Building Smart Web 2.0 Applications

Programming

Collective
Intelli

6'[N
1 I i
il

.

O’ REI LLY® | Toby Segaran

Web applications

O’REILLY*

Programming Collective Intelligence

“Bravo! I cannot think of a better way for a developer to first learn these
algorithbms and methods, nor can I think of a better way for me (an old Al dog)
to reinvigorate my kRnowledge of the details.”

—Dan Russell, Uber Tech Lead, Google

“Toby's book does a grect job of breaking down the complex subject matter of machine-
learning algorithms into practical, easy-to-understand examples that can be used directly
to analyze social interaction across the Web today. If I bad this book two years ago, it
would bave saved me precious time going down some fruitless paths.”

—Tim Wolters, CTO, Collective Intellect

/ant to tap the power behind search rankings, product recommendations, social bookmarking, and
online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications
to mine the enormous amount of data created by participatory Internet applications. With the
sophisticated algorithms in this book, you can write smart programs to access interesting datasets
from other web sites, collect data from users of your own applications, and analyze and understand
the data once you've found it.

Programming Collective Intelligence takes you into the world of machine learning and statistics,

and explains how to draw conclusions about user experience, marketing, personal tastes, and

human behavior all from information that you and others collect every day. Each algorithm is

described clearly and concisely with code that can immediately be used on your web site, blog,

Wiki, or specialized application. This book explains:

e Collaborative filtering techniques that enable online retailers to recommend products or media

* Methods of clustering to detect groups of similar items in a large dataset

e Optimization algorithms that search millions of possible solutions to a problem and choose the
best one

e Bayesian filtering, used in spam filters for classifying documents based on word types and
other features

s Support-vector machines to match people in online dating sites

* Evolving intelligence for problem solving—how a computer develops its skill by improving its
own code the more it plays a game

Each chapter includes exercises for extending the algorithms to make them more powerful. Go

beyond simple database-backed applications and put the wealth of Internet data to work for you.

www.oreilly.com

US $39.99 CAN $47.99
ISBN-10: 0-596-52932-5
ISBN-13: 978-0-596-52932-1 .

>F line editi
53999 ree online eaition
ORI Safarl ‘i

780596"529321 Books Online Details on last page.

Praise for Programming Collective Intelligence

“I review a few books each year, and naturally, I read a fair number during the course of
my work. And I have to admit that I have never had quite as much fun reading a
preprint of a book as I have in reading this. Bravo! I cannot think of a better way for a
developer to first learn these algorithms and methods, nor can I think of a better way for
me (an old Al dog) to reinvigorate my knowledge of the details.”

— Dan Russell, Uber Tech Lead, Google

“Toby’s book does a great job of breaking down the complex subject matter of machine-
learning algorithms into practical, easy-to-understand examples that can be used directly
to analyze social interaction across the Web today. If I had this book two years ago, it
would have saved me precious time going down some fruitless paths.”

— Tim Wolters, CTO, Collective Intellect

“Programming Collective Intelligence is a stellar achievement in providing a comprehensive
collection of computational methods for relating vast amounts of data. Specifically, it
applies these techniques in context of the Internet, finding value in otherwise isolated data
islands. If you develop for the Internet, this book is a must-have.”

—Paul Tyma, Senior Software Engineer, Google

Programming Collective Intelligence

Other resources from O'Reilly

Related titles

oreilly.com

%ﬁf REILLY
£ NETWORK

Conferences

O’REILLY NE:FWORK
Safari
Bookshelf.

Web 2.0 Report Al for Game Developers
Learning Python Mastering Algorithms with
Mastering Algorithms with C Perl

oreilly.com is more than a complete catalog of O’Reilly books.

You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

Programming Collective

Intelligence
Building Smart Web 2.0 Applications

Toby Segaran

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

Programming Collective Intelligence
by Toby Segaran

Copyright © 2007 Toby Segaran. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary Treseler O’Brien Indexer: Julie Hawks
Production Editor: Sarah Schneider Cover Designer: Karen Montgomery
Copyeditor: Amy Thomson Interior Designer: David Futato
Proofreader: Sarah Schneider lllustrators: Robert Romano and Jessamyn Read
Printing History:

August 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming Collective Intelligence, the image of King penguins, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

RepKover,
‘Eﬂphé This book uses RepKover', a durable and flexible lay-flat binding.

ISBN-10: 0-596-52932-5
ISBN-13: 978-0-596-52932-1
[(M]

http://safari.oreilly.com
mailto:corporate@oreilly.com

Preface

1.

Introduction to Collective Intelligence . . .

What Is Collective Intelligence?
What Is Machine Learning?

Limits of Machine Learning
Real-Life Examples

Other Uses for Learning Algorithms

Making Recommendations

Collaborative Filtering

Collecting Preferences

Finding Similar Users

Recommending Items

Matching Products

Building a del.icio.us Link Recommender
Item-Based Filtering

Using the MovieLens Dataset

User-Based or Item-Based Filtering?
Exercises

Discovering Groups

Supervised versus Unsupervised Learning
Word Vectors

Hierarchical Clustering

Drawing the Dendrogram

Column Clustering

Table of Contents

vii

K-Means Clustering 42

Clusters of Preferences 44
Viewing Data in Two Dimensions 49
Other Things to Cluster 53
Exercises 53
4. SearchingandRanking 54
What's in a Search Engine? 54
A Simple Crawler 56
Building the Index 58
Querying 63
Content-Based Ranking 64
Using Inbound Links 69
Learning from Clicks 74
Exercises 84
5. Optimizationl 86
Group Travel 87
Representing Solutions 88
The Cost Function 89
Random Searching 91
Hill Climbing 92
Simulated Annealing 95
Genetic Algorithms 97
Real Flight Searches 101
Optimizing for Preferences 106
Network Visualization 110
Other Possibilities 115
Exercises 116
6. DocumentFilteringl 117
Filtering Spam 117
Documents and Words 118
Training the Classifier 119
Calculating Probabilities 121
A Naive Classifier 123
The Fisher Method 127
Persisting the Trained Classifiers 132
Filtering Blog Feeds 134

viii | Table of Contents

Improving Feature Detection 136

Using Akismet 138
Alternative Methods 139
Exercises 140
Modeling with DecisionTrees 142
Predicting Signups 142
Introducing Decision Trees 144
Training the Tree 145
Choosing the Best Split 147
Recursive Tree Building 149
Displaying the Tree 151
Classifying New Observations 153
Pruning the Tree 154
Dealing with Missing Data 156
Dealing with Numerical Outcomes 158
Modeling Home Prices 158
Modeling “Hotness” 161
When to Use Decision Trees 164
Exercises 165
Building PriceModels 167
Building a Sample Dataset 167
k-Nearest Neighbors 169
Weighted Neighbors 172
Cross-Validation 176
Heterogeneous Variables 178
Optimizing the Scale 181
Uneven Distributions 183
Using Real Data—the eBay API 189
When to Use k-Nearest Neighbors 195
Exercises 196
Advanced Classification: Kernel Methodsand SVMs 197
Matchmaker Dataset 197
Difficulties with the Data 199
Basic Linear Classification 202
Categorical Features 205
Scaling the Data 209

Table of Contents | ix

Understanding Kernel Methods 211

Support-Vector Machines 215
Using LIBSVM 217
Matching on Facebook 219
Exercises 225
10. Finding IndependentFeatures 226
A Corpus of News 227
Previous Approaches 231
Non-Negative Matrix Factorization 232
Displaying the Results 240
Using Stock Market Data 243
Exercises 248
11. EvolvingIntelligencel 250
What Is Genetic Programming? 250
Programs As Trees 253
Creating the Initial Population 257
Testing a Solution 259
Mutating Programs 260
Crossover 263
Building the Environment 265
A Simple Game 268
Further Possibilities 273
Exercises 276
12. AlgorithmSummaryl 277
Bayesian Classifier 277
Decision Tree Classifier 281
Neural Networks 285
Support-Vector Machines 289
k-Nearest Neighbors 293
Clustering 296
Multidimensional Scaling 300
Non-Negative Matrix Factorization 302
Optimization 304

x | Tableof Contents

A. Third-Party Libraries 309

B. Mathematical Formulas 316

Table of Contents | xi

Preface

The increasing number of people contributing to the Internet, either deliberately or
incidentally, has created a huge set of data that gives us millions of potential insights
into user experience, marketing, personal tastes, and human behavior in general.
This book provides an introduction to the emerging field of collective intelligence. It
covers ways to get hold of interesting datasets from many web sites you’ve probably
heard of, ideas on how to collect data from users of your own applications, and
many different ways to analyze and understand the data once you’ve found it.

This book’s goal is to take you beyond simple database-backed applications and
teach you how to write smarter programs to take advantage of the information you
and others collect every day.

Prerequisites

The code examples in this book are written in Python, and familiarity with Python
programming will help, but I provide explanations of all the algorithms so that pro-
grammers of other languages can follow. The Python code will be particularly easy to
follow for those who know high-level languages like Ruby or Perl. This book is not
intended as a guide for learning programming, so it’s important that you’ve done
enough coding to be familiar with the basic concepts. If you have a good understand-
ing of recursion and some basic functional programming, you’ll find the material
even easier.

This book does not assume you have any prior knowledge of data analysis, machine
learning, or statistics. I've tried to explain mathematical concepts in as simple a
manner as possible, but having some knowledge of trigonometry and basic statistics
will be help you understand the algorithms.

xiii

Style of Examples

The code examples in each section are written in a tutorial style, which encourages
you to build the applications in stages and get a good appreciation for how the algo-
rithms work. In most cases, after creating a new function or method, you’ll use it in
an interactive session to understand how it works. The algorithms are mostly simple
variants that can be extended in many ways. By working through the examples and
testing them interactively, you’ll get insights into ways that you might improve them
for your own applications.

Why Python?

Although the algorithms are described in words with explanations of the formulae
involved, it’s much more useful (and probably easier to follow) to have actual code
for the algorithms and example problems. All the example code in this book is
written in Python, an excellent, high-level language. I chose Python because it is:

Concise
Code written in dynamically typed languages such as Python tends to be shorter
than code written in other mainstream languages. This means there’s less typing
for you when working through the examples, but it also means that it’s easier to
fit the algorithm in your head and really understand what it’s doing.

Easy to read
Python has at times been referred to as “executable pseudocode.” While this is
clearly an exaggeration, it makes the point that most experienced programmers
can read Python code and understand what it is supposed to do. Some of the less
obvious constructs in Python are explained in the “Python Tips” section below.

Easily extensible
Python comes standard with many libraries, including those for mathematical
functions, XML (Extensible Markup Language) parsing, and downloading web
pages. The nonstandard libraries used in the book, such as the RSS (Really
Simple Syndication) parser and the SQLite interface, are free and easy to down-
load, install, and use.

Interactive
When working through an example, it’s useful to try out the functions as you
write them without writing another program just for testing. Python can run
programs directly from the command line, and it also has an interactive prompt
that lets you type in function calls, create objects, and test packages interactively.

Multiparadigm
Python supports object-oriented, procedural, and functional styles of program-
ming. Machine-learning algorithms vary greatly, and the clearest way to

xiv | Preface

implement one may use a different paradigm than another. Sometimes it’s use-
ful to pass around functions as parameters and other times to capture state in an
object. Python supports both approaches.

Multiplatform and free
Python has a single reference implementation for all the major platforms and is
free for all of them. The code described in this book will work on Windows,
Linux, and Macintosh.

Python Tips

For beginners interested in learning about programming in Python, I recommend
reading Learning Python by Mark Lutz and David Ascher (O’Reilly), which gives an
excellent overview. Programmers of other languages should find the Python code rel-
atively easy to follow, although be aware that throughout this book I use some of
Python’s idiosyncratic syntax because it lets me more directly express the algorithm
or fundamental concepts. Here’s a quick overview for those of you who aren’t
Python programmers:

List and dictionary constructors

Python has a good set of primitive types and two that are used heavily throughout
this book are list and dictionary. A list is an ordered list of any type of value, and it is
constructed with square brackets:

number list=[1,2,3,4]

string list=['a', 'b', 'c', 'd']

mixed list=['a', 3, 'c', 8]
A dictionary is an unordered set of key/value pairs, similar to a hash map in other
languages. It is constructed with curly braces:

ages={'John"':24, 'Sarah':28, 'Mike':31}
The elements of lists and dictionaries can be accessed using square brackets after the
list name:

string_list[2] # returns 'b’
ages['Sarah'] # returns 28

Significant Whitespace

Unlike most languages, Python actually uses the indentation of the code to define
code blocks. Consider this snippet:
if x==1:
print 'x is 1’
print 'Still in if block'
print 'outside if block'

Preface | xv

The interpreter knows that the first two print statements are executed when x is 1
because the code is indented. Indentation can be any number of spaces, as long as it
is consistent. This book uses two spaces for indentation. When entering the code
you’ll need to be careful to copy the indentation correctly.

List comprehensions

A list comprehension is a convenient way of converting one list to another by filtering
and applying functions to it. A list comprehension is written as:

[expression for variable in list]
or:

[expression for variable in list if condition]
For example, the following code:

11:[1J2)3)4J5)6)7J8)9]
print [v*10 for v in 11 if vi>4]

would print this list:
[50,60,70,80,90]

List comprehensions are used frequently in this book because they are an extremely
concise way to apply a function to an entire list or to remove bad items. The other
manner in which they are often used is with the dict constructor:
11:[112)3)415)6)718)9]
timesten=dict([(v,v*10) for v in 11])
This code will create a dictionary with the original list being the keys and each item
multiplied by 10 as the value:

{1:10,2:20,3:30,4:40,5:50,6:60,7:70,8:80,9:90}

Open APls

The algorithms for synthesizing collective intelligence require data from many users.
In addition to machine-learning algorithms, this book discusses a number of Open
Web APIs (application programming interfaces). These are ways that companies
allow you to freely access data from their web sites by means of a specified protocol;
you can then write programs that download and process the data. This data usually
consists of contributions from the site’s users, which can be mined for new insights.
In some cases, there is a Python library available to access these APIs; if not, it’s
pretty straightforward to create your own interface to access the data using Python’s
built-in libraries for downloading data and parsing XML.

Here are some of the web sites with open APIs that you’ll see in this book:

xvi | Preface

del.icio.us
A social bookmarking application whose open API lets you download links by
tag or from a specific user.

Kayak
A travel site with an API for conducting searches for flights and hotels from
within your own programs.

eBay
An online auction site with an API that allows you to query items that are cur-
rently for sale.

Hot or Not
A rating and dating site with an API to search for people and get their ratings
and demographic information.

Akismet
An API for collaborative spam filtering.

A huge number of potential applications can be built by processing data from a
single source, by combining data from multiple sources, and even by combining
external information with input from your own users. The ability to harness data cre-
ated by people in a variety of ways on different sites is a principle element of creating
collective intelligence. A good starting point for finding more web sites with open
APIs is ProgrammableWeb (http://www.programmableweb.com).

Overview of the Chapters

Every algorithm in the book is motivated by a realistic problem that can, I hope, be
easily understood by all readers. I have tried to avoid problems that require a great
deal of domain knowledge, and I have focused on problems that, while complex, are
easy for most people to relate to.

Chapter 1, Introduction to Collective Intelligence
Explains the concepts behind machine learning, how it is applied in many differ-
ent fields, and how it can be used to draw new conclusions from data gathered
from many different people.

Chapter 2, Making Recommendations
Introduces the collaborative filtering techniques used by many online retailers to
recommend products or media. The chapter includes a section on recommend-
ing links to people from a social bookmarking site, and building a move
recommendation system from the MovieLens dataset.

Chapter 3, Discovering Groups
Builds on some of the ideas in Chapter 2 and introduces two different methods
of clustering, which automatically detect groups of similar items in a large
dataset. This chapter demonstrates the use of clustering to find groups on a set
of popular weblogs and on people’s desires from a social networking web site.

Preface | xvii

http://www.programmableweb.com

Chapter 4, Searching and Ranking

Describes the various parts of a search engine including the crawler, indexer, and
query engine. It covers the PageRank algorithm for scoring pages based on
inbound links and shows you how to create a neural network that learns which
keywords are associated with different results.

Chapter 5, Optimization

Introduces algorithms for optimization, which are designed to search millions of
possible solutions to a problem and choose the best one. The wide variety of
uses for these algorithms is demonstrated with examples that find the best flights
for a group of people traveling to the same location, find the best way of match-
ing students to dorms, and lay out a network with the minimum number of
crossed lines.

