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Foreword

Some years back, Tim Berners-Lee opined that we would know that the semantic web
was becoming a success when people stopped asking “why?” and started asking
“how?”—the same way they did with the World Wide Web many years earlier. With
this book, I finally feel comfortable saying we have turned that corner. This book is
about the “how”—it provides the tools a programmer needs to get going now!

This book’s approach to the semantic web is well matched to the community that is
most actively ready to start exploiting these new web technologies: programmers. More
than a decade ago, researchers such as myself started playing with some of the ideas
behind the semantic web, and from about 1999 to 2005, significant research funding
went into the field. The “noise” from all those researchers sometimes obscured the fact
that the practical technology spinning off of this research was not rocket science. In
fact, that technology, which you will read about in this book, has been maturing ex-
tremely well, and it is now becoming an important component of the web
developer’s toolkit.

In 2000 and 2001, articles about the semantic web started to appear in the memespace
of the Web. Around 2005, we started to see not just small companies in the space, but
some bigger players like Oracle embracing the technology. Late in 2006, John Markoff
wrote a New York Times article referring to “Web 3.0,” and more developers started to
take a serious look at the semantic web—and they liked what they saw. This developer
community has helped create the tools and technologies so that, here in 2009, we’re
starting to see a real take-off happening. Announcements of different uses of semantic
web and related technologies are appearing on an almost daily basis.

Semantic web technologies are being used by the Obama administration to provide
transparency to government data, a move also being explored by many other govern-
ments around the world. Google and Yahoo! now collect and process embedded RDFa
from web documents, and Microsoft recently discussed some of its semantic efforts in
language-based web applications. Web 3.0 applications are attracting the sorts of user
numbers that brought the early Web 2.0 apps to public attention, while a bunch of
innovative startups you may not have heard of yet are exploring how to bring semantic
technologies into an ever-widening range of web applications.

Xi
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With all this excitement, however, has come an obvious problem. There are now a lot
more people asking “how?”, but since this technology is just coming into its own, there
aren’t many people who know how to answer the question. Where the early semantic
web evangelists like me have gotten pretty good at explaining the vision to a wide range
of people, including database administrators, government employees, industrialists,
and academics, the questions being asked lately have been harder and harder to address.
When the CTO of a Fortune 500 company asks me why he should pay attention to the
technology, I can’t wait to answer. However, when his developer asks me how best to
find the appropriate objects for the predicates expressed in some embedded RDFa, or
how the bindings of a BNode in the OPTIONAL clause of a SPARQL query work, I
know that I'm soon going to be out of my depth. With the publication of this book,
however, I can now point to it and say, “The answer’s in there.” The hole in the liter-
ature about how to make the semantic web work from the programmer’s viewpoint

has finally been filled.

This book also addresses another important need. Given that the top of the semantic
web “layer cake” (see Chapter 11) is still in the research world, there’s been a lot of
confusion. On one hand, terms like “Linked Data” and “Web 3.0” are being used to
describe the immediately applicable and rapidly expanding technology that is needed
for web applications today. Meanwhile, people are also exploring the “semantic web
2.0” developments that will power the next generation. This book provides an easy
way for the reader to tell the “practical now” from the pie in the sky.

Finally, I like this book for another reason: it embraces a philosophy I've often referred
to as “a little Semantics goes a long way.” On the Web, a developer doesn’t need to be
a philosopher, an Al researcher, or a logician to understand how to make the semantic
web work for him. However, figuring out just how much knowledge is enough to get
going is a real challenge. In this book, Toby, Jamie, and Colin will show you “just
enough RDF” (Chapter 4) and “just enough OWL” (Chapter 6) to allow you, the pro-
grammer, to get in there and start hacking.

In short, the technologies are here, the tools are ready, and this book will show you
how to make it all work for you. So what are you waiting for? The future of the Web
is at your fingertips.

—1Jim Hendler
Albany, NY
March 2009

* http://'www.cs.rpi.edu/~hendler/LittleSemanticsWeb.html
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Preface

Like biological organisms, computers operate in complex, interconnected environ-
ments where each element of the system constrains the behavior of many others. Similar
to predator-prey relationships, applications and the data they consume tend to follow
co-evolutionary paths. Cumulative changes in an application eventually require
modification to the data structures on which it operates. Conversely, when enhance-
ments to a data source emerge, the structures for expressing the additional information
generally force applications to change. Unfortunately, because of the significant efforts
involved, this type of lock-step evolution tends to dampen enhancements in both
applications and data sources.

At their core, semantic technologies decouple applications from data through the use
of a simple, abstract model for knowledge representation. This model releases the mu-
tual constraints on applications and data, allowing both to evolve independently. And
by design, this degree of application-data independence promotes data portability. Any
application that understands the model can consume any data source using the model.
It is this level of data portability that underlies the notion of a machine-readable
semantic web.

The current Web works well because we as humans are very flexible data processors.
Whether the information on a web page is arranged as a table, an outline, or a multi-
page narrative, we are able to extract the important information and use it to guide
further knowledge discovery. However, this heterogeneity of information is indeci-
pherable to machines, and the wide range of representations for data on the Web only
compounds the problem. If the diversity of information available on the Web can be
encoded by content providers into semantic data structures, any application could
access and use the rich array of data we have come to rely on. In this vision, data is
seamlessly woven together from disparate sources, and new knowledge is derived from
the confluence. This is the vision of the semantic web.

Now, whether an application can do anything interesting with this wealth of data is
where you, the developer, come into the story! Semantic technologies allow you to
focus on the behavior of your applications instead of on the data processing. What does
this system do when given new data sources? How can it use enhanced data models?
How does the user experience improve when multiple data sources enrich one another?

xXiii
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Partitioning low-level data operations from knowledge utilization allows you to con-
centrate on what drives value in your application.

While the vision of the semantic web holds a great deal of promise, the real value of
this vision is the technology that it has spawned for making data more portable and
extensible. Whether you’re writing a simple “mashup” or maintaining a high-
performance enterprise solution, this book provides a standard, flexible approach for
integrating and future-proofing systems and data.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming the Semantic Web by Toby
Segaran, Colin Evans, and Jamie Taylor. Copyright 2009 Toby Segaran, Colin Evans,
and Jamie Taylor, 978-0-596-15381-6.”

xiv | Preface
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If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safar!

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596153816
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

The authors have established a website as a community resource for demonstrating
practical approaches to semantic technology. You can access this site at:

http://www.semprog.com

Preface | xv
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CHAPTER 1
Why Semantics?

Natural language is amazing. Without any effort you can ask a stranger how to find the
nearest coffee shop; you can share your knowledge of music and martini making with
your community of friends; you can go to the library, pick up a book, and learn from
an author who lived hundreds of years ago. It is hard to imagine a better API for
knowledge.

As a simple example, think about the following two sentences. Both are of the form
“subject-verb-object,” one of the simplest possible grammatical structures:

1. Colin enjoys mushrooms.

2. Mushrooms scare Jamie.

Each of these sentences represents a piece of information. The words “Jamie” and
“Colin” refer to specific people, the word “mushroom” refers to a class of organisms,
and the words “enjoys” and “scare” tell you the relationship between the person and
the organism. Because you know from previous experience what the verbs “enjoy” and
“scare” mean, and you’ve probably seen a mushroom before, you’re able to understand
the two sentences. And now that you’ve read them, you’re equipped with new knowl-
edge of the world. This is an example of semantics: symbols can refer to things or
concepts, and sequences of symbols convey meaning. You can now use the meaning
that you derived from the two sentences to answer simple questions such as “Who likes
mushrooms?”

Semantics is the process of communicating enough meaning to result in an action. A
sequence of symbols can be used to communicate meaning, and this communication
can then affect behavior. For example, as you read this page, you are integrating the
ideas expressed in these words with all that you already know. If the semantics of our
writing in this book is clear, it should help you create new software, solve hard prob-
lems, and do great things.

But this book isn’t about natural language; rather, it’s about using semantics to repre-
sent, combine, and share knowledge between communities of machines, and how to
write systems that act on that knowledge.

Download at Boykma.Com



If you have ever written a program that used even a single variable, then you have
programmed with semantics. As a programmer, you knew that this variable represented
a value, and you built your program to respond to changes in the variable. Hopefully
you also provided some comments in the code that explained what the variable repre-
sented and where it was used so other programmers could understand your code more
easily. This relationship between the value of the variable, the meaning of the value,
and the action of the program is important, but it’s also implicit in the design of the
system.

With a little work you can make the semantic relationships in your data explicit, and
program in a way that allows the behavior of your systems to change based on the
meaning of the data. With the semantics made explicit, other programs, even those not
written by you, can seamlessly use your data. Similarly, when you write programs that
understand semantic data, your programs can operate on datasets that you didn’t
anticipate when you designed your system.

Data Integration Across the Web

For applications that run on a single machine, documenting the semantics of variables
in comments and documentation is adequate. The only people who need to understand
the meaning of a variable are the programmers reading the source code. However, when
applications participate in larger networks, the meanings of the messages they exchange
need to be explicit.

Before the World Wide Web, when a user wanted to use an Internet application, he
would install a tool capable of handling specific types of network messages on his
machine. If a user wanted to locate users on other networks, he would install an
application capable of utilizing the FINGER protocol. If a user wanted to exchange
email across a network, he would install an application capable of utilizing the SMTP
protocol. Each tool understood the message formats and protocols specific to its task
and knew how best to display the information to the user.

Application developers would agree on the format of the messages and the behavior of
applications through the circulation of RFC (Request For Comments) documents.
These RFCs were written in English and made the semantics of the data contained in
the messages explicit, frequently walking the reader through sample data exchanges to
eliminate ambiguity. Over time, the developer community would refine the semantics
of the messages to improve the capabilities of the applications. RFCs would be amended
to reflect the new semantics, and application developers would update applications to
make use of the new messages. Eventually users would update the applications on their
machines and benefit from these new capabilities.

The emergence of the Web represented a radical change in how most people used the
Internet. The Web shielded users from having to think about the applications handling
the Internet messages. All you had to do was install a web browser on your machine,

4 | Chapter1: Why Semantics?
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and any application on the Web was at your command. For developers, the Web
provided a single, simple abstraction for delivering applications and made it possible
for an application running in a fixed location and maintained by a stable set of devel-
opers to service all Internet users.

Underlying the Web is a set of messages that developers of web infrastructure have
agreed to treat in a standard manner. It is well understood that when a web server
speaking HTTP receives a GET request, it should send back data corresponding to the
path portion of the request message. The semantics of these messages have been thor-
oughly defined by standards committees and documented in RFCs and W3C recom-
mendations. This standardized infrastructure allows web application developers to
operate behind a facade that separates them from the details of how application data
is transmitted between machines, and focus on how their applications appear to users.
Web application developers no longer need to coordinate with other developers about
message formats or how applications should behave in the presence of certain data.

While this facade has facilitated an explosion in applications available to users, the
decoupling of data transmission from applications has caused data to become com-
partmentalized into stovepipe systems, hidden behind web interfaces. The web facade
has, in effect, prevented much of the data fueling web applications from being shared
and integrated into other Internet applications.

Applications that combine data in new ways and allow users to make connections and
understand relationships that were previously hidden are very powerful and compel-
ling. These applications can be as simple as plotting crime statistics on a map or as
informative as showing which cuisines are available within walking distance of a film
that you want to watch. But currently the process to build these applications is highly
specialized and idiosyncratic, with each application using hand-tuned and ad-hoc
techniques for harvesting and integrating information due to the hidden nature of data
on the Web.

This book introduces repeatable approaches to these data integration problems
through the use of simple mechanisms that explicitly expose the semantics of data.
These mechanisms provide standardized ways for data to be published and combined,
allowing developers to focus on building data-rich applications rather than getting
stuck on problems of obtaining and integrating data.

Traditional Data-Modeling Methods

There are many ways to model data, some of them very well researched and mature.
In this book we explore new ways to model data, but we’re certainly not trying to
convince you that the old ways are wrong. There are many ways to think about data,
and it is important to have a wide range of tools available so you can pick the best one
for the task at hand.

Traditional Data-Modeling Methods | 5
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In this section, we’ll look at common methods that you’ve likely encountered and con-
sider their strengths and weaknesses when it comes to integrating data across the Web
and in the face of quickly changing requirements.

Tabular Data

The simplest kind of dataset, and one that almost everyone is familiar with, is tabular
data. Tabular data is any data kept in a table, such as an Excel spreadsheet or an HTML
table. Tabular data has the advantage of being very simple to read and manipulate.
Consider the restaurant data shown in Table 1-1.

Table 1-1. A table of restaurants

Restaurant Address Cuisine Price  Open

Deli Llama Peachtree Rd Deli $ Mon, Tue, Wed, Thu, Fri

Peking Inn Lake St Chinese $88  Thu, Fri, Sat

Thai Tanic Branch Dr Thai 8 Tue, Wed, Thu, Fri, Sat, Sun

Lord of the Fries Flower Ave Fast Food $ Tue, Wed, Thu, Fri, Sat, Sun
Marquis de Salade ~ Main St French $8§  Thu, Fri, Sat

Wok This Way Second St Chinese S Mon, Tue, Wed, Thu, Fri, Sat, Sun
Luna Sea Autumn Dr Seafood $8$  Tue, Thu, Fri, Sat

Pita Pan Thunder Rd Middle Eastern %% Mon, Tue, Wed, Thu, Fri, Sat, Sun
Award Weiners Dorfold Mews Fast Food S Mon, Tue, Wed, Thu, Fri, Sat
Lettuce Eat Rustic Parkway ~ Deli %S Mon, Tue, Wed, Thu, Fri

Data kept in a table is generally easy to display, sort, print, and edit. In fact, you might
not even think of data in an Excel spreadsheet as “modeled” at all, but the placement
of the data in rows and columns gives each piece a particular meaning. Unlike the
modeling methods we’ll see later, there’s not really much variation in the ways you
might look at tabular data. It’s often said that most “databases” used in business settings
are simply spreadsheets.

It’s interesting to note that there are semantics in a data table or spreadsheet: the row
and column in which you choose to put the data—for example, a restaurant’s cuisine—
explains what the name means to a person reading the data. The fact that Chinese is in
the row Peking Inn and in the column Cuisine tells us immediately that “Peking Inn
serves Chinese food.” You know this because you understand what restaurants and
cuisines are and because you’ve previously learned how to read a table. This may seem
like a trivial point, but it’s important to keep in mind as we explore different ways to
think about data.

6 | Chapter1: Why Semantics?
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Data stored this way has obvious limitations. Consider the last column, Open. You can
see that we’ve crammed a list of days of the week into a single column. This is fine if
all we’re planning to do is read the table, but it breaks down if we want to add more
information such as the open hours or nightly specials. In theory, it’s possible to add
this information in parentheses after the days, as shown in Table 1-2.

Table 1-2. Forcing too much data into a spreadsheet

Restaurant  Address Cuisine  Price  Open
DeliLlama PeachtreeRd  Deli $ Mon (11a—4p), Tue (11-4), Wed (11-4), Thu (11-7), Fri (11-8)
PekingInn  Lake St Chinese %99 Thu (5p-10p), Fri (5-11), Sat (5-11)

However, we can’t use this data in a spreadsheet program to find the restaurants that
will be open late on Friday night. Sorting on the columns simply doesn’t capture the
deeper meaning of the text we’ve entered. The program doesn’t understand that we’ve
used individual fields in the Open column to store multiple distinct information values.

The problems with spreadsheets are compounded when we have multiple spreadsheets
that make reference to the same data. For instance, if we have a spreadsheet of our
friends’ reviews of the restaurants listed earlier, there would be no easy way to search
across both documents to find restaurants near our homes that our friends recommend.
Although Excel experts can often use macros and lookup tables to get the spreadsheet
to approximate this desired behavior, the models are rigid, limited, and usually not
changeable by other users.

The need for a more sophisticated way to model data becomes obvious very quickly.

Relational Data

It’s almost impossible for a programmer to be unfamiliar with relational databases,
which are used in all kinds of applications in every industry. Products like Oracle DB,
MySQL, and PostgreSQL are very mature and are the result of years of research and
optimization. Relational databases are very fast and powerful tools for storing large sets
of data where the data model is well understood and the usage patterns are fairly
predictable.

Essentially, a relational database allows multiple tables to be joined in a standardized
way. To store our restaurant data, we might define a schema like the one shown in
Figure 1-1. This allows our restaurant data to be represented in a more useful and
flexible way, as shown in Figure 1-2.
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Restaurant Hours
D < RestaurantiD
Name Day
Address Open
CuisinelD Close
Cuisine
» 1D
Name
Figure 1-1. Simple restaurant schema
Restaurant
(] Mame Address Price  CulsineID
1 Dell Lllama Peachtree Rd % 1
Z Peking Inn_ Lake 5t $44 2
Culsine Hours
iD MName RestID Day Open Close
1 Dell 1 Mon 11 16
2 | Chinese i Tue ii 16
3 Thal 1 wed 11 16
4 Fast Food 1 Thu 11 19
1 Fri 11 20
2 |Thu 5 22
2 Fri 5 23
F] Sat 5 23

Figure 1-2. Relational restaurant data

Now, instead of sorting or filtering on a single column, we can do more sophisticated
queries. A query to find all the restaurants that will be open at 10 p.m. on a Friday can
be expressed using SQL like this:

SELECT Restaurant.Name, Cuisine.Name, Hours.Open, Hours.Close
FROM Restaurant, Cuisine, Hours

WHERE Restaurant.CuisineID=Cuisine.ID

AND Restaurant.ID=Hours.RestaurantID

AND Hours.Day="Fri"

AND Hours.Open<22

AND Hours.Close>22
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which gives a result like this:

Restaurant.Name | Cuisine.Name | Hours.Open | Hours.Close |

Peking Inn |  Chinese | 17 | 23 |

Notice that in our relational data model, the semantics of the data have been made
more explicit. The meanings of the values are actually described by the schema: some-
one looking at the tables can immediately see that there are several types of entities
modeled—a type called “restaurant” and a type called “days”—and that they have
specific relationships between them. Furthermore, even though the database doesn’t
really know what a “restaurant” is, it can respond to requests to see all the restaurants
with given properties. Each datum is labeled with what it means by virtue of the table
and column that it’s in.

Evolving and Refactoring Schemas

The previous section mentioned that relational databases are great for datasets where
the data model is understood up front and there is some understanding of how the data
will be used. Many applications, such as product catalogs or contact lists, lend them-
selves well to relational schemas, since there are generally a fixed set of fields and a set
of fairly typical usage patterns.

However, as we’ve been discussing, data integration across the Web is characterized
by rapidly changing types of data, and programmers can never quite know what will
be available and how people might want to use it. As a simple example, let’s assume
we have our restaurant database up and running, and then we receive a new database
of bars with additional information not in our restaurant schema, as shown in Table 1-3.

Table 1-3. A new dataset of bars

Bar Address DJ  Specialty drink
The Bitter End 14th Ave No  Beer

Peking Inn Lake St No  Scorpion Bowl
Hammer Time WildcatDr ~ Yes  Hennessey

Marquis de Salade ~ Main St Yes  Martini

Of course, many restaurants also have bars, and as it gets later in the evening, they may
stop serving food entirely and only serve drinks. The table of bars in this case shows
that, in addition to being a French restaurant, Marquis de Salade is also a bar with a
DJ. The table also shows specialty drinks, which gives us additional information about
Marquis. As of right now, these databases are separate, but it’s certainly possible that
someone might want to query across them—for example, to find a place to get a French
meal and stay later for martinis.
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So how do we update our database so that it supports the new bar data? Well, we could
just link the tables with another table, which has the upside of not forcing us to change
the existing structure. Figure 1-3 shows a database structure with an additional table,
RB_Link, that links the existing tables, telling you when a restaurant and a bar are
actually the same place.

Restaurant RB_Link Bar

D < RestaurantiD ID

Name BarlD i Name

Address Address

CuisinelD D)?
Specialty

Figure 1-3. Linking bars to the existing schema

This works, and certainly makes our query possible, but it introduces a problem: there
are now two names and addresses in our database for establishments that are both bars
and restaurants, and just a link telling us that they’re the same place. If you want to
query by address, you need to look at both tables. Also, the type of food served is
attached to the restaurant type, but not to its bar type. Adding and updating data is
much more complicated.

Perhaps a more accurate way to model this would be to have a Venue table with bar
and restaurant types separated out, like the one shown in Figure 1-4.

Bar
D
VenuelD
DJ?
Hours Venue Spedialty
VenuelD » 1D <
Day Name S R Restaurant
Open Address
Close D
VenuelD
CuisinelD

Figure 1-4. Normalized schema that separates a venue from its purposes

10 | Chapter1: Why Semantics?

Download at Boykma.Com



This seems to solve our issues, but remember that all the existing data is still in our old
data model and needs to be transformed to the new data model. This process is called
schema migration and is often a huge headache. Not only does the data have to be
migrated, but all the queries and dependent code that was written assuming a certain
table structure have to be changed as well. If we have built a restaurant website on top
of our old schema, then we need to figure out how to update all of our existing code,
queries, and the database without imposing significant downtime on the website. A
whole discipline of software engineering has emerged to deal with these issues, using
techniques like stored database procedures and object-relational mapping (ORM) lay-
ers to try to decouple the underlying schema from the business-logic layer and lowering
the cost of schema changes. These techniques are useful, but they impose their own
complexities and problems as well.

It’s easy to imagine that, as our restaurant application matures, these venues could also
have all kinds of other uses such as a live music hall or a rental space for events. When
dealing with data integration across the entire Web, or even in smaller environments
that are constantly facing new datasets, migrating the schema each time a new type of
data is encountered is simply not tractable. Too often, people have to resort to manual
lookups, overly convoluted linked spreadsheets, or just setting the data aside until they
can decide what to do with it.

Very Complicated Schemas

In addition to having to migrate as the data evolves, another problem one runs into
with relational databases is that the schemas can get incredibly complicated when
dealing with many different kinds of data. For example, Figure 1-5 shows a small section
of the schema for a Customer Relationship Management (CRM) product.

A CRM system is used to store information about customer leads and relationships
with current customers. This is obviously a big application, but to put things in per-
spective, itis a very small piece of what is required to run a business. An ERP (Enterprise
Resource Planning) application, such as SAP, can cover many more of the data needs
of a large business. However, the schemas for ERP applications are so inaccessible that
there is a whole industry of consulting companies that exclusively deal with them.

The complexity is barely manageable in well-understood industry domains like CRM
and ERP, but it becomes even worse in rapidly evolving fields such as biotechnology
and international development. Instead of a few long lists of well-characterized data,
we instead have hundreds or thousands of datasets, all of which talk about very different
things. Trying to normalize these to a single schema is a labor-intensive and painful
process.
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Figure 1-5. Example of a big schema

Getting It Right the First Time

This brings us to the question of whether it’s possible to define a schema so that it’s
flexible enough to handle a wide variety of ever-changing types of data, while still
maintaining a certain level of readability. Maybe the schema could be designed to be
open to new venue purposes and offer custom fields for them, something like Fig-
ure 1-6. The schema has lost the concepts of bars and restaurants entirely, now con-
taining just a list of venues and custom properties for them.
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Venue

D
Name
Address

A

Properties

VenuelD
FieldID
Value

v

Field

ID
Name

Figure 1-6. Venue schema with completely custom properties

This is not usually recommended, as it gets rid of a lot of the normalization that was
possible before and will likely degrade the performance of the database. However, it
allows us to express the data in a way that allows for new venue purposes to come
along, an example of which is shown in Figure 1-7. Notice how the Properties table

contains all the custom information for each of the venues.

\Venue

:ID

Addrass

1 Dell Llama Peachtree Rd
2 Peking Inn Lake St
3 Thal Tanlc Branch Dr

Properties
VenualD FieldID Value

Dell

%

Chinese

$%%

Scorplen Bowl
Mo

L A
PP N S

Fleld
iD

Name

Culsine

Price

Spedalty Cocktall
0i?

E

Figure 1-7. Venue data in more flexible form

This means that the application can be extended to include, for example, concert ven-
ues. Maybe we’re visiting a city and looking for a place to stay close to cheap food and
cool concert venues. We could create new fields in the Field table, and then add custom
properties to any of the existing venues. Figure 1-8 shows an example where we’ve
added the information that Thai Tanic has live jazz music. There are two extra fields,
“Live Music?” and “Music Genre”, and two more rows in the Properties table.
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'
\Venue Properties

1ID Name Address VenueID FleldID Value

1 Dell Lllama Peachtree Rd 1 Dell

2 Peking Inn |Lake St 2%

3 Thal Tanlc__ Branch Dr 1 Chinese
2444
3 Scorplon Bowl

L L R R R R

Fleld

D Name

Culsine

Price

Speclalty Cocktall
Di7?

Live Music

Muslc Genre

[= R0 ¥ N P N

Figure 1-8. Adding a concert venue without changing the schema

This type of key/value schema extension is nothing new, and many people stumble into
this kind of representation when they have sparse relationships to represent. In fact,
many “customizable” data applications such as Saleforce.com represent data this way
internally. However, because this type of representation turns the database tables “on
their sides,” database performance frequently suffers, and therefore it is generally not
considered a good idea (i.e., best practice). We’ve also lost a lot of the normalization
we were able to do before, because we’ve flattened everything to key/value pairs.

Semantic Relationships

Even though it might not be considered a best practice, let’s continue with this pro-
gression and see what happens. Why not move all the relationships expressed in stand-
ard table rows into this parameterized key/value format? From this perspective, the
venue name and address are just properties of the venue, so let’s move the columns in
the Venue table into key/value rows in the Properties table. Figure 1-9 shows what this
might look like.
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Properties Field :

VenuelD FieldID Value ip Name 1
1 1 Deli 1 Cuisine '
1 24 2 Price |
1 7 Dell Lilama 3 Specialty Codktall
1 8 Peachtree Rd 4 DJ? :
2 1 Chinese 5 Live Music
2 2/55% 6 Music Genre |
2 3 Scorpion Bowl 7 Mame !
2 4 No B Address :
2 7 Peking Inn .
2 B Lake St I
3 5 Yes i
3 6 lazz :
3 7 Thal Tanlc I
3 B Branch Dr !

