize well when their contents appear in a logical order in
the source document. In general, it is preferable to get readers to the main content
as quickly as possible. Unfortunately, the way many layout tables are constructed
leads to the side column content (long lists of links and other sidebar-like infor-
mation) appearing before the main content. The table in Figure 13-15 shows a
typical (albeit simple) three-column layout table with a masthead.

Exciting Page Masthead

Sidebar 1 MAIN CONTENT

Al M0 AAVIGAEION BEE | This is what wo want our readers to read first, ovin
T Those tsing scresn readers and o evices

Resauren 1

sting, but not

Figure 13-15. A typical layout table

While it is perfectly clear what to read first when rendered visually, a look at the
source reveals that users with screen readers will need to listen to the big long
navigation list in “Sidebar 1” before they hear the main feature. This is a simpli-
fied example of a table that does not linearize well. Complex layout tables that are
typical in everyday practice have far more egregious linearization problems.

<table width="700" border="0" cellpadding="4">
<tr>
<td colspan="3">
<h2>Exciting Page Masthead </h2>
</td>

Responsible Layout Tables | 229

</tr>
<tr>
<td><p>Sidebar 1</p>
<p>Big long navigation list</p>

</td>

<td><p>MAIN CONTENT</p>

<p>This is what we want our readers to read first, even
those using screen readers and other assistive devices.</p>...

</td>

<td><p>Sidebar 2</p>
<p>This is some tangental information ... </p>
</td>
</tr>
</table>

Layout tables can be designed to linearize in a logical order, but it takes some
careful planning, and at times, a little finagling. One technique that works for the
three-column layout shown in the example is to put the main content cell in a new
row just after the masthead and use the rowspan attribute to present it side by side
with the sidebar cells, as shown in this example. The resulting table is shown in
Figure 13-16.

<table>
<tr>
<td colspan="3"><div align="center">
<h2>Exciting Page Masthead </h2>
</div></td>
</tr>

<tr>
<td></td>
<td rowspan="2"><p>MAIN CONTENT</p>
<p>This is what we want our readers to read first....</p>
</td>
<td></td>
</tr>

<tr>

<td><p>Sidebar 1</p>

<p>Big long navigation list</p>...

</td>

<td><p>Sidebar 2</p>

<p class="style1">This is some tangental information...</p></td>
</tr>

</table>

The empty table cells in the second row have been left unstyled in this example to
reveal the table’s structure, but obviously, they could be minimized by tinkering
with styles. The important thing to notice is that the main content is now the first
thing users read after the masthead when the table is linearized.

230 | Chapter13: Tables

Exciting Page Masthead

| MAIN CONTENT

This is what we want ou
those ysing soreen reade

Figure 13-16. A table with preferred linearization

Creating tables that linearize logically can be a tricky business and may require
rethinking the design. As an alternative, using CSS with absolute positioning
allows you to start with markup that is in the preferred order and then place each
element wherever you want on the page. This may be another motivation for
cutting the tether to table-based design.

Responsible Layout Tables | 231

14

Frames

Frames are a method for dividing the browser window into smaller subwindows,
each displaying a different HTML document. This chapter covers the structure
and creation of framed documents, controls for affecting their display and func-
tion, and some advanced tips and tricks. The following frame-related elements

will be addressed.

frame Defines a single frame
frameset Establishes the structure for frames or other framesets
noframes Content displayed if frames are not supported

Introduction to Frames

Frames allow authors to display several HTML documents in the browser window
at one time, each in its own scrollable subwindow. Introduced by Netscape Navi-
gator 2.0, frame support was soon added by other popular browsers. The HTML
4.01 and XHTML 1.0 Recommendations include a Frameset DTD for framed
documents. XHTML 1.1 omits all frame elements.

Framed documents are typically used as a navigation device in which all of the
navigation options stay put in one frame while the linked content documents are
displayed in another frame. Because frames may include scrollbars and scroll inde-
pendently of one another, frames are a method for making sure one page
component stays put on the page while the rest of the page is free to scroll.

It is important to note that frame-like functionality (in which one element stays
fixed and the rest of the page scrolls) can also be accomplished with CSS using the
position: fixed property. Unfortunately, Internet Explorer 6 for Windows and
earlier do not support fixed positioning, but there are workarounds as noted in
Chapter 25.

232

Due to reliable browser support, frames are still an option for navigation and
other uses. However, they do present certain problems and peculiarities that have
led to their currently controversial status. Like most things, frames are neither all
good nor all bad. It is your responsibility to be familiar with both sides of the coin
so you can help present the best solution for your or your clients’ needs.

Advantages

Consider these advantages to using frames:

They enable parts of the page to remain stationary while other parts scroll.
This is useful for elements you may not want to scroll out of view, such as
navigational options or banner advertising.

Frames unify resources that reside on separate servers. For instance, you may
use frames to combine your own material (and navigation graphics) with
threaded discussion material generated by software on a vendor’s server.

With the noframes element, you can add alternative content for browsers that
do not support frames. This accessibility feature is built into the frames sys-
tem.

Disadvantages

Also keep in mind these disadvantages:

Frames may make site production more complicated because you need to
produce and organize multiple files to fill one page.

Navigating through a framed site may be prohibitively challenging for some
users (especially users with disabilities who are using alternative browsing
devices).

Documents nested in a frameset may be more difficult to bookmark.

A large number of frames on a page may significantly increase the load on the
server because so much of the load on a server is initial document requests.
Four requests for 1K files (the frameset and the contents of three frames) is
more work for your server than a single request for a 4K document.

Multiple documents for each web page makes the site more difficult to man-
age and update.

Framed documents can be a nuisance for search engines. Content-level docu-
ments may be missed in searches. If a contained document is found by a
search engine, it will probably be displayed out of context of its frameset,
potentially losing important navigational options.

It is more difficult to track actual page (or ad) impressions when the pages are
part of a framed document.

With the pros and cons in mind, take a look at how framed documents are
constructed.

Introduction to Frames | 233

Basic Frameset Structure

A web page that is divided into frames is held together by a top-level frameset
document.

Frameset documents are fundamentally different from other HTML documents in
that they use the frameset element instead of a body element. The frameset
element may not contain any content, but instead defines and names some
number of frames (or other framesets), arranged in rows and/or columns. Each
frame is indicated with a frame element within the frameset. A frameset docu-
ment contains a regular header portion (as indicated with the head element).

frameset

<frameset>...</frameset>

Attributes

Core (id, class, style, title), onload, onunload
cols="list of lengths" (number, percentage, or *)
rows="list of lengths " (number, percentage, or *)

Nonstandard attributes

border="number"
bordercolor="#rrggbb" or "color name"
frameborder="1[0"; "yes|no" (NN 3)

This is an example of a minimal frameset document in XHTML. The resulting
frameset, shown in Figure 14-1, has two frames occupying two columns of equal

width.

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-frameset.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>

<title>Simple Framed Document</title>

</head>

<frameset cols="*,*">
<frame src="left.html" />
<frame src="right.html" />
</frameset>

<noframes>

<body>

<p>Your browser does not support frames.</p>
<p>Go to the left</p>
<p>Go to the right</p>
</body>

</noframes>

</html>

234 | (Chapter14: Frames

ene Left Frame Document =

This is the left frame.
ene Right Frame Document (=]
This is the right frame.

ene Simple Frameset Document (=)

This is the left frame This is the right frame.

left.html

—!‘
right.html

Figure 14-1. Basic frameset document

The frameset document is displaying two external HTML documents, each in its
own frame. The job of the frameset document is simply to build a framework that
holds them together. It also includes the noframes element for providing alterna-
tive content for browsers that don’t support frames.

Take a look for a moment at the frameset source document. It begins with the
DOCTYPE declaration that tells the browser to use the XHTML 1.0 Frameset
DTD when rendering this file. Next is the html root element and an ordinary
header containing the document’s title.

/—— A DOCTYPE declaration that points to a Frameset DTD will throw
‘“ﬂ*@ browsers that support DOCTYPE switching into Quirks mode.
That means that most browsers will support nonstandard and dep-
recated elements and attributes. For more information on DOC-

TYPE switching, see Chapter 9.

This is the point at which a frameset document diverges from regular HTML
documents. Instead of a body, it uses the frameset element that specifies that the
document should display in two columns (cols) of equal width. The frameset is
merely a container for two frame elements. The primary job of the frame element
is to provide the URL of the document that should display in that frame. The
example above has two frames. One pulls in a document called left.html and the
other displays right.html.

It is important to note that left.html and right.html are ordinary (X)yHTML docu-
ments, each consisting of a head and body element. In other words, documents
that are displayed within a frame are not frameset documents and do not need to
use the Frameset DTD. They may be authored according to the Strict or Transi-
tional DTDs. It is possible to display another frameset document in a frame;

Basic Frameset Structure | 235

however, there are more efficient methods for nesting frames as discussed in the
“Nesting Frames” section later in this chapter.

frame

<frame />

Attributes
Core (id, class, style, title)
frameborder="1|0" (IE 3+ and W3C Rec.); "yes|no" (NN 3+)
longdesc="URL"
marginwidth="number"
marginheight="number"
name="text"
noresize="noresize"
scrolling="yes|no|auto"
src="URL"

Nonstandard attributes
bordercolor="#rrggbb" or "color name" (Nonstandard)

Alternate Content

The sample frameset document contains one other element in addition to
frameset. The noframes element contains content that will be displayed in
browsers and devices that don’t support frames; therefore, it is an important tool
for ensuring the accessibility of framed documents.

noframes

<noframes> ... </noframes>

Attributes
Core (id, class, style, title), Internationalization, Events

The noframes element should be placed after the frameset element. This is the
noframes element provided in the example.

<noframes>

<body>

<p>Your browser does not support frames.</p>
<p>Go to the left</p>
<p>Go to the right</p>
</body>

</noframes>

The content of the noframes element might be just a few lines or an entire page of
information.

Ideally, the content of the noframes element is a complete alternative to the framed
interface. It should include the entire content of the page within a body element. If
the complete content is too large (in terms of byte size), opt for the list of descrip-
tions and links instead.

236 | Chapter14: Frames

At minimum, noframes content should provide a brief description of each frame
with a link to access the individual (XYHTML documents. Without links, the
frameset document is a dead end to users and search engines.

Establishing Rows and Columns

Rows (horizontal frames) and columns (vertical frames) are established with the
frameset element, using the rows and cols attributes, respectively. These attributes
divide the frameset in a grid-like manner. Frames are filled from left to right for
columns and from top to bottom for rows.

The number of rows or columns in the frameset is determined by the number of
size values provided. For example, to create a frameset with three columns, you
write cols="25%,50%,25%" (or three other size values). In this case, the user agent
creates a column for each of the provided measurements. Rows work in the same
manner. Figure 14-2 shows a simple framed document divided into two equal-
sized rows (on the left) and columns (right).

enn Simple Frameset Document (=] [

1 e O (&) Simple Frameset Document =
<frameset rows="*, *¥n> <frameset cols="*, *n>

<frame src="1.html /> <frame src="1.html />

<frame src="2.html /> <frame src="2.html />
</frameset> </frameset>

Figure 14-2. Simple horizontal and vertical frameset layouts

Specifying sizes
Frame size can be listed in one of three ways:

Absolute pixel values
The browser interprets an integer as an absolute pixel value. The frameset
element <frameset cols="150,650"> creates two columns, one exactly 150
pixels wide and the other exactly 650 pixels wide. If the browser window is
larger than the total specified pixels, it enlarges each frame proportionally to
fill the window.

Basic Frameset Structure | 237

Percentages
Percentages are based on the total width of the frameset. The total should
add up to 100%. The frameset element <frameset rows="25%,50%,25%">
creates three rows; the top and bottom frames each always occupy 25% of
the height of the frameset, and the middle row makes up 50%, regardless of
how the browser window is resized.

Relative values
Relative values, indicated by the asterisk (*) character, are used to divide up
the remaining space in the frameset into equal portions (as shown in
Figure 14-2). For instance, the frameset <frameset cols="100,*"> creates two
columns—the first is 100 pixels wide, and the second fills whatever portion is
left of the window.

You can also specify relative values in multiples of equal portions and
combine them with other measurement values. For example, the frameset
defined by <frameset cols="25%,2*,*"> divides the window into three
columns. The first column always occupies 25% of the window width. The
remaining two divide up the remaining space; however, in this case, the
middle column will always be two times as big as the third. (You may notice
that this results in the same division as the percentages example.)

Combining rows and columns

You can specify both rows and columns within a single frameset, creating a grid of
frames, as shown in Figure 14-3. When both cols and rows are specified for a
frameset, frames are created left to right in each row, in order. Rows are created
top to bottom. The order of appearance of frame elements within the frameset
determines where their contents display. The order in which documents are
displayed is demonstrated in Figure 14-3.

anf Simple Frameset Document =

1 2 3 <frameset rows="*,6 *"
cols="100, *, 2*">
<frame src="1.html" />
<frame src="2.html" />
<frame src="3.html" />
4 5 6 <frame src="4.html" />
<frame src="5.html" />
<frame src="6.html" />
</frameset>

Figure 14-3. Frameset with rows and columns

Nesting Frames

It is possible to nest a frameset within another frameset, which means you can
take one row and divide it into several columns (or, conversely, divide a column
into several rows), as shown in Figure 14-4. Nesting gives you more page layout
flexibility and complexity than simply dividing a frameset into a grid of rows and
columns.

238 | Chapter14: Frames

ann Simple Frameset Dotument

<frameset cols="100, *">

3 <frame src="1.html" />

<frameset rows="75,150,*">
<frame src="2.html" />
<frame src="3.html" />

4 <frame src="4.html" />
</frameset>

</frameset>

Figure 14-4. Document with nested framesets

In Figure 14-4, the top-level frameset specifies two columns. The first column is a
frame 100 pixels wide. The second column (which occupies the remainder of the
window) is filled with another frameset, this one with three rows.

There is no technical limit on the number of levels that frames can be nested, only
practical ones. If you nest frames, be careful to close each successive frameset or
the document will not display correctly.

Frame Function and Appearance

By default, frames are separated by borders with 3D beveled edges, and each
frame has a scrollbar if its contents do not fit in their entirety. You may want to
change these settings using the attributes for controlling frame functionality and
presentation.

Scrolling

The scrolling attribute within the frame element controls whether scrollbars
appear within the frame, regardless of the frame’s contents.

The default setting is auto, which behaves like any browser window—no scroll-
bars display unless the contents are too big to fit entirely within the frame. The
yes value should make scrollbars appear, even for mostly empty frames, however,
most current browsers seem to treat it the same as auto. To make sure scrollbars
never appear, even when the content is larger than the available space, set
scrolling="no".

In Figure 14-5 both frames display the same text document, but scrolling is set to
auto in the top and no in the bottom frame.

Disabling Resize

By default, any user can resize your frames—overriding your size settings—simply
by clicking and dragging on the border between frames. You can prevent users
from doing that by adding the noresize attribute to the frame element.

Frame Function and Appearance | 239

[-XaKs) simple Frameset Document (=]

augue vitae lorem vulputate convequat. Nam suscipit. Curabitur ut magna ac neque
pellentesgue scelerlsque. Fusce molestie. Maccenas pulvinar pellentesque risus.
Etiam dapibus justo i erat bibendum feugiat. Pellentesque convallis. Morbl at orcl,
Etiam at fells. Mauris pede dolor, hendrerit eu, varius sed, dapibus at, ipsum.
Aliguam erat yolutpgat.

Comectetuer adipiscing elit, Sed eu nibh eget magna dictum egestas, Duls molestie [
I

Duts §1t Amet dul. Proin sUsCIpIE massa A mi, Prain dator elit, solicitudin in, <frameset rows="*, *">
£ONIMENTUM HOR, GMAMS GE, PUMLS, MorDi posuere, liguly 1d uitricles vehicula, enim

Wis! pLACATa toror. eleifend pOrTior mi d1Am A purus. Aliguam tincidunt, tellus ac <frame src="text.html"
nanummy seelersque, augue pede congue odio, sed interdum elit ligula ut metus, 3 . " "

Suspendisse blandit fells quls tortor sallicitudin elementum, Donec id orcl id elit . scrolllng= auto />

<frame src="text.html"

Consectetuer adipiscing elit, Sed eu nibh eger magna dictum egestas. Duls molestie

Augue vicae lorem ViHpUTATE CONSEqEAT. Nam suscipit. Curabitur Ut Magna ac negque scroll ing: "no" />
peilentesque scelensque. Fusce molestie, Mascenas pulvinar peflentesque risus, Eriam

dapibas Justa id erat bibendum feugiat, Pellentesque convailic, Marbi at orcl, Eriam at < >

felie. Maunis pede dolor, endreris e, varius sed, dapibus at, ipuwm, Aliquam et /frameset

volutpar.

Duts $1t amet dul. Promn suscipit massa a mi, Proin dolor efit, sollicitudin in,
condimentum non, omare ut, purus. Morbl posuere, ligula 1d uitncies vehicula, enim
‘wisl placerat tortor, éleifend porttitor mi diam a purus. Aliguam tincidunt, tedlus ac
nOnEMMmy scelerisque, augue pede congue adio, sed Interdum aiit ligula ut metus
Suspendisse biandit felis quis Torror sollicitudin elementum. Donec i orct id edit

Figure 14-5. Setting scrollbars with the scrolling attribute

Be careful that you’re not disabling functionality the user needs, though; if the
frame contains text, chances are good that some users may need to resize.

Frame Margins

As you probably already know, browsers hold a margin space on all sides of the
browser window, preventing a document’s contents from displaying flush against
the edge of the window. The width of the margin varies from browser to browser.

Frames have margin attributes that allow you to control (or remove) the margins
on any frame-enabled browser. To adjust the top and bottom margins of a frame,
specify a number of pixels for the marginheight attribute. Use the marginwidth
attribute to specify the amount of space for the left and right margins. They can be
combined as shown in the example in Figure 14-6.

The example shows the same HTML document (containing only a graphic)
loaded into two frames within a frameset. The left frame has specific margins set.
The right frame has its margins set to zero, allowing the contents of the frame to
be positioned right up against the edges of the frame.

Frame Borders

By default, framed documents display with a 3D border between each frame.
These borders visually divide the sections and also serve as a handle for resizing.
The HTML 4.01 specification allows for borders to be controlled only at the
frame level (in the frame element).

Most browsers also support the nonstandard method of setting bor-
ders and border thicknesses for the whole page in the frameset ele-
ment. Bear in mind that this nonstandard use of border attributes
will cause a document to be invalid because it does not conform to
any DTD.

240 | Chapter14: Frames

ene Frame Margins

<frameset cols="*, *">
<frame src="pig.html" marginheight="20" marginwidth="12" />
<frame src="pig.html" marginheight="0" marginwidth="0" />
</frameset>

Figure 14-6. Effects of setting frame margins

Browsers vary in their support of border attributes. It is best to do plenty of testing
(including in older browsers) to be sure you can live with the different results.

Turning borders on and off

The frameborder attribute is used to turn the 3D borders between frames on (with
a value of 1) and off (0), like a toggle switch. The W3C Recommendations specify
that the frameborder attribute should be used for each individual frame element,
but most browsers support frameborder in the frameset element as well (see
previous note). Applying a frame border to a single frame draws the border on all
sides of that frame. It will look as though the neighboring frames have their
borders turned on as well, even if they are turned off.

Border thickness

You can use the nonstandard border attribute in the frameset element to specify
the thickness of the frame borders in pixels. The default thickness varies by
browser. Although border is not part of the Frameset DTD, it is fairly well
supported by current browsers.

&

Turning the frameborder off removes only the 3D border, but it
leaves a gap between the frames. To remove this gap and give the
page a smooth, seamless appearance, use the border attribute with
a setting of 0 pixels: <frameset frameborder="0" border="0">

¢y

Targeting Frames

One of the challenges of managing a framed document is coordinating where
linked documents display. By default, a linked document loads into the same
window as the link; however, it is often desirable to have a link in one frame load
a page into a different frame in the frameset. For instance, this is the desired effect

Targeting Frames | 241

for a list of navigation links in a narrow frame that loads content into a larger
main frame on the page.

To load a new linked page into a particular frame, you first need to assign a name
to the targeted frame using the name attribute in the frame element, as follows:

<frame src="original.html" name="main" />

Names must start with a letter (upper- or lowercase).

Now you can specify that frame by name within any anchor (a) element with the
target attribute, as shown in this example:

...
In this example, the document new.html will load into the frame named “main.”

If a link contains a target name that does not exist in the frameset, a new browser
window is opened to display the document, and that window is given the target’s
name. Subsequent links targeted to the same name will load in that window.

The base Element

If you know that you want all the links in a given document to load in the same
frame (such as from a table of contents into a main display frame), you can set the
target once using the base element instead of setting the target within every link in
the document (saving a lot of typing and extra characters in the HTML
document).

Placing the base element in the head of the document, with the target frame speci-
fied by name, causes all the links in the document to load into that frame. The
following is a sample targeted base element:

<head>
<base target="main" />
</head>

Targets set in individual links override the target set in the base element at the
document level.

Reserved Target Names

There are four standard target names for special redirection actions. Note that all
of them begin with the underscore (_) character. Do not give your frames names
beginning with an underscore, as they will be ignored by the browser (names must
start with a letter). The four reserved target names are:

blank
A link with target="_blank" opens a new, unnamed browser window to
display the linked document. Each time a link that targets _blank is opened, it
launches a new window, potentially leaving the user with a mess of open
windows. Note that this value can be used with any link, not just those in a
frames context.

242 | (Chapter14: Frames

Opening pages in new windows is problematic for accessibility.
When opening a document in a new window, be sure to include a
note that says “link opens in a new window” or something similar.
This gives all users, but particularly those with non-visual browsers
who won'’t see a new window open, a heads-up that the context of
the page is going to change.

self
This is the default target for all a elements; it loads the linked document into
the same frame or window as the source document. Because it is the default,
it is not necessary to use it with individual a elements, but it may be useful for
the base element.

_parent
A linked document with target="_parent" loads into the parent frame (one
step up in the frame hierarchy). If the link is already at the top-level frame or
window, it is equivalent to _self. Figure 14-7 demonstrates the effects of a
link targeting the parent frame.

The parent target name works only when the nested framesets are in sepa-
rate documents. It does not work for multiple nested framesets within a
single frameset document as shown in Figure 14-4.

ann Frame Targeting =) ann Fram Targesing
2 3 This is the new document.

Link to & Hew Document

Figure 14-7. In nested framesets, the _parent target links to the parent frameset

top
This causes the document to load at the top-level window containing the
link, replacing any frames currently displayed. A linked document with
target="_top" “busts out” of its frameset and is displayed directly in the
browser window, as shown in Figure 14-8.

Links to other web sites should use the target attribute set to _top
L or another named window to prevent the site from loading within
' the current frameset.

Targeting Frames | 243

ann Frams Targéting (=] ann Frame Targeting =]

1 This is the new dacument.

2 3

Lirk ta & New Document

Figure 14-8. Linking with the _top target replaces the entire frameset

Frame Design Tips and Tricks

Perhaps the most common bit of design advice regarding frames is “don’t use
them.” Although frames once had their heyday, they are no longer used in profes-
sional, standards-driven web design.

If you do choose to use frames for a project, there are a few pointers and tricks
you should be aware of that go beyond a simple familiarity with the elements and
attributes.

All-Purpose Pages

Designing a web page to be part of a framed document doesn’t guarantee that it
will always be viewed that way. Keep in mind that some users might end up
looking at one of your pages on its own, out of the context of its frameset (this is
possible if a search engine returns the URL of the content, for example). Since
frames are often used for navigation, this orphaned content page could be a dead
end for a user.

For that reason, you should try to design your content pages so that they stand up
on their own. Adding a small amount of redundant information to the bottom of
each page can make a big difference in usability. First, indicate the name of the
site with a link to its home page on each content document. This helps to orient a
newcomer who may have just dropped in from a search engine.

It is important to pay particular attention to the navigational options available on
content pages viewed without their frameset. At the very least, provide a small
link on every page to a more appropriate (and framed) starting point, such as the
top level of your site. Be sure to set the target="_top" attribute so the link won’t
load the home page frameset within the current frameset.

External Links

By default, any link within a frame loads the new document into that same frame.
To prevent external links from loading into the current frame, be sure to add
target="_top" to all your external links; the new site will open in the full browser

244 | (Chapter14: Frames

window. As an alternative, set the target to " _blank" to open the link in a new
browser window.

As noted earlier, always provide a note or some indication that a
link is going to open in a new window so as not to confuse your
users.

It is never appropriate to load whole external sites into the context of another
framed document, unless you are doing so with the expressed permission of the
owners and operators of the external site.

Improving Frame Accessibility

Framed content, while accessible to screen readers, may be disorienting. The
content may be read from each frame in a linear fashion (users may skip to each
frame with a keyboard shortcut) or it may be presented as a list of links to the
individual HTML documents.

There are a few measures you can take to improve the accessibility of your site.

Give frames titles

One of the best ways to make framed content easier to use for visitors with alter-
native browsing devices is to give each frame a short but descriptive title using the
title attribute in the frame element, as shown here:

<frame src="navigation.html" title="navigation options" name="links" />
<frame src="welcome.html" title="main content" name="main" />

Users can use the titles to decide whether to access that frame. In the absence of
titles, the name attribute may be used, but authors typically give frames names that
are minimal and not adequately descriptive.

Provide complete noframes content

Framesets should always include a noframes element to provide content if the user
cannot or chooses not to view the framed content. It is a good idea to make the
complete content from the framed page available in the noframes element and to
enclose it in the body element. At the very least, the noframes content should be as
descriptive as possible rather than just “you need frames to see this site.”

Adding links to the individual HTML documents, particularly those containing
links to the other parts of your site, helps users get to your content without relying
on the frameset.

Helping Search Engines

Search engines all work differently but pretty much uniformly do not understand
frames or any content within a frameset or frame element. This means search
engines will not find any links that require burrowing through a site for indexing
purposes, and all the content of your framed site will be missed.

Frame Design Tipsand Tricks | 245

The same measures for improving accessibility for users with non-visual browsing
devices (i.e., providing frame titles and complete noframes content) will also make
it easier for search engines to index your content.

In addition, you may include a meta element with information about your site in
the frameset document. Although not all search engines use meta information,
meta elements can be useful tools for those that do. If your top-level frameset
document contains limited noframes content, you can use the meta element to add
a site description and keywords to the page for the search engine to index. Values
for the meta element related to search engines are provided in Chapter 9.

For more information about search engines and how they work, see the Search
Engine Watch site at www.searchenginewatch.com (from which the previous infor-
mation was gathered).

For information on how MSN TV handles frames, see developer.
msntv.com/Develop/Frames.asp.

246 | (Chapter14: Frames

15

Forms

Forms provide an interface allowing users to interact in some way with your site.
In most cases, they are used to gather data, either for later use or to provide a
customized response on the fly. Forms have a wide range of uses, from functions
as simple as search boxes, mailing list signups, guestbooks, and surveys to as
complex as online commerce systems.

Forms collect input via controls, such as buttons, text fields, or scrolling menus.
Controls are placed on the page using special elements in the markup. These
elements are merely an interface for collecting user information and do not actu-
ally process the data. The real work is done by forms-processing applications on
the server, such as CGI scripts, ASP, ASP.NET, ColdFusion, PHP, or Java servlets.

The programming necessary for form processing is beyond the scope of this book.
This chapter focuses on the frontend aspects of forms: the elements and attributes
for building the form interface as well as the elements used to improve
accessibility.

form Establishes the form

input (reates a variety of controls

button Genericinput button

textarea Multiline text entry control

select Multiple-choice menu or scrolling list
option An option within a select control
optgroup Defines a group of options

label Attaches information to controls
fieldset Groups related controls and labels
legend Assigns a caption to a fieldset

247

The Basic Form Element

The form element is used to designate an area of a web page as a form.

form

<form> ... </form>

Attributes

Core (id, class, style, title), Internationalization, Events, onsubmit,
onreset, onblur

accept="content-type-list"

accept-charset="charset list"

action="URL" (Required)

enctype="content type"

method="get |post"

name="text" (Deprecated in XHTML in favor of id attribute)
target="name"

The form may contain any web content (text, images, tables, and so on), but its
function is to be a container for a number of controls (checkboxes, menus, text-
entry fields, buttons, and the like) used for entering information. It also has the
attributes necessary for interacting with the form-processing program. You can
have several forms within a single document, but they cannot be nested, and you
must be careful they do not overlap.

When the user completes the form and presses the “submit” button, the browser
takes the information, arranges it into name/value pairs, encodes the information
for transfer, and then sends it off to the server.

Figure 15-1 shows the form resulting from this simple form markup example.

<h2>Sign the Guestbook:</h2>

<form action="/cgi-bin/guestbook.pl” method="get">
<p>

First Name: <input type="text" name="first" />

Nickname: <input type="text" name="nickname" />

<input type="submit" /> <input type="reset" />

</p>

</form>

The action Attribute

The action attribute in the form element provides the URL of the program to be
used for processing the form. In the example in Figure 15-1, the form information
is going to a Perl script called guestbook.pl, which resides in the cgi-bin directory
of the current server (by convention, CGI programs are usually kept in a directory

called cgi-bin).

248 | Chapter15: Forms

Sign the Guestbook:

First Name: |
Nickname:

Submit) (Reset

<h2>Sign the Guestbook:</h2>

<form action="/cgi-bin/guestbook.pl" method="get">

<p>
First Name: <input type="text" name="first" />

Nickname: <input type="text" name="nickname" />

<input type="submit" /> <input type="reset" />

</p>

</form>

Figure 15-1. A simple form

The method Attribute

The method attribute specifies one of two methods, either get or post, for submit-
ting the form information to the server. Form information is typically transferred
in a series of variables with their respective content, separated by the ampersand
(&), as shown here:

variablel=content18variable2=content2&variable3=content3

The name attributes of form control elements provide the variable names. The
content the user enters makes up the content assigned to the variable.

Using the form in Figure 15-1 as an example, if a user entered “Josephine” next to
“First Name” and “Josie” next to “Nickname,” the form passes the variables on in
this format:

name=Josephine8nickname=Josie

With the get method, the browser transfers the data from the form as part of the
URL itself (appended to the end and separated by a question mark) in a single
transmission. The information gathered from the nickname example would be
transferred via the get method as follows:

get http://www.domainname.com/cgi-bin/guestbook.pl?name=
Josephine&nickname=Josie

The post method transmits the form input information separated from the URL,
in essentially a two-part message. The first part of the message is simply the
special header sent by the browser with each request. This header contains the
URL from the form element, combined with a statement that this is a post request,
plus some other headers we won’t discuss here. This is followed by the actual
form data. When the server sees the word “post” at the beginning of the message,

The Basic Form Element | 249

it stays tuned for the data. The information gathered with the name and nick-
name form would read as follows using the post method:

post http://www.domainname.com/cgi-bin/guestbook.pl HTTP1.0
. [more headers here]
name=Josephine8nickname=Josie

Whether you should use post or get may depend on the requirements of your
server. In general, if you have a short form with a few short fields, use the get
method. Conversely, long, complex forms are best sent via post. If security is an
issue (such as when using the input type="password" element), use post, because it
offers an opportunity for encryption rather than sending the form data straight
away tacked onto the URL. One advantage of get is that the request can be book-
marked, because everything in the request is in the URL. This isn’t true with post.

It is possible to send a query string via a URL in the document
source, as shown here:

<a href="http://www.domainname.com/cgi-bin/guestbook.
pl?name=Josephine&nickname=Josie">...
Note that in XHTML documents, it is necessary to escape the
ampersand character (that is, provide its character entity, 8amp;) in
the URL. It will be correctly parsed as an ampersand by the pro-
cessing agent.

Encoding

Another behind-the-scenes step that happens in the transaction is that the data
gets encoded using standard URL encoding. This is a method for translating
spaces and other characters not permitted in URLs (such as slashes) into their
hexadecimal equivalents. For example, the space character translates to %20, and
the slash character is transferred as %2F.

The default encoding format, the Internet Media Type (application/x-www-form-
urlencoded), will suffice for most forms. If your form includes a file input type
(for uploading documents to the server), you should use the enctype attribute to
set the encoding to its alternate setting, multipart/form-data.

Form Controls

A variety of form control elements (also sometimes called “widgets”) are used for
gathering information from a form. This section looks at each control and its
specific attributes. Every form control (except submit and reset) requires that you
give it a name (using the name attribute) so the form-processing application can
sort the information. For easier processing of form data on the server, the value of
name should not have any character spaces (use underscores or periods instead).

The name attribute works like a variable name. The value provided for name
becomes the variable’s name. The content entered by the user into the form
control is then assigned to the variable. Of all the attributes, the name attribute is
key in passing data from the HTML form to any other place in the page, another
page, or out through middleware to a database.

250 | Chapter15: Forms

Input Controls

The input element is used to create a variety of form input controls, including:

* Single-line text entry fields
* Password entry fields

* Hidden controls

* Checkboxes

* Radio buttons

* Submit and reset buttons
* File upload mechanisms

* Custom and image buttons

The type attribute in the input element specifies the control type. The value of the
type attribute also determines which other attributes may be used with the
element. The input element and all of its accepted attributes appears here.
Control-specific attribute listings appear along with the discussion of each control

type.

input

<input />

Attributes

Core (id, class, style, title), Internationalization, Events, onfocus, onblur,

onselect, onchange

alt="text"

accept="MIME type"

accesskey="character"

checked="checked"

disabled="disabled"

maxlength="number"

name="text" (Required by all input types except submit and reset)

readonly="readonly"

size="number"

src="URL"

tabindex="number"

type="text|password|checkbox|radio|submit|reset|file|hidden|
image|button"

value="text"

Text entry field

The simplest type of form element is the text entry field (type="text"). Text is the
default setting for the input element.

Form Controls | 251

input type="text"

Attributes
Core (id, class, style, title), Internationalization, Events,
Focus (accesskey, tabindex, onfocus, onblur)
disabled="disabled"
maxlength=number
name="text" (Required)
readonly="readonly"
size="number"
value="text"

This field allows the user to enter a single word or a line of text. By default, the
browser displays a text-entry box that is 20 characters wide, but you can set it to
be any length using the size attribute.

By default, the user can type an unlimited number of characters into the field (the
display scrolls to the right if the text exceeds the width of the supplied box), but
you can set a maximum number of characters using the maxlength attribute.

Use the value attribute to specify the initial value, that is, the text to appear when
the form is loaded. The user can change this default text. If you have a form that
consists of only one text input element, pressing the Enter key submits the form
without requiring a specific Submit button in the form. The following markup
creates a text field with a size of 15 characters, a maximum length of 50 charac-
ters, and the text “enter your name” displayed in the field (Figure 15-2).

<p>What is your name?</p>

<input type="text" name="name" size="15" maxlength="50" value="enter your
name" />

What 12 ¥our name?

Ienteryourname

Figure 15-2. Text entry input control

Password text entry

A password field (type="password") works just like text entry, except the charac-
ters are obscured from view using asterisk (*) or bullet (o) characters (or another
character determined by the user agent).

input type="password"

Attributes

Core (id, class, style, title), Internationalization, Events,
Focus (accesskey, tabindex, onfocus, onblur)
disabled="disabled"

252 | Chapter15: Forms

maxlength="number"
name="text" (Required)
readonly="readonly"
size="number"
value="text" (Required)

The attributes and syntax for password entry fields are the same as for the text
input type. The only difference is that values (such as the one provided as an
initial value in this markup) are replaced with neutral characters, as shown in
Figure 15-3.

<p>What is your password?</p>
<input type="password" name="password" size="8" maxlength="8"
value="abcdefg" />

What 15 your password?

Figure 15-3. Password input control

Although the characters entered into the password field are not visi-

‘v@ ble to casual onlookers, the form does not encrypt the information

entered and should not be considered to be a real security measure.

Hidden entry (type="hidden")

The hidden input (type="hidden") adds a control that isn’t displayed in the
browser, but is supplied to the form processor when the form is submitted.

input type="hidden"

Attributes
accesskey="character"
tabindex="number"
name="text" (Required)
value="text" (Required)

Hidden controls are useful for sending information to be processed along with the
user-entered data, such as labels used by the script to sort forms. Users cannot see
or alter hidden controls. Some scripts require specific hidden fields be added to
the form in order to function properly. Here is a hidden element (Figure 15-4):

<p>This is a hidden element</p>
<input type="hidden" name="extra_info" value="important" />

This 15 a hidden element

Figure 15-4. Hidden input

Form Controls | 253

Checkbox (type="checkbox")

Checkboxes (type="checkbox") are like on/off switches that can be toggled by the
user. Several checkboxes in a group may be selected at one time, which makes
them useful for multiple-choice questions where more than one answer is accept-
able. When a form is submitted, only the “on” checkboxes submit values to the
server.

input type="checkbox"

Attributes

Core (id, class, style, title), Internationalization, Events, Focus (accesskey,

tabindex, onfocus, onblur)

align="left|right|top|texttop|middle|absmiddle|baseline|bottom|
absbottom"

checked="checked"

disabled="disabled"

name="text" (Required)

readonly="readonly"

value="text" (Required)

Checkboxes can be used individually to transmit specific name/value coordinates
to the server when checked. By default, a checkbox is not checked; to make it
checked when the page loads, simply add the checked attribute to the corre-
sponding input element. In XHTML, you must provide a value for every attribute,
so the correct syntax is checked="checked".

When the box is checked, the corresponding value is transmitted with the form to
the processing program on the server. The values for unchecked boxes are not
sent.