Chapter 6, Document Filtering

Demonstrates Bayesian filtering, which is used in many free and commercial
spam filters for automatically classifying documents based on the type of words
and other features that appear in the document. This is applied to a set of RSS
search results to demonstrate automatic classification of the entries.

Chapter 7, Modeling with Decision Trees

Introduces decision trees as a method not only of making predictions, but also of
modeling the way the decisions are made. The first decision tree is built with
hypothetical data from server logs and is used to predict whether or not a user is
likely to become a premium subscriber. The other examples use data from real
web sites to model real estate prices and “hotness.”

Chapter 8, Building Price Models

Approaches the problem of predicting numerical values rather than classifica-
tions using k-nearest neighbors techniques, and applies the optimization
algorithms from Chapter 5. These methods are used in conjunction with the
eBay API to build a system for predicting eventual auction prices for items based
on a set of properties.

Chapter 9, Advanced Classification: Kernel Methods and SVMs

Shows how support-vector machines can be used to match people in online dat-
ing sites or when searching for professional contacts. Support-vector machines
are a fairly advanced technique and this chapter compares them to other methods.

Chapter 10, Finding Independent Features

Introduces a relatively new technique called non-negative matrix factorization,
which is used to find the independent features in a dataset. In many datasets the
items are constructed as a composite of different features that we don’t know in
advance; the idea here is to detect these features. This technique is demon-
strated on a set of news articles, where the stories themselves are used to detect
themes, one or more of which may apply to a given story.

xviii

| Preface

Chapter 11, Evolving Intelligence
Introduces genetic programming, a very sophisticated set of techniques that goes
beyond optimization and actually builds algorithms using evolutionary ideas to
solve a particular problem. This is demonstrated by a simple game in which the
computer is initially a poor player that improves its skill by improving its own
code the more the game is played.

Chapter 12, Algorithm Summary
Reviews all the machine-learning and statistical algorithms described in the book
and compares them to a set of artificial problems. This will help you understand
how they work and visualize the way that each of them divides data.

Appendix A, Third-Party Libraries
Gives information on third-party libraries used in the book, such as where to
find them and how to install them.

Appendix B, Mathematical Formulas
Contains formulae, descriptions, and code for many of the mathematical concepts
introduced throughout the book.

Exercises at the end of each chapter give ideas of ways to extend the algorithms and
make them more powerful.

Conventions

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).
Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.
Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, or the output from commands.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic
Shows text that should be replaced with user-supplied values.

A w
y

This icon signifies a tip, suggestion, or general note.

Preface | xix

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming Collective Intelligence
by Toby Segaran. Copyright 2007 Toby Segaran, 978-0-596-52932-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596529321
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://lwww.oreilly.com

xx | Preface

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596529321
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Safari® Books Online

. When you see a Safari® Books Online icon on the cover of your
Safa "l favorite technology book, that means the book is available online
Bosksontine through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments

I'd like to express my gratitude to everyone at O’Reilly involved in the development
and production of this book. First, I'd like to thank Nat Torkington for telling me
that the idea had merit and was worth pitching, Mike Hendrickson and Brian Jep-
son for listening to my pitch and getting me excited to write the book, and especially
Mary O’Brien who took over as editor from Brian and could always assuage my fears
that the project was too much for me.

On the production team, I want to thank Marlowe Shaeffer, Rob Romano, Jessamyn
Read, Amy Thomson, and Sarah Schneider for turning my illustrations and writing
into something you might actually want to look at.

Thanks to everyone who took part in the review of the book, specifically Paul Tyma,
Matthew Russell, Jeff Hammerbacher, Terry Camerlengo, Andreas Weigend, Daniel
Russell, and Tim Wolters.

Thanks to my parents.

Finally, I owe so much gratitude to several of my friends who helped me brainstorm
ideas for the book and who were always understanding when I had no time for them:
Andrea Matthews, Jeff Beene, Laura Miyakawa, Neil Stroup, and Brooke Blumen-
stein. Writing this book would have been much harder without your support and 1
certainly would have missed out on some of the more entertaining examples.

Preface | xxi

http://safari.oreilly.com

CHAPTER 1
Introduction to Collective Intelligence

Netflix is an online DVD rental company that lets people choose movies to be sent to
their homes, and makes recommendations based on the movies that customers have
previously rented. In late 2006 it announced a prize of $1 million to the first person
to improve the accuracy of its recommendation system by 10 percent, along with
progress prizes of $50,000 to the current leader each year for as long as the contest
runs. Thousands of teams from all over the world entered and, as of April 2007, the
leading team has managed to score an improvement of 7 percent. By using data
about which movies each customer enjoyed, Netflix is able to recommend movies to
other customers that they may never have even heard of and keep them coming back
for more. Any way to improve its recommendation system is worth a lot of money to
Netflix.

The search engine Google was started in 1998, at a time when there were already sev-
eral big search engines, and many assumed that a new player would never be able to
take on the giants. The founders of Google, however, took a completely new
approach to ranking search results by using the links on millions of web sites to
decide which pages were most relevant. Google’s search results were so much better
than those of the other players that by 2004 it handled 85 percent of searches on the
Web. Its founders are now among the top 10 richest people in the world.

What do these two companies have in common? They both drew new conclusions
and created new business opportunities by using sophisticated algorithms to com-
bine data collected from many different people. The ability to collect information
and the computational power to interpret it has enabled great collaboration
opportunities and a better understanding of users and customers. This sort of work
is happening all over the place—dating sites want to help people find their best
match more quickly, companies that predict changes in airplane ticket prices are
cropping up, and just about everyone wants to understand their customers better in
order to create more targeted advertising.

These are just a few examples in the exciting field of collective intelligence, and the
proliferation of new services means there are new opportunities appearing every day.
I believe that understanding machine learning and statistical methods will become
ever more important in a wide variety of fields, but particularly in interpreting and
organizing the vast amount of information that is being created by people all over the
world.

What Is Collective Intelligence?

People have used the phrase collective intelligence for decades, and it has become
increasingly popular and more important with the advent of new communications
technologies. Although the expression may bring to mind ideas of group conscious-
ness or supernatural phenomena, when technologists use this phrase they usually
mean the combining of behavior, preferences, or ideas of a group of people to create
novel insights.

Collective intelligence was, of course, possible before the Internet. You don’t need
the Web to collect data from disparate groups of people, combine it, and analyze it.
One of the most basic forms of this is a survey or census. Collecting answers from a
large group of people lets you draw statistical conclusions about the group that no
individual member would have known by themselves. Building new conclusions
from independent contributors is really what collective intelligence is all about.

A well-known example is financial markets, where a price is not set by one individ-
ual or by a coordinated effort, but by the trading behavior of many independent
people all acting in what they believe is their own best interest. Although it seems
counterintuitive at first, futures markets, in which many participants trade contracts
based on their beliefs about future prices, are considered to be better at predicting
prices than experts who independently make projections. This is because these mar-
kets combine the knowledge, experience, and insight of thousands of people to
create a projection rather than relying on a single person’s persepective.

Although methods for collective intelligence existed before the Internet, the ability to
collect information from thousands or even millions of people on the Web has
opened up many new possibilities. At all times, people are using the Internet for
making purchases, doing research, seeking out entertainment, and building their
own web sites. All of this behavior can be monitored and used to derive information
without ever having to interrupt the user’s intentions by asking him questions. There
are a huge number of ways this information can be processed and interpreted. Here
are a couple of key examples that show the contrasting approaches:

* Wikipedia is an online encyclopedia created entirely from user contributions.
Any page can be created or edited by anyone, and there are a small number of
administrators who monitor repeated abuses. Wikipedia has more entries than
any other encyclopedia, and despite some manipulation by malicious users, it is

2 | Chapter1: Introduction to Collective Intelligence

generally believed to be accurate on most subjects. This is an example of collec-
tive intelligence because each article is maintained by a large group of people and
the result is an encyclopedia far larger than any single coordinated group has
been able to create. The Wikipedia software does not do anything particularly
intelligent with user contributions—it simply tracks the changes and displays the
latest version.

* Google, mentioned earlier, is the world’s most popular Internet search engine,
and was the first search engine to rate web pages based on how many other
pages link to them. This method of rating takes information about what
thousands of people have said about a particular web page and uses that
information to rank the results in a search. This is a very different example of
collective intelligence. Where Wikipedia explicitly invites users of the site to
contribute, Google extracts the important information from what web-content
creators do on their own sites and uses it to generate scores for its users.

While Wikipedia is a great resource and an impressive example of collective intelli-
gence, it owes its existence much more to the user base that contributes information
than it does to clever algorithms in the software. This book focuses on the other end
of the spectrum, covering algorithms like Google’s PageRank, which take user data
and perform calculations to create new information that can enhance the user experi-
ence. Some data is collected explicitly, perhaps by asking people to rate things, and
some is collected casually, for example by watching what people buy. In both cases,
the important thing is not just to collect and display the information, but to process
it in an intelligent way and generate new information.

This book will show you ways to collect data through open APIs, and it will cover a
variety of machine-learning algorithms and statistical methods. This combination
will allow you to set up collective intelligence methods on data collected from your
own applications, and also to collect and experiment with data from other places.

What Is Machine Learning?

Machine learning is a subfield of artificial intelligence (AI) concerned with algo-
rithms that allow computers to learn. What this means, in most cases, is that an
algorithm is given a set of data and infers information about the properties of the
data—and that information allows it to make predictions about other data that it
might see in the future. This is possible because almost all nonrandom data contains
patterns, and these patterns allow the machine to generalize. In order to generalize, it
trains a model with what it determines are the important aspects of the data.

To understand how models come to be, consider a simple example in the otherwise
complex field of email filtering. Suppose you receive a lot of spam that contains the
words “online pharmacy.” As a human being, you are well equipped to recognize pat-
terns, and you quickly determine that any message with the words “online pharmacy”

What Is Machine Learning? | 3

is spam and should be moved directly to the trash. This is a generalization—you have,
in fact, created a mental model of what is spam. After you report several of these
messages as spam, a machine-learning algorithm designed to filter spam should be
able to make the same generalization.

There are many different machine-learning algorithms, all with different strengths
and suited to different types of problems. Some, such as decision trees, are transpar-
ent, so that an observer can totally understand the reasoning process undertaken by
the machine. Others, such as neural networks, are black box, meaning that they pro-
duce an answer, but it’s often very difficult to reproduce the reasoning behind it.

Many machine-learning algorithms rely heavily on mathematics and statistics.
According to the definition I gave earlier, you could even say that simple correlation
analysis and regression are both basic forms of machine learning. This book does not
assume that the reader has a lot of knowledge of statistics, so I have tried to explain
the statistics used in as straightforward a manner as possible.

Limits of Machine Learning

Machine learning is not without its weaknesses. The algorithms vary in their ability
to generalize over large sets of patterns, and a pattern that is unlike any seen by the
algorithm before is quite likely to be misinterpreted. While humans have a vast
amount of cultural knowledge and experience to draw upon, as well as a remarkable
ability to recognize similar situations when making decisions about new informa-
tion, machine-learning methods can only generalize based on the data that has
already been seen, and even then in a very limited manner.

The spam-filtering method you’ll see in this book is based on the appearance of
words or phrases without any regard to what they mean or to sentence structures.
Although it’s theoretically possible to build an algorithm that would take grammar
into account, this is rarely done in practice because the effort required would be
disproportionately large compared to the improvement in the algorithm. Under-
standing the meaning of words or their relevance to a person’s life would require far
more information than spam filters, in their current incarnation, can access.

In addition, although they vary in their propensity for doing so, all machine-learning
methods suffer from the possibility of overgeneralizing. As with most things in life,
strong generalizations based on a few examples are rarely entirely accurate. It’s cer-
tainly possible that you could receive an important email message from a friend that
contains the words “online pharmacy.” In this case, you would tell the algorithm
that the message is not spam, and it might infer that messages from that particular
friend are acceptable. The nature of many machine-learning algorithms is that they
can continue to learn as new information arrives.

4 | Chapter1: Introduction to Collective Intelligence

Real-Life Examples

There are many sites on the Internet currently collecting data from many different
people and using machine learning and statistical methods to benefit from it. Google
is likely the largest effort—it not only uses web links to rank pages, but it constantly
gathers information on when advertisements are clicked by different users, which
allows Google to target the advertising more effectively. In Chapter 4 you’ll learn
about search engines and the PageRank algorithm, an important part of Google’s
ranking system.

Other examples include web sites with recommendation systems. Sites like Amazon
and Netflix use information about the things people buy or rent to determine which
people or items are similar to one another, and then make recommendations based
on purchase history. Other sites like Pandora and Last.fm use your ratings of differ-
ent bands and songs to create custom radio stations with music they think you will
enjoy. Chapter 2 covers ways to build recommendation systems.

Prediction markets are also a form of collective intelligence. One of the most well
known of these is the Hollywood Stock Exchange (http://hsx.com), where people
trade stocks on movies and movie stars. You can buy or sell a stock at the current
price knowing that its ultimate value will be one millionth of the movie’s actual
opening box office number. Because the price is set by trading behavior, the value is
not chosen by any one individual but by the behavior of the group, and the current
price can be seen as the whole group’s prediction of box office numbers for the
movie. The predictions made by the Hollywood Stock Exchange are routinely better
than those made by individual experts.

Some dating sites, such as eHarmony, use information collected from participants to
determine who would be a good match. Although these companies tend to keep their
methods for matching people secret, it is quite likely that any successful approach
would involve a constant reevaluation based on whether the chosen matches were
successful or not.

Other Uses for Learning Algorithms

The methods described in this book are not new, and although the examples focus
on Internet-based collective intelligence problems, knowledge of machine-learning
algorithms can be helpful for software developers in many other fields. They are
particularly useful in areas that deal with large datasets that can be searched for
interesting patterns, for example:

Biotechnology
Advances in sequencing and screening technology have created massive datasets
of many different kinds, such as DNA sequences, protein structures, compound

Other Uses for Learning Algorithms | 5

http://hsx.com

screens, and RNA expression. Machine-learning techniques are applied exten-
sively to all of these kinds of data in an effort to find patterns that can increase
understanding of biological processes.

Financial fraud detection
Credit card companies are constantly searching for new ways to detect if transac-
tions are fraudulent. To this end, they have employed such techniques as neural
networks and inductive logic to verify transactions and catch improper usage.

Machine vision
Interpreting images from a video camera for military or surveillance purposes is
an active area of research. Many machine-learning techniques are used to try to
automatically detect intruders, identify vehicles, or recognize faces. Particularly
interesting is the use of unsupervised techniques like independent component
analysis, which finds interesting features in large datasets.

Product marketing
For a very long time, understanding demographics and trends was more of an art
form than a science. Recently, the increased ability to collect data from consumers
has opened up opportunities for machine-learning techniques such as clustering to
better understand the natural divisions that exist in markets and to make better
predictions about future trends.

Supply chain optimization
Large organizations can save millions of dollars by having their supply chains
run effectively and accurately predict demand for products in different areas.
The number of ways in which a supply chain can be constructed is massive, as is
the number of factors that can potentially affect demand. Optimization and
learning techniques are frequently used to analyze these datasets.

Stock market analysis
Ever since there has been a stock market, people have tried to use mathematics
to make more money. As participants have become ever more sophisticated, it
has become necessary to analyze larger sets of data and use advanced techniques
to detect patterns.

National security
A huge amount of information is collected by government agencies around the
world, and the analysis of this data requires computers to detect patterns and
associate them with potential threats.

These are just a few examples of where machine learning is now used heavily. Since
the trend is toward the creation of more information, it is likely that more fields will
come to rely on machine learning and statistical techniques as the amount of infor-
mation stretches beyond people’s ability to manage in the old ways.

Given how much new information is being made available every day, there are
clearly many more possibilities. Once you learn about a few machine-learning
algorithms, you’ll start seeing places to apply them just about everywhere.

6 | Chapter1: Introduction to Collective Intelligence

CHAPTER 2
Making Recommendations

To begin the tour of collective intelligence, I'm going to show you ways to use the
preferences of a group of people to make recommendations to other people. There
are many applications for this type of information, such as making product recom-
mendations for online shopping, suggesting interesting web sites, or helping people
find music and movies. This chapter shows you how to build a system for finding
people who share tastes and for making automatic recommendations based on things
that other people like.