Figure 1-9. Parameterized venues

That’s interesting, but the relationship between the Properties table and the Field table
is still only known through the knowledge trapped in the logic of our join query. Let’s
make that knowledge explicit by preforming the join and displaying the result set in

the same parameterized way (Table 1-4).

Table 1-4. Fully parameterized venues

Properties

VenuelD Field Value

1 Cuisine Deli

1 Price $

1 Name DeliLlama

1 Address Peachtree Rd
2 Cuisine Chinese

2 Price $%%

2 Specialty Cocktail ~ Scorpion Bowl
2 DJ)? No

2 Name Peking Inn

2 Address Lake St

3 Live Music? Yes

3 Music Genre Jazz

3 Name Thai Tanic

3 Address Branch Dr
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Now each datum is described alongside the property that defines it. In doing this, we’ve
taken the semantic relationships that previously were inferred from the table and col-
umn and made them data in the table. This is the essence of semantic data modeling:
flexible schemas where the relationships are described by the data itself. In the
remainder of this book, you’ll see how you can move all of the semantics into the data.
We'll show you how to represent data in this manner, and we’ll introduce tools espe-
cially designed for storing, visualizing, and querying semantic data.

Metadata Is Data

One of the challenges of using someone else’s relational data is understanding how the
various tables relate to one another. This information—the data about the data repre-
sentation—is often called metadata and represents knowledge about how the data can
be used. This knowledge is generally represented explicitly in the data definition
through foreign key relationships, or implicitly in the logic of the queries. Too fre-
quently, data is archived, published, or shared without this critical metadata. While
rediscovering these relationships can be an exciting exercise for the user, schemas need
not become very large before metadata recovery becomes nearly impossible.

In our earlier example, parameterizing the venue data made the model extremely flex-
ible. When we learn of a new characteristic for a venue, we simply need to add a new
row to the table, even if we’ve never seen that characteristic before. Parameterizing the
data also made it trivial to use. You need very little knowledge about the organization
of the data to make use of it. Once you know that rows sharing identical VenuelDs
relate to one another, you can learn everything there is to know about a venue by
selecting all rows with the same VenuelD. From this perspective, we can think of the
parameterized venue data as “self-describing data.” The metadata of the relational
schema, describing which columns go together to describe a single entity, has become
part of the data itself.

Building for the Unexpected

By packing the data and metadata together in a single representation, we have not only
made the schema future-proof, we have also isolated our applications from “knowing”
too much about the form of the data. The only thing our application needs to know
about the data is that a venue will have an ID in the first column, the properties of the
venue appear in the second column, and the third column represents the value of each
property. When we add a totally new property to a venue, the application can either
choose to ignore the property or handle it in a standard manner.

Because our data is represented in a flexible model, it is easy for someone else to inte-
grate information about espresso machine locations, allowing our application to cover
not only restaurants and bars, but also coffee shops, book stores, and gas stations (at
least in the greater Seattle area). A well-designed application should be able to
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seamlessly integrate new semantic data, and semantic datasets should be able to work
with a wide variety of applications.

Many content and image creation tools now support XMP (Extensible Metadata Plat-
form) data for tracking information about the author and licensing of creative content.
The XMP standard, developed by Adobe Systems, provides a standard set of schemas
and allows users to extend the data model in exactly the way we extended the venue
data. By using a self-describing model, the tools used to inspect content for XMP data
need not change, even if the types of content change significantly in the future. Since
image creation tools are fundamentally for creative expression, it is essential that users
not be limited to a fixed set of descriptive fields.

“Perpetual Beta”

It’s clear that the Web changed the economics of application development. The web
facade greatly reduced coordination costs by cutting applications free from the com-
plexity of managing low-level network data messages. With a single application capable
of servicing all the users on the Internet, the software development deadlines imposed
by manufacturing lead time and channel distribution are quaint memories for most of
us. Applications are now free to improve on a continuous and independent basis.
Development cycles that update application code on a monthly, weekly, or even daily
basis are no longer considered unusual. The phrase “perpetual beta” reflects this sen-
timent that software is never “frozen” on the Web. As applications continually improve,
continuous release processes allow users to instantaneously benefit.

Compressed release cycles are a part of staying competitive at large portal sites. For
example, Yahoo! has a wide variety of media sites covering topics such as health, kids,
travel, and movies. Content is continually changing as news breaks, editorial processes
complete, and users annotate information. In an effort to reduce the time necessary to
produce specialized websites and enable new types of personalization and search,
Yahoo! has begun to add semantic metadata to their content using extensible schemas
not unlike the examples developed here. As data and metadata become one, new
applications can add their own annotations without modification to the underlying
schema. This freedom to extend the existing metadata enables constantly evolving fea-
tures without affecting legacy applications, and it allows one application to benefit from
the information provided by another.

This shift to continually improving and evolving applications has been accompanied
by a greater interest in what were previously considered “scripting” languages such as
Python, Perl, and Ruby. The ease of getting something up and running with minimal
upfront design and the ease of quick iterations to add new features gives these languages
an advantage over heavier static languages that were designed for more traditional
approaches to software engineering. However, most frameworks that use these lan-
guages still rely on relational databases for storage, and thus still require upfront data
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modeling and commitment to a schema that may not support the new data sources
that future application features require.

So, while perpetual beta is a great benefits to users, rapid development cycles can be a
challenge for data management. As new application features evolve, data schemas are
frequently forced to evolve as well. As we will see throughout the remainder of this
book, flexible semantic data structures and the application patterns that work with
them are well designed for life in a world of perpetual beta.
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CHAPTER 2
Expressing Meaning

In the previous chapter we showed you a simple yet flexible data structure for describing
restaurants, bars, and music venues. In this chapter we will develop some code to
efficiently handle these types of data structures. But before we start working on the
code, let’s see if we can make our data structure a bit more robust.

In its current form, our “fully parameterized venue” table allows us to represent arbi-
trary facts about food and music venues. But why limit the table to describing just these
kinds of items? There is nothing specific about the form of the table that restricts it to
food and music venues, and we should be able to represent facts about other entities
in this same three-column format.

In fact, this three-column format is known as a triple, and it forms the fundamental
building block of semantic representations. Each triple is composed of a subject, a
predicate, and an object. You can think of triples as representing simple linguistic
statements, with each element corresponding to a piece of grammar that would be used
to diagram a short sentence (see Figure 2-1).

RidleyScott dire_cted Blade Runner

v v v
subject predicate object

Figure 2-1. Sentence diagram showing a subject-predicate-object relationship

Generally, the subject in a triple corresponds to an entity—a “thing” for which we have
a conceptual class. People, places, and other concrete objects are entities, as are less
concrete things like periods of time and ideas. Predicates are a property of the entity to
which they are attached. A person’s name or birth date or a business’s stock symbol or
mailing address are all examples of predicates. Objects fall into two classes: entities
that can be the subject in other triples, and literal values such as strings or numbers.

Multiple triples can be tied together by using the same subjects and objects in different
triples, and as we assemble these chains of relationships, they form a directed graph.
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Directed graphs are well-known data structures in computer science and mathematics,
and we’ll be using them to represent our data.

Let’s apply our graph model to our venue data by relaxing the meaning of the first
column and asserting that IDs can represent any entity. We can then add neighborhood
information to the same table as our restaurant data (see Table 2-1).

Table 2-1. Extending the Venue table to include neighborhoods

Subject  Predicate Object

S1 Cuisine “Deli”

S1 Price $

S1 Name “Deli Llama”
S1 Address “Peachtree Rd”
S2 Cuisine “Chinese”

S2 Price 898"

S2 Specialty Cocktail ~ “Scorpion Bowl”
S2 DJ? “No”

S2 Name “Peking Inn”
S2 Address “Lake St”

S3 Live Music? “Yes”

S3 Music Genre “Jazz"

S3 Name “Thai Tanic”

S3 Address “Branch Dr”

S4 Name “North Beach”
S4 Contained-by “San Francisco”
S5 Name “SOMA”

) Contained-by “San Francisco”
S6 Name “Gourmet Ghetto”
S6 Contained-by “Berkeley”

Now we have venues and neighborhoods represented using the same model, but noth-
ing connects them. Since objects in one triple can be subjects in another triple, we can
add assertions that specify which neighborhood each venue is in (see Table 2-2).

Table 2-2. The triples that connect venues to neighborhoods

Subject  Predicate Object
S1 HasLocation 54
Y Has Location ~ S6
S3 Has Location S5

20 | Chapter2: Expressing Meaning

Download at Boykma.Com



Figure 2-2 is a diagram of some of our triples structured as a graph, with subjects and
objects as nodes and predicates as directed arcs.

v _.--‘_..--'--"'.Coﬂfamed-by
....................... fo
"L North
Beach

Figure 2-2. A graph of triples showing information about a restaurant

Now, by following the chain of assertions, we can determine that it is possible to eat
cheaply in San Francisco. You just need to know where to look.

An Example: Movie Data

We can use this triple model to build a simple representation of a movie. Let’s start by
representing the title of the movie Blade Runner with the triple (blade_runner name
"Blade Runner"). You can think of this triple as an arc representing the predicate called
name, connecting the subject blade_runner to an object, in this case a string, representing
the value “Blade Runner” (see Figure 2-3).

Figure 2-3. A triple describing the title of the movie Blade Runner
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Now let’s add the release date of the film. This can be done with another triple
(blade_runner release_date "June 25, 1982"). We use the same ID blade_runner, which
indicates that we’re referring to the same subject when making these statements. It is
by using the same IDs in subjects and objects that a graph is built—otherwise, we would
have a bunch of disconnected facts and no way of knowing that they concern the same
entities.

Next, we want to assert that Ridley Scott directed the movie. The simplest way to do
this would be to add the triple (blade_runner directed by "Ridley Scott"). There is a
problem with this approach, though—we haven’t assigned Ridley Scott an ID, so he
can’t be the source of new assertions, and we can’t connect him to other movies he has
directed. Additionally, if there happen to be other people named “Ridley Scott”, we
won’t be able to distinguish them by name alone.

Ridley Scott is a person and a director, among other things, and that definitely qualifies
as an entity. If we give him the ID ridley scott, we can assert some facts about him:
(ridley scott name "Ridley Scott"), and (blade runner directed by ridley scott).
Notice that we reused the name property from earlier. Both entities, “Blade Runner”
and “Ridley Scott”, have names, so it makes sense to reuse the name property as long as
it is consistent with other uses. Notice also that we asserted a triple that connected two
entities, instead of just recording a literal value. See Figure 2-4.

blade_runner

directed_by
i June 25, 1982

Ridley Scott

Figure 2-4. A graph describing information about the movie Blade Runner
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Building a Simple Triplestore

In this section we will build a simple, cross-indexed triplestore. Since there are many
excellent semantic toolkits available (which we will explore in more detail in later
chapters), there is really no need to write a triplestore yourself. But by working through
the scaled-down code in this section, you will gain a better understanding of how these
systems work.

Our system will use a common triplestore design: cross-indexing the subject, predicate,
and object in three different permutations so that all triple queries can be answered
through lookups. All the code in this section is available to download at http://semprog
.com/psw/chapter2/simpletriple.py. You can either download the code and just read the
section to understand what it’s doing, or you can work through the tutorial to create
the same file.

The examples in this section and throughout the book are in Python. We chose to use
Python because it’s a very simple language to read and understand, it’s concise enough
to fit easily into short code blocks, and it has a number of useful toolkits for semantic
web programming. The code itself is fairly simple, so programmers of other languages
should be able to translate the examples into the language of their choice.

Indexes

To begin with, create a file called simplegraph.py. The first thing we’ll do is create a
class that will be our triplestore and add an initialization method that creates the three
indexes:

class SimpleGraph:
def _init (self):

self. spo = {}
self. pos = {}
self. osp = {}

Each of the three indexes holds a different permutation of each triple that is stored in
the graph. The name of the index indicates the ordering of the terms in the index (i.e.,
the pos index stores the predicate, then the object, and then the subject, in that order).
The index is structured using a dictionary containing dictionaries that in turn contain
sets, with the first dictionary keyed off of the first term, the second dictionary keyed
off of the second term, and the set containing the third terms for the index. For example,
the pos index could be instantiated with a new triple like so:

self. pos = {predicate:{object:set([subject])}}
A query for all triples with a specific predicate and object could be answered like so:

for subject in self. pos[predicate][object]: yield (subject, predicate, object)

Each triple is represented in each index using a different permutation, and this allows
any query across the triples to be answered simply by iterating over a single index.
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The add and remove Methods

The add method permutes the subject, predicate, and object to match the ordering of
each index:

def add(self, (sub, pred, obj)):
self. addToIndex(self. spo, sub, pred, obj)
self. addToIndex(self. pos, pred, obj, sub)
self. addToIndex(self. osp, obj, sub, pred)

The _addToIndex method adds the terms to the index, creating a dictionary and set if
the terms are not already in the index:

def _addToIndex(self, index, a, b, c):
if a not in index: index[a] = {b:set([c])}
else:
if b not in index[a]: index[a][b] = set([c])
else: index[a][b].add(c)

The remove method finds all triples that match a pattern, permutes them, and removes
them from each index:

def remove(self, (sub, pred, obj)):
triples = list(self.triples((sub, pred, obj)))
for (delSub, delPred, delObj) in triples:
self._removeFromIndex(self. spo, delSub, delPred, delObj)
self._removeFromIndex(self. pos, delPred, delObj, delSub)
self. removeFromIndex(self. osp, delObj, delSub, delPred)

The _removeFromIndex walks down the index, cleaning up empty intermediate diction-
aries and sets while removing the terms of the triple:

def _removeFromIndex(self, index, a, b, c):
try:
bs = index[a]
cset = bs[b]
cset.remove(c)
if len(cset) == 0: del bs[b]
if len(bs) == 0: del index[a]
# KeyErrors occur if a term was missing, which means that it wasn't a
# valid delete:
except KeyError:
pass

Finally, we’ll add methods for loading and saving the triples in the graph to comma-
separated files. Make sure to import the csv module at the top of your file:

def load(self, filename):

f = open(filename, "rb")

reader = csv.reader(f)

for sub, pred, obj in reader:
sub = unicode(sub, "UTF-8")
pred = unicode(pred, "UTF-8")
obj = unicode(obj, "UTF-8")
self.add((sub, pred, obj))

f.close()
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def save(self, filename):
f = open(filename, "wb")
writer = csv.writer(f)
for sub, pred, obj in self.triples((None, None, None)):
writer.writerow([sub.encode("UTF-8"), pred.encode("UTF-8"), \
obj.encode("UTF-8")])
f.close()

Querying

The basic query method takes a (subject, predicate, object) pattern and returns all
triples that match the pattern. Terms in the triple that are set to None are treated as
wildcards. The triples method determines which index to use based on which terms
of the triple are wildcarded, and then iterates over the appropriate index, yielding triples
that match the pattern:

def triples(self, (sub, pred, obj)):
# check which terms are present in order to use the correct index:
try:
if sub != None:
if pred != None:
# sub pred obj
if obj != None:
if obj in self. spo[sub][pred]:
yield (sub, pred, obj)
# sub pred None
else:
for retObj in self. spo[sub][pred]:
yield (sub, pred, retObj)
else:
# sub None obj
if obj != None:
for retPred in self. osp[obj][sub]:
yield (sub, retPred, obj)
# sub None None
else:
for retPred, objSet in self. spo[sub].items():
for retObj in objSet:
yield (sub, retPred, retObj)
else:
if pred != None:
# None pred obj
if obj != None:
for retSub in self. pos[pred][obj]:
yield (retSub, pred, obj)
# None pred None
else:
for retObj, subSet in self. pos[pred].items():
for retSub in subSet:
yield (retSub, pred, retObj)
else:
# None None obj
if obj != None:

Building a Simple Triplestore | 25

Download at Boykma.Com



for retSub, predSet in self. osp[obj].items():
for retPred in predSet:
yield (retSub, retPred, obj)
# None None None
else:
for retSub, predSet in self. spo.items():
for retPred, objSet in predSet.items():
for retObj in objSet:
yield (retSub, retPred, retObj)
# KeyErrors occur if a query term wasn't in the index,
# so we yield nothing:
except KeyError:
pass

Now, we’ll add a convenience method for querying a single value of a single triple:

def value(self, sub=None, pred=None, obj=None):
for retSub, retPred, retObj in self.triples((sub, pred, obj)):
if sub is None: return retSub
if pred is None: return retPred
if obj is None: return retObj
break
return None

That’s all you need for a basic in-memory triplestore. Although you’ll see more
sophisticated implementations throughout this book, this code is sufficient for storing
and querying all kinds of semantic information. Because of the indexing, the perform-
ance will be perfectly acceptable for tens of thousands of triples.

Launch a Python prompt to try it out:

>>> from simplegraph import SimpleGraph

>>> movie_graph=SimpleGraph()

>>> movie_graph.add(('blade_runner', 'name','Blade Runner'))

>>> movie_graph.add(('blade_runner','directed by','ridley scott'))
>>> movie_graph.add(('ridley scott', 'name','Ridley Scott'))

>>> list(movie_graph.triples(('blade_runner','directed by',None)))
[('blade_runner', 'directed by', 'ridley scott')]

>>> list(movie_graph.triples((None, 'name',None)))

[('ridley scott', 'name', 'Ridley Scott'), ('blade_runner', 'name', 'Blade Runner')]
>>> movie_graph.value('blade_runner','directed_by',None)

ridley scott

Merging Graphs

One of the marvelous properties of using graphs to model information is that if you
have two separate graphs with a consistent system of identifiers for subjects and objects,
you can merge the two graphs with no effort. This is because nodes and relationships
in graphs are first-class entities, and each triple can stand on its own as a piece of
meaningful data. Additionally, if a triple is in both graphs, the two triples merge
together transparently, because they are identical. Figures 2-5 and 2-6 illustrate the ease
of merging arbitrary datasets.
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In the case of our simple graph, this example will merge two graphs into a single third
graph:

>>> graphl = SimpleGraph()
>>> graph2 = SimpleGraph()
... load data into the graphs ...
>>> mergegraph = SimpleGraph()
>>> for sub, pred, obj in graphi:
. mergegraph.triples((None, None, None)).add((sub, pred, obj))
>>> for sub, pred, obj in graph2:
mergegraph.triples((None, None, None)).add((sub, pred, obj))

Adding and Querying Movie Data

Now we’re going to load a large set of movies, actors, and directors. The movies.csv file
available at http://semprog.com/psw/chapter2/movies.csv contains over 20,000 movies
and is taken from Freebase.com. The predicates that we’ll be using are name,
directed_by for directors, and starring for actors. The IDs for all of the entities are the
internal IDs used at Freebase.com. Here’s how we load it into a graph:

>>> import simplegraph
>>> graph = simplegraph.SimpleGraph()
>>> graph.load("movies.csv")

Next, we’ll find the names of all the actors in the movie Blade Runner. We do this by
first finding the ID for the movie named “Blade Runner”, then finding the IDs of all the
actors in the movie, and finally looking up the names of those actors:

>>> bladerunnerId = graph.value(None, "name", "Blade Runner")

>>> print bladerunnerId

/en/blade_runner

>>> bladerunnerActorIds = [actorId for _, _, actorId in \

... graph.triples((bladerunnerId, "starring", None))]

>>> print bladerunnerActorIds

[u'/en/edward_james olmos', u'/en/william_sanderson', u'/en/joanna_cassidy',
u'/en/harrison_ford', u'/en/rutger_hauer', u'/en/daryl _hannah', ...

>>> [graph.value(actorId, "name", None) for actorId in bladerunnerActorIds]
[u'Edward James Olmos',u'William Sanderson', u'Joanna Cassidy', u'Harrison Ford',
u'Rutger Hauer', u'Daryl Hannah', ...

Next, we’ll explore what other movies Harrison Ford has been in besides Blade Runner:

>>> harrisonfordId = graph.value(None, "name", "Harrison Ford")

>>> [graph.value(movieId, "name", None) for movield, _, _ in \

... graph.triples((None, "starring", harrisonfordId))]

[u'Star Wars Episode IV: A New Hope', u'American Graffiti',

u'The Fugitive', u'The Conversation', u'Clear and Present Danger',...

Using Python set intersection, we can find all of the movies in which Harrison Ford has
acted that were directed by Steven Spielberg:

>>> spielbergld = graph.value(None, "name", "Steven Spielberg")
>>> spielbergMovields = set([movield for movield, , in \

... graph.triples((None, "directed by", spielbergId))])
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>>> harrisonfordId = graph.value(None, "name", "Harrison Ford")
>>> harrisonfordMovields = set([movield for movield, _, in \

... graph.triples((None, "starring", harrisonfordId))])
>>> [graph.value(movield, "name", None) for movieId in \
. spielbergMovields.intersection(harrisonfordMovields)]
[u'Raiders of the Lost Ark', u'Indiana Jones and the Kingdom of the Crystal Skull',
u'Indiana Jones and the Last Crusade', u'Indiana Jones and the Temple of Doom']

It’s a little tedious to write code just to do queries like that, so in the next chapter we’ll
show you how to build a much more sophisticated query language that can filter and
retrieve more complicated queries. In the meantime, let’s look at a few more graph
examples.

Other Examples

Now that you’ve learned how to represent data as a graph, and worked through an
example with movie data, we’ll look at some other types of data and see how they can
also be represented as graphs. This section aims to show that graph representations
can be used for a wide variety of purposes. We’ll specifically take you through examples
in which the different kinds of information could easily grow.

We’ll look at data about places, celebrities, and businesses. In each case, we’ll explore
ways to represent the data in a graph and provide some data for you to download. All
these triples were generated from Freebase.com.

Places

Places are particularly interesting because there is so much data about cities and coun-
tries available from various sources. Places also provide context for many things, such
as news stories or biographical information, so it’s easy to imagine wanting to link other
datasets into comprehensive information about locations. Places can be difficult to
model, however, in part because of the wide variety of types of data available, and also
because there’s no clear way to define them—a city’s name can refer to its metro area
or just to its limits, and concepts like counties, states, parishes, neighborhoods, and
provinces vary throughout the world.

Figure 2-7 shows a graph centered around “San Francisco”. You can see that San Fran-
cisco is in California, and California is in the United States. By structuring the places
as a graphical hierarchy we avoid the complications of defining a city as being in a state,
which is true in some places but not in others. We also have the option to add more
information, such as neighborhoods, to the hierarchy if it becomes available. The figure
shows various information about San Francisco through relationships to people and
numbers and also the city’s geolocation (longitude and latitude), which is important
for mapping applications and distance calculations.
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Figure 2-7. An example of location data expressed as a graph

You can download a file containing triples about places from http://semprog.com/psw/
chapter2/place_triples.txt. In a Python session, load it up and try some simple queries:

>>> from simplegraph import SimpleGraph
>>> placegraph=SimpleGraph()
>>> placegraph.loadfile("place triples.txt")

This pattern returns everything we know about San Francisco:

non

>>> for t in placegraph.triples((None,"name","San Francisco")):
print t

(u'San_Francisco California', 'name', 'San Francisco')
>>> for t in placegraph.triples(("San_Francisco_California",None,None)):
print t

('San_Francisco _California', u'name', u'San Francisco')
('San_Francisco_California', u'inside', u'California')
('San_Francisco_California', u'longitude', u'-122.4183")
('San_Francisco California', u'latitude', u'37.775")
('San_Francisco_California', u'mayor', u'Gavin Newsom')
('San_Francisco_California', u'population', u'744042")
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This pattern shows all the mayors in the graph:

>>> for t in placegraph.triples((None, 'mayor"',None)):
print t

(u'Aliso Viejo California', 'mayor', u'Donald Garcia')
(u'San_Francisco California', 'mayor', u'Gavin Newsom')
(u'Hillsdale Michigan', 'mayor', u'Michael Sessions')
(u'San_Francisco California', 'mayor', u'John Shelley')
(u'Alameda_California', 'mayor', u'lLena Tam')
(u'Stuttgart Germany', 'mayor', u'Manfred Rommel')
(u'Athens_Greece', 'mayor', u'Dora Bakoyannis')
(u'Portsmouth New Hampshire', 'mayor', u'John Blalock')
(u'Cleveland Ohio', 'mayor', u'Newton D. Baker')
(u'Anaheim California', 'mayor', u'Curt Pringle')
(u'San_Jose California', 'mayor', u'Norman Mineta')
(u'Chicago Illinois', 'mayor', u'Richard M. Daley')

We can also try something a little bit more sophisticated by using a loop to get all the
cities in California and then getting their mayors:
>>> cal _cities=[p[0] for p in placegraph.triples((None,'inside','California'))]
>>> for city in cal_cities:
for t in placegraph.triples((city, 'mayor',None)):
print t

(u'Aliso_Viejo_California', 'mayor', u'William Phillips')
(u'Chula_vista California', 'mayor', u'Cheryl Cox")
(u'San_Jose _California', 'mayor', u'Norman Mineta')
(u'Fontana_California', 'mayor', u'Mark Nuaimi')
(u'Half_Moon_Bay California', 'mayor', u'John Muller')
(u'Banning_California', 'mayor', u'Brenda Salas')
(u'Bakersfield_California', 'mayor', u'Harvey Hall')
(u'Adelanto_California', 'mayor', u'Charley B. Glasper')
(u'Fresno_California', 'mayor', u'Alan Autry')

(etc...)

This is a simple example of joining data in multiple steps. As mentioned previously,
the next chapter will show you how to build a simple graph-query language to do all
of this in one step.