If you assign a group of checkboxes the same name, they behave like a multiple-
choice list in which the user can select more than one option for a given property,
as shown in the following markup and in Figure 15-5.

<p>Which of the following operating systems have you used?</p>

<input type="checkbox" name="os" value="WinXP" /> Windows XP

<input type="checkbox" name="o0s" value="Linux" checked="checked" /> Linux
<input type="checkbox" name="o0s" value="0SX" checked="checked" /> Macintosh
0SX

<input type="checkbox" name="os" value="DOS" /> DOS

Which of the following operating systems have you used?

[Windows XP v Linux Macintosh OSX [DOS

Figure 15-5. Multiple checkboxes in a group may be selected

254 | Chapter15: Forms

Radio button

Radio buttons (type="radio") are another kind of button that users can toggle on
and off. Unlike checkboxes, when a group of radio buttons share the same control
name, only one button within the group can be “on” at one time, and all the
others are “off.” They are used when the options are mutually exclusive.

input type="radio"

Attributes

Core (id, class, style, title), Internationalization, Events,
Focus (accesskey, tabindex, onfocus, onblur)
checked="checked"

disabled="disabled"

name="text" (Required)

readonly="readonly"

value="text" (Required)

In this example (Figure 15-6), only one operating system may be selected. The
checked attribute makes the button “on” by default when the page loads. Only
data from the “on” radio button is sent when the form is submitted.

<p>Which of the following operating systems have you used?</p>

<input type="radio" name="os" value="WinXP" /> Windows XP

<input type="radio" name="os" value="Linux" /> Linux

<input type="radio" name="os" value="0SX" checked="checked" /> Macintosh 0SX
<input type="radio" name="os" value="DOS" /> DOS

Which of the following operating systems have vou used?

" Windows XP ¢ Linux * Macintosh OSX © DOS

Figure 15-6. Only one radio button in a group may be selected

Submit and reset buttons

Submit buttons, used for sending the form data to the processing agent, are added
with the submit input element type. Reset buttons return all form controls to their
initial values and are added with the reset input element type.

input type="submit"

Creates a submit button control; pressing the button immediately sends the infor-
mation in the form to the server for processing.

Form Controls | 255

Attributes

Core (id, class, style, title), Internationalization, Events,
Focus (accesskey, tabindex, onfocus, onblur)
disabled="disabled"

name="text"

value="text"

input type="reset"

Creates a reset button that clears the contents of the elements in a form (or sets
them to their default values).

Attributes
Core (id, class, style, title), Internationalization, Events,
Focus (accesskey, tabindex, onfocus, onblur)
disabled="disabled"
value="text"

Every form (unless it consists of exactly one text field) needs a submit button
control to initiate the transmission of information to the server. A form may have
more than one submit button. By default, the submit button (type="submit") says
“Submit” or “Submit Query,” but you can change it by adding your own text after
the value attribute.

The reset button (type="reset") reverts all form controls back to the state they
were in when the form loaded (either blank or with values provided by the author
with the value attribute). The default value (and hence the label for the button) is
“Reset,” but like the submit button, you can change its text by specifying its
value, as shown in Figure 15-7.

<p>You have completed the form.</p>
<input type="submit" /><input type="reset" value="Start Over" />

You have completed the form.

Submit Queny Start Ower

Figure 15-7. Submit and reset buttons

Some developers opt to leave the reset button out entirely, because there is no
error-checking mechanism. If a user presses it accidentally, all the data already
entered is lost. This isn’t an uncommon occurrence.

Custom button

Authors may create a custom “push” button for use with client-side scripting
(JavaScript) controls by setting the input type to button.

256 | (Chapter15: Forms

input type="button"

Attributes

Core (id, class, style, title), Internationalization, Events,

Focus (accesskey, tabindex, onfocus, onblur)

align="left|right|top|texttop|middle|absmiddle|baseline|bottom|
absbottom"

disabled="disabled"

name="text"

value="text"

This button (type="button") has no predefined function, but rather is a generic
tool that can be customized with a scripting language such as JavaScript (the
scripting language should be declared with a meta element). Use the value
attribute to write your own text on the button, as shown in the following markup
and in Figure 15-8. The data from a type="button" input element is never sent
when a form is submitted; this type is useful only with script programs on the
browser.

<p>This does something really exciting.</p>
<input type="button" value="Push Me!" />

This does something really exciting.

Fush tdel |

Figure 15-8. Custom button

Image button

If you want to use your own image for a submit button, use the image input type.

input type="image"

Attributes

Core (id, class, style, title), Internationalization, Events,
Focus (accesskey, tabindex, onfocus, onblur)
align="top|middle|bottom"

alt="text"

disabled="disabled"

name="text" (Required)

src="URL"

You can replace the submit button with a graphic of your choice by using the
image input (type="image"), as shown in the markup example and in Figure 15-9.
Clicking on the image submits the form to the server and includes the coordi-
nates of the mouse click with the form data. You must provide the URL of the

Form Controls | 257

graphic with the src attribute. It is recommended that you use alternative text
(with the alt attribute) for image buttons.

<input type="image" src="graphics/sendme.gif" alt="Send me" />

SSENDINELD

Figure 15-9. Using an image for a button

File selection

The file input type allows users to submit external files with their form submis-
sion. The form control includes a text field and a “Browse” button that accesses
the contents of the local computer.

input type="file"

Attributes

Core (id, class, style, title), Internationalization, Events, Focus (accesskey,
tabindex, onfocus, onblur)

accept="MIME type"

disabled="disabled"

maxlength="number"

name="text" (Required)

readonly="readonly"

size="number"

value="text"

The file-selection form field (type="file") lets users select a file stored on their
computer and send it to the server when they submit the form. It is displayed as a
text entry field with an accompanying “Browse” button for selecting the file, as
shown in the following markup and in Figure 15-10. As for other text fields, you
can set the size and maxwidth values as well as the field’s default text. When using
the file input type, you should specify enctype="multipart/form-data" in the form
element.

<form enctype="multipart/form-data">

<p>Send this file with my form information:</p>
<input type="file" size="28" />

</form>

Send this file with my form mformation:

| Browse... |

Figure 15-10. The file-selection form field

258 | (Chapter15: Forms

Multiline Text Areas

The textarea element creates a multiline, scrollable text entry box that allows
users to input extended text entries.

textarea

<textarea>...</textarea>
Core (id, class, style, title), Internationalization,
Events, plus onselect, onchange
Focus (accesskey, tabindex, onfocus, onblur)
cols="number" (Required)
disabled="disabled"
name="text" (Required)
readonly="readonly"
rows="number" (Required)

A textarea form control and its markup are presented here (Figure 15-11).

<p>What did you dream last night?</p>
<textarea name="dream" rows="4" cols="45">Tell us your dream in 100 words or
less</textarea>

What did you dream last mght?

Tell us your dream in 100 words or less _;I

H

Figure 15-11. The textarea form field

Specify the number of lines of text the area should display using the rows attribute.
The cols attribute specifies the width (measured in characters). These attributes
are required. Scrollbars are provided if the user types more text than fits in the
allotted space.

The text that appears within the textarea element is the initial content of the text
entry window when the form is displayed. When the form is transmitted, the
browser sends the text along with the name specified by the required name
attribute.

Creating Menus with the select Element

The select element creates a menu of options that is more compact than group-
ings of checkboxes or radio buttons. A menu displays as either a pull-down menu
or as a scrolling list of choices, depending on how the size is specified. The select
element works as a container for any number of option elements. It may also
contain one or more optgroups, which are used to define a logical group of option
elements.

Form Controls | 259

select

<select> ... </select>

Attributes

Core (id, class, style, title), Internationalization, Events, onfocus, onblur,
onchange

disabled="disabled"

multiple="multiple"

name="text" (Required)

size="number"

tabindex="number"

option

<option> ... </option>

Attributes
Core (id, class, style, title), Internationalization, Events
disabled="disabled"
label="text"
selected="selected"
value="text"

optgroup

<optgroup>...</optgroup>

Attributes

Core (id, class, style, title), Internationalization, Events
disabled="disabled"
label="text" (Required)

Pull-down menus

The select element displays as a pull-down menu of options when no size specifi-
cation is listed (the default) or when size="1". In a pull-down menu, only one
item may be selected at a time. (Note that adding the multiple attribute turns the
menu into a scrolling list, as described in the next section.) Clicking on the arrows
or bar pops up the full menu, as shown in Figure 15-12.

<p>What is your favorite ice cream flavor?</p>
<select name="ice_cream">

<option>Rocky Road</option>

<option>Mint Chocolate Chip</option>
<option>Pistachio</option>

<option selected="selected">Vanilla</option>
<option>Chocolate</option>

<option value="swirl">Fudge Ripple</option>
<option label="Praline Pecan">Super-duper Praline Pecan Smashup</option>
<option>Bubblegum</option>

</select>

260 | Chapter15: Forms

What 15 your favorite ice cream flavor? I\fanilla 'l

What 15 your favonte ice cream favor? | Vanilla i
Puocky Poad

Mint Chocolate Chip
Pistachio

Chocolate
Fudge Ripple
Praline Pecan
Bubhlegum

Figure 15-12. Items in a select menu can be set to display after the menu is collapsed

By default, the first option element in the list displays when the form loads. Use
the selected attribute in an option element to make it the default value for the
menu (the option will be highlighted when the form loads).

The text within each option element is the value that is sent to the server. If you
want to send a value for that choice that is not displayed in the list, provide it with
the value attribute in the option element. In the sixth option element in the
example, users will see “Fudge Ripple,” but the value “swirl” will be sent to the
form processing agent.

The label attribute, when provided, is displayed instead of the option element
content. In the seventh option in the example, users will see “Praline Pecan,” but
the form will send the data “Super-duper Praline Pecan Smashup,” because it is
the default value provided in the option element.

Scrolling menus

To make the menu display as a scrolling list, simply specify the number of lines
you’d like to be visible in the list using the size attribute, or add the multiple
attribute to the select element, as shown in the following markup and in
Figure 15-13. The multiple attribute makes it possible for users to select more
than one option from the list.

<p>What are your favorite ice cream flavors?</p>
<select name="ice cream" size="6" multiple="multiple">
<option>Rocky Road</option>

<option>Mint Chocolate Chip</option>
<option>Pistachio</option>

<option selected="selected">Vanilla</option>
<option selected="selected">Chocolate</option>
<option value="swirl">Fudge Ripple</option>
<option>Super-duper Praline Pecan Smashup</option>
<option>Bubblegum</option>

</select>

This example also uses the selected attribute to preselect options and the value
attribute for providing a value for the option that is different from the displayed
text.

Form Controls | 261

Fistachio

Fudge Ripple
Praline Pecan
What are your 3 favorite ice cream flavers? |Bubblegum

Figure 15-13. Use the size attribute to display a select menu as a scrolling list
Option groups

Conceptual groups of options may be organized into option groups, indicated
with the optgroup element. This could be used by browsers to display hierarchical
cascading menus. The value of the required label attribute is displayed as a
heading for the following options.

The content of the optgroup element is one or more option elements. An optgroup
element may not contain other optgroup elements. This example shows how the
optgroup element could be used to structure a list of ice cream flavors similar to
those in the previous examples. The label attribute provides a name for the group
of options.

<p>What are your favorite ice cream flavors?</p>

<select name="ice cream" size="6" multiple="multiple">

<optgroup label="traditional">
<option>Vanilla</option>
<option>Chocolate</option>
<option>Mint Chocolate Chip</option>
<option>Pistachio</option>
<option>Fudge Ripple</option>

</optgroup>

<optgroup label="specialty">
<option>Inside-out Rocky Road</option>
<option>Super-duper Praline Pecan Smashup</option>
<option>Bubblegum</option>

</optgroup>

</select>

When a user selects an option from the list (such as “Pistachio” from the
example), the content of that option is passed on with the variable name specified
in the select element:

ice cream=Pistachio

Buttons

The button element defines a custom “button” that functions similarly to buttons
created with the input tag. The button element may contain images (but not image
maps) and any other content with the exception of a, form, and form control

262 | Chapter15: Forms

elements. Buttons may be rendered as shaded “3D” buttons with up/down
motion when clicked (like submit and reset buttons), unlike the image input type,
which is just a flat image.

button
<button> ... </button>

Attributes
Core (id, class, style, title), Internationalization, Events,
Focus (accesskey, tabindex, onfocus, onblur)
disabled="disabled"
name="text"
value="text"
type="submit |reset|button”

This example shows button elements used in place of “submit” and “reset”
buttons. Note that the button elements include both images and text content.

<button type="submit" name="submit"><img src="thumbs-up.gif" alt="thumbs-up
icon" /> Finished. Ready for step two.</button>

<button type="reset" name="reset"><img src="thumbs-down.gif" alt="thumbs-
down icon" /> Try again.</button>

Notice that the text that appears in the button (for example, “Try again”) does
not necessarily have to match the variable name (reset). Usability experts recom-
mend using clear and descriptive labels for buttons such as “Please press when
completed.” The variable name for that button that is passed along for processing
can be more utilitarian.

Accessibility Features

The HTML 4.01 Recommendation added a few form elements and attributes that
aid in accessibility. Some provide improved ways to group and label form struc-
ture and content. Others provide keyboard alternatives for selecting and activating
(such as bringing focus to) form fields.

The added benefit of elements that describe the structure and rela-
tionships within form content is that they provide good “hooks” for
applying style sheet rules, as addressed briefly at the end of this
chapter.

Labels

The label element is used to associate some descriptive text with a form field.
This provides important context for users accessing the form with a speech-based
browser. Each label element is associated with exactly one form control.

Accessibility Features | 263

label

<label> ... </label>

Attributes

Core (id, class, style, title), Internationalization,
Events, plus onfocus, onblur
accesskey="character"

for="text"

There are two ways to apply a label to a form control. One is to nest the control
and its associated description within the label element. Following is an example
of labels being applied to a simple form with this method.

<form action="/cgi-bin/guestbook.pl" method="GET">

<label>Login account: <input type="text" name="login" /></label>
<label>Password: <input type="password" name="password" /></label>
<input type="submit" />

</form>

The other method is to associate the label with an id value specified in the input
form. The for attribute says which control the current label is for. This method is
useful for form fields that are not juxtaposed with their descriptions, such as when
they span across different table cells. The following is an example of the label
element referencing an id.

<form action="/cgi-bin/guestbook.pl" method="GET">
<label for="log">Login account:</label>
<input type="text" name="login" id="log" />

<label for="pswd">Password:</label>

<input type="password" name="password" id="pswd" />
<input type="submit" />

</form>

id and name in Form Elements

When applied to form control elements (such as input, select, etc.), the id and
name attributes have different and distinct functions. The value of the name
attribute is passed to the forms processor when the form is submitted. The id
attribute is used to give the element a unique identifier that may be accessed by
a style sheet rule, script, or the label element as shown in the previous example.
An id attribute may not be used in place of name, because its value will not be
submitted with the form.

This is not the case for the form element itself. For the form element, id and name
have a similar role in assigning a unique name to the form. Which one you use
depends on the markup language you are using. In HTML, the name attribute
may be used to give the form a name to make it accessible to scripts. In
XHTML, only id may be used, and the name attribute has been removed from
the DTD.

264

| Chapter15: Forms

fieldset and legend

The fieldset element is used to create a logical group of form controls. The
fieldset may contain a legend element, a description of the enclosed fields that
may be useful for non-visual browsers.

fieldset
<fieldset> ... </fieldset>

Attributes
Core (id, class, style, title), Internationalization, Events

legend

<legend> ... </legend>

Attributes

Core (id, class, style, title), Internationalization, Events
accesskey="character"
align="top|bottom|left|right" (Deprecated)

The following form is structured into groups using fieldset elements and
includes descriptive legends.

<form>
<fieldset>
<legend>Customer Information</legend>
<label>Full name <input type="text" name="name" /></label>
<label>Email Address <input type="text" name="email" /></label>
<label>State <input type="text" name="state" /></label>
</fieldset>

<fieldset>

<legend>Mailing List Sign-up</legend>

<label>Add me to your mailing list <input type="radio" name"list"
value="yes" checked="checked" /></label>

<label>No thanks <input name"list" value="no" /></label>
</fieldset>
</form>

accesskey and tabindex

As part of the W3C’s efforts to improve the accessibility of web content and inter-
activity to users without visual browsers or traditional point-and-click browser
capabilities, the HTML 4.01 Recommendation introduced several attributes
designed to make selecting form fields easier from the keyboard. To use a form
control, it must be selected and active. In the web development world, this state is
called focus. The following attributes bring focus to a form element without the
traditional method of pointing and clicking on it with the mouse. Every user can
enjoy these shortcuts for moving around in a form.

Accessibility Features | 265

The accesskey attribute specifies a character to be used as a keyboard shortcut to
an element. The actual functionality of the access key may require a keystroke
combination such as Alt-key (Windows) or Command-key (Macintosh).

The accesskey attribute can be used with the button, input, label, legend, and
textarea form control elements. Netscape 4 and other pre-standards browsers do
not support access keys. When an access key brings focus to a label element, the
focus is passed onto the respective form control.

Authors should provide some indication of the access key, such as providing an
access key legend in the site or pointing out the access key in context by putting it
in parentheses or making it bold or underlined, as shown in the following
example.

Address<input type="text" name="address" accesskey="1" />

& @

o Accessibility specialists suggest using numbers instead of letters so
as not to conflict with other software keystroke combinations. Oth-
ers suggest that access keys should not be used because they are not
transparent to the user and rely on the author providing access key
legends or cues.

¢y

Another method for bringing focus to form fields is by hitting the Tab button to
move from one field to the next. By default, browsers that support tabbing will
tab through in order of appearance in the document. Use tabindex if you want to
rearrange the order of focus without rearranging the source markup. It may be
used with the button, input, select, and textarea elements. Elements with a
tabindex of zero (0) are accessed after elements with positive specified values.
Elements with negative tabindex values are left out of the tabbing order. Disabled
elements are also left out. Adding tabindex is very straightforward.

Address <input type="text" name="address" tabindex="1" />
Zip code <input type="text" name="zip" tabindex="3" />
Phone number <input type="text" name="phone" tabindex="2" />

Although tabindex is intended to be an accessibility feature, many accessibility
experts don’t necessarily recommend it. In most cases, the order of appearance of
form controls in the document source should be logical and sufficient. Changing
that order may defy the user’s expectations, potentially leading to confusion. Take
care using tabindex and only use it with good reason.

/—— As of this writing, tab indexing is poorly supported in Safari 1.0 and
‘w@ Firefox 1.0 on the Macintosh OS X. Because of bugs and incom-
plete implementation, tabindex may be assumed to apply to text-

input fields only in these browsers.

title Attribute

Another attribute for improving the accessibility of form fields (as well as links,
images, and other resources) is title. Use it to provide a description of the field or
special instructions. Speech browsers may speak the title when the form field is
brought into focus. Visual browsers may render titles as “tool tips” that appear
when the pointer pauses over the control.

266 | Chapter15: Forms

disabled and readonly

The disabled and readonly attributes inhibit the user’s ability to select or change
the form field. When a form element is disabled, it cannot be selected. Visual
browsers may render the element as grayed-out. The disabled state can only be
changed with a script. This is a useful attribute for restricting access to some form
fields based on data entry earlier in the form.

The readonly attribute prevents the user from changing the value of the form field
(although, it can still be selected). This enables developers to set values for
controls contingent on other data entry using a script.

Affecting Form Appearance

The way a form control appears in the browser depends on that browser’s
rendering engine. In HTML alone, there are no attributes for affecting the presen-
tation of a form control other than specifying character lengths for text fields. We
are left with the knowledge that controls will be rendered slightly differently on
different browsers and platforms.

Using Cascading Style Sheets to change the presentation and positioning of the
form controls, you can take measures to improve the appearance of your forms.
Layout tables have also traditionally been used to align form elements, but tables
for layout are no longer the preferred option now that CSS is better supported.

Styling Form Controls with (SS

As for any HTML element, you can use Cascading Style Sheets to alter the font,
colors, and size of form controls. The form element and the form control elements
accept the id, class, and style attributes, so you can alter the font, size, color,
and so on as you would for any other web page element. The label, fieldset, and
legend elements intended for accessibility also make useful “hooks” for styling
form content.

Some browsers, particularly old versions, do not support resizing fields or posi-
tioning forms with style sheets, so do so with caution and test thoroughly.
Cascading Style Sheets are explained in Part III.

This simple example uses an inline style to create a black submit button with
white text in the Impact font face (Figure 15-14):

<input type="submit" value="SUBMIT" style="font-family: Impact, sans-serif;
color: white; font-size: 14px; background: black" />.

SUBMIT

Figure 15-14. A submit button altered with style sheets

Affecting Form Appearance | 267

In this example, a style sheet is used to highlight the required fields (last name and
phone number) using class attributes in a minimal form (Figure15-15):

<!-- Style information in head of document -->

<style type="text/css">

input.required { background-color: darkred; color: white }
</style>

<!-- In the form... -->

<p>First Name:

<input type="text" name="first" size="30"></p>

<p>Last Name:

<input type="text" name="last" size="30" class="required" /></p>
<p>Phone Number:

<input type="text" name="number" size="12" class="required" /></p>

First Name:

Last Name:

Last name required

Phone Number:

required field

Figure 15-15. Style sheets alter the appearance of certain fields

Aligning Form Elements

A page with lots of form elements can get ugly in a hurry. The best favor you can
do for a form is to align the elements in some orderly fashion.

Layout tables

The traditional method (and most reliable if you choose to support Version 4
browsers) is to align form content with tables, as shown in Figure 15-16. When
laying out a form with a table, it usually works best to put the table element in
the form element (rather than the other way around). Keep in mind that unstyled
form controls will render at varying sizes depending on the user’s browser and
preferences, so allow for a certain amount of flexibility. If you do use tables for
layout, make sure that they use minimal markup and linearize well. (See
Chapter 13 for tips on layout tables.)

(SS-only alignment

You can align form elements in a similar fashion using CSS alone, without
applying layout tables, as shown in the simple example in Figure 15-17.

This is the minimal and semantic markup for the form. Each component of the
form uses a label and input element, except for the submit button, which has an
input element only.

268 | Chapter15: Forms

CITIZEN REGISTRY INFORMATION:

Do you wish to be listed in the Jenville Reglstry?

name: ‘ |

location: | |

Have known Jen since year

O m

Have wanted to meet Jen since | year

clalm to fame: What would you like to be known far?

Figure 15-16. Using a table to align a form

First Name: I

Nickname: !

Famous for: fWhat is your claim to fame?

submit

Figure 15-17. Using CSS to align a form

<form action="/cgi-bin/guestbook.pl" method="get">
<fieldset id="signup">
<label for="first">First Name:</label>
<input type="text" name="firstname" id="first" />

<label for="nick">Nickname: </label>
<input type="text" name="nickname" id="nick" />

<label for="desc">Famous for:</label>
<textarea rows="10" cols="25" id="desc">What is your claim to
fame?</textarea>

<input type="submit" value="submit" id="subbutton" />
</fieldset>
</form>

The goal for this form was to have the label and inputs appear side by side, with
the labels on a right alignment. This is handled by floating both the label and

Affecting Form Appearance | 269

input elements so they are adjacent, and then changing the text-align on the
label to right. A margin on the label element keeps the label text from bumping
into the inputs.

When using the float property, it is important to clear the following elements to
make them start on a new line after the floated element. In this example, the clear
property is applied to both the label and br elements for cross-browser compati-
bility. Note that because the submit button does not have a label, its float
property is set to none and it is cleared. The style sheet used to align the form is
provided here.

fieldset {
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 12px;
background-color: #CCCCCC;
padding: 12px;
border: medium double #666;
width: 30em; }

label {
width: 6em;
float: left;
text-align: right;
margin: .S5em lem;
clear: both; }

input, textarea {
float: left;
margin: .5em O;
width: 250px; }

#subbutton {
float: none;
width: auto;
margin-bottom: lem;
margin-left: 7em;
clear: both; }

br {clear: both; }

270 | Chapter15: Forms

The Presentation Layer:
Cascading Style Sheets

16

Cascading Style Sheets
Fundamentals

Cascading Style Sheets (CSS) is a W3C standard for defining the presentation of
web documents. Presentation refers to the way a document is displayed or deliv-
ered to the user, whether it’s on a computer monitor, a cell phone display, or read
aloud by a screen reader. This book focuses primarily on the visual aspects of
presentation, such as typography, colors, alignment, layout, and so on. CSS is the
mechanism for providing these types of style instructions to elements in a docu-
ment that has been marked up with XHTML, HTML, or any XML language.
Most important, CSS keeps these presentation instructions separate from the
content and its structural and semantic markup.

Before CSS, web designers were at the mercy of the browser’s rendering engine
and internal style sheets for the way HTML elements looked in the browser
window. Presentational elements and attributes added to HTML, such as the font
tag and the bgcolor attribute, granted some additional control over visual display,
but the integrity of markup suffered. Cascading Style Sheets (or just “style sheets”
in these chapters) hand visual display decisions back to designers and authors.
This comes as good news both for designers who want more control over presen-
tation and for those who are eager to see HTML get back to the exclusive business
of defining document structure and meaning. Style sheets make both of these
goals possible.

CSSin a Nutshell

The chapters in this section provide a solid overview and reference of CSS and its
properties. This book focuses on CSS used with documents written in (X)HTML,
although CSS can also be used with any XML language.

This chapter lays an important foundation for understanding how CSS works,
including rule syntax and how style sheets are applied to documents. It also
covers some critical key concepts at the core of CSS, such as inheritance, handling
conflicting styles (the cascade), how elements display, and the box model.

273

Browser issues are briefly addressed as well. The chapter finishes with a section on
specifying values in CSS.

Chapter 17 explains all the various ways elements can be targeted for style appli-
cation, and Chapters 18 through 23 cover the CSS visual display properties as
they are specified in the CSS 2.1 Recommendation. These chapters document how
CSS is designed to work. Browser support varies, of course, so this book provides
notes if a property or its values are particularly problematic in a browser.

Finally, Chapters 24 and 25 put everything together in real-world applications.
Chapter 24 is a cookbook of some of the most popular CSS techniques, such as
CSS rollovers and multicolumn layouts. All of the browser-related problems and
solutions are aggregated in Chapter 25, making it a handy reference if you
encounter problems down the road.

In the interest of keeping everything “in a nutshell,” the chapters in this section
stick to visual media properties. The CSS properties related to interface, paged
media, and aural (speech) media are included in Appendix B.

The Benefits of CSS

The benefits of using web standards for web page production were covered in
detail in Chapter 1, however, it won’t hurt to start off with a refresher of the
advantages style sheets offer.

Greater typography and page layout controls
With style sheets, you can specify traditional typography features that you
could never do with HTML alone (even with its presentational extensions).

Less work
Not only can you format all similar elements in a document with a single
style rule, external style sheets make it possible to edit the appearance of an
entire site at once with a single style sheet edit.

Potentially smaller documents
Redundant font tags and nested tables make for bloated documents. Strip-
ping presentational HTML out of the document saves on file size.

Potentially more accessible documents
Well-structured and semantically rich documents are accessible to a wider
variety of devices and the people who use them. Techniques based on presen-
tational (X)HTML, such as using the font element to format headings and
breaking up content into complex nested tables, damage the integrity of the
source document.

Presentational HTML is on its way out
The W3C has deprecated all presentational elements and attributes in the
HTML and XHTML specifications. One day, browsers will not be required to
support them.

274 | (Chapter16: (Cascading Style Sheets Fundamentals

It’s well supported
As of this writing, nearly every browser in current use supports nearly all of
the CSS 1 specification. Most also support the majority of the Level 2 and 2.1
Recommendations.

As for the disadvantages...there aren’t any, really. Some people complain that style
sheets can be misused, but you can’t fault CSS for that. There are some lingering
hassles from inconsistent browser support that require workarounds and extra
planning (see Chapter 25), but that is by no means an argument against using
style sheets for presentation right away.

How CSS Works

What follows is a simplified explanation of how style sheets work. At its heart, the
process actually is this simple.

1. Start with an XHTML (or HTML) document. Ideally, this document will
have been given a logical structure and semantic meaning using the appro-
priate XHTML elements. The XHTML markup is commonly referred to as
the structural layer of the web page. It forms the foundation upon which the
presentation layer is applied.

2. Write style rules for how each element should ideally look. Each rule targets
the element by name, and then lists properties—such as font, color, and so
on—to be applied to the element. The specifics of writing style rules are
covered in the upcoming “Rule Syntax” section.

3. Attach the styles to the document. The style rules may be gathered up into a
separate document and applied to a whole site, or they may appear in the
header and apply only to that document. Style instructions may appear
within an XHTML element itself as well. Each of these methods for attaching
style rules to the content document is discussed in the “Adding Styles to a
Document” section in this chapter.

Needless to say, there’s a bit more to each step than is described here. The next
section begins to get into the nitty gritty of style sheets by looking at the parts of a
style rule.

Rule Syntax

Style sheets consist of one or more rules for describing how a page element should
be displayed. The following example contains two rules. The first rule makes all
the his in a document gray; the second specifies that paragraphs should be set in
12-pixel high Verdana or some sans-serif font:

h1 {color: #eee;}
p {font-size: 12px;
font-family: Verdana, sans-serif; }

Figure 16-1 shows the components of a style sheet rule.

The two main sections of a style sheet rule are the selector (which identifies the
element to be styled) and the declaration (the style or display instructions to be

How CSSWorks | 275

-
s
E
2
&
3
o
E
I3
=
w

(SS History and Standards Development

HTML was never intended to be a presentational language, so the idea of using
separate style sheets with HTML documents (in the manner style sheets were used
in desktop publishing) has been around since 1990 when the Web was just a
twinkle in Tim Berners-Lee’s eye. As early as 1993, before the release of the
Mosaic browser, there were already several HTML style sheet proposals in
circulation.

Cascading Style Sheets as we know them got their start in 1994 when Hakon Lie
published his first draft of Cascading HTML Style Sheets. He was quickly joined
by Bert Bos, who had been working with a similar style sheet system for his
Argo browser. What set their style sheet proposal apart was the notion that the
system must strike a balance between author and reader style preferences and
that it must have a mechanism for dealing with multiple style sheets and
conflicting styles (thus, the “cascade,” discussed in an upcoming section in this
chapter).

After presentations at WWW conferences and much lively discussion in the
www-style mailing list, development of Cascading Style Sheets continued. In
1995 when the World Wide Web Consortium (W3C) became operational, an
official working group dedicated to CSS was formed. By this time, “HTML” had
been dropped from its title, because it was recognized early on that other
languages would need a presentation language as well.

The first formal CSS Recommendation was CSS Level 1, released in 1996, which
contains all the basics for attaching font, color, and spacing instructions to
elements on a page. The first browser to implement aspects of CSS 1 was
Internet Explorer 3, followed soon after with a half-hearted effort to stay
competitive by Netscape 4.

CSS Level 2 was released in 1998. It is most notable for the addition of proper-
ties for positioning elements on the page (originally released as CSS-P, then later
rolled into CSS Level 2), but it also introduced media types, table layout proper-
ties, aural style sheets, and more sophisticated methods for selecting elements,
among other features.

As of this writing, there are two other Recommendations in the works. CSS
Level 2, Revision 1 is a working draft (downgraded from Candidate Recommen-
dation) that makes minor adjustments to CSS2 based on experience working
with it from 1998 to 2004. It fixes errors, deletes properties that were not
adopted by the CSS community, and moves some unsupported features to the
upcoming CSS 3 specification.

—Continued—

276

| Chapter16: (ascading Style Sheets Fundamentals

The module-based CSS Level 3 Recommendation adds support for vertical
flowing text, improved table handling, international languages, and better
integration with other XML technologies such as SVG (Scalable Vector
Graphics), MathML, and SMIL (Synchronized Multimedia Interchange
Language). The W3C is also working on special CSS sets targeted to specific
media such as CSS Mobile, CSS Print, and CSS TV. It is clear that CSS is an
integrated part of the W3C’s vision for the future of web content.

To keep up to date with the W3C’s CSS-related activities, visit www.w3.org/
Style/CSS/.

selector { property: value; }
[

declaration

Figure 16-1. Parts of a style sheet rule

applied to that element). In the previous sample code, the h1 and p elements are
the selectors. The complete list of selectors in the CSS 2.1 specification is covered
in Chapter 17.

The declaration is made up of a property and its value. The curly braces allow for
multiple declarations, which make up a declaration block. A property is a stylistic
parameter that can be defined, such as color, font-family, or line-height. Proper-
ties are separated from their values by the colon (:) character followed by a space.
Style properties are the real meat of CSS; therefore, they are treated in detail in
Chapters 18 through 23.

A declaration may contain several property/value pairs. Multiple properties must
be separated by semicolons (;), as shown in this example.

p {font-size: 11px; font-weight: bold; color: #C06; }

Note that because CSS ignores whitespace and line returns, this same rule could
be written like this to make the properties easier to find on the page.

p{
font-size: 11px;
font-weight: bold;
color: #C06;

}

Technically, the last property in a declaration block does not require a semicolon,
but developers usually include it anyway to make it easy to append the rule later.
In addition, the inclusion of the trailing semicolon avoids a rare bug in older
browsers.

Properties take several types of values, including predefined keywords, percentage
values, specific length measurements, color values, integers, and URLs. When

RuleSyntax | 277

-
s
E
2
&
3
o
E
I3
=
w

using a style property, it is critical to know which values it accepts. Accepted
values for each property are provided with the property listings in each CSS
chapter as well as in Appendix B. The syntax for length measurement and color
values is discussed in the upcoming “Specifying Values” section of this chapter.

Adding Styles to a Document

Style rules can be applied to documents in three ways: as inline style directions, as
style elements embedded at the top of the document itself, and as external files
that can be either linked to or imported into the document.

&

When attaching styles to a document, it is important to keep in
mind that other style sheets may apply to your document as well.
User agents, such as browsers, have built-in style sheets for render-
ing content. In addition, individual users may create their own style
sheets and apply them to a single site or to all the sites they visit in
order to make the text comfortable to read or to meet special needs.
Which style sheet takes precedence is covered in the upcoming
“Document Structure and Inheritance” section.

¢y

Inline Styles

You can add style information to an individual element by using the style
attribute within the HTML tag for that element. The value of the style attribute is
one or more standard style declarations, as shown here:

<h1 style="color: red">This Heading will be Red</h1>

<p style="font-size: 12px; font-family: 'Trebuchet MS', sans-serif">
This is the content of the paragraph to be set with the
described styles.</p>

Note that if the style attribute uses double quotation marks as shown, quoted
values within the list (such as the font name “Trebuchet MS” in the example)
must use single quotation marks. The reverse is also valid: if the document uses
single quotes for attributes, then contained quoted values require double quotes.

Although a perfectly valid use of style information, inline styles are equivalent to
the font extension to HTML in that they pollute the document with presentation
information. With inline styles, presentation information is still tied to individual
content elements, so any changes must be made in each individual tag in every
file. Inline styles are best used only occasionally to override higher-level rules. In
fact, the style attribute has been deprecated in XHTML 1.1 and does not appear
in other XML languages.

Embedded Style Sheets

A more compact method for adding style sheets is to embed a style block in the
top of the HTML document using the style element summarized here.

278 | (Chapter16: Cascading Style Sheets Fundamentals

style
<style> ... </style>

Attributes
Internationalization (lang, dir, xml:1lang)
media="all|aural|braille|handheld|print|projection|screen|tty|tv"
title="text"
type="content type" (Required)

The following example shows these sample rules embedded in an XHTML
document:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
¢<style type="text/css">
h1 {color: #666;}
p {font-size: 90%;
font-family: Verdana, sans-serif; }
</style>
<title>Style Sheets</title>
</head>

</html>

The style element must be placed within the head tags in the document.
Currently, Cascading Style Sheets is the only widely supported style sheet
language, but the W3C has prepared for the possibility of additional languages to
be added in the future by providing the type attribute within the style element.
The only viable style type as of this writing is text/css. The type attribute is
required in both HTML and XHTML; if it is omitted, some browsers may ignore
the entire style sheet.

In addition, the media attribute in the style element (not shown in the example)
may be used to target the medium (screen, print, handheld, etc.) to which the
style sheet should be applied. If it is not present, the default is “all” media. The
media attribute is discussed in the “CSS for Other Media” section.

-

& g
8 Browsers that do not support style sheets (such as Version 2 brows- s
f‘: d. ers) will not recognize the style element and may display the style 3

#}; rules on the page. If for some reason you need to support non-CSS Z

@

browsers, you can prevent the contents from displaying by placing
them within comments, as shown in this example:

<style type="text/css">
<!--

h1 {color: #36C;}
-->
</style>

style | 279

Although once standard markup, the inclusion of comments in the
style element is no longer conventional as older browsers disap-
pear from use.

External Style Sheets

The most powerful way to use CSS is to collect all the style rules in a separate text
document and create links to that document from all the pages in a site. In this
way, you can make stylistic changes consistently across a whole site by editing the
style information in a single document. This is a powerful tool for large-scale sites
(and small ones, too, for that matter).

Style sheet content

The style sheet document is a plain-text document that contains at least one style
sheet rule. It may not contain HTML tags (after all, it isn’t an HTML document)
and so including HTML tags may cause parts of the style sheet to be ignored.
HTML comments are also not permitted, however, comments may be inserted in
the style sheet by using the CSS comment syntax shown here:

/* This is the end of the chapter */

There are two ways to refer to external style sheets (which should be named with
the .css suffix) from within a document: the link element and the @import
directive.