You’ve probably come across recommendation engines before when using an online
shopping site like Amazon. Amazon tracks the purchasing habits of all its shoppers,
and when you log onto the site, it uses this information to suggest products you
might like. Amazon can even suggest movies you might like, even if you’ve only
bought books from it before. Some online concert ticket agencies will look at the his-
tory of shows you’ve seen before and alert you to upcoming shows that might be of
interest. Sites like reddit.com let you vote on links to other web sites and then use
your votes to suggest other links you might find interesting.

From these examples, you can see that preferences can be collected in many differ-
ent ways. Sometimes the data are items that people have purchased, and opinions
about these items might be represented as yes/no votes or as ratings from one to five.
In this chapter, we’ll look at different ways of representing these cases so that they’ll
all work with the same set of algorithms, and we’ll create working examples with
movie critic scores and social bookmarking.

Collaborative Filtering

You know that the low-tech way to get recommendations for products, movies, or
entertaining web sites is to ask your friends. You also know that some of your friends
have better “taste” than others, something you’ve learned over time by observing
whether they usually like the same things as you. As more and more options become

available, it becomes less practical to decide what you want by asking a small group
of people, since they may not be aware of all the options. This is why a set of
techniques called collaborative filtering was developed.

A collaborative filtering algorithm usually works by searching a large group of peo-
ple and finding a smaller set with tastes similar to yours. It looks at other things they
like and combines them to create a ranked list of suggestions. There are several dif-
ferent ways of deciding which people are similar and combining their choices to
make a list; this chapter will cover a few of these.

N
The term collaborative filtering was first used by David Goldberg at
.‘s‘ . Xerox PARC in 1992 in a paper called “Using collaborative filtering to
93 weave an information tapestry.” He designed a system called Tapestry

" that allowed people to annotate documents as either interesting or

uninteresting and used this information to filter documents for other
people.

There are now hundreds of web sites that employ some sort of collab-
orative filtering algorithm for movies, music, books, dating, shopping,
other web sites, podcasts, articles, and even jokes.

Collecting Preferences

The first thing you need is a way to represent different people and their preferences.
In Python, a very simple way to do this is to use a nested dictionary. If you’d like to
work through the example in this section, create a file called recommendations.py,
and insert the following code to create the dataset:

A dictionary of movie critics and their ratings of a small
set of movies
critics={"'lLisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5,
'The Night Listener': 3.0},
"Gene Seymour': {'lLady in the Water': 3.0, 'Snakes on a Plane': 3.5,
"Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 3.5},
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
'Superman Returns': 3.5, 'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
'The Night Listener': 4.5, 'Superman Returns': 4.0,
'You, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 2.0},
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
"Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}

8 | Chapter2: Making Recommendations

You will be working with Python interactively in this chapter, so you should save
recommendations.py somewhere where the Python interactive interpreter can find it.
This could be in the python/Lib directory, but the easiest way to do it is to start the
Python interpreter in the same directory in which you saved the file.

This dictionary uses a ranking from 1 to 5 as a way to express how much each of
these movie critics (and 1) liked a given movie. No matter how preferences are
expressed, you need a way to map them onto numerical values. If you were building
a shopping site, you might use a value of 1 to indicate that someone had bought an
item in the past and a value of 0 to indicate that they had not. For a site where peo-
ple vote on news stories, values of —1, 0, and 1 could be used to represent “disliked,”
“didn’t vote,” and “liked,” as shown in Table 2-1.

Table 2-1. Possible mappings of user actions to numerical scores

Concert tickets Online shopping Site recommender

Bought 1 Bought 2 Liked 1

Didn’t buy 0 Browsed 1 No vote 0
Didn’t buy 0 Disliked -1

Using a dictionary is convenient for experimenting with the algorithms and for illus-
trative purposes. It’s easy to search and modify the dictionary. Start your Python
interpreter and try a few commands:

c:\code\collective\chapter2> python

Python 2.4.1 (#65, Mar 30 2005, 09:13:57) [MSC v.1310 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

>> from recommendations import critics

>> critics['Lisa Rose']['Lady in the Water']

2.5

>> critics['Toby']['Snakes on a Plane']=4.5

>> critics['Toby']

{'Snakes on a Plane':4.5, 'You, Me and Dupree':1.0}
Although you can fit a large number of preferences in memory in a dictionary, for
very large datasets you’ll probably want to store preferences in a database.

Finding Similar Users

After collecting data about the things people like, you need a way to determine how
similar people are in their tastes. You do this by comparing each person with every
other person and calculating a similarity score. There are a few ways to do this, and
in this section I'll show you two systems for calculating similarity scores: Euclidean
distance and Pearson correlation.

Finding Similar Users | 9

Euclidean Distance Score

One very simple way to calculate a similarity score is to use a Euclidean distance
score, which takes the items that people have ranked in common and uses them as
axes for a chart. You can then plot the people on the chart and see how close
together they are, as shown in Figure 2-1.

Snakes
5
Toby

4 LaSalle Matthews
Rose Seymour
Puig

3

2

1

1 2 3 2 5 Dupree

Figure 2-1. People in preference space

This figure shows the people charted in preference space. Toby has been plotted at
4.5 on the Snakes axis and at 1.0 on the Dupree axis. The closer two people are in
the preference space, the more similar their preferences are. Because the chart is two-
dimensional, you can only look at two rankings at a time, but the principle is the
same for bigger sets of rankings.

To calculate the distance between Toby and LaSalle in the chart, take the difference
in each axis, square them and add them together, then take the square root of the
sum. In Python, you can use the pow(n,2) function to square a number and take the
square root with the sqrt function:

>> from math import sqrt

>> sqrt(pow(5-4,2)+pow(4-1,2))

3.1622776601683795
This formula calculates the distance, which will be smaller for people who are more
similar. However, you need a function that gives higher values for people who are
similar. This can be done by adding 1 to the function (so you don’t get a division-by-
zero error) and inverting it:

>> 1/(1+sqrt(pow(5-4,2)+pow(4-1,2)))
0.2402530733520421

10 | Chapter2: Making Recommendations

This new function always returns a value between 0 and 1, where a value of 1 means
that two people have identical preferences. You can put everything together to create
a function for calculating similarity. Add the following code to recommendations.py:

from math import sqrt

Returns a distance-based similarity score for personil and person2
def sim_distance(prefs,personi,person2):
Get the list of shared items
si={}
for item in prefs[personi]:
if item in prefs[person2]:
si[item]=1

if they have no ratings in common, return 0
if len(si)==0: return 0

Add up the squares of all the differences
sum_of_squares=sum([pow(prefs[personi][item]-prefs[person2][item],2)
for item in prefs[personi] if item in prefs[person2]])

return 1/(1+sum_of squares)

This function can be called with two names to get a similarity score. In your Python
interpreter, run the following:

>>> reload(recommendations)

>>> recommendations.sim_distance(recommendations.critics,

'Lisa Rose', 'Gene Seymour')

0.148148148148
This gives you a similarity score between Lisa Rose and Gene Seymour. Try it with
other names to see if you can find people who have more or less in common.

Pearson Correlation Score

A slightly more sophisticated way to determine the similarity between people’s inter-
ests is to use a Pearson correlation coefficient. The correlation coefficient is a mea-
sure of how well two sets of data fit on a straight line. The formula for this is more
complicated than the Euclidean distance score, but it tends to give better results in
situations where the data isn’t well normalized—for example, if critics’ movie rank-
ings are routinely more harsh than average.

To visualize this method, you can plot the ratings of two of the critics on a chart, as
shown in Figure 2-2. Superman was rated 3 by Mick LaSalle and 5 by Gene Seymour,
so it is placed at (3,5) on the chart.

Finding Similar Users | 11

Gene Seymour
5 Superman
4 R
Dupree ‘," Snakes
3 . Lady
Lo Night Listener
2
Just My Luck
1
1 3 3 2 5 Mick LaSalle

Figure 2-2. Comparing two movie critics on a scatter plot

You can also see a straight line on the chart. This is called the best-fit line because it
comes as close to all the items on the chart as possible. If the two critics had identi-
cal ratings for every movie, this line would be diagonal and would touch every item
in the chart, giving a perfect correlation score of 1. In the case illustrated, the critics
disagree on a few movies, so the correlation score is about 0.4. Figure 2-3 shows an
example of a much higher correlation, one of about 0.75.

Lisa Rose

5

-
.

- -
S‘n‘a kes, « =+ *Superman
Pl

3 Night Listenér”

Dupree ___,'.... B

-
-
-
.

3 Jack Matthews

Figure 2-3. Two critics with a high correlation score

12 | Chapter2: Making Recommendations

One interesting aspect of using the Pearson score, which you can see in the figure, is
that it corrects for grade inflation. In this figure, Jack Matthews tends to give higher
scores than Lisa Rose, but the line still fits because they have relatively similar prefer-
ences. If one critic is inclined to give higher scores than the other, there can still be
perfect correlation if the difference between their scores is consistent. The Euclidean
distance score described earlier will say that two critics are dissimilar because one is
consistently harsher than the other, even if their tastes are very similar. Depending
on your particular application, this behavior may or may not be what you want.

The code for the Pearson correlation score first finds the items rated by both critics.
It then calculates the sums and the sum of the squares of the ratings for the two crit-
ics, and calculates the sum of the products of their ratings. Finally, it uses these
results to calculate the Pearson correlation coefficient, shown in bold in the code
below. Unlike the distance metric, this formula is not very intuitive, but it does tell
you how much the variables change together divided by the product of how much
they vary individually.

To use this formula, create a new function with the same signature as the sim_
distance function in recommendations.py:

Returns the Pearson correlation coefficient for p1 and p2
def sim_pearson(prefs,pi,p2):
Get the list of mutually rated items
si={}
for item in prefs[pi]:
if item in prefs[p2]: si[item]=1

Find the number of elements
n=len(si)

if they are no ratings in common, return 0
if n==0: return 0

Add up all the preferences
sumi=sum([prefs[p1][it] for it in si])
sum2=sum([prefs[p2][it] for it in si])

Sum up the squares
sum1Sq=sum([pow(prefs[p1][it],2) for it in si])
sum2Sq=sum([pow(prefs[p2][it],2) for it in si])

Sum up the products
pSum=sum([prefs[p1][it]*prefs[p2][it] for it in si])

Calculate Pearson score

num=pSum- (sumi*sum2/n)
den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n))
if den==0: return o

r=num/den

return r

Finding Similar Users | 13

This function will return a value between —1 and 1. A value of 1 means that the two
people have exactly the same ratings for every item. Unlike with the distance metric,
you don’t need to change this value to get it to the right scale. Now you can try
getting the correlation score for Figure 2-3:

>>> reload(recommendations)

>>> print recommendations.sim_pearson(recommendations.critics,

'Lisa Rose','Gene Seymour')
0.396059017191

Which Similarity Metric Should You Use?

I’ve introduced functions for two different metrics here, but there are actually many
more ways to measure similarity between two sets of data. The best one to use will
depend on your application, and it is worth trying Pearson, Euclidean distance, or
others to see which you think gives better results.

The functions in the rest of this chapter have an optional similarity parameter, which
points to a function to make it easier to experiment: specify sim pearson or sim_
vector to choose which similarity parameter to use. There are many other functions
such as the Jaccard coefficient or Manhattan distance that you can use as your similar-
ity function, as long as they have the same signature and return a float where a higher
value means more similar.

You can read about other metrics for comparing items at http://en.wikipedia.org/wiki/
Metric_%28mathematics%29#Examples.

Ranking the Critics

Now that you have functions for comparing two people, you can create a function
that scores everyone against a given person and finds the closest matches. In this
case, I'm interested in learning which movie critics have tastes simliar to mine so that
I know whose advice I should take when deciding on a movie. Add this function to
recommendations.py to get an ordered list of people with similar tastes to the speci-
fied person:

Returns the best matches for person from the prefs dictionary.
Number of results and similarity function are optional params.
def topMatches(prefs,person,n=5,similarity=sim pearson):
scores=[(similarity(prefs,person,other),other)
for other in prefs if other!=person]

Sort the list so the highest scores appear at the top
scores.sort()

scores.reverse()

return scores[0:n]

14 | Chapter2: Making Recommendations

http://en.wikipedia.org/wiki/Metric_%28mathematics%29#Examples
http://en.wikipedia.org/wiki/Metric_%28mathematics%29#Examples

This function uses a Python list comprehension to compare me to every other user in
the dictionary using one of the previously defined distance metrics. Then it returns
the first n items of the sorted results.

Calling this function with my own name gives me a list of movie critics and their
similarity scores:
>> reload(recommendations)
>> recommendations.topMatches(recommendations.critics,'Toby',n=3)
[(0.99124070716192991, 'Lisa Rose'), (0.92447345164190486, 'Mick LaSalle'),
(0.89340514744156474, 'Claudia Puig')]
From this I know that I should be reading reviews by Lisa Rose, as her tastes tend to
be similar to mine. If you’ve seen any of these movies, you can try adding yourself to
the dictionary with your preferences and see who your favorite critic should be.

Recommending Items

Finding a good critic to read is great, but what I really want is a movie recommenda-
tion right now. I could just look at the person who has tastes most similar to mine
and look for a movie he likes that I haven’t seen yet, but that would be too permis-
sive. Such an approach could accidentally turn up reviewers who haven’t reviewed
some of the movies that I might like. It could also return a reviewer who strangely
liked a movie that got bad reviews from all the other critics returned by topMatches.

To solve these issues, you need to score the items by producing a weighted score that
ranks the critics. Take the votes of all the other critics and multiply how similar they
are to me by the score they gave each movie. Table 2-2 shows how this process
works.

Table 2-2. Creating recommendations for Toby

Critic Similarity Night S.xNight Lady S.xLady Luck S.xLuck
Rose 0.99 3.0 297 25 2.48 3.0 2,97
Seymour 0.38 3.0 1.14 3.0 1.14 15 0.57
Puig 0.89 45 4.02 3.0 2.68
LaSalle 0.92 3.0 2.77 3.0 2.77 20 1.85
Matthews 0.66 3.0 1.99 3.0 1.99

Total 12.89 8.38 8.07
Sim. Sum 3.84 2.95 3.18
Total/Sim. Sum 3.35 2.83 2.53

Recommending ltems | 15

This table shows correlation scores for each critic and the ratings they gave the three
movies (The Night Listener, Lady in the Water, and Just My Luck) that I haven’t
rated. The columns beginning with S.x give the similarity multiplied by the rating, so
a person who is similar to me will contribute more to the overall score than a person
who is different from me. The Total row shows the sum of all these numbers.

You could just use the totals to calculate the rankings, but then a movie reviewed by
more people would have a big advantage. To correct for this, you need to divide by
the sum of all the similarities for critics that reviewed that movie (the Sim. Sum row
in the table). Because The Night Listener was reviewed by everyone, its total is
divided by the sum of all the similarities. Lady in the Water, however, was not
reviewed by Puig, so the movie’s score is divided by the sum of all the other similari-
ties. The last row shows the results of this division.

The code for this is pretty straightforward, and it works with either the Euclidean
distance or the Pearson correlation score. Add it to recommendations.py:

Gets recommendations for a person by using a weighted average
of every other user's rankings
def getRecommendations(prefs,person,similarity=sim_pearson):
totals={}
simSums={}
for other in prefs:
don't compare me to myself
if other==person: continue
sim=similarity(prefs,person,other)

ignore scores of zero or lower
if sim<=0: continue
for item in prefs[other]:

only score movies I haven't seen yet

if item not in prefs[person] or prefs[person][item]==0:
Similarity * Score
totals.setdefault(item,0)
totals[item]+=prefs[other][item]*sim
Sum of similarities
simSums.setdefault(item,0)
simSums[item]+=sim

Create the normalized list
rankings=[(total/simSums[item],item) for item,total in totals.items()]

Return the sorted list
rankings.sort()
rankings.reverse()
return rankings

This code loops through every other person in the prefs dictionary. In each case, it
calculates how similar they are to the person specified. It then loops through every
item for which they’ve given a score. The line in bold shows how the final score for
an item is calculated—the score for each item is multiplied by the similarity and

16 | Chapter2: Making Recommendations

these products are all added together. At the end, the scores are normalized by divid-
ing each of them by the similarity sum, and the sorted results are returned.