Celebrities

Our next example is a fun one: celebrities. The wonderful thing about famous people
is that other people are always talking about what they’re doing, particularly when what
they’re doing is unexpected. For example, take a look at the graph around the ever-
controversial Britney Spears, shown in Figure 2-8.
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Figure 2-8. An example of celebrity data expressed as a graph

Even from this very small section of Ms. Spears’s life, it’s clear that there are lots of
different things and, more importantly, lots of different types of things we say about
celebrities. It’s almost comical to think that one could frontload the schema design of
everything that a famous musician or actress might do in the future that would be of
interest to people. This graph has already failed to include such things as favorite
nightclubs, estranged children, angry head-shavings, and cosmetic surgery
controversies.

We’ve created a sample file of triples about celebrities at http://semprog.com/psw/chap
ter2/celeb_triples.txt. Feel free to download this, load it into a graph, and try some fun
examples:

>>> from simplegraph import SimpleGraph

>>> cg=SimpleGraph()

>>> cg.load('celeb _triples.csv')

>>> jt_relations=[t[0] for t in cg.triples((None, 'with','Justin Timberlake'))]
>>> jt_relations # Justin Timberlake's relationships

[u'rel373', u'rel372', u'rel371', u'rel323', u'rel16', u'relis’,

u'reli4', u'rel13’, u'rel12', u'rel11’]
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>>> for rel in jt relations:
print [t[2] for t in cg.triples((rel, 'with',None))]

[u'Justin Timberlake', u'Jessica Biel']
[u'Justin Timberlake', u'Jenna Dewan']
[u'Justin Timberlake', u'Alyssa Milano']
[u'Justin Timberlake', u'Cameron Diaz']
[u'Justin Timberlake', u'Britney Spears']
[u'Justin Timberlake', u'lessica Biel']
[u'Justin Timberlake', u'Jenna Dewan']
[u'Justin Timberlake', u'Alyssa Milano']
[u'Justin Timberlake', u'Cameron Diaz']
[u'Justin Timberlake', u'Britney Spears']
>>> bs movies=[t[2] for t in cg.triples(('Britney Spears','starred in',None))]
>>> bs_movies # Britney Spears' movies
[u'Longshot', u'Crossroads', u"Darrin's Dance Grooves", u'Austin Powers: Goldmember']
>> movie stars=set()
>>> for t in cg.triples((None, 'starred in',None)):
movie stars.add(t[o])

>>> movie stars # Anyone with a 'starred in' assertion

set([u'Jenna Dewan', u'Cameron Diaz', u'Helena Bonham Carter', u'Stephan Jenkins',
u'Pen\xe9lope Cruz', u'Julie Christie', u'Adam Duritz', u'Keira Knightley',
(etc...)

As an exercise, see if you can write Python code to answer some of these questions:

Which celebrities have dated more than one movie star?

Which musicians have spent time in rehab? (Use the person predicate from rehab
nodes.)

Think of a new predicate to represent fans. Add a few assertions about stars of
whom you are a fan. Now find out who your favorite stars have dated.

Hopefully you’re starting to get a sense of not only how easy it is to add new assertion
types to a triplestore, but also how easy it is to try things with assertions created by
someone else. You can start asking questions about a dataset from a single file of triples.
The essence of semantic data is ease of extensibility and ease of sharing.

Business

Lest you think that semantic data modeling is all about movies, entertainment, and
celebrity rivalries, Figure 2-9 shows an example with a little more gravitas: data from
the business world. This graph shows several different types of relationships, such as
company locations, revenue, employees, directors, and political contributions.
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Figure 2-9. An example of business data expressed as a graph

Obviously, a lot of information that is particular to these businesses could be added to
this graph. The relationships shown here are actually quite generic and apply to most
companies, and since companies can do so many different things, it’s easy to imagine
more specific relationships that could be represented. We might, for example, want to
know what investments Berkshire Hathaway has made, or what software products
Microsoft has released. This just serves to highlight the importance of a flexible schema
when dealing with complex domains such as business.

Again, we’ve provided a file of triples for you to download, at http://semprog.com/psw/
chapter2/business_triples.csv. This is a big graph, with 36,000 assertions about 3,000
companies.

Here’s an example session:

>>> from simplegraph import SimpleGraph
>>> bg=SimpleGraph()
>>> bg.load('business triples.csv')

>>> # Find all the investment banks

>>> ibanks=[t[0] for t in bg.triples((None,'industry','Investment Banking'))]

>>> ibanks

[u'COWN', u'GBL', u'CLMS', u'WDR', u'SCHW', u'LM', u'TWPG', u'PNSN', u'BSC', u'GS',
u'NITE', u'DHIL', u'JEF', u'BLK', u'TRAD', u'LEH', u'ITG', u'MKTX', u'LAB', u'MS',
u'MER', u'OXPS', u'SF']

>>> bank_contrib={} # Contribution nodes from Investment banks
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>>> for b in ibanks:
bank_contrib[b]=[t[0] for t in bg.triples((None,'contributor',b))]

>>> # Contributions from investment banks to politicians
>>> for b,contribs in bank_contrib.items():
for contrib in contribs:
print [t[2] for t in bg.triples((contrib,None,None))]

[u'BSC', u'30700.0', u'Orrin Hatch']

[u'BSC', u'168335.0", u'Hillary Rodham Clinton']
[u'BSC', u'5600.0", u'Christopher Shays']
[u'BSC', u'5000.0", u'Barney Frank']

(etc...)

>>> sw=[t[0] for t in bg.triples((None,'industry','Computer software'))]
>>> sw
[u'GOOG', u'ADBE', u'IBM', # Google, Adobe, IBM

>>> # Count locations
>>> locations={}
>>> for company in sw:
for t in bg.triples((company, 'headquarters',None)):
locations[t[2]]=1ocations.setdefault(t[2],0)+1

>>> # Locations with 3 or more software companies

>>> [loc for loc,c in locations.items() if c>=3]

[u'Austin_Texas', u'San Jose California', u'Cupertino California',
u'Seattle Washington']

Notice that we’ve used ticker symbols as IDs, since they are guaranteed to be unique
and short.

We hope this gives you a good idea of the many different types of data that can be
expressed in triples, the different things you might ask of the data, and how easy it is
to extend it. Now let’s move on to creating a better method of querying.
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CHAPTER 3
Using Semantic Data

So far, you’ve seen how using explicit semantics can make it easier to share your data
and extend your existing system as you get new data. In this chapter we’ll show that
semantics also makes it easier to develop reusable techniques for querying, exploring,
and using data. Capturing semantics in the data itself means that reconfiguring an
algorithm to work on a new dataset is often just a matter of changing a few keywords.

We'll extend the simple triplestore we built in Chapter 2 to support constraint-based
querying, simple feed-forward reasoning, and graph searching. In addition, we’ll look
at integrating two graphs with different kinds of data but create separate visualizations
of the data using tools designed to work with semantic data.

A Simple Query Language

Up to this point, our query methods have looked for patterns within a single triple by
setting the subject, predicate, or object to a wildcard. This is useful, but by treating
each triple independently, we aren’t able to easily query across a graph of relationships.
It is these graph relationships, spanning multiple triples, that we are most interested in
working with.

For instance, in Chapter 2 when we wanted to discover which mayors served cities in
California, we were forced to run one query to find “cities” (subject) that were “inside”
(predicate) “California” (object) and then independently loop through all the cities
returned, searching for triples that matched the “city” (subject) and “mayor”
(predicate).

To simplify making queries like this, we will abstract this basic query process and
develop a simple language for expressing these types of graph relationships. This graph
pattern language will form the basis for building more sophisticated queries and
applications in later chapters.
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Variable Binding

Let’s consider a fragment of the graph represented by the places_triples used in the
section “Other Examples” on page 29. We can visualize this graph, representing three
cities and the predicates “inside” and “mayor”, as shown in Figure 3-1.
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Figure 3-1. A graph of city mayors and locations

Consider the two statements about San Francisco: it is “inside” California, and Gavin
Newsom is the mayor. When we express this piece of the graph in triples, we use a
common subject identifier San_Francisco_California to indicate that the statements
describe a single entity:

("San_Francisco_California", "inside", "California")
("San_Francisco _California", "mayor", "Gavin Newsom")

The shared subject identifier San_Francisco_California indicates that the two state-
ments are about the same entity, the city of San Francisco. When an identifier is used
multiple times in a set of triples, it indicates that a node in the graph is shared by all
the assertions. And just as you are free to select any name for a variable in a program,
the choice of identifiers used in triples is arbitrary, too. As long as you are consistent
in your use of an identifier, the facts that you can learn from the assertions will be clear.
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For instance, we could have said Gavin Newsom is the mayor of a location within
California with the triples:

("foo", "inside", "California")

("foo", "mayor", "Gavin Newsom")
While San_Francisco_California is a useful moniker to help humans understand that
“San Francisco” is the location within California that has Newsom as a mayor, the
relationships described in the triples using San_Francisco California and foo are
identical.

It is important not to think of the identifier as the “name” of an entity.
_______ Identifiers are simply arbitrary symbols that indicate multiple assertions
--------- " arerelated. As in the original places_triples dataset in Chapter 2, if we
wanted to name the entity where Newsom is mayor, we would need to

make the name relationship explicit with another triple:

("foo", "name", "San Francisco")

With an understanding of how shared identifiers are used to indicate shared nodes in
the graph, we can return to our question of which mayors serve in California. As before,
we start by asking, “Which nodes participate in an assertion with the predicate of
‘inside’ and object of ‘California’?” Using our current query method, we would write
this constraint as this triple query:

(None, "inside", "California")
and our query method would return the set of triples that matched the pattern.

Instead of using a wildcard, let’s introduce a variable named ?city to collect the
identifiers for the nodes in the graph that satisfy our constraints. For the graph
fragment pictured in Figure 3-1 and the triple query pattern ("?city”, "inside",
"California"), there are two triples that satisfy the constraints, which gives us two
possible values for the variable ?city: the identifiers San_Francisco California and
San_Jose California.

We can express these results as a list of dictionaries mapping the variable name to each
matching identifier. We refer to these various possible mappings as “bindings” of the
variable ?city to different values. In our example, the results would be expressed as:

[{"?city": "San Francisco California"}, {"?city": "San Jose California"}]

We now have a way to assign results from a triple query to a variable. We can use this
to combine multiple triple queries and take the intersection of the individual result sets.
For instance, this query specifies the intersection of two triple queries in order to find
all cities in California that have a mayor named Norman Mineta:

("?city", "inside", "California")

("?city", "mayor", "Norman Mineta")
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The result [{"?city": "San Jose California"}] is the solution to this graph query
because it is the only value for the variable ?city that is in all of the individual triple
query results. We call the individual triple queries in the graph query “constraints”
because each triple query constrains and limits the possible results for the whole graph
query.
We can also use variables to ask for more results. By adding an additional variable, we
can construct a graph query that tells us which mayors serve cities within California:
("?city", "inside", "California")
("?city", "mayor", "?name_of mayor")
There are two solutions to this query. In the first solution, the variable ?city is bound
to the identifier San_Jose California, which causes the variable ?name_of mayor to be
bound to the identifier “Norman Mineta”. In the second solution, ?city will be bound
to San_Francisco_California, resulting in the variable ?name_of mayor being bound to
“Gavin Newsom”. We can write this solution set as:

[{"?city": "San_Francisco California", "?name_of mayor": "Gavin Newsom"},
{"?city": "San Jose California", "?name_of mayor": "Norman Mineta"}]

It is important to note that all variables in a solution are bound simultaneously—each
dictionary represents an alternative and valid set of bindings given the constraints in
the graph query.

Implementing a Query Language

In this section, we’ll show you how to add variable binding to your existing triplestore.
This will allow you to ask the complex questions in the previous chapter with a single
method call, instead of doing separate loops and lookups for each step. For example,
the following query returns all of the investment banks in New York that have given
money to Utah Senator Orrin Hatch:
>>> bg.query([('?company’, 'headquarters', 'New York NY'),

("?company', 'industry', 'Investment Banking'),

("?company', 'contributor', ' ?contribution'),

('?contribution', 'recipient’,'Orrin Hatch'),

('?contribution’, 'amount', '?dollars')])

The variables are preceded with a question mark, and everything else is considered a
constant. This call to the query method tries to find possible values for company,
contribution, and dollars that fulfill the following criteria:

1. company is headquartered in New York
. company is in the industry Investment Banking
. company made a contribution called contribution

. contribution had a recipient called Orrin Hatch

G B W N

. contribution had an amount equal to dollars

40 | Chapter3: Using Semantic Data

Download at Boykma.Com



From the session at the end of Chapter 2, we know that one possible answer is:

{"?company':'BSC",
'2contribution’:'contXXX',
'?dollars':'30700'}

If BSC has made multiple contributions to Orrin Hatch, we’ll get a separate solution
for each contribution.

Before we get to the implementation, just to make sure you’re clear, here’s another
example:

("?rel1’,'with', "?person'),
("?rel1’,'with', 'Britney Spears'),
("?rel1’,'end', '?year1'),
("?rel2','with', "?person'),
("?rel2','start’, ' ?year1')])

>>> cg.query([

This asks, “Which person started a new relationship in the same year that their rela-
tionship with Britney Spears ended?” The question is a little convoluted, but hopefully
it shows the power of querying with variable binding. In this case, we’re looking for
sets that fulfill the following criteria:

1. rel1 (a relationship) involved person
2. reli also involved Britney Spears

3. rel1 ended in year1

4. rel2 involved person

5. relz started in year1

Since there’s nothing saying that person can’t be Britney Spears, it’s possible that she
could be one of the answers, if she started a new relationship the same year she ended
one. As we look at more sophisticated querying languages, we’ll see ways to impose
negative constraints.

The implementation of query is a very simple method for variable binding. It’s not super
efficient and doesn’t do any query optimization, but it will work well on the sets we’ve
been working with and should help you understand how variable binding works. You
can add the following code to your existing simplegraph class, or you can download
http://semprog.com/psw/chapter3/simplegraph.py:

def query(self,clauses):
bindings = None
for clause in clauses:
bpos = {}
qc = []
for pos, x in enumerate(clause):
if x.startswith('?'):
qc.append(None)
bpos[x] = pos
else:
qc.append(x)
rows = list(self.triples((qc[o0], qc[1], qc[2])))
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if bindings == None:
# This is the first pass, everything matches
bindings = []
for row in rows:
binding = {}
for var, pos in bpos.items():
binding[var] = row[pos]
bindings.append(binding)
else:
# In subsequent passes, eliminate bindings that don't work
newb = []
for binding in bindings:
for row in rows:
validmatch = True
tempbinding = binding.copy()
for var, pos in bpos.items():
if var in tempbinding:
if tempbinding[var] != row[pos]:
validmatch = False
else:
tempbinding[var] = row[pos]
if validmatch: newb.append(tempbinding)
bindings = newb
return bindings

This method loops over each clause, keeping track of the positions of the variables (any
string that starts with ?). It replaces all the variables with None so that it can use the
triples method already defined in simplegraph. It then gets all the rows matching the
pattern with the variables removed.

For every row in the set, it looks at the positions of the variables in the clause and tries
to fit the values to one of the existing bindings. The first time through there are no
existing bindings, so every row that comes back becomes a potential binding. After the
first time, each row is compared to the existing bindings—if it matches, more variables
are added and the binding is added to the current set. If there are no rows that match
an existing binding, that binding is removed.

Try using this new query method in a Python session for the two aforementioned
queries:

>>> from simplegraph import SimpleGraph()

>>> bg = SimpleGraph()

>>> bg.load('business_triples.csv')

>>> bg.query([('?company’, 'headquarters', 'New_York New York'),
("?company', 'industry', 'Investment Banking'),
('?cont’, 'contributor','?company'),
('?cont’, 'recipient', 'Orrin Hatch'),
('?2cont', 'amount', '?dollars')])

[{'company': u'BSC', 'cont': u'contrib285', 'dollars': u'30700.0'}]

>>> cg = SimpleGraph()

>>> cg.load('celeb_triples.csv')

>>> cg.query([('?rel1’, 'with', " '?person'),
('?rela’,'with','Britney Spears'),
('?rela’,'end',"'?year1'),
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('?rel2’,'with', ' ?person'),
('?rel2’,'start’, '?year1')])
[{'person': u'Justin Timberlake', 'reli': u'rel16', 'yeari': u'2002',
'rel2': u'rel372'} ...
Now see if you can formulate some queries of your own on the movie graph. For
example, which actors have starred in movies directed by Ridley Scott as well as movies
directed by George Lucas?

Feed-Forward Inference

Inference is the process of deriving new information from information you already have.
This can be used in a number of different ways. Here are a few examples of types of
inference:

Simple and deterministic
If T know a rock weighs 1 kg, I can infer that the same rock weighs 2.2 lbs.

Rule-based
IfTknow a person is under 16 and in California, I can infer that they are not allowed
to drive.

Classifications
If T know a company is in San Francisco or Seattle, I can classify it as a “west coast
company.”

Judgments
If T know a person’s height is 6 feet or more, I refer to them as tall.

Online services
If T know a restaurant’s address, I can use a geocoder to find its coordinates on a
map.

Obviously, the definition of what counts as “information” and which rules are appro-
priate will vary depending on the context, but the idea is that by using rules along with
some knowledge and outside services, we can generate new assertions from our existing
set of assertions.

The last example is particularly interesting in the context of web development. The
Web has given us countless online services that can be queried programmatically. This
means it is possible to take the assertions in a triplestore, formulate a request to a web
service, and use the results from the query to create new assertions. In this section, we’ll
show examples of basic rule-based inference and of using online services to infer new
triples from existing ones.

Inferring New Triples

The basic pattern of inference is simply to query for information (in the form of bind-
ings) relevant to a rule, then apply a transformation that turns these bindings into a
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new set of triples that get added back to the triplestore. We’re going to create a basic
class that defines inference rules, but first we’ll add a new method for applying rules to
the SimpleGraph class. If you downloaded http://semprog.com/psw/chapter3/simple
graph.py, you should already have this method. If not, add it to your class:
def applyinference(self,rule):
queries = rule.getqueries()
bindings=[]
for query in queries:
bindings += self.query(query)
for b in bindings:
new_triples = rule.maketriples(b)

for triple in new triples:
self.add(triple)

This method takes a rule (usually an instance of InferenceRule) and runs its query to
get a set of bindings. It then calls rule.maketriples on each set of bindings, and adds
the returned triples to the store.

The InferenceRule class itself doesn’t do much, but it serves as a base from which other
rules can inherit. Child classes will override the getquery method and define a new
method called _maketriples, which will take each binding as a parameter. You can
download http://semprog.com/psw/chapter3/inferencerule.py, which contains the class
definition of InferenceRule and the rest of the code from this section. If you prefer, you
can create a new file called inferencerule.py and add the following code:

class InferenceRule:

def getqueries(self):
return []

def maketriples(self,binding):
return self. maketriples(**binding)

Now we are ready to define a new rule. Our first rule will identify companies
headquartered in cities on the west coast of the United States and identify them as such:
class WestCoastRule(InferenceRule):
def getqueries(self):

sfoquery = [('?company', 'headquarters', 'San_Francisco_California')]

seaquery = [('?company', 'headquarters', 'Seattle Washington')]

laxquery = [('?company', 'headquarters', 'Los_Angelese California')]

porquery = [('?company', 'headquarters', 'Portland Oregon')]

return [sfoquery, seaquery, laxquery, porquery]

def _maketriples(self, company):
return [(company, 'on_coast', 'west coast')]

The rule class lets you define several queries: in this case, there’s a separate query for
each of the major west coast cities. The variables used in the queries themselves (in this
case, just company) become the parameters for the call to _maketriples. This rule asserts
that all the companies found by the first set of queries are on the west coast.
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You can try this in a session:

>>> wer = WestCoastRule()

>>> bg.applyinference(wcr)

>>> list(bg.triples((None, 'on_coast', None)))

[(u'PCL", 'on_coast', 'west coast'), (u'PCP', 'on coast', 'west coast') ...

Although we have four different queries for our west coast rule, each of them has only
one clause, which makes the rules themselves very simple. Here’s a rule with a more
sophisticated query that can be applied to the celebrities graph:
class EnemyRule(InferenceRule):
def getqueries(self):
partner_enemy = [('?person’', 'enemy', '?enemy'),
("?rel', 'with', '?person'),
("?rel', 'with', '?partner)]
return [partner_enemy]

def maketriples(self, person, enemy, rel, partner):
return (partner, 'enemy', enemy)

Just from looking at the code, can you figure out what this rule does? It asserts that if
a person has a relationship partner and also an enemy, then their partner has the same
enemy. That may be a little presumptuous, but nonetheless it demonstrates a simple
logical rule that you can make with this pattern. Again, try it in a session:

>>> from simplegraphq import *

>>> cg = SimpleGraph()

>>> cg.load('celeb triples.csv')

>>> er = EnemyRule()

>>> list(cg.triples((None, 'enemy', None)))

[(u'Jennifer Aniston', 'enemy', u'Angelina Jolie')...

>>> cg.applyinference(er)

>>> list(cg.triples((None, 'enemy', None)))

[(u'Jennifer Aniston', 'enemy', u'Angelina Jolie'), (u'Vince Vaughn', 'enemy', \

u'Angelina Jolie')...

These queries are all a little self-directed, since they operate directly on the data and
have limited utility. We’ll now see how we can use this reasoning framework to add
more information to the triplestore by retrieving it from outside sources.

Geocoding

Geocoding is the process of taking an address and getting the geocoordinates (the lon-
gitude and latitude) of that address. When you use a service that shows the location of
an address on a map, the address is always geocoded first. Besides displaying on a map,
geocoding is useful for figuring out the distance between two places and determining
automatically if an address is inside or outside particular boundaries. In this section,
we’ll show you how to use an external geocoder to infer triples from addresses of
businesses.
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Using a free online geocoder

There are a number of geocoders that are accessible through an API, many of which
are free for limited use. We’re going to use the site http://geocoder.us/, which provides
free geocoding for noncommercial use and very cheap access for commercial
use for addresses within the United States. The site is based on a Perl script called
Geo::Coder::US, which can be downloaded from http://search.cpan.org/~sderle/Geo
-Coder-US/ if you’re interested in hosting your own geocoding server.

There are several other commercial APIs, such as Yahoo!’s, that offer free geocoding
with various limitations and can be used to geocode addresses in many different coun-
tries. We’ve provided alternative implementations of the geocoding rule on our site
http://semprog.com/.

The free service of geocoder.us is accessed using a REST API through a URL that looks
like this:

http://rpc.geocoder.us/service/csv2address=1600+Pennsylvania+Avenue,+ Washing
ton+DC

If you go to this URL in your browser, you should get a single line response:

38.898748,-77.037684,1600 Pennsylvania Ave NW,Washington,DC,20502

This is a comma-delimited list of values showing the latitude, longitude, street address,
city, state, and ZIP code. Notice how, in addition to providing coordinates, the geo-
coder has also changed the address to a more official “Pennsylvania Ave NW” so that
you can easily compare addresses that were written in different ways. Try a few other
addresses and see how the results change.

Adding a geocoding rule

To create a geocoding rule, just make a simple class that extends InferenceRule. The
query for this rule finds all triples that have “address” as their predicate; then for each
address it contacts the geocoder and tries to extract the latitude and longitude:

from urllib import urlopen, quote_plus

class GeocodeRule(InferenceRule):
def getquery(self):
return [('?place', 'address', '?address')]

def maketriples(self, place, address):

url = 'http://rpc.geocoder.us/service/csv?address=%s' % quote_plus(address)
con = urlopen(url)
data = con.read()
con.close()
parts = data.split(',")
if len(parts) »>= 5:

return [(place, 'longitude', parts[o]),

(place, 'latitude', parts[1])]

else:
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# Couldn't geocode this address
return []

You can then run the geocoder by creating a new graph and putting an address in it:

>>> from simplegraph import *
>>> from inferencerule import *
>>> geograph = SimpleGraph()
>>> georule = GeocodeRule()
>>> geograph.add(('White House', 'address', '1600 Pennsylvania Ave, Washington, DC'))
>>> list(geograph.triples((None, None, None))
[('White House', 'address', '1600 Pennsylvania Ave, Washington, DC')]
>>> geograph.applyinference(georule)
>>> list(geograph.triples((None, None, None))
[('White House', 'latitude', '-77.037684'),
('White House', 'longitude', '38.898748'),
('White House', 'address', '1600 Pennsylvania Ave, Washington, DC')]

v

We’ve provided a file containing a couple of restaurants in Washington, DC, at http://
semprog.com/psw/chapter3/DC_addresses.csv. Try downloading the data and running
it through the geocoding rule. This may take a minute or two, as access to the geocoder
is sometimes throttled. If you’re worried it’s taking too long, you can add print state-
ments to the geocode rule to monitor the progress.

Chains of Rules

The fact that these inferences create new assertions in the triplestore is incredibly useful
to us. It means that we can write inference rules that operate on the results of other
rules without explicitly coordinating all of the rules together. This allows the creation
of completely decoupled, modular systems that are very robust to change and failure.