Using link

The best-supported method for referring to external style sheets is to create a link
to the CSS document using the link element in the head of the document, as
shown in this example:

<head>
<link rel="stylesheet" href="/pathname/stylesheet.css" type="text/css" />
</head>

The rel attribute defines the linked document’s relation to the current docu-
ment—a “style sheet.” The href attribute provides the URL of the style sheet
document. Authors may link to more than one style sheet in a document and both
will apply.

Importing

An alternative to linking is to import an external style sheet into a document using
the @import function in the style element:

<style type="text/css">

<l--
@import url(http://pathname/stylesheet.css);
p {font-face: Verdana;}

-->

</style>

In this example, an absolute URL is provided, but a relative URL may also be
used. @import commands must come before anything else (except @charset).

280 | Chapter16: Cascading Style Sheets Fundamentals

Alternate Style Sheets

CSS 2 introduced the ability to specify alternate style sheets by setting the value
of the rel attribute to alternate stylesheet, as shown in the following example.

<link rel="stylesheet" type="text/css"
href="/pathname/basic.css" title="Basic Style" />

<link rel="alternate stylesheet" type="text/css"
href="/pathname/largetype.css" title="Larger type" />

<link rel="alternate stylesheet" type="text/css"
href="/pathname/minimal.css" title="Minimal Design" />

When the document in the above example loads into the browser, the basic.css
style sheet is applied by default because it is the one specified as stylesheet.
Browsers that support alternate style sheets would create a drop-down menu in
the browser interface where users can select the other style options by title.

Alternate style sheets are supported in Mozilla, Netscape 6+, and Opera 7+.
Internet Explorer Versions 6 and earlier do not support alternate style sheets
except through an optional extension called a favelet (see www.favelets.com for
more info). IE7 (in beta as of this writing) does not have built-in support either.

It is possible to use JavaScript and/or server-side scripting such as PHP to give
your users the choice of alternate style sheets without relying on the browser’s
interface to support the alternate style sheet method in the previous example. A
List Apart has two articles that serve as a good starting point for learning more.

* “Alternative Style: Working with Alternate Style Sheets,” by Paul Sowden
(www.alistapart.com/articles/alternate). Discusses using JavaScript and the
DOM.

* “Build a PHP Switcher,” by Chris Clark (www.alistapart.com/articles/
phpswitch/). Shows how to use PHP to switch style sheets.

Importing allows multiple style sheets to be applied to the same document. When
additional @import functions are added within the style element, the style infor-
mation from the last file read (the one at the bottom of the list) takes precedence
over the previous ones.

The @import directive may also be used in the style sheet itself to reference infor-
mation in other external .css files. See the sidebar “Modular Style Sheets” for more
information.

@import is not supported by Netscape 4, Internet Explorer 3, and Opera 3. This
limitation is often used as part of a technique for hiding unsupported style infor-
mation from these browsers. Fortunately, they make up a small fraction of
browsers in use as of this writing.

CSS for Other Media

CSS 2 introduced the ability to target style sheets to specific presentation media.
This is done using the media attribute in the link element or @media or @import

style | 281

-
s
E
2
&
3
o
E
I3
=
w

Modular Style Sheets

The @import command may also be used within a style sheet document (the .css
file) to pull style information in from other style sheets. With this method, one
external style sheet attached to the HTML document accesses style rules from
multiple .css files. This functionality is used strategically as a way to modularize
styles and reuse them efficiently.

For example, frequently used styles related to navigation could be stored in a
navigation style sheet. Basic typography settings could be stored in another,
form styles in another, and so on. These style modules are added to the main
style sheet with the @import command as shown here:

/* basic typography */

@import url("type.css");

/* form inputs */
@import url("forms.css");

/* navigation */
@import url("list-nav.css");

rules in a style sheet. The complete list of accepted values for the media attribute
follows, but currently, only screen, print, and all are widely supported. Support
for handheld is getting a lot of attention by the W3C’s Mobile Web Initiative.
Multiple values may be provided in a comma-separated list.

all
Used for all media.

aural
Used for screen readers and other audio versions of the document. This value
is deprecated in favor of speech in future versions of CSS.

braille
Used when rendering the document with a Braille device.

embossed
Used with Braille printing devices.

handheld
Used for web-enabled cell phones or PDAs.

print

Used for printing the document or for displaying a “print preview.”
projection

Used for projection media such as a slideshow presentation.
screen

Used for display on a computer monitor. This is the media that applies to all
browsers running on computers.

282 | (hapter16: Cascading Style Sheets Fundamentals

speech
This value is reserved for spoken output in the CSS 2.1 Recommendation. Its
properties, however, will be defined in a later CSS Level release.

tty
Used for teletype printers or similar devices.

tv
Used for presentation on a television.

Key Concepts

To become comfortable with the way CSS behaves, it is important to have an
understanding of its guiding concepts. This section provides a basic introduction
to these fundamental ideas:

¢ Document structure and inheritance
* Conflicting style rules: the “cascade”
* Element types

¢ The box model

Document Structure and Inheritance

XML, XHTML, and HTML documents have an implicit structure or hierarchy.
For instance, the html root element usually contains a head and a body, and the
body, in turn, contains some number of block-level elements, such as paragraphs
(p). A paragraph may include inline elements such as anchors (a) or emphasized
text (em). This hierarchy can be visualized as a tree, branching out from the root.
Figure 16-2 shows the document tree structure of a very simple XHTML
document.

| html |

| head l | bhody l
1 [I]
| title I | meta I | hi I p ol

-
s
E
2
&
3
o
E
I3
=
w

Figure 16-2. Document tree structure

Key Concepts | 283

The parent-child relationship

The document tree becomes a family tree when it comes to referring to the rela-
tionship between elements. An element that is directly contained by another
element is said to be the child of that element. In Figure 16-2, the p element is the
child of body, and body is said to be its parent. Elements that have the same parent
are called siblings. In the example, the 11 element is the child of ol, its parent, and
the other 1i elements are its siblings. This parent-child relationship is funda-
mental to how CSS works.

Notice in the example that the p element contains an a element, which in turn
contains the inline element strong. Technically, the strong element is contained
by the p element as well. All the elements a given element contains are said to be
its descendants. To be considered a child, an element needs to be directly under its
parent element in the hierarchy (therefore, a child is just a special kind of descen-
dant). As you might expect, the terminology extends in the other direction as well,
as all elements higher than a particular element in the hierarchy are known as its
ancestors. The root element is called the root element because it has no ancestors.

This may all seem academic, but as you’ll see, an awareness of the structure tree
of your document comes into play in practical ways when working with CSS.

Inheritance

Related to structural relationships is the concept of inheritance, in which most
styles are passed down from an element to its descendants. In other words, a child
may inherit property values from its parent. For example, if a style rule applies a
text color to a ul list, then every list item (11) within that list will be that color as
well, because they inherit the property from their parent element. In CSS, most
properties are inherited, but some (such as margins and backgrounds) are not.
Inheritance is noted in the property descriptions throughout this book.

Styles applied to specific elements override settings higher in the hierarchy. With
planning, inheritance can be used to make style specification more efficient. For
example, if you’d like all the text on the page to be blue except for list items, you
can set the color property at the body level to apply to the whole document and
then use another rule to make 1is a different color.

This notion of some rules overriding others brings us to an important concept: the
cascade.

Conflicting Style Rules: The Cascade

It is possible (even common) for elements in a document to get presentation
instructions from several sources. Conlflicts are certain to arise. The working
group that developed CSS anticipated this situation and devised a hierarchical
system that assigns different weights to various sources’ style information. The
cascade (of Cascading Style Sheets) refers to what happens when several sources of
style information vie for control of the elements on a page; style information is
passed down until it is overridden by a style command with more weight.

284 | (Chapter16: Cascading Style Sheets Fundamentals

The cascade order provides a set of rules for resolving conflicts between
competing style sheets. When a user agent (such as a browser) encounters an
element, it looks at all of the style declarations that might possibly apply to it, and
then sorts them all out according to style sheet origin, selector specificity, and rule
order to determine which one applies.

Style sheet origin

At the top level, user agents look at the origin of the style declarations. Browsers
give different weight to style sheets from the following sources, listed from the
least weight to greatest:

User agent style sheets
This is the style information that is built into the browsing device for
rendering HTML elements and sets their default appearance.

Reader style sheets
The reader (or user) may also create a style sheet. Reader style sheets over-
ride the default browser styles.

Author style sheets
When the author of a document attaches a style sheet to it, those declara-
tions take precedence over the reader and user agent style sheets (with an
“important” exception, listed next).

Reader important style declarations
In CSS 2, reader style declarations marked as !important (see the sidebar
“Assigning Importance”) trump all style declarations, even those from author
style sheets.

&
: In CSS 1, any style marked as “important” by the author took pre-
cedence over all reader styles. This was reversed in CSS 2.

After considering the source of the style sheet, there is another hierarchy of
weights applied to style sheets created by the document’s author. As discussed in
this chapter, authors may attach style information to documents as inline styles,
an embedded style element, or one or more external style sheets. These points of
origin within the author style sheets are given varying weights as well (remember,
all author styles override reader and user agent styles unless the reader marks a
style limportant). The following list indicates the weight of various author style
declarations, from least to most weight. In other words, style rules farther down in
the list override those higher in the list.

Linked external style sheets (using the link element)
If there are multiple linked style sheets, the style rules in style sheets listed
lower in the document take precedence over those listed above it. For
example, if an HTML document links to two style sheets, like this:

<head>
<link rel="stylesheet" href="stylel.css" type="text/css" />
<link rel="stylesheet" href="style2.css" type="text/css" />
</head>

Key Concepts | 285

-
s
E
2
&
3
o
E
I3
=
w

Assigning Importance

If you want a rule not to be overridden by a subsequent conflicting rule, include
the limportant indicator just after the property value and before the semicolon
for that rule. For example, to always set all paragraph text to blue, use the
following rule in a style sheet for the document:

p {color: blue !important;}

Even if the browser encounters an inline style later in the document (which
should override a document-wide style sheet), like this one:

<p style="color: red">
that paragraph will still be blue, because the rule with the !important indicator

cannot be overridden by other styles in the author’s style sheet.

The only way an !important rule may be overridden is by a conflicting rule in a
reader (user) style sheet that has also been marked !important. This is to ensure
that special reader requirements, such as large type for the visually impaired, are
never overridden.

Based on the previous style examples, if the reader’s style sheet includes this
rule:

p {color: black;}
the text would still be blue, because all author styles (even those not marked

important) take precedence over the reader’s styles. However, if the conflicting
reader’s style is marked !important, like this:

p {color: black !important;}

the paragraphs will be black and cannot be overridden by any author-provided
style.

If a style rule provided in style2.css conflicts with a style rule in stylel.css, the
rule located in style2.css will take precedence because that style sheet is listed

lower in the source document.

Imported external style sheets (using @import)

Imported style information overrides linked styles. If there are multiple
@import directives, the rules provided in the style sheets lower in the list over-

ride the ones above.

Embedded style sheets (with the style element)

Styles applied to a specific document override those set externally.

Inline styles (using the style attribute in an element tag)

Inline styles override all other style declarations that may reference that

element, with one exception.

286

| Chapter16: (ascading Style Sheets Fundamentals

Style declarations marked as ! important
Any style marked as !important overrides all other conflicting style rules. The
only thing that can override an important rule in an author style sheet is an
important rule created by the user (as noted earlier).

Selector specificity

So far, we've looked at the priorities given to various sources of style information
and methods for attaching style to markup. Once the set of applicable style rules
has been chosen, there may still be conflicts. For this reason, the cascade
continues at the rule level.

In the following example, there are two rules that reference the strong element.

strong {color: red;}
h1 strong {color: blue;}

The user agent assigns different levels of weight to the various selector types. The
more specific the selector, the more weight it is given to override conflicting decla-
rations. In the previous example, all the strong text in the document will render in
red. However, if the strong text appears within a first-level heading, it will be blue
instead, because an element in a particular context is more specific and carries
more weight than the element alone.

The following is a list of selector types in order by weight from least to most. The
selector types and terminology are explained in Chapter 17.

* Individual element and pseudoelement selectors (e.g., p, or :first-letter)
* Contextual selectors (e.g., h1 strong)

* (lass selectors (e.g., p.special)

* ID selectors (e.g., p#intro)

Keep in mind that any rule marked !important will override conflicting rules
regardless of specificity or order.

Rule order

Finally, once styles have been sorted by author, attachment method, and speci-
ficity, there may still be conflicts within a single style sheet source. When a style
sheet contains several conflicting rules of identical weight, whichever one comes
last has the most weight and overrides the others in the list. For instance, in the
following example, all of the first-level headings in the document would be red,
because the last rule wins.

hi {color: green;}
h1 {color: blue;}
h1 {color: red;}

This “last-one-listed wins” scenario was mentioned earlier in relation to multiple
link elements and @import commands. It also applies within a single declaration
block. In the following example, the first declaration makes the border on all sides
of a div gray using the shorthand border-color property. The second declaration
conflicts with the first by specifying that the top border should be black. Because

Key Concepts | 287

-
s
E
2
&
3
o
E
I3
=
w

Calculating Specificity

There is more to the story of how specificity is determined. The W3C devel-
oped a numbering system that expresses a selector’s weight value in four parts
(a, b, ¢, d), in which each part is a tally of the selector’s particular components:

* aequals 1 if the rule is a style attribute value rather than a selector. For rules
using selectors, a=0. In this way, inline styles will always win out over
embedded or external style sheets.

* b equals the number of ID attributes given in the selector.

* ¢ equals the number of class attributes, attribute selections, or pseudoclasses
in the selector.

* d equals the number of every element and pseudoelement in the selector.
Here are a few simple examples to show specificity calculation at work. These
rules are listed in order from least to most weight:

* p {color: #FFFFFF;}: One element selector (0,0,0,1)

* ol 1i em {color: red;}: Three element selectors (0,0,0,3)

e .hot {color: red;}: One class selector (0,0,1,0)

* #tip em {color: blue;}: One ID selector, one element selector (0,1,0,1)
Weight is calculated from left to right, so the last example (#tip em) with a 1 in
the b slot would have more weight than the second example (p em) with a 3 in

the d slot. That means if there were an em element that matched both these rules,
it would be blue, because the selector with the 0,1,0,1 weight value wins.

For more information on calculating selector specificity, see the CSS Recom-
mendation at www.w3.0rg/TR/CSS21/cascade.html#specificity. Eric Meyer
provides a lengthier, illustrated explanation in his book Cascading Style Sheets:
The Definitive Guide (O’Reilly).

the declaration listed second overrides the first, the resulting div will have a black
top border and gray borders on the three remaining sides.

div#fside {border-color: gray;
border-color-top: black; }

Block and Inline Elements

If you are familiar with (X)HTML, you already know something about block-level
and inline elements. CSS uses the terms “block” and “inline” as well, but it is
important to understand that it is not the same as what makes elements either
block or inline in (X)yHTML.

In (X)HTML, the distinction between block-level and inline elements is based on
containment rules, or in other words, what elements can be nested within what
other elements. In general, block-level elements may contain both block and
inline elements, while inline elements may contain only data and other inline
elements. Paragraphs (p), headings (such as h1), lists (o1, ul, d1), and divs are the

288 | (Chapter16: (Cascading Style Sheets Fundamentals

most common block-level elements. However even some of those block-level
elements must obey special rules in (X)HTML,; e.g., paragraphs, headings, and
address (<address>) may only contain inline elements and content. Emphasized
text (em) and anchors (a) are examples of common inline elements. It is invalid
markup to nest a paragraph within an anchor element, for example.

In CSS, however, the notion of block-level and inline is purely presentational.
block and inline are two possible display roles that are used to tell user agents
how to present the element in the layout. Display roles are assigned using the
display property. The following descriptions summarize the presentational differ-
ences between block-level and inline elements in CSS.

A CSS block-level element (display: block) always generates breaks before and
after itself. It fills the available width of the parent element that contains it,
whether it’s the full width of the body of the document or a smaller defined space
like a sized div. You can’t place anything next to a block element in the normal
flow of the document.

CSS Inline-level elements (display: inline) do not generate any line breaks. They
appear in the flow of the line and will break only when they run out of room, at
which point they wrap onto a new line.

Unlike the XHTML notions of block and inline, a CSS block-level element may be
nested inside an inline-level element and vice versa. Using CSS, any (X)HTML (or
XML for that matter) element may be made block-level or inline-level.

There are other values for the display property. The most commonly used and
well supported is none, which causes the element not to display at all and essen-
tially removes it from the document flow. Other values include 1ist-item (like a
block item, only it displays a number or bullet), run-in (makes an otherwise block
element, like a heading, run into the following element, like a paragraph), and a
collection of table-related display roles. Table display values are discussed in
Chapter 22.

It is worthy of note that elements defined as block-level elements in (X)yHTML
typically also have a default presentation of display: block when rendered in
browsers. Likewise, the default display role of HTML inline elements is display:
inline. It is possible to override the default display roles of (X)HTML elements
using the CSS display property. In fact, making list items (1i) display inline
instead of block-level (their default) is a common web design practice (see
Chapter 24).

However, bear in mind that changing the presentation of an HTML element with
CSS does not change the definition of that element as block-level or inline in
HTML. Putting a block-level element within an inline element will always be
invalid (X)HTML, regardless of the display role.

While (X)HTML elements have default display roles, elements in other XML
languages typically do not. The display property is the tool authors may use to
explicitly declare display roles for individual elements.

Authors are advised not to reassign display roles for table-related (X)yHTML
elements.

Key Concepts | 289

-
s
E
2
&
3
o
E
I3
=
w

Having an awareness of an element’s display role is useful for understanding the
CSS box model, discussed in the next section.

Introduction to the Box Model

The box model forms the cornerstone of the CSS visual formatting system. It is a
critical concept for understanding how style sheets work. This section provides
only a basic introduction to the box model. The specifics of applying styles and
laying out pages using the box model are provided in Chapters 19 and 21.

According to the box model, every element, whether block or inline, generates a
rectangular box around itself called an element box (although block and inline
boxes are handled somewhat differently). Properties such as borders, margins,
and backgrounds (among others) can be applied to an element’s box. Boxes can
also be used to position elements and lay out the page. Figure 16-3 shows the
resulting boxes for this small sample of markup.

<body>
<h1>Headline</h1>
<p>This is a paragraph of text. Lorem ipsum dolor sit amet,
consecteteur adipiscing elit. Praesent tellus ante, laoreet in, ultrices at,
vehicula ut, leo. Vivamus velit. Nullam massa odio,
condimentum ut, porttitor in, suscipit eu, risus.</p>

This is a list of list items</1i>

And another item</1i>

And another item</1i>

</body>
em
body strong
1 —_|
N
Headline
p ~_
[This is a paragraph of text. [Lorem ipswm| dolor sit amet, consectetuex adipiscing
clit. Pracsent tellus ante, laoreet in. ultrices at, vehicula ut, leo.
Nullam massa odio, condimentum ut, porttitor in, suscipit eu, risus.
ul —__|

oL This is a list of Tist items |

li <+’\nd another item |
NAnd another item |

Figure 16-3. XHTML elements and their resulting boxes

Element boxes are made up of four main components. At the core of the box is
the element’s content. The content is surrounded by some amount of padding,
then the border, which is surrounded by the margin, as shown in Figure 16-4.

There are a few fundamental characteristics of the box model worth pointing out:

290 | Chapter16: Cascading Style Sheets Fundamentals

 margin area —— outer edge

padding area 7 border
This is some paragraph content that runs -
over two lines contentarea | ¢" edge

Figure 16-4. Structure of an element box

* Padding, borders, and margins are optional. If you set their values to zero,
they are effectively removed from the box.

* The padding area is the space between the edge of the content area and the
border (if there is one). Any background color or image applied to the ele-
ment will extend into the padding area.

* Borders are generated by style properties that specify their style (such as solid
or dashed), width, and color. When a border has gaps, the background color
or image shows through those gaps. In other words, backgrounds extend
behind the border to its outer edge.

* Margins are always transparent, which means that the background color or
pattern of the parent element will show through. The boundary of the mar-
gin (the element’s outer edge) is not visible, but is a calculated amount.

* The width of an element applies to the width of the content area only. This
means that when you specify that an element should be 200 pixels wide, the
actual contents will display 200 pixels wide, and the cumulative widths of the
padding, border, and margins will be added to that amount. (Internet
Explorer 5 for Windows is notorious for implementing the width of the box
incorrectly. See Chapter 25 for details.)

* The top, right, bottom, and left sides of an element box may be styled inde-
pendently of one another. For example, you can add a border to only the bot-
tom of an element, or to only the left and right sides.

This should get you started visualizing your document according to the CSS
model, but it’s only the beginning. To put these ideas into practical use, see the
box properties and positioning discussions in Chapters 19, 21, and 24.

Specifying Values

It is important to use the proper syntax for specifying length and color values in
style sheet rules.

Length Units

CSS allows measurements to be specified in a variety of units. Some of the units
(such as em and pica) are taken from the traditional print publishing world. When
specifying lengths, keep the following in mind:

Specifying Values | 291

-
s
E
2
&
3
o
E
I3
=
w

* Do not add space between the number and the two-letter unit abbreviation. It
must be 24px, not 24 px.

* The only value that does not require a unit abbreviation is 0 (zero).
* Measurements may contain decimal fractions, such as 14.5cm.

» Some properties, such as margins, accept negative values: margin: -500px

Table 16-1 lists units of measurements that you can specify in style sheet values.

Table 16-1. Units of measurements for style sheet values

Code Unit Description

px Pixel Pixel units are relative to the monitor resolution.

pt Point A traditional publishing unit of measurement for type. In CSS, a point is equal to 1/72
ofaninch.

pc Pica A traditional publishing unit of measurement equal to 12 points (or 1/6 of an inch).

em Em A relative unit of measurement that traditionally equals the width of the capital letter

“M”in the current font. In CSS, it is equal to the point size of the font (e.g., an em space
in 24pt type is 24 points wide) and is used for both vertical and horizontal measure-

ments.

ex Ex A relative unit of measurement that is the height of the lowercase letter “x” for that
font (approximately half the length of an em).

in Inches Standard unit of measurement in the U.S.

mm Millimeters Metric measurement.

cm Centimeters Metric measurement.

Specifying Color
As in HTML, there are two methods for specifying color in style sheets: by name

and by numerical value.

By name

You can specify color values by name as follows:
h1 {color: olive;}

The CSS 2.1 specification accepts only 17 color names for use in style sheets (CSS
1 and CSS 2 had only 16 names; orange was added in Version 2.1.) The color
names are:

aqua green orange white
black lime purple yellow
blue maroon red

fuchsia navy silver

gray olive teal

Other names from the complete list of color names may be supported by some
browsers. For the complete list, see Appendix D.

292 | (hapter16: Cascading Style Sheets Fundamentals

By RGB value

Within style sheets, RGB colors can be specified by any of the following methods:

{color: #000OFF;}

{color: #00F;}

{color: rgb(0,0,255);}
{color: rgb(0%, 0%, 100%);}

The first method uses three two-digit hexadecimal RGB values (for a complete
explanation, see Appendix D). The second method uses a three-digit syntax,
which is essentially converted to the six-digit form by replicating each digit (there-
fore, #00OF is the same as #0000FF).

The last two methods use a functional notation specifying RGB values as a comma-
separated list of regular values (from O to 255) or percentage values (from O to
100%). Note that percentage values can use decimals, e.g., rgb(0%, 50.5%, 33.3%).

Percentage Values

Percentage values are indicated by a number followed by the percentage sign (%).
Percentage values are calculated relative to other values in the document. When
specifying percentage values for measurements, it is important to pay attention to
how they will be calculated for the given property. Sometimes percentages are
relative to the current element. In other instances, they are calculated based on the
properties of the parent element. The CSS Recommendation specifies how
percentage values are calculated for each value, and there are notes provided in
the descriptions in this book as necessary.

Keyword Values

Most properties also have values that are described in keywords. You’ll find
keywords for each property in the property listing in the CSS Recommendation
and throughout this book. Note that a keyword like normal may have different
functions depending on the context of the property to which it is applied.

All properties in CSS 2.1 have the keyword inherit that forces the value of the
property to be the same as that of the parent element. Most properties inherit by
nature, but the inherit keyword is a tool for overriding assigned styles when
necessary.

Browser Support

For years, web designers and developers grappled with inconsistencies in the ways
browsers supported HTML, but eventually, reliable support for nearly the entire
HTML 4.01 Recommendation arrived. Now, the browser developers are working
on getting up to speed with CSS, so support of some features (particularly in the
newer CSS 2.1 Recommendation) are buggy and inconsistent across browsers.

Chapter 25 specifically addresses the most notorious browser bugs and how to
deal with them, but you’ll also find browser alert notes when appropriate for each
property in Chapters 18 through 23.

Browser Support | 293

-
s
E
2
&
3
o
E
I3
=
w

No browser support chart is provided with this book, because it would no doubt
be obsolete before this book is retired. However, there are several excellent online
resources that publish CSS browser support information.

West Civ Browser Support Page (www.westciv.com/style_master/academy/browser_
support/index.html)
West Civ provides free support charts online for properties tested on IE,
Netscape, and Opera. A complete, more detailed report is available for a
nominal fee.

Index DOT Css, by Brian Wilson (www.blooberry.com/indexdot/css/index.html)
This is a remarkably thorough site (albeit somewhat out of date) that docu-
ments browser support for every CSS selector, property, and value for
Internet Explorer, Netscape/Mozilla, and Opera browsers. It also provides
notes on particular bugs and behaviors.

Internet Explorer Blog (blogs.msdn.com/ie/)
Here you can keep up with what the developers are up to at Microsoft.

For Further Reading

CSS is a rich topic. Not surprisingly, there are mountains of information about it
in print and on the Web. These are just a few resources that I found invaluable in
writing the CSS chapters of this book.

Books

There are many good books on CSS on the shelves these days. These are the ones
that helped me out the most and that I recommend wholeheartedly.

* Cascading Style Sheets: The Definitive Guide, Second Edition, by Eric Meyer
(O’Reilly)

* Web Standards Solutions: The Markup and Style Handbook, by Dan Ceder-
holm (Friends of Ed)

* The Zen of CSS Design: Visual Enlightenment for the Web, by Dave Shea and
Molly E. Holzschlag (New Riders)

* Eric Meyer on CSS: Mastering the Language of Web Design, by Eric A. Meyer
(New Riders)

Online Resources

These sites are good starting points for online exploration of style sheets.

W3C (www.w3c.com/Style/CSS)
The World Wide Web Consortium is where the standards, including CSS, are
developed and overseen. Go right to the source for the nitty-gritty details and
latest developments.

294 | (Chapter16: Cascading Style Sheets Fundamentals

A List Apart (www.alistapart.com)
This online magazine features some of the best thinking and writing on
cutting-edge, standards-based web design. It was founded in 1998 by Jeffrey
Zeldman and Brian Platz.

css-discuss (www.css-discuss.org)
This is a mailing list devoted to talking about CSS and how to use it.

Inspirational CSS showcase sites

If you are looking for excellent examples for what can be done with CSS and stan-
dards-based design, check out these sites:

CSS Zen Garden (www.csszengarden.com)
This is a showcase site for what can be done with CSS, a single HTML file,
and the creative ideas and techniques of hundreds of designers. Its creator
and keeper is standards expert Dave Shea. See the companion book listed
above.

CSS Beauty (www.cssbeauty.com)
A showcase of excellent sites designed with CSS.

The Weekly Standards (www.weeklystandards.com)
This web site highlights recently launched corporate web sites that take
advantage of standards-based development techniques.

Informative personal sites

Some of the best CSS resources on the Web are the blogs and sites of individuals
with a passion for standards-based design. Most feature articles, tutorials, and
lists of links to other great online resources. These are only a few of the many
inspirational blogs, but from these, it’s easy to access the CSS community
network.

Stopdesign (www.stopdesign.com)
Douglas Bowman, CSS and graphic design guru, publishes articles and trend-
setting tutorials.

Quirksmode (www.quirksmode.org)
His own description says it best: “QuirksMode.org is the personal and
professional site of Peter-Paul Koch, freelance web developer in Amsterdam,
the Netherlands. It contains more than 150 pages with CSS and JavaScript
tips and tricks, and is one of the best sources on the WWW for studying and
defeating browser incompatibilities.”

Mezzoblue (www.mezzoblue.com)
This is the personal site of Dave Shea, the creator of the CSS Zen Garden.

Meyerweb.com (www.meyerweb.com)
This is the personal site of the king of CSS, Eric Meyer.

For Further Reading | 295

-
s
E
2
&
3
o
E
I3
=
w

Tantek Celik (tantek.com/log)
Tantek was the developer of Internet Explorer 5 for the Mac, an author of the
W3C CSS Recommendations, and the creator of the famous “Box Model
Hack.” He’s got his finger on the pulse, to say the least.

Molly.com (www.molly.com)
This is the blog of prolific author and web-standards activist, Molly E.
Holschlag.

Simplebits (www.simplebits.com)
This is the personal site of standards guru and author, Dan Cederholm.

296 | (Chapter16: Cascading Style Sheets Fundamentals

17

Selectors

The selector is the part of the style rule that identifies the element (or elements) to
which the presentation instructions are applied. For instance, if you want all of
the his in a document to be green, write a single style rule with h1 as the selector.
But that’s just the beginning. CSS provides a variety of selector types to improve
flexibility and efficiency in style sheet authoring. This chapter introduces the
selectors included in the CSS 2.1 specification, including:

* Type (element) selectors

* Contextual selectors (descendant, child, and adjacent sibling)

* (lass and ID selectors

* Attribute selectors

* Pseudoclasses

* Pseudoelements

Not all of these forward-thinking selectors are supported by today’s browsers, so
if a particular selector is not quite ready for prime time, it will be noted.

The W3C Selectors specification introduces additional selectors above and beyond
those in CSS 2.1, which modern browsers are still in the process of implementing.
This book does not describe them. For more information on those new selectors in
particular, see the W3C Selectors specification (www.w3.0rg/TR/css3-selectors).

Type (Element) Selector

The most straightforward selector is the type selector that targets an element by
name, as shown in these examples:

h1 {color: blue;}
h2 {color: blue;}
p {color: blue;}

297

Type selectors can be grouped into comma-separated lists so a single property will
apply to all of them. The following code has the same effect as the previous code:

h1, h2, p {color: blue;}

CSS 2 introduced a universal element selector (*) that matches any element (like a
wildcard). The style rule * {color: gray} makes every element in a document
gray. The universal selector may be a useful tool when used in relation to other
elements, as discussed in the next section.

The universal selector causes problems with form controls in some
browsers. If your page contains form inputs, the safest bet is to
avoid the universal selector.

Contextual Selectors

Type selectors, such as those in the previous example, apply to all instances of
that element found in a document. By contrast, contextual selectors allow you to
apply style properties to select elements, based on their context or relation to
another element. There are several types of contextual selectors: descendant,
child, and adjacent sibling. This is where being familiar with the document tree
structure of your document comes in handy.

Contextual selectors use a specific character to signify the type of relationship
between the elements in the selectors. This character is known as the combinator.

Descendant Selector

Descendant selectors target elements that are contained within (therefore descen-
dants of) another element. They are indicated in a list separated by a character
space (the combinator for descendant selectors), starting with the higher-level
element. For example, the following rule specifies that em elements should be
olive, but only when they are descendants of a list item (11). All other em elements
are unaffected by this rule.

1i em {color: olive;}

Like simple type selectors, contextual selectors can be grouped together in
comma-separated lists. The following code makes emphasized (em) text red only
when it appears in the context of a first-, second-, or third-level heading;:

hi em, h2 em, h3 em {color: red;}

Descendant selectors may also be nested several layers deep, as shown in this
example that targets only emphasized text (em) within anchors (a) within ordered
lists (o1).

ol a em {font-weight: bold;}

Child Selector

A child selector is similar to the descendant selector, but it targets only direct chil-
dren of a given element. In other words, the element must be contained directly

298 | (Chapter17: Selectors

within the higher-level element with no other element levels in between. Child
selectors are separated by the greater-than symbol (>). The rule in the following
example makes the background of emphasized text gray, but only when it is the
child of a paragraph:

p > em {background-color: gray;}

Therefore, in the following markup example, only the first instance of em receives
a gray background, because the second one is the child of an intervening strong
element:

<p>I've got laser eyes, and I know what you're
thinking.</p>

Adjacent Sibling Selector

The adjacent sibling selector is used to target an element that comes immediately
after another element with the same parent element. The combinator for adjacent
sibling selectors is a plus (+) sign. For example, if you wanted to give special
presentation treatment to the first paragraph following a first-level heading, the
resulting rule would look like this:

H1 + p {padding-left: 40;}

/—— Browser alert: Child selectors and adjacent sibling selectors are not
‘Eﬂ@ supported by Netscape 4 or Internet Explorer Version 6 and ear-
lier. Support in Internet Explorer 7, in beta as of this writing, is not

yet documented.

Class and ID Selectors

So far, all of the selectors we’ve seen have been tied to specific elements. Class
selectors and ID selectors give you the opportunity to target elements that you've
named yourself, independent of the document element.

Elements are named using the class and id attributes. They can be applied to all
XHTML elements except base, head, html, meta, script, style, and title. In addi-
tion, class may not be used in basefont and param. Class and ID selectors work in
slightly different ways.

class Selector

Use the class attribute to identify a number of elements as being part of a concep-
tual group. Elements in a class can then be modified with a single style rule. For
instance, you can identify all the items in a document that you classify as
“special”:

<h1 class="special">Attention!</h1>

<p class="special">You look marvelous today.</p>

To specify the styles for elements of a particular class, add the class name to the
type selector, separated by a period (.).

hi.special {color: red;}
p.special {color: red;}

Classand ID Selectors | 299

n
“n
v
w
-
3
[a]
-
o
S
w

To apply a property to all the elements of the same class, omit the tag name in the
selector (be sure to leave the period—it is the character that indicates a class):

.special {color: red;}

Note that class names cannot contain spaces; use hyphens or underscores instead
if necessary (although underscores are discouraged due to lack of support in some
browsers).

When choosing a name for a class, be sure that it is meaningful. For example,
naming a class redtext merely reintroduces presentational information to the
document and does nothing to describe the type of information in the element. It
may also be confusing if in a future redesign, the color of those elements changes
to blue.

Authors should resist going overboard with class creation (a syndrome commonly
referred to as “class-itis”). In many cases, other types of selectors with higher
specificity, such as contextual or attribute selectors, may be used instead.

id Selector

The id attribute is used similarly to class, but it is used for targeting a single
element rather than a group. id must be used to name an element uniquely (in
other words, two elements can’t have the same id name in the same document). It
is not a problem for an id value to be used in multiple documents across a site; it
only needs to be unique within each document. If you have several elements that
need a similar treatment, use class instead.

The following example gives a paragraph a specific ID (note that the value of an id
attribute must always begin with a letter):

<p 1d="j042801">New item added today</p>

ID selectors are indicated by the octothorpe (#) symbol within the style sheet as
follows:

p#j061998 {color: red;}
The element name may be omitted:
#j061998 {color: red;}

In modern web design, id attributes are frequently used to identify main sections
(usually divs) within a page. Some common id values for this purpose are content,
header, sidebar, navigation, and footer. Establishing sections of the page makes it
easier to create contextual selectors so that elements can be styled based on where
they appear on the page without the need to create extra classes.

Like class attributes, id names should be chosen based on the semantic role of
the element, not its presentation. For example, for a sidebar on the left side of the
page that contains news, it is preferable to name the div id="sidebar-news" rather
than id="sidebar-left".

&

The id attribute is also used in scripting to identify and access
unique page objects.

300 | Chapter17: Selectors

Attribute Selectors

CSS 2 introduced a system for targeting specific attribute names or values. This
may be useful for XML languages other than XHTML that may not contain class
and id attributes. There are plenty of uses for attribute selectors within XHTML
as well, but unfortunately, attribute selectors are not widely supported at this
time.

Browser alert: Attribute selectors are not supported by Internet
Explorer Versions 6 and earlier. As of this writing, support is
rumored in IE 7, but it has not been documented. Gecko-based
browsers (Mozilla and Netscape 6+), Safari, and Opera 7 do sup-
port them, but represent a smaller portion of browser usage.

There are four variations on attribute selectors:

Simple attribute selection
The broadest attribute selector targets elements with a particular attribute
regardless of its value. The syntax is as follows:

element[attribute]
Example: img[title] {border: 3px red;}

Specifies that all images in the document that include a title attribute get a
red border.

Exact attribute value
This selects elements based on an attribute with an exact attribute value.

element[attribute="exactvalue"]
Example: img[title="first grade"] {border: 3px red;}
Only images with the title value first grade are selected. The value must be

an exact character string match.

Partial attribute value
For attributes that accept space-separated lists of values, this attribute
selector allows you to look for just one of those values (rather than the whole
string). The tilde (*) in the selector differentiates this selector from those that
match an exact value.

element[attribute~="value"]
Example: img[title="grade"] {border: 3px red;}

This selector looks for images that contain the word grade in the list of title
values. Images with the attributes title="first grade" or title="second
grade" would be selected by the example selector.

Hyphen-separated attribute value
This selector is intended to target hyphen-separated values. The selector
matches the value you specify, or that value followed by a hyphen. This type

Attribute Selectors | 301

n
wv
0
w
o
1]
[a
-
o
=
[

of attribute selector is indicated by a vertical bar (|). This will make more
sense in the example.

element[attribute|="value"]
Example: *[hreflang|="es"] {color: red;}

This selector looks for all elements in which the hreflang attribute is es or
begins with es-. Elements with the language of their target href identified as
es, es-ar, or es-es would be selected (in other words, it finds all variations on
the Spanish language). Selecting language subcodes is a common use for this
type of attribute selector (e.g., to put language flags next to hyperlinks that
link to sites and pages of a different language), but by no means its only
application.