Now you can find out what movies I should watch next:

>>> reload(recommendations)

>>> recommendations.getRecommendations(recommendations.critics, 'Toby')

[(3.3477895267131013, 'The Night Listener'), (2.8325499182641614, 'Lady in the

Water'), (2.5309807037655645, 'Just My Luck')]

>>> recommendations.getRecommendations(recommendations.critics, 'Toby',

similarity=recommendations.sim_distance)

[(3.5002478401415877, 'The Night Listener'), (2.7561242939959363, 'Lady in the

Water'), (2.4619884860743739, 'Just My Luck')]
Not only do you get a ranked list of movies, but you also get a guess at what my rat-
ing for each movie would be. This report lets me decide if I want to watch a movie at
all, or if I'd rather do something else entirely. Depending on your application, you
may decide not to give a recommendation if there’s nothing that would meet a given
user’s standards. You’ll find that the results are only affected very slightly by the
choice of similarity metric.

You’ve now built a complete recommendation system, which will work with any
type of product or link. All you have to do is set up a dictionary of people, items, and
scores, and you can use this to create recommendations for any person. Later in this
chapter you’ll see how you can use the del.icio.us API to get real data for recom-
mending web sites to people.

Matching Products

Now you know how to find similar people and recommend products for a given per-
son, but what if you want to see which products are similar to each other? You may
have encountered this on shopping web sites, particularly when the site hasn’t col-
lected a lot of information about you. A section of Amazon’s web page for the book
Programming Python is shown in Figure 2-4.

Customers who bought this item also bought
Learning Python, Second Edition by Mark Lutz

Python Cookbook by Alex Martelli
Python in a Nutshell by Alex Martelli

Python Essential Reference {2nd Edition) by David Beazley

Foundations of Python Network Programming (Foundations) by John Goerzen

¢+ Explore similar items : Books (42

Figure 2-4. Amazon shows products that are similar to Programming Python

Matching Products | 17

In this case, you can determine similarity by looking at who liked a particular item
and seeing the other things they liked. This is actually the same method we used ear-
lier to determine similarity between people—you just need to swap the people and
the items. So you can use the same methods you wrote earlier if you transform the
dictionary from:

{'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5},
"Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5}}

to:

{'Lady in the Water':{'Lisa Rose':2.5,"'Gene Seymour':3.0},
'Snakes on a Plane':{'Lisa Rose':3.5, 'Gene Seymour':3.5}} etc..

Add a function to recommendations.py to do this transformation:

def transformPrefs(prefs):
result={}
for person in prefs:
for item in prefs[person]:
result.setdefault(item,{})

Flip item and person
result[item][person]=prefs[person][item]
return result
And now call the topMatches function used earlier to find the set of movies most sim-
ilar to Superman Returns:
>> reload(recommendations)
>> movies=recommendations.transformPrefs(recommendations.critics)
>> recommendations.topMatches(movies, 'Superman Returns')
[(0.657, 'You, Me and Dupree'), (0.487, 'Lady in the Water'), (0.111, 'Snakes on a
Plane'), (-0.179, 'The Night Listener'), (-0.422, 'Just My Luck')]
Notice that in this example there are actually some negative correlation scores, which
indicate that those who like Superman Returns tend to dislike Just My Luck, as
shown in Figure 2-5.

To twist things around even more, you can get recommended critics for a movie.
Maybe you’re trying to decide whom to invite to a premiere?

>> recommendations.getRecommendations(movies, 'Just My Luck')

[(4.0, "Michael Phillips'), (3.0, 'Jack Matthews')]
It’s not always clear that flipping people and items will lead to useful results, but in
many cases it will allow you to make interesting comparisons. An online retailer
might collect purchase histories for the purpose of recommending products to indi-
viduals. Reversing the products with the people, as you’ve done here, would allow
them to search for people who might buy certain products. This might be very useful
in planning a marketing effort for a big clearance of certain items. Another potential
use is making sure that new links on a link-recommendation site are seen by the
people who are most likely to enjoy them.

18 | Chapter2: Making Recommendations

Superman Returns

5 Seymour

4 Puig
Rose

3 LaSalle

2

1

1 3 3 2 5 Just My Luck

Figure 2-5. Superman Returns and Just My Luck have a negative correlation

Building a del.icio.us Link Recommender

This section shows you how to retrieve data from one of the most popular online
bookmarking sites, and how to use that data to find similar users and recommend
links they haven’t seen before. This site, which you can access at http://del.icio.us,
allows people to set up an account and post links that interest them for later refer-
ence. You can visit the site and look at links that other people have posted, and also
browse “popular” links that have been posted by many different people. A sample
page from del.icio.us is shown in Figure 2-6.

del.icio.us [popular / programming popular | recent
your bookmarks | your network | inbox | links for you | post logged in as tsegaran | settings | logout | help
Popular items tagged programming — view yours, all del.icio.us |
Coding Horror: The Programmer's Bill of Rights save t related tags
L posted [anar 5 ! o recent| development
A Gentle Introduction to SQL save this tutorial
first posted by erhardt on 2004-02-0 48 recent reference
o o)) software
Starfish - ridiculously easy distributed programming with Ruby === iri: web
firstnoatad T -8k hereld 006-08-18 e 37 recentl javascript
i ruby
The Web Developer's List zave this java
first posted by tezme on 2006-08-17 21 recent! tools

Figure 2-6. The del.icio.us popular page for programming

Building a del.icio.us Link Recommender | 19

http://del.icio.us

Unlike some link-sharing sites, del.icio.us doesn’t (at the time of writing) include any
way to find similar people or recommend links you might like. Fortunately, you can
use the techniques discussed in this chapter to add that functionality yourself.

The del.icio.us API

Data from del.icio.us is made available through an API that returns data in XML
format. To make things even easier for you, there is a Python API that you can down-
load from http://code.google.com/p/pydelicious/source or http://oreilly.com/catalog/
9780596529321.

To work through the example in this section, you’ll need to download the latest ver-
sion of this library and put it in your Python library path. (See Appendix A for more
information on installing this library.)

This library has several simple calls to get links that people have submitted. For
example, to get a list of recent popular posts about programming, you can use the
get_popular call:

>> import pydelicious
>> pydelicious.get_popular(tag="programming')

[{'count': "', 'extended': '', 'hash': '', 'description': u'How To Write
Unmaintainable Code', 'tags': '', 'href': u'http://thc.segfault.net/root/phun/
unmaintain.html', 'user': u'dorsia', 'dt': u'2006-08-19T09:48:56Z"'}, {'count': "',
'extended': '', 'hash': '', 'description': u'Threading in C#', 'tags': '', 'href':
u'http://www.albahari.com/threading/', 'user': u'mmihale', 'dt': u'2006-05-17T18:09:
247'},

...etc...

You can see that it returns a list of dictionaries, each one containing a URL, descrip-
tion, and the user who posted it. Since you are working from live data, your results
will look different from the examples. There are two other calls you’ll be using, get
urlposts, which returns all the posts for a given URL, and get_userposts, which
returns all the posts for a given user. The data for these calls is returned in the same
way.

Building the Dataset

It’s not possible to download the full set of all user posts from del.icio.us, so you’ll
need to choose a subset of them. You could do this any way you like, but to make
the example show interesting results, it would be good to find people who post fre-
quently and have some similar posts.

One way to do this is to get a list of users who recently posted a popular link with a
specified tag. Create a new file called deliciousrec.py and enter the following code:

from pydelicious import get popular,get userposts,get urlposts

def initializeUserDict(tag,count=5):
user dict={}

20 | Chapter2: Making Recommendations

http://code.google.com/p/pydelicious/source
http://oreilly.com/catalog/9780596529321
http://oreilly.com/catalog/9780596529321

get the top count' popular posts
for p1 in get_popular(tag=tag)[0:count]:
find all users who posted this
for p2 in get_urlposts(pi[href']):
user=p2['user"']
user dict[user]={}
return user dict

This will give you a dictionary with some users, each referencing an empty dictio-
nary waiting to be filled with links. The API only returns the last 30 people to post
the link, so the function gathers users from the first 5 links to build a larger set.

Unlike the movie critic dataset, there are only two possible ratings in this case: 0 if
the user did not post this link, and 1 if he did. Using the API, you can now create a
function to fill in ratings for all the users. Add this code to deliciousrec.py:

def fillltems(user dict):
all items={}
Find links posted by all users
for user in user dict:
for i in range(3):
try:
posts=get_userposts(user)
break
except:
print "Failed user "+user+", retrying"
time.sleep(4)
for post in posts:
url=post['href']
user dict[user][url]=1.0
all items[url]=1

Fill in missing items with 0
for ratings in user dict.values():
for item in all items:
if item not in ratings:
ratings[item]=0.0
This can be used to build a dataset similar to the critics dictionary you created by
hand at the beginning of this chapter:
>> from deliciousrec import *
>> delusers=initializeUserDict('programming")

>> delusers ['tsegaran']={} # Add yourself to the dictionary if you use delicious
>> fillItems(delusers)

The third line adds the user tsegaran to the list. You can replace tsegaran with your
own username if you use del.icio.us.

The call to fillItems may take several minutes to run, as it is making a few hundred
requests to the site. Sometimes the API blocks requests that are repeated too rapidly.
In this case, the code pauses and retries the user up to three times.

Building a del.icio.us Link Recommender | 21

Recommending Neighbors and Links

Now that you’ve built a dataset, you can apply the same functions that you used
before on the movie critic dataset. To select a user at random and find other users
who have tastes similar to his, enter this code in your Python session:

>> import random

>> user=delusers.keys()[random.randint(0,len(delusers)-1)]

>> user

u'veza'

>> recommendations.topMatches(delusers,user)

[(0.083, u'kuzz99'), (0.083, u'arturoochoa'), (0.083, u'NickSmith'), (0.083,

u'MichaelDahl"), (0.050, u'zinggoat')]
You can also get recommendations for links for this user by calling getRecommendations.
This will return all the items in order, so it’s better to restrict it to the top 10:

>> recommendations.getRecommendations(delusers,user)[0:10]

[(0.278, u'http://www.devlisting.com/"),

(0.276, u'http://www.howtoforge.com/linux_ldap authentication'),

(0.191, u'http://yarivsblog.com/articles/2006/08/09/secret-weapons-for-startups'),

(0.191, u'http://www.dadgum.com/james/performance.html"),

(0.191, u'http://www.codinghorror.com/blog/archives/000666.html")]

Of course, as demonstrated earlier, the preferences list can be transposed, allowing
you to frame your searches in terms of links rather than people. To find a set of links
similar to one that you found particularly interesting, you can try:

>> url=recommendations.getRecommendations(delusers,user)[0][1]

>> recommendations.topMatches(recommendations.transformPrefs(delusers),url)

[(0.312, u'http://www.fonttester.com/"),

(0.312, u'http://www.cssremix.com/"),

(0.266, u'http://www.logoorange.com/color/color-codes-chart.php'),

(0.254, u'http://yotophoto.com/"),

(0.254, u'http://www.wpdfd.com/editorial/basics/index.html")]
That’s it! You’ve successfully added a recommendation engine to del.icio.us. There’s
a lot more that could be done here. Since del.icio.us supports searching by tags, you
can look for tags that are similar to each other. You can even search for people try-
ing to manipulate the “popular” pages by posting the same links with multiple
accounts.

Item-Based Filtering

The way the recommendation engine has been implemented so far requires the use
of all the rankings from every user in order to create a dataset. This will probably
work well for a few thousand people or items, but a very large site like Amazon has
millions of customers and products—comparing a user with every other user and
then comparing every product each user has rated can be very slow. Also, a site that
sells millions of products may have very little overlap between people, which can
make it difficult to decide which people are similar.

22 | Chapter2: Making Recommendations

The technique we have used thus far is called user-based collaborative filtering. An
alternative is known as item-based collaborative filtering. In cases with very large
datasets, item-based collaborative filtering can give better results, and it allows many
of the calculations to be performed in advance so that a user needing recommenda-
tions can get them more quickly.

The procedure for item-based filtering draws a lot on what we have already dis-
cussed. The general technique is to precompute the most similar items for each item.
Then, when you wish to make recommendations to a user, you look at his top-rated
items and create a weighted list of the items most similar to those. The important dif-
ference here is that, although the first step requires you to examine all the data,
comparisons between items will not change as often as comparisons between users. This
means you do not have to continuously calculate each item’s most similar items—you
can do it at low-traffic times or on a computer separate from your main application.

Building the Item Comparison Dataset

To compare items, the first thing you’ll need to do is write a function to build the
complete dataset of similar items. Again, this does not have to be done every time a
recommendation is needed—instead, you build the dataset once and reuse it each
time you need it.

To generate the dataset, add the following function to recommendations.py:

def calculateSimilarItems(prefs,n=10):
Create a dictionary of items showing which other items they
are most similar to.
result={}

Invert the preference matrix to be item-centric
itemPrefs=transformPrefs(prefs)
c=0
for item in itemPrefs:
Status updates for large datasets
c+=1
if c%100==0: print "%d / %d" % (c,len(itemPrefs))
Find the most similar items to this one
scores=topMatches(itemPrefs,item,n=n,similarity=sim distance)
result[item]=scores
return result

This function first inverts the score dictionary using the transformPrefs function
defined earlier, giving a list of items along with how they were rated by each user. It
then loops over every item and passes the transformed dictionary to the topMatches
function to get the most similar items along with their similarity scores. Finally, it
creates and returns a dictionary of items along with a list of their most similar items.

Item-Based Filtering | 23

In your Python session, build the item similarity dataset and see what it looks like:

>>> reload(recommendations)
>>> itemsim=recommendations.calculateSimilarItems(recommendations.critics)
>>> itemsim
{'Lady in the Water': [(0.40000000000000002, 'You, Me and Dupree'),
(0.2857142857142857, 'The Night Listener'),...
"Snakes on a Plane': [(0.22222222222222221, 'Lady in the Water'),
(0.18181818181818182, 'The Night Listener'),...
etc.
Remember, this function only has to be run frequently enough to keep the item simi-
larities up to date. You will need to do this more often early on when the user base
and number of ratings is small, but as the user base grows, the similarity scores

between items will usually become more stable.

Getting Recommendations

Now you’re ready to give recommendations using the item similarity dictionary with-
out going through the whole dataset. You’re going to get all the items that the user
has ranked, find the similar items, and weight them according to how similar they
are. The items dictionary can easily be used to get the similarities.

Table 2-3 shows the process of finding recommendations using the item-based
approach. Unlike Table 2-2, the critics are not involved at all, and instead there is a
grid of movies I’ve rated versus movies I haven’t rated.

Table 2-3. Item-based recommendations for Toby

Movie Rating Night R.xNight Lady R.xLady Luck R.xLuck
Snakes 45 0.182 0.818 0.222 0.999 0.105 0.474
Superman 4.0 0.103 0.412 0.091 0.363 0.065 0.258
Dupree 1.0 0.148 0.148 0.4 0.4 0.182 0.182
Total 0.433 1.378 0.713 1.764 0.352 0914
Normalized 3.183 2.598 2473

Each row has a movie that I have already seen, along with my personal rating for it.
For every movie that I haven’t seen, there’s a column that shows how similar it is to
the movies I have seen—for example, the similarity score between Superman and The
Night Listener is 0.103. The columns starting with R.x show my rating of the movie
multiplied by the similarity—since I rated Superman 4.0, the value next to Night in
the Superman row is 4.0 ! 0.103 = 0.412.

The total row shows the total of the similarity scores and the total of the R.x columns
for each movie. To predict what my rating would be for each movie, just divide the
total for the R.x column by the total for the similarity column. My predicted rating for
The Night Listener is thus 1.378/0.433 = 3.183.

24 | Chapter2: Making Recommendations

You can use this functionality by adding one last function to recommendations.py:

def getRecommendedItems(prefs,itemMatch,user):
userRatings=prefs[user]
scores={}
totalSim={}

Loop over items rated by this user
for (item,rating) in userRatings.items():

Loop over items similar to this one
for (similarity,item2) in itemMatch[item]:

Ignore if this user has already rated this item
if item2 in userRatings: continue

Weighted sum of rating times similarity
scores.setdefault(item2,0)
scores[item2]+=similarity*rating

Sum of all the similarities
totalSim.setdefault(item2,0)
totalSim[item2]+=similarity

Divide each total score by total weighting to get an average
rankings=[(score/totalSim[item],item) for item,score in scores.items()]

Return the rankings from highest to lowest
rankings.sort()
rankings.reverse()
return rankings
You can try this function with the similarity dataset you built earlier to get the new
recommendations for Toby:
>> reload(recommendations)
>> recommendations.getRecommendedItems(recommendations.critics,itemsim, 'Toby")
[(3.182, 'The Night Listener'),
(2.598, 'Just My Luck'),
(2.473, 'Lady in the Water')]
The Night Listener still comes in first by a significant margin, and Just My Luck and
Lady in the Water have changed places although they are still close together. More
importantly, the call to getRecommendedItems did not have to calculate the similarities
scores for all the other critics because the item similarity dataset was built in advance.