To understand how this works, take a look at CloseToRule. This takes a place name
and a graph inits constructor. It queries for every geocoded item in the graph, calculates
how far away they are, and then asserts close_to for all of those places that are close by:

class CloseToRule(InferenceRule):

def _init_ (self, place, graph):
self.place = place
laq = list(graph.triples((place, 'latitude’, None)))
log = list(graph.triples((place, 'longitude', None)))

if len(laq) == 0 or len(logq) == O:

raise "Exception","%s is not geocoded in the graph" % place

self.lat = float(laq[o][2])
self.long = float(log[0][2])

def getqueries(self):
geog=[('?place’, 'latitude', '?lat'), ('?place', 'longitude', '?long')]
return [geoq]

def _maketriples(self, place, lat, long):
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# Formula for distance in miles from geocoordinates
distance=((69.1*(self.lat - float(lat)))**2 + \
(53*(self.lat - float(lat)))**2)**.s5

# Are they less than a mile apart
if distance < 1:

return [(self.place, 'close to', place)]
else:

return [(self.place, 'far_from', place)]

Now you can use these two rules together to first geocode the addresses, then create
assertions about which places are close to the White House:

>>> from simplegraph import *

>>> from inferencerule import *

>>> pg = SimpleGraph()

>>> pg.load('DC_addresses.csv')

>>> georule = GeocodeRule()

>>> pg.applyinference(georule)

>>> whrule = CloseToRule('White House',pg)

>>> pg.applyinference(whrule)

>>> list(pg.triples((None, 'close to', None)))
[('White House', 'close to', u'White House'),
('White House', 'close to', u'Pot Belly'),
("White House', 'close to', u'Equinox')]

Now we’ve chained together two rules. Keep this session open while we take a look at
another rule, which identifies restaurants that are likely to be touristy. In the
DC_addresses file, there are assertions about what kind of place each venue is (“tourist
attraction” or “restaurant”) and also information about prices (“cheap” or “expen-
sive”). The TouristyRule combines all this information along with the close_to asser-
tions to determine which restaurants are touristy:
class TouristyRule(InferenceRule):
def getqueries(self):
tr = [('?ta’, 'is_a', 'Tourist Attraction'),
("?ta', 'close_to', '?restaurant'),

('?restaurant’, 'is a', 'restaurant'),
('?restaurant’, 'cost', 'cheap')]

def _maketriples(self, ta, restaurant):
return [(restaurant, 'is_a', 'touristy restaurant')]

That is, if a restaurant is cheap and close to a tourist attraction, then it’s probably a
pretty touristy restaurant:

>>> tr = TouristyRule()

>>> pg.applyinference(tr)

>>> list(pg.triples((None, 'is a', 'touristy restaurant')))
[(u'Pot Belly', 'is a', 'touristy restaurant')]

So we’ve gone from a bunch of addresses and restaurant prices to predictions about
restaurants where you might find a lot of tourists. You can think of this as a group of

48 | Chapter3: Using Semantic Data

Download at Boykma.Com



dependent functions, similar to Figure 3-2, which represents the way we normally think
about data processing.

fis_a
v

I
...... aq.qreis’. GeocodeRule _i_a18f|0l3g' CloseToRule ...c.oss._to.’ Tounstyﬂu;e

4

: cost

Figure 3-2. A “chain view” of the rules

What’s important to realize here is that the rules exist totally independently. Although
we ran the three rules in sequence, they weren’t aware of each other—they just looked
to see if there were any triples that they knew how to deal with and then created new
ones based on those. These rules can be run continuously—even from different ma-
chines that have access to the same triplestore—and still work properly, and new rules
can be added at any time. To help understand what this implies, consider a few
examples:

1. Geographical oddities may have a latitude and longitude but no address. They can
be put right into the triplestore, and CloseToRule will find them without them ever
being noticed by GeocodeRule.

2. We may invent new rules that add addresses to the database, which will run
through the whole chain.

3. We may initially know about a restaurant’s existence but not know its cost. In this
case, GeocodeRule can geocode it, CloseToRule can assert that it is close to things,
but TouristyRule won’t be able to do anything with it. However, if we later learn
the cost, TouristyRule can be activated without activating the other rules.

4. We may know that some place is close to another place but not know its exact
location. Perhaps someone told us that they walked from the White House to a
restaurant. This information can be used by TouristyRule without requiring the
other rules to be activated.

So a better way to think about this is Figure 3-3.

The rules all share an information store and look for information they can use to gen-
erate new information. This is sometimes referred to as a multi-agent blackboard. 1t’s
a different way of thinking about programming that sacrifices in efficiency but that has
the advantages of being very decoupled, easily distributable, fault tolerant, and flexible.
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Figure 3-3. Inference rules reading from and writing to a “blackboard”

A Word About “Artificial Intelligence”

It’s important to realize, of course, that “intelligence” doesn’t come from chains of
symbolic logic like this. In the past, many people have made the mistake of trying to
generate intelligent behavior this way, attempting to model large portions of human
knowledge and reasoning processes using only symbolic logic. These approaches al-
ways reveal that there are pretty severe limitations on what can be modeled. Predicates
are imprecise, so many inferences are impossible or are only correct in the context of a
particular application.

The examples here show triggers for making new assertions entirely from existing ones,
and also show ways to query other sources to create new assertions based on existing
ones.

Searching for Connections

A common question when working with a graph of data is how two entities are con-
nected. The most common algorithm for finding the shortest path between two points
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in a graph is an algorithm called breadth-first search. The breadth-first search algorithm
finds the shortest path between two nodes in a graph by taking the first node, looking
at all of its neighbors, looking at all of the neighbors of its neighbors, and so on until
the second node is found or until there are no new nodes to look at. The algorithm is
guaranteed to find the shortest path if one exists, but it may have to look at all of the
edges in the graph in order to find it.

Six Degrees of Kevin Bacon

A good example of the breadth-first search algorithm is the trivia game “Six Degrees of
Kevin Bacon,” where one player names a film actor, and the other player tries to connect
that actor to the actor Kevin Bacon through the shortest path of movies and co-stars.
For instance, one answer for the actor Val Kilmer would be that Val Kilmer starred in
Top Gun with Tom Cruise, and Tom Cruise starred in A Few Good Men with Kevin
Bacon, giving a path of length 2 because two movies had to be traversed. See Figure 3-4.

Start First movie First actor Second movie Second actor
step step step step

Figure 3-4. Breadth-first search from Val Kilmer to Kevin Bacon

Here’s an implementation of breadth-first search over the movie data introduced in
Chapter 2. On each iteration of the while loop, the algorithm processes a successive
group of nodes one edge further than the last. So on the first iteration, the starting actor
node is examined, and all of its adjacent movies that have not yet been seen are added
to the movieIds list. Then all of the actors in those movies are found and are added to

Searching for Connections | 51

Download at Boykma.Com



the actorIds list if they haven’t yet been seen. If one of the actors is the one we are
looking for, the algorithm finishes.

The shortest path back to the starting node from each examined node is stored at each
step as well. This is done in the “parent” variable, which at each step points to the node
that was used to find the current node. This path of “parent” nodes can be followed
back to the starting node:

def moviebfs(startId, endId, graph):
actorIds = [(startId, None)]
# keep track of actors and movies that we've seen:
foundIds = set()
iterations = 0
while len(actorIds) > 0:
iterations += 1
print "Iteration " + str(iterations)
# get all adjacent movies:
movields = []
for actorId, parent in actorIds:
for movield, , _ in graph.triples((None, "starring", actorId)):
if movieId not in foundIds:
foundIds.add(movield)
movieIds.append((movield, (actorId, parent)))
# get all adjacent actors:
nextActorIds = []
for movield, parent in movields:
for _, _, actorId in graph.triples((movield, "starring", None)):
if actorId not in foundIds:
foundIds.add(actorId)
# we found what we're looking for:
if actorId == endId: return (iterations, (actorId, \
(movield, parent)))
else: nextActorIds.append((actorId, (movield, parent)))
actorIds = nextActorIds
# we've run out of actors to follow, so there is no path:
return (None, None)

Now we can define a function that runs moviebfs and recovers the shortest path:

def findpath(start, end, graph):

# find the ids for the actors and compute bfs:

startId = graph.value(None, "name", start)

endId = graph.value(None, "name", end)

distance, path = moviebfs(startId, endId, graph)

print "Distance: " + str(distance)

# walk the parent path back to the starting node:

names = []

while path is not None:
id, nextpath = path
names.append(graph.value(id, "name", None))
path = nextpath

print "Path: " + ", ".join(names)
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Here’s the output for Val Kilmer, Bruce Lee, and Harrison Ford. (Note that our movie
data isn’t as complete as some databases on the Internet, so there may in fact be a
shorter path for some of these actors.)

>>> import simplegraph

>>> graph = simplegraph.SimpleGraph()

>>> graph.load("movies.csv")

>>> findpath("Val Kilmer", "Kevin Bacon", graph)

Iteration 1

Iteration 2

Distance: 2

Path: Kevin Bacon, A Few Good Men, Tom Cruise, Top Gun, Val Kilmer

>>> findpath("Bruce Lee", "Kevin Bacon", graph)

Iteration 1

Iteration 2

Iteration 3

Distance: 3

Path: Kevin Bacon, The Woodsman, David Alan Grier, A Soldier's Story, Adolph Caesar, \

Fist of Fear, Touch of Death, Bruce Lee

>>> findpath("Harrison Ford", "Kevin Bacon", graph)

Iteration 1

Iteration 2

Distance: 2

Path: Kevin Bacon, Apollo 13, Kathleen Quinlan, American Graffiti, Harrison Ford

Shared Keys and Overlapping Graphs

We’ve talked a lot about the importance of semantics for data integration, but so far
we’ve only shown how you can create and extend separate data silos. But expressing
your data this way really shines when you’re able to take graphs from two different
places and merge them together. Finding a set of nodes where the graphs overlap and
linking them together by combining those nodes greatly increases the potential
expressiveness of your queries.

Unfortunately, it’s not always easy to join graphs, since figuring out which nodes are
the same between the graphs is not a trivial matter. There can be misspellings of names,
different names for the same thing, or the same name for different things (this is espe-
cially true when looking at datasets of people). In later chapters we’ll explore the merg-
ing problem in more depth. There are certain things that make easy connection points,
because they are specific and unambiguous. Locations are a pretty good example,
because when I say “San Francisco, California”, it almost certainly means the same
place to everyone, particularly if they know that I’'m currently in the United States.

Example: Joining the Business and Places Graphs

The triples provided for the business and places graphs both contain city names refer-
ring to places in the United States. To make the join easy, we already normalized the
city names so that they’re all written as City State, e.g., San_Francisco_California or
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Omaha_Nebraska. In a session, you can look at assertions that are in the two separate
graphs:

>>> from simplegraph import SimpleGraph
>>> bg=SimpleGraph()

>>> bg.load('business_triples.csv')

>>> pg=SimpleGraph()

>>> pg.load('place_triples.csv')

>>> for t in bg.triples((None, 'headquarters', 'San Francisco California')):
. print t

(u'URS', 'headquarters', 'San Francisco California')

(u'PCG', 'headquarters', 'San Francisco California')

(u'CRM', 'headquarters', 'San Francisco California')

(u'CNET', 'headquarters', 'San_Francisco California')

(etc...)

>>> for t in pg.triples(('San_Francisco California', None, None)):
. print t

('San_Francisco California', u'name', u'San Francisco")
('San_Francisco California', u'inside', u'California")
('San_Francisco California', u'longitude', u'-122.4183")
('San_Francisco California', u'latitude', u'37.775")
('San_Francisco California', u'mayor', u'Gavin Newsom')
('San_Francisco California', u'population’, u'744042")

We're going to merge the data from the places graph, such as population and location,
into the business graph. This is pretty straightforward—all we need to do is generate
a list of places where companies are headquartered, find the equivalent nodes in the
places graph, and copy over all their triples. Try this in your Python session:

>>> hg=set([t[2] for t in bg.triples((None,'headquarters',None))])

>>> len(hq)

889

>>> for pt in pg.triples((None, None, None)):
if pt[o] in hq: bg.add(pt)

Congratulations—you’ve successfully integrated two distinct datasets! And you didn’t
even have to worry about their schemas.

Querying the Joined Graph

This may not seem like much yet, but you can now construct queries across both graphs,
using the constraint-based querying code from this chapter. For example, you can now
get a summary of places where software companies are headquartered:

>>> results = bg.query([('?company', 'headquarters', '?city'),
('?city', 'inside', '?region'),
('?company', ‘industry', 'Computer software')])
>>> [r['region'] for r in results]
[u'San_Francisco Bay Area', u'California', u'United States', u'Silicon Valley', \
u'Northern_California' ...
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You can also search for investment banks that are located in cities with more than
1,000,000 people:
>>> results = bg.query([('?company', 'headquarters', '?city'),
('?city', 'population', '?pop'),
('?company', 'industry', 'Investment banking')])
>>> [r for r in results if int(r['pop']) > 1000000]
[{'city': u'Chicago Illinois', 'company': u'CME', 'pop': u'2833321'}, ...
This is just a small taste of what’s possible. Later we’ll see how the “semantic web”
envisions merging thousands of graphs, which will allow for extremely sophisticated
queries across data from many sources.

Basic Graph Visualization

Although we’ve described the data as conceptually being a graph, and we’ve been using
graphs for explanations, so far we’ve only looked at the “graphs” as lists of triples.
Viewing the contents of the triplestore visually can make it easier to understand and
interpret your data. In this section, we’ll show you how to use the free software Graph-
viz to convert the semantic data in your triplestore to images with nodes and edges.
We’ll show how to view the actual triples and also how to make the graph more concise
by graphing the results of a query.

Graphviz

Graphviz is a free software package created by AT&T. It takes simple files describing
nodes and connections and applies layout and edge-routing algorithms to produce an
image in one of several possible formats. You can download Graphviz from http://www
.graphviz.org/.

The input files are in a format called DOT, which is a simple text format that looks like
this:

graph "test" {

A -- B;
A--G
C--D;

}

This graph has fournodes: A, B, C,and D. A is connected to Band C, and Cis connected
to D. There are two different layout programs that come with Graphviz, called dot and
neato. Dot produces hierarchical layouts for trees, and neato (which we’ll be using in
this section) produces layouts for nonhierarchical graphs. The output from neato for
the previous example is shown in Figure 3-5.
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Figure 3-5. Visualization of the ABCD graph

There are a lot of different settings for DOT files, to adjust things like node size, edge
thickness, colors, and layout options. We won’t cover them all here, but you can find

a complete description of the file format in the documentation at hitp://www.graphviz
.org/pdf/dotguide.pdf.

Displaying Sets of Triples

The first thing we want to try is creating a graph of a subset of triples. You can download
the code for this section at http://semprog.com/psw/chapter3/graphtools.py; alterna-
tively, you can create a file called graphtools.py and add the triplestodot function:
def triplestodot(triples, filename):
out=file(filename, 'w')
out.write('graph "SimpleGraph" {\n')

out.write('overlap = "scale";\n")
for t in triples:
out.write('"%s" -- "%s" [label="%s"]\n' % (t[0].encode('utf-8'),
t[2].encode('utf-8"'),
t[1].encode('utf-8')))
out.write('}")
This function simply takes a set of triples, which you would retrieve using the
triples method of any graph. It creates a DOT file containing those same triples, to be
used by Graphviz. Let’s try it on the celebrity graph using triples about relationships.
In your Python session:
>>> from simplegraph import *
>>> from graphtools import *
>>> cg = SimpleGraph()
>>> cg.load('celeb triples.csv')
>>> rel_triples = cg.triples((None, 'with', None))
>>> triplestodot(rel triples, 'dating triples.dot')

This should save a file called dating_triples.dot. To convert it to an image, you need to
run neato from the command line:
$ neato -Teps -Odating_triples dating triples.dot

This will save an Encapsulated PostScript (EPS) file called dating_triples.eps, which will
look something like what you see in Figure 3-6.
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Figure 3-6. Visualization of raw triples in the celebrity dating set

Try generating other images, perhaps a completely unfiltered version that contains
every assertion in the graph. You can also try generating images of the other sample
data that we’ve provided.

Displaying Query Results

The problem with graphing the dating triples is that although the graph shows the exact
structure of the data, the “rel” nodes shown don’t offer any additional information and
simply clutter the graph. If we’re willing to assume that a relationship is always between
two people, then we can eliminate those nodes entirely and connect the people directly
to one another. This is pretty easy to do using the query language that we devised at
the start of this chapter. The file graphtools.py also contains a method called
querytodot, which takes a query and two variable names:

def querytodot(graph, query, b1, b2, filename):
out=file(filename, 'w")
out.write('graph "SimpleGraph" {\n")
out.write('overlap = "scale";\n")
results = graph.query(query)
donelinks = set()
for binding in results:
if binding[b1] != binding[b2]:
n1, n2 = binding[b1].encode('utf-8"'), binding[b2].encode('utf-8")
if (n1, n2) not in donelinks and (n2, n1) not in donelinks:
out.write('"%s" -- "%s"\n' % (n1, n2))
donelinks.add((n1, n2))
out.write('}")

This method queries the graph using the provided query, then loops over the resulting
bindings, pulling out the variables b1 and b2 and creating a link between them. We can
use this method to create a much cleaner celebrity dating graph:
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>>> from simplegraph import *

>>> from graphtools import *

>>> cg = SimpleGraph()

>>> cg.load('celeb_triples.csv')

>>> querytodot(cg, [('?rel', 'with', '?p1'), ('?rel', 'with', '?p2')], 'p1', \
'p2', 'relationships.dot')

>>> exit()

$ neato -Teps -Orelationships relationships.dot

A partial result is shown in Figure 3-7.
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Milo Ventimiglia

Copienaneier)
Stephen Colletti

John F. Kennedy

Reqgie Bush
Kim Kardashian

o)

Alyssa Milano

Mandy Moore

Figure 3-7. Viewing the celebrity dating graph

See if you can make other images from the business or movie data. For example, try
graphing all the contributors to different politicians.
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Semantic Data Is Flexible

An important point that we emphasize throughout this book is that semantic data is
flexible. In Chapter 2 you saw how we could represent many different kinds of infor-
mation using semantics, and in this chapter we’ve shown you some generic methods
for querying and exploring any semantic database.

Now, let’s say you were given a new set of triples, and you had no idea what it was.
Using the techniques described in this chapter, you could immediately:

Visualize the data to understand what’s there and which predicates are used.
Construct queries that search for patterns across multiple nodes.

Search for connections between items in the graph.

Build rules for inferring new information, such as geocoding of locations.

Look for overlaps between this new data and an existing set of data, and merge the
sets without needing to create a new schema.

You should now have a thorough grasp of what semantic data is, the domains it can
work in, and what you can do once you represent data this way. In the following chap-
ters we’ll look at industry-standard representations and highly scalable implementa-
tions of semantic databases.
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CHAPTER 4
Just Enough RDF

Now that you have an understanding of semantics and of how you might build a simple
triplestore on your preferred platform, we’re going to introduce you to the world of
data formats and semantic standards. At this point, you may have a few unanswered
questions after reading the previous chapter:

* How do I know which predicates (verbs) to use?

* How do I know whether a value in my data refers to a floating-point number or a
string representing the number?

* Why is “San Francisco, CA” represented as San_Francisco_California and not
something else?

* How will other people know what representations I used?
* Are comma-separated triples really the best way to store and share data?
These questions are concerned with maintaining and sharing a large set of semantic

data. In this chapter, we’ll introduce the following few concepts to help solve these
problems:

* URIs and strong keys, so you can be sure you're talking about the same thing as
someone else

* RDF serializations, which have parsers for every popular language and are the
standard way to represent and share semantic data

* The SPARQL language, the standard way of querying semantic data

The use of semantic web formats goes far beyond what we can cover here, so consider
these concepts as the highlights—the pieces you really need in order to get started
building semantic applications.

What Is RDF?

Hopefully, by this point you’ve seen that structuring data into graphs is easy, and a
good idea as well. But now that you’ve got your data loaded into a graph, how do you
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share it and make it available to other people? This is where the W3C’s Resource
Description Framework (RDF) comes into play. RDF provides a standard way of ex-
pressing graphs of data and sharing them with other people and, perhaps more impor-
tantly, with machines. Because it is a W3C “Recommendation” (an industry standard
by any other measure), a large collection of tools and services has emerged around RDF.
This chapter introduces just enough of the RDF standards to allow you to take ad-
vantage of these tools while avoiding much of the complexity. We’ll be using the Python
RDFLib library, but much like the variations in DOM APIs, you should be able to use
what you learn in this chapter with any RDF API, as the principles remain the same
across libraries.

The history of RDF goes back to 1990, when Tim Berners-Lee wrote a proposal that
led to the development of the World Wide Web. In the original proposal, there were
different types of links between documents, which made the hypertext easier for com-
puters to comprehend automatically. Typed links were not included in the first HTML
spec, but the ideas resurfaced in the Meta Content Framework (MCF), a system for
describing metadata and organizing the Web that was developed by Ramanathan Guha
while he was at Apple and Netscape in the late 1990s, with an XML representation
developed with Tim Bray. The W3C was looking for a generic metadata representation,
and many of the ideas in MCF found their way into the first RDF W3C Recommen-
dation in 1999. Since then, the standards have been revised, and today’s software and
tools reflect these improvements.

The RDF Data Model

RDF is a language for expressing data models using statements expressed as triples.
Just as we’ve seen in previous chapters, each statement is composed of a subject, a
predicate, and an object. RDF adds several important concepts that make these models
much more precise and robust. These additions play an important role in removing
ambiguity when transmitting semantic data between machines that may have no other
knowledge of one another.

URIs As Strong Keys

You may recall from Chapter 1 that when we wanted to join multiple tables of relational
data together, we needed to find a shared identifier between the two tables that allowed
us to map the tables together. These shared identifiers are called keys and form the basis
for joining relational data.

Similarly, in a graph data structure, we need to assign unique identifiers to each of the
nodes so that we can refer to them consistently across all the triples that describe their
relationships. Up to this point, we have been using strings to label the nodes in our
graphs, and we have been careful to use unique names whenever there was a chance of
overlap. For instance, we used a clever naming convention to disambiguate different
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places with the same name in the places_triples dataset, in order that IDs such as
San_Francisco_California versus San_Francisco Chile would be distinct.

But for larger applications and when we are coordinating multiple datasets, it can be-
come increasingly difficult to guarantee unique and consistent identifiers for each node.
An example of this would be if we tried to merge a database of old classic films with
our film database from Chapter 2. The classic film database would likely have an entry
for Harrison Ford, the handsome star of silent classics such as Oh, Lady, Lady. If the
ID for this actor was harrison_ford, then when we merged the two databases, we might
sadly discover that the actor who played Han Solo and Indiana Jones was killed as the
result of a car accident in 1957.

Resources

To avoid these types of ambiguities, RDF conceptualizes anything (and everything) in
the universe as a resource. A resource is simply anything that can be identified with a
Universal Resource Identifier (URI). And by design, anything we can talk about can be
assigned a URI. You are probably most familiar with URLs (Universal Resource Loca-
tors), or the strings used to specify how web pages (among other things) are retrieved.
URLs are a subset of URIs that identify where digital information can be retrieved.
While URLs tell you where to find specific information, they also provide a unique
identifier for the information. URIs generalize this concept further by saying that any-
thing, whether you can retrieve it electronically or not, can be uniquely identified in a
similar way. See Figure 4-1.

The set of all URls

 The st of

| all URLs

Figure 4-1. Venn diagram showing the relationship of URLs to URIs; URLs are a subset of URIs

Since URIs can identify anything as a resource, the subject of an RDF statement can be
a resource, the object in an RDF statement can be a resource, and predicates in RDF
statements are always resources. The URI for a resource represented in an RDF state-
ment is called the URI reference (abbreviated URIref) for that graph node. The subtlety
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of using the phrase “URI reference” is easy to miss. That is, the node in the graph isn’t
the thing the URI identifies; rather, the URI is the identifier for something that is itself
being represented as a node in a graph. Thus we say the graph node has a reference,
which is the thing identified by the URI.

A Real-World URIref

Alongside Monet’s first painting of Rouen Cathedral is a note from the curator of the
collection that says, “This is Rouen Cathedral.” Of course, it isn’t the cathedral—it is
a painting of the cathedral. You would think they would know the difference!

URIs are a useful way of getting around the need for an omniscient data architect. By
allowing distributed organizations to create names for the things they are interested in,
we can avoid the problem of two groups choosing the same name for different entities.
URIs are simply strings, composed of a scheme name followed by a colon, two slashes
(://), and a scheme-specific identifier. The scheme identifies the protocol for the URI,
while the scheme-specific identifier is used by the protocol of the scheme to uniquely
identify the resource. Almost all the URIs we will encounter use the “http” or “https”
scheme for identifying things. As we have experienced with URLs, the scheme-specific
part of these identifiers typically takes the form of a hostname, an optional port iden-
tifier, and a hierarchical path. If organizations stick to creating identifiers using host-
names under their control, then there is no chance of two organizations constructing
the same identifier for two different things. Similarly, organizations themselves can split
up their own identifier creation efforts among different hostnames and/or different
hierarchical paths, thus making distributed resource naming work at any scale.

Because URIs uniquely identify resources (things in the world), we consider them strong
identifiers. There is no ambiguity about what they represent, and they always represent
the same thing, regardless of the context we find them in.

[tis important to note that URIs are not URLs (although every URL is a URI). Practically
speaking, this means that you shouldn’t assume URIs will produce any information if
you type the identifier into a web browser. That said, making digital information about
the resource available at that address is considered good practice, as we will see in the
section “Linked Data” on page 105.

It is common in RDF to shorten URIs by assigning a namespace to the base URI and
writing only the distinctive part of the identifier. For instance, rdf is frequently used as
a moniker for the base URI http://www.w3.0rg/1999/02/22-rdf-syntax-ns#, allowing
predicates such as http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type to be abbrevi-
ated as rdf:type.

Blank Nodes

You may have noticed that in our discussion about URIrefs and resources, we hedged
our language and didn’t say, “All RDF subjects are resources.” That’s because you may
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find situations where you don’t know the URI of the thing you would like to reference
or where there is no identifier available (and you are not in a good position to construct
one). In either case, just because we don’t have a URI for the item doesn’t mean we
can’t talk about it. For these situations, RDF provides “anonymous” or blank nodes.