Pseudoselectors

Style rules are normally attached to elements in the document tree structure, such
as those we’ve discussed in the chapter so far. But some elements are not neces-
sarily found in the document markup, such as which links have been visited or the
first line of a paragraph. To apply style to these instances in a document, CSS
provides several pseudoselectors. Instead of targeting a particular element in the
document, pseudoselectors are interpreted by the browser based on context and
function. Pseudoselectors are indicated by the colon (:) character. Pseudoselec-
tors are divided into pseudoclasses and pseudoelements.

Pseudoclasses

As the name implies, pseudoclasses work as though there is a class applied to a
group of elements, most often the anchor (a) element. These “phantom” classes
(to use Eric Meyer’s term) do not appear in the markup, but rather are based on
the state of those elements or the document itself.

Anchor pseudoclasses

There are several pseudoclasses that can be used to apply styles to various states

of a link:

a:link {color: red;}

a:visited {color: blue;}
a:hover {color: fuchsia;}
a:active {color: maroon;}

Similar to their body attribute counterparts in the body element, :1ink applies to
hypertext links that have not been visited, :visited applies to links to pages that
have been visited, and :active applies during the act of clicking. The difference is
that you can do much more than just change color with CSS. Following are
popular rules for turning off the underline under linked text.

a:link {color: red; text-decoration: none;}
a:visited {color: blue; text-decoration: none;}

302 | (Chapter17: Selectors

The :hover selector is used to create rollover effects in which the link changes in
appearance when the mouse pointer moves over it. The examples above turned
off underlines for links. The following rule uses :hover to make the underline
appear as a rollover.

a:link {color: red; text-decoration: none;}
a:hover {color: red; text-decoration: underline;}
&
According to CSS 2, :active and :hover may be used with ele-
,'3 . ments other than anchors, but this use is not supported in Internet
* #k" Explorer (through Version 6) or Netscape 4.

Love, HA!

Anchor pseudoclasses need to appear in a particular order in a style sheet in
order to function properly. The initials LVHA (or according to a popular
mnemonic, love, HA!) remind developers that the correct order is :link,
:visited, :hover, :active. This has to do with order and specificity. Putting
:link or :visited last would override the :hover and :active states, preventing
those styles from appearing.

Other CSS 2.1 pseudoclasses

In addition to the anchor pseudo-classes, the CSS 2 specification introduced addi-
tional pseudoclass selectors. Be warned, however, that they are not well supported
at this time.

:focus
This targets elements that have focus, such as a form element that is high-
lighted and accepting user input. Although CSS 2 permits :focus to be
applied to any element, it is currently only supported for use with the form
elements. Netscape 6 supports :focus with a, input, textarea, and select.

Example: input:focus {background-color: yellow;}
:first-child
This targets an element that is the first occurring child of a parent element. It

allows you to select the first paragraph of a div or the first 1i in a ul, for
example.

Example: 1i:first-child {font-weight: bold;}

:lang()
This targets an element that targets elements for which a language has been
specified. It functions the same as the lang|= attribute selector, but may be

more robust.

n
wn
0
w
o
1]
[a
-
o
=
[

Example: p:lang(de) {color: green;}

Pseudoselectors | 303

Browser alert: Internet Explorer for Windows does not support
:focus or :first-child in Versions 6 and earlier. Support in IE 7 (in
beta as of this writing) is undocumented. Internet Explorer 5 for
Macintosh, Netscape 6+ and Opera 7+ do support them. Internet
Explorer 5 for Macintosh is the only browser that supports the
:1ang pseudoclass as of this writing.

Pseudoelements

Pseudoelement selectors work as though they are inserting fictional elements into
the document structure for styling. Pseudoelements are generally parts of an
existing element based on context, such as its first line or first letter. Four pseudo-
elements are included in CSS 2.1:

:first-1line

As it sounds, this selector applies a style rule to the first line of the specified
element. The properties for the :first-line pseudoelement are limited to
color, font, background, word-spacing, letter-spacing, text-decoration,
vertical-align, text-transform, line-height, and text-shadow.

The following code adds extra letter spacing in the first line of text for every
paragraph:

p:first-line {letter-spacing: 6pt;}

:first-letter

Attaches a style to the first letter of an element. The properties for :first-
letter are limited to font, color, background, margin, padding, border, text-
decoration, vertical-align, text-transform, line-height, and float. CSS 2.1
added the letter-spacing and word-spacing properties to this pseudoclass.

The following sample makes the first letter of any paragraph classified as
“opener” big and red:

p.opener:first-letter {font-size: 300%; color: red;}

:before and :after

CSS 2 introduced these pseudoelements that insert generated content before
and/or after a specified element and declare a style for that content.

This example inserts exaggerated quotation marks before and after a block-
quote (88220; and &8221; are the character entities for left and right curly
quotation marks):

blockquote:before {content: "8#8220;"; font-size: 24px; color: purple;}
blockquote:after {content: "8#8221;"; font-size: 24px; color: purple;}

Browser alert: Internet Explorer does not support generated con-
tent (:before or :after) in Versions 6 and earlier. Support in IE 7,
in beta as of this writing, is doubtful but is not specifically docu-
mented. Netscape 6+, Firefox/Mozilla, and Opera 7+ do support
generated content.

All current CSS-compliant browsers support the :first-letter and
:first-line pseudoelement selectors reasonably well.

304

| Chapter17: Selectors

Selector Summary

Table 17-1 provides a quick summary of the selectors covered in this chapter. Put

a sticky-note on this page.

Table 17-1. Summary of selectors

Selector Type of selector

* Universal selector

A Type selector

A B Descendant selector
A>B Child selector

A+B Adjacent sibling selector
.classname Class selector
A.classname

#idname ID selector

A#tidname

Alatt] Simple attribute selector
Alatt="val"] Exact attribute value selector
Alatt~="val"] Partial attribute value

selector

Alhreflang|="es"] Hyphenated prefix attribute

selector
a:link Pseudoselector
a:visited Pseudoselector
:active Pseudoselector

Description

Matches any element.
* {font-family:serif;}
Matches the name of an element.
div {font-style: italic;}
Matches element B only if it is a descendant of element
A
blockquote em {color: red;}

Matches any element B that is a child of any element A.
div.main>p {line-height:1.5;}
Matches any element B that immediately follows any
element A.
p+ul {margin-top:0;}
Matches the value of the c1ass attribute in all
elements or a specified element.
p.credits {font-size: .8em;}

Matches the value of the id attribute in an element.
#intro {font-weight: bold;}
Matches any element A that has the given attribute
defined, whatever its value.
table[border] {background-color:
white;}
Matches any element B that has the specified attribute
set to the specified value.
table[border="3"] {background-
color: yellow;}
Matches any element B that has the specified value as

one of the values in a list given to the specified
attribute.

table[class~="example"] {back-
ground-color: orange;}
Matches any element A that has an attribute
hreflang with a hyphen-separated list of values
beginning (from the left) with “es”.
a[hreflang|="es"] {background-
image: url(flag-es.png);}
Specifies a style for links that have not yet been visited.
a:link {color: purple;}
Specifies a style for links that have already been visited.
a:visited {color: gray;}
Applies a style to elements (typically links) while in
their active state.
a:active {color: red;}

n
“n
v
w
-
3
[a]
-
o
S
w

Pseudoselectors | 305

Table 17-1. Summary of selectors (continued)

Selector Type of selector Description

:after Pseudoselector Inserts generated text at the end of the specified
element and applies a style to it.

p.intro:after {content: "fini";
color: gray;}

:before Pseudoselector Inserts generated text at the beginning of the specified
element and applies a style to it.

p.intro:before {content: "start
here "; color: gray;}

:firstchild Pseudoselector Specifies a style for an element that is the first child of
its parent element in the flow of the document source.

p:firstchild {text-style: italic;}

:first-letter Pseudoselector Specifies a style for the first letter of the specified
element.

p:first-letter {font-size: 60px;}

:first-line Pseudoselector Specifies a style for the first line of the specified

element.
p:first-line {color: fuchsia;}

:focus Pseudoselector Specifies a style for elements (typically form controls)

that have focus (selected and ready for user input).
input[type="text"]:focus {back-
ground-color: yellow;}

:hover Pseudoselector Specifies a style for elements (typically links) that
appears while the pointer is over them.

a:hover {text-decoration: under-
line;}

:1lang(ab) Pseudoselector Specifies a style for an element for which its language
matches the given language code (or language code
prefix).

a:lang(de) {color: green;}

306 | Chapter17: Selectors

18

Font and Text Properties

Cascading Style Sheets offer a degree of control over text formatting that
approaches desktop publishing. This certainly comes as a relief after years of
misusing HTML markup for presentation purposes. Controls for specifying fonts
and text formatting are undeniably the most popular use of style sheets and they
are the properties that browsers support the most reliably.

This chapter discusses the challenges of typography on the Web and introduces
the following text-related CSS 2 properties:

font-family text-decoration letter-spacing
font-size text-transform word-spacing
font-weight line-height white-space
font-style text-indent direction
font-variant text-align unicode-bidi
font vertical-align

i

4

Text color is discussed in the “Foreground Color” section of
a Chapter 20.

.\‘t" o =
(15N

Typography on the Web

For those accustomed to print, the Web offers some unique challenges, usually
requiring the relinquishing of control. Typography is a prime example. In print,
designers may choose a typeface and point size for headlines and body copy, and
as long as the proper font is provided when the printed piece is output, every-
thing looks just the way the designer intended. On the Web, it’s not so easy.

307

Font Issues

Specifying fonts for use on web pages is made difficult by the fact that browsers
are limited to displaying fonts that are already installed on the user’s local hard
drive. So, even though you’ve specified text to be displayed in the Frutiger font, if
users do not have Frutiger installed on their machines, they will see the text in
whatever their default browser font happens to be. Fortunately, CSS allows you to
specify a list of alternative fonts if your first choice is not found (as discussed in
the section “Font Family”).

This problem is compounded by the fact that fonts are named inconsistently
across platforms and based on the foundry they come from. So even though you
want text to show up in plain Times, the font name for that typeface may be
Times New Roman or TimesNR or Times Roman. Browsers don’t know the
difference. This makes it difficult to find a font face even if it (or something like it)
is in fact there.

Type Size Issues

The other web typography challenge is type size. Size is problematic due to
varying screen resolutions and different default font sizes built into browsers and
operating systems. What looks perfectly fine on your monitor may be too small to
read for someone else. On top of that, to keep content accessible, text should be
sized in a way that allows the end user to resize it (usually larger) to meet special
needs. The specific problems of setting text size along with recommendations will
be covered in the upcoming “Font Size” section, but for now, suffice it to say that
it is not as straightforward as print. It requires knowledge of the medium and
occasionally some tough decisions.

Alternatives to Browser Text

Although CSS offers far more control over text formatting than any presenta-
tional HTML hack, keep in mind that it is still working in an environment that is
somewhat hostile to—or, at the very best, naive about—typography. From the
Web’s earliest days, there have been efforts to circumvent the limitations and
achieve beautiful typography on web pages. After more than 10 years of trying,
there is still no ideal solution, but there are a few options to be aware of.

Text in graphics

It didn’t take long for designers (this author included) to start replacing ugly
browser text with text set in an inline graphic. For a while, it was not uncommon
to run across sites with all every last word of their “content” sunk into a graphic.
While this may achieve the short-term goal of preserving the intended font design,
it comes at a steep cost. Not only does it increase the file size of the page, but the
content is essentially removed from the document. Alternative text (using the alt
attribute) helps, but does not solve the problem.

308 | Chapter18: Fontand Text Properties

Image-replacement techniques

In modern, CSS-based web design, there is a new way to replace text with an
image that preserves the text in the source document. There are several varia-
tions, but all image-replacement techniques are based on applying the image as a
background in the text element and then finding a way to hide the text using CSS.
The various image-replacement techniques are covered in detail in Chapter 24.

sIFR text

One of the most interesting web typography solutions to come along is sIFR,
which stands for Scalable Inman Flash Replacement. It draws inspiration from the
image-replacement techniques that were growing popular in CSS-based designs,
but uses small Flash movies instead of bitmapped GIF, JPEG, or PNG images.
The advantage is that text in Flash movies is vector-based, so it is smooth, anti-
aliased, and able to resize with the page. Using a combination of CSS, JavaScript,
and Flash technology, sIFR allows authors to “insert rich typography into web
pages without sacrificing accessibility, search engine friendliness, or markup
semantics.”

sIFR (in Version 2.0 as of this writing) was created by Mike Davidson, who built
upon the original concept developed by Shaun Inman (the “I” of sIFR). Here’s
how the process works (taken from the official sIFR site at www.mikeindustries.
com/sifr).

1. A normal (X)HTML page is loaded into the browser.

2. A JavaScript function is run that first checks that Flash is installed and then
looks for whatever tags, IDs, or classes you designate.

3. If Flash isn’t installed (or obviously if JavaScript is turned off), the (X)yHTML
page displays as normal and nothing further occurs. If Flash is installed, Java-
Script traverses through the source of your page, measuring each element
you’ve designated as something you’d like “sIFRed.”

4. Once measured, the script creates Flash movies of the same dimensions and
overlays them on top of the original elements, pumping the original browser
text in as a Flash variable.

5. ActionScript inside of each Flash file then draws that text in your chosen
typeface at a 6 point size and scales it up until it fits snugly inside the Flash
movie.

In optimal browser conditions, this all happens in a split-second, so all of the
checking, replacing, and scaling is not visible to the user. Some browsers may
struggle with sIFR.

sIFR is not perfect, but it is a promising technique that could lead to more
powerful typography solutions. To find out more about sIFR, visit www.
mikeindustries.com/sifr. There is also an interesting historical document with the
history of web typography and the first release of sIFR at www.mikeindustries.
com/blog/archive/2004/08/sifr.

Typography ontheWeb | 309

Q
o wn
S .
-}
® S
.o
53
v o=
~+*

Embedded fonts

In the mid-1990s, there were concerted efforts made by Microsoft and Bitstream
(partnered with Netscape) to develop embedded font technologies. With
embedded fonts, a separate file containing the necessary character set for the
document is provided with the HTML document via the 1ink element.

Not surprisingly, at the height of the Browser Wars, there was no spirit of cooper-
ation in the embedded font field, so the result was two competing and
incompatible embedded font technologies. Microsoft’s Embedded Open Type
worked only on Internet Explorer on Windows. Bitstream (a font design
company) created TrueDoc Dynamic fonts that were initially supported by
Netscape 4, but then dropped in Gecko-based Netscape 6. Bitstream has since
thrown in the towel on TrueDoc technology for the Web due to lack of browser
support. For now, embedded fonts are largely an ignored technology.

For information on Embedded Open Type, see www.microsoft.com/typography/
web/embedding/default.aspx. For information on Bitstream’s TrueDoc technology,
see www.truedoc.com.

Font Family

The CSS specification provides the font-family property for specifying the font
face for text elements.

font-family

Values: [[<family-name> | <generic-family>] [,<family-name> |
<generic-family>]*] | inherit

Initial value: Depends on user agent (the default font in the browsing device)

Applies to: All elements

Inherited: Yes

Use the font-family property to specify any font (or list of fonts, separated by
commas), as shown in these examples:

hi {font-family: Arial; }

tt {font-family: Courier, monospace; }

p {font-family: "Trebuchet MS", Verdana, sans-serif; }

The value of the property is one or more font names, separated by commas. This
allows authors to provide a list of fonts, starting with a first choice, followed by a
list of alternates. The user agent (typically a browser) looks for the first font on the
user’s machine and, if it is not found, it continues looking for the next font in the
list until a match is made.

Note that in the third example, the “Trebuchet MS” is enclosed in quotation
marks. Font names that contain character spaces must be enclosed in quotation
marks (single or double). If the font name appears in an inline style, be sure to use
single quotes if the style attribute uses double (or vice versa).

310 | Chapter18: Fontand Text Properties

Generic Font Families

You should include a generic font family as the last option in your list so that if
the specified fonts are not found, a font that matches their general style will be
substituted. Generic family names must never be enclosed in quotation marks.

The five possible generic font family values are:

serif (e.g., Times New Roman)
Serif typefaces have decorative serifs, or slab-like appendages, on the ends of
certain letter strokes (Figure 18-1, left).

sans-serif (e.g., Helvetica or Arial)
San-serif typefaces have straight letter strokes that do not end in serifs

(Figure 18-1, right).

monospace (e.g., Courier or New Courier)
In monospaced typefaces, all characters take up the same amount of hori-
zontal space on a line (Figure 18-2). For example, a capital W will be no
wider than a lowercase i. Compare this to normal typefaces that allot
different widths to different characters.

cursive (e.g., Zapf-Chancery or Comic Sans)
Cursive fonts emulate a script or handwritten appearance.

fantasy (e.g., Western, Impact, or some display-oriented font)
Fantasy fonts are purely decorative and would be appropriate for headlines
and other display type. Fantasy is not commonly used for web sites, because
it is difficult to anticipate which font will be used and whether it will be

legible online.
decorative straight
serif stroke strokes
. S .

serif font sans serif font
(Times) (Helvetica)

Figure 18-1. Serif and sans-serif font characters

o W o
variable width monospace
(Times) (Andale Mono)

Figure 18-2. Monospace and normal font characters

FontFamily | 311

Q
o wn
S .
-}
® S
.o
53
v o=
~+*

Commonly Available Fonts

Because a font will display only if it is available on a user’s hard drive, it makes
sense to design with the most commonly available fonts, particularly for sites with
wide-reaching audiences. So, which fonts can you rely on?

In general web design practice, designers tend to specify fonts from Microsoft’s
Core Web Fonts collection. This is a set of TrueType fonts (for both Windows
and Mac) that have been specially designed to be easy to read on screens at small
sizes. Microsoft released the fonts in 1996 and initially made them available for
download. Today, they are installed automatically with Internet Explorer and
other Microsoft software, so you can count on the majority of users having them
available. Table 18-1 lists the fonts in the Core Web Fonts collection.

Table 18-1. Core Web Fonts from Microsoft

Serif Georgia
Times New Roman
Sans Serif Arial Arial Black
Trebuchet MS
Verdana
Monospace Courier New
Andale Mono
Miscellaneous Comic Sans MS
Impact
Webdings

& @
Y Microsoft publishes an interesting online resource that lists which
0‘;‘. p fonts are installed with its various popular applications and each
" a2’ version of the Windows operating system. There are also lists of the
fonts that come installed with Macintosh OS X, Unix systems, and
Adobe Type Manager. You'll find the font lists at www.microsoft.
com/typography/fonts/default.aspx.

¢y

If you know your audience might have more specialized fonts installed, by all
means, make a statement and go off the beaten path. You can always provide a
more commonly available font as a backup in the list of font names.

Font Size

CSS provides the font-size property for specifying the size of text. There are
many value options for specifying font size, each with its own pros and cons. This
section discusses the various keyword and unit options and their impact on
usability.

312 | Chapter18: Fontand Text Properties

font-size

Values: xx-small | x-small | small | medium | large | x-large |
xx-large | smaller | larger | <length> | <percentage> | inherit

Initial value: medium
Applies to: All elements
Inherited: Yes

These examples demonstrate the font-size property used with several different
value types.

p.copyright {font-size: x-small;}

strong {font-size: larger;}

h2 {font-size: 1.2em;}

p#intro {font-size: 120%;}

Absolute Versus Relative Sizes

Before diving into the details of specifying type size, it is worth pausing to clarify
the difference between absolute and relative sizes. Absolute sizes have predefined
meanings or an understood real-world equivalent. In CSS, absolute values may be
expressed as keywords, such as small or x-large (discussed next) or by using
absolute length values, such as cm (centimeter), in (inch), or pt (point, 1/72 of an

inch).

Relative sizes, on the other hand, are based on the size of something else, like the
parent element or the em measurement of the text (see the sidebar “A Word
About Ems”). Relative values, such as em and percentages, are generally preferred
for web text for reasons that are covered in the upcoming sections.

Absolute Size Keywords

Absolute sizes are descriptive terms that reference a table of sizes kept by the
browser. There are seven absolute size keywords in CSS: xx-small, x-small, small,
medium, large, x-large, and xx-large. The keywords do not correspond to a partic-
ular measurement, but rather are scaled consistently in relation to one another.
The default size is medium in current standards-conformant browsers.

Figure 18-3 shows how the following examples of text sized with absolute
keywords look in Firefox 1.0.

xx-small
x-small
small

medium
large

x-large
xx-large

FontSize | 313

Q
o wn
S .
-}
® S
.o
53
v o=
~+*

A Word About Ems

In traditional typography, the em has been a measurement of width approxi-
mately equal to the width of the capital letter M for the given typeface. Using
that measurement, you arrive at the width of an em-space or an em-dash.

As typography has adapted to digital media, the em has become a measure of
width and height, or often height alone. For purposes of CSS, the em is calcu-
lated as the distance between the baselines when the font is set without any
additional interlinear space, also called leading (extra space added between lines
of text for legibility).

This distance forms the basis of an implied em-square measurement based on
the design of the typeface (also called the em-box). It is possible that ascenders
and descenders of a particular typeface may exceed the boundaries of the em-
square, or that no characters of another face fill it completely. The font’s em-
box measurement can be used as a relative unit of measurement.

mezmall x-small small mednm la:rgﬂ X-lﬁl‘gi KK-la]_‘ge

Figure 18-3. Text sized with absolute keywords

&

Y This figure and other figures in this book use inline styles as a

0‘;‘. . means to save space on the page. In the real world, inline styles
" o' should be avoided in favor of external or embedded style sheets.

The CSS 2.1 specification leaves the scaling factor (how much each consecutive
keyword is enlarged or reduced) up to the user agent. Chances are, it will be
somewhere around 1.2 (the most recent recommended scaling factor) or as large
as 1.5 (the CSS 1 recommended scaling factor), varying between different

browsers.

At a scaling factor of 1.2, if medium (default) text is 16 pixels, then large text
would be 19 pixels (after some rounding). The upshot of it all is absolute size
keywords vary in size from browser to browser, so they are not the best option if

you are looking for consistency.

&
8 Internet Explorer 5 and 5.5 for Windows use small as the default,
. . Which can seriously throw off an attempt to use absolute size key-
* a3 words throughout a document.

314 | Chapter18: Fontand Text Properties

Relative Size Keywords

There are two relative keywords: larger and smaller. They are used to shift the
size of the text relative to the parent object according to the seven-step absolute-
size scale (using the same scaling factor). For example, if the text of a paragraph is
set to large, applying the keyword smaller to a child em element would cause the
emphasized text to display at medium size. Figure 18-4’s examples use relative size
keywords.

There are two relative keywords: larger</
span> and smaller. They are used...

There are two relative keywords: larger and smatler. They are used to
shift the size of the text relative to the parent object according to..

Figure 18-4. Relative size keywords

Percentage Measurements

One fairly reliable way to specify text size is in percent values. Percent values are
calculated relative to the inherited size of the parent text. That “inherited” part is
important, because it means that if you nest similar elements with percentage
values, the affect is cumulative. It doesn’t take many levels of nesting before the
text is unreadable.

In Figure 18-5, the ul element is set to a relative size of 80%. If the body of the
document is 16 pixels, that means the ul text will be 13 pixels (after rounding).
The nested ul within that list takes the same size setting (80%), but this time it is
applied to its inherited size (13 pixels), resulting in 10 pixel text, and so on for
each nested level.

Lorem 1psum dolor sit amet.

+ Lorem ipsum
+ Dolor sit amet
. o Consectetuer adipiscing
o Elit pellentesque
o ® Pharstra urna
® In laorset tincidunt

Figure 18-5. Nested elements with percentage size values

Style sheet
body {font-size: 24px;}
ul {font-size: 80%;}

FontSize | 315

Q
o wn
S .
-}
® S
.o
53
v o=
~+*

Markup
Lorem ipsum dolor sit amet.

Lorem ipsum</1i>
Dolor sit amet</1i>

Consectetuer adipiscing</1i>
Elit pellentesque

Pharetra urna </1i>
<1i>In laoreet tincidunt</1i>

</1i>

Length Measurements

The final way that type size may be specified is in a specific number of units. Some
units are absolute and some are relative.

The absolute length units are:
* pt (points, 1/72 of an inch in CSS 2.1)
* pc (picas, 1 pica is equal to 12 points)
e mm (millimeters)
¢ cm (centimeters)
e 1in (inches)

The relative length units are:

* em (distance from baseline to baseline with no extra line space),

[73})

* ex (approximately the height of the letter “x” in the font)

* px (pixels; in CSS, pixels are relative because their actual size can vary by dis-
play resolution when the resolution is very different from the typical 75-100
dpi, e.g., on 300 dpi printers)

Specifying a unit length with the font-size property is simple. Just be sure that
the value is immediately followed by the unit abbreviation, with no extra space
between, like this:

p {font-size: 12px; }

h1 {font-size: 1.6em; }
The tricky part comes in knowing which units are the most appropriate for the
job. Some units are problematic in terms of accessibility while others are victims
of browser inconsistencies.

The problem with absolute values

Because real-world measurements, such as inches and picas, aren’t relevant on
computer screens (see Chapter 26 for an explanation of why inches are useless),

316 | (Chapter18: Fontand Text Properties

none of the absolute values make sense for web page text. If you are creating a
style sheet for print, however, absolute length units may be just the ticket.

Recommendation: Avoid pt, pc, mm, cm, and in measurements for web pages.

The problem with pixels

You may be thinking that because elements on web pages are measured in
numbers of pixels, and because pixels are considered a relative measurement, that
they are the answer to all font size problems. It would be nice if they were. For
some designers, control over text at the pixel level is intoxicating.

Unfortunately, there are a few reasons why pixels have come to be shunned for
text size. We know that all pixels are not created equal, so that means that what is
tidy yet readable on your monitor may require a magnifying glass on someone
else’s screen.

On most current browsers, starting with Internet Explorer 5 for Macintosh in
March 2000, that is not a problem, because users have a “text zoom” function
that allows them to increase the size of text regardless of the style sheet settings.
Ironically, Internet Explorer for Windows (Version 6 and earlier) does not allow
text zoom on text specified in pixels (it will resize text set in ems and percent-
ages). IE 7 (in beta as of this writing) promises a zoom function on pixels, but for
the time being, there is a significant percentage of users who cannot override pixel
size settings. This is a big no-no in terms of accessibility.

Recommendation: If accessibility is important to you (and it should be), avoid
using px measurements for text until IE 5 for Windows and IE 6 for Windows are
just a memory.

The problem with ems

Ems turn out to be the best length unit for the Web, but they too have a couple of
potential snags. The first is that em measurements are relative to the browser’s
base size. For most browsers, the default base size is 16 pixels, which is quite
large. Designers tend to want to reduce the text size slightly across a whole page
or a whole site.

But that 16 pixel base size is not a sure thing. Some users may have reset their
base text smaller already in the browser preferences, in which case, making text
smaller again in the author style sheet may make it unreadable. Fortunately, all
current version browsers allow text zoom on text specified in ems, so users can
make the text large enough to read easily (that is, if they know about the zoom
function).

The other issue with ems is that, due to rounding errors, there is a lot of inconsis-
tency among browsers and platforms when text size is set in fractions of an em.
One or two pixels can make a big difference when text is displayed at low resolu-
tions. Not only that, some browsers have problems with text set at less than one
em. Percentages are a more reliable way to provide relative measurements, but
then you may run into problems with cumulative resizing.

FontSize | 317

Q
o wn
S .
-}
® S
.o
53
v o=
~+*

Recommendation: One popular solution is to use a combination of percentages
and ems to avoid the problems associated with both. This method was first intro-
duced by Owen Briggs as a conclusion to his deep exploration of browser font-
size differences. The method works by making the text slightly smaller with a
percentage at the body level. Then use ems on the individual elements that you'd
like to be larger than the surrounding text. Here is an example using his suggested
values:

body {font-size: 76% } /* results in 12 pixel text when the base size is 16
pixels */

p {font-size: lem; }

h1 {font-size: 1.5em; }

The advantage is that the percentage value gives you more fine-tuned control, and
the em sizing doesn’t compound the way percentages do. The disadvantage is that
if the base size is less than 16 pixels, everything may appear too small. However,
because the sizes are specified in ems, resizing text in the browser is an option for
users.

&
See all 264 of Owen Briggs’ screenshots, as well as solutions for
. . dealing with inconsistent font sizing, at thenoodleincident.com/

2 tutorials/box_lesson/font/index.html.

Other Font Settings

Compared to the hassles of font-face and font-size, the other font-related prop-
erties are a walk in the park (albeit, a short walk). This section introduces style
properties for adjusting font weight, style, and “small caps” display.

Font Weight
The font-weight property specifies the weight, or boldness, of the type.

font-weight

Values: normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 |
600 | 700 | 800 | 900 | inherit

Initial value: normal
Applies to: All elements
Inherited: Yes

Font weight can be specified either as a descriptive term (normal, bold, bolder,
lighter) or as one of the nine numeric values listed above. The default font weight
is normal, which corresponds to 400 on the numeric scale. Typical bold text corre-
sponds to 700 on the numeric scale. There may not be a font face within a family
that corresponds to each of the nine levels of boldness (some may come in only
normal and bold weights). Figure 18-6 shows the effect of each of the values on the

318 | (Chapter18: Fontand Text Properties

popular Verdana web font face in the Firefox browser (note that bold kicks in at
600, not 700).

It is evident that the numeric font-weight values are not useful when multiple
weights are not available for the font. There’s no harm in using them, but don’t
expect them to change the weights of an existing font. It merely looks for font
weights that are already available.

normal | bold | bolder | lighter
100 | 200 | 300 | 400 | 500

600 | 700 | 800 | 900

Figure 18-6. The effect of font-weight values

Unfortunately, the current browsers are inconsistent in support of the font-weight
property, mainly due to the lack of available fonts that fit the criteria. The values
that are intended to make text lighter than normal weight are particularly unsuc-
cessful. Of the possible values, only bold and bolder will render reliably as bold
text. Most developers stick to those values and ignore the rest.

Font Style

font-style controls the posture of the font, that is, whether the font is italic,
oblique, or normal.

font-style

Values: normal | italic | oblique | inherit
Initial value: normal

Applies to: All elements

Inherited: Yes

Italic and oblique are both slanted versions of the font. The difference is that the
italic version is usually a separate typeface design with more curved letter forms,
while oblique text takes the normal font design and displays it on a slant using
mathematical calculations, as shown in Figure 18-7 (top). At small text sizes on
low resolution monitors, italic and oblique text may look exactly the same
(Figure 18-7, bottom).

<p style="font-style: oblique">This is a sample of oblique Times as rendered
in a browser.</p>

<p style="font-style: italic">This is a sample of italic Times as rendered
in a browser. </p>

Other Font Settings | 319

Q
o wn
S .
-}
® S
.o
53
v o=
~+*

sample of oblique Times

sample of true italic Times

This is a sample of obligue Tines as rendered in a browser,

This is a sample of fralic Tines as rendered in a browser.

Figure 18-7. Comparison of oblique and italic type set with the font-style property

Font Variant

The sole purpose of the font-variant property is to specify that text should
appear as small caps. Small caps fonts use smaller uppercase letters in place of
lowercase letters. More values may be supported for this property in future style
sheet versions.

font-variant

Values: normal | small-caps | inherit
Initial value: normal

Applies to: All elements

Inherited: Yes

If a true small caps font face is not available, the browser may simulate small caps
by displaying all caps at a reduced size. Figure 18-8 shows such a simulation using
this style rule.

lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Pellentesque pharetra, urna in laoreet
tincidunt, nunc quam eleifend libero, a tincidunt purus augue eu felis.
Phasellus quis ante. Sed mi.

LOREM IPSUM DOLOR SIT AMET, consectetuer adipiscing elit.
Pellentesque pharetra, wna in laoreet tincidunt, nunc quam eleifend
libero. a tincidunt purus angue eu felis. Phasellus quis ante. Sed mi.

Figure 18-8. Using font-variant for small caps

320 | Chapter18: Fontand Text Properties

Unlike a true small caps typeface design, the proportions of the capital and small
cap letters do not blend well because the line weight of the small caps has been
reduced. One use of small caps typefaces in the print world is to reduce the size of
acronyms so they do not stand out like sore thumbs in the flow of text. Unfortu-
nately, the font-variant property only transforms lowercase letters, so it cannot
be used for this purpose.

&

There are two additional font-related properties in CSS 2 that were
dropped in CSS 2.1 due to lack of support. The font-stretch prop-
erty was for making a font’s characters wider or more narrow using
these keyword values: normal, wider, narrower, ultra-condensed,
extra-condensed, condensed, semi-condensed, semi-expanded,
expanded, extra-expanded, ultra-expanded, and inherit. The other
dropped property is font-size-adjust, which was intended to com-
pensate for the varying x-heights of fonts at the same size settings.

¢y

Putting It All Together with the font Property

Specifying multiple font properties for each text element could get repetitive and
lengthy, so the authors of CSS provided the shorthand font property that
compiles all the font-related properties into one rule. Technically, font is more
than just a shorthand property, because it is the only property that allows authors
to specify fonts from the operating system of the user agent.

font

Values: [[<'font-style'> || <'font-variant'> || <'font-weight'>]?
<'font-size's> [/<'line-height'>]? <'font-family'>] | caption |
icon | menu | message-box | small-caption | status-bar | inherit

Initial value: Uses individual property default values

Applies to: All elements

Inherited: Yes

When using the font property as shorthand for a number of font properties, the
order in which the property values appear is important. All of these font rules
show correct usage of the font property.

hi { font: 1.75em sans-serif; } /* minimum value list for font */

hi { font: 1.75em/2 sans-serif; }

hi { font: bold 1.75em sans-serif; }

hi { font: oblique bold small-caps 1.75em Verdana, Arial, sans-serif; }

The rule may include values for all of the properties or a subset, but it must
include font-size and font-family, in that order, as the last two properties in the
list. Omitting one or putting them in the wrong order causes the entire rule to be
invalid. These examples are invalid:

hi { font: sans-serif; } /* font-size omitted */
hi { font: 1.75em/2 sans-serif oblique; } /* size and family come first */

Other Font Settings | 321

Q
o wn
S .
-}
® S
.o
53
v o=
~+*

Once you’ve met the font-size and font-family requirement, the rule may also
include optional font-style, font-variant, or font-weight properties at the begin-
ning of the rule. They may appear in any order, as long as they precede font-size.
Another optional value is the line-height property (for adding space between
lines) that appears just after font-size, separated by a slash (/), as shown here:

p { font: italic 12px/18px Georgia, Times, Serif }

It is important to know that when you use the shorthand font property, any prop-
erty that is omitted will be reset to the initial setting (default) for that property. Be
aware that an incomplete shorthand rule could accidentally override settings
made earlier in the style sheet by resetting the values to the default.

Using System Fonts

The font property provides a number of keywords that allow authors to apply
font styles from the operating system into their web documents. This may be a
useful tool for making a web application blend in with the surrounding desktop
environment. The values are:

caption
The font used for captioned controls (e.g., buttons, drop-down menus, etc.)

icon
The font used to label icons

menu
The font used in menus (e.g., drop-down menus and menu lists)

message-box
The font used in dialog boxes

small-caption
The font used for labeling small controls

status-bar
The font used in window status bars

Choosing one of these keywords applies all aspects of that font (family, size,
weight) at once, although they may be overridden with specific font properties. If
a particular font is not found, the user agent should approximate the font or
substitute a default font. System font values are well-supported by current stan-
dards-compliant browsers.

Text Transformation (Capitalization)

The font-variant property uses capital letter shapes for lowercase letters, but
doesn’t really affect the capitalization of the text, only the character shapes of the
font. There is another CSS property, text-transform, for altering the capitaliza-
tion of text without needing to retype it in the source document. It works by
toggling between the upper- and lowercase characters as specified.

322 | (hapter18: Fontand Text Properties

text-transform

Values: none | capitalize | lowercase | uppercase | inherit
Initial value: none

Applies to: All elements

Inherited: Yes

Use the text-transform property to change the capitalization of an element
without retyping it in the source. This can make changing capitalization of a
particular element (like headers) for an entire site as easy as changing one style
sheet rule.

The default value is none, which leaves the text as it appears in the source (and
resets any inherited value). The capitalize value displays the first letter in each
word of the element in uppercase. The lowercase value makes all letters in the
element lowercase, and likewise, the uppercase value makes all characters upper-
case. The effects of these text-transform property examples are shown in
Figure 18-9.

Call me Ishmael normal
Call Me Ishmael. capitalize
call me ishmael lowercase
CALL ME ISHMAEL. uppercase

Figure 18-9. The text-transform property

Text Decoration

Use the text-decoration element to specify underlines, overlines (a line over the
text), strike-throughs, and the blinking effect.

text-decoration

Values: none | underline | overline | line-through | blink
Initial value: none
Applies to: All elements

Text Decoration | 323

Q
o wn
S .
-}
® S
.o
53
v o=
~+*

Inherited: No, but a text decoration is “drawn through” any child elements (see
explanation in this section).

The values for text-decoration are fairly intuitive: underline causes an element to
be underlined, overline draws a line over the element, and line-through draws a
line through the middle of the element and replaces the deprecated strike and s
elements in HTML. text-decoration variations are shown in Figure 18-10.