Using the Movielens Dataset

For the final example, let’s look at a real dataset of movie ratings called MovieLens.
MovieLens was developed by the GroupLens project at the University of Minnesota.
You can download the dataset from hitp://www.grouplens.org/node/12. There are two
datasets here. Download the 100,000 dataset in either tar.gz format or zip format,
depending on your platform.

Using the MovieLens Dataset | 25

http://www.grouplens.org/node/12

The archive contains several files, but the ones of interest are u.item, which contains
a list of movie IDs and titles, and u.data, which contains actual ratings in this format:

196 242 3 881250949
186 302 3 891717742
22 377 1 878887116
244 51 2 880606923
166 346 1 886397596
298 474 4 884182806

Each line has a user ID, a movie ID, the rating given to the movie by the user, and a
timestamp. You can get the movie titles, but the user data is anonymous, so you’ll
just be working with user IDs in this section. The set contains ratings of 1,682 movies
by 943 users, each of whom rated at least 20 movies.

Create a new method called loadMovielens in recommendations.py to load this
dataset:

def loadMovielens(path="/data/movielens"):

Get movie titles

movies={}

for line in open(path+'/u.item'):
(id,title)=line.split("|"')[0:2]
movies[id]=title

Load data

prefs={}

for line in open(path+'/u.data'):
(user,movieid,rating,ts)=line.split('\t")
prefs.setdefault(user,{})
prefs[user][movies[movieid]]=float(rating)

return prefs

In your Python session, load the data and look at some ratings for any arbitrary user:

>>> reload(recommendations)
>>> prefs=recommendations.loadMovieLens()
>>> prefs['87']
{'Birdcage, The (1996)': 4.0, 'E.T. the Extra-Terrestrial (1982)': 3.0,
'Bananas (1971)': 5.0, 'Sting, The (1973)': 5.0, 'Bad Boys (1995)': 4.0,
"In the Line of Fire (1993)': 5.0, 'Star Trek: The Wrath of Khan (1982)': 5.0,
'Speechless (1994)': 4.0, etc...

Now you can get user-based recommendations:

>>> recommendations.getRecommendations(prefs, '87')[0:30]

[(5.0, 'They Made Me a Criminal (1939)'), (5.0, 'Star Kid (1997)'),

(5.0, 'Santa with Muscles (1996)'), (5.0, 'Saint of Fort Washington (1993)'),
etc...]

Depending on the speed of your computer, you may notice a pause when getting
recommendations this way. This is because you’re working with a much larger
dataset now. The more users you have, the longer user-based recommendations will
take. Now try doing item-based recommendations instead:

26 | Chapter2: Making Recommendations

>>> itemsim=recommendations.calculateSimilarItems(prefs,n=50)

100 / 1664

200 / 1664

etc...

>>> recommendations.getRecommendedItems(prefs,itemsim,'87')[0:30]

[(5.0, "What's Eating Gilbert Grape (1993)"), (5.0, 'Vertigo (1958)'),

(5.0, 'Usual Suspects, The (1995)'), (5.0, 'Toy Story (1995)'),etc...]
Although building the item similarity dictionary takes a long time, recommenda-
tions are almost instantaneous after it’s built. Furthermore, the time it takes to get

recommendations will not increase as the number of users increases.

This is a great dataset to experiment with to see how different scoring methods affect
the outcomes, and to understand how item-based and user-based filtering perform
differently. The GroupLens web site has a few other datasets to play with, including
books, jokes, and more movies.

User-Based or Item-Based Filtering?

Item-based filtering is significantly faster than user-based when getting a list of rec-
ommendations for a large dataset, but it does have the additional overhead of main-
taining the item similarity table. Also, there is a difference in accuracy that depends
on how “sparse” the dataset is. In the movie example, since every critic has rated
nearly every movie, the dataset is dense (not sparse). On the other hand, it would be
unlikely to find two people with the same set of del.icio.us bookmarks—most book-
marks are saved by a small group of people, leading to a sparse dataset. Item-based
filtering usually outperforms user-based filtering in sparse datasets, and the two per-
form about equally in dense datasets.
A W
To learn more about the difference in performance between these
s algorithms, check out a paper called “Item-based Collaborative Filter-

[; . .) .)
* 9k ing Recommendation Algorithms” by Sarwar et al. at hitp://citeseer.ist.
psu.edu/sarwar0litembased.html.

Having said that, user-based filtering is simpler to implement and doesn’t have the
extra steps, so it is often more appropriate with smaller in-memory datasets that
change very frequently. Finally, in some applications, showing people which other
users have preferences similar to their own has its own value—maybe not something
you would want to do on a shopping site, but possibly on a link-sharing or music
recommendation site.

You've now learned how to calculate similarity scores and how to use these to
compare people and items. This chapter covered two different recommendation algo-
rithms, user-based and item-based, along with ways to persist people’s preferences
and use the del.icio.us API to build a link recommendation system. In Chapter 2,

User-Based or Item-Based Filtering? | 27

http://citeseer.ist.psu.edu/sarwar01itembased.html
http://citeseer.ist.psu.edu/sarwar01itembased.html

you’ll see how to build on some of the ideas from this chapter by finding groups of
similar people using unsupervised clustering algorithms. Chapter 9 will look at
alternative ways to match people when you already know the sort of people they like.

Exercises

1.

Tanimoto score. Find out what a Tanimoto similarity score is. In what cases
could this be used as the similarity metric instead of Euclidean distance or
Pearson coefficient? Create a new similarity function using the Tanimoto score.

. Tag similarity. Using the del.icio.us API, create a dataset of tags and items. Use

this to calculate similarity between tags and see if you can find any that are
almost identical. Find some items that could have been tagged “programming”
but were not.

. User-based efficiency. The user-based filtering algorithm is inefficient because it

compares a user to all other users every time a recommendation is needed. Write
a function to precompute user similarities, and alter the recommendation code
to use only the top five other users to get recommendations.

. Item-based bookmark filtering. Download a set of data from del.icio.us and add it

to the database. Create an item-item table and use this to make item-based
recommendations for various users. How do these compare to the user-based
recommendations?

. Audioscrobbler. Take a look at http://'www.audioscrobbler.net, a dataset contain-

ing music preferences for a large set of users. Use their web services API to get a
set of data for making and building a music recommendation system.

28

Chapter2: Making Recommendations

http://www.audioscrobbler.net

CHAPTER 3
Discovering Groups

Chapter 2 discussed ways to find things that are closely related, so, for example, you
could find someone who shares your taste in movies. This chapter expands on those
ideas and introduces data clustering, a method for discovering and visualizing groups
of things, people, or ideas that are all closely related. In this chapter, you’ll learn:
how to prepare data from a variety of sources; two different clustering algorithms;
more on distance metrics; simple graphical visualization code for viewing the gener-
ated groups; and finally, a method for projecting very complicated datasets into two
dimensions.

Clustering is used frequently in data-intensive applications. Retailers who track
customer purchases can use this information to automatically detect groups of cus-
tomers with similar buying patterns, in addition to regular demographic informa-
tion. People of similar age and income may have vastly different styles of dress, but
with the use of clustering, “fashion islands” can be discovered and used to develop a
retail or marketing strategy. Clustering is also heavily used in computational biology
to find groups of genes that exhibit similar behavior, which might indicate that they
respond to a treatment in the same way or are part of the same biological pathway.

Since this book is about collective intelligence, the examples in this chapter come
from sources in which many people contribute different information. The first
example will look at blogs, the topics they discuss, and their particular word usage to
show that blogs can be grouped according to their text and that words can be
grouped by their usage. The second example will look at a community site where
people list things they own and things they would like to own, and we will use this
information to show how people’s desires can be grouped into clusters.

Supervised versus Unsupervised Learning

Techniques that use example inputs and outputs to learn how to make predictions
are known as supervised learning methods. We’ll explore many supervised learning
methods in this book, including neural networks, decision trees, support-vector
machines, and Bayesian filtering. Applications using these methods “learn” by

29

examining a set of inputs and expected outputs. When we want to extract informa-
tion using one of these methods, we enter a set of inputs and expect the application
to produce an output based on what it has learned so far.

Clustering is an example of unsupervised learning. Unlike a neural network or a deci-
sion tree, unsupervised learning algorithms are not trained with examples of correct
answers. Their purpose is to find structure within a set of data where no one piece of
data is the answer. In the fashion example given earlier, the clusters don’t tell the
retailers what an individual is likely to buy, nor do they make predictions about
which fashion island a new person fits into. The goal of clustering algorithms is to
take the data and find the distinct groups that exist within it. Other examples of unsu-
pervised learning include non-negative matrix factorization, which will be discussed in
Chapter 10, and self-organizing maps.

Word Vectors

The normal way of preparing data for clustering is to determine a common set of
numerical attributes that can be used to compare the items. This is very similar to
what was shown in Chapter 2, when critics’ rankings were compared over a com-
mon set of movies, and when the presence or absence of a bookmark was translated
toa 1 ora 0 for del.icio.us users.

Pigeonholing the Bloggers

This chapter will work through a couple of example datasets. In the first dataset, the
items that will be clustered are a set of 120 of the top blogs, and the data they’ll be
clustered on is the number of times a particular set of words appears in each blog’s
feed. A small subset of what this looks like is shown in Table 3-1.

Table 3-1. Subset of blog word frequencies

“china” “kids” “music” “yahoo”
Gothamist 0 3 3 0
GigaOM 6 0 0 2
Quick Online Tips 0 2 2 2

By clustering blogs based on word frequencies, it might be possible to determine if
there are groups of blogs that frequently write about similar subjects or write in simi-
lar styles. Such a result could be very useful in searching, cataloging, and discovering
the huge number of blogs that are currently online.

To generate this dataset, you’ll be downloading the feeds from a set of blogs, extract-
ing the text from the entries, and creating a table of word frequencies. If you’d like to
skip the steps for creating the dataset, you can download it from http://kiwitobes.com/
clusters/blogdata.txt.

30 | Chapter3: Discovering Groups

http://kiwitobes.com/clusters/blogdata.txt
http://kiwitobes.com/clusters/blogdata.txt

Counting the Words in a Feed

Almost all blogs can be read online or via their RSS feeds. An RSS feed is a simple
XML document that contains information about the blog and all the entries. The
first step in generating word counts for each blog is to parse these feeds. Fortu-
nately, there is an excellent module for doing this called Universal Feed Parser,
which you can download from http://lwww.feedparser.org.

This module makes it easy to get the title, links, and entries from any RSS or Atom
feed. The next step is to create a function that will extract all the words from a feed.
Create a new file called generatefeedvector.py and insert the following code:

import feedparser
import re

Returns title and dictionary of word counts for an RSS feed
def getwordcounts(url):

Parse the feed

d=feedparser.parse(url)

we={}

Loop over all the entries

for e in d.entries:
if 'summary' in e: summary=e.summary
else: summary=e.description

Extract a list of words
words=getwords(e.title+' '+summary)
for word in words:
wc. setdefault(word,0)
wc [word]+=1
return d.feed.title,wc
RSS and Atom feeds always have a title and a list of entries. Each entry usually has
either a summary or description tag that contains the actual text of the entries. The
getwordcounts function passes this summary to getwords, which strips out all of the
HTML and splits the words by nonalphabetical characters, returning them as a list.
Add getwords to generatefeedvector.py:
def getwords(html):

Remove all the HTML tags
txt=re.compile(xr'<[*>]+>").sub("",html)

Split words by all non-alpha characters
words=re.compile(r'[~A-Z"a-z]+").split(txt)

Convert to lowercase

return [word.lower() for word in words if word!='"]
Now you’ll need a list of feeds to work from. If you like, you can generate a list of
feed URLs for a set of blogs yourself, or you can use a prebuilt list of 100 RSS URLs.
This list was created by taking the feeds for all of the most highly referenced blogs

Word Vectors | 31

http://www.feedparser.org

and removing those that did not contain the full text of their entries or were mostly
images. You can download the list at http://kiwitobes.com/clusters/feedlist.txt.

This is a plain text file with a URL on each line. If you have your own blog or some
particular favorites and you would like to see how they compare to some of the most
popular blogs out there, you can add them to this file.

The code for looping over the feeds and generating the dataset will be the main code
in generatefeedvector.py (that is, not in a function). The first part of the code loops
over every line in feedlist.txt and generates the word counts for each blog, as well as
the number of blogs each word appeared in (apcount). Add this code to the end of
generatefeedvector.py:

apcount={}
wordcounts={}
for feedurl in file('feedlist.txt'):
title,wc=getwordcounts(feedurl)
wordcounts[title]=wc
for word,count in wc.items():
apcount.setdefault(word,0)
if count>1:
apcount|word]+=1

The next step is to generate the list of words that will actually be used in the counts
for each blog. Since words like “the” will appear in almost all of them, and others
like “flim-flam” might only appear in one, you can reduce the total number of words
included by selecting only those words that are within maximum and minimum
percentages. In this case, you can start with 10 percent as the lower bound and 50
percent as the upper bound, but it’s worth experimenting with these numbers if you
find too many common words or too many strange words appearing:

wordlist=[]

for w,bc in apcount.items():

frac=float(bc)/len(feedlist)
if frac>0.1 and frac<0.5: wordlist.append(w)

The final step is to use the list of words and the list of blogs to create a text file con-
taining a big matrix of all the word counts for each of the blogs:

out=file('blogdata.txt', 'w")
out.write('Blog")
for word in wordlist: out.write('\t%s' % word)
out.write('\n")
for blog,wc in wordcounts.items():
out.write(blog)
for word in wordlist:
if word in wc: out.write('\t%d' % wc[word])
else: out.write('\to")
out.write('\n")

To generate the word count file, run generatefeedvector.py from the command line:

c:\code\blogcluster>python generatefeedvector.py

32 | Chapter3: Discovering Groups

http://kiwitobes.com/clusters/feedlist.txt

Downloading all those feeds may take a few minutes, but this will eventually
generate an output file called blogdata.txt. Open this file to verify that it contains a
tab-separated table with columns of words and rows of blogs. This file format will be
used by the functions in this chapter, so that later you can create a different dataset
or even save a properly formatted spreadsheet as a tab-separated text file on which to
use these clustering algorithms.

Hierarchical Clustering

Hierarchical clustering builds up a hierarchy of groups by continuously merging the
two most similar groups. Each of these groups starts as a single item, in this case an
individual blog. In each iteration this method calculates the distances between every
pair of groups, and the closest ones are merged together to form a new group. This is
repeated until there is only one group. Figure 3-1 shows this process.

)

4

Figure 3-1. Hierarchical clustering in action

In the figure, the similarity of the items is represented by their relative locations—the
closer two items are, the more similar they are. At first, the groups are just individual
items. In the second step, you can see that A and B, the two items closest together,
have merged to form a new group whose location is halfway between the two. In the
third step, this new group is merged with C. Since D and E are now the two closest
items, they form a new group. The final step unifies the two remaining groups.

Hierarchical Clustering | 33

After hierarchical clustering is completed, you usually view the results in a type of
graph called a dendrogram, which displays the nodes arranged into their hierarchy.
The dendrogram for the example above is shown in Figure 3-2.

Figure 3-2. A dendrogram is a visualization of hierarchical clustering

This dendrogram not only uses connections to show which items ended up in each
cluster, it also uses the distance to show how far apart the items were. The AB cluster
is a lot closer to the individual A and B items than the DE cluster is to the individual
D and E items. Rendering the graph this way can help you determine how similar the
items within a cluster are, which could be interpreted as the tightness of the cluster.

This section will show you how to cluster the blogs dataset to generate a hierarchy of
blogs, which, if successful, will group them thematically. First, you’ll need a method
to load in the data file. Create a file called clusters.py and add this function to it:

def readfile(filename):
lines=[1line for line in file(filename)]

First line is the column titles
colnames=1lines[0].strip().split('\t")[1:]
rownames=[]
data=[]
for line in lines[1:]:
p=line.strip().split('\t")
First column in each row is the rowname
rownames.append(p[0])
The data for this row is the remainder of the row
data.append([float(x) for x in p[1:]])
return rownames,colnames,data

This function reads the top row into the list of column names and reads the leftmost
column into a list of row names, then puts all the data into a big list where every item
in the list is the data for that row. The count for any cell can be referenced by its row

and column in data, which also corresponds to the indices of the rownames and
colnames lists.