Blank nodes are graph nodes that represent a subject (or object) for which we would
like to make assertions, but have no way to address with a proper URI. For instance,
as we will see in Chapter 5, many social network APIs don’t issue strong URIs for the
members of their community, even though they have a good deal to say about them.
Instead, the social network uses a blank node to represent the member, and the facts
about that member are connected to the blank node. See Figure 4-2.

“http://blog.kiwitobes.com” “jamie@semprog.com”
A 4
“Segaran” “Taylor"
weblog } ' email: '
i surName,~ i surName,~
Blanki e > Blnk2
givenNam e givenNam e
4 4
“Toby” “Jamie”

Figure 4-2. Blank nodes in a social graph

In triple representations, blank node IDs are written _:id, where id is an arbitrary,
graph-specific local identifier. Most RDF APIs handle this by issuing an internal ID for
the node that is only valid in the local graph and can’t be used as a strong key between
graphs. Using our previous triple expression format, we can write the graph in Fig-
ure 4-2 as:
(_:ax1, "weblog", "http://blog.kiwitobes.com")

(_:ax1, "surName", "Segaran")
(_:ax1, "givenName", "Toby")
(_:ax1, "knows", _:zb7)
(
(

(

:zb7, "surName", "Taylor")
:zb7, "givenName", "Jamie")
:zb7, "email", "jamie@semprog.com")

And though neither of the nodes has a strong external identifier, from the context of
data connected to the nodes it is clear that the Toby Segaran who writes the Kiwitobes
blog knows the Jamie Taylor with the email address jamie@semprog.com.

You may also find situations where it is useful to create a data model that uses a node
in an RDF graph to simply group a set of statements together. For instance, while
describing a building, it is often helpful to group together its street address,
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municipality, administrative region, and postal code as a unit that represents the build-
ing’s mailing address. To do this, we would need a graph node, which represents the
abstract concept of the building’s address. While we could provide a URIref for this
mailing address, we would almost never need to refer to this grouping node outside the
context of the current graph. See Figure 4-3.

“1005 Gravenstein Hwy North”
.

street-address "

0'Reill - Tocality
headquar{ers ’Q

admin-divisio -

California

pnstal—codé"-.,_

"«
“95472"

Figure 4-3. Using a blank node to model a mailing address

Literal Values

RDF uses literal values in the same way our earlier graph examples did, to express
names, dates, and other types of values about a subject. In RDF, a literal value can
optionally have a language (e.g., English, Japanese) or a type (e.g., integer, boolean,
string) associated with it. Type URIs from the XML schema spec are commonly used
to indicate literal types; for example, http://www.w3.org/2001/XMLSchema#int or
xsd:int for an integer value. ISO 639 codes are used to specify the language; for
example, en for English or ja for Japanese.

RDF Serialization Formats

While the data model that RDF uses is very simple, the serialized representation tends
to get complicated when an RDF graph is saved to a file or sent over a network because
of the various methods used to compact the data while still leaving it readable. These
compaction mechanisms generally take the form of shortcuts that identify multiple
references to a graph node using a shared but complex structure.

The good news is that you really don’t have to worry about the complexities of the
serialization formats, as there are open source RDF libraries for just about every modern
programming language that handle them for you. (We believe the corollary is also true:
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if you are thinking about the serialization format and you aren’t in the business of
writing an RDF library, then you should probably find a better library.) Because of this
we won’t go into too much detail, but it is important to understand the basics so you
can use the most appropriate format and debug the output.

We'll be covering four serialization formats here: N-Triples, the simplest of notations;
N3, a compaction of the N-Triple format; RDF/XML, one of the most frequently used
serialization formats; and finally, “RDF in attributes” (known as RDFa), which can be
embedded in other serialization formats such as XHTML.

There are many books and online resources that cover these output for-

_______ mats in great detail. If you are interested in reading further about them,

7 you can look at the complete RDF specification at http://www.w3.0rg/
RDF/ or in the O’Reilly book Practical RDF by Shelley Powers.

A Graph of Friends

In order to compare the different serialization formats, let’s first build a simple graph
that we can use throughout the examples to observe how the various serializations fold
relationships together.

For this example graph, we’ll model a small part of Toby’s social sphere—in particular,
how he knows the other authors of this book. In our graph we will not only include
information about the people Toby knows, but we’ll also describe other relationships
that can be used to uniquely identify Toby. This will include things like the home page
of his blog, his email address, his interests, and any other names he might use.

These clues about Toby’s identity are important to help differentiate “our Toby” from
the numerous other Tobys in the world. Human names are hardly unique, but by
providing a collection of attributes about the person, hopefully we can pinpoint the
individual of interest and obtain a strong identifier (URI) that we can use for future
interaction.

As you might have discerned, the network of social relationships that people have with
one another naturally lends itself to a graphical representation. So it is probably no
surprise that machine-readable graphs of friends have coevolved with RDF, making
social graphs one of the most widely available RDF datasets on the public Internet.
Over time, the relationships expressed in these social graphs have settled into a collec-
tion of well-known predicates, forming a vocabulary of expression known as “Friend
of a Friend” or simply FOAF.

Not surprisingly, the core FOAF vocabulary—the set of predicates—has been adopted
and extended to describe a number of common “things” available on the Internet. For
instance, FOAF provides a predicate for identifying photographs that portray the sub-
ject of the statement. While FOAF deals primarily with people, the formal definition
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of FOAF states that the foaf:depiction predicate can be used for graphics portraying
any resource (or “thing”) in the world.

Figure 4-4 represents the small slice of Toby’s social world that we will concern our-
selves with over the next few examples. With this graph in mind, let’s look at how this
knowledge can be represented using different notations.

http://xmins.com/foaf/0.1/Document )
http://kiwitobes.com/

N

“Semantic Programming”

rdf:Eabe.i"-.‘.

Toby 5993’3“"---.‘., foaf:name ", foafinterest
foaf:homepage

“kiwitobes” <€

fUaf.'th‘E_.--"""""
& ; . “Jamie Taylor”
“toby@segaran.com” __.--"'foaf:kncrws ", foafknows
dtype " foafname
v : 4 :
rdftype "'-._‘foaf:mbox
foafina me : ""-._[dfiype *
I £ foaf:mbox “jamie@semprog.com”
“Colin Evans” i ‘4 v P

v

SR " http://xmlns.com/foaf/0.1/Person

Figure 4-4. Toby’s FOAF graph

N-Triples

N-Triple notation is a very simple but verbose serialization, similar to what we have
been using in our triple data files up to this point. Because of their simplicity, N-Triples
were used by the W3C Core Working Group to unambiguously express various RDF
test-case data models while developing the updated RDF specification. This simplicity
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also makes the N-Triple format useful when hand-crafting datasets for application
testing and debugging.

Each line of output in N-Triple format represents a single statement containing a
subject, predicate, and object followed by a dot. Except for blank nodes and literals,
subjects, predicates, and objects are expressed as absolute URIs enclosed in angle
brackets. Subjects and objects representing anonymous nodes are represented as
_:name, where name is an alphanumeric node name that starts with a letter. Object literals
are double-quoted strings that use the backslash to escape double-quotes, tabs,
newlines, and the backslash character itself. String literals in N-Triple notation can
optionally specify their language when followed by @lang, where lang is an ISO 639
language code. Literals can also provide information about their datatype when fol-
lowed by **type, where type is commonly an XSD (XML Schema Definition) datatype.

The extension .nt is typically used when N-Triples are stored in a file, and when they
are transmitted over HTTP, the mime type text/plain is used. The official N-Triple
format is documented at http://www.w3.org/TR/rdf-testcases/#ntriples.

Our FOAF graph (as shown in Figure 4-4) can be represented in N-Triple format as:

<http://kiwitobes.com/toby.rdf#ts> <http://xmlns.com/foaf/0.1/homepage>
<http://kiwitobes.com/>.

<http://kiwitobes.com/toby.rdf#ts> <http://xmlns.com/foaf/0.1/nick> "kiwitobes".

<http://kiwitobes.com/toby.rdf#ts> <http://xmlns.com/foaf/0.1/name> "Toby Segaran".

<http://kiwitobes.com/toby.rdf#ts> <http://xmlns.com/foaf/0.1/mbox>
<mailto:toby@segaran.com>.

<http://kiwitobes.com/toby.rdfi#ts> <http://xmlns.com/foaf/0.1/interest>
<http://semprog.com>.

<http://kiwitobes.com/toby.rdf#ts> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person>.

<http://kiwitobes.com/toby.rdf#ts> <http://xmlns.com/foaf/0.1/knows> _:jamie .
<http://kiwitobes.com/toby.rdftts> <http://xmlns.com/foaf/0.1/knows>
<http://semprog.com/people/colin>.

_:jamie <http://xmlns.com/foaf/0.1/name> "Jamie Taylor".

_:jamie <http://xmlns.com/foaf/0.1/mbox> <mailto:jamie@semprog.com>.

_:jamie <http://www.w3.0rg/1999/02/22-rdf-syntax-nsttype>
<http://xmlns.com/foaf/0.1/Person>.

<http://semprog.com/people/colin> <http://xmlns.com/foaf/0.1/name> "Colin Evans".

<http://semprog.com/people/colin> <http://xmlns.com/foaf/0.1/mbox>
<mailto:colin@semprog.com>.

<http://semprog.com/people/colin> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person>.

<http://semprog.com> <http://www.w3.org/2000/01/rdf-schema#label>
"Semantic Programming".

<http://semprog.com> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Document>.
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N3

While N-Triples are conceptually very simple, you may have noticed a lot of repetition
in the output. The redundant information takes additional time to transmit and parse.
While it’s not a problem when working with small amounts of data, the additional
information becomes a liability when working with large amounts of data. By adding
a few additional structures, N3 condenses much of the repetition in the N-Triple
format.

In an RDF graph, every connection between nodes represents a triple. Since each node
may participate in a large number of relationships, we could significantly reduce the
number of characters used in N-Triples if we used a short symbol to represent repeated
nodes. We could go further, recognizing that many of the URIs used in a specific model
frequently come from related URIs. In much the same way that XML provides a name-
space mechanism for generating short Qualified Name (qnames) for nodes, N3 allows
us to define a URI prefix and identify entity URIs relative to a set of prefixes declared
at the beginning of the document. The statement:

@prefix semperp: <http://semprog.com/people/>.

allows us to shorten the absolute URI for Colin from <http://semprog.com/people/
colin> to semperp:colin.

Since each node in an RDF graph is a potential subject about which we may have many
things to say, it is not uncommon to see the same subject repeat many (many) times in
N-Triple output. N3 reduces this repetition by allowing you to combine multiple state-
ments about the same subject by using a semicolon (;) after the first statement, so you
only need to state the predicate and object for other statements using the same subject.
The following statement says that Colin knows Toby and that Colin’s email address is
colin@semprog.com (note how semperp:colin, the subject, is only stated once):

semperp:colin foaf:knows <http://kiwitobes.com/toby.rdf#ts>;
foaf:mbox "colin@semprog.com”.

N3 also provides a shortcut that allows you to express a group of statements that share
a common anonymous subject (blank node) without having to specify an internal name
for the blank node. As discussed earlier, mailing addresses are frequently modeled with
a blank node to hold all the components of the address together. W3C has defined a
vocabulary for representing the data elements of the vCard interchange format that
includes predicates for modeling street addresses. For instance, to specify the address
of O’Reilly, you could write:

[ <http://www.w3.0rg/2006/vcard/nststreet-address> "1005 Gravenstein Hwy North" ;
<http://www.w3.0rg/2006/vcard/ns#locality> "Sebastopol, California”
1.

Because it is important to explicitly state that an entity is of a certain type, N3 allows
you to use the letter a as a predicate to represent the RDF “type” relationship repre-
sented by the URI <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>.
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Another predicate for which N3 provides a shortcut is <http://www.w3.0rg/2002/07/
owl#sameAs>. OWL (Web Ontology Language) is a vocabulary for defining precise
relationships between model elements. We will have more to say about OWL in Chap-
ter 6, but even when models don’t use the precision of OWL, you will frequently see
the owl:sameAs predicate to express that two URIs refer to the same entity. The
sameAs predicate is used so frequently that the authors of N3 designated the symbol =
as shorthand for it.

Because N-Triples are a subset of N3, any library capable of reading N3 will also read
N-Triples. The FOAF graph (Figure 4-4) in N3 would read:

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schematt>.

@prefix semperp: <http://semprog.com/people/>.

@prefix tobes: <http://kiwitobes.com/toby.rdf#>.

tobes:ts a foaf:Person;
foaf:homepage <http://kiwitobes.com/>;
foaf:interest <http://semprog.com>;
foaf:knows semperp:colin,
[ a foaf:Person;
foaf:mbox <mailto:jamie@semprog.com>;
foaf:name "Jamie Taylor"];
foaf:mbox <mailto:toby@segaran.com>;
foaf:name "Toby Segaran";
foaf:nick "kiwitobes".

<http://semprog.com> a foaf:Document;
rdfs:label "Semantic Programming".

semperp:colin a foaf:Person;
foaf:mbox <mailto:colin@semprog.com>;
foaf:name "Colin Evans".

RDF/XML

The original W3C Recommendation on RDF covered both a description of RDF as a
data model and XML as an expression of RDF models. Because of this, people some-
times refer to RDF/XML as RDF, but it is important to recognize that it is just one
possible representation of an RDF graph. RDF/XML is sometimes criticized for being
difficult to read due to all the abbreviated structures it provides; still, it is one of the
most frequently used formats, so it’s useful to have some familiarity with its layout.

Conceptually, RDF/XML is built up from a series of smaller descriptions, each of which
traces a path through an RDF graph. These paths are described in terms of the nodes
(subjects) and the links (predicates) that connect them to other nodes (objects). This
sequence of “node, link, node” is repeatable, forming a “striped” structure (think of a
candy cane, with nodes being red stripes and predicates being white stripes). Since each
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node encountered in these descriptions has a strong identifier, it is possible to weave
the smaller descriptions together to learn the larger RDF graph structure. See Figure 4-5.

http://kiwitobes.com/toby.rdféts )

_,f’maﬂknmns

http://semprog.com/people/colin

foaf:name

'S
“Colin Evans”

Figure 4-5. A stripe from Toby’s FOAF graph

If there is more than one path described in an RDF/XML document, all the descriptions
must be children of a single RDF element; if there is only one path described, the
rdf:RDF element may be omitted. As with other XML documents, the top-level element
is frequently used to define other XML namespaces used throughout the document:

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"/>

Paths are always described starting with a graph node, using an rdf:Description
element. The URI reference for the node can be specified in the description element
with an rdf:about attribute. For blank nodes, a local identifier (valid only within the
context of the current document) can be specified using an rdf:NodeID attribute. Pred-
icate links are specified as child elements of the rdf:Description node, which will have
their own children representing graph nodes. The simple stripe representing Colin as
a friend of Toby (Figure 4-5) would look like:

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/">

<rdf:Description rdf:About="http://kiwitobes.com/toby.rdftts>
<foaf:knows>
<rdf:Description rdf:About="http://semprog.com/people/colin">
<foaf:name>Colin Evans</foaf:name>
</rdf:Description>
</foaf:knows>
</rdf:Description>

</rdf:RDF>
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Literal objects can be specified as the text of an element, or as an attribute on the
rdf:Description element. Let’s expand the example, adding more information about
Colin and about another friend of Toby’s:

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/">

<rdf:Description rdf:about="http://kiwitobes.com/toby.rdf#ts>
<foaf:knows>
<rdf:Description rdf:about="http://semprog.com/people/colin">
<foaf:name>Colin Evans</foaf:name>
<foaf:mbox>colin@semprog.com</foaf:mbox>
</rdf:Description>
</foaf:knows>

<foaf:knows>
<rdf:Description foaf:mbox="jamie@semprog.com"/>
</foaf:knows>
</rdf:Description>

</rdf:RDF>

While this is a perfectly reasonable description of Toby’s relationship to Colin and
Jamie, we are still missing the rdf:type information that states that Toby, Colin, and
Jamie are people. As in the other RDF serializations we have looked at, RDF/XML
provides a shortcut for this very common statement, allowing you to replace the
rdf:Description element with an element representing the rdf: type for the node. Thus
the sequence of elements:

<rdf:Description rdf:about="http://www.kiwitobes.com/toby.rdf#ts><rdf:type>
<foaf:Person>

is compacted into a single rdf:Description element of the form:
<foaf:Person rdf:about="http://kiwitobes.com/toby.rdf#ts">

The FOAF graph we represented in N-Triples and N3 can now be represented in RDF/
XML as:

<rdf:RDF
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-nst'
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#f'>

<foaf:Person rdf:about="http://kiwitobes.com/toby.rdf#ts">
<foaf:name>Toby Segaran</foaf:name>
<foaf:homepage rdf:resource="http://kiwitobes.com/"/>
<foaf:nick>kiwitobes</foaf:nick>
<foaf:mbox rdf:resource="mailto:toby@segaran.com"/>

<foaf:interest>
<foaf:Document rdf:about="http://semprog.com">
<rdfs:label>Semantic Programming</rdfs:label>
</foaf:Document>
</foaf:interest>
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<foaf:knows>
<foaf:Person rdf:about="http://semprog.com/people/colin">
<foaf:name>Colin Evans</foaf:name>
<foaf:mbox rdf:resource="mailto:colin@semprog.com"/>
</foaf:Person>

</foaf:knows>
<foaf:knows>
<foaf:Person>
<foaf:name>Jamie Taylor</foaf:name>
<foaf:mbox rdf:resource="mailto:jamie@semprog.com"/>
</foaf:Person>
</foaf:knows>

</foaf:Person>
</rdf:RDF>

These aren’t the only abbreviated structures RDF/XML provides, but this should be
enough to let you read most RDF/XML files.

RDFa

RDFaisn’t a pure serialization format for RDF, but rather a way of annotating XHTML
web pages with RDF data. The idea behind RDFa is that you only have to publish your
content once, mixing the human-readable and machine-readable content together. This
is a similar philosophy to that of Microformats, a simpler, more ad-hoc approach to
adding rich semantic annotations to XHTML content.

RDFa uses a small set of XML attributes that are added to existing XHTML content
tags in order to specify the semantics behind the information that is displayed. These
attributes make the semantic meaning of existing XHTML content clear. The basic
processing model is that the subject of a triple is the subject URI identified in a higher-
level XHTML element in the DOM tree, and the predicate and object of a statement
are lower down on the tree, children of the subject.

Instead of using URIs to describe subjects, predicates, and objects, many RDFa attrib-
utes use Compact URIs (or CURIEs) to reduce the amount of markup. CURIEs work
just like XML Qualified Names (in fact, QNames are a subset of CURIEs), so everything
you know about XML QNames (such as that foaf:nick actually means http://
xmlns.com/foaf/0.1/nick) applies to CURIEs. But CURIEs are a bit more accommo-
dating in what the localpart of the prefix:localpart expression can contain.

QName construction forbids slashes (/) in the localpart, thus requiring a separate
XML namespace declaration for every QName using a different part of the path
hierarchy. CURIEs relax this constraint, allowing statements like example:cow and
example:places/barn to use one xmlns declaration—like http://example.org/farm/—
to generate the full URIs http://example.org/farm/cow and http://example.org/farm/
places/barn, respectively.
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CUIREs also allow for localparts that start with a number. This means that you could
define an XML namespace as:

xmlns:amazonisbn="http://www.amazon.com/exec/obidos/ASIN/"

and then refer to the book Programming the Semantic Web by its ISBN with the CURIE:

amazonisbn:0596153813

CURIEs are great when you are working with predicates because you can make one
xmlns declaration for each vocabulary you are using and quickly construct CURIEs for
any property in the vocabulary. However, they can be frustrating when you want to
talk about a wide range of subjects or objects (since you have to make an xmlns dec-
laration for each unique base URI). To alleviate this problem, RDFa allows you to use
full URIs for several of the subject and object attributes. But because full URIs use a
colon to separate the protocol scheme from the hierarchical part of the URI, parsers
could become confused when they see the http:—did you mean http: as in
http://example.org/cow or were you writing a CURIE where http is a prefix for some
namespace?

To avoid this confusion, RDFa defines a “safe CURIE” that makes it clear when a colon-
separated statement is being used as a CURIE versus as a protocol identifier in a URL
To construct a safe CURIE, simply place your CURIE in square brackets, as in:

[example:place/barn]

Let’s look at the list of attributes used by RDFa, grouping them by the part of the RDF
statement that they declare.

This is the attribute to set an RDF subject:

about
A URI (or safe CURIE) used as a subject in an RDF triple. By default, the base URI
for the page is the root URI for all statements. Using an about attribute allows
statements to be made where the base URI isn’t the subject.

These are the attributes to set an RDF predicate:
rel
CURIEs expressing relationships between two resources

property
CURIEs expressing relationships between a resource and a literal

rev
CURIEs expressing a reverse relationship between two resources

These are the attributes to set an RDF object:

content
A string, representing a literal RDF object
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href
A URI resource expressing an RDF object (as inline clickable)

349
A URI resource expressing an RDF object (as an inline embedded item)

resource
A URI (or safe CURIE) expressing an RDF object when the object isn’t visible on
the page

RDFa also provides special attributes for specifying datatypes and making rdf:type
statements:

datatype
The datatype of a literal

typeof
The type of a subject

[t is important to note that the attribute you use to set the predicate depends on the
type of object in the RDF statement. If the object is a literal, then the predicate is
specified with the property attribute. If, however, the object is a resource, the rel or
rev attribute is used. Because XHTML is markup for producing human-readable dis-
plays, it may not be convenient to display data in the subject-predicate-object order of
an RDF statement. To handle these situations, RDFa provides the rev attribute for
setting the predicate, which also indicates that the order of the statement has been
reversed (object, predicate, subject).

Minimally, we can specify RDF triples in a single markup element. In the following
example, the object is a literal, so we use the attribute property to state the predicate:
<span xmlns:foaf="http://xmlns.com/foaf/0.1/"
about="http://kiwitobes.com/toby.rdf#ts"
property="foaf:nick"
content="kiwitobes" />

When the statement’s object is a resource, we use the attribute rel to state the predicate:

<span xmlns:foaf="http://xmlns.com/foaf/0.1/"
about="http://kiwitobes.com/toby.rdf#ts"
rel="http://xmlns.com/foaf/0.1/homepage"
href="http://kiwkitobes.com" />

But we can also use the XHTML element to display parts of the structure. For instance,
we can make the following statement about Toby’s nickname when displaying the
string “kiwitobes”:

Toby's nickname is: <span xmlns:foaf="http://xmlns.com/foaf/0.1/"

about="http://kiwitobes.com/toby.rdf#ts"
property="http://xmlns.com/foaf/0.1/nick">kiwitobes</span>

Here’s an example of Toby’s FOAF record as a fragment of XHTML annotated with
RDFa. The XML attributes and text that an RDFa parser would glean from this
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XHTML are in bold. The annotations can be made in any tags and are meant to reuse
existing XHTML attributes and text that are also being used in the human-readable
XHTML content. It can be tricky to figure out how to weave the attributes into existing
documents, but the benefit is that all of the data is made available in one place and the
concepts being discussed are unambiguously described using strong URIrefs:

<div xmlns:foaf="http://xmlns.com/foaf/0.1/"
about="http://kiwitobes.com/toby.rdf#ts" typeof="foaf:Person">

Name: <span property="foaf:name">Toby Segaran</span><br/>
Nickname: <span property="foaf:nick">kiwitobes</span><br/>
Interests: <a rel="foaf:interest" href="http://semprog.org">
<span property="rdfs:label">Semantic Programming</span></a>
Homepage: <a rel="foaf:homepage" href="http://kiwkitobes.com/">KiwiTobes</a><p/>

Friends:<br/>
<ul rel="foaf:knows">
<li about="http://semprog.com/people/colin"
typeof="foaf:Person" property="foaf:name">Colin Evans</1i>

<1i typeof="foaf:Person">
<span property="foaf:name">Jamie Taylor</span><br/>
Email: <a rel="foaf:mbox" href="mailto:jamie@semprog.com">
jamie@semprog.com</a><br/>
</1i>

</ul>
</div>

In documents with copious amounts of human markup, it can be chal-
~ lenging to read RDFa. One way to work your way through the jungle of
" markup is to scan for rel, rev, and property attributes in a markup tag.
Once you have found one of these elements, you know you have found
the predicate of a statement. Then, search backward up the DOM tree
to find the subject of the statement (remember, if you don’t find one,
the document itself is the subject). Then search down the DOM tree to
find the next item that can serve as an object for the statement. Keep in
mind that if the predicate was specified using a rev attribute, the order
of the statement will be reversed.

Because XHTML was designed to be extensible and allows new attributes to be added
to markup elements, RDFa was specified as annotations on XHML. In practice, RDFa
works perfectly well on HTML, though the markup will not validate against HTML 4.

Because itis easy to wrap templated HTML output with RDFa, and given the prevalence
of database-driven websites, the amount of RDFa available on the Web is growing
rapidly. A number of prominent sites, including MySpace and popular authoring tools,
now have RDFa output capabilities, though it may not be obvious because RDFa
doesn’t alter the HTML rendering.
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In later chapters we will show how Yahoo! is extracting semantic data from sites using
RDFa to enhance search, and we will revisit RDFa as we build more sophisticated
semantic applications that not only consume semantic data, but republish their output
for use by other semantic services.

RDFa is now a W3C Recommendation, but there have been several other attempts to
embed RDF in HTML. One effort was eRDF (“embeddable RDF”), which predates
RDFa. eRDF never reached a critical mass, and like other RDF microformats, it gen-
erally isn’t supported by RDF tools; still, it’s possible that you may run into it. You can
read more about eRDF at http://research.talis.com/2005/erdf/wiki/Main/RdfInHtml.