Call me Ishmael underline
Call me Ishmael. overline
Callsne Tebmasl line-through

Lorem ipsum dolor sit amet. consectetuer adipiscing elit, This strong
element is not underlined. Pellentesque pharetra, urna in laoreet
tincidunt. nunc quam eleifend libero. a tincidunt purus ausue eu felis.
Phasellus quis ante. Sed mi.

Figure 18-10. The text-decoration property

There is also an optional blink value that causes the text to flash on and off like
the dreaded Netscape blink element (the blink value is deliberately still not
supported by Internet Explorer).

The text-decoration property has one strange behavior you should be aware of.
Although text-decoration values applied to a block element are not inherited by
the block’s child elements, the line gets drawn through the child elements
anyway. The line (such as an underline, overline, or line-through) will go
through the inline elements even if they explicitly have text-decoration set to
none, as shown in this example and the bottom of Figure 18-10.

<p style="text-decoration: underline">Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. <strong style="text-decoration: none">This
strong element is not underlined. Pellentesque pharetra, urna in
laoreet tincidunt, nunc quam eleifend libero, a tincidunt purus augue eu
felis. Phasellus quis ante. Sed mi. </p>

There is currently no way to turn decoration off for child elements. The solution is
to apply the style to spans in the desired parts of the text instead of the block
element itself.

The most popular use of the text-decoration property is to turn off the under-
lines that automatically appear under links by setting text-decoration to none, as
shown here:

a:link, a:visited { text-decoration: none; }

324 | (hapter18: Fontand Text Properties

This should be done with some care, however, as the underline is a strong visual
cue that text is clickable. Removing the underline may cause the link to be missed.
If you turn the underline off, be sure that other cues such as color or weight
contrast compensate.

Similarly, because underlines have become so associated with hypertext, adding
an underline to text that is not a link may be misleading and even frustrating. In
the days of typewriters, underlines were used in place of italic text. Consider
whether italics may be an acceptable alternative to underlines.

Line Height

In CSS, the line-height property defines the minimum distance between the base-
lines of adjacent lines of text. A baseline is the imaginary line upon which the
bottoms of characters sit. Line height is analogous to leading or interlinear space
(the amount of space between lines) in traditional typesetting. Adjusting the line
height can change the color of a block of text. In this case “color” refers not to hue
(like blue or green), but rather the overall density or darkness of the text.

This section looks at both the 1ine-height property and the method by which CSS
calculates the actual height of lines. CSS line height handling has an impact on
vertical alignment within text, discussed later.

line-height

Values: normal | <number> | <length> | <percentage> | inherit
Initial value: normal

Applies to: All elements

Inherited: Yes

These examples demonstrate three alternative methods for specifying the same
amount of line spacing. If the font size is 10 pixels, the resulting line height for
each of the examples listed would be 20 pixels. Figure 18-11 shows the results
(bottom) compared to a paragraph with the default line height (top).

p.open {line-height: 2; } /* uses a scaling factor */

p.open {line-height: 2em; } /* unit of length */

p.open {line-height: 200%; } /* percentage */

The default value is normal, which most browsers display at 120% of the font size.
When a number is specified alone (as in the first example), it acts as a scaling
factor that is multiplied by the current font size to calculate the line-height value.
Line heights can also be specified using any of the length units. Relative values
(em, ex, and %) are calculated by the font size of the element. Negative values are
allowable and will cause the lines of text to overlap.

It is important to note that child elements inherit the computed line height value
from their parent element, not the specified value. For example, the line height for

LineHeight | 325

Q
o wn
S .
-}
® S
.o
53
v o=
~+*

Nulla facilisi. Sed ultrices ligula at metis. Sed
accumsan justo nonummy eros. Aliquam erat
volutpat.

Nulla facilisi. Sed ultrices ligula at metus. Sed

accumsan justo nonummy eros. Aliquam erat

volutpat.

Figure 18-11. The line-height property

a div with a font size of 12 and a line height of 1 em calculates to 12 pixels. A
paragraph element that is the child of that div will inherit the 12-pixel line height,
not the relative 1 em value. If that paragraph happens to have a font size larger
than 12 pixels, the lines of text will overlap.

The same is not true for scaling factors. When you specify a numerical scaling
factor, that value is applied to the selected element and all of its child elements.

Calculating Line Height

Although specifying line heights numerically is fairly straightforward, it is worth-
while to take a look under the hood to see how CSS is actually handling the
calculation.

The difference between the line height and the font size values is the leading. Half
of the leading is applied above the text’s content area and the other half is placed
below. The net result is the same as the baseline-to-baseline measurement for line
height. Figure 18-12 shows how leading is distributed for text with a font size of
14 pixels and a line height of 22 pixels.

4 px half-leading
above and below

22 px 14 px

i
line box — com‘em‘~|: A typlcal‘line Of teXt

height height

Figure 18-12. Line height and leading

When there is an odd number of pixels, the user agent decides where the larger
value is placed (although, most place the extra pixel below the content area).

326 | Chapter18: Fontand Text Properties

The text’s content area plus its leading form an implied inline box, which is the
total amount of vertical space the text occupies in a line. Being able to visualize
the inline box will come in handy later when we discuss vertical alignment.

Text Alignment Properties

One of the ways text can be formatted to improve visual hierarchy and readability
is through alignment. CSS provides several properties for adjusting the horizontal
and vertical alignment of text.

Indents

Use the text-indent property to specify an amount of indentation for the first line
of text in an element.

text-indent

Values: <length> | <percentage> | inherit
Initial value: 0

Applies to: Block-level elements and table cells
Inherited: Yes

The value of text-indent may be any unit of length or a percentage value (calcu-
lated as a percentage of the parent element width), as shown in these examples
and Figure 18-13:

p#1 { text-indent: 3em; }

p#2 { text-indent: 50%; }

p#3 { text-indent: -20px; }

The third rule in this list shows an allowable negative text-indent value. Negative
values can be used to create hanging-indent effects. This feature should be used
with care, as it may cause text to disappear off the left edge of the browser (add
left padding to compensate) or may not be supported properly in older browser
versions.

One last thing to know about indents is that a child element inherits the
computed indent value from its parent, not the specified value. So if a div is set to
800 pixels wide with a 10% margin, the computed indent will be 80 pixels. A
paragraph within the div will inherit the 80-pixel indent, not the 10% text-indent
value.

&

8 Designers may be accustomed to specifying indents and margins in
,'s - tandem, but to be consistent with the CSS model, margins will be

ok discussed in relation to the box model in Chapter 19.

Text Alignment Properties | 327

saiuadoad

n
w
v
"
°
H]
=
)
x
~*

Nulla facilisi. Sed ultrices texi-indent” 3em:
lignla at metus. Sed accumsan
justo nonuUMMY eros.

Nulla facilisi. text-indent: 30%a;
Sed ultrices ligula at metus. Sed
accumsan justo NONUMMY eros.

Nulla facilisi. Sed ultrices ligula at text-indent -2 0px;
metus. Sed accumsan justo
HONWNMY eros.

Figure 18-13. The text-indent property

Horizontal Alignment

Use the text-align property to adjust the horizontal alignment of text within
block elements.

text-align

Values: left | right | center | justify | inherit

Initial Values: left for languages that read left to right
right for languages that read right to left

Applies to: Block-level elements and table cells

Inherited: Yes

The resulting text behavior of the various text-align property keyword values
should be fairly intuitive as illustrated in Figure 18-14.

p { text-align: left; }

p { text-align: right; }

p { text-align: center; }

p { text-align: justify; }

It is worth pointing out that the text-align property controls the horizontal align-
ment of the inline elements within the element, not the alignment of the element
itself. In other words, it is not equivalent to the deprecated center element. Notice
that the paragraph elements in Figure 18-14 remain aligned on the left margin.

328 | (hapter18: Fontand Text Properties

Nulla facilisi. Sed ultrices hgula at text-align: left
metus. Sed accumsan justo
NONIMNY S10S.

Nulla facilisi. Sed ultrices ligula at |/ text-alion: right;
metus. Sed accumsan justo
nonumMmMYy eros.

Nulla facihisi. Sed ultrices higula at // text-align: center;
metus. Sed accumsan justo
NONWIMY S10s.

Nulla facilisi. Sed ultrices ligula at // text-alion® jostify;
metus. Sed accumsan justo
NONUMMY eros.

Figure 18-14. The text-align property

&
Y The proper way to horizontally align elements is through manipula-

0‘;‘.' tion of their left and right margins, as discussed in Chapter 19.
AN B
05

Vertical Alignment

Use the vertical-align property to specify the vertical alignment of an inline
element. Vertical alignment values are relative to the baseline, text height (font
size), or the total height of the text line. In the course of looking at vertical align-
ment values, this section introduces other important CSS concepts such as
replaced elements and the inline box model.

vertical-align

Values: baseline | sub | super | top | text-top | middle |
text-bottom | bottom | <percentage> |<length> | inherit

Initial value: baseline
Applies to: Inline elements and table cell elements
Inherited: No

Q
o wn
S .
-}
® S
.o
53
v o=
~+*

Text Alignment Properties | 329

The vertical-align property applies to inline text elements as well as nontext
elements that may appear in the flow of text, such as images or form inputs.
Images and inputs are examples of replaced elements, because the source docu-
ment contains only a reference to the element that is replaced by the actual
content when the page is assembled. Most XHTML elements are non-replaced
elements, which means their content appears in the source document, like the text
of a paragraph (p).

Aligning relative to the baseline

Many of the vertical-align values move inline elements with respect to the base-
line of the surrounding text. The default value is baseline, which aligns the
baseline of text—or the bottom edge of a replaced element—with the baseline of
the parent element.

The sub and super values allow subscripting and superscripting. The sub value
causes the element to be lowered relative to the baseline. super causes the element
to be raised relative to the baseline. CSS does not prescribe the distance it should
be raised or lowered, so it depends on the browser. It is significant to note that
aligning an element with sub or super does not reduce the font size of the element.

These examples of baseline, sub, and super are shown in Figure 18-15.

<p>Aliquam erat volutpat</p>
<p>Aliquam erat volutpat</p>
<p>Aliquam erat volutpat</p>

Aliquam erat vohitpat haseline
Ahquam erat \'Dh_'ltpﬂt sub
Aliquam erat volutpat SUpEr

Figure 18-15. vertical-align relative to baseline

Aligning relative to text height

The text-top and text-bottom values align an element relative to the top and
bottom edges of the surrounding text, respectively. Although it depends on the
font design, the “top” of text corresponds roughly to the top of the ascenders and
the “bottom” of text corresponds roughly to the bottom of the descenders. More
accurately, it is the top and bottom of the text box for that font and is derived
from the font size of the parent element. Replaced elements in the line are ignored
in the calculation of the top and bottom of the text box.

&

The inline box model for the calculation of line height is discussed
in detail in Chapter 19.

330 | Chapter18: Fontand Text Properties

Figure 18-16 shows elements aligned with text-top and text-bottom. It is easy to
see that the aligned elements are positioned relative to the text and not to the
overall height of the line.
<p>A tall <img style="vertical-align: middle" src="img/placeholder tall.gif"
alt="" /> image and a short <img style="vertical-align: text-top" src="img/
placeholder short.gif" alt="" /> image.</p>

<p>A tall <img style="vertical-align: middle" src="img/placeholder tall.gif"
alt="" /> image and a short <img style="vertical-align: text-bottom"
src="img/placeholder_short.gif" alt="" /> image</p>

vertical-align. text-top

image and a short image.

A tall w é
A tall % image and a short %ﬁnage

vertical-align: text-bottom

Figure 18-16. Text-top and text-bottom

The final text-based alignment is middle, which aligns the vertical midpoint of the
element (typically an image) with an imaginary line drawn through the middle of
the x-height of the parent. A font’s x-height is the height of its lowercase letters,
but browsers usually calculate it as .5 em. According to the specification, then, the
line against which an element will be vertically centered is only .25 em above the
baseline, as indicated by the gray line in Figure 18-17.

<p>A tall <img style="vertical-align: middle" src="img/placeholder tall.gif"

alt="" /> image and a short <img style="vertical-align: middle" src="img/

placeholder short.gif" alt="" /> image.</p>

vertical-align: middle

Figure 18-17. Text aligned with the middle value

Text Alignment Properties | 331

Q
o wn
S .
-}
® S
.o
53
v o=
~+*

Aligning relative to line height

The top and bottom values align elements relative to the top and bottom of the line
box for that line. The line box is an implied box that is generated for each line of
text in a block element. It is drawn high enough to enclose the tallest inline
element, including its leading. Replaced elements, like images, are included in the
calculation of the line box height, so they influence the position of elements
aligned with top and bottom.

Figure 18-18 shows elements aligned with top and bottom in relation to the line
box.

<p>A tall <img style="vertical-align: middle" src="img/placeholder tall.gif"
alt="" /> image and a short <img style="vertical-align: top" src="img/
placeholder short.gif" alt="" /> image.</p>

<p>A tall <img style="vertical-align: middle" src="img/placeholder tall.gif"
alt="" /> image and a short <img style="vertical-align: bottom" src="img/
placeholder short.gif" alt="" /> image</p>

vertical-align: top

A tall mmage and a short image.

A tall tmage and a short itnage

vertical-align: bottom

Figure 18-18. Text aligned top and bottom relative to the line box

Aligning with percentage values

When you use a percentage value with vertical-align, the baseline of the element
is moved by your specified amount relative to the baseline. The distance is calcu-
lated as a percentage of the element’s line-height value. Both positive and
negative percentage values are accepted.

Text Spacing

CSS provides several tools for adjusting the space between words or characters in
text. Adding space within a line is another way to affect the character or color of a
block of text. For example, adding a little extra space between letters is a common

332 | (hapter18: Fontand Text Properties

technique for calling more attention to a headline or the first line of text on a
page. This section introduces the letter-spacing, word-spacing, and white-space
properties.

Letter Spacing

Use the letter-spacing property to specify an amount of space to be added
between characters.

letter-spacing

Values: normal | <length> | inherit
Initial value: normal

Applies to: All elements

Inherited: Yes

Figure 18-19 shows an example of a style sheet rule that adds 3 pixels of extra
space between the characters in the first line of text.

p {letter-spacing: 8px; }

<p>Nunc a nisl.</p>

NMNane @& mi1s]:

Figure 18-19. Letter spacing

The default value normal is equivalent to a numeric setting of zero (0). In other
words, whatever value you specify is added to the standard character-spacing text.
Negative values are permitted and will cause the characters to overlap.

Note that when specifying relative lengths (such as em, which is based on font
size), the calculated size will be passed down to child elements, even if they have a
smaller font size than the parent.

Word Spacing

Use the word-spacing property to specify an additional amount of space to be
placed between the words of the text element.

word-spacing

Values: normal | <length> | inherit

Initial value: normal

TextSpacing | 333

Q
o wn
S .
-}
® S
.o
53
v o=
~+*

Applies to: All elements

Inherited: Yes

Similar to letter-spacing, the value of word-spacing gets added to the standard
space between words. A setting of zero (0) is equivalent to normal and will leave
the word spacing unaltered. These examples of word spacing are shown in
Figure 18-20.

p {word-spacing: 1em;}

<p>Nunc a nisl.</p>

Nunc a sl

Figure 18-20. Word spacing

Note that when specifying relative lengths (such as em, which is based on font
size), the calculated size will be passed down to child elements, even if they have a
smaller font size than the parent.

Whitespace

By default, strings of character spaces in the source for an element are collapsed
down to one space and line breaks are ignored. In XHTML, the pre element
preserves that whitespace and displays the source just as it is typed. The white-
space property in CSS does the same thing, and more.

white-space

Values: normal | pre | nowrap | pre-wrap | pre-line | inherit
Initial value: normal

Applies to: All elements (as of CSS 2.1)

Inherited: Yes

The normal value treats text normally, with consecutive spaces collapsing to one.
The pre value displays multiple characters, like the pre element in (X)HTML,
except that it has no effect on the font of the element (browsers tend to display
pre elements in the monospace font).

Figure 18-21 shows a simple use of the white-space property as specified in this
example style and markup.

p.haiku {white-space: pre; }

<p class="haiku">
Love's pure silver flame

334 | Chapter18: Fontand Text Properties

gives each innermost spirit
invisible warmth.
</p>

Lowve's pure sitver flame
gives each innermost spirit
invisible warmth.

Figure 18-21. The white-space property

nowrap prevents the text element from wrapping unless designated by a
.
Without a
, the text may extend beyond the browser window, requiring
horizontal scrolling.

CSS 2.1 introduced two new values for white-space. The pre-wrap value preserves
multiple character spaces but allows long lines of text to wrap. Line breaks in the
source are also honored. The pre-line value makes multiple character spaces
collapse to one, but it preserves new lines in the source. As of this writing, no
browser supports the pre-line and pre-wrap values for white-space.

Text Direction

To accommodate languages that read right to left, such as Hebrew and Arabic, the
CSS Recommendation provides two properties that affect the direction of the flow
of text.

direction

Values: 1tr | rtl | inherit
Initial value: 1tr

Applies to: All elements
Inherited: Yes

The direction property affects the direction of text in a block-level element. It
also changes the order of column layout, the behavior of text overflow, and
margin alignment for justified text. The default is 1tr (left to right) unless the
browser has an internal style sheet for displaying text from right to left.

unicode-bidi

Values: normal | embed | bidi-override | inherit

Initial value: normal

TextDirection | 335

Q
o wn
S .
-}
® S
.o
53
v o=
~+*

Applies to: All elements

Inherited: No

The unicode-bidi property is provided to take advantage of the directionality
features in Unicode. Unicode and directionality are discussed in Chapter 6.
Setting directionality falls outside the realm of the average web designer, but it is a
useful feature for multilingual sites. For details on how these properties work, see
the CSS 2.1 specification online at www.w3.0rg/TR/CSS21/. For more informa-
tion on the internationalization efforts at the W3C, see www.w3c.org/
International.

336 | Chapter18: Fontand Text Properties

19

Basic Box Properties

The box model was briefly introduced in Chapter 16 as one of the fundamental
concepts of CSS visual formatting. According to the box model, every element in a
document generates a box to which such properties as width, height, margins,
padding, and borders may be applied.

These element box properties (as well as those for positioning as discussed in
Chapter 21), are at the heart of CSS-driven layout and design. Effects that once
required tables, such as putting text in a colored box, can now be handled entirely
with style sheets. This is just one way that style sheets have liberated developers
from the inappropriate use of (X)HTML elements for visual effects. And that’s just
scratching the surface. Many visual effects created with CSS box properties simply
weren’t possible before using (X)YHTML alone.

The box model is also at the core of some of the most notorious headaches for
web developers, namely, the fact that all versions of Internet Explorer for
Windows (except IE 6 and 7 running in Standards mode, as described in
Chapter 9) interpret the width of the box differently than all other CSS-compliant
browsers. This has made it necessary for web developers to jump through all sorts
of hoops to replicate layouts consistently on all browsers. For more on the IE/
Windows box model problem, see Chapter 25.

This chapter covers the box model in more depth and introduces the basic box
properties for specifying size and adding margins, borders, and padding, as listed
next.

337

height border-top-style border-top

width border-right-style border-right
max-height border-bottom-style border-bottom
max-width border-left-style border-left
min-height border-style border
min-width border-top-width padding-top
margin-right border-right-width padding-right
margin-left border-bottom-width padding-bottom
margin-top border-left-width padding-left
margin-bottom border-width padding

margin border-top-color

border-right-color
border-bottom-color
border-left-color
border-color

A @

4
A)

The box model will be addressed again in Chapter 21 as it relates to

.“:‘ a. positioning and the layout of the page.
3B

The Box Model, Revisited

According to CSS, every element in a document, both block-level and inline-level,
generates a rectangular box called an element box. Figure 19-1 shows all the areas
and boundaries defined by the CSS box model.

At the core of the element box is the content itself, called the content area. Its
sides are referred to as the inner edges of the element box. The width and height of
an element are calculated as the distance between these inner edges.

The padding is the area held between the content area and an optional border.
The border is one or more lines that surrounds the element and its padding.

Background colors and images applied to an element are visible in the padding
and extend behind the border (if there are gaps in the border style, the back-
ground color will show through).

Finally, on the outside of the element border, there is an optional amount of
margin. The margin area is always transparent, which means that the background
of the parent element shows through.

The outside edges of the margin area make up the outer edges of the element box.
The total width that an element box occupies on the page is measured from outer
edge to outer edge and includes the width of the content area plus the total
amount of padding, border, and margins.

Keep in mind that when you specify the width value for an element, that sets the
width of the content area only, so there’s some extra math to do before you know
the total width of the element. This calculation may be critical for positioning
elements precisely on a page.

Here is where the IE/Windows box model problem comes into play. With the
exception of IE 6 and 7 in Standards mode, Internet Explorer for Windows

338 | (hapter19: BasicBox Properties

top outer edge

top margin

top border

top padding
top inner edge

left inner edge *7— width —%7 right inner edge
left padding ——————— : ———— right padding
left border ——————— height ———— right border

left margin right margin
left outer edge right outer edge
bottom inner edge
bottom padding
bottom border
bottom margin

bottom outer edge

Figure 19-1. The box model

applies the width property to the entire width of the element box, from outer edge
to outer edge. When margins, borders, or padding are also applied, this results in
potentially large discrepancies between how the element should be sized and how
it will appear in IE/Windows.

Inline Boxes

The element box is not the only implied box in the CSS visual formatting model.
Every character and element in a line of text also generates a box on the fly. These
inline boxes are used by the user agent (the browser) behind the scenes to calcu-
late the height of each line in the flow of text and the space around elements. Line
boxes and inline boxes are not elements, they are merely a device of the visual
layout model. Therefore, you cannot use a selector to target line or inline boxes
and apply styles to them (you can apply styles to inline elements, of course).

Having a familiarity with the various inline boxes at work behind the scenes is
useful for predicting and controlling line height as well as for specifying the
vertical alignment of inline elements. They also come into play when specifying
box properties, particularly to inline elements. Figure 19-2 highlights the various
inline boxes for a line of text.

The four invisible boxes that the user agent keeps track of when formatting each
line of text include:

Em box
In CSS, the this is a square unit that is equal to the font-size of the element. Its
relation to the actual characters in the font is dependent on the typeface design,
but in general, it encloses the ascenders and descenders of the font.

The Box Model, Revisited | 339

)
=
(-]
=
]
2,
m
[

"
wv
w
-]
o
2.
~
©®
)
>

What you see in your browser
Say something furmy N
The inline boxes at work:

inline boxes

AN

/.
Say somethlng fU.IlIly

\//‘\

indicates em box content area line box

Figure 19-2. Inline boxes

Content area

Every element in a line has a content area box that corresponds to the content
area in the box model (Figure 19-1). For text elements (also called non-
replaced elements because their content appears in the source), the height of
the content area is determined by the element’s font-size. For anonymous
text (text not specifically contained within an inline element), the font-size is
inherited from the parent element. For images (and other replaced elements),
the content area is the width and height of the image in pixels.

Inline box

The height of the inline box is calculated as the total of the element’s content
area plus the leading added above and below it (see Figure 18-12 in
Chapter 18). Leading is the difference between the element’s font-size and
line-height values. It may be a negative value, which means that lines may
overlap. For images (and replaced elements), the inline box is the height of
the image in pixels, plus the height of any added borders and margins on the
img element.

Line box
The line box is drawn around the top of the highest inline box and the
bottom of the lowest inline box. It represents the total required vertical space
for the line and all its elements. The vertical-align values top and bottom are
relative to the top and bottom edges of the line box.

In the sections that follow, we’ll see how the line box (the total height of a line) is
affected (or not affected) by the addition of margins, borders, and padding on
inline elements.

340 | Chapter19: BasicBox Properties

Width and Height

Use the width and height properties to specify the dimensions of a block-level
element or an inline replaced element (like an image). The width and height prop-
erties do not apply to inline text (non-replaced) elements and will be ignored by

a
gx‘
- X
o

w
a2~
o w
v o
>

standards-conformant browsers. In other words, you cannot specify the width and
height of an anchor (a) or a strong element unless you change its display role to a
block-level display value like block, 1ist-item, or inline-block.

height

Values: <length> | <percentage> | auto | inherit

Initial value: auto

Applies to: Block-level elements and replaced elements (such as images)
Inherited: No

width

Values: <length> | <percentage> | auto | inherit

Initial value:
Applies to:

Inherited:

auto
Block-level elements and replaced elements (such as images)

No

Using the height and width properties is straightforward, as shown in these exam-
ples and Figure 19-3.

div#ftall {width:100px; height:200px; }
divi#wide {width:200px; height:100px; }

<div id="tall" style="position:absolute;">
Lorem ipsum ...

</div>

<div id="wide" style="position:absolute; left: 205px;">

Lorem ...

</div>

There are only a few special behaviors to be aware of:

* width and height properties apply to the content area of the element only. Pad-
ding, borders, and margins are added onto the width and height values to
arrive at the total element box dimensions. (See the sidebar “The IE/Windows
Box Model Problem” for details regarding the notoriously incorrect implemen-
tation of box model measurements in Internet Explorer for Windows.)

Width and Height | 341

Lorem ipsum Lorem tpsum dolor sit amet,
dolor sit amet, consectetuer adipiscing elit.
consectetuer Pellentesque pharetra_ urna in
adipiscing =lit. laoreet tincidunt.

Pellentesque

pharetra, wrna in

laoreet tincidunt.

Figure 19-3. The height and width properties

An element’s height is calculated automatically and is just large enough to
contain the element’s contents; therefore, it is less common to specify height.
The height of the content may change based on font-size, user settings, or
other factors. If you do specify a height for a text element, be sure to also con-
sider what happens should the content not fit (the overflow property is dis-
cussed in Chapter 21).

For images, it is recommended that both width and height values be pro-

vided.

CSS 2 introduced percentage values for width and height. Percentage values
are calculated as a percentage of the width of the parent element. This means
that if the size of the parent element changes, the width and height of its child

elements will change proportionately.

The IE/Windows Box Model Problem

One of the most notorious browser inconsistencies is that Internet Explorer for
Windows (all versions except IE 6 and 7 running in Standards mode) has its
own implementation of the box model. In these versions of IE/Windows, the
width property is applied to the entire element box, from outer margin edge to
outer margin edge, not just the content area, as it should be. This causes valid
CSS layouts that apply padding, borders, and margins to elements of a specific
width to be rendered inconsistently. By using a proper DOCTYPE declaration,
you can switch IE 6 and 7 into Standards mode, and widths and heights will
apply to the content area, as expected (see Chapter 9 for details on DOCTYPE
switching).

Until all versions of IE 5.x/Windows fade away completely, there is the “box
model hack,” a well-known workaround developed by Tantek Celik that serves
up a separate set of width values just for IE. This and other browser
workarounds are discussed in Chapter 25.

342

| Chapter19: BasicBox Properties

Maximum and Minimum Heights

CSS 2 introduced properties for setting minimum and maximum heights and
widths for block elements. They may be useful if you want to put limits on the
size of an element when positioning it on a page.

max-width, max-height

Values: <length> | <percentage> | none | inherit
Initial value: none
Applies to: All elements except non-replaced elements (i.e., inline text elements)

and table elements

Inherited: No

min-width, min-height

Values: <length> | <percentage> | none | inherit
Initial value: none
Applies to: All elements except non-replaced elements (i.e., inline text elements)

and table elements

Inherited: No

There are a few behaviors of the minimum and maximum size properties to keep
in mind:

* These properties are for use with block-level and replaced elements (like
images) only.

* Once again, the measurements apply only to the content area of the element.
If you add padding to an element, it will be applied on the outside of the con-
tent area and make the overall element box larger, even if a maximum height
and width have been specified.

/—— Internet Explorer through Version 6 does not support the min-width,
% min-height, max-width, and max-height properties. The CSS commu-
nity has devised some workarounds for the min-height problem.

These resources are a good starting point for investigation:

* Dustin Diaz’s “Min-height Fast Hack” at www.dustindiaz.com/
min-height-fast-hack/

* Dave Shea’s Mezzoblue.com: www.mezzoblue.com/dailies/
2005/01/05/index.php

* Grey Wyvern’s solution at www.greywyvern.com/code/min-
height-hack.html

Width and Height | 343

a
gx‘
- X
o

w
a2~
o w
v o
>

Margins

Margins are an amount of space that may be added around the outside of the
element’s border. There are properties for specifying a margin amount for one
side at a time or by using the shorthand margin property.

margin-top, margin-right, margin-bottom, margin-left

Values: <length> | <percentage> | auto | inherit
Initial value: 0
Applies to: All elements (except elements with table display types other than

table and inline-table)

Inherited: No

margin

Values: [<length> | <percentage> | auto]{1,4} | inherit

Initial value: See individual properties

Applies to: All elements (except elements with table display types other than

table and inline-table)

Inherited: No

With the margin-top, margin-right, margin-bottom, and margin-left properties,
you can specify a margin for one side of an element. Margin size may be specified
in any of the accepted units of length. Negative values are permitted. Figure 19-4
shows examples of adding margins to individual sides of an element. Note that
the dotted lines are a device to point out the outer edge of the margin and would
not display in the browser.

h1 { margin-top: 3px; }

h1 { margin-right: 20px; }

h1 { margin-bottom: 3px; }

h1 { margin-left: 20px; }

Percentage values are also permitted, but be aware that percentages are calculated
based on the width of the parent element. If the parent element gets narrower
(perhaps as the result of the browser window resizing) the margins on all sides of
the child elements will be recalculated.

Margins may also be set using the keyword auto, which allows the user agent to
fill in the amount of margin necessary to fit or fill the containing block.

344 | (hapter19: BasicBox Properties

top and bottom margin: 3 px

Phasellus feugiat eros at mi.

left and right margin: 20 px

Figure 19-4. Individual margin settings

&
o The proper way to horizontally center an element in CSS is to set
. p the left and right margins to auto. This technique (as well as the

" #’ workaround required for Internet Explorer in anything but Stan-

dards mode) is addressed in Chapter 24.

¢y

The Shorthand margin Property

As an alternative to setting margins one side at a time, there is the shorthand
margin property. The accepted values are the same as those previously listed.
What changes slightly is the syntax as the margin property provides a lot of flexi-
bility for specifying values.

In the values listed for margin above, the {1,4} notation means that you can
provide one, two, three, or four values for a single margin property. Here’s how it
works.

When you provide four values, the values are applied around the edges of the
element in clockwise order, like this (some people use the mnemonic device
“TRouBLe” for the order Top, Right, Bottom, Left):

{ margin: top right bottom left }

The four margin properties listed in Figure 19-4 could be condensed using the
margin property as so:

{ margin: 3px 20px 2px 20px; }
When one or more of the four values is missing, certain provided values are repli-
cated for the missing values.

If three values are provided, it is assumed the value for the left margin is missing,
so the value for right is used for left ({margin: top right/left bottom}). This rule,
therefore, is equivalent to the previous example:

{ margin: 3px 20px 3px; }

If two values are provided, the right value is replicated for the missing left value,
and the top value is replicated for the missing bottom value ({margin: top/bottom
right/left}). Again, the same effect achieved by the previous two examples could
be accomplished with this rule:

{ margin: 3px 20px; }

Margins | 345

a
gx‘
- X
o

w
a2~
o w
v o
>

Finally, if only one value is provided, it is replicated for all four values. This decla-
ration applies 20 pixels of space on all sides of an element:

{ margin: 20px; }

Margin Behavior

It is helpful to be aware of these general margin behaviors.

Margins are always transparent, allowing the background color or image of
the parent element to show through.

Elements may have negative margins, which may cause elements to break out
of containing blocks of their parent elements or overlap other elements on the
page.

The vertical (top and bottom) margins of adjacent block elements in the nor-
mal document flow will collapse. That means that the space held between
adjacent block elements will be the larger of the two margin values, rather
than the sum of their margin values. The collapsing margins in the following
examples are demonstrated in Figure 19-5.

h2#top {margin: 10px 20px 10px 20px;}
h2#tbottom {margin: 20px 20px 20px 20px; }

<h2 id="top" >Lorem ipsum dolor sit amet,</h2>
<h2 id="bottom" >consectetuer adipiscing elit.</h2>

10px

Lorem ipsum dolor sit amet,
10px —— T 20px
consectetuer adipiscing elit.

~20px

Figure 19-5. Collapsing margins

The vertical margins do not collapse for floated elements, absolutely posi-
tioned elements, and inline block elements.

In CSS 2.1, horizontal (left and right) margins never collapse.

Top and bottom margins applied to non-replaced inline elements (text ele-
ments such as em or strong) have no effect on the height of the line. In other
words, top and bottom margins are not calculated as part of the element’s
inline box or the height of the line box for that line.

Left and right margins applied to non-replaced inline (text) elements do cause
the specified amount of space to be held before and after (to the left of the
first character and right of the last character) the inline element, even if it is
broken over two lines.

346

| Chapter19: BasicBox Properties

* Top and bottom margins applied to replaced inline elements (i.e., images and
form inputs) do affect the height of the line. In other words, the margin is
included in the inline box for replaced elements, and the line box is drawn
larger to accommodate it.

* When an image has a margin, the bottom outer edge of the margin is placed
on the baseline of the line (unless placement is altered with the vertical-
align property on the img). The image in Figure 19-6 has 20 pixels of margin
on all sides. The result is that the image is raised off the baseline by 20 pixels
and the line height opens up to accommodate the image and its margin.

Aliquam pubinar vohitpat nibh. Integer convallis nulla

X

sit amet magna. Maecenas imperdiet
turpis ac augue. Integer malesuada mauris a odio
vulputate blandit. Etiam accumsan.

Figure 19-6. Margin settings on inline images

Borders

A border is simply a line drawn around the content area of an element and its
(optional) padding. The three aspects of a border that can be specified are its
style, width (thickness), and color. As for margin, each of these qualities may be
specified for an individual side at a time or for several sides at once using short-
hand properties.

There are only a few things to know about border style behavior:
* Borders are drawn on top of an element’s background, so the background
color or image will show through the gaps in the intermittent border styles.

* Borders applied to non-replaced inline elements (text elements) have no effect
on the line height for that line. In other words, they are not included in the
inline box for the element.

* Borders applied to replaced elements, however, do affect line height, just as
margins do.

Border Style

The border style is the most important of the border qualities because, according
to the CSS specification, if there is no border style specified, the border does not
exist. In other words, you must always declare the style or other border settings
will be ignored.

Figure 19-7 shows the nine border styles you have to choose from.

Borders | 347

a
gso
- X
o

w
a2~
o w
v o
>

mnanmnnn ey e |

none : dotted : I dashed |
& = 1 |
Eassmssnmnannss B e e o wd
solid double groove
ridge inset outset

Figure 19-7. The nine available border styles

There is a bug in Internet Explorer 6 for Windows that causes bor-
ders specified as dotted to render as dashed.

Border styles can be applied one side at a time or by using the border-style
shortcut property.

border-top-style, border-right-style, border-bottom-style, border-left-style

Values: none | dotted | dashed | solid | double | groove | ridge
| inset | outset

Initial values: none
Applies to: All elements
Inherited: No

border-style

Values: [none | dotted | dashed | solid | double | groove | ridge
| inset | outset]{1,4} | inherit

Initial value: Not defined
Applies to: All elements
Inherited: No

348 | (Chapter19: BasicBox Properties

As you might expect, the border-top-style, border-right-style, border-bottom-
style, and border-left-style properties allow you to specify a border style to one
side of the element. If you do not specify a width for the border, the medium width
value (the default) will be used. If there is no color specified, it uses the fore-
ground color of the element (i.e., the text color). This example shows single-side
border attributes in action (Figure 19-8).

div {border-top-style: solid;
border-right-style: dashed;
border-bottom-style: dotted;
border-left-style: double; }

Figure 19-8. The border-style property

The border-style shortcut property works the same as the margin shortcut
described earlier. Border style values for each side are provided in clockwise order:
top, right, bottom, left. If fewer values are provided, some values are replicated.
The right value will be used for a missing left value, the top value will be repli-
cated for a missing bottom value; and if only one border style is provided, it will
be applied to all four sides of the element.

The same effect shown in Figure 19-8 can be replicated using this border-style
declaration:

div {border-style: solid dashed dotted double; }

Border Width (Thickness)

The thickness of the rule is controlled with one of the border width properties. As
we've seen for margin and border-style, you can control the width of each indi-
vidual side or use the border-width shorthand property to specify several sides at
once. The shorthand values are provided in clockwise (top, right, bottom, left)
order and replicate as described for the margin shorthand property earlier in this
chapter.

border-top-width, border-right-width, border-bottom-width,
border-left-width

Values: thin | medium | thick | <length> | inherit

Initial values: medium

Borders | 349

a
gx‘
- X
o

w
a2~
o w
v o
>

Applies to: All elements

Inherited: No

border-width

Values: [thin | medium | thick | <length> 1{1,4} | inherit
Initial value: Not defined

Applies to: All elements

Inherited: No

The properties may use the keyword values thin, medium, and thick, in order of
increasing width. The actual pixel value for each keyword is left up to the user
agent, but must be consistent throughout the document. Border width can be
specified in units of length as well (pixels are common). Negative length values are
not permitted for borders.