34 | Chapter3: Discovering Groups

The next step is to define closeness. We discussed this in Chapter 2, using Euclidean
distance and Pearson correlation as examples of ways to determine how similar two
movie critics are. In the present example, some blogs contain more entries or much
longer entries than others, and will thus contain more words overall. The Pearson
correlation will correct for this, since it really tries to determine how well two sets of
data fit onto a straight line. The Pearson correlation code for this module will take
two lists of numbers and return their correlation score:

from math import sqrt

def pearson(vi,v2):

Simple sums

sumi=sum(v1)
sum2=sum(v2)

Sums of the squares
sum1Sg=sum([pow(v,2) for v in vi])
sum2Sq=sum([pow(v,2) for v in v2])

Sum of the products
pSum=sum([vi[i]*v2[i] for i in range(len(v1))])

Calculate r (Pearson score)

num=pSum- (sumi*sum2/len(v1))
den=sqrt((sum1Sq-pow(sumi,2)/len(v1))*(sum2Sq-pow(sum2,2)/len(v1)))
if den==0: return 0

return 1.0-num/den

Remember that the Pearson correlation is 1.0 when two items match perfectly, and is
close to 0.0 when there’s no relationship at all. The final line of the code returns 1.0
minus the Pearson correlation to create a smaller distance between items that are
more similar.

Each cluster in a hierarchical clustering algorithm is either a point in the tree with
two branches, or an endpoint associated with an actual row from the dataset (in this
case, a blog). Each cluster also contains data about its location, which is either the
row data for the endpoints or the merged data from its two branches for other node
types. You can create a class called bicluster that has all of these properties, which
you’ll use to represent the hierarchical tree. Create the cluster type as a class in
cluster.py:
class bicluster:
def _init_(self,vec,left=None,right=None,distance=0.0,id=None):

self.left=left

self.right=right

self.vec=vec

self.id=id

self.distance=distance
The algorithm for hierarchical clustering begins by creating a group of clusters that
are just the original items. The main loop of the function searches for the two best

Hierarchical Clustering | 35

matches by trying every possible pair and calculating their correlation. The best pair
of clusters is merged into a single cluster. The data for this new cluster is the average
of the data for the two old clusters. This process is repeated until only one cluster
remains. It can be very time consuming to do all these calculations, so it’s a good
idea to store the correlation results for each pair, since they will have to be calcu-
lated again and again until one of the items in the pair is merged into another cluster.

Add the hcluster algorithm to clusters.py:

def hcluster(rows,distance=pearson):
distances={}
currentclustid=-1

Clusters are initially just the rows
clust=[bicluster(rows[i],id=1) for i in range(len(rows))]

while len(clust)>1:
lowestpair=(0,1)
closest=distance(clust[0].vec,clust[1].vec)

loop through every pair looking for the smallest distance
for i in range(len(clust)):
for j in range(i+1,len(clust)):
distances is the cache of distance calculations
if (clust[i].id,clust[]j].id) not in distances:
distances[(clust[i].id,clust[j].id)]=distance(clust[i].vec,clust[]].vec)

d=distances[(clust[i].id,clust[j].id)]

if d<closest:
closest=d
lowestpair=(1i,j)

calculate the average of the two clusters

mergevec=|
(clust[lowestpair[0]].vec[i]+clust[lowestpair[1]].vec[i])/2.0
for i in range(len(clust[o0].vec))]

create the new cluster

newcluster=bicluster(mergevec,left=clust[lowestpair[0]],
right=clust[lowestpair[1]],
distance=closest, id=currentclustid)

cluster ids that weren't in the original set are negative
currentclustid-=1

del clust[lowestpair[1]]

del clust[lowestpair[o0]]

clust.append(newcluster)

return clust[o]

Because each cluster references the two clusters that were merged to create it, the
final cluster returned by this function can be searched recursively to recreate all
the clusters and their end nodes.

36 | Chapter3: Discovering Groups

To run the hierarchical clustering, start up a Python session, load in the file, and call
hcluster on the data:

$ python

>> import clusters

>> blognames,words,data=clusters.readfile('blogdata.txt")
>> clust=clusters.hcluster(data)

This may take a few minutes to run. Storing the distances increases the speed signifi-
cantly, but it’s still necessary for the algorithm to calculate the correlation between
every pair of blogs. This process can be made faster by using an external library to
calculate the distances. To view your results, you can create a simple function that
traverses the clustering tree recursively and prints it like a filesystem hierarchy. Add
the function printclust to clusters.py:

def printclust(clust,labels=None,n=0):

indent to make a hierarchy layout

for i in range(n): print ' ',

if clust.id<o:
negative id means that this is branch
print '-'

else:
positive id means that this is an endpoint
if labels==None: print clust.id
else: print labels[clust.id]

now print the right and left branches
if clust.left!=None: printclust(clust.left,labels=1abels,n=n+1)
if clust.right!=None: printclust(clust.right,labels=1abels,n=n+1)

The output from this doesn’t look very fancy and it’s a little hard to read with a large
dataset like the blog list, but it does give a good overall sense of whether clustering is

working. In the next section, we’ll look at creating a graphical version that is much
easier to read and is drawn to scale to show the overall spread of each cluster.

In your Python session, call this function on the clusters you just built:

>> reload(clusters)
>> clusters.printclust(clust,labels=blognames)

The output listing will contain all 100 blogs and will thus be quite long. Here’s an
example of a cluster that I found when running this dataset:

John Battelle's Searchblog

Search Engine Watch Blog

Read/WriteWeb

Official Google Blog

Search Engine Roundtable

Google Operating System
Google Blogoscoped

Hierarchical Clustering | 37

The original items in the set are shown. The dashes represent a cluster of two or
more merged items. Here you see a great example of finding a group; it’s also
interesting to see that there is such a large chunk of search-related blogs in the most
popular feeds. Looking through, you also should be able to spot clusters of political
blogs, technology blogs, and blogs about blogging.

You’ll also probably notice some anomalies. These writers may not have written on
the same themes, but the clustering algorithm says that their word frequencies are
correlated. This might be a reflection of their writing style or could simply be a
coincidence based on the day that the data was downloaded.

Drawing the Dendrogram

You can interpret the clusters more clearly by viewing them as a dendrogram. Hierar-
chical clustering results are usually viewed this way, since dendrograms pack a lot of
information into a relatively small space. Since the dendrograms will be graphical
and saved as JPGs, you’ll need to download the Python Imaging Library (PIL), which
is available at http://pythonware.com.

This library comes with an installer for Windows and source distributions for other
platforms. More information on downloading and installing the PIL is available in
Appendix A. The PIL makes it very easy to generate images with text and lines, which
is all you’ll really need to construct a dendrogram. Add the import statement to the
beginning of clusters.py:

from PIL import Image,ImageDraw

The first step is to use a function that returns the total height of a given cluster.
When determining the overall height of the image, and where to put the various
nodes, it’s necessary to know their total heights. If this cluster is an endpoint (i.e., it
has no branches), then its height is 1; otherwise, its height is the sum of the heights
of its branches. This is easily defined as a recursive function, which you can add to
clusters.py:

def getheight(clust):

Is this an endpoint? Then the height is just 1
if clust.left==None and clust.right==None: return 1

Otherwise the height is the same of the heights of
each branch
return getheight(clust.left)+getheight(clust.right)

The other thing you need to know is the total error of the root node. Since the length
of the lines will be scaled to how much error is in each node, you’ll be generating a
scaling factor based on how much total error there is. The error depth of a node is
just the maximum possible error from each of its branches:

def getdepth(clust):

The distance of an endpoint is 0.0
if clust.left==None and clust.right==None: return o

38 | Chapter3: Discovering Groups

http://pythonware.com

The distance of a branch is the greater of its two sides
plus its own distance
return max(getdepth(clust.left),getdepth(clust.right))+clust.distance

The drawdendrogram function creates a new image allowing 20 pixels in height and a
fixed width for each final cluster. The scaling factor is determined by dividing the
fixed width by the total depth. The function creates a draw object for this image and
then calls drawnode on the root node, telling it that its location should be halfway
down the left side of the image.

def drawdendrogram(clust,labels,jpeg="clusters.jpg'):
height and width
h=getheight(clust)*20
w=1200
depth=getdepth(clust)

width is fixed, so scale distances accordingly
scaling=float(w-150)/depth

Create a new image with a white background
img=Image.new('RGB", (w,h), (255,255,255))
draw=ImageDraw.Draw(img)

draw.line((0,h/2,10,h/2),fil11=(255,0,0))

Draw the first node
drawnode(draw, clust, 10, (h/2),scaling,labels)
img.save(jpeg, 'IPEG")

The important function here is drawnode, which takes a cluster and its location. It
takes the heights of the child nodes, calculates where they should be, and draws lines
to them—one long vertical line and two horizontal lines. The lengths of the horizon-
tal lines are determined by how much error is in the cluster. Longer lines show that
the two clusters that were merged to create the cluster weren’t all that similar, while
shorter lines show that they were almost identical. Add the drawnode function to
clusters.py:

def drawnode(draw,clust,x,y,scaling,labels):
if clust.id<o:
hi=getheight(clust.left)*20
h2=getheight(clust.right)*20
top=y-(h1+h2)/2
bottom=y+(h1+h2)/2
Line length
11=clust.distance*scaling
Vertical line from this cluster to children
draw.line((x,top+h1/2,x,bottom-h2/2),fill=(255,0,0))

Horizontal line to left item
draw.line((x,top+h1/2,x+11,top+h1/2),fill=(255,0,0))

Horizontal line to right item
draw.line((x,bottom-h2/2,x+11,bottom-h2/2),fil1=(255,0,0))

Drawing the Dendrogram | 39

Call the function to draw the left and right nodes

drawnode(draw,clust.left,x+11,top+h1/2,scaling,labels)

drawnode(draw,clust.right,x+11,bottom-h2/2,scaling,labels)
else:

If this is an endpoint, draw the item label

draw.text((x+5,y-7),labels[clust.id], (0,0,0))

To generate the image, go to your Python session and enter:

>> reload(clusters)

>> clusters.drawdendrogram(clust,blognames,jpeg="'blogclust.jpg")
This will generate a file called blogclust.jpg with the dendrogram. The dendrogram
should look similar to the one shown in Figure 3-3. If you like, you can change the
height and width settings to make it easier to print or less cluttered.

Column Clustering

It’s often necessary to cluster on both the rows and the columns. In a marketing
study, it can be interesting to group people to find demographics and products, or
perhaps to determine shelf locations of items that are commonly bought together. In
the blog dataset, the columns represent words, and it’s potentially interesting to see
which words are commonly used together.

The easiest way to do this using the functions you’ve written thus far is to rotate the
entire dataset so that the columns (the words) become rows, each with a list of num-
bers indicating how many times that particular word appears in each of the blogs.
Add this function to clusters.py:
def rotatematrix(data):
newdata=[]
for i in range(len(data[o0])):
newrow=[data[j][i] for j in range(len(data))]
newdata.append(newrow)
return newdata

You can now rotate the matrix and run the same operations for clustering and draw-
ing the dendrogram. As there are many more words than blogs, this will take longer
than running the blog clustering. Remember that since the matrix has been rotated,
the words rather than the blogs are now the labels.

>> reload(clusters)

>> rdata=clusters.rotatematrix(data)

>> wordclust=clusters.hcluster(rdata)

>> clusters.drawdendrogram(wordclust,labels=words, jpeg="wordclust.jpg"')
One important thing to realize about clustering is that if you have many more items
than variables, the likelihood of nonsensical clusters increases. There are many more
words than there are blogs, so you’ll notice more reasonable patterns in the blog
clustering than in the word clustering. However, some interesting clusters definitely
emerge, as shown in Figure 3-4.

40 | Chapter3: Discovering Groups

PopiereLd. astems rewe v L bak o butieas sants”
e o ety

Ml tastapmait.cen
SR
i ltar
 sptnsmnse
 cpains
ettt e
st ary - Bty LSl i Sis
-
= |—' et st Ltk
PR RS

hask e
Rmaree Rl | T Baidy Bl
B

L R [,
- | Talling Faials Ses. by Jashes Wissh marsall

vy o

L vt sisy virs
[Tl
S L mhaklnans - Feuh Geeh lagyes
i R
LWL erea Fhrvel

|—ﬂﬂM

[e p——
i
=y ol =1 e

e wartinad aple webley TR

Ehasmamey - T8 L pay e BiT18
- Clagrembtiaregard

T e Gl
[i
[o

g IS

- wired e ey Sheris

B g e

- Wheglinen | Pee

Figure 3-3. Dendrogram showing blog clusters

Column Clustering

4

users
web
yahoo
internet
online

Figure 3-4. Word cluster showing online-service-related words

The cluster obviously shows that a set of words is often used together in blogs to dis-
cuss online services or Internet-related topics. It’s possible to find clusters elsewhere
o« » o« » o«

that reflect usage patterns, such as “fact,” “us,” “say,” “very,” and “think,” which
indicate that a blog writes in an opinionated style.

K-Means Clustering

Hierarchical clustering gives a nice tree as a result, but it has a couple of disadvan-
tages. The tree view doesn’t really break the data into distinct groups without
additional work, and the algorithm is extremely computationally intensive. Because
the relationship between every pair of items must be calculated and then recalculated
when items are merged, the algorithm will run slowly on very large datasets.

An alternative method of clustering is K-means clustering. This type of algorithm is
quite different from hierarchical clustering because it is told in advance how many
distinct clusters to generate. The algorithm will determine the size of the clusters
based on the structure of the data.

K-means clustering begins with k randomly placed centroids (points in space that
represent the center of the cluster), and assigns every item to the nearest one. After
the assignment, the centroids are moved to the average location of all the nodes
assigned to them, and the assignments are redone. This process repeats until the
assignments stop changing. Figure 3-5 shows this process in action for five items and
two clusters.

In the first frame, the two centroids (shown as dark circles) are placed randomly.
Frame 2 shows that each of the items is assigned to the nearest centroid—in this
case, A and B are assigned to the top centroid and C, D, and E are assigned to the
bottom centroid. In the third frame, each centroid has been moved to the average
location of the items that were assigned to it. When the assignments are calculated
again, it turns out that C is now closer to the top centroid, while D and E remain
closest to the bottom one. Thus, the final result is reached with A, B, and C in one
cluster, and D and E in the other.

The function for doing K-means clustering takes the same data rows as input as does
the hierarchical clustering algorithm, along with the number of clusters (k) that the
caller would like returned. Add this code to clusters.py:

42 | Chapter3: Discovering Groups

@

ol ®» 3

«|®e
@)

=)

e

<

@v.p
o

@®0®

Figure 3-5. K-means clustering with two clusters
import random

def kcluster(rows,distance=pearson,k=4):
Determine the minimum and maximum values for each point
ranges=[(min([row[i] for row in rows]),max([row[i] for row in rows]))
for i in range(len(rows[0]))]

Create k randomly placed centroids
clusters=[[random.random()*(ranges[i][1]-ranges[i][0])+ranges[i][0]
for i in range(len(rows[0]))] for j in range(k)]

lastmatches=None

for t in range(100):
print 'Iteration %d' % t
bestmatches=[[] for i in range(k)]

Find which centroid is the closest for each row
for j in range(len(rows)):
row=rows[j]
bestmatch=0
for i in range(k):
d=distance(clusters[i],row)
if d<distance(clusters[bestmatch],row): bestmatch=1i
bestmatches[bestmatch].append(j)

If the results are the same as last time, this is complete
if bestmatches==lastmatches: break
lastmatches=bestmatches

K-Means Clustering | 43

Move the centroids to the average of their members
for i in range(k):
avgs=[0.0]*1en(rows[0])
if len(bestmatches[i])>0:
for rowid in bestmatches[i]:
for m in range(len(rows[rowid])):
avgs[m]+=rows[rowid][m]
for j in range(len(avgs)):
avgs[j]/=1en(bestmatches[i])
clusters[i]=avgs

return bestmatches

This code randomly creates a set of clusters within the ranges of each of the vari-
ables. With every iteration, the rows are each assigned to one of the centroids, and
the centroid data is updated to the average of all its assignees. When the assign-
ments are the same as they were the previous time, the process ends and the k lists,
each representing a cluster, are returned. The number of iterations it takes to pro-
duce the final result is quite small compared to hierarchical clustering.