Not the Last Word on Serialization

N-Triples, N3, RDF/XML, and RFDa are not the only RDF serializations you will find
in the wild. Turtle is another popular and fairly simple serialization with its own
compaction tricks. Turtle output is typically associated with the mime type
application/x-turtle and the file extension .ttl. While you can learn more about it at
http://www.dajobe.org/2004/01/turtle/, we believe that you need only be aware of its
existence and know how to tell your favorite RDF library to read it.

If you run into a serialization that you find difficult to read or debug, try reading the
data into your RDF library and then asking the library to serialize the graph back into
a format you are comfortable with.

Introducing RDFLib

The triplestore and query language we developed in Chapters 2 and 3 were useful for
understanding how triplestores work. And while we could implement parsers and
serializers for the myriad RDF output formats and add all the features you would expect
in a full-fledged RDF library, doing so would distract us from our real interest: building
semantic applications for the Web.

The good news is that research on semantic web technologies over the past decade has
produced a number of excellent open source libraries for managing RDF data. For the
remainder of this book we will adopt various RDF libraries and frameworks, introduc-
ing you to some of the more popular semantic platforms and allowing us to select the
tool best suited for a particular task.

For many of our examples we will utilize RDFLib, a lightweight but functionally com-
plete RDF library. RDFLib is very Pythonic in its approach, allowing applications to
access RDF structures through standard Python idioms. You can download RDFLib
from http://rdflib.net. To install the library, decompress and unpack the TAR file and
make the top-level directory of the project your working directory. At a command
prompt, enter:

c:\download\rdflib-2.4.0>python setup.py install
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Now that you have RDFLIb installed, let’s take it for a test drive and see what we can
do with it. Start an interactive Python session and create a graph with the following
commands:

>> import rdflib

>> from rdflib.Graph import ConjunctiveGraph
>> g = ConjunctiveGraph()

Let’s read in an RDF graph from the Web and examine a few of the ways you can inspect
it. The Graph class provides a handy parse method, which not only loads data files into
the graph, but can retrieve them from the Web as well. Grab Colin’s FOAF file from
the semprog website with the following command:

>> g.parse("http://semprog.com/people/colin”, format="nt")

You can view the triples that define the graph by iterating over the graph directly:

>> for triple in g:
>> ... print triple

Or you can query the triples, just as we did in Chapter 2, by looking for triple patterns
using wildcards within a statement:

>> 1list( g.triples((None,rdflib.URIRef("'foaf:knows'),None)) )

Colin’s FOAF file was originally in N-Triple format, but perhaps we would like to save
it to disk as RDF/XML.:

>> outfile = open("colin.xml", "w")
>> outfile.write(g.serialize(format="pretty-xml"))

If you open colin.xml in a text editor, you should see a FOAF file similar to the one we
examined earlier in the section “RDF/XML” on page 73. Let’s create a new graph and
read Colin’s FOAF file in from disk, and then look at the graph serialized as N3:

>> newg = ConjunctiveGraph()

>> newg.parse("colin.xml")
>> newg.serialize(format="n3")

We now have two graphs in memory, g and newg. If everything is working as expected,
both graphs should be identical—the various serializations should not have changed
any of the information in the graphs. To prove this to ourselves, we can make use of
RDFLib’s ability to perform set operations on graphs. To do this, we will subtract graph
g from newg, which will remove all the triples that appear in g from newg. If newg and g
are identical, we shouldn’t have any triples in newg after subtracting g:

> newg -= g

>> len(newg)
0

Actually, RDFLib provides a Graph method that tests whether two graphs have the same
shape (in other words, are isomorphic). Let’s try that again:

>> g.isomorphic(newg)
False
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#we made newg have zero triples in our last test, so let's reload it and try again

>> newg.parse("colin.xml")

>> g.isomorphic(newg)

True
Just like our triplestore in Chapter 2, triples can be inserted directly into the graph using
tuples. Since we believe that anyone who reads this book must be a friend, let’s add
you to Colin’s social network. First, we need to add a statement that says you are a
person (you are a person, right?). To do this, you will need to identify yourself with a
URI reference (you can just make up a URI for now). RDFLib provides a class for
creating URI references called URIRef that takes a string, representing the URI, as an
argument:

>> me = URIRef("http://my.uri.com/goes/here")

Next, we need to create a URIref for the predicate rdf:type. Since we may need to add
other URIrefs to the RDF vocabulary, we will use RDFLib’s Namespace class to generate
this URIref. Once instantiated, the Namespace class allows you to create URIrefs by
accessing the instance as a dictionary:

>> RDF = rdflib.Namespace("http://www.w3.org/TR/rdf-schema/#")

>> rdf-type-predicate = RDF["type"]
Since we are adding new statements to Colin’s FOAF graph, which is currently in
memory and bound to the variable g, the FOAF namespace must have already been
defined. To find out, we can list all the namespace bindings in the current graph:

> [ x for x in g.namespaces() ]
[(u'foaf', rdflib.URIRef('http://xmlns.com/foaf/0.1/")),....]

The base URI for the FOAF vocabulary has been bound to the foaf namespace prefix;
knowing that, we can go ahead and assert our statement, declaring you are a person:
>> g.add((me, rdf-type-predicate, foaf["person"]))
Using these same techniques, we can now add a statement declaring you are friend of
Colin:
>> g.add(URIRef("http://semprog.com/people/colin"), foaf["knows"], me)
And like our triplestore in Chapter 2, the graph can be queried using tuples where
None indicates a free parameter:
>> list( g.triples((None, foaf["knows"], None)) )
While RDFLib can use Python strings as subjects, predicates, and objects, some oper-
ations will not work if they are not properly typed as rdflib.URIRef. Since it is so easy
to create URIrefs with RDFLib, and we know that predicates, subjects, and nonliteral

objects should always have URI references, there isn’t any reason for not constructing
them correctly.
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Persistence with RDFLib

One of the advantages of using RDFLib is that we can load triples into a graph store
that will persist across our example applications and command-line sessions. With a
persistent graph, we can then write code that will attach to the graph store and make
use of the previously loaded triples.

RDFLib uses a simple plug-in framework that facilitates adding new parsers, serializers,
and storage systems. While RDFLib supports the use of MySQL and Sleepycat data-
bases for persistence, we will use SQLite as our storage medium to simplify setup.
SQLite is a simple, cross-platform database system that runs within an application
process and requires no configuration—perfect for our needs. If your system doesn’t
have SQLite installed, download and install a SQLite package from http://www.sqlite
.org/.

The Python interface for SQLite is called pysqlite and can be downloaded from http://
pysqlite.org (which should redirect you to the current home of the project). For Win-
dows, download and run the binary installer appropriate for your version of Python.
For all other platforms, download the compressed source TAR file and enter the fol-
lowing at the command prompt (replacing the version number to reflect the file you

downloaded):

$ gunzip pysqlite-2.5.0a.tar.gz
$ tar xvf pysqlite-2.5.0a.tar

$ cd pysglite-2.5.0

$ python setup.py build

$ python setup.py install

To initialize a new persistent RDFLib triplestore called rdf-test.ts, try the following
from an interactive Python session:

>> import rdflib

>> from rdflib import Literal

>> store = rdflib.plugin.get('SQLite', rdflib.store.Store)('rdf-test.ts")
>> store.open('.', create=True) #create in the current working directory - dot
>> g = rdflib.ConjunctiveGraph(store)

>> semprog = rdflib.Namespace("http://semprog.com/people/")

>> foaf = rdflib.Namespace("http://xmlns.com/foaf/0.1/")

>> g.add((semprog["jamie"], foaf["name"], Literal("Jamie Taylor")))

>> g.add((semprog["jamie"], foaf["mbox"], Literal("jamie@semprog.com")))
>> g.serialize(format="nt") #just to check our work

>> g.commit()

Now quit your Python session (just to prove to yourself that there is no magic happening
in your session memory). Then restart your Python interpreter and try reading the
triples back from the persistent store:

>> import rdflib

>> store = rdflib.plugin.get('SQLite', rdflib.store.Store)('rdf-test.ts")

>> store.open('.', create=False)

>> g = rdflib.ConjunctiveGraph(store)
>> g.serialize(format="nt")
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You should see the triples you entered during the first session. We should point out a
few things before we move along. First, the default for the create parameter in the
open method is create=True, so when you want to open an existing database, you must
explicitly state create=False. Fortunately, it is an error to create a database that already
exists, so if you forget and try to recreate the database, you will throw a pysqlite
OperationalError, which will prevent the database from being overwritten. Also,
pysglite supports transactions, which RDFLib will use when writing to the store. By
default, autocommit is off, which means you must explicitly call commit at the end of
your writes.

Armed with the information from this introduction, you should now be able to navigate
RDFLib’s online documentation to find other useful classes and methods if you need
to solve more complex problems.

SPARQL

Just as SQL provides a (relatively) standard query language across relational database
systems, SPARQL provides a standardized query language for RDF graphs. SPARQL
(Simple Protocol and RDF Query Language) is similar to the query language we devel-
oped in Chapter 3, with a number of important and powerful additions, including the
ability to filter results and construct new graphs based on queries. Like our earlier query
language, SPARQL queries attempt to match patterns in the graph and bind wildcard
variables as it finds solutions.

Throughout this section we will query a small graph of movie data, represented as
follows using N3. This set of statements comes from a larger set of triples derived from
Freebase that represents movies released between the years 2000 and 2008. You can
download both datasets from http://semprog.com/psw/chapt4/moviedata:

@prefix fb: <http://rdf.freebase.com/ns/> .

<http://rdf.freebase.com/ns/en.hollywood_homicide>
<http://rdf.freebase.com/ns/film.film.directed by>
<http://rdf.freebase.com/ns/en.ron_shelton> ;

<http://rdf.freebase.com/ns/film.film.starring>
<http://rdf.freebase.com/ns/en.harrison_ford> ,
<http://rdf.freebase.com/ns/en.kurupt> ,
<http://rdf.freebase.com/ns/en.robert_wagner> ;

<http://rdf.freebase.com/ns/film.film.initial release date> "2003" .

<http://rdf.freebase.com/ns/en.k_19 the widowmaker>
<http://rdf.freebase.com/ns/film.film.directed by>
<http://rdf.freebase.com/ns/en.kathryn_bigelow> ;

<http://rdf.freebase.com/ns/film.film.starring>
<http://rdf.freebase.com/ns/en.harrison_ford> ,
<http://rdf.freebase.com/ns/en.joss_ackland> ;

<http://rdf.freebase.com/ns/film.film.initial release_date> "2002" .
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<http://rdf.freebase.com/ns/en.dark_blue>
<http://rdf.freebase.com/ns/film.film.directed_by>
<http://rdf.freebase.com/ns/en.ron_shelton> ;

<http://rdf.freebase.com/ns/film.film.starring>
<http://rdf.freebase.com/ns/en.kurupt> ,
<http://rdf.freebase.com/ns/en.kurt_russell> ,
<http://rdf.freebase.com/ns/en.dash_mihok> .

<http://rdf.freebase.com/ns/en.the_weight_of water_ 2002>
<http://rdf.freebase.com/ns/film.film.directed_by>
<http://rdf.freebase.com/ns/en.kathryn_bigelow> ;

<http://rdf.freebase.com/ns/film.film.starring>
<http://rdf.freebase.com/ns/en.sean_penn> ,
<http://rdf.freebase.com/ns/en.elizabeth _hurley> ;

<http://rdf.freebase.com/ns/film.film.initial release date> "2002" .

<http://rdf.freebase.com/ns/en.becoming dick>
<http://rdf.freebase.com/ns/film.film.directed by>
<http://rdf.freebase.com/ns/en.bob_saget> ;

<http://rdf.freebase.com/ns/film.film.starring>
<http://rdf.freebase.com/ns/en.robert wagner> ,
<http://rdf.freebase.com/ns/en.bob_saget> ;

<http://rdf.freebase.com/ns/film.film.initial release date> "2000" .

<http://rdf.freebase.com/ns/en.body of lies>
<http://rdf.freebase.com/ns/film.film.directed by>
<http://rdf.freebase.com/ns/en.ridley scott> ;

<http://rdf.freebase.com/ns/film.film.starring>
<http://rdf.freebase.com/ns/en.russell crowe> ,
<http://rdf.freebase.com/ns/en.mark_strong> ;

<http://rdf.freebase.com/ns/film.film.initial release date> "2008" .

<http://rdf.freebase.com/ns/en.kurt_russell>
<http://rdf.freebase.com/ns/type.object.name> "Kurt Russell" .
<http://rdf.freebase.com/ns/en.dash_mihok>
<http://rdf.freebase.com/ns/type.object.name> "Dash Mihok" .
<http://rdf.freebase.com/ns/en.sean_penn>
<http://rdf.freebase.com/ns/type.object.name> "Sean Penn" .
<http://rdf.freebase.com/ns/en.elizabeth_hurley>
<http://rdf.freebase.com/ns/type.object.name> "Elizabeth Hurley" .
<http://rdf.freebase.com/ns/en.kathryn_bigelow>
<http://rdf.freebase.com/ns/type.object.name> "Kathryn Bigelow" .
<http://rdf.freebase.com/ns/en.bob_saget>
<http://rdf.freebase.com/ns/type.object.name> "Bob Saget" .
<http://rdf.freebase.com/ns/en.ridley scott>
<http://rdf.freebase.com/ns/type.object.name> "Ridley Scott" .
<http://rdf.freebase.com/ns/en.russell_crowe>
<http://rdf.freebase.com/ns/type.object.name> "Russell Crowe" .
<http://rdf.freebase.com/ns/en.mark_strong>
<http://rdf.freebase.com/ns/type.object.name> "Mark Strong" .
<http://rdf.freebase.com/ns/en.ron_shelton>
<http://rdf.freebase.com/ns/type.object.name> "Ron Shelton" .
<http://rdf.freebase.com/ns/en.harrison_ford>
<http://rdf.freebase.com/ns/type.object.name> "Harrison Ford" .
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<http://rdf.freebase.com/ns/en.robert wagner>
<http://rdf.freebase.com/ns/type.object.name> "Robert Wagner" .

<http://rdf.freebase.com/ns/en.kurupt>
<http://rdf.freebase.com/ns/type.object.name> "Kurupt" .

SPARQL provides four forms of queries: SELECT, CONSTRUCT, ASK, and
DESCRIBE. All of these attempt to find solutions to a graph pattern, and all share
similar constructs. While SPARQL is a W3C Recommendation, many semantic plat-
forms support only a few of the SPARQL query forms—however, any semantic
platform worth considering should at least support the SELECT form of SPARQL

query.
We will describe the uses of and the differences between the four forms, but first let’s
look at the common structures while we examine the SELECT form.

SELECT Query Form

SPARQL SELECT queries are very similar to the query language we developed in
Chapter 3. As with any SPARQL query, a SELECT query can start with a block of
PREFIX declarations, which assign shorthand identifiers for URI namespaces that can
be used throughout the query. The sample data we will use comes from Freebase, a
large, open semantic database that we will cover in the next chapter. To shorten the
Freebase URIs, we add the statement:

PREFIX fb: <http://rdf.freebase.com/ns/>

The initial part of the query can also define a BASE URI to which all relative URIs are
concatenated. The following BASE declaration would allow us to use a relative URI of
<b006wwOv.rdf> to specify Pete Tong’s BBC program, which has an absolute URI of
<http://www.bbc.co.uk/programmes/bo06wwov.rdf>:

BASE <http://www.bbc.co.uk/programmes/>

Note that while you can have any number of PREFIX declarations, you can have at
most one BASE declaration.

A SELECT query allows you to identify a subset of the variables used in the graph
patterns whose bindings you want returned for each solution. The SELECT clause is
followed by a WHERE clause that specifies the graph pattern to match as a collection
of triples. Variables in the triple pattern are identified by character strings starting with
a question mark (?) or dollar sign ($); there is no difference between the two variable
identifiers.

Example 4-1 shows a query that asks which directors have appeared in their own
movies.

Example 4-1. Directors who have acted in their own movies

PREFIX fb:<http://rdf.freebase.com/ns/>
SELECT ?who ?film
WHERE{
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?film fb:film.film.directed by ?who .
?film fb:film.film.starring ?who .

}

This query produces the following results:

who film

fb:en.bob saget fb:en.becoming dick

OPTIONAL and FILTER Constraints

There may be times when you would like to consider information in the solution if it’s
available, but ignore it if it’s not available. This happens frequently when there may be
incomplete information about a resource, such as a missing release date in our movie
data. SPARQL provides an OPTIONAL clause that allows you to use information in
the graph patternifit’s available, but not eliminate solutions if it’s missing. For instance,
in Example 4-2 we want to list all of Ron Shelton’s movies, including the release date
if it’s available.

Example 4-2. OPTIONAL clause

PREFIX fb: <http://rdf.freebase.com/ns/>
SELECT ?film ?reldate

WHERE {

?film fb:film.film.directed by fb:en.ron_shelton .
OPTIONAL { ?film fb:film.film.initial release date ?reldate .}

}

When available, the OPTIONAL clause binds the ?reldate to the solution produced
by the required part of the graph pattern:

film reldate
fb:en.dark_blue
fb:en.hollywood homicide 2003

Graph patterns are useful for determining whether a specific set of relationships exists
within a graph, but frequently you will want to constrain solutions based on specific
qualities of a subject, predicate, or object. To do this, SPARQL provides FILTER op-
erations that allow you to specify additional constraints on solution bindings. FILTER
constraints use a small set of operators, many derived from XPath 2.0, that allow you
to test the variables in the graph pattern for specific conditions. When a FILTER returns
false (or an error), the solution under consideration is weeded out.

For instance, while the OPTIONAL clause is useful for handling missing data, you can
use OPTIONAL in combination with the bound FILTER operator to specifically find
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subjects that don’t assert a specific relationship. Example 4-3 uses FILTER to find films
directed by Ron Shelton that do not have a release date.

Example 4-3. Bound FILTER
PREFIX fb: <http://rdf.freebase.com/ns/>

SELECT ?film

WHERE {
?film fb:film.film.directed by fb:en.ron_shelton .
OPTIONAL { ?film fb:film.film.initial release date ?reldate .}
FILTER (!bound(?reldate))

}

The result tells us that the dataset does not have a release date for the film Dark Blue
(fb:en.dark blue).

SPARQL filter operators also allow you to set up conditions on the qualities of a bound
variable’s value. For example, it is frequently useful to know whether a string literal
follows a specific pattern. For these types of string comparisons, SPARQL provides a
regex operator that takes a bound variable, a regex pattern, and an optional set of flags
that allow you to do things like ignore case differences between the pattern and the
variable’s value.

Example 4-4 asks which actors have the string “russell” (case insensitive) in their name.

Example 4-4. REGEX filter
PREFIX fb:<http://rdf.freebase.com/ns/>

SELECT distinct ?who ?film
WHERE {
?film fb:film.film.starring ?star .
?star fb:type.object.name ?who .
FILTER regex(?who, "russell", "i")

}

This yields both Russell Crowe and Kurt Russell. The SPARQL regex operator is defined
to be the same as the XPath 2.0 fn:matches operator, which allows us to specify complex
regex patterns. For instance, we could limit the results to Russell Crowe by requiring
“russell” to be at the beginning of the string using FILTER regex(?who,
"rrussell”, "i").

SPARQL provides a wide variety of comparisons operators for filters, allowing you to
partition results. For instance, Example 4-5 uses the inequality filter to find movies
released after 2002.

Example 4-5. Inequality filter
PREFIX fb:<http://rdf.freebase.com/ns/>

SELECT ?film ?when
WHERE {
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?film fb:film.film.initial release date ?when .
FILTER (?when > "2002")

}

This returns the following;:

film when
fb:en.hollywood homicide 2003
fb:en.body_of_lies 2008

Multiple Graph Patterns

Up to this point we have been considering only one graph pattern per query, but
SPARQL allows you to specify multiple graph patterns within a query using braces to
group triples into separate patterns. Without any modifiers, all patterns are evaluated
together to produce the solution (as though all the triple patterns had been in the same
group). When pattern groupings are provided, the FILTER clauses apply to the graph
pattern they are grouped with.

In Example 4-6, we are looking for directors with three-letter first names and actors
whose names start with B. Since both constraints must be satisfied, the solution must
be someone who is both an actor and director. We have only one director who is also
an actor in our dataset (Bob Saget), so the candidates to our solution set are fairly
constrained to start with. Happily, Bob Saget is a director with a three-letter first name
and an actor whose name starts with B, so he is the solution to this query.

Example 4-6. Multiple graph patterns
PREFIX fb:<http://rdf.freebase.com/ns/>

SELECT ?name
WHERE {

?film fb:film.film.directed by ?person .
?person fb:type.object.name ?name
filter regex(?name, "~... ", "i")

?film fb:film.film.starring ?actor .
?actor fb:type.object.name ?name
filter regex(?name, "~b", "i")
}
}

Both graph patterns are evaluated together, producing Bob Saget as the solution.
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Using the UNION keyword, we can have each pattern in the query evaluated
independently and their solutions joined together. This can be useful when multiple
solutions are equally useful. See Example 4-7.

Example 4-7. Multiple graph patterns with UNION
PREFIX fb:<http://rdf.freebase.com/ns/>

SELECT ?name
WHERE {

?film fb:film.film.directed by ?director .
?director fb:type.object.name ?name
filter regex(?name, "~... ", "i")

UNION

?film fb:film.film.starring ?actor .
?actor fb:type.object.name ?name
filter regex(?name, "~b", "i")
}

}

In this case, there is no requirement that one name fulfill both patterns, so both the
directors “Ron Shelton” and “Bob Saget” are solutions.

It is often useful to determine whether two resources are the same when considering a
solution. Consider the query in Example 4-8, which looks for directors who have
worked with a specific actor, in this case Harrison Ford. The query then asks who else
co-starred in those films. It then finds other films in which the director and co-stars
worked together. For our results, however, we want to exclude the films in which Har-
rison Ford worked with the director and co-stars—we are interested only in what other
films the director and co-stars have made together. To do this, we specify a FILTER
constraint where the ?othermovie and ?movie cannot be the same.

Example 4-8. The usual suspects
PREFIX fb: <http://rdf.freebase.com/ns/>

SELECT ?othermovie ?director ?costar
WHERE {
movie fb:film.film.starring fb:en.harrison_ford .
movie fb:film.film.directed by ?director .
movie fb:film.film.starring ?costar .
?othermovie fb:film.film.directed by ?director .
2othermovie fb:film.film.starring ?costar .
FILTER (?othermovie != ?movie)
}

Running this query tells us that Ron Shelton and Kurupt worked with Harrison Ford
on a movie, and they also worked together on another movie.

90 | Chapter4: Just Enough RDF

Download at Boykma.Com



CONSTRUCT Query Form

In many situations it is useful to get a list of variable bindings back from a query, but
there are also situations where you want to construct a new graph from the solution
set. While you could always write a bit of code that converts solution bindings into
tuples and adds them to a graph, SPARQL provides a query form that does this directly.
The new graph is constructed from template triples specified in the CONSTRUCT
clause, which replaces the SELECT clause. The WHERE and FILTER clauses work in
exactly the same way as the SELECT form.

Here we are creating triples indicating who was employed each year based on our movie
data:

PREFIX fb:<http://rdf.freebase.com/ns/>

CONSTRUCT {
who <http://employment.history/was_employed in> ?year

WHERE {

?film fb:film.film.starring ?who .
?film fb:film.film.initial release_date ?year .

}
UNION

?film fb:film.film.directed by ?who .
?film fb:film.film.initial release_date ?year .

}
}

ASK and DESCRIBE Query Forms

SPARQL provides a simple ASK form that tests whether a pattern can be found in a
graph. The ASK keyword replaces the WHERE keyword, and a simple boolean result
is returned indicating whether there is a solution for the pattern in the graph. This query
asks whether Bob Saget and Harrison Ford have ever appeared in the same movie:

PREFIX fb:<http://rdf.freebase.com/ns/>
PREFIX rdf:<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

ASK {
?film fb:film.film.starring fb:en.bob saget .
?film fb:film.film.starring fb:en.harrison ford .

}

DESCRIBE is a quirky but potentially powerful query form that, as the SPARQL spec-
ification puts it, returns “the useful information the service has about a resource.” That
is, the results are idiosyncratic to the implementation of the query service. In theory,
issuing a DESCRIBE query should help you understand the context of the resources
returned, but as they say in consumer disclaimers, “Your results may vary.”
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In its simplest form, you can ask a query system to describe what it knows about a
specific resource:

DESCRIBE <http://rdf.freebase.com/ns/en.harrison_ford>

You can use DESCRIBE just as you would SELECT, but instead of getting a set of
solution bindings returned, the system will attempt to provide information about the
resources returned in the solution. In this example, we want to DESCRIBE the directors
who made movies in 2003:

PREFIX fb:<http://rdf.freebase.com/ns/>

DESCRIBE ?director
WHERE {

?film fb:film.film.initial release date "2003" .
?film fb:film.film.directed by ?director .
}

While it may seem unsettling to get arbitrary information back about a set of resources,
this type of result fits semantic programming patterns extremely well. Unlike traditional
programming patterns where the structure (and meaning) of data queries is known
when the program is written, in later chapters we will explore an introspective style of
programming where programs react to new information as they discover its structure.