Figure 19-9 shows an example of keyword and pixel-measurement border widths.

div {border-style: solid;
border-top-width: thin;
border-right-width: medium;
border-bottom-width: thick;
border-left-width: 12px; }

Figure 19-9. The border-width property

Border Color

Use one of the side-specific color properties or the border-color shorthand to
specify a color for the border. Values for border-color are provided in clockwise
(top, right, bottom, left) order and replicate as described for the margin shorthand
property earlier in this chapter.

border-top-color, border-right-color, border-bottom-color, border-left-color

Values: <color> | transparent | inherit

Initial values: ~ The value of the color property for the element

350 | (Chapter19: BasicBox Properties

Applies to: All elements

Inherited: No

border-color

Values: [<color> | transparent]{1,4} | inherit
Initial value: Not defined

Applies to: All elements

Inherited: No

Colors values may be specified in any of the methods outlined in Chapter 16 and
Appendix D. If no border color is declared, the default is the foreground color for
the element (i.e., the text color for text elements).

The border-color shorthand property is demonstrated in this example and in
Figure 19-10.

div {border: 6px solid;
border-color: #333 #666 #999 #CCC; }

Figure 19-10. The border-color property

CSS 2 added the transparent value that allows the background of the parent
element to show through the border, yet holds the width of the border as speci-
fied. This may be useful when creating rollover effects with CSS (this technique is
explained in Chapter 24), because the space where the border will appear is main-
tained when the mouse is not over the element.

Unfortunately, the transparent value is not supported in Internet
Explorer for Windows through Version 6. Support in IE 7 (in beta
' as of this writing) is possible, but not documented.

Combining Style, Width, and Color

There is no shortage of shortcuts for specifying border appearance. Once again,
we have rules that apply combinations of style, width, and color to one side at a
time and the border property that applies the values to all sides of the element.

Borders | 351

)
=
(-]
=
(]
2,
m
[

"
wv
w
-]
o
2.
~
©®
)
>

border-top, border-right, border-bottom, border-left

Values: [<border-style> || <border-width> || <border-color>] | inherit
Initial value: Not defined

Applies to: All elements

Inherited: No

border

Values: [<border-style> || <border-width> || <border-color>] | inherit
Initial value: Refer to individual properties

Applies to: All elements

Inherited: No

The side-specific and the shorthand border properties may include a border-style
value, a border-width value, and a border-color value. They do not need to be in
any particular order. You do not need to declare all three border qualities, but
keep in mind that if the border-style is not declared, there will be no border.

The border shorthand is somewhat different from the other shorthand properties
discussed so far in that it can be used to apply border properties to all four sides of
the element only. It does not provide a way to target certain borders and there is
no system of value replication.

The rules listed here are all valid examples of the border shortcut properties.

h1 {border-left: .5em solid blue; }
h1 {border-left: solid blue .5em; }
hi {border-left: solid .5em; }

p.example {border: 2px dotted #666633; }
p.example {border: dotted 2px; }

Padding

The padding area is an optional amount of space held between the content area of
an element and its border. If you are putting a border on an element, it is usually a
good idea to add a bit of padding as well to keep the border from bumping against
the content.

Now that you’ve seen margins and borders at work, the padding properties
should look familiar. There are side-specific properties for setting an amount of

352 | (hapter19: BasicBox Properties

Overriding Shorthand Properties

One of the principles of the cascade is that rules that appear later in a style sheet
override previous rules. You can use this principle to override shorthand settings
for one side of an element box.

In this example, all four sides of a box are given a solid red border, but then the
right edge is immediately overridden by a rule that sets the border to none (thus
removing it).
p.tip { border: solid red 3px;
border-right: none; }
In addition to borders, this trick can be used with any of the shorthand and
side-specific properties in this chapter.

padding on each side by name, and a shorthand padding property that applies
padding to combinations of four sides.

padding-top, padding-right, padding-bottom, padding-left

Values: <length> | <percentage> | inherit

Initial value: 0

Applies to: All elements

Inherited: No

padding

Values: [<length> | <percentage>]{1,4} | inherit
Initial value: o

Applies to: All elements

Inherited: No

The padding properties specify the width of the padding area. Values may be
provided in units of length or as percentages. Negative values are not permitted
for padding.

It is important to note that, as for margins, percentage values are always calcu-
lated based on the width of the parent element (even for top and bottom
padding). So if the width of the parent element should change, so will the
percentage padding values on all sides of the child element.

Padding | 353

a
gx‘
- X
o

w
a2~
o w
v o
>

Figure 19-11 shows examples of element padding.
h2#A {padding: 4px; background: #CCC;}
h2#B {padding: 20px; background: #CCC;}

<h2 id="A">Sed ultrices ligula at metus.</h2>
<h2 id="B">Sed ultrices ligula at metus.</h2>

Sed ultrices ligula at metus.

Sed ultrices ligula at metus.

Figure 19-11. Adding padding around elements

Background colors and images applied to an element will display in its padding
area (this sets it apart from margins, which are always transparent). So if you want
an element to appear in a colored box, with or without an explicit border,
padding is the way to put a little space between the edge of the box and the
content.

Padding does not collapse as margins do. The total padding between elements will
be the sum of the padding for the adjacent sides of the elements.

354 | (Chapter19: BasicBox Properties

20

Color and Backgrounds

Once upon a time in 1993, when Mosaic was the only widely distributed browser
in town, all web pages had black text on a gray background with blue hyperlinks
and purple visited hyperlinks (unless the user changed it in the browser prefer-
ences to something more jazzy—say, lime green on purple). Then in 1994, along
came Netscape, and HTML extensions for coloring text and backgrounds were
born. Even those limited controls came as a welcome relief to web designers and
users clamoring for color.

CSS ofters control over color and backgrounds that is worlds away from the
effects possible with HTML extensions alone. This chapter introduces the proper-
ties for adding color and backgrounds to elements listed here.

color background-position
background-color background-attachment
background-image background

background-repeat

Foreground Color

Say goodbye to forever. You can pitch the text, link, vlink, and
alink attributes for the body element while you’re at it.

The color property is used to describe the text (a.k.a. “foreground”) color of an
element. The foreground color is also used for an element’s border unless it is
specifically overridden with a border color rule.

355

color

Values: <color> | inherit
Initial value: Depends on user agent
Applies to: All elements

Inherited: Yes

Color Values

The value of the color property is any of the valid color types and system colors.
Here’s a refresher.

RGB colors can be specified in any of the following formats:

{color: #0000FF;}

{color: #00F;}

{color: rgb(0,0,255);}
{color: rgb(0%, 0%, 100%);}

The first example uses three two-digit hexadecimal RGB values (for a complete
explanation, see Appendix D). The second example uses a shorthand three-digit
syntax, which is converted to the six-digit form by replicating each digit (there-
fore, O0F is the same as 0000FF).

The last two formats use a functional notation specifying RGB values as a comma-
separated list of regular values (from 0 to 255) or percentage values (from 0 to
100%). Note that percentage values can use decimals, e.g., rgh(0%, 50.5%, 33.3%).

CSS 1 and 2 also recognize 16 valid color names: aqua, black, blue, fuchsia, gray,
green, lime, maroon, navy, olive, purple, red, silver, teal, white, and yellow. The
CSS 2.1 Recommendation adds orange, for a total of 17.

The color property is easy to use, as shown in these examples (Figure 20-1).
Unfortunately, in this book we are limited to the full spectrum of gray.

&
Y Note that this example and others in this chapter use inline styles
,‘e: p purely as a space-saving device, not as a recommended markup
a6 practice. It is preferable to put style information in an external or

embedded style sheet in the head of the document.

<p style="color: #000">Aenean congue bibendum ligula.</p>
<p style="color: #666">Aenean congue bibendum ligula.</p>
<p style="color: #CCC">Aenean congue bibendum ligula.</p>

Despite being fairly straightforward, there are still a few aspects of the foreground
color property and the way browsers interpret it to keep in mind.

* The color property is inherited. It makes sense that when you set a color to
the text of a paragraph, any emphasized or strong text within it would be that
color, too.

356 | (Chapter20: Colorand Backgrounds

Aenean congue bibendum ligula.

Aenean congue bibendum ligula

Figure 20-1. Changing the foreground color

* It is valid to add a foreground color to images. The content of the image
won’t be affected by it, of course, but the color will be used for the image
border if one is specified.

* If there is both a foreground color and a border color property applied to an
element, the border-color property always overrides color for the border
color.

* If you want to change the color of all the text in a document, apply the color
property to the body element. Color may be assigned globally to the html ele-
ment or by using the universal selector (*) as well, but this is less common
due to irregularities in inheritance and problems with form elements in some
browsers. Be aware, however, that on some older browsers, table elements do
not properly inherit properties from the body, so text within tables would go
back to the default text color. To be on the safe side, you can make a color
declaration for body and the relevant table elements, like this:

body, table, td, th { color: fuschia; } /* ok, maybe not fuschia */

* You can apply the color property to form input elements like buttons and
pull-down menus. Although it’s valid use of CSS, it is not supported consis-
tently across browsers. Make sure that your design is legible even if your cho-
sen form input colors do not display the way you intended.

Background Color

It’s been common practice to add a background color to a page using the bgcolor
attribute in the body element in HTML. With CSS, not only can you provide a
background color for a whole page, but for any element in the document, both
block-level and inline. Boxes of color anywhere you want them...and no tables
required!

Background color is declared with the (no surprise here) background-color
attribute.

background-color

Values: <color> | transparent | inherit

Initial Value: transparent

Background Color | 357

1=
o
[a)
=
(=}
—
(=]
s
=
o
w

pue 10[0) :55)

Applies to: All elements

Inherited: No

Background properties are applied to the “canvas” behind an element. With
regard to the box model, background colors fill the content area, the padding
area, and extend behind the border to its outer edge. This means that if the border
has gaps, the background color will show through.

Background properties are not inherited, but because the default value is
transparent, the parent’s background color shows through its child elements.
Figure 20-2 shows an example of the background-color property. Note how a little
padding added to the element gives the content a little breathing room inside the
resulting rectangular colored box.

p {padding: Spx;}

p.a {background-color: #333333;}

p.b {background-color: #666666;}

p.c {background-color: #CCCCCC;}

<p class="a">Fusce rhoncus facilisis sapien.</p>
<p class="b">Fusce rhoncus facilisis sapien.</p>

<p class="c">Fusce rhoncus facilisis sapien.</p>

Fusce rhoncus facilisis sapien.

Figure 20-2. The background-color property

Background Images

Once again, CSS beats HTML hands down in the background department (but
then, HTML was never intended to be fussing around with things like back-
ground images). With CSS, you’re not stuck with a repeating tile pattern, and you
can position a background image wherever you like. You can also apply a back-
ground image to any element in the document.

This section covers the CSS properties for adding and manipulating background
images, with the basic background-image property as a starting point and moving
on to more advanced background image behaviors such as controlling repeating
patterns, positioning the image within the element, and preventing the image
from scrolling off the page.

358 | (Chapter20: Colorand Backgrounds

Background Image Tips

When working with background images, keep these guidelines and tips in mind:

* Use an image that won’t interfere with the legibility of the text over it.

* As usual for the Web, it is important to keep the file size as small as possible
for background images, which may lag behind the display of the rest of the
page.

* Provide a background-color that matches the primary color of the image in
the background. If the background image fails to display, at least the overall
design of the page will be similar. This is particularly important if the text
color would be illegible against the default white (or light gray) browser
background.

background-image

Values: <uri> | none | inherit
Initial value: none

Applies to: All elements

Inherited: No

background-1image is the basic property for adding an image to the background (the
“canvas”) of an element. When applied to the body element, it functions just like
the background attribute, causing the image to tile horizontally and vertically until
it fills the browser window. Unlike the background attribute, the background-image
property can be applied to any element in the document, both block and inline.

Figure 20-3 shows background images applied to a whole page and to an indi-
vidual paragraph using these style rules.

body {background-image: url(stripes.gif);}
p.highlight {background-image: url(dots.gif);}

The background-image property is not inherited (in fact, none of the background
properties are). Instead, the pattern merely shows through the descendant
elements because their background colors are transparent by default. If tiling
images were inherited, the result would be a mess in which a new tiling pattern
would begin in the top-left corner of each new element on the page.

If a background-color property is also specified, the image is overlaid on top of the
color. Always provide a similar background color for an element when you add a
background image. That way, if the image fails to load, the text and foreground
elements maintain a readable contrast against the background.

Background Images | 359

1=
o
[a)
=
(=}
—
(=]
s
=
o
w

pue 10[0) :55)

Maecenas mperdiet turpis ac augue. Integer
malesuada mauris a odio valputate blandit. Etiam
accumsan.

Maecenas imperdiet turpis ac augue. Integer
malesuada mauris a odio vulputate blandit. Etiam
AcClMnsan.

Figure 20-3. The background-image property applied to an entire page and a single
paragraph

Background Tiling (Repeat)

Use the background-repeat property to prevent the background image from tiling
(repeating) or to make it tile in one direction only.

background-repeat

Values: repeat | repeat-x | repeat-y | no-repeat | inherit
Initial value: repeat

Applies to: All elements

Inherited: No

By default, background images tile both horizontally and vertically. You can turn
this behavior off and make the image appear just once by using the no-repeat
keyword value as shown in Figure 20-4.

div.ringo {background-image: url(starr.gif); background-repeat: no-repeat}

Phasgllus feugiat eros at mi. Integer leo tellus. hendrerit non, euismod non,

% Sfifiim in, sem. Fusce suscipit, ligula eget tempus dignissim, velit odio
abus, diam. vel nonummy ligula velit ac dolor. Curabitur quis tellus. Proin
consequat nunc ac condimentum lobortis, dud felis tincidunt ligula, nec
ullamcorper quam nunec eget orci. Ut nec metus ut nulla lacinia tincidunt. Integer

suscipit. Wullam iaculis lacus ac urna. Phasellus malesuada nisi vitae pede.

Figure 20-4. Turning off tiling with no-repeat

360 | Chapter20: Colorand Backgrounds

repeat-x allows the image to repeat only horizontally. Similarly, repeat-y allows
the image to repeat only on the vertical axis. Examples of both are shown in

Figure 20-5.

div.horiz {background-image: url(starr.gif); background-repeat: repeat-x;}
div.vert {background-image: url(starr.gif); background-repeat: repeat-y;}

faucibus, diam, el sonurmmuy lignla vel dolor /Curabiiur ellus. B
consequat, nunc ac condimentum lobortis, dui felis tincidunt ligula, nec
ullamcorper guam nunc eget orci. Ut nec metus ut nulla lacinia tincidunt.
Integer suscipit. Nullam iaculis lacus ac wna. Phasellus malesuada nisi vitae
pede.

s feugiat eros at mi. Integer leo tellus, hendrerit non, ewismod non,
in_ sem. Fusce suscipit, ligula eget tempus dignissim_ velit odio

Figure 20-5. Horizontal and vertical tiling

1=
o
"
=
(=}
—
(=]
s
=
(=3
[

pue 10[0) :55)

Notice that in the examples in Figure 20-4 and Figure 20-5, the tiling begins in the
top-left corner of the viewing area (in most cases, the browser window). But the
background image doesn’t necessarily need to start there, as discussed next.

Background Position

The background-position property specifies the position of the origin image in the
background of the element. You can think of the origin image as the first image
that is placed in the background. It’s also the starting point from which repeated
(tiling) images extend.

background-position

Values:

Initial value:

[[<percentage> | <length> | left | center | right]
[<percentage> |<length> | top | center | bottom]? } | [[left |
center | right] || [top | center | bottom]] | inherit

0% 0% /* same as left top */

Background Images | 361

Applies to: All elements

Inherited: No

The background-position property specifies the initial position of the origin image.
Measurements are relative to the top-left corner of the padding area for the
element (the default position). It is not placed behind the border, although if the
image is set to repeat, the repeating images will extend and show through the
border area when the border style has gaps.

Figure 20-6 shows a simple example of the background-position property, The
background-repeat property has been set to no-repeat to make the position of the
origin image clear.

body { background-image: url(bigstar.gif);

background-position: top center;
background-repeat: no-repeat; }

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Pellentesque
pharetra, urna in laoreet tincidunt, mune quam eleffend libero, a tincidunt
purus augue eu felis. Phasellus quis ante. Sed mi. Quisque nisi velit,
sagittis id. facilisis eu. pulvinar quis, tortor. Donec leo mauris, convallis
eget, sodales eget, dictum ac. ligula.

Figure 20-6. The background-position property

There are a number of methods for specifying the value of background-position.
The options after “Values” above may look like gobbledy-gook, but it boils down
to three general systems: keywords, lengths, and percentages.

Keyword positioning

The keyword values for positioning are left, right, top, bottom, and center. Each
value (except center) places the specified edge of the image all the way to the
respective edge of the element. For example, the left value pushes the left edge of
the image all the way to the left edge of the background area. The center value
places the center of the image in the center of the element. And so on.

Keywords are usually used in pairs, as in these examples:

{background-position: left top;}
{background-position: right center;}
{background-position: center bottom;}

Each of these positions is demonstrated in Figure 20-7.

The order of the keywords is not important according to the CSS 2 Recommenda-
tion, but Netscape 6 and related browsers require that the horizontal
measurement be provided first, so it’s good practice to provide them in hori-
zontal/vertical order just to be safe.

362 | (Chapter20: Colorand Backgrounds

Praesent neque.
Maecenas porttitor
turpis vel nibh.
Praesent orci elit,
vohitpat eget.
nommmy sed.
tincidunt m, mlla.

Praesent neque.
Maecenas porttitor
turpis vel nibh
Praesent orci elit,
vohitpat eget.
nommmmy sed,
tncidunt m, mulla.

Praesent neque.
Maecenas porttitor
turpis vel nibh.
Prassent orci elit,
volutpat eget,
nomunmy sed,
tncidunt m, mulla.

1=
o
[a)
=
(=}
—
(=]
s
=
o
w

pue 10[0) :55)

Figure 20-7. Positioning with keywords

If you only provide one keyword, the missing keyword is assumed to be center.
Therefore the second and third previous examples could also be written like this:

{background-position: right;}
{background-position: bottom;}

Length measurements

It is also possible to specify the position of the origin image in units of length.
When length units are provided, they are interpreted as the distance from the top-
left corner of the padding area to the top-left corner of the image. Length values
must be provided with the horizontal measurement first.

In this example, the top-left corner of the image will start 150 pixels from the left
edge and 15 pixels from the top of the intro paragraph, as shown in Figure 20-8.
p.intro { background-image: url(something.gif);
background-position: 150px 15px;
background-repeat: no-repeat;}

Fusce bibendum. Mam molestie dichum sem. WNulla
augue turpis, convallis at, pulvinar vitae, porttitor at,
erat. Vestibuhun ante ipsum primis in faucibus orci
hictus et ultrices posuere cubilia Curae; Maecenas
tristique pretium arcu.

Figure 20-8. Positioning with length measurements

It is valid CSS to specify negative length measurements, thus pulling the image out
of the visible background area of the element. Not all browsers currently support
negative background image values, so be sure to test on your targeted browsers.

Percentage values

Percentage values follow the same basic positioning model as keywords, but they
provide a more fine-tuned control over the image placement. Percentage values

Background Images | 363

are given in horizontal/vertical pairs, with a default value of 0% 0%, which places
the upper-left corner of the image in the upper-left corner of the element.

Each percentage value specified applies to both the background canvas area and
the image itself. A few simple examples should make this clear.

* The percentage values 50% 50% place the center of the image in the center of
the element.

* The percentage values 100% 100% place the bottom-right corner of the image
in the bottom-right corner of the element.

* The percentage values 10% 25% match a point that is 10% from the left and
25% from the top edge of the image with the same point in the element.

As for keywords, when only one percentage value is provided, the other is
assumed to be 50%.

It is fine to mix length and percentage values, which makes it easy to specify that
an image should be centered horizontally in the element but appear exactly 25
pixels from its top edge. CSS 2.1 also allows length and keywords to be combined,
but not all browsers support that combination as of this writing.

Positioning repeating images

In the previous examples, the background-repeat property was set to no-repeat for
the sake of clarity. The principles of positioning do not change when the image is
allowed to tile. When both properties are provided, the positioned origin image
functions as the starting point for the repeating pattern.

It is significant to note that the tile pattern extends in both directions from the
origin image. Therefore, if an image is positioned in the center of the element and
the repeat is set to horizontal, the tiles will repeat on both the left and right of the
centered image. Similarly, a vertical pattern extends both up and down from the
origin image. There is currently no way to make the repeat go in one direction
only in CSS 2.1, but that functionality may be added to a later specification.

In Figure 20-9, both the background-position and background-repeat properties
are used to guarantee that one image is always centered in the browser window.
body { background-image: url(something.gif);
background-position: center;
background-repeat: repeat-x; }

Background Attachment

The default behavior for a background image in CSS is to scroll along with the
document when the document scrolls, as though it is stuck to the element. This is
the also the way background images applied with the body element function.

CSS provides the background-attachment property that frees the background image
from the content and allows it to stay in a fixed position when the content of the
document scrolls. In effect, it disconnects the image from the content flow and
attaches it to the viewing area (typically a browser window).

364 | (Chapter20: Colorand Backgrounds

origin image

Praesent tincidunt aliquet urna. Vestibuhim rutmum, magpd at tempor
aliquet, pede mi imperdiet purus, vel consectetuer vkt tellus a quam.
Vivamus eleffend. Fusce bibendum. Nam molesge dictum sem. Nulla
augue turpis, convallis at, pulvinar vitas, portitor at, erat. Vestibuhun
ante ipsum primis in faucibus orci luctus stAltrices posuere cubilia

Curae; Maecenas tristique pratum arcu.

Aliquam diam purus, convallis|a. congue donsectetuer. feugiat vitae,

neque. In elit nunc, molestie quis_ =gestazin. vehicula nec, sem.
Curabitur suscipit ipsum a mi. Vestibuhin imperdiet. In hac habitasse
platea dictumst. Nunc commodo suscipit leo. Nam vitae ipsum eget elit
aliquam luctus. Aliquam pubvinar volutpat nibh. Integer convallis nulla sit
amet magna

Figure 20-9. Combining position and tiling

background-attachment

Values: scroll | fixed | inherit
Initial value: scroll

Applies to: All elements

Inherited: No

The default value is scroll, so the origin image will scroll if you do not specify the
background-attachment property. The other alternative is fixed, which fixes the
image in one place relative to the viewing area.

In this example, the background image is fixed, as demonstrated in Figure 20-10.
body { background-image: url(img/star.gif);
background-position: top;

background-repeat: no-repeat;
background-attachment: fixed; }

The other primary difference between a fixed origin image and a scrolling one is
that for fixed images, the values of background-position are relative to the top-left
corner of the viewing area, not the element itself.

This creates an interesting effect when a fixed background pattern is applied to an
element other than body. The image stays in the same place and the element’s
containing box reveals a rectangular slice of the background at a time. Unfortu-
nately, Internet Explorer for Windows Versions 6 and earlier do not support fixed
background images on elements other than body. Non-body support is promised in
Version 7, in beta as of this writing.

Background Images | 365

1=
o
[a)
=
(=}
—
(=]
s
=
o
w

pue 10[0) :55)

Praesent tincidunt aliquet wna. Vestibulum rutrum. magna at

tempor aliquet, pede mi imperdiet purus, vel consectetuer

velit tellus a quam Vivanus eleffend Fusce bibendum Wam

molestie dichim sem. MNulla augue turpis, convallis at, pubvinar

vitae, porttitor at, erat. Vestibuhun ante ipsum primis in

faucibus orei luctus et ultrices posuere cubilia Curae; i
Bl e e e =

velit tellus a quam Vivanus eleffend Fusce bibendum. Nam

molestie dictum sem. MNulla angue turpis, convallis at, pulvinar

vitas, porttitor at, erat. Vestibuhmm ante ipsum primis in

faucibus orci luctus et ultrices posuere cubilia Curae;

Maecenas tristique pretiom arcu. Aliquam diam purus,
convallis a, congue consectetuer, feugiat vitae, neque. In elit .

Figure 20-10. Preventing scrolling with the background-attachment property

S o
Y Eric Meyer demonstrates some interesting effects using fixed
.. . P .
W 4, Imagesas background; for several elements: on a page on his page
2 www.meyerweb.com/eric/cssledge/complexspiral/glassy.html. To see

the full effect, make sure you are using a standards-compliant
browser other than Internet Explorer.

Combining Background Properties

CSS provides a handy background shorthand property that allows all the back-
ground properties to be combined in one style rule, similar to the font shorthand
property (see Chapter 18).

background

Values: [<'background-color'>| |<'background-image'>| |
<"background-repeat'>| | <'background-attachment'>| |
<"background-position'>]|inherit

Applies to: All elements

Inherited: No

366 | Chapter20: Colorand Backgrounds

The background shorthand property takes a value from any of the background-
related properties. There are no required values, and the values may appear in any
order. The only restriction is that if two values are provided for background-
position they must appear together and with the horizontal value first, followed
immediately by vertical.

The following are valid examples of the background shorthand property:

body {background: url(superstar.gif) fixed top center no-repeat; }
div.intro {background: repeat-x url(topborder.gif) red; }
p {background: #336600; }

Watch for Accidental Overrides

Bear in mind that because background is a shorthand property, values that are
omitted will be reset to the default for those properties. That combined with the
fact that later rules in a style sheet override previous rules makes it easy to acci-
dentally override previously declared background properties with the defaults.
In this example, the background image dots.gif will not be applied to h3
elements, because by omitting a value for background-image, it essentially set
that value to none.

h1, h2, h3 { background: red url(dots.gif) repeat-x;}

h3 {background: blue; }
To override particular properties, be sure to use the specific background prop-
erty you intend to change (background-color would be appropriate for the h3 in
the example). When using the background (or any shorthand) property, pay
attention to related rules earlier in the style sheet, or be sure that every property
is specified.

Background Images | 367

1=
o
[a)
=
(=}
—
(=]
s
=
o
w

pue 10[0) :55)

21

Floating and Positioning

CSS isn’t limited to just “prettying up” elements in the flow of the document. You
can also use it to achieve basic page layout such as multiple columns, text wrap,
and even positioning with pixel precision. This chapter introduces floating and
positioning, the CSS methods for arranging elements on the page.

It should be noted that this chapter covers the CSS 2.1 specification for layout-
related properties as they are intended to work. There are some notorious browser
bugs that make implementing the tools illustrated here challenging. Browser
issues will be noted here, but the details about specific browser problems and how
to compensate for them are discussed further in Chapter 25.

This chapter covers these CSS 2.1 properties for controlling the positioning of
elements.

float bottom overflow
clear top clip
position left visibility
bottom right z-index

Normal Flow

Before jumping into methods for positioning elements, it is useful to have an
understanding of what is meant by the “normal flow” of a document according to
the CSS layout model. In the normal flow, text elements are laid out from top to
bottom, and from left to right in left-to-right reading languages (or from right to
left in right-to-left reading languages). This is the default behavior of the web
browser.

In the normal flow, block-level elements stack on top of one another and inline
elements fill the available space. When the browsing window is resized, the block
elements expand or contract to the new width, and the inline content reflows to

368

fit. Objects in the normal flow influence the position of the surrounding content
(sibling elements).

In CSS positioning, blocks are defined as being either in the normal flow or
removed from the normal flow. Floating and positioning elements changes their
relationship to the normal flow, as discussed in the following sections.

Floating

If you’ve ever aligned an image to the right or left margin and allowed text to wrap
around it, then you understand the concept behind floats in CSS. In fact, that is
precisely the functionality that the float property was created to provide. The
primary difference is that you can float any element with CSS (paragraphs, lists,
divs, and so on), not just images.” It is important to note that floating is not a
positioning scheme; it is a unique feature with some interesting behaviors to be
aware of, as discussed later in this section.

Floats are useful for far more than just occasionally pushing an image off to one
side. In fact, they are one of the primary tools used in modern CSS-based web
design. Floats are used to create multicolumn layouts, navigation toolbars from
unordered lists, table-like alignment without tables, and more. See Chapter 24 for
examples.

To make an element float to the left or right and allow the following text to wrap
around it, apply the float property to the element.

float

Values: left | right | none | inherit
Initial value: none

Applies to: All elements

Inherited: No

In this simple example, the float property is used to float an image to the right
(Figure 21-1).

img {float: right; margin: 20px;}

<p>Aliquam pulvinar volutpat...</p>

As you can see in Figure 21-1, the float property applied to the img element effec-
tively replaces the deprecated align attribute. In this image example, the margin
does the work of the deprecated hspace and vspace attributes. The advantage of
margin is that you can apply different amounts of margin space on each side of the

* Some browsers allow table elements to be floated with the align attribute as well.

Floating | 369

©
o
Z.
=
5
2.
5

a

n
“n
bl
I
o
1
-3
S

a
~

Aliquam pulvinar volutpat nibh Integer convallis

mlla sit amet magna Maecenas imperdiet turpis v
ac augue. Integer malesuada mauris a odio

vulputate blandit. Etiam accumsan. Proin eros A
massa. condimentum sit amet, semper vitae,

pubvinar non, augue. Morbi sed sapien ac turpis

facilisis egestas. Aenean id nulla sed nibh accumsan laoreet. Nulla
interdum est nec erat. Pellentesque tempor. Pellentesque sit amet
pede. Nullam scelerisque mbh sit amet urna.

Figure 21-1. Floating an image to the right

image (hspace and vspace apply the same amount of space on opposite sides).
Padding may also be used to add space around the contents of a floated element.

Although the behavior in this example should be familiar to those who have
worked with HTML, it is quite interesting when considered in terms of the CSS
visual layout model. Floated elements are removed from the normal flow of the
document, yet they still have an effect on other elements in the layout—
surrounding content is reflowed to stay out of their way. To use one popular
analogy, they are like islands in a stream—they are out of the normal flow, but the
stream has to flow around them. Floated elements are unique in this regard,
because elements removed from the flow normally cease to have influence on
other elements (this will be discussed in the upcoming positioning sections).

Floating Basics

The float property is not limited to images; it can be applied to any element. In
this slightly more ambitious example shown in Figure 21-2, the float property is
applied to a selection of text (known in CSS as an “inline non-replaced element”).
Note that the dotted lines are a device for pointing out the parts of the element
boxes in this figure and would not actually appear in the browser.

span.note {
float: right;
width: 200px;
margin: 20px;
background-color: #999;
font-weight: bold; }

p {border: solid 2px #666; padding: 30px;}
<p>I'm going to go over here for a little while. Don't
mind me. Lorem ipsum dolor sit amet, consectetuer

The results reveal some basic behaviors of element floating:

* All floated elements (even inline elements, as shown in the example) take on
block behaviors. It is equivalent to setting display: block (although it is not
necessary to do so).

370 | Chapter21: Floating and Positioning

margin outer edge

Lorem ipsum dolor sit amet /
consectetuer adipiscing elit I'm going to go over here for
Pellentesque pharetra, urna a little while. Don't mind me.
mn laoreet tincidunt. nunc

quam eleifend libero, a tincidunt purus augue eu felis. Phasellus quis

ante. Sed mi Quisque nisi velit, sagittis id, facilisis en, pubmnar quis,
tortor. Donec leo maunis, convallis eget, sodales eget. dictum ac,

ligula. Praesent neque

Figure 21-2. Floating an inline text element

* When floating a non-replaced (i.e., text) element, it is necessary to specify the
width for the element. Not doing so can result in the content area box col-
lapsing to its narrowest possible width.

* The floated element stays within the content area of its containing block (the
nearest block-level ancestor element). It does not cross into the padding.

* Margins are maintained on all sides of the floated element. In other words,
the entire element box (from outer edge to outer edge) is floated, and the sur-
rounding content flows around it.

* Unlike normal elements, margins around floated elements never collapse
(even vertically).

The elements following the floated element exhibit unusual behavior as well. In
the following example and Figure 21-3, the floated graphic is taller than its parent
paragraph element and hangs down over the following paragraph. The second
paragraph (named “boxed”) has been given a background and border to show the
boundaries of its element box compared to its contents.

img { float: left; }
p.boxed { background-color: #999; border: solid 2px #333; }

orem ipsum dolor sit amet, consectetuer adipiscing elit.

Figure 21-3. Wrapped element behavior

The border and background position show that the position of the second para-
graph’s element box is unchanged by the presence of the floated image element.
Only its content moves over to make way for the floated image. Notice also that
the floated image overwrites (appears “in front of”) the background and border

Floating | 371

huluoiysod

n
“n
bl
I
o
1
-3
S

a
~

for the following paragraph. This is the prescribed behavior for floated elements.
Other overwriting behaviors are discussed in the “Negative Margins and Overlap”
section ahead.

Floating Behavior

The CSS 2.1 specification provides eight precise rules restricting the positioning of
floated objects, which are summarized here. If you need the details, go right to the
source, at www.w3.0rg/TR/CSS21/visuren.html#float-position. Eric Meyer
provides a useful translation and illustration of the rules in his book Cascading
Style Sheets: The Definitive Guide (O’Reilly).

In addition to requiring that floated elements stay within the inner edge (or
content area) of their containing blocks, there are a number of rules designed to
prevent the overlapping of floated objects.

/—— Browsers (even current standards-conformant browsers) may be
‘@@ inconsistent in the way they handle floated objects due to a certain
amount of leeway in the specification and because they follow his-

torical and expected practice. Be sure to test.

Floated elements in close proximity in the source document are not permitted to
overwrite one another. Instead, the rules prescribe:

* If elements are floated in the same direction, each subsequent floated object
should move in that direction until it reaches the inner edge of the contain-
ing block or until it bumps into another floated element. This rule results in
multiple floated elements accumulating against the targeted edge.

* If there is not enough room for floated elements to appear side by side, then
the second floated object should move down until there is enough room for it
to display without overlapping the first object.

The effects of these rules are demonstrated in Figure 21-4.

consecutive objects floated in the objects that exceed the width of
same direction the containing block, floated in
opposite directions

Figure 21-4. Floated objects accumulate or bump down instead of overlapping

372 | (hapter21: Floating and Positioning

Other rules restrict how high the top edge of a floated element may be positioned.

* The top of a floated element must stay within the top inner edge of its parent
element.

* The top of a floated element that is not contained in a block element may not
be higher than a preceding block-level element. The float is essentially
“blocked” from floating above it.

* The top of a floated element may not start higher than a floated element that
precedes it in the document source.

e If a floated element starts in the middle of the text flow of an element, it does
not float to the top of that element, but rather starts at the top of the line box
for the surrounding text (Figure 21-5).

Floated objects will not rise higher than Floated objects will not rise higher than
the top of their parent elements and will the line box from which they originate.
not go above preceding block elements.

Figure 21-5. Top edge restrictions on floated elements

Floating elements are also not permitted to stick out of the edge of their
containing elements, unless they are too wide to fit (like a wide image). This
prevents sequential floated elements from accumulating against an edge and
growing wider than the containing block. When the stack grows too wide, the
element that doesn’t fit gets bumped down so that it clears the floated elements
above.

The final two rules state, given all of the established restrictions, floated objects
should be put as far left or right (as specified) and as far upward as possible until
they reach a defined constraint. A higher position is preferable to one that is
farther left or right. I like to picture floated objects on a page jockeying for posi-
tion, pushing upward and outward until they bump into the edge of the
containing block, another floated element, or an imposed ceiling from a previous
block element or the like.

Negative Margins and Overlap

The two big rules for the placement of floated objects are that they should never
go beyond the content area of their containing block and they should not overlap

Floating | 373

huluoiysod

n
“n
bl
I
o
1
-3
S

a
~

other elements. These guidelines seemingly get tossed out the window when you
apply negative margins to a floated element, as shown in this example and in
Figure 21-6.

img { float: left; margin: -10px; }

Lorem ipsum dolor sit amet. consectetuer adipiscing elit.

i‘e]lentesque pharetra, wna in laoreet tincidunt, nunc
quam eleffend hbero, a tincidunt purus augue eu felis. Phasellus
quis ante. Sed mi Quisque nist velit, sagittis id. facilisis eu,
pubvinar quis, tortor. Donec leo mauris. convallis eget, sodales
eget, dictum ac, ligula. Praesent neque.

Figure 21-6. A floated element with negative margins

The negative margin setting pulls the content area of the floated element out of its
positioned element box, allowing the content to fall outside the confines of the
containing block. There are no rules preventing elements with negative top
margins from overwriting preceding content that has already been displayed, so
negative vertical margins are best avoided.

Negative margins may also cause the flowed content to overlap the floated object.
In these instances, the CSS 2.1 specification prescribes different rules for inline
boxes and block boxes.

* When an inline box overlaps with a float, the entire element box (including
the content, background, and border) overwrites or appears “in front of” the
floated element. Be prepared that if you have a floated element with negative
margins and you apply backgrounds or borders to inline elements in the
wrapped text, those inline boxes may obscure the floated element.

* When block boxes overlap a float, the content of that box appears “in front
of” the floated element, but the background and border of the element are
overwritten by (appear “behind”) the float. This is consistent with the exam-
ple in Figure 21-3, but allows the text to go in front of the float in the
instance of negative margins.

Clearing

Wrapping can be a nice, space-saving layout effect, but it is not always appro-
priate. There are certainly cases in which you want the area on the side of the
floated element to be held clear and the following element to start at its normal
position in the containing block. For those instances, use the clear property to
prevent an element from appearing next to a floated element.

clear

Values: left | right | both | none | inherit

374 | (hapter21: Floating and Positioning

Initial value: none
Applies to: Block-level elements

Inherited: No

The clear property may be applied only to block elements. It is best explained
with a simple example. The left value starts the element below any elements that
have been floated to the left edge of the containing block. The rule in this example
ensures that all first-level headings in the document start below left-floated
elements, as shown in Figure 21-7.

img {float: left; margin-right: 10px; }

hi {clear: left; top-margin: 2em;}

Praesent tincidunt aliquet urna. Vestibulum

— "h._—g,. rutrum, magna at tempor aliquet.
.'.Tv'.' ;.||_

)

Vivamus eleifend.