Because this function uses random centroids to start with, the order of the results
returned will almost always be different. It’s also possible for the contents of the
clusters to be different depending on the initial locations of the centroids.

You can try this function on the blog dataset. It should run quite a bit faster than the
hierarchical clustering:
>> reload(clusters)

>> kclust=clusters.kcluster(data,k=10)
Iteration 0

>> [rownames[r] for r in k[0]]

['The Viral Garden', 'Copyblogger', 'Creating Passionate Users', 'Oilman’,

'ProBlogger Blog Tips', "Seth's Blog"]

>> [rownames[r] for r in k[1]]

etc..
kclust now contains an list of IDs for each cluster. Try the clustering with different
values of k and see how it affects the results.

Clusters of Preferences

One of the best things about the growing interest in social networking sites is that big
sets of data are becoming available, all contributed voluntarily by people. One such
site is called Zebo (http://www.zebo.com), which encourages people to create accounts
and make lists of things that they own and things that they would like to own. From
an advertiser’s or social critic’s perspective, this is very interesting information, as it
can allow them to determine the way that expressed preferences naturally group
together.

44 | Chapter3: Discovering Groups

Getting and Preparing the Data

This section will go through the process of creating a dataset from the Zebo web site.
It involves downloading many pages from the site and parsing them to extract what
each user says they want. If you would like to skip this section, you can download a
precreated dataset from http://kiwitobes.com/clusters/zebo.txt.

Beautiful Soup

Beautiful Soup is an excellent library for parsing a web page and building a struc-
tured representation. It allows you to access any element of the page by type, ID, or
any of its properties, and get a string representation of its contents. Beautiful Soup is
also very tolerant of web pages with broken HTML, which is useful when generating
datasets from web sites.

You can download Beautiful Soup from http://crummy.com/software/BeautifulSoup. Tt
comes as a single Python file, which you can put in your Python library path or in the
path where you’ll be working and starting the Python interpreter.

Once you’ve installed Beautiful Soup, you can see it in action in your interpreter:

>> import urllib2

>> from BeautifulSoup import BeautifulSoup

>> c=urllib2.urlopen('http://kiwitobes.com/wiki/Programming_language.html")
>> soup=BeautifulSoup(c.read())

>> links=soup('a")

>> links[10]

algorithms

>> links[10]['href']

u'/wiki/Algorithm.html'

To construct a soup, which is Beautiful Soup’s way of representing a web page, just
initialize it with the contents of the page. You can call the soup with a tag type, such
as a, and it will return a list of objects with that type. Each of these is also address-
able, allowing you to drill down into properties and other objects beneath them in
the hierarchy.

Scraping the Zebo Results

The structure of the search page on Zebo is fairly complex, but it’s easy to determine
which parts of the page are the lists of items because they all have the class
bgverdanasmall. You can take advantage of this to extract the important data from
the page. Create a new file called downloadzebodata.py and insert the following code:

from BeautifulSoup import BeautifulSoup

import urllib2

import re

chare=re.compile(r'[!-\.&]")

itemowners={}

Clusters of Preferences | 45

http://kiwitobes.com/clusters/zebo.txt
http://crummy.com/software/BeautifulSoup

Words to remove
dropwords=["'a', 'new', 'some', 'more', 'my', "own', 'the', 'many', 'other', 'another']

currentuser=0
for i in range(1,51):
URL for the want search page
c=urllib2.urlopen(
"http://member.zebo.com/Main?event_key=USERSEARCH8Wiowiw=wiw&keyword=car&page=%d"
% (1))
soup=BeautifulSoup(c.read())
for td in soup('td'):
Find table cells of bgverdanasmall class
if ('class' in dict(td.attrs) and td['class']=="bgverdanasmall'):
items=[re.sub(chare,"'"',a.contents[0].lower()).strip() for a in td('a")]
for item in items:
Remove extra words
txt=" '.join([t for t in item.split(' ') if t not in dropwords])
if len(txt)<2: continue
itemowners.setdefault(txt,{})
itemowners[txt][currentuser]=1
currentuser+=1

This code will download and parse the first 50 pages of the “want” search from
Zebo. Since all the items are entered as free text, there’s a significant amount of
cleanup to be done, including removing words like “a” and “some,” getting rid of
punctuation, and making everything lowercase.

Once this is done, the code first has to create a list of items that more than five peo-
ple want, then it must build a matrix with anonymized users as columns and items as
rows, and finally, it has to write the matrix to a file. Add this to the end of
downloadzebodata.py:

out=file('zebo.txt', 'w")
out.write('Item")
for user in range(0,currentuser): out.write('\tU%d' % user)
out.write('\n")
for item,owners in itemowners.items():
if len(owners)>10:
out.write(item)
for user in range(0,currentuser):
if user in owners: out.write('\t1')
else: out.write('\to'")
out.write('\n")

Run the following from the command line to generate a file called zebo.txt, with the
same format as the blog dataset. The only difference is that instead of counts, there is
a 1 if a person wants a particular item and a 0 if he doesn’t:

c:\code\cluster>python downloadzebodata.py

46 | Chapter3: Discovering Groups

Defining a Distance Metric

The Pearson correlation works well for the blog dataset where the values are actual
word counts. However, this dataset just has 1s and Os for presence or absence, and it
would be more useful to define some measure of overlap between the people who
want two items. For this, there is a measure called the Tanimoto coefficient, which is
the ratio of the intersection set (only the items that are in both sets) to the union set
(all the items in either set). This is easily defined for two vectors like this:

def tanamoto(vi,v2):
c1,c2,shr=0,0,0

for i in range(len(v1)):
if vi[i]!=0: cl+=1 # in v1
if v2[i]!=0: c2+=1 # in v2
if vi[i]!=0 and v2[i]!=0: shr+=1 # in both

return 1.0-(float(shr)/(c1+c2-shr))

This will return a value between 1.0 and 0.0. A value of 1.0 indicates that nobody
who wants the first item wants the second one, and 0.0 means that exactly the same
set of people want the two items.

Clustering Results

Because the data is in the same format as before, the same functions can be used to
generate and draw the hierarchical clusters. This is easily defined for two vectors
with this function; add it to clusters.py:

>> reload(clusters)

>> wants,people,data=clusters.readfile('zebo.txt")

>> clust=clusters.hcluster(data,distance=clusters.tanamoto)

>> clusters.drawdendrogram(clust,wants)
This will create a new file, clusters.jpg, with the clusters of desired possessions. The
results with the downloadable dataset are shown in Figure 3-6. There’s nothing
earth-shattering here in terms of marketing information—the same people want an
Xbox, a PlayStation Portable, and a PlayStation 3—but there are some clear groups
that emerge, such as the very ambitious (boat, plane, island) and the soul-searchers
(friends, love, happiness). It’s also interesting to notice that people who want
“money” merely want a “house,” while those who want “lots of money” would pre-
fer a “nice house.”

By altering the initial search, changing the number of pages retrieved, or getting the
data from an “I own” search rather than an “I want” search, you can probably find
other interesting groups of items. You can also try transposing the matrix and group-
ing the users, which would be made more interesting by collecting their ages to see
how age divides people.

Clusters of Preferences | 47

chocolate
jewellery
jewelnes
| books
better job
better car
apartment
motor bike

l&spect
peace
love
beach
fun
vacation

[lots of money
1=
big house

motorcycle
xbox 360
3

— freedom
women

moon

friendship

Figure 3-6. Clusters of things that people want

48 | Chapter3: Discovering Groups

Viewing Data in Two Dimensions

The clustering algorithms in this chapter have been demonstrated using a stylized
visualization of data in two dimensions, with the difference between the various
items indicated by how far apart they are in the diagram. Since most real-life exam-
ples of items you would want to cluster have more than two numbers, you can’t just
take the data as-is and plot it in two dimensions. However, to understand the rela-
tionship between the various items, it would be very useful to see them charted on a
page with closer distances indicating similarity.

This section will introduce a technique called multidimensional scaling, which will be
used to find a two-dimensional representation of the dataset. The algorithm takes
the difference between every pair of items and tries to make a chart in which the dis-
tances between the items match those differences. To do this, the algorithm first
calculates the target distances between all the items. In the blog dataset, Pearson
correlation was used to compare the items. An example of this is shown in
Table 3-2.

Table 3-2. Sample distance matrix

A B C D
A 0.0 0.2 0.8 0.7
B 0.2 0.0 0.9 0.8
C 0.8 0.9 0.0 0.1
D 0.7 0.8 0.1 0.0

Next, all the items (blogs, in this case) are placed randomly on the two-dimensional
chart, as shown in Figure 3-7.

©
®

®

Figure 3-7. Starting locations of the 2D projection

The current distances between all the items are calculated using the actual distance
(the sum of the differences of the squares), as shown in Figure 3-8.

Viewing Data in Two Dimensions | 49

Figure 3-8. Distances between items

For every pair of items, the target distance is compared to the current distance and
an error term is calculated. Every item is moved a small amount closer or further in
proportion to the error between the two items. Figure 3-9 shows the forces acting on
item A. The distance between A and B in the chart is 0.5, but the target distance is
only 0.2, so A has to be moved closer to B. At the same time, A is also being pushed
away by C and D because it is too close.

Figure 3-9. Forces acting on item A

Every node is moved according to the combination of all the other nodes pushing and
pulling on it. Each time this happens, the difference between the current distances
and the target distances gets a bit smaller. This procedure is repeated many times
until the total amount of error cannot be reduced by moving the items any more.

The function for doing this takes the data vector and returns one with only two col-
umns, the X and Y coordinates of the items on the two-dimensional chart. Add this
function to clusters.py:

def scaledown(data,distance=pearson,rate=0.01):
n=len(data)

The real distances between every pair of items
realdist=[[distance(data[i],data[j]) for j in range(n)]

for i in range(0,n)]

outersum=0.0

50 | Chapter3: Discovering Groups

Randomly initialize the starting points of the locations in 2D
loc=[[random.random(),random.random()] for i in range(n)]
fakedist=[[0.0 for j in range(n)] for i in range(n)]

lasterror=None
for m in range(0,1000):
Find projected distances
for i in range(n):
for j in range(n):
fakedist[i][j]=sqrt(sum([pow(loc[1i][x]-loc[j][x],2)
for x in range(len(loc[i]))]))

Move points
grad=[[0.0,0.0] for i in range(n)]

totalerror=0
for k in range(n):
for j in range(n):
if j==k: continue
The error is percent difference between the distances
errorterm=(fakedist[j][k]-realdist[j][k])/realdist[j][k]

Each point needs to be moved away from or towards the other
point in proportion to how much error it has

grad[k][0]+=((loc[k][0]-1loc[j][0])/fakedist[j][k])*errorterm
grad[k][1]+=((loc[k][1]-1oc[j][1])/fakedist[j][k])*errorterm

Keep track of the total error
totalerror+=abs(errorterm)
print totalerror

If the answer got worse by moving the points, we are done
if lasterror and lasterror<totalerror: break
lasterror=totalerror

Move each of the points by the learning rate times the gradient
for k in range(n):

loc[k][0]-=rate*grad[k][0]

loc[k][1]-=rate*grad[k][1]

return loc

To view this, you can use the PIL again to generate an image with all the labels of all
the different items plotted at the new coordinates of that item.

def draw2d(data,labels,jpeg="mds2d.jpg"):

img=Image.new('RGB", (2000,2000), (255,255,255))

draw=ImageDraw.Draw(img)

for i in range(len(data)):
x=(data[i1][0]+0.5)*1000
y=(data[1][1]+0.5)*1000
draw.text((x,y),labels[i],(0,0,0))

img.save(jpeg, 'IPEG")

Viewing Data in Two Dimensions | 51

To run this algorithm, call scaledown to get the two-dimensional dataset and then
call draw2d to plot it:
>> reload(clusters)

>> blognames,words,data=clusters.readfile('blogdata.txt")
>> coords=clusters.scaledown(data)

>> clusters.draw2d(coords,blognames, jpeg="'blogs2d.jpg")

Figure 3-10 shows the outcome of the multidimensional scaling algorithm. The clus-
ters don’t break out quite as well as they do on the dendrogram, but there’s still
clearly some topical grouping, such as the search-engine-related set near the top.
These ended up very far away from the political and celebrity blogs. Had this repre-
sentation been done in three dimensions, the clusters would be even better, but
obviously this would be difficult to visualize on paper.

Search Engine Watch Elog

Miexro Persuasion

0'Reilly Radar sigm
search Engifi@%iniiagrscored
Google operating system

quick online Tips
publishing 2.0

Techcrimeh
Read Writeweh
Johm Battelle’s Searchbloy paulstamatiou. com

officisl Gooyle Blog

& consuming Expeyience (full feed)

Lifehacker

Creating Passionate Users

shoenoney - skills to pay the bills

456 Derea strest
s sifey’s Alerk:
Teohfirt Matt Cubts: Gadgets, Google, snd SEO

slashdot

Blogyers Blog: Blogying the Blogsphere
Joho the Bloy
ies

valleywag

The wival earden
signal vs. Yoise

Scableizer - Tech eek Blogyer

Derek Powazek

Tas THare wah

Figure 3-10. Portion of 2D representation of blog space

52 | Chapter3: Discovering Groups

Other Things to Cluster

This chapter has looked at two datasets, but there are many other things that can be
done. The del.icio.us dataset from Chapter 2 can also be clustered to find groups of
users or bookmarks. In the same way that the blog feeds were transformed into word
vectors, any set of pages that is download can be reduced to just the words.

These ideas can be extended to many different areas to find interesting things—
message boards based on word usage, companies from Yahoo! Finance based on var-
ious statistics, or top reviewers on Amazon according to what they like. It would also
be interesting to look at a large social network like MySpace and cluster people
according to who their friends are, or possibly use other information they provide
about themselves (favorite bands, foods, etc.).

The concept of imagining items in space depending on their parameters will be a
recurring theme in this book. Using multidimensional scaling is an effective way to
take a dataset and actually view it in a way that’s easy to interpret. It’s important to
realize that some information is lost in the process of scaling, but the result should
help you understand the algorithms better.

Exercises

1. Using the del.icio.us API from Chapter 2, create a dataset of bookmarks suitable
for clustering. Run hierarchical and K-means clustering on it.

2. Modify the blog parsing code to cluster individual entries instead of entire blogs.
Do entries from the same blog cluster together? What about entries from the
same date?

3. Try using actual (Pythagorean) distance for blog clustering. How does this
change the results?

4. Find out what Manhattan distance is. Create a function for it and see how it
changes the results for the Zebo dataset.

5. Modify the K-means clustering function to return, along with the cluster results,
the total distance between all the items and their respective centroids.

6. After completing Exercise 5, create a function that runs K-means clustering over
different values of k. How does the total distance change as the number of clus-
ters increases? At what point does the improvement from having more clusters
become very small?

7. Multidimensional scaling in two dimensions is easy to print, but scaling can be
done in any number of dimensions. Try changing the code to scale in one dimen-
sion (all the points on a line). Now try making it work for three dimensions.

Exercises | 53

CHAPTER 4
Searching and Ranking

This chapter covers full-text search engines, which allow people to search a large set
of documents for a list of words, and which rank results according to how relevant
the documents are to those words. Algorithms for full-text searches are among the
most important collective intelligence algorithms, and many fortunes have been made
by new ideas in this field. It is widely believed that Google’s rapid rise from an aca-
demic project to the world’s most popular search engine was based largely on the
PageRank algorithm, a variation that you’ll learn about in this chapter.

Information retrieval is a huge field with a long history. This chapter will only be able
to cover a few key concepts, but we’ll go through the construction of a search engine
that will index a set of documents and leave you with ideas on how to improve things
further. Although the focus will be on algorithms for searching and ranking rather
than on the infrastructure requirements for indexing large portions of the Web, the
search engine you build should have no problem with collections of up to 100,000
pages. Throughout this chapter, you’ll learn all the necessary steps to crawl, index,
and search a set of pages, and even rank their results in many different ways.

What’s in a Search Engine?

The first step in creating a search engine is to develop a way to collect the docu-
ments. In some cases, this will involve crawling (starting with a small set of docu-
ments and following links to others) and in other cases it will begin with a fixed
collection of documents, perhaps from a corporate intranet.

After you collect the documents, they need to be indexed. This usually involves cre-
ating a big table of the documents and the locations of all the different words.
Depending on the particular application, the documents themselves do not necessar-
ily have to be stored in a database; the index simply has to store a reference (such as
a file system path or URL) to their locations.