SPARQL Queries in RDFLib

The RDFLIib Graph class, of which ConjunctiveGraph is a subclass, provides a query
method that allows you to run SPARQL queries against your triplestore. The query
method takes a string representing the query and an optional initNS keyword parameter
that contains a dictionary of namespace mappings. Optionally, you can include the
SPARQL prefix declarations directly in your query:

from rdflib.Graph import ConjunctiveGraph, Namespace
FBNAMESPACE = Namespace("http://rdf.freebase.com/ns/")

g = ConjunctiveGraph()
g.parse("sample-movie-data.n3", format="n3")

results = g.query("""SELECT ?film ?year
WHERE { ?film fb:film.film.initial release date ?year. }""", \
initNs={'fb':FBNAMESPACE})

for triple in results:
print triple

You can also run CONSTRUCT queries using RDFLib. The query method returns a
resulting graph that can be serialized and used to construct other graphs:

from rdflib.Graph import ConjunctiveGraph, Namespace

FBNAMESPACE = Namespace("http://rdf.freebase.com/ns/")
g = ConjunctiveGraph()
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g.parse("sample-movie-data.n3", format="n3")

results = g.query("""CONSTRUCT {
who <http://employment.history/was_employed in> ?year

WHERE {
?2film fb:film.film.starring ?who .
?film fb:film.film.initial release_date ?year .
1", initNs={'fb':FBNAMESPACE}).serialize(format="xml")

print result

If you are having problems with the CONSTRUCT query in RDFLib,
check the version number of your build by entering an interactive
Python session, importing RDFLib, and entering rdflib._version_ .
If the version is 2.4.0 or earlier, try downloading a more recent version
or the trunk of the Subversion (SVN) repository.

To download RDFLIib using SVN, enter the following on the command
line:

$ svn checkout http://rdflib.googlecode.com/svn/trunk/ rdflib-trunk
$ cd rdflib-trunk
$ python setup.py build

A fresh build of RDFLib will be available in build/lib.<yourplatform-
architecture>/rdflib.

You can test the build by changing directories down to the build/
lib.<yourplatform-architecture> directory and again firing up an inter-
active Python session. This time when you import RDFLib you should
get the new build (which you can check by printing the version of the
library).

While RDFLib returns query results in a Python structure, when you run SPARQL
queries on other systems you will frequently get your results packed in an XML struc-
ture. The W3C has defined a standard XML query result structure that provides a
simple set of XML container elements indicating solution sets and the variable bindings
within them. See Example 4-9.

Example 4-9. SPARQL XML output
PREFIX fb:<http://rdf.freebase.com/ns/>

Select ?film ?year where{
?2film fb:film.film.initial release_date ?year .
FILTER (?year > "2005")

}
Here are the results in SPARQL XML output format:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.0rg/2005/sparql-results#">
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<head>
<variable name="?film"/>
<variable name="?year"/»>
</head>

<results>
<result>

<binding name="year">
<literal>2008</literal>
</binding>

<binding name="film">
<uri>http://rdf.freebase.com/ns/en.body of lies</uri>
</binding>

</result>
</results>
</sparql>

SPARQL XML results documents are broken into two parts. The first part, the head,
lists each bound variable used in the query within its own variable element. The second
part of the document, delineated by a results element, lists the solution sets returned
by the query. Individual solutions are surrounded by a result element.

In the example just shown, there is only one solution that binds the variable year to
the literal 2008. Optionally, literal elements may also contain datatype or xml:lang
attributes. The solution also binds the variable film to the object with the URIref
http://rdf.freebase.com/ns/en.body of lies.

Useful Query Modifiers

SPARQL is a rich query interface that provides a number of optional modifiers that are
very useful when developing real applications. For instance, SPARQL supports a simple
form of paginating results using the OFFSET, LIMIT, and ORDER BY solution se-
quence modifiers. To make pagination work, you must first impose an order on the
solutions using the modifier ORDER BY. The ORDER BY modifier takes a list of bound
variables, sorts the solutions by the first variable, then sorts the resulting solution
sequence further using the second bound variable (if specified), and so on. See Exam-
ple 4-10.

Example 4-10. Query with two-variable sort

PREFIX fb:<http://rdf.freebase.com/ns/>

SELECT ?name ?year

WHERE{
movie fb:film.film.initial release date ?year .
?movie fb:film.film.starring ?actor .
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?actor fb:type.object.name ?name .
} ORDER BY ?year ?name

This produces a list of actors sorted by the year they worked on a film, and then by name:

name year
Bob Saget 2000
Robert Wagner 2000
Elizabeth Hurley 2002
Harrison Ford 2002
Joss Ackland 2002

Sean Penn 2002
Harrison Ford 2003
Kurupt 2003

Robert Wagner 2003
Mark Strong 2008
Russell Crowe 2008

With an order imposed on the solution, you can create pages of specific size using the
LIMIT keyword. The OFFSET keyword can then be used to indicate the point in the
solution sequence from which to start the next retrieval. If we count pages starting at
1, then in order to obtain the results for page N, specify an OFFSET that is (N-1) *
LIMIT. The following code snippet will produce a list of films from our sample dataset,
from oldest to newest, paging through the results two solutions at a time:

from rdflib.Graph import ConjunctiveGraph

g = ConjunctiveGraph()
g.parse("sparql-example-data.n3", format="n3")

limit = 2
page = 1
results = True

while results:
print "----page:

" n

+ str(page) + "----

results = g.query("""PREFIX fb:<http://rdf.freebase.com/ns/>
SELECT ?film ?year
WHERE { ?film fb:film.film.initial release date ?year. } ORDER BY ?year
LIMIT """ + str(limit) + " OFFSET " + str((page-1)*limit))

for triple in results:
print triple

page += 1
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This taste of SPARQL should give you enough background to formulate useful queries,
but it certainly isn’t an exhaustive tour of all that is possible with SPARQL. Should you
find yourself in need of more information, we suggest taking a look at the W3C
Recommendation for SPARQL itself. It’s available at http://www.w3.0rg/TR/rdf-sparql
-query/, and as specification documents go, it is surprisingly readable with many useful
examples.

One final note. Unlike SQL, SPARQL (currently) only supports read operations on the
graph, whereas SQL provides update and insert operations. There is no way to modify
a graph using SPARQL. Although this is certainly a limitation, it does mean that you
can allow untrusted systems (with some limitations on accessible features) access to
query infrastructure without fear of your graph being altered. Exposing a raw query
interface to a remote data store is a powerful architectural design, and in later chapters
we will build applications that not only run SPARQL queries on a local graph store,
but also on SPARQL interfaces provided by remote applications.
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CHAPTER5
Sources of Semantic Data

You now have some tools for storing, querying, and manipulating semantic data.
However, none of this is much fun if you don’t have any data to put into your triplestore.
One of the longest-running criticisms of the semantic web was that no one was pub-
lishing data using the standards, so they weren’t very useful. Although this certainly
held true for a while, these days many more applications, particularly in the social web
application realm, are beginning to publish data using semantic web standards.

In this chapter, we will demonstrate how you can obtain and use semantic data from
various sources. In doing so, we will also introduce standard vocabularies for
describing social networks, music, and movies.

At the end of this chapter, we’ll explore Freebase, a semantically enabled social
database that provides strong identifiers for millions of entities and vocabularies for
hundreds of subject matter domains.

Friend of a Friend (FOAF)

In the previous chapter we introduced FOAF files as an example of how to show the
structure of RDF. The FOAF namespace is used to represent information about people,
such as their names, birthdays, pictures, blogs, and especially the other people that
they know. Thus FOAF files are particularly good for representing data that appears
on social networks, and several social networks allow you to access data about their
users as FOAF files.

For example, here’s a file from hi5, one of the largest social networks worldwide, that
is located at http://api.hi5.com/rest/profile/foaf/358280494:

<rdf:RDF xmlns:hi5="http://api.hi5.com/"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:lang="http://purl.org/net/inkel/rdf/schemas/lang/1.1#">
<foaf:Person rdf:nodeld="me">
<foaf:nick>Toby</foaf:nick>
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<foaf:givenName>Toby</foaf:givenName>
<foaf:surName>Segaran</foaf:surName>
<foaf:birthday>1-20</foaf:birthday>
<foaf:img rdf:resource=
"http://photos3.hi5.com/0057/846/782/gE64Yc846782-01.pg" />
<foaf:weblog rdf:resource="http://blog.kiwitobes.com"/>
<foaf:gender>male</foaf:gender>
<lang:masters>en</lang:masters>
<foaf:homePage rdf:resource=
"http://www.hi5.com/friend/profile/displayProfile.do?userid=358280494"/>
<foaf:knows>
<foaf:Person>
<foaf:nick>Jamie</foaf:nick>
<rdfs:seeAlso rdf:resource=
"http://api.hi5.com/rest/profile/foaf/241087912" />
</foaf:Person>
</foaf:knows>
</foaf:Person>
</rdf:RDF>

This is Toby’s FOAF file from hi5. Since Toby is very unpopular, his only friend is
Jamie. The file also provides a lot of other information about Toby, including his gen-
der, birthday, where you can find a picture of him, and the location of his blog. The
FOAF namespace, which you can find at http://xmlns.com/foaf/0.1/, defines about 50
different things that a file can say about a person.

Many other social networks, such as LiveJournal, also publish FOAF files that can be
accessed without signing up for an API key. Because of this, it’s almost certain that
FOATF files are the most common RDF files available on the Web today.

To reconstruct a portion of the social network from these files, you can build a simple
breadth-first crawler for FOAF files. Graph objects from RDFLib have a method called
parse, which takes a URL and turns it into an RDF graph, so you don’t need to worry
about the details of the file format. The great thing is that when you parse one FOAF
file, you not only get information about one person, but also the URLs of the FOAF files
of all their friends. This is a very important feature of the semantic web: in the same
way that World Wide Web is constructed by linking documents together, the semantic
web is made up of connected machine-readable files.

Take a look at the code for a FOAF crawler, which you can download from http://
semprog.com/psw/chapter5/foafcrawler.py:

from rdflib.Graph import Graph
from rdflib import Namespace,BNode

FOAF = Namespace("http://xmlns.com/foaf/0.1/")
RDFS = Namespace("http://www.w3.0rg/2000/01/rdf-schematt")

def make_foaf_graph(starturi, steps=3):

# Initialize the graph
foafgraph = Graph()
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# Keep track of where we've already been
visited = set()

# Keep track of the current crawl queue
current = set([starturi])

# Crawl steps out
for i in range(steps):
nextstep = set()

# Visit and parse every URI in the current set, adding it to the graph
for uri in current:

visited.add(uri)

tempgraph = Graph()

# Construct a request with an ACCEPT header
# This tells pages you want RDF/XML
try:
reqObj = urllib2.Request(uri, None, {"ACCEPT":"application/rdf+xml"})
urlObj = urllib2.urlopen(reqObj)
tempgraph.parse(urlObj, format="xml")
urlobj.close()
except:
print "Couldn't parse %s" % uri
continue

# Work around for FOAF's anonymous node problem

# Map blank node IDs to their seeAlso URIs

nm = dict([(str(s), n) for s, , nin\
tempgraph.triples((None, RDFS['seeAlso'], None))])

# Identify the root node (the one with an image for hi5, or the one
# called "me"
imagelist=list(tempgraph.triples((None, FOAF['img'], None)))
if len(imagelist)>0:
nm[imagelist[0][0]]=uri
else:
nm[""],nm[ "#me" ]=uri,uri

# Now rename the blank nodes as their seeAlso URIs
for s, p, o in tempgraph:
if str(s) in nm: s = nm[str(s)]
if str(o) in nm: o = nm[str(o)]
foafgraph.add((s, p, o))

# Now look for the next step
newfriends = tempgraph.query('SELECT ?burl ' +\
'"WHERE {?a foaf:knows ?b . \
?b rdfs:seeAlso ?burl . }',
initNs={'foaf':FOAF, 'rdfs':RDFS})

# Get all the people in the graph. If we haven't added them already,
# add them to the crawl queue
for friend in newfriends:

if friend[0] not in current and friend[0] not in visited:
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nextstep.add(friend[0])
visited.add(friend[0])

# The new queue becomes the current queue
current = nextstep
return foafgraph

if _name__ == '_main_':

# Seed the network with Robert Cook, creator of D/Generation
g = make_foaf_graph('http://api.hi5.com/rest/profile/foaf/241057043", steps=4)

# Print who knows who in our current graph
for row in g.query('SELECT ?anick ?bnick '+\
"WHERE { ?a foaf:knows ?b . ?a foaf:nick ?anick . ?b \
foaf:nick ?bnick . }',
initNs={"foaf':FOAF}):
print "%s knows %s" % row

The function make_foaf_graph takes the URI of a FOAF file and the number of steps to
search outward as parameters. Don’t search too far, or your network will become very
large and you may get banned from the service that you’re crawling. Notice how we
simply give the URI directly to graph.parse, and it takes care of downloading the file
and turning it into an RDF graph.

From there, it’s easy to query the graph using SPARQL with the namespaces that have
been defined (FOAF and RDFS) to find people in the graph and their seeAlso property:

SELECT ?burl WHERE {?a foaf:knows ?b . ?b rdfs:seeAlso ?burl . }
initNs={'foaf':FOAF, 'rdfs':RDFS}

This returns a list of URIs on the right side of the seeAlso property that tell us where
to find more information about the people in the graph. If these URIs haven’t already
been visited, they’re added to the queue of URIs that we want to parse and add to the
graph.

The main method builds a graph from a starting node and uses a simple query to find
all the relationships in the graph and the nicknames (foaf:nick) of the people in those
relationships. Try this from the command line:

$ python foafcrawler.py
Michael knows Joy
Susan knows Ellen
Michael knows Joe

Mark knows Genevieve
Michael knows James
Michael knows Kimberly
Jon knows John

Michael knows Stuart
Susan knows Jayce

Toby knows Jamie

etc...
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You can change the starting point and even the social network used by changing the
call to make_foaf graph. If you like, you can find out whether your favorite social net-
work supports FOAF and build a graph around yourself and your friends.

Also, remember that although we’ve used the resources exposed by hi5 in this example,
FOAF files can be published by anyone. Rather than joining a social network, you could
put a FOAF file on your own web server that connects to other people’s files in hi5 or
LiveJournal or even FOAF files that they have created themselves. By having a standard
way of describing information about people and the relationships between them, it’s
possible to separate the network of people from the particular site on which it happens
to exist.

You can try crawling a distributed social network by starting with Tim Berners-Lee’s
FOAF page. Change the line that seeds the network to:

g=make_foaf graph('http://www.w3.org/People/Berners-Lee/card",steps=2)

Running the code now should crawl out from Tim Berners-Lee, not just within the
W3C site, but anywhere his “see also” links point to.

Graph Analysis of a Social Network

Being able to crawl and store graphs such as social networks means you can also apply
a little graph theory to understand more about the nature of the graph. In the case of
a social network, several questions come to mind:

* Who are the most connected people?

* Who are the most influential people? (We’ll see in a moment how “most influen-
tial” may differ from “most connected.”)

* Where are the cliques?

* How much do people stick within their own social groups?

All of these questions can be explored using well-studied methods from graph theory.
Later in this section we’ll analyze the FOAF graph, but first we need to get a Python
package called NetworkX. You can download NetworkX from http://networkx.lanl
.gov/, or if you have Python setuptools, install it with easy_install:

$ easy_install networkx

Figure 5-1 shows a simple graph with lettered nodes that we’ll use for a first example.
In the following Python session, we’ll construct that graph and run some analyses on
it to demonstrate the different features of NetworkX:

>>> import networkx as nx

>>> g = nx.Graph()

>>> g.add_edges from([('a', 'b"), ('b', 'c'),

e (UbY, 'dY), (b, te'), (e, FY), (MY, gD # Add a few edges
>>> g.add edge('c','d") # Add a single edge
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>>> nx.degree(g,with_labels=True) # Node degree
{'a': 1, 'c': 2, 'b': 4, 'e': 2, 'd': 2, 'g': 1, '"f': 2}

>>> nx.betweenness_centrality(g) # Node centrality

'a': 0.0, 'c': 0.0, 'b': 0.7333, 'e': 0.5333, 'd': 0.0, 'g': 0.0, 'f': 0.3333}

>>> nx.find_cliques(g) # Cliques

(b, "c, d'l, [, '], b, te), (g, 'L [F, te']]

>>> nx.clustering(g,with_labels=True) # Cluster coefficient
{'a': 0.0, 'c': 1.0, 'b': 0.1666, 'e': 0.0, 'd': 1.0, 'g': 0.0, 'f': 0.0}

>>> nx.average_clustering(g) # Average clustering
0.30952380952380959

e

\

N\
/

Figure 5-1. A simple graph for analysis

A few different concepts are illustrated in this session. We start by creating a graph and
adding the edges to it (a->b, b->c, etc.) so that it represents the graph in Figure 5-1.
Then we run a few different analyses on the graph:

degree
Calculates the degree of every node, which is simply the number of nodes connected
to this node. It returns a dictionary with every node label and its degree. From the
result you can see, for example, that node ¢ has two nodes connected to it.

betweenness centrality

Calculates the centrality of the node. Centrality is defined as the percentage of
shortest paths in the graph that pass through that node—that is, when a message
is passed from one random node to another random node, what is the chance that
it will have to go through this node? Centrality is sometimes considered a measure
of the importance or influence of a node, since it tells how much information must
pass through it or how much the network would be disrupted if the node was
removed. In this example, node b is the most central. Node e is much more central
than node d, even though they both have two neighbors.
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find cliques
Finds all the cliques in the graph. A clique is a group of nodes that are all connected
to one another, like a tight-knit group of friends in a social network. The smallest
cliques have only two members, which just means two nodes are connected. The
more interesting cliques are larger—in this case, b, ¢, and d are all directly connected
to one another (b->c, b->d, and c->d), so they form a clique.

clustering
Calculates the clustering coefficient of each node. This is a bit more complicated,
but it’s basically a measure of how cliquish a node is, calculated from the fraction
of its neighbors that are connected to one another. In this case, d has a clustering
coefficient of 1.0, meaning it is only connected to nodes that are also connected to
each other. b, on the other hand, has a coefficient of 0.1666 because even though
it’s part of the b, c,d clique, it is also connected to other nodes outside the clique.

average clustering
Just the average of the clustering coefficient of all the nodes in the graph. It’s useful
as a measure of how cliquish the graph is overall. Social networks tend to be very
cliquish, while computer networks are usually not very cliquish at all.

Here’s some code for creating a social graph by crawling a set of FOAF files and then
running a few NetworkX analyses on it. You can download this file from http://semprog
.com/psw/chapter5/socialanalysis.py:

from rdflib import Namespace
from foafcrawl import make foaf graph
import networkx as nx

FOAF = Namespace("http://xmlns.com/foaf/0.1/")
RDFS = Namespace("http://www.w3.0rg/2000/01/rdf-schemat")
if _name_=='_main_':
# Build the social network from FOAF files
rdf graph = make foaf graph('http://api.hi5.com/rest/profile/foaf/241057043", \
steps=5)

# Get nicknames by ID
nicknames = {}
for id, nick in rdf _graph.query('SELECT ?a ?nick '+\
'"WHERE { ?a foaf:nick ?nick . }',
initNs={"foaf':FOAF, 'rdfs':RDFS}):
nicknames[str(id)] = str(nick)

# Build a NetworkX graph of relationships
nx_graph = nx.Graph()
for a, b in rdf graph.query('SELECT ?a ?b '+\
'"WHERE { ?a foaf:knows ?b . }',
initNs={'foaf':FOAF, 'rdfs':RDFS}):
nx_graph.add_edge(str(a), str(b))
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# Calculate the centrality of every node
cent = nx.betweenness_centrality(nx_graph)

# Rank the most central people (the influencers)
most_connected = sorted([(score, id) for id, score in cent.items()], \
reverse=True)[0:5]

print 'Most Central’
for score, id in most_connected:
print nicknames[id], score

print

# Calculate the cluster-coefficient of every node
clust = nx.clustering(nx_graph, with labels=True)

# Rank the most cliquish people

most_clustered = sorted([(score, id) for id, score in clust.items()], \
reverse=True)[0:5]

print 'Most Clustered'

for score, id in most clustered:
print nicknames[id], score

print
for clique in nx.find_cliques(nx_graph):
if len(clique) > 2:
print [nicknames[id] for id in clique]

This code builds off the make_foaf_graph function that we defined earlier. After creating
the FOAF graph, it creates a table of nicknames (for convenience of displaying results
later) and then queries for all the relationships, which it copies to a NetworkX graph
object. It then uses some of the NetworkX functions we just discussed to create lists of
the most central people (the ones through whom the most information must pass) and
the most cliquish people (the ones whose friends all know each other).

Here are some ideas for other things you could try:

* Find the differences between people’s rankings according to degree and according
to centrality. What are the patterns you noticed that cause people’s rankings to
differ between these two methods?

* Find and display the cliques in the social network in an interesting way.

* hi5 is a mutual-friendship network; that is, if X is friends with Y, then Y is friends
with X. Find an example of a social network where friendships can be one-way and
use NetworkX’s DiGraph class to represent it.

FOAF was one of the earliest standards, and it’s published by a lot of sites, so there’s
plenty of it on the Web to find, load, and analyze. Public RDF isn’t just for social
networks, though—in the rest of this chapter you’ll see sources for many different types
of datasets.
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Semantic Search

Crawling around and hoping to find the resource you are looking for, or a predicate
relationship you are interested in, may seem a bit haphazard—and it is. Ideally, you
are dereferencing a URI because you are interested in the resource.

Like people looking for information on the Web, your application can start its hunt for
information by contacting a semantic search engine such as the following;:

Yahoo! BOSS
While you might think of Yahoo!’s Build your Own Search Service (BOSS) as a
way of building a better search engine for humans, the BOSS service exposes
structured semantic data as well, making it an excellent starting point for semantic
applications. As part of its Search Monkey service (described in Chapter 7), Yahoo!
extracts RDFa and microformats from every page it indexes. In addition, site own-
ers can provide a DataRSS feed of structured data associated with their sites. The
BOSS service makes this structured data available to applications through a simple
API that returns XML or JSON structures.
Visit http://developer.yahoo.com/search/boss/ to learn more about the BOSS service.
Sindice
Sindice is a mature semantic search engine project sponsored by the Digital
Enterprise Research Institute (DERI). Sindice crawls the Web indexing RDF and
microformat data and provides a simple API for developer use. Applications can
find semantic data sources using a combination of key words, RDF vocabulary

constraints, and simple triple patterns. Based on content negotiation, query results
are returned in RDF, JSON, or ATOM format.

Learn more about the Sindice service at http://sindice.com/.

Freebase
Unlike the previous systems, which operate more like traditional search engines,
Freebase acts as a giant topic hub organized around semantically disambiguated
subjects. Freebase can provide you not only with links to other semantic data
sources, but also with specific facts about a subject. We will use Freebase in several
examples throughout the book, and we will discuss its organization later in this
chapter.

See http://www.freebase.com for more details.

Linked Data

Crawling from one FOAF document to another, as we did in the previous section, is
an example of using “Linked Data.” We used the RDF data provided in one graph to
guide us to other graphs of data, and as we combined the data from all these graphs,
we were able to build a more complete picture of the social network.
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This is an example of how strong identifiers can be used to seamlessly join multiple
graphs of data. The semantic web, as envisioned by the W3C, is in effect a Giant Global
Graph constructed by joining many small graphs of data distributed across the Web.
To showecase this type of structure, a community for Linking Open Data (LOD) has
emerged, developing best practices around the publication of distributed semantic
data.

While RDF provides standard ways for serializing information, the Linking Open Data
community has developed standard methods for accessing serialized RDF over the
Web. These methods include standard recipes for dereferencing URIs and providing
data publishers with suggestions about the preparation and deployment of data on the
Web.

While a community of publishers is necessary to bring the Giant Global Graph to fru-
ition, equally important is a community of applications that utilize this collection of
distributed semantic data to demonstrate the value of such a graph. This section will
explore how to access pieces of the Linked Data cloud and discuss some of the issues
involved in building successful Linked Data applications.

As you progress through this book, we hope that you not only find semantic applica-
tions easy to build, but also that you see the value of publishing your own data into the
Giant Global Graph. And while the Linked Data architecture doesn’t currently provide
any mechanisms for writing data into the global graph, we will explore Freebase as a
semantic data publishing service for Linked Data at the end of this chapter.

The Cloud of Data

Aswe have seen, FOAF files are a vast distributed source of semantic data about people.
There is no central repository of FOAF data; rather, individuals (and systems) that
“know” about a specific relationship publish the data in a standardized form and make
it publicly available. Some of this data is published to make other data more
“findable”—the publisher hoping that by making the data publicly available it will
generate more traffic to a specific website as other systems make reference to their
information. Others publish information to reduce the effort of coordinating with
business partners. And still others publish information to identify sources of proprietary
subscription data (in hopes of enticing more systems to subscribe). While there are as
many reasons for publicly revealing data as there are types of data, the result is the
same: the Internet is positively awash in data.

From a data consumer’s perspective, this information is strewn haphazardly about the
Web. There is no master data curator; there is no comprehensive index; there is no
central coordinator. Harnessing this cloud of data and making it appear as though there
were a master coordinator weaving it into a consistent database is the goal of the
semantic web.
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Smushing Identity

We have made it seem simple to know when two graphs can be merged: either the two
graphs will share URIrefs in common or there will be owl: sameAs statements identifying
how resources in one graph relate to resources in the other graph. In an ideal world,
everyone would use the same identifiers for everything, or they would at least know
what other identifiers might be used.

But the real world is seldom so tidy. In our ideal world, the publisher of the data would
need to know what identifiers other publishers were using. In some cases, when an
authoritative source is responsible for cataloging a set of resources (such as biological
genes), there is a well-known identifier that everyone can presumably use. But for the
vast majority of things we might want to model, this isn’t the case.

All is not lost, however; if a publisher can provide even one additional sameAs link, it
may be possible to find another sameAs link in the next graph and so on, from which
you can build a collection of alternate identifiers. This approach, while inefficient, does
permit an uncoordinated, distributed approach to identity.

But you need not depend on a chain of sameAs statements; the context of the data can
also provide clues about identity. For instance, many social networks do not provide
strong identifiers for members. Instead, they use anonymous nodes when creating
FOAF descriptions to represent individuals, assuming that with enough data about the
person, you will be able to determine whether you have found the friend you have been
searching for.