Nam molestie dictum sem. Nulla augue wrpis. convallis at.
pulvinar vitae, porttitor at. erat.

Figure 21-7. Clearing a left-floated element

As you might guess, the right value works in a similar manner and prevents an
element from appearing next to an element that has been floated to the right. The
value both moves the element down until it is clear of floated elements on both
sides. User agents are instructed by CSS 2.1 to add an amount of clearance space
above the margins of block elements until the top edge of the content fits below
the float.

Notice in Figure 21-7, that although there is a top margin applied to the h1
element, the text is touching the bottom of the floated image. That is a result of
collapsing vertical margins on the h1 block element. If you want to be sure that
there is space below a floated element, add a bottom margin to the float itself,
because margins on floated elements never collapse. This remains true when a
floated element is set to clear other floated elements on the same side of the page.
In that case, adjacent margins of the floated elements add up and don’t collapse.

Positioning Basics

It is obvious by how readily web designers co-opted HTML tables that there was a
need for page-like layout on web pages. Cascading Style Sheets provides several

Positioning Basics | 375

- Q
o wn
@, o
= I
o 9
5 2
2z
a 3
~

methods for positioning elements on the page relative to where they would
normally appear in the document flow.

If you thought tables were tricky to manage, get ready for CSS positioning! While
the positioning properties are fairly simple at face value, inconsistent and buggy
browser implementation can make it challenging to achieve the results you're after
on all browsers. If fact, positioning can be complicated even when the CSS
Recommendation is followed to the letter. It’s a recipe for frustration unless you
get to know how positioning should behave and then know which browsers are
likely to give you trouble (some notorious browser bugs are listed in Chapter 25).
This section introduces the positioning-related properties as they are defined in
CSS 2.1 as well as some key concepts.

Types of Positioning

To get the ball rolling, we’ll look at the various options for positioning elements
and how they differ. There are four types of positioning, specified by the position

property.

position

Values: static | relative | absolute | fixed | inherit
Initial value: static

Applies to: All elements

Inherited: No

The position property identifies that an element is to be positioned and selects
one of four positioning methods (each will be discussed in detail in upcoming
sections in this chapter):

static
This is the normal positioning scheme in which element boxes are rendered
in order as they appear in the document flow.

relative
Relative positioning moves the element box, but its original space in the
document flow is preserved.

absolute
Absolutely positioned objects are completely removed from the document
flow and are positioned relative to their containing block (discussed in the
next section). Because they are removed from the document flow, they no
longer influence the layout of surrounding elements, and the space they once
occupied is closed up. Absolutely positioned elements always take on block
behaviors.

376 | Chapter21: Floating and Positioning

fixed
Fixed positioning is like absolute positioning (the element is removed from
the document flow), but instead of a containing element, it is positioned rela-
tive to the viewport (in most cases, the browser window).

Containing Blocks

The CSS 2.1 Recommendation states that “The position and size of an element’s
box(es) are sometimes calculated relative to a certain rectangle, called the
containing block of the element.” It is critical to have an awareness of the
containing block for the element you want to position.

Unfortunately, it’s not entirely straightforward and depends on the context of the
element. CSS 2.1 lays out a number of rules for determining the containing block.

* The containing block created by the root element (html) is called the initial
containing block. The rectangle of the initial containing block fills the dimen-
sions of the viewport. The initial containing block is used if there is no other
containing block present. Note that some browsers base the initial contain-
ing block on the body element; the net result is the same in that it fills the
browser window.

e For elements (other than the root) that are set to static or relative, the con-
taining block is the content edge of the nearest block-level, table cell, or inline-
block ancestor.

* For absolutely placed elements, the containing block is the nearest ancestor
element that has a position other than static. In other words, the ancestor
element must be set to relative, absolute, or fixed to act as a containing
block for its children. Once an ancestor element is established as the contain-
ing block, its boundaries differ based on whether it is a block-level or inline
element.

* For block-level elements, the containing block extends to the element’s pad-
ding edge (just inside the border).

* For inline-elements, the containing block is set to the content edge. Its bound-
aries are calculated based on the direction of the text. For left-to-right lan-
guages, it begins in the top-left corner of the first line generated by the
element and ends in the bottom-right corner of the last line generated by the
element. For right-to-left languages, it goes from top-left corner of the first
line to bottom-left corner of the last line.

* If there are no ancestor elements, then the initial containing block is used.

Specifying Position

Once the positioning value has been established, the actual positioning is done
with the four offset properties.

top, right, bottom, left

Values: <length> | <percentage> | auto | inherit

Positioning Basics | 377

Nsod

E3
E
5

a

Initial value: auto

Applies to: Positioned elements (where position value is relative, absolute, or
fixed)
Inherited: No

The values provided for each of the offset properties defines the distance that the
element should be offset from that edge. For instance, the value of top defines the
distance from the outer edge of the positioned element to the top edge of its
containing block. Positive values move the element down (toward the center of
the block); negative values move the element up (and out of the containing block).
Similarly, the value provided for the left property specifies a distance from the
left edge of the containing block to the left outer edge of the positioned element.
Again, positive values push the element in toward the center of the containing
block while negative values move the box outward.

&
" CSS 2 positioned elements from their content edges, not their mar-
. gn edges, but this was changed in 2.1.

2

This rather verbose explanation should be made clearer with a few examples of
absolutely positioned elements. In this example, the positioned element is placed
in the bottom-left corner of the containing block using percentage values
(Figure 21-8).

div {position: absolute; height: 120px; width: 300px; border: 1px solid

#000; }

img {position: absolute; top: 100%; left: 0%;}

100% from the top, 0% from the left

Figure 21-8. Positioning with percentage values

In this example, pixel lengths are provided to place the positioned element at a
particular spot in the containing element (Figure 21-9).

div.a {position: absolute; height: 120px; width: 300px; border: 1px solid
#000; background-color:#CCC}

div.b {position: absolute; top: 20px; right: 30px; bottom: 40px; left: 50px;
border: 1px solid #000; background-color:#666}

<div class="a">

378 | (Chapter21: Floating and Positioning

<div class="b"></div>
</div>

div.a (300 x 120 pixels)

‘ top: 20px

left: 50px . right:
div.b 30px

bottom: 40px

- Q
o wn
@, o
= I
o 9

i)
2.2
a 3
~

A

Figure 21-9. Positioning with pixel values

Notice that it is possible to set the dimensions of an element indirectly by defining
the positions of its four sides relative to the containing block. The space that is
leftover becomes the width and height of the element. If the positioned element
also has specified width and height properties that conflict with that space, a set of
CSS rules kicks in for settling the difference (these are addressed in the upcoming
“Calculating Position” section).

> Setting the width and height of elements is covered in Chapter 19.

¢y

This final example demonstrates that when negative values are provided for offset
properties, the element can break out of the confines of the containing box
(Figure 21-10).
div.a {position: absolute; height: 120px; width: 300px; border: 1px solid
#000; background-color:#CCC}

div.b {position: absolute; top: -20px; right: -30px; bottom: 40px; left:
50px; border: 1px solid #000; background-color:#666}

<div class="a">
<div class="b"></div>
</div>

Handling Overflow

When an element is set to a size that is too small to contain all of its contents, it is
possible to specify what to do with the content that doesn’t fit using the overflow

property.

Positioning Basics | 379

div.a (300 x 120 pixels)

1 S

div.b

left: 50px

-

bottom: 40px right: -30px

Figure 21-10. Negative offset values

overflow

Values: visible | hidden | scroll | auto | inherit
Initial value: visible

Applies to: Block-level and replaced elements

Inherited: No

There are four values for the overflow property:

visible
The default value is visible, which allows the content to display outside its
element box.

hidden
When overflow is set to hidden, the content that does not fit in the element
box gets clipped and does not appear beyond its edges.

scroll
When scroll is specified, scrollbars (or an alternate scrolling mechanism) are
added to the element box to allow scrolling through the content while
keeping the content visible in the box area only. Be aware that the scroll
value causes scrollbars to be rendered even if the content fits comfortably in
the content box.

auto
The auto value allows the user agent to decide how to handle overflow. In
most cases, scrollbars are added only when the content doesn’t fit and they
are needed.

Figure 21-11 shows examples of each of the overflow values as applied to an
element that is 150 pixels square. The gray background color makes the edges of
the content area clear.

380 | Chapter2l: Floating and Positioning

overflow: visible overflow: hidden overflow: scroll

Nulla facilisi. Sed ultrices Nulla facilisi Sed ultrices Nulla facilisi. Sed -
ligula at metus. Sed ligula at metus. Sed ultrices ligula at metus.
accumsan justo accumsan justo Sed accumsan justo
nonummy eros. Aliquam nonummy eros. Aliquam nonumIMY eros.

erat volutpat. Sed lictus erat volutpat. Sed luctus Aliquam erat volatpat.
lobortis urna. Aenean lobortis urna. Aenean Sed hictus lobortis
congue bibendum ligula. congue bibendum ligula. M
Proin vitae massa. PO

Quisque vitae ipsum.

overflow: auto overflow: auto
(short text) (long text)
Nulla facilisi. Sed ultrices Nulla facilisi. Sed &
ligula at metus. Sed ultrices ligula at metus.
accumsan justo Sed accumsan justo
NOMBETHNY Er0s. AJIq'LIﬂ.TIl NOMUIHNY Eros.
erat volutpat. Aliquam erat volutpat.

Sed luctus lobortis

urna. Aenean congue
R T

Figure 21-11. Overflow values

Clipping Areas

When the overflow of an absolutely positioned element box is set to hidden,
scroll, or auto, the CSS specification allows you to restrict which part of the
content is visible by creating a clipping area for the element. A clipping area is a
rectangular area—like the mat in a picture frame—that lets the content show
through. Other shapes may be included in future CSS versions. Specify the size
and position of the clipping area with the clip property.

dip

Values: rect(top, right, bottom, left) | auto | inherit
Initial value: auto

Applies to: Absolutely positioned elements

Inherited: No

The default auto property sets the edge of the clipping path at the content edge for
the given side. Values for clip must be provided in length values (percentage
values are not permitted).

It is important to note that the top, right, bottom, and left values for the clip
property are measured from the top-left corner of the element, not the sides as is

Positioning Basics | 381

Nsod

E3
E
5

a

the case for the offset properties. For languages that read right to left, distances
are measured from the top-left corner.

This is a simple example of a clipping area applied to an element (Figure 21-12).

div.a {position: absolute; height: 150px; width: 150px; background-
color:#CCC;
clip: rect(10px, 130px, 130px, 10px);}

PLLEES] el MDD, 300 LLLLE L
mla at metus. Sed
:cumsan justo
ymmmmy eros. Aliqu
‘at volatpat. Sed e
borttis urna. Aenean

Figure 21-12. A clipping area

Visibility

The visibility property is used to make an entire element invisible.
visibility

Values: visible | hidden | collapse | inherit

Initial value: visible

Applies to: All elements

Inherited: Yes

Obviously, if the value of visibility is visible (the default), the element will be
visible. When it is set to hidden, the element is invisible, but it maintains its spot
in the document flow; you just can’t see it. This makes it distinctly different from
display: none, which removes the element from of the document flow completely
and closes up the space it once occupied.

In this example, an inline text element is hidden (Figure 21-13). It is easy to see
that the space for its element box is preserved. Notice also that all aspects of the
element (including its content, background, and border) are invisible as well.

span.a {background-color:#CCCCCC; border: 1px solid #000; visibility:
visible;}
span.b {background-color:#CCCCCC; border: 1px solid #000; visibility:
hidden;}

382 | (hapter21: Floating and Positioning

<p>Aliquam pulvinar volutpat nibh. Integer convallis nulla sit amet magna.
 Maecenas imperdiet turpis ac augue. Integer malesuada
mauris a odio vulputate blandit. Etiam accumsan. Proin eros massa,
condimentum sit amet, semper vitae, pulvinar non, augue. </p>

<p>Aliquam pulvinar volutpat nibh. Integer convallis nulla sit amet magna.
 Maecenas imperdiet turpis ac augue. Integer malesuada
mauris a odio vulputate blandit. Etiam accumsan. Proin eros massa,
condimentum sit amet, semper vitae, pulvinar non, augue. </p>

Aliquam pulvinar volutpat nibh. Integer convallis mulla sit amet
magna. |2\-Iaecenas imperdiet turpis ac augue. Integer malesuada
mairis a odio valputate blandit. Etiam accumsan. [Proin eros
massa, condimentium sit amet, semper vitae, pulvinar non, augue.

Aliquam pulvinar volutpat nibh. Integer comvallis malla sit amet
magna.

Proin eros
massa. condimentum sit amet, semper vitae, pubvinar non, augue.

Figure 21-13. Setting visibility to hidden

The collapse property value is recommended for use with CSS table row and
column elements. Applying the collapse value to a non-table element may make it
hidden, but it is best avoided. Internet Explorer 6 for Windows and earlier does
not support collapse (support has not been confirmed in Version 7, which is in
beta as of this writing).

Stacking Order

One of the side effects of positioning is that elements can overlap each other. By
default, elements stack in the order in which they appear in the document, with
later elements rendering on top of preceding elements in the source. You can
change the stacking order for an element by setting the z-index property. You can
picture the direction of the z-axis as a line that runs from your nose through this
page and out the other side.

z-index

Values: <integer> | auto | inherit
Initial value: auto

Applies to: Positioned elements

Positioning Basics | 383

Nsod

E3
E
5

a

Inherited: No

The value of the z-index is any integer (whole number), positive or negative. The
higher the number, the higher the element will appear in the stack. Lower
numbers and negative values move the element lower in the stack.

Consider this source and style sheet that changes the stacking order for three posi-
tioned paragraphs (Figure 21-14). Although Paragraph 1 appears first in the
source and would normally be overlapped by the subsequent positioned elements,
it has been set to render on top by assigning it a higher z-index value.

p {position: absolute; padding: 5px; color: #000;}

#p1l {top: 70px; left: 140px; width: 300px; z-index:19; background-color:
#666; }

#p2 {top: 30px; left: 30px; width: 300px; z-index: 1; background-color:
#999;}

span.b {position: absolute; top: 96px; z-index: 72; font-weight: bold;
background: #999;}

<p id="p1">PARAGRAPH 1: Z-INDEX=19
Integer convallis nulla sit amet
magna. Maecenas imperdiet turpis ac augue. Integer malesuada mauris a odio
vulputate blandit.</p>

<p id="p2">PARAGRAPH 2: Z-INDEX=1
Z-INDEX=72 Integer
convallis nulla sit amet magna. Maecenas imperdiet turpis ac augue.
Integer malesuada mauris a odio vulputate blandit.</p>

PARAGRAPH 2: Z-INDEX=1

Figure 21-14. Adjusting stacking order with z-index

There are a few other points of interest in this example. First, notice that the z-
index values don’t need to be consecutive. If you want to guarantee that an
element is always on top, you can give it an extremely high z-index value that isn’t
likely to be topped.

It is also important to note that each positioned element creates its own z-index
context. Although the strong text contained in Paragraph 2 has a very high z-
index of 72, it still appears behind Paragraph 1 with its z-index of 19. That’s

384 | (Chapter21: Floating and Positioning

because the z-index settings within each element are relative only to the other
descendants of that element. In effect, the strong element in Paragraph 2 shares
the z-index value of its parent in relation to its parent’s siblings.

Absolute Positioning

There have been examples of absolute positioning throughout this chapter, but
this section examines this popular method of positioning in more detail.

An absolutely positioned element has these basic characteristics:

* Itis declared using {position: absolute;}.

* It is positioned relative to the edges of its containing block using one or more
of the offset properties (top, right, bottom, left). Properties that are not spec-
ified are set to auto (the default). The offset values apply to the outer edge of
the element box (including the margin value, if there is one).

* It is completely removed from the document flow. The space it would have
occupied in the normal flow is closed up and it no longer has an affect on
other elements (for instance, text won’t wrap around it).

- Q
o wn
@, o
= I
o 9

i)
2.2
a 3
~

These points are demonstrated in this simple example of an absolutely positioned
list element (Figure 21-15).

div {position: absolute; background-color: #999; width: 440px;}
ul {position: absolute; left: 60px; top: 30px; background-color: #CCC;
margin: Opx;}

<div>
<p>Phasellus feugiat eros at mi. Integer leo tellus, hendrerit non,
euismod non, condimentum in, sem. </p>

Lorem ipsum dolor</1i>
<1i>Sit amet, consectetuer
Adipiscing elit</1i>
<1i>Vel nonummy ligula</1li>
Tempus dignissim</1i>

<p>Fusce suscipit, ligula eget tempus ...</p>
</div>

Phasellus fenmiat eras at mi Tnteger lea tellus. hendrerit non. ewsmod
pacd * Lotrem ipswmn dolor

* Sit amet, consectetuer
Fuscesus * Adipiscing elit ssim, velit odio faucibus diam, vel
nonummy + Vel nonummy lignla ¢ qmstgﬁns_ Proin ﬁOﬂSﬁqu&L
mncaceq * Tempus dignissim tincidunt ligula. nec ullameorper

quain nunc eget orci Ut nec metas ut nulla lacinia tincidunt.

Figure 21-15. Absolute positioning

Absolute Positioning | 385

In all of the previous examples, elements have been positioned using length
measurements for the offset property values. The auto value has some interesting
behavior that bears attention. When any of the offset properties other than bottom
are set to auto, the edge of the element box is positioned in its “static” position,
that is, where it would have been in the normal document flow. In Figure 21-16,
the dollar sign slug will always stay next to its line of origin, because its top offset
property is set to auto.

p {position: relative; margin-right: 10px; left: 10px;"}
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Pellentesque

<span style="position: absolute; top: auto; left: -1em; background-color:
#CCC; ">$pharetra, urna in laoreet tincidunt,...</p>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

5 Pellentesque pharetra urna in laoreet tincidunt, Proin consequat,
nunc ac condimentum lobortis, dha felis tincidunt ligula, nec
ullamcorper quam nunc eget orci. Ut nec metus ut malla lacinia
tincidunt

Figure 21-16. Setting offset properties to auto

Notice that the top of the positioned element is in the vertical position that it
would have had if the element were still in the line. Only its horizontal position
has been changed, as specified. Notice also that the space that the element occu-
pied on the line has been closed up because it has been absolutely positioned. If
the left offset property had been set to auto as well, the left edge of the element
would be placed in the spot at which the content originated, but it would overlap
with the following text (because its space is closed up).

This can be a useful method for adding margin notes that stay with their respec-
tive text. Just be sure that there are few or no constraints on the other positioning
and sizing properties that might override the auto placement.

Absolute Positioning and Containing Blocks

The first step to absolutely positioning an element is to identify or create its
containing block. The containing block is critical to positioning because all abso-
lute measurements are based on its sides. Containing blocks were discussed in
more detail earlier in this chapter, but it’s worth a brief refresher.

For an ancestor element to be a containing block, it must have a position value of
absolute, relative, or fixed (in other words, it must not be static, either declared
or by default). If no ancestor element qualifies as a containing block, then the
initial containing block is used (html, body, or the viewport, as determined by the
user agent).

In the example in Figure 21-15, the containing block for the list is a div that has
its position set to relative (but its position has not been altered). It is common
practice to declare the position of an ancestor element as relative explicitly and

386 | (Chapter2l: Floating and Positioning

leave it in place, or to insert a new positioned element (like a div) to set up the
containing block for absolutely positioned elements.

&

To force the browser to use the body element as the initial contain-
ing block, add this style rule:

body {position: relative;}

Another important thing to note is that by setting the position of the unordered
list element (ul) to absolute, it thereby becomes the containing block for its
descendant elements. If an 1i element were to be absolutely positioned, its offset
properties become relative to the sides of the ul, as shown here and in
Figure 21-17.

div {position: absolute; background-color: #999; width: 440px;}

ul {position: absolute; left: 60px; top: 30px; background-color: #CCC;
margin: Opx;}

li#callout {position: absolute; left: 60px; top: 30px; background-color:
#CCC; margin: opx;}

<div>
<p>Phasellus feugiat eros at mi. Integer leo tellus, hendrerit non,
euismod non, condimentum in, sem. </p>

First list item
<li id="callout">Second list item</1i>
Third list item</1i>
Fourth list item</1li>
Fifth list item</1i>

<p>Fusce suscipit, ligula eget ...<p>
</div>

Phascjus&nm?mhaim Tnteger leo tellus, hendrerit non, eunismod
e * barsthistatem
e .

* Second lstitem | | o "
Fuscesus * Foworusnenys dignissim, velit odio faucibus diam, vel

nonummy ¢ Fifth list item ‘urabitur quis tellus. Proin consequat,
mine ac condimentum lobortis, dui felis tincidunt ligula. nec ullamcorper
quam nunc eget orci. Ut mmmmmm

Figure 21-17. The absolutely positioned list becomes the containing block for the positioned
list item

Calculating Position

While specifying a position using the offset properties is a fairly straightforward
affair, things can get complicated when offset measurements are combined with
the margins and content width of the element and the width constraints of the

Absolute Positioning | 387

huluoiysod

n
“n
bl
I
o
1
-3
S
a
~

containing block. In fact, the CSS 2.1 specification provides a dizzyingly detailed
list of rules and constraints for dealing with conflicting and unspecified values.

In the interest of brevity, this section provides a general and practical summary of
those rules that should serve you well in most instances.

The CSS 2.1 specification provides a formula for all the values that make up the
width of a containing block. It is presented in Figure 21-18 in graphical form
because it is helpful to visualize the values that span across a containing block.
Bear in mind that the calculated sum of all the interior values must be equal to the
width of the containing block. This same structure applies in the vertical direc-
tion as well.

. =
(5}
B =
[} j=
S S
kS &
= =
=i s]2 g & g
2 | s =S| 5 s
N i 1
S E S width ——— p| ‘§ ?, :‘9:
SIS |8 Sl < 8
' = S =) :'\“‘_.
| width of containing block |
(left + L margin + L border + L padding + width + R padding + R border + R margin + right)

Figure 21-18. The sum of values in the containing block

In very generalized terms, when values are conflicting or unspecified, the space
tends to be adjusted on the right side for left-to-right (Itr) languages (or the left
side for right-to-left languages). Height issues are resolved by adjusting the space
at the bottom of the positioned element.

* In instances where all values have been specified (i.e., none of them are auto),
and the values do not add up to the width of the containing block, user
agents are instructed to just ignore the right (for 1tr languages) and bottom
offset values and make up the discrepancies on those sides.

¢ If the width of the positioned element is specified, it is not altered. However,
if the width for a text (non-replaced) element is set to auto, the content area
will “shrink to fit” and be just wide enough to accommodate the contents.
For replaced elements such as images, the inherent pixel dimensions of the
object are used when width is auto.

* The width of an element’s content area gets resized only when it is set to auto
and all the other properties have specific measurement values. As the only
parameter set to auto, the element width is the last resort and gets resized.

388 | (Chapter21: Floating and Positioning

* User agents look for an auto value (on the margin or offset) on the right side
first (for ltr languages) to make necessary space adjustments. For vertical
adjustments, adjustments are made to properties set to auto on the bottom.

* When the top and left properties are set to auto, the element is placed in its
“static” position (as mentioned above). This is overridden only as a last resort
when all of the other parameters have specific values and left (for horizontal
placement) and top (for vertical placement) are the only available auto val-
ues. Only then is space adjusted on those sides.

Given these constraints and behaviors, the most simple and predictable approach
to absolute positioning is to provide a specific width for the positioned element
and specific top and left offsets. That way, the margins on the positioned object
will be preserved and the space on the right and bottom can flex as necessary to fit
in the containing block. Granted, this won’t work for all situations, but it’s a
starting point. It usually involves a bit of math to get it right.

These positioning rules are based on the correct behavior as defined
in the CSS 2.1 spec and describe the basic behavior of standards-
compliant browsers. Be aware, however, that because of a problem
with the box model implementation in Internet Explorer for Win-
dows (all versions except IE 6 and 7 running in Standards mode),
these browsers have a different method of calculating position
based on applying the padding, borders, and margin within the
specified width.

Fixed Positioning

Fixed positioning is essentially the same as absolute positioning, only the
containing block is the viewing area (or viewport; typically the browser window).
The distinguishing feature of fixed elements is that they do not scroll with the
document, but are persistent on the page. On printed pages, fixed elements may
appear in the same place on all pages.

In addition to not scrolling, fixed elements share these basic characteristics:

* They are declared using {position: fixed;}.

* They are positioned relative to the edges of the viewport (browser window)
using one or more of the offset properties (top, right, bottom, left). Proper-
ties that are not specified are set to auto (the defaulr). The offset values apply
to the outer edge of the element box (including the margin value, if there is
one).

* Like absolutely positioned elements, they are completely removed from the
document flow, and the space they would have occupied is closed up.

Fixed elements can be used to create frame-like interfaces or to place persistent
elements on the page. In this example, a fixed element is used as a short sidebar
that stays put as the document scrolls (Figure 21-19).

ul {position: fixed; top: Opx; left: 0; width: 100px; background-color:

#999; margin: 0; padding: 10;}

p, h1 {margin-left: 150px;}

Fixed Positioning | 389

©
o
Z.
=
5
2.
5

a

n
“n
bl
I
o
1
-3
S

a
~

* Sit
o Amet

oIpsmn
‘Dolot

VIV IS TROTT O VIS Ol PO IIEC S OO ST

Fixed Positioned Sidebar

Pellentesque pharetra, urna in laoreet tincidunt, nunc quam
eleifend libero, a tincidunt purus angue eu felis. Phasellus
quis ante.

Sed mi. Quisque nisi velit, sagittis id. facilisis eu, pulvinar
quis. tortor. Donec Ieo mauris, convallis eget, sodales
eget, dictum ac. ligula.

Vivamus non est vitae quam pellentesque cursus.
Pellentesque mi enim, pharetra ac. sagittis id, mollis ut,
quam. Ut aliquet arcu et mi. Nunc eleffend felis et turpis. =]

Pellentesque mi enim, pharetra ac. sagittis id, mollis ut,
quam. Ut aliquet arcu et mi. Nunc eletfend felis et turpis.
Ut sed tellus. Praesent odio. INam vitae ligula. In non
sapien. Integer id lorem. Cum sociis natoque penatibus et
magnis dis partarient montes, nascetur ridiculus mus.

Nunc ut dolor nec est auctor pharetra. Praesent semper
pulvinar lorem. Aliquam nonummy aliquam orci. Mauris
nec erat vel dui dictum sagittis. Cras eleffend, dui eget
consectetuer tempor, nunc eros lobortis justo, ac eleffend
purus sapien vitae urna. Mauris varius urna vel sapien.
Phasellus nomummy turpis a urna. Nulla tempor, tellus id
sollicitudin convallis. urna ante imperdiet lorem. ut
consequat neque purus sit amet tellus. Duis accumsan.

Do itioosiharono.oranamso. noncanstobnos :.J

Figure 21-19. Fixed positioning

Internet Explorer 6 and earlier for Windows does not support fixed

@@ positioning. Objects with fixed positioning are treated as though

I; they are static, and therefore behave as though they have not been
positioned at all. There are workarounds available; to find them,
search for “CSS fixed position in IE” or something similar in your
favorite search engine. Support in IE 7 for Windows (in beta as of

this writing) has not been confirmed.

Relative Positioning

Relative positioning works differently than absolute and fixed positioning. The
critical difference is that although the element is moved around, the space where it
would have appeared in the normal flow is preserved and continues to influence

the elements that surround it.

Relatively positioned elements have these characteristics:

390 | Chapter21: Floating and Positioning

* They are declared using {position: relative;}.

* They are positioned relative to their initial position in the normal flow using
one or more of the offset properties (top, right, bottom, left). Properties that
are not specified are set to auto (the default).

* Their original space in the document flow is preserved.

* Because they are positioned elements, they can potentially overlap other ele-
ments.

This example of a relatively positioned emphasized (em) element demonstrates the
basic syntax and behavior of relative positioning (Figure 21-20). Notice that when
the element is moved, its space is left behind and the surrounding elements
behave as though it is still there.

em {position: relative; top: -36px; right: -36px; background: ffccc; }

massa eget elit
Cras eleffend feugiat leo. Sed condimentum iaculis nulla. Maecenas ut nibh

et tortor tincidunt consequat. Sed faucibus consequat
viverra. Quisque euismod magna quis odio. Cras neque mauris, pellentesque
a, semper ac, eleffend non, est.

Figure 21-20. Relative positioning

In relative positioning, the top, right, bottom, and left properties move the
element relative to its original position. Specifying a positive value for top moves
the element down by that amount. Specifying a value for left moves the element
to the right, and so on, such that a positive value for one side is equivalent to a
negative value on the opposite side (the computed values are right=-left and
bottom=-top).

The CSS 2.1 specification advises that when conflicting values are provided, the
provided value for right is ignored in left-to-right languages (left is ignored for
right-to-left languages) and is understood to be -left. When top and bottom
values conlflict, the provided bottom value is ignored and reset to -top. As such,
this overconstrained style rule:

em {top: 10; bottom: 50; left: 50: right -4;}
would be rendered as though it had specified like this:
em {top: 10: bottom: -10; left: 50; right: -50;}

Relative positioning is often used to establish a containing block by specifying the
position of the element as relative, but not altering its position. The result is that
its child elements can then be absolutely positioned relative to the rectangle
created by the element.

Relative Positioning | 391

huluoiysod

n
“n
bl
I
o
1
-3
S

a
~

22

CSS for Tables

Tables have gotten a bad reputation in web design circles because of their noto-
rious misuse as page layout devices. Although CSS now offers alternatives to
tables for presentation purposes, it’s not necessary to kick tables to the curb
entirely. In fact, they serve an important purpose: the presentation of tabular data.
Using CSS table properties with the full set of HTML table elements allows tables
to go back to their original calling, but with more sophisticated tools for handling
them.

This chapter explains these CSS 2 properties for controlling table presentation:

caption-side border-spacing
table-layout empty-cells
border-collapse display (table-related values)

The Essence of Tables

If you are familiar with table structure in HTML, then the way CSS handles tables
should not be a big surprise. For reasons of backward compatibility, the CSS spec-
ification used the row-based table layout model as the starting point for additional
layout models and properties for controlling presentation. CSS is broader in its
scope, however, because it is designed to work with document languages other
than just HTML and XHTML. The system for providing table layout capabilities
for non-HTML languages is discussed in the “Table Display Values” section at the
end of this chapter.

The CSS 2.1 Recommendation is very detailed in its description of the defined
behaviors for the table layout model. For a deeper look into the CSS table model,
read the specification online at www.w3.0rg/TR/CSS21/tables.html. Once again,
Eric Meyer’s Cascading Style Sheets: The Definitive Guide (O’Reilly) is the book to
turn to for making sense of the spec.

392

This section provides a summary of some of the key concepts of the CSS table
model.

Rows and Columns

At the most basic level, tables are divided into rows and columns. CSS 2.1
describes the model as row primary, because rows are identified explicitly in the
document structure. Cells are always descendants of rows, not columns. Columns
are merely derived based on the number of cells in the rows.

The intersection of all the rows and columns in a table forms a grid and defines a
basic grid cell unit. The actual cells (the boxes that contain the content) in the
table may be composed of more than one grid cell, as is the case when cells are set
to span rows or columns. Figure 22-1 shows the structure of the CSS table model.

column column column column
row cell cell cell cell
row cell cell cell cell
row cell cell
actual cells may
span several grid cells
row cell cell

Figure 22-1. Table structure

In addition to cell boxes, the CSS visual box model for tables generates (implied)
boxes around rows, row groups, columns, column groups, and the table itself.
These boxes correspond to the row, rowgroup, col, colgroup, and table elements in
HTML. The table caption (identified with the caption element) is treated as its
own box as well (as discussed later in this chapter).

One last table box to be aware of is the inline table. Inline tables are block
elements that can appear inline (tables are normally block-level elements). Inline
tables are created by setting the display property to inline-table. They are not
discussed in detail in this chapter, but are sometimes referenced in terms of prop-
erty application. Only the Opera browser supports this display role as of this
writing.

Internal Table Elements

CSS 2.1 makes a distinction between table elements and internal table elements. A
table element is any part of a table (including table and caption). Internal elements
are just those elements that generate a cell (such as td or th), a row (tr), a row
group (rowgroup), a column (col), or a column group (colgroup).

Internal table elements may have content, padding, and borders. Internal
elements may not have margins and any margin settings provided will be ignored.

The Essence of Tables | 393

~m
wv
v
-
o
=
o
w

Table Captions

HTML 4.0 introduced the caption element for providing a descriptive title to a
table. CSS 2.1 assigns it special behaviors and its own property, caption-side, for
positioning the caption above or below the table.

Internet Explorer for Windows (Versions 6 and earlier) do not sup-

% port the caption-side property. Support in IE 7, in beta as of this

writing, is currently undocumented.

caption-side

Values: top | bottom | inherit

Initial value: top

Applies to: Table-caption elements (caption in HTML)
Inherited: Yes

By default, the table caption is placed on top of the table block (top), but the
caption-side property allows it to be placed below the table (bottom). Table
captions are block elements, but they have some peculiarities. Figure 22-2 shows
the relationship of the caption to the table body.

caption margins table margins

T

caption

Figure 22-2. Table and caption

As block elements, they can be given their own properties, such as margins.
However, they are also treated as children of the table element, and therefore will
inherit properties applied to the table. So although it occupies a separate block

394 | (Chapter22: (SSforTables

with its own margins, if the color of the table is set to blue, the caption will be
blue as well.

The margins between the caption and table block collapse to equal the greater
specified value.

There is an implied or (anonymous) box that encloses the table box and the
caption box. It is this anonymous box that is used when the table element is posi-
tioned with properties such as float, position, margin-*, top, right, bottom, or
left.

Stacking Order

In the visual formatting model for tables, the various table elements are under-
stood to occupy separate superimposed layers. These are used to determine which
backgrounds are visible. Elements are transparent by default, allowing the back-
grounds of the layers “below” to show through. A background applied to a
particular element will be visible if all the elements “above” it are transparent.

The stacking order for table element layers is, from “top” to “bottom”: cell, row,
row group, column, column group, table, as shown in the diagram in Figure 22-3.

RS
W
W Q‘“\ws

Lo <
ot T

e

Figure 22-3. Table layer order

Or in other words, applying a background color in a cell will paint over any back-
grounds provided in rows, row groups, and so on. This system is similar to the
way in which color attributes in HTML table cells (td) override row settings (tr),
which in turn override settings at the table level (table). One significant aspect of
the CSS model is that table rows and row groups are given precedence over
columns and column groups.

The Essence of Tables | 395

Styling Tables

For the most part, you don’t need any special properties to control the presenta-
tion of tables and their content. Most of the properties listed in the previous
chapters apply to table elements as well, although some may have different values
when applied to table objects. This list is an overview of the styles to use for
formatting typical aspects of a table and its content.

Text content
Style the text content within tables, rows, and cells as you would any other
text element in a document. You can apply the following properties to any
table element.

» font and all font-related properties
* All text-formatting properties
* color (changes the text color)

Alignment of content in cells
You can use style properties to adjust the horizontal and vertical placement of
cell content. Note that applying text-align: center to the table element does
not center the table on the page, but rather centers all the content within each
table cell.

* text-align for horizontal alignment within a cell. The values left, right,
and center apply.

* vertical-align for vertical alignment within a cell. When used with
tables, the values baseline, top, bottom, and middle apply. The values
sub, super, text-top, and text-bottom; length measurements; and
percentage values should not be used with table elements.

Background color and images
You can change the background of table cells, rows, row groups, columns,
column groups, or the entire table with color or a background image.
Whether the background is visible or overridden is related to the table layer
order discussed in the previous section.

* background and all background-related properties

Borders
You can apply borders to tables and cells at any time. Borders may not be
applied to rows, row groups, columns, and column groups when the table
uses the separated border model (discussed in the upcoming “Borders”
section).

* border and all border-related properties (see the special table border
properties later in this chapter)
Margins
Apply a margin around the outside of the table element with any of the
margin properties. Margins may not be applied to such internal elements as
cells, rows, and columns.

* margin and all margin-related properties (see Chapter 19)

396 | Chapter22: (SSforTables

Padding
To add extra space around the content in table cells, add padding to the cell
(td). The table element, although it may have a margin, does not accept
padding. This may take some getting used to if you are accustomed to
controlling cellpadding at the table level in HTML. The good news is that,
with CSS, you can specify padding amounts cell by cell, not just globally for
all the cells in the table.

* padding and padding-related properties may be applied to table cells.

Cell spacing
In (X)HTML, space between cells is specified with the cellspacing attribute.
It is most commonly used to remove extra spacing between cells
(cellspacing="0"). There is no directly analogous CSS property for handling
space between cells.

The closest thing to cellspacing is to set the border-collapse property to
separate and use the border-spacing property to add space between cells.
The difference is that with cellspacing, browsers render 3D borders between
the cells, while with the CSS border-spacing property, the space is held
blank. Unfortunately, border-spacing is not supported in Internet Explorer
(Versions 6 and earlier), so it is not a viable alternative at this time. Support
in IE 7, in beta as of this writing, is undocumented.

Table size and positioning
It is possible to position a table as you would any other block element. Posi-
tion measurements apply to the anonymous box that contains both the table
and caption boxes (see Figure 22-2). Applying float to a table cell may
remove it from the table and is not advised.