In many cases this context data is enough to provide a strong hint about the identity
of the entity. In FOAF it is often reasonably assumed that the foaf:mbox property (or a
hash of the mbox property) is unique across individuals. When you find two FOAF
descriptions that refer to the same mbox, you can assume the two descriptions are re-
porting on the same person.

The effort of bringing identifiers together to claim they refer to the same thing is a well-
known problem in several areas of computer science. Because practitioners from many
different traditions (and generations) have worked on the problem, people refer to the
effort in different ways. Some call it “the identity problem,” others call it “reconcilia-
tion,” while still others call it “record matching.” The RDF community, however, has
provided the most colorful name for the problem, referring to it as “smushing.”

Smushing identity is only part of the challenge—discovering when predicates mean the
same thing, or where logical relationships can connect predicates, are other areas of
active investigation.

Are You Your FOAF file?

We have been using URIs to identify things in the real world, like people and places—
and that’s a good thing. But when you request the data from a URI such as
http://semprog.com/ns/people/colin, you don’t really expect to get back a serialized
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version of Colin. Rather, you expect to get back something like FOAF data that de-
scribes Colin.

This subtlety is the reason that many FOAF data generators use anonymous (blank)
nodes when describing a person. The FOAF system doesn’t have a URI that represents
the real person that is distinct from the information resource being produced. This is
somewhat like describing something in terms of its attributes without ever naming the
object—though obtuse, it does work in many cases. (“I'm thinking of a U.S. President
who was impeached and was concerned about what the definition of is was.”)

Semantic web architecture makes a distinction between real-world objects, such as
Colin, and the information resources that describe those objects, such as Colin’s FOAF
file. To make this distinction clear, well-designed semantic web systems actually use
distinct URISs for each of these items, and when you try to retrieve the real-world object’s
URI, these systems will refer you to the appropriate information resource.

There are two methods for making the referral from the real-world object to the infor-
mation resource: a simple HTTP redirect, and a trick leveraging URI fragment (or
“hash”) identifiers. The redirect method is very general and robust, but it requires
configuring your web system to issue the appropriate redirects. The second method is
very simple to implement, but it’s more limited in its approach.

The HTTP redirect method simply issues an HTTP 303 “see other” result code when
a real-world object’s URL is referenced. The redirect contains the location of the infor-
mation resource describing the real-world object. See Figure 5-2.

System processing Colin's FOAF, finds Toby's
URI (http://semprog.com/people/colin) and
attempts to retrieve it.

HTTP GET requests:
http://semprog.com/people/colin -~
HTTP 303 response:
http://semprog.com/people/rdf/colin
qb. < URI for
v Colin
Time
HTTP GET requests:
http://semprog.com/people/rdf/colin
P e peon I <rdf/>
HTTP 200 response: describing
p The contents of Colin’s FOAF file Colin

Figure 5-2. Accessing the URI for a real-world object using 303 redirects
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The method using fragment identifiers takes advantage of the fact that when an HTTP
client requests a URI with a fragment identifier, it first removes the fragment identifier
from the URI, thereby constructing a separate URI that it requests from the web system.
The URIrequested (the URI without the fragment identifier) represents the information
resource, which can be delivered by the web system.

We have said that URIs act as strong identifiers, uniquely identifying the things de-
scribed in RDF statements. By “strong identifier,” we mean that you can refer to a
resource consistently across any RDF statement by using the URI for the resource. No
matter where in the universe a URL is used, a specific URI represents one and only one
resource. And similarly, a URI represents the same resource over time. A URI today
should represent the same resource tomorrow. URIs are not only strong, they should
also be stable.

In Chapter 4 we pointed out that every URL is a URI, but how many times have you
gone to a URL that used to produce useful information, only to discover that it now
produces an HTTP 404 result? If URIs represent strong, stable identifiers, then the
information resources produced by dereferencing a URI should also remain stable (or
rather, available).

Serving information resources using URIs with fragment identifiers is an easy solution
when your RDF is in files. But because URIs should be stable, you must not be tempted
to “reorganize” your RDF files should your data expand, as moving resource descrip-
tions between files would change their URIs. It is important to remember that RDF is
not document-centric, it is resource-centric, and URIs are identifiers, not addresses.
See Figure 5-3.

System processing Colin’s FOAF, finds Toby's
URI (http://kiwitobes.com/foaf.rdf#toby)

HTTP client strips off the #toby fragment identifier

HTTP GET requests:
http://kiwitobes.com/foaf.rdf

: p  <ddf/>
Time HTTP 200 response: describing
The contents of Toby’s FOAF file Toby

¥ 3

Figure 5-3. Accessing the URI for a real-world object using a fragment identifier

When working with Linked Data, remember that not all URIs can be dereferenced.
Although it is unfortunate that we can’t learn more about those resources, they still
represent useful identifiers. Also, not all URIs representing real-world objects are han-
dled by well-behaved web systems. You will find many examples of RDF information
resources being served directly when requesting a real-world object.
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Real-World Data

The world is full of surprises, and finding data that doesn’t conform to your expecta-
tions is always entertaining. In many of our examples we have omitted error checking,
or we made assumptions that the data we are working with is well formed. However,
when programming with Linked Data, it is important to take a defensive stance and
assume that things may not be as advertised.

For instance, when working with RDFa, you may might be surprised to find that not
all HTML is well formed (can you believe it?). Some pages may require a tag normali-
zation step (using Tidy or Beautiful Soup) before you can extract the data. Also be
prepared for RDF statements that don’t use the expected data type. Many sites generate
their RDF using database templates, which can lead to systematic errors. So, for
example, it is not unusual to find date literals that are marked as xsd:dateTime to be
written in a human-preferred format. And likewise, you may find literals where you
would expect resources, and vice-versa.

So until the cloud of data matures, it is best to “know your data source.” Blindly crawl-
ing through linked data is an exciting way to program, but you never know what you
will get.

So for now, you are not your FOAF file. But perhaps when transporter technology is
perfected and humans are assigned a mime type, we will provide an addendum to this
book with information on the best practices for retrieving humans through derefer-
enceable URIs.

Consuming Linked Data

Let’s exercise much of what you have learned while walking across a few sources of
Linked Data. In this example, we will query multiple data sources, obtaining a critical
piece of information from each that will allow us to query the next source. As we query
each data source, the information we obtain will be stored in a small internal graph.
After we reach the final data source, we will be able to query our internal graph and
learn things that none of the sites could tell us on their own.

If this sounds like the “feed-forward inference” pattern we used in Chapter 3, that’s no
accident. Our rules in this case know how to use identifiers from one data source to
obtain data from another data source. Part of what we obtain from each data source is
a set of identifiers that can be used with another data source. This type of pattern is
very common when working with semantic data, and we will revisit it again and again.

In this section we are going to build a simple Linked Data application that will find
musical albums by artists from countries other than the U.S. Our application will take
the name of a country as input and will produce a list of artists along with a sample of
their discography and reviews of their albums. To find the information required to
complete this task, the application will contact three separate data sources, using each
to get closer to a more complete answer.
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The British Broadcasting Company (BBC) has a wealth of information about music in
its archives, including a large collection of record reviews that are not available any-
where else on the Web. Fortunately, the BBC has begun publishing this information as
RDF. While the BBC data provides useful information about the significant albums an
artist has produced, it provides very little general context data about the artist. In ad-
dition, the BBC does not provide a query interface, making it impossible to isolate
record reviews of bands that reside in a particular country. But because the BBC’s data
uses strong identifiers, we can use other Linked Data to find the information we want.

The BBC data uses identifiers provided by the MusicBrainz music metadata project.
The MusicBrainz project is a well-regarded community effort to collect information
about musical artists, the bands they play in, the albums they produce, and the tracks
on each album. Because MusicBrainz is both a well-curated data collection and a
technology-savvy community, its identifiers are used within many datasets containing
information about musical performances.

MusicBrainz itself does not provide Linked Data dereferenceable URIs, but Freebase
—a community-driven, semantic database that we will look at later—uses MusicBrainz
identifiers and provides dereferenceable URIs. Freebase also connects the MusicBrainz
identifiers to a number of other strong identifiers used by other data collections.

DBpedia, an early Linked Data repository, is an RDF-enabled copy of Wikipedia. Free-
base and DBpedia are linked by virtue of the fact that both systems include Wikipedia
identifiers (so they are able to generate owl:sameAs links to one another). DBpedia also
provides a SPARQL interface, which allows us to ask questions about which Wikipedia
articles discuss bands that reside in a specific country. From the results of this query,
we will follow the Linked Data from one system to the next until we get to the BBC,
where we will attempt to find record reviews for each of the bands. See Figure 5-4.

You can build this application as we work through the code. Alternatively, you can
download it, along with other demonstrations of consuming Linked Data, from http://
semprog.com/psw/chapter5/lod.

Let’s start by defining the namespaces that we’ll be using throughout the application
and constructing a dictionary of the namespace prefixes to use across our queries. We
will also create a few simple utility functions for submitting requests via HTTP to
external services.

Caveat dereferencer! This Linked Data application depends on the
Stgmgemmen  availability of three independent web services. Over time the function-
T Ality, or even existence, of these services may change. If you run into
problems with this or any other Linked Data application, try sending a
few requests manually to each service using wget or curl to see if the
service is working as you expect.
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http://semprog.com/psw/chapter5/lod
http://semprog.com/psw/chapter5/lod

Country name

DBpedia ’
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Freebase 2 Freebase ID ! RDFLib :
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E Band’s MusicBrainz|D : "
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\ J Record reviews for

bands from the country

Figure 5-4. Traversing three LOD repositories

Example of using Linked Data

1) from DBpedia: get bands from a specific country

2) from Freebase: get Musicbrainz identifiers for those bands
3) from the BBC: get album reviews for those bands

import urllib2

from urllib import quote

from StringIO import StringIO

from rdflib import Namespace, Graph, URIRef

countryname = "Ireland" #also try it with "Australia"
dbpedia_sparql _endpoint =
"http://dbpedia.org/sparql?default-graph-uri=http%3A//dbpedia.orgdquery="

#namespaces we will use

owl = Namespace("http://www.w3.0rg/2002/07/owl#")

fb = Namespace("http://rdf.freebase.com/ns/")

foaf = Namespace("http://xmlns.com/foaf/0.1/")

rev = Namespace("http://purl.org/stuff/revi")

dc = Namespace("http://purl.org/dc/elements/1.1/")

rdfs = Namespace("http://www.w3.0rg/2000/01/rdf-schemat")

nsdict = {'owl':owl, 'fb':fb, 'foaf':foaf, 'rev':rev, 'dc':dc, 'rdfs':rdfs}

#utilities to fetch URLs
def geturl(url):
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try:
reqObj = urllib2.Request(url)
urlObj = urllib2.urlopen(reqObj)
response = urlObj.read()
urlObj.close()
except:
#for now: ignore exceptions, 404s, etc.
print "NO DATA"
response = ""
return response

def sparql(url, query):
return _geturl(url + quote(query))

def fetchRDF(url, g):
try: g = g.parse(url)
except: print "fetch exception”

Next we will start defining functions that operate on specific data sources. Each func-
tion will take a reference to our internal graph as an argument, then determine if there
is something new it can add to the data by contacting an external source. If so, it contacts
the external source and adds the data to the internal triplestore. If our functions are
well-written, they should only contact the external source when they detect that there
is information missing in the local graph and they know that the external source will
supply it. Much like the multi-agent blackboard described in Chapter 3, we should be
able to call the functions repeatedly and in any order, allowing them to opportunisti-
cally fill in information when they are called.

To start the process, we will define a function that queries DBpedia with our one input
parameter, the name of a country. DBpedia will provide a list of rock bands originating
from that country and supply us with their Freebase identifiers:

def getBands4location(g):
"""query DBpedia to get a list of rock bands from a location

nnn

nnn

dbpedia_query =
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.0rg/2002/07/owlt>
PREFIX dbpp: <http://dbpedia.org/property/>
PREFIX dbpo:<http://dbpedia.org/ontology/>
PREFIX dbpr:<http://dbpedia.org/resource/>

CONSTRUCT {
?band owl:sameAs ?link .
} WHERE {
?loc dbpp:commonName
?band dbpo:homeTown ?loc .
?band rdf:type dbpo:MusicalArtist .
?band dbpo:genre dbpr:Rock music .
?band owl:sameAs ?link .
FILTER regex(?link, "freebase")

}n "

o

+ countryname + """'@en .
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print "Fetching DBpedia SPARQL results (this may take a few seconds)"
dbpedia_data = sparql(dbpedia_sparql_endpoint, dbpedia_query)
g.parse(StringIO(dbpedia_data),format="xml") #put results in local triplestore
print "done with dbpedia query"

Next we will define a function that looks for bands that have a Freebase identifier but
do not have information about the band’s name filled in. For each band in this state,
the function will contact Freebase and add what it learns to our internal graph:

def getMBZIDs(g):
"""Query the local triplestore to find the Freebase links for each band
and load the Freebase data for the band into the local triplestore"""

#Freebase provides the canonical name for each band,
#so if the name is missing, we know that we haven't asked Freebase about it
fbquery = """
SELECT ?fblink WHERE{
?band owl:sameAs ?fblink .
OPTIONAL { ?fblink fb:type.object.name ?name . }
FILTER regex(?fblink, "freebase", "i")
FILTER (!bound(?name))

o

freebaserefs = [fref[0] for fref in g.query(fbquery, initNs=nsdict)]

print "Fetching " + str(len(freebaserefs)) + " items from Freebase"
for fbref in freebaserefs:

fetchRDF (str(fbref), g)

Our next functions will look for bands that have a BBC identifier but for which we have
no review information. The first function retrieves artist information from the BBC to
obtain information about the albums the artist has made. The second function looks
for albums that don’t have review information and retrieves the text of the review from
the BBC archive:

def getBBCArtistData(g):
"""For each MusicBrainz ID in the local graph try to retrieve a review from
the BBC"""

#BBC will provide the album review data,
#so if its missing we haven't retrieved BBC Artist data
bbcartist_query = """
SELECT ?bbcuri
WHERE {
?band owl:sameAs ?bbcuri .
OPTIONAL{
?band foaf:made ?a .
?a dc:title ?album .
?a rev:hasReview ?reviewuri .

FILTER regex(?bbcuri, "bbc", "i")
FILTER (!'bound(?album))

}u nn

result = g.query(bbcartist _query, initNs=nsdict)

114 | Chapter5: Sources of Semantic Data

Download at Boykma.Com



print "Fetching " + str(len(result)) + " artists from the BBC"

for bbcartist in result:
fetchRDF(str(bbcartist[o]), g)

def getBBCReviewData(g):

#BBC review provides the review text
#if its missing we haven't retrieved the BBC review
album_query = """
SELECT ?artist ?title ?rev
WHERE {
?artist foaf:made ?a .
?a dc:title ?title .
?a rev:hasReview ?rev .

pro

bbc_album results = g.query(album query, initNs=nsdict)
print "Fetching " + str(len(bbc_album results)) + " reviews from the BBC"

#get the BBC review of the album
for result in bbc_album results:
fetchRDF(result[2], g)

Finally, we will sequence the use of our “rules” in the body of our application. We start
by populating a local graph with the results of our DBpedia SPARQL query that iden-
tifies bands from the country of our choosing. Next we call each of our rule functions
to fill in missing data.

While we call the functions in an obvious sequence, you could rework this section to
loop over the calls to each data acquisition function, emitting completed review data
as it is obtained. In theory, should a data source become unavailable, the application
would just keep iterating through the rules until the data became available, allowing
the review to be retrieved. Similarly, you should be able to modify the body of this
application so that you can “inject” new countries into the application and have the
application kick out additional reviews as new input becomes available:

" "

if _name__ == "_ main_":
g = Graph()

print "Number of Statements in Graph: " + str(len(g))
getBands4Location(g)

print "Number of Statements in Graph: " + str(len(g))
getMBZIDs(g)

print "Number of Statements in Graph: " + str(len(g))
getBBCArtistData(g)

print "Number of Statements in Graph: " + str(len(g))
getBBCReviewData(g)

print "Number of Statements in Graph: " + str(len(g))
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nnn

final_query =
SELECT ?name ?album ?reviewtext
WHERE {
?fbband fb:type.object.name ?name .
?fbband owl:sameAs ?bband .
?bband foaf:made ?bno .
?bno dc:title ?album .
?bn0 rev:hasReview ?rev .
?rev rev:text ?reviewtext .
FILTER ( lang(?name) = "en" )
jro

finalresult = g.query(final_query, initNs=nsdict)
for res in finalresult:
print "ARTIST: " + res[0] + " ALBUM: " + res[1]
print M-------mm oo "
print res[2]
print " "

This application makes use of Freebase as a semantic switchboard, exchanging one
identifier for another. Freebase can also provide a map of data resources that use specific
types of identifiers, and it can itself be a source of information about a wide variety of
subjects. In the next section we will look at Freebase in greater depth and examine some
of the services it provides to make writing semantic applications a bit easier.

Goal-Driven Inference

While we talk about feed-forward inferencing in this example and others throughout
the book, you should also be aware of another version of this application that starts
with the goal of producing record reviews from the BBC and operates on a map of linked
data sources to find a path of requests that will accomplish our goal.

This type of inference is known as backward chaining reasoning—you start with a goal,
and then search through the inference rules to see which rules produce outcomes
consistent with that goal. Once you have found a set of rules that can produce the goal
state, the new goal becomes finding the rules that would allow the first set of rules to
fire. You keep looking for outcomes that fulfill the current goal and trying to set up the
preconditions for those rules, and so on until you reach the current state of the system
(or in our case, the input state).

We will use feed-forward inferencing here, as it is well suited to situations where con-
ditions are constantly changing, such as systems going offline or new data being added
by users.

Freebase

Freebase is an open, writable, semantic database with information on millions of topics
ranging from genes to jeans. Within Freebase, you can find data from international and
government agencies, private foundations, university research groups, open source
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data projects, private companies, and individual users—in short, anyone who has made
their data freely available. And as the name suggests, Freebase doesn’t cost anything to
use. All the data in it is under a Creative Commons Attribution (CC-BY) license, mean-
ing it can be used for any purpose as long as you give credit to Freebase.

Like the structures we have been examining, Freebase is a graph of data, made up of
nodes and links. But unlike the RDF graphs we have looked at so far, Freebase envelops
this raw graph structure with a query system that allows developers to treat these
structures as simple objects that are associated with one or more Freebase types. A type,
in Freebase, is a collection of properties that may be applied to the object, linking it to
other objects or literal values.

An Identity Database

Freebase has information on millions of entities (or “topics”), and the data is actively
curated by the community of users (and a wide variety of algorithmic bots) to ensure
that each entity is unique. That is, each Freebase topic represents one, and only one,
semantically distinct “thing.” Said another way, everything within Freebase has been
reconciled (or smushed!). In theory, you should never find duplicated topics, and when
they do occur, the community merges the data contained in the two topics back into
one. This active curation is a part of what makes Freebase useful as an identity database.
When you dereference a Freebase identifier, you will get back one and only one object.
All information for the topic, including all other identifiers, are immediately available
from that one call.

As a semantic database, strong identifiers play a central role within Freebase. Every
topic has any number of strong, stable identifiers that can be used to address it. These
identifiers are bestowed on topics by Freebase users and by external, authoritative
sources alike. Topic identifiers are created by establishing links from a topic to special
objects in Freebase called namespaces. The links between topics and namespaces also
contain a key value. The ID for a topic is computed by concatenating the ID of a
parent namespace, a slash (/), and the value of the key link connecting the topic
to the namespace. For instance, the band U2 is represented by the topic with the
key value of a3cb23fc-acd3-4ce0-8f36-1e5aa6a18432 in the namespace with the
ID /authority/musicbrainz. The ID for the U2 topic can thus be represented
as /authority/musicbrainz/a3cb23fc-acd3-4ce0-8f36-1e5aa6a18432. The MusicBrainz
namespace ID can similarly be understood as having a key with the value
musicbrainz in the namespace with the ID /authority, and so on back to the root
namespace.

As we will see, Freebase IDs are useful within the Freebase system and also serve as
externally dereferenceable URIs. This means that not only can you refer to any Freebase
topic in your own RDF, but any data you add to Freebase can be referenced by others
through RDF.
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GUIDs or IDs?

Freebase is actually an append-only graph store. On the surface, data in Freebase ap-
pears to be mutable, but that is a convenient illusion created by the default read API.
In truth, once a piece of data is written into Freebase, it is (in theory) forever findable.
This immutability has an interesting implication: the state of the graph at any point in
the past can be read. This allows you to see all changes to a topic by inspecting the
history of all links connecting to that node in the graph. It also means you can ask for
query results based on the state of the graph at a specific point in time.

In addition to any number of keys that can be used as an ID for a given topic, Freebase
also provides a 32-character GUID. While this GUID can be used as an 1D, it doesn’t
refer to the Freebase topic, but rather it represents the underlying graph object holding
the links for the topic at this point in time. The difference between a key-based ID and
a GUID is subtle but important. If a topic is merged (or split), the keys on the topic
move with the semantics—they track the meaning of the topic. But the GUID remains
fixed to the graph object. When two topics are merged, one of the GUIDs will become
empty. Unless you are interested in tracing the history of a topic, you will almost always
want to use key-based IDs to reference topics.

RDF Interface

As we saw earlier in the Linked Data section, Freebase provides an RDF Linked Data
interface, making Freebase a part of the Giant Global Graph. As a community-writable
database, this means that any data (or data model) within Freebase is immediately
available as Linked Data, and thus you can use Freebase to publish semantic data for
use in your own Linked Data applications.

You can construct a dereferenceable URI representing any object in Freebase by taking
an ID for the object, removing the first slash (/), replacing the subsequent slashes with
dots (.), and appending this transformed ID on the base URL http://rdf.freebase.com/
ns/. For instance, the actor Harrison Ford (the one who appeared in Star Wars) has the
Freebase ID /en/harrison_ford. You can find out what Freebase knows about him by
dereferencing the URI http://rdf.freebase.com/ns/en.harrison ford.

These URISs represent the things Freebase has information about, so the URI http://
rdf.freebase.com/ns/en.harrison_ford represents Harrison Ford the actor. Since Free-
base can’t produce Harrison Ford the actor, but it can provide information about him,
this URI will be redirected with an HTTP 303 response to the URI for the information
resource about him. If your request includes an HTTP ACCEPT header indicating a
preference for application/rdf+xml content, you will be redirected to the information
resource at http://rdf.freebase.com/rdf/en/harrison ford. (You can also request
N-triples, N3, and turtle with the appropriate ACCEPT headers.) If you make the
request with an ACCEPT header (or preference) for text/html, you will be redirected
to the standard HTML view within Freebase.com.
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Freebase Schema

Not only does Freebase allow users to add data to the graph, it also allows them to
extend the data model to fit their data. Data models within Freebase are called
schemas and are broken down along areas of interest called domains. Domains serve
only to collect components of a data model; they have no specific semantic value.

In Freebase, any object can have one or more types. Types provide a basic categorization
of objects within Freebase and indicate what properties you might expect to find linked
to the object. Since Freebase properties specify the link between two objects, they serve
the same role as RDF predicates (in fact, the Freebase RDF interface uses properties as
predicates). Unlike an object-oriented programming language, or some of the RDF
models we will examine in later chapters, Freebase types do not have inheritance. If
you want to say that something is also a more abstract type, you must explicitly add
the type to the object.

For instance, in Freebase, Harrison Ford is of type actor, which resides in the film
domain (/film/actor), and he is also typed as a person, which resides in the people
domain (/people/person). The person type has properties such as date of birth,
nationality, and gender. As in RDF, these properties represent links connected to the
object representing Harrison Ford. Properties such as date_of _birth represent literals,
whereas properties for things like nationality and gender represent links to other ob-
jects. Properties in Freebase not only indicate whether they are links to literals or other
objects, but they also specify the type of object at the other end of the link. Therefore,
you know that when you reference the gender property on the person schema, you will
find an object with the gender type on the other end of the link. See Figure 5-5.

Person Properties Type Key: person edit [/peaple/person
Property Name Data Type
edit  Gender |E2| Gender
edit  Date of birth [FE]] pateTime
edit  Place of birth | & | Location
=dit  Country of nationality | £'| Country

Figure 5-5. Freebase /people/person schema (http://www.freebase.com/type/schemal/people/person)

Similarly, the actor type has a film property. It too is a link to another object, but rather
than linking directly to a film object, it connects to a performance object that is itself
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connected to a film. This performance object serves the same purpose as a blank node
in RDF, allowing us to express information about the relationship between two
entities—in this case, allowing us to identify the character the actor played in the film.
Unlike an RDF model, however, these “mediating” nodes are first-class objects in Free-
base and therefore have strong, externally referenceable identifiers. See Figure 5-6.

Film actor Properties /film/actor
Property Name Data Type

Film performances |EB| Film performance

-| Film performance Properties /fim/performance

Property Name Data Type
Film [#] Fitm
Actor &1 | Film actor

Character :.»:'f_ Film character
haracte nks as Portrayed in films

Figure 5-6. Freebase /film/actor and /film/performance schemas

Asyou might have guessed from our examples, the ID of a type in Freebase is the domain
that the type is contained in, followed by a key for that type. That is, a domain (such
as people) is also a namespace, and types have keys (e.g., person) in domains (giving
the people type the ID /people/person). Similarly, types operate as namespaces for
properties, so the full ID for the birthday property is /people/person/date_of birth.

Every object in Freebase is automatically given the type object (/type/object), which
provides properties available to all objects, such as name, id, and type. The type property
(/type/object/type) is used to link the object with type definitions. For instance, Har-
rison Ford is an object of type actor, by virtue of having a /type/object/type link to
the /film/actor object. In a self-similar fashion, types themselves are nothing more
than objects that have a /type/obje