* All positioning properties
* width (except rows and row groups)
* height (may not be used on table columns and column groups)

Column properties
Table cells are always descendants of table rows, however, CSS 2.1 describes
four permissible column properties that influence cells (each with
qualifications).

* border (using the collapsing border model, discussed in the next section)

* background (colors applied to row groups, rows, and cells override
column backgrounds)

* width (values provided are minimum values only)

* visibility (when the value is set to collapse, the whole column will not
display and any spanned cells it contains will be clipped)

&

For an in-depth explanation of why columns support only four

,'3 4. Properties, read lan Hickson’s blog entry, “The mystery of why
#' only four properties apply to table columns” at In.hixie.ch/

start=1070385285& count=1.

Styling Tables | 397

Borders

There are two models for handling borders in CSS 2.1. In one, the borders around
cells are separated from each other. In the other, borders are said to “collapse”
and are continuous from one cell to the next. The border-collapse property
allows authors to choose which model the table should follow.

border-collapse

Values: collapse | separate | inherit
Initial value: collapse

Applies to: table and inline-table elements
Inherited: Yes

The Separated Borders Model

In the separated borders model, the border is drawn on all four sides of each cell
(or as specified by the border properties), and an amount of space can be added
between cells with the border-spacing property.

The border-spacing property is not supported by Internet Explorer
*ﬂﬂ@ Versions 6 and earlier. Support in IE 7, in beta as of this writing, is

not documented.

border-spacing

Values: <length> <length>? | inherit
Initial value: 0
Applies to: table and inline-table elements

Inherited: Yes

The values for border-spacing are two length measurements. The horizontal
spacing value comes first and is applied between the cells in each row of the table.
The vertical value always comes second and is applied between cells in each
column. If you provide just one value, it will be applied both horizontally and
vertically. The table in Figure 22-4 uses the separated border model.

table {border-collapse: separate;
border-spacing: 10px 3px;
border: none;}

td { border: 1px solid black; }

398 | (Chapter22: (SSforTables

lorem ipsim dolor | |sit amet

consectetuer| |adipiscing| |elit pellentesque| |pharetra

wrna i lacreet

Figure 22-4. A table with border-spacing

The default value for border-spacing is 0, which causes adjacent borders to touch,
essentially “doubling up” the borders on the inside grid of the table.

When using the separated border model, rows, row groups, columns, and column
groups cannot have borders.

If you have a few years of web design experience, you may remember how
Netscape 4 required every cell in a table to have content in it or the cell would
collapse and the background wouldn’t display. In the CSS separated borders
model, you get to decide whether you want empty cells to display their back-
grounds and borders or whether they should be hidden using the empty-cells

property.

Internet Explorer for Windows (Versions 6 and earlier) do not sup-
port the empty-cells property. IE 5 for the Mac shows and hides
cells as expected, but it makes the empty cells too large. Support in
IE 7, in beta as of this writing, is currently undocumented.

empty-cells

Values: show | hide | inherit
Initial value: show

Applies to: Table cell elements
Inherited: Yes

The default value for empty-cells is show, which shows the background and
borders for cells that do not contain any content. The hide value hides the cell’s
background and borders and is equivalent to visibility: hidden.

For a cell to be “empty,” it may not contain any text or replaced elements, non-
breaking spaces (8nbsp;) or whitespace. It may contain carriage returns (CR), line
feeds (LF), and space characters.

Figure 22-5 shows the previous table border example, this time with empty
elements set to hide.

table {border-collapse: separate;
border-spacing: 10px 3px;
empty-cells: hide;

Borders | 399

~m
wv
v
-
o
=
o
w

border: none;}

td { border: 1px solid black; }

lorem P ST dolor | |sit amet
consectetuer| |adipiscing| |elit pellentesque| |[pharetra
urna in laoreet

Figure 22-5. Empty cells hidden with the empty-cells property

S o
The empty-cells property is not supported by Internet Explorer
0‘;‘. 4. through Version 6. Version 7 promises improved support of CSS 2.
" o3 1, but as of this writing, support for empty-cells is not specifically

documented.

The Collapsing Border Model

In the collapsing border model, the borders of adjacent borders “collapse” so that
only one of the borders is visible and extra space between borders is removed.
Figure 22-6 shows the table from the previous examples, only this time, the
border-collapse property has been set to collapse.

table {border-collapse: collapse;
border: none;}

td { border: 1px solid black; }

lorem ipsum |dolor |sit amet

consectetuer|adipiscinglelit |[pellentesque|pharetra

[higats] i1 laorest

Figure 22-6. A table with collapsed borders

Borders between cells are centered on the grid lines between cells. Therefore, if
two adjacent cells have a border that is eight pixels wide, four pixels will fall in
one cell and four pixels will fall in the other. If a border has an odd number of
pixels, it is left to the user agent to decide where the extra pixel goes. Wide
borders on the outside edge of the table may extend into the table’s margin.

&

Y Explicitly declaring border-collapse: collapse for tables removes
- any extra space and little gaps in the border that may be automati-

,""‘“ y p d little gaps in the border th y b i
" o3’ cally inserted by the browser.

400 | Chapter22: (SSforTables

Border pecking order

If there can only be one border between each pair of cells, what happens when
neighboring cells have conflicting border styles? The authors of CSS anticipated
this problem and devised a system for resolving border conflicts.

* Borders with border-style set to hidden take precedence over all other bor-
der styles, so the border will not display.

* Borders with a style of none have the lowest priority. That means that if there
is any border specified at all, it will win out and display on the edge of a cell
with borders set to none.

* Wider borders win over narrower ones, regardless of the border style.

* If the neighboring borders are the same width, then it comes down to a bat-
tle of styles. The CSS 2.1 specification establishes this pecking order for bor-
der styles (in order from most to least precedence): double, solid, dashed,
dotted, ridge, outset, groove, and (the lowest) inset. That means if one cell
has a five-pixel dashed border and its neighbor has a five-pixel groove bor-
der, the dashed border will “win” and display between the cells.

* If the border styles differ only in color, then it comes down to the table layer
order (Figure 22-3) to determine which border is visible. Styles set on cells
win out over rows, and row settings win over row groups, columns, column
groups, and finally table.

Table Layout (Width and Height)

User agents (typically browsers) may use one of two algorithm-driven approaches
to calculate the width of a table: fixed-width layout and automatic-width layout.
Web page authors may specify which layout approach to use for a specific table
using the table-layout property.

table-layout

Values: auto | fixed | inherit
Initial value: auto

Applies to: table and inline-table elements
Inherited: No

Fixed-Width Layout

The fixed value for table-layout tells the browser or other user agent to calculate
the size of the table using the “fixed” algorithm. This method requires the least
work of the user agent because the table width is determined by the width values
of the table, columns, and cells within the table.

Table Layout (Width and Height) | 401

~m
wv
v
-
o
=
o
w

First, the user agent takes the widths of column elements that are set to a specific
width (not auto). Then it looks at the cells in the first row of the table. Cells with
specific width values (not auto) set the width for their columns. Any remaining
columns that have the width set to auto are sized so their widths are roughly equal
to fill the remaining space in the table.

The final width of the table is the sum of the column widths or the table
element’s width value, whichever is greater.

The important aspect of this model is that only width values provided for cells in
the first row of the table apply. Therefore, if the top cell in a table is set to 200
pixels and another cell farther down in the same column is set to 350 pixels, the
column will be 200 pixels wide. The setting in the lower row is simply ignored in
the fixed layout model.

The advantage of the fixed-width layout is that it’s much faster than the auto-
matic method. Because it depends on declared width values for the table and
columns, and because it only takes into consideration the first row of cells, there
is no need to parse and calculate sizes for the entire table content to arrive at a size
calculation.

For web developers, declaring the table-layout as fixed may speed up display
rates. Just be sure that all column widths are declared explicitly or that cell widths
are provided in the first row.

Automatic Layout

The automatic layout model is essentially the same model used for HTML tables
for years in which tables expand to fit the width of the content. In CSS, the auto
value for table-layout ensures this method will be used to size the table regard-
less of the browser default.

Because automatic layout is content dependent, the browser must calculate the
width of the content in every cell. The real process is fairly complicated, but what
it boils down to is this:

* First, the browser calculates the minimum and maximum width of every cell
in the table.

* A comparison of the cells in a column sets the minimum and maximum
width for that column. The result is that columns are forced to be as wide as
their widest cell.

¢ Once the column widths are determined, the browser turns to the table width
setting. If the table width is auto, then the width of the table will be the sum
of the column widths, borders, and cell spacing. In other words, it will only
be as wide as it needs to be to accommodate the content.

* If it is something other than auto, then the sum of the columns plus borders
and spacing are compared to the computed width of the table (the width of
the table based on other page criteria such as browser window width). If the
table’s computed width is larger, then the columns are expanded equally to
fill the space.

402 | Chapter22: (SSforTables

Even with this brief summary of the automatic width calculation method, it is
easy to see why this method is more labor-intensive for the browser. Despite the
extra processing time, it may still be desirable to have tables and cells resize auto-
matically to fit the content.

Table Display Values

CSS was designed to work with all XML document languages, not just XHTML.
It’s likely that other languages may have the need for tabular layouts, but will not
have elements like table, td, or tr in their vocabularies.

To this end, the CSS 2.1 specification allows authors to assign table element roles
to any element using the display property. The display property was discussed in
Chapter 16 in relation to block and inline elements. This section covers the values

listed in bold.

display

Values: inline | block | list-item | run-in | inline-block | table |
inline-table | table-row-group | table-header-group | table-
footer-group | table-row | table-column-group | table-column |
table-cell | table-caption | none | inherit

Initial value: inline

Applies to: table and inline-table elements

Inherited: No

Using the table-related display values, the elements from any markup language
can be “mapped” to table elements. A simple example should make this clear.
Consider this markup written in a hypothetical XML language.

<platter>
<cheese>
<name>Brie</name>
<origin>France</origin>
</cheese>
<cheese>
<name>Manchego</name>
<origin>Spain</origin>
</cheese>
</platter>

By attaching these style rules:

platter { display: table; }
cheese { display: table-row; }
name, origin { display: table-cell; }

Table Display Values | 403

~m
wv
v
-
o
=
o
w

The example would display in the user agent as though it were marked up like
this:

<table>
<tr>
<td>Brie</td>
<td>France</td>
</tr>
<tr>
<td>Manchego</td>
<td>Spain</td>
</td>
</table>

The complete list of table display values is provided here. Their HTML equiva-
lents are listed in parentheses.

table
Makes an element a block-level table element (table).

inline-table
Makes the element an inline table. Inline tables are rectangular blocks that
behave as inline objects (there is no HTML equivalent).

table-row
Specifies that the element is a row of cells (tr).

table-row-group
Specifies that the element is a group of one or more rows (rowgroup).

table-header-group
Like a row group, only it is always displayed before other rows and after
captions. For print, it may be repeated at the top of each page (thead).

table-footer-group
Like a row group, but it is always displayed after the other rows and before
any bottom captions. It may be repeated at the bottom of each page (tfoot).

table-column
Specifies that the element is a column (col).

table-column-group
Specifies that the element is a group of columns (colgroup).

table-cell
Makes the element a table cell (td, th).

table-caption
Specifies a caption for the table (caption).

Anonymous table elements

Because other languages may not have all the elements necessary to make up the
table layout model used by CSS, missing elements are assumed for the layout to
work. According to the CSS 2.1 specification, a table element will automatically
generate necessary anonymous table objects (a table, row, or cell) around itself.

404 | Chapter22: (SSforTables

Anonymous table objects are a function of the user agent’s rendering engine—no
code is changed. To use the earlier example and its table display values, if the
row-equivalent element is missing, the browser generates an anonymous table-
row object between the cells and the table level.

<platter>

[begin anonymous table-row object]
<name>Brie</name>
<origin>France</origin>

[end anonymous table-row object]

</platter>

For a more detailed explanation of how anonymous table elements function, see
the CSS 2.1 specification online at www.w3.0rg/TR/CSS21/tables.html.

Table Display Values | 405

23

Lists and Generated Content

One of the advantages to using an ordered list element on a web page is that the
browser numbers list each item automatically. This makes it easier to add, delete,
or move list items around without manually editing the numbers, because they
aren’t in the source document in the first place—they’re generated by the user
agent. CSS 2.1 provides a number of properties for controlling the style, content,
and position of numbers and bullets (called markers) used for unordered and
ordered lists.

The creators of the CSS 2.1 specification realized there might be other instances in
which it would be useful to have user agents generate content that isn’t actually
present in the document tree. The generated content features of CSS 2.1 provide a
mechanism for inserting any specified text or counters (automatic numbering)
before or after any element in an (X)HTML or XML document.

This chapter covers the CSS 2.1 properties related to controlling markers for list
items as well as the properties associated with generated content.

list-style-type list-style
list-style-image display: list-item
list-style-position content

quotes counter-reset

counter-increment

CSS for Lists

Bulleted and numbered lists have been around since the very beginning of HTML."
Extensions to the ul and ol elements gave designers the ability to choose a bullet
shape or numbering format, but beyond that, authors have had little control over

* One of the earliest documentations of the HTML language (dated 1992) defines the ul tag and
describes ordered lists. To learn about HTML’s humble beginnings, visit www.w3.org/History/
19921103-hypertext/hypertext/WWW/MarkUp/Tags.html.

406

list presentation. CSS 2.1 offers some improvements, most notably the ability to
replace bullets with your own images.

&
8 In modern standards- and accessibility-driven web design, lists are
,‘s - being used in interesting ways to create navigation that previously
" o' would have been created with graphics and JavaScript (see

Chapter 24).

Choosing a Marker

Ordered and unordered lists are unique elements in that they automatically add a
marker (a bullet or a number) to the page that isn’t part of the document source.
Use the list-style-type property to select the type of marker that appears with
each list item. This property replaces the deprecated type attribute in XHTML.

list-style-type

Values: disc | circle | square | decimal | decimal-leading-zero |
lower-roman | upper-roman | lower-greek | lower-latin |
upper-latin | lower-alpha | upper-alpha | none | inherit

Initial value: disc

Applies to: Elements whose display value is list-item (in XHTML, the ul, ol,
and 1i elements)

Inherited: Yes

~m
wv
v
=
@
-
@
o
=
(=5

Three values for list-style-type (disc, circle, and square) generate a bullet
shape, just as browsers have been doing for unordered lists for years. The actual
design and rendering of each bullet shape is left to the user agent. In other words,
there is no way to alter the color, size, or other presentation attributes of a gener-
ated bullet. Figure 23-1 shows each of the bullet markers.

disc circle square
\0 lorem \O lorem \ lorem
+ ipsum ¢ ipsum ® ipsum
+ dolor o dolor m dolor
L o sit m sif
* amet ° gmet ® amef

Figure 23-1. list-style-type: disc, circle, and square

The remaining value keywords specify various numbering and lettering styles.
Table 23-1 lists the keyword and numbering types provided in CSS 2.1.

CSSforlists | 407

Table 23-1. Lettering and numbering system keywords in CSS 2.1

Keyword System
decimal 1,2,3,4,5...
decimal-leading-zero 01,02,03,04,05...
lower-alpha a,b,qde...
upper-alpha AB,CD,E...
lower-latin a,b,c,de... (sameas lower-alpha)
upper-latin A,B,(,D,E... (same as upper-alpha)
lower-roman i, di, i, iv, v...
upper-roman ALV, V...
lower-greek Lowercase classical Greek symbols
7
A handful of numbering keywords that were included in CSS 2
,'s 4. Were removed from 2.1 due to the difficulty in implementing them

]

o' and the resulting poor browser support. They include: hebrew, cjk-
ideographic, and the Japanese numbering systems katakana,
katakana-iroha, hiragana, and hiragana-iroha. Additionally, the
values armenian and georgian were in a CSS 2.1 Candidate Recom-
mendation but at risk of being dropped due to lack of implementa-
tion. The various international list numbering styles are defined in
far more detail in the CSS 3 Lists Module.

The user agent controls the presentation of the generated numbers and letters,
although they usually match the font properties of the associated list items. There
is no way to change the font, size, color, or other presentation features of number
or letter markers. When numbers run several digits long, the user agent deter-
mines whether the markers should be left or right justified.

The CSS specification also does not specify what should be done when a lettering
system runs out of letters. For long lists, true numbering systems are
recommended.

If you want to turn the marker off for a list item, choose the value none. Setting the
list-style-type to none for an item or items does not prevent that item from
being counted by the counting mechanism; it merely causes the number not to
display.

Be aware that even though list-style-type is an inherited prop-
erty, it may be necessary to explicitly declare styles for each level of
nested list element in order to override browsers’ built-in style
sheets for nested list marker types.

Marker Position

By default, the marker hangs outside the content area for the list item, usually
displaying as a hanging indent. The list-style-position property allows you to
pull the bullet inside the content area so it runs into the list content.

408 | (Chapter23: Listsand Generated Content

list-style-position

Values: inside | outside | inherit
Initial value: outside
Applies to: Elements whose display value is list-item (in XHTML, the ul, ol,

and 1i elements)

Inherited: Yes

Figure 23-2 shows the difference between the outside and inside marker positions
as indicated by the following styles. Note that the dotted lines are a device to indi-
cate the edges of the content area only and would not actually display.

li.one {list-style-position: outside;}

li.two {list-style-position: inside; }

* lorem * lorem
* ipgu_m 4 ipﬁum
+ dolor * dolor
* it * sit

* amef #* amet

Figure 23-2. list-style-position

Unfortunately, that’s about all you can do with 1ist-style-position. It does not
provide a way for authors to adjust the distance or position of the marker relative
to the list item. CSS 2.1 leaves the distance to the user agent. Interestingly, CSS 2
included the marker-offset property for this very purpose, but it was dropped in
CSS 2.1 because it was determined not to be the best solution for the problem.
Look for improved control over marker placement in CSS Level 3.

Internet Explorer for Windows always includes the bullet in the
content area box. This can cause some inconsistent results when
positioning list blocks or adding borders, padding, and margins to
list items.

Make Your Own Bullets

The one juicy feature that CSS does provide for list presentation is the ability to
provide an image to be used as a bullet. In the past, to use images, the list needed
to be faked with line breaks or a table. Now the markup can remain semantically
and structurally intact while a style sheet swaps the browser’s bullet for one of
your own.

To specify an image to be used as a marker, use the list-style-image property.

CsSforlists | 409

~m
wv
v
=
@
-
@
o
=
(=5

list-style-image

Values: <uri> | none | inherit
Initial value: none
Applies to: Elements whose display value is list-item (in XHTML, the ul, ol,

and 1i elements)

Inherited: Yes

This example shows the syntax for providing the URL of an image for use as a
marker. The list-style-type is set to disc as a backup in case the image doesn’t
display or the property can’t be interpreted by the user agent. The resulting list is
shown in Figure 23-3.
ul { list-style-image: url(happy.gif);
list-style-type: disc;
list-style-position: outside; }

lorem
ipsum
dolor
sit

©oo0 e

amet

Figure 23-3. Using an image as a marker

Remember that the URL is always interpreted as relative to the style
sheet, whether it’s embedded in the document or in an external .css
file elsewhere on the server. Make sure that relative URLs are cor-
rect or use absolute URLs (including http:// and the domain) to be
safe.

list-style Shorthand Property

The three list properties (type, position, and image) can be combined in the short-
hand 1list-style property.

list-style

Values: [<list-style-type> || <list-style-image> ||
<list-style-position>] | inherit

Initial value: See individual properties

410 | Chapter23: Listsand Generated Content

Applies to: Elements whose display value is list-item (in HTML and XHTML,
the ul, o1, and 1i elements)

Inherited: Yes

The values for each property may be provided in any order and any may be
omitted. Keep in mind that omitted properties are reset to their default values in
shorthand properties. Be careful not to override 1ist-style declarations earlier in
the style sheet. Each of these examples of list-style duplicates the effects of the
separate rules provided in the example shown in Figure 23-4.

ul {list-style: url(skull.gif) disc outside;}
ul {list-style: disc outside url(skull.gif);}
ul {list-style: url(skull.gif) disc;}

List-item Display

You may have noticed that all of the properties in this chapter apply to “elements
whose display value is 1ist-item.” In XHTML, there are explicit elements for lists
and list items (o1, ul, and 1i), but in other XML languages, that may not be the
case. The CSS specification allows any element to perform like a list item,
complete with marker, by setting its display property to list-item. This applies to
other elements within XHTML as well, as shown here and in Figure 23-4.

p.bulleted {
display: list-item;
list-style-type: disc;
list-style-position: inside; }

<p>Aliquam pulvinar volutpat nibh. ...</p>
<p>Etiam accumsan. Proin eros ...</p>
<p>Aenean id nulla sed nibh accumsan ...</p>

+ Aliquam pubvinar volutpat nibh. Integer corvallis nulla sit amet magna.
Maecenas imperdiet turpis ac augue. Integer malesuada mauris a odio vulputate
blandit.

+ Etiam accumsan. Proin eros massa, condimentum sit amet, semper vitae,
pulvinar non, augue. Morbi sed sapien ac turpis facilisis egestas.

+ Aenean id nulla sed nibh accumsan laoreet. INulla interdum est nec erat.
Pellentesque tempor. Pellentesque sit amet pede. Nullam scelerisque nibh sit
amet wrna.

Figure 23-4. Using another element as a list-item

CSSforlists | 411

~m
wv
v
=
@
-
@
o
=
(=5

Generated Content

Generated content refers to content that is not in the document tree, yet is inserted
in the page when it is displayed in a browser window, printed on paper, projected
on a screen, read aurally, or otherwise delivered. Generated content may be speci-
fied text, images, or other media (or even the values of attributes) added before or
after an element. It could be used to insert the name of the person making an edit
after deleted text (del element). Used together with media-specific style sheets,
generated content could be used to write out the URL after links only when the
document is printed, or to say “end of table” at the end of a long table only when
the document is read aurally.

There are also several properties that control counters, the mechanisms that keep
track of the numbering for ordered list. Used together with generated text, it is
possible to insert the word “Section” before each automatically numbered section
heading. Allowing the user agent to automatically insert labels and numbers
makes it easier to reorganize and relabel long documents because the numbers
don’t need to be edited manually in the source.

/—— Unfortunately, no version of Internet Explorer as of this writing
‘Eﬂ@ supports generated content, because IE doesn’t support the :before
and :after pseudoselectors. If you do specify generated content, IE
will just ignore it, so it does no harm. You can begin using it imme-
diately to provide a richer experience for users with browsers that
do support it (Mozilla, Firefox, Netscape 6+, Opera). Safari offers

partial support as noted in the chapter.

Inserting Generated Content

Generated content is specified in the style sheet with the :before and :after pseu-
doelements (pseudoelements are discussed in Chapter 17). The :before selector
inserts content (most commonly, but not limited to, text characters, an image, or
quotation marks) immediately before the targeted element. The :after pseudoele-
ment inserts the generated content just after the targeted element.

Both pseudoelements are used in conjunction with the content property, which is
used to specify where the generated content is to be inserted.

content

Values: normal | [<string> | <uri> | <counter> | attr(<identifier>) |
open-quote | close-quote | no-open-quote | no-close-quote]+ |
inherit

Initial value: normal

Applies to: :before and :after pseudoelements

Inherited: No

412 | (hapter23: Listsand Generated Content

The values for content fall into three broad categories: counters, quotation marks,
and “whatever.” Counters and quotation marks are discussed in upcoming
sections. This section takes on “whatever,” which more formally refers to char-
acter strings, URIs, and attribute values.

The simplest example of generated text is to insert a string of text before or after
an element. In this example, initials are inserted after each del element (indi-
cating deleted text) to show who made the change. The resulting page is shown in
Figure 23-5.

del:before { content: "[INR] "; }
del { text-decoration: line-through; border: solid 1px; padding: 2px; }

<p>Praesent tincidunt aliquet urna. vel consectetuer velit tellus a quam.
Vestibulum rutrum, magna at tempor aliquet, pede mi imperdiet
purus,

Vivamus eleifend. Fusce bibendum. Nam molestie dictum sem.</p>

Praessent tincidunt aliquet urna. vel consectetuer velit tellus a

quatn. |E¥~:Fﬂ-‘-—esabﬂl=dﬂa—ma:m+| magna at tempor aliquet, pede
mi imperdiet purus, Vivamus eleffend. Fusce bibendum. Nam
molestie dictum sem.

Figure 23-5. Inserting text before an element

You can tell from the border applied to the del element that the generated content
is included in the content area for the element. It also inherits whatever styles are
applied to the targeted element, such as line-through in the example.

There are a few syntax requirements when inserting text strings:

* By default, the inserted text will butt right against the beginning or end of the
targeted element. If you want space between them, add a character space to
the value of content. For example, it was necessary to explicitly add a charac-
ter space after the closing bracket within the value of the content property, as
shown here:

content: "[INR] ";

If that space were omitted, the closing bracket would be placed right next to
the “V” in the element.

* The value of content is not parsed, which means that if you add HTML
markup or character entities, it will appear on the final page just as it’s typed in.

* To insert a line break in generated text, it is necessary to use the string \A (the
CSS way of inserting a new line when the br element isn’t an option). If you
have a long selection of content that must break over multiple lines in the
source, escape out the line feeds with the \ character at the end of each line.
The text will wrap as normal when it displays. Unfortunately, escaped con-
tent is not well supported by current browsers.

Generated Content | 413

~m
wv
v
=
@
-
@
o
=
(=5

It is also possible to use the value of an element’s attribute as the generated text by
specifying attr(attribute-name) in the value of the content property. One very
practical use is to display the URL for links when the document is printed so the
reader can follow up on linked resources later.

The styles in this example appear in a style sheet that gets used only when the
document prints (print style sheets are discussed in detail in Chapter 36). The
markup is also provided.

a {text-decoration: none;

alhref]:after {content: " (" attr(href) ")";}

<p>Read my book.</p>
<p>Visit my site.</p>
<p>Visit my other site.</p>

The a[href] attribute selector applies the rule only to anchors that have the href
attribute and not to named anchors used to identify document fragments.

The value of the content property directs the user agent to generate this content
after the a element:

1. Insert a character space and an open parentheses character.
2. Insert the value of the href attribute.
3. Insert a closing parentheses character.

When the document is printed, the URL will be written out, as shown in
Figure 23-6.

F.ead my book (http/www_oretlly. com).
Visit my site (hitp'www_jenville.com).

Visit my other site (http:/www littlechair com).

Figure 23-6. Inserting the attribute value of href

Quotation Marks

The content property also provides a way to insert quotation marks automatically
before and after an element using the open-quote, close-quote, no-open-quote, and
no-close-quote values. They are designed to work in tandem with the quotes
property, which is used to specify which style of quotation marks to use before
and after elements. It will be helpful to cover the quotes property first, then
demonstrate the content values mentioned earlier.

414 | Chapter23: Listsand Generated Content

quotes

Values: [<string><string>]+ | none | inherit
Initial value: Depends on user agent

Applies to: All elements

Inherited: Yes

The quotes property allows authors to specify which characters to use as quota-
tion marks before and after elements. This may be useful for delivering documents
with different styles of quotation marks based on audience (and style sheet)
without having to go back and edit the document.

The value of quotes is one or more pairs of character strings. The first value is
applied at the beginning of the quote, and the last value is applied at the close of
the quote. This example specifies standard English double quotes at the open and
close of a quote element.

q {quotes: """ '"'; }

Additional pairs specify quotation styles for each consecutive nesting level, as
shown in this style rule. Notice that the quotation marks that enclose the
provided values must not match the specified quotation character (in other words,
when specifying a single quote, use double quotes, and vice versa).

R T

q {quotes:

The double and single quotes specified in this example render as the straight up-
and-down ASCII characters. For curly quotes and other more sophisticated quota-
tion characters, the characters must be escaped. In style sheets, characters are
escaped with a backslash (\) preceding the hexadecimal Unicode code point
(number). The (X)HTML method of escaping characters (&nnn;) is not valid in
style sheets. Character escaping is discussed further in Chapter 6.

This example specifies curly double quotes before and after quotations.
q {quotes: '\201C' '\201D'; }

Table 23-2 lists the Unicode equivalents for common quotation characters.

Table 23-2. Unicode equivalents for quotation mark glyphs

Character Unicode (hex) Description

! 0022 Quotation mark (the ASCII double quotation mark)
' 0027 Apostrophe (the ASCll single quotation mark)

(2039 Single left-pointing angle

) 203A Single right-pointing angle

(00AB Left-pointing double angle

» 00BB Right-pointing double angle

¢ 2018 Left single curly quotation mark

’ 2019 Right single curly quotation mark

Generated Content | 415

~m
wv
v
=
@
-
@
o
=
(=5

Table 23-2. Unicode equivalents for quotation mark glyphs (continued)

Character Unicode (hex) Description

“ 201C Left double curly quotation mark
7 201D Right double curly quotation mark
» 201E Double low quotation mark

Once the quotation mark characters have been specified, the content property
with the open-quote and close-quote keyword values applies the quotation marks
at the beginning and end of the quote.

q {quotes: '\201C' '\201D'; }
q:before { content: open-quote; }
q:after { content: close-quote; }

The standard treatment for long quotations that span several paragraphs is to
omit the closing quotation mark at the ends of paragraphs (except the final para-
graph of the quotation). The no-close-quote value allows you to specify that the
quotation mark should be omitted from the end of the element, but it closes the
quotation such that the proper nesting levels are preserved. When using the no-
close-quote value, you must specifically add a quote to the last paragraph in the
quote. Similarly, the no-open-quote value maintains the nesting level as though
there were a quotation mark there, but it suppresses the display of the quotation
character.

Automatic Numbering and Counters

If you have ever used an ordered list in a web page, then you have some basic
experience with counters. The CSS 2.1 specification provides properties that allow
counters to be added to any element, not just lists. With these tools, you could
automatically number the headings in a document and never need to edit the
source when new headings are inserted.

Unfortunately, as of this writing, CSS counters are only supported by Opera
Versions 5 and higher (a very small slice of web traffic). For that reason, this
section provides only a brief introduction to the properties and how they are used.
For more information, see the CSS 2.1 specification online (www.w3.0rg/TR/
CSS21/generate.html). Once again, Cascading Style Sheets: The Definitive Guide by
Eric Meyer (O’Reilly) provides an excellent tutorial on using counters.

Automatic numbering is controlled by the counter-reset and the counter-
increment properties used in conjunction with the content property for generated
content. counter-reset establishes a starting point for the numbering.

counter-reset

Values: [<identifier> <integer>?]+ | none | inherit

Initial value: Depends on user agent

416 | (Chapter23: Listsand Generated Content

Applies to: All elements

Inherited: No

The value of the counter-reset property is an identifier (a label set by the author
such as “chapter” or “section”) and an optional number that serves as the starting
number. The default is zero (0), so simply declaring an identifier for counter-
reset sets it to 0. Any integer may be specified as the starting number, including
negative values. In this simple example, a “chapter” counter is established and
starts at 3.

hi {counter-reset: chapter 3; }

Now that a starting point has been established, the counter-increment property is
used to indicate that an element triggers the counter to go up.

counter-increment

Values: [<identifier> <integer>?]+ | none | inherit
Initial value: Depends on user agent

Applies to: All elements

Inherited: No

The value of counter-increment provides the name of the identifier (such as
“chapter” or “section”) and an optional number that serves as the increment
amount. The default is 1, so each instance of the element adds 1 to the counter
unless it is specified otherwise. It is possible to specify negative values to make the
counter count backward. In this example, the “chapter” counter from the
previous example is given the default counter increment of 1.

h1 {counter-increment: chapter; }
This is the same as specifying
hi {counter-increment: chapter 1; }

These counter functions are useful only when used with the counter() and
counters() values of the content property.

The provided values for counter() are the identifier name and an optional style
(one of the list-style-type values such as upper-alpha). The counter style is
decimal (1, 2, 3, etc.) by default. In this example, the content property is used to
insert the automatic counter and the colon character (:) followed by a space
before each h2 element in a document.

h2:before {counter(section) ": "
counter-increment: section; } /* defaults to 1 */

The counters () function is used to specify counters that are several levels deep (e.g.,
1.0, 1.1., 1.2., 1.3., 2.0, 2.1., 2.1.1, 2.1.2, 2.1.3., and so on) without needing to
specify counter rules for each nesting level individually. The hitch is that they must

Generated Content | 417

~m
wv
v
=
@
-
@
o
=
(=5

all be given the same identifier name. It is a good idea to provide a separator char-
acter such as a period or a comma to visually separate the string of counters.

Consider for a moment what happens when you put an ordered list inside an
ordered list in HTML. By default, the nested ordered list starts counting at “1” by
default. That is because lists are self-nesting. When the user agent detects a new
nesting level (or “scope,” to use the lingo), the counters() function knows to
trigger the appropriate counter in the string.

This example creates a nested-counter style that counts sections and two levels of
subsections (as listed above).

ol {counter-reset: ordered;}
ol li:before {counter-increment: ordered;
content: counters(ordered, ".");}

The counting mechanisms provided by CSS 2.1 are much more powerful than the
tiny glimpse provided in this section. One day, when browsers catch up in
support, they’ll be a useful tool for content handling.

418 | (Chapter23: Listsand Generated Content

(5SS Techniques

The previous chapters introduced the CSS tools available in web designers’ tool-
belts: the properties and values provided in the CSS specification. This chapter
puts them together in a few of the most popular design and layout techniques
used in CSS-driven web design, including:

* Centering a fixed-width page

* Multicolumn layouts

* Boxes with rounded corners

* Replacing text with background images
* CSSrollovers

* List-based navigation

As in so many web-related tasks, there are seemingly endless variations on accom-
plishing the same goal. Each example in this chapter represents just one solution
(you may know of better approaches). The intent is to demonstrate basic style
sheet strategy and to provide “starter kits” for achieving basic visual and layout
effects with CSS. There is usually much more to be said about each technique, so
references to additional resources are provided when available. The “CSS Tech-
niques Resources” section at the end of the chapter lists recommended reading for
those interested in learning more about what can be done with CSS-driven design.

Centering a Page

As a strategy for controlling the width of a page while allowing for varying
monitor resolutions, it is common for web designers to create fixed-width pages
that are then centered in the width of the browser window. In the past, this was
achieved by slapping a center tag (or <div align="center">...</div>) around a
table. In this section, we’ll look at three CSS methods for centering a fixed-width
page: the official CSS way, a way that works in Internet Explorer, and an effective
“hack.” All three examples have the effect shown in Figure 24-1.

419

Figure 24-1. Centering a fixed-width page element

In CSS, the proper way to center a fixed-width element is to specify a width for
the element that contains all the page’s contents (a div is the usual choice), and
then set the left and right margins to auto. According to the CSS visual formatting
model, this will have the net effect of centering the element in the initial
containing block.
divifpage {

width: 500px;

margin-left: auto;

margin-right: auto; }

This method works for all current standards-compliant browsers, including
Internet Explorer 6 for Windows when it is in “Standards” mode (see Chapter 2
about triggering standards-compliance mode in browsers using the DOCTYPE
declaration). It will not work with in IE 6/Windows in “Quirks” mode or any
earlier version.

An alternative, yet inelegant, solution is to center the whole page using the text-
align property on the body element. This technique ultimately amounts to a hack,
because it takes a text property and uses it to center any number of items.

The problem with this method is that because horizontal alignment is inherited,
all the text on the page will be centered in its element boxes. It is necessary to
override the inherited centering by also specifying left alignment for every descen-
dant of the body element. In this example, the universal selector (*) targets all
elements that appear within the body of the document and sets text-align to left.
Notice also that the margin-left and margin-right values have been replaced in
the example with the margin shorthand property. Although not necessary, this
reduces the amount of code and keeps the style sheet lean and mean.

body { text-align: center; }
body * {text-align: left; }
divifpage {

width: 500px;
margin: 0 auto; }

420 | Chapter24: (SSTechniques

The third centering method uses negative margins to effectively center a
containing block on the page for all browsers that support basic absolute posi-
tioning (including Netscape 4). First, the “page” (the name of the div in the
examples) is absolutely positioned so its left edge is 50% across the initial
containing block (i.e., the width of the browser window). Then, a negative left
margin is applied that pulls the page back to the left by half its width, thus
aligning the midpoint of the block with the midpoint of the window. And voila,
it’s centered. (This method is taken from The Zen of CSS Design by Dave Shea and
Molly E. Holzschlag [Peachpit Press]. It was originally used by Jon Hicks in his
Zen Garden submission.)

divifpage {
position: absolute;
left: 50%
width: 500px;
margin-left: -250px; } /* half the width measurement */

Two-Column Layouts

Multicolumn layouts that once required HTML tables are now achievable using
CSS alone. Column layouts can be done using floats or absolute positioning (see
Chapter 21 for details on both).

Of course, there are endless variations on two-column layouts in terms of page
components, measurements, backgrounds, and so forth. The examples in this
section represent just a few very basic possibilities. They reveal the general
strategy for approaching two-column designs and should serve as a good head
start toward implementing your own layouts. It should be noted, however, that
they are based on the assumption that the main content column will be longer
than the side columns. If your side columns are longer, it may be necessary to
make adjustments to the code examples shown here.

Using Floats

The markup and styles in this example produce a page with a header area, a main
column of content, a sidebar of links, and a footer for copyright information, as
shown in Figure 24-2.

This markup provides the necessary elements for the two-column layout. The
masthead and footer are optional and could be omitted for a minimal two-column
structure.

<div class="masthead">
Masthead and headline
</div>

<div class="main">
Main article
</div>>

<div class="sidebar">
list of links

Two-Column Layouts | 421

~
o
[a)
=
2.

=
=