54

The final step is, of course, returning a ranked list of documents from a query.
Retrieving every document with a given set of words is fairly straightforward once
you have an index, but the real magic is in how the results are sorted. A huge number
of metrics can be generated, and there is no shortage of ways you can tweak them to
change the sort order. Just learning all the different metrics might make you wish
that the big search engines would let you control more of them (“Why can’t I tell
Google that my words must be close together?”). This chapter will look at several
metrics based on the content of the page, such as word frequency, and then cover
metrics based on information external to the content of the page, such as the Page-
Rank algorithm, which looks at how other pages link to the page in question.

Finally, you’ll build a neural network for ranking queries. The neural network will
learn to associate searches with results based on what links people click on after they
get a list of search results. The neural network will use this information to change the
ordering of the results to better reflect what people have clicked on in the past.

To work through the examples in this chapter, you’ll need to create a Python mod-
ule called searchengine, which has two classes: one for crawling and creating the
database, and the other for doing full-text searches by querying the database. The
examples will use SQLite, but they can easily be adapted to work with a traditional
client-server database.

To start, create a new file called searchengine.py and add the following crawler class
and method signatures, which you’ll be filling in throughout this chapter:

class crawler:
Initialize the crawler with the name of database
def _init (self,dbname):
pass

def del (self):
pass

def dbcommit(self):
pass

Auxilliary function for getting an entry id and adding

it if it's not present

def getentryid(self,table,field,value,createnew=True):
return None

Index an individual page
def addtoindex(self,url,soup):
print 'Indexing %s' % url

Extract the text from an HTML page (no tags)
def gettextonly(self,soup):
return None

Separate the words by any non-whitespace character
def separatewords(self,text):
return None

What'sin aSearch Engine? | 55

Return true if this url is already indexed
def isindexed(self,url):
return False

Add a link between two pages
def addlinkref(self,urlFrom,urlTo,linkText):
pass

Starting with a list of pages, do a breadth
first search to the given depth, indexing pages
as we go
def crawl(self,pages,depth=2):
pass

Create the database tables
def createindextables(self):
pass

A Simple Crawler

I'll assume for now that you don’t have a big collection of HTML documents sitting
on your hard drive waiting to be indexed, so I'll show you how to build a simple
crawler. It will be seeded with a small set of pages to index and will then follow any
links on that page to find other pages, whose links it will also follow. This process is
called crawling or spidering.

To do this, your code will have to download the pages, pass them to the indexer
(which you’ll build in the next section), and then parse the pages to find all the links
to the pages that have to be crawled next. Fortunately, there are a couple of libraries
that can help with this process.

For the examples in this chapter, I have set up a copy of several thousand files from
Wikipedia, which will remain static at hitp://kiwitobes.com/wiki.

You’re free to run the crawler on any set of pages you like, but you can use this site if
you want to compare your results to those in this chapter.

Using urllib2

urllib2 is a library bundled with Python that makes it easy to download pages—all
you have to do is supply the URL. You’ll use it in this section to download the pages
that will be indexed. To see it in action, start up your Python interpreter and try this:

>> import urllib2

>> c=urllib2.urlopen('http://kiwitobes.com/wiki/Programming_language.html")

>> contents=c.read()

>> print contents[0:50]
'<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Trans'

All you have to do to store a page’s HTML code into a string is create a connection
and read its contents.

56 | Chapter4: Searchingand Ranking

http://kiwitobes.com/wiki

Crawler Code

The crawler will use the Beautiful Soup API that was introduced in Chapter 3, an
excellent library that builds a structured representation of web pages. It is very toler-
ant of web pages with broken HTML, which is useful when constructing a crawler
because you never know what pages you might come across. For more information
on downloading and installing Beautiful Soup, see Appendix A.

Using urllib2 and Beautiful Soup you can build a crawler that will take a list of URLs
to index and crawl their links to find other pages to index. First, add these import
statements to the top of searchengine.py:

import urllib2
from BeautifulSoup import *
from urlparse import urljoin

Create a list of words to ignore
ignorewords=set(['the', 'of','to", and",'a", "in","is","it"])
Now you can fill in the code for the crawler function. It won’t actually save anything

it crawls yet, but it will print the URLs as it goes so you can see that it’s working.
You need to put this at the end of the file (so it’s part of the crawler class):

def crawl(self,pages,depth=2):
for i in range(depth):
newpages=set()
for page in pages:
try:
c=urllib2.urlopen(page)
except:
print "Could not open %s" % page
continue
soup=BeautifulSoup(c.read())
self.addtoindex(page,soup)

links=soup('a")
for link in links:
if ("href' in dict(link.attrs)):
url=urljoin(page,link['href'])
if url.find("'")!=-1: continue
url=url.split('#')[0] # remove location portion
if url[o0:4]=="http' and not self.isindexed(url):
newpages.add(url)

linkText=self.gettextonly(1link)
self.addlinkref(page,url,linkText)

self.dbcommit()

pages=newpages

This function loops through the list of pages, calling addtoindex on each one (right
now this does nothing except print the URL, but you’ll fill it in the next section). It

ASimple Crawler | 57

then uses Beautiful Soup to get all the links on that page and adds their URLs to a set
called newpages. At the end of the loop, newpages becomes pages, and the process
repeats.

This function can be defined recursively so that each link calls the function again,
but doing a breadth-first search allows for easier modification of the code later,
either to keep crawling continuously or to save a list of unindexed pages for later
crawling. It also avoids the risk of overflowing the stack.

You can test this function in the Python interpreter (there’s no need to let it finish, so
press Ctrl-C when you get bored):

>> import searchengine

>> pagelist=["'http://kiwitobes.com/wiki/Perl.html"]

>> crawler=searchengine.crawler('")

>> crawler.crawl(pagelist)

Indexing http://kiwitobes.com/wiki/Perl.html

Could not open http://kiwitobes.com/wiki/Module %28programming%29.html

Indexing http://kiwitobes.com/wiki/Open Directory Project.html

Indexing http://kiwitobes.com/wiki/Common_Gateway Interface.html
You may notice that some pages are repeated. There is a placeholder in the code for
another function, isindexed, which will determine if a page has been indexed
recently before adding it to newpages. This will let you run this function on any list of
URLs at any time without worrying about doing unnecessary work.

Building the Index

The next step is to set up the database for the full-text index. As I mentioned earlier,
the index is a list of all the different words, along with the documents in which they
appear and their locations in the documents. In this example, you’ll be looking at the
actual text on the page and ignoring nontext elements. You’ll also be indexing
individual words with all the punctuation characters removed. The method for
separating words is not perfect, but it will suffice for building a basic search engine.

Because covering different database software or setting up a database server is out-
side the scope of this book, this chapter will show you how to store the index using
SQLite. SQLite is an embedded database that is very easy to set up and stores a whole
database in one file. SQLite uses SQL for queries, so it shouldn’t be too difficult to
convert the sample code to use a different database. The Python implementation is
called pysqlite, and you can download it from http://initd.org/tracker/pysqlite.

There is a Windows installer as well as instructions for installing it on other operating
systems. Appendix A contains more information on getting and installing pysqlite.

Once you have SQLite installed, add this line to the start of searchengine.py:

from pysqlite2 import dbapi2 as sglite

58 | Chapter4: Searchingand Ranking

http://initd.org/tracker/pysqlite

You’ll also need to change the _init , del ,and dbcommit methods to open and
close the database:

def _init_ (self,dbname):
self.con=sqlite.connect(dbname)

def del (self):
self.con.close()

def dbcommit(self):
self.con.commit()

Setting Up the Schema

Don’t run the code just yet—you still need to prepare the database. The schema for
the basic index is five tables. The first table (urllist) is the list of URLs that have
been indexed. The second table (wordlist) is the list of words, and the third table
(wordlocation) is a list of the locations of words in the documents. The remaining
two tables specify links between documents. The link table stores two URL IDs,
indicating a link from one table to another, and linkwords uses the wordid and
linkid columns to store which words are actually used in that link. The schema is
shown in Figure 4-1.

link
| rowid urllist
fromid rowid
toid I url wordlocation
urlid
wordid
location
wordlist
rowid
word

Figure 4-1. Schema for the search engine

All tables in SQLite have a field called rowid by default, so there’s no need to explic-
itly specify an ID for these tables. To create a function for adding all the tables, add
this code to the end of searchengine.py so that it’s part of the crawler class:

def createindextables(self):
self.con.execute('create table urllist(url)")
self.con.execute('create table wordlist(word)")
self.con.execute('create table wordlocation(urlid,wordid,location)")
self.con.execute('create table link(fromid integer,toid integer)')
self.con.execute('create table linkwords(wordid,linkid)")
self.con.execute('create index wordidx on wordlist(word)')
self.con.execute('create index urlidx on urllist(url)")
self.con.execute('create index wordurlidx on wordlocation(wordid)')

Building the Index | 59

self.con.execute('create index urltoidx on link(toid)')
self.con.execute('create index urlfromidx on link(fromid)')
self.dbcommit()

This function will create the schema for all the tables that you will be using, along
with some indices to speed up searching. These indices are important, since the
dataset can potentially get very large. Enter these commands in your Python session
to create a database called searchindex.db:

>> reload(searchengine)

>> crawler=searchengine.crawler('searchindex.db')

>> crawler.createindextables()
Later you’ll be adding an additional table to the schema for a scoring metric based on
counting inbound links.

Finding the Words on a Page

The files that you’re downloading from the Web are HTML and thus contain a lot of
tags, properties, and other information that doesn’t belong in the index. The first
step is to extract all the parts of the page that are text. You can do this by searching
the soup for text nodes and collecting all their content. Add this code to your
gettextonly function:
def gettextonly(self,soup):
v=soup.string
if v==None:
c=soup.contents
resulttext=""
for t in c:
subtext=self.gettextonly(t)
resulttext+=subtext+'\n'
return resulttext
else:
return v.strip()

The function returns a long string containing all the text on the page. It does this by
recursively traversing down the HTML document object model, looking for text
nodes. Text that was in separate sections is separated into different paragraphs. It’s
important to preserve the order of the sections for some of the metrics you’ll be
calculating later.

Next is the separatewords function, which splits a string into a list of separate words
so that they can be added to the index. It’s not as easy as you might think to do this
perfectly, and there has been a lot of research into improving the technique. However,
for these examples it will suffice to consider anything that isn’t a letter or a number to
be a separator. You can do this using a regular expression. Replace the definition of
separatewords with the following:

60 | Chapter4: Searchingand Ranking

def separatewords(self,text):
splitter=re.compile("\\W*")
return [s.lower() for s in splitter.split(text) if s!='"]
Because this function considers anything nonalphanumeric to be a separator, it will
have no problem extracting English words, but it won’t properly handle terms like
“C++” (no trouble searching for “python,” though). You can experiment with the
regular expression to make it work better for different kinds of searches.

A s
iy Another possibility is to remove suffixes from the words using a
.‘s\ stemming algorithm. These algorithms attempt to convert the words to
Nl = . «: P «: »
o3¢ their stems. For example, the word “indexing” becomes “index” so

that people searching for the word “index” are also shown documents
containing the word “indexing.” To do this, stem the words while
crawling documents and also stem the words in the search query. A full
discussion of stemming is outside the scope of this chapter, but you
can find a Python implementation of the well-known Porter Stemmer at
http:/flwww.tartarus.org/~martin/PorterStemmer/index. html.

Adding to the Index

You’re ready to fill in the code for the addtoindex method. This method will call the
two functions that were defined in the previous section to get a list of words on the
page. Then it will add the page and all the words to the index, and will create links
between them with their locations in the document. For this example, the location
will be the index within the list of words.

Here is the code for addtoindex:

def addtoindex(self,url,soup):
if self.isindexed(url): return
print 'Indexing '+url

Get the individual words
text=self.gettextonly(soup)
words=self.separatewords(text)

Get the URL id
urlid=self.getentryid('urllist', 'url',url)

Link each word to this url
for i in range(len(words)):
word=words[i]
if word in ignorewords: continue
wordid=self.getentryid('wordlist', 'word",word)
self.con.execute("insert into wordlocation(urlid,wordid,location) \
values (%d,%d,%d)" % (urlid,wordid,i))

You’ll also need this to update the helper function getentryid. All this does is return
the ID of an entry. If the entry doesn’t exist, it is created and the ID is returned:

Building the Index | 61

http://www.tartarus.org/~martin/PorterStemmer/index.html

def getentryid(self,table,field,value,createnew=True):
cur=self.con.execute(
"select rowid from %s where %s="%s'" % (table,field,value))
res=cur.fetchone()
if res==None:
cur=self.con.execute(
"insert into %s (%s) values ('%s')" % (table,field,value))
return cur.lastrowid
else:
return res[0]

Finally, you’ll need to fill in the code for isindexed, which determines whether the
page is already in the database, and if so, whether there are any words associated
with it:
def isindexed(self,url):
u=self.con.execute \
("select rowid from urllist where url='%s'" % url).fetchone()
if ul=None:
Check if it has actually been crawled
v=self.con.execute(
'select * from wordlocation where urlid=%d' % u[0]).fetchone()
if vl=None: return True
return False

Now you can rerun the crawler and have it actually index the pages as it goes. You
can do this in your interactive session:

>> reload(searchengine)

>> crawler=searchengine.crawler('searchindex.db")

>> pages= \

.. ["http://kiwitobes.com/wiki/Categorical_list_of_programming_languages.html']

>> crawler.crawl(pages)
The crawler will probably take a long time to run. Instead of waiting for it to finish, I
recommend that you download a preloaded copy of searchindex.db from http:/
kiwitobes.com/db/searchindex.db and save it in the directory with your Python code.

If you’d like to make sure that the crawl worked properly, you can try checking the
entries for a word by querying the database:

>> [row for row in crawler.con.execute(

. 'select rowid from wordlocation where wordid=1')]

[(1,), (46,), (330,), (232,), (406,), (271,), (192,),...
The list that is returned is the list of all the URL IDs containing “word,” which
means that you’ve successfully run a full-text search. This is a great start, but it will
only work with one word at a time, and will just return the documents in the order in
which they were loaded. The next section will show you how to expand this func-
tionality by doing these searches with multiple words in the query.

62 | Chapter4: Searchingand Ranking

http://kiwitobes.com/db/searchindex.db
http://kiwitobes.com/db/searchindex.db

Querying

You now have a working crawler and a big collection of documents indexed, and
you’re ready to set up the search part of the search engine. First, create a new class in
searchengine.py that you’ll use for searching:

class searcher:
def _ init__(self,dbname):
self.con=sqlite.connect(dbname)

def _del (self):

sei?.con.close()

The wordlocation table gives an easy way to link words to tables, so it is quite easy to
see which pages contain a single word. However, a search engine is pretty limited
unless it allows multiple-word searches. To do this, you’ll need a query function that
takes a query string, splits it into separate words, and constructs a SQL query to find
only those URLs containing all the different words. Add this function to the
definition for the searcher class:

def getmatchrows(self,q):
Strings to build the query
fieldlist="wo.urlid’
tablelist=""
clauselist=""
wordids=[]

Split the words by spaces
words=q.split(' ")
tablenumber=0

for word in words:
Get the word ID
wordrow=self.con.execute(
"select rowid from wordlist where word='%s'" % word).fetchone()
if wordrow!=None:
wordid=wordrow[0]
wordids.append(wordid)
if tablenumber>0:
tablelist+=","
clauselist+="' and '
clauselist+="w¥%d.urlid=w%d.urlid and ' % (tablenumber-1,tablenumber)
fieldlist+=",w%d.location' % tablenumber
tablelist+="wordlocation w%d' % tablenumber
clauselist+="wkd.wordid=%d"' % (tablenumber,wordid)
tablenumber+=1

Create the query from the separate parts

fullquery="select %s from %s where %s' % (fieldlist,tablelist,clauselist)
cur=self.con.execute(fullquery)

rows=[row for row in cur]

return rows,wordids

Querying | 63

This function looks a bit complicated, but it’s just creating a reference to the
wordlocation table for each word in the list and joining them all on their URL IDs
(Figure 4-2).

wordlocation w0 wordlocation w1 wordlocation w2
wordid = word0id wordid = wordTid wordid = word2id
urlid < urlid < urlid

Figure 4-2. Table joins for getmatchrows

So a query for two words with the IDs 10 and 17 becomes:

select wo.urlid,w0.location,wl.location
from wordlocation wo,wordlocation wi
where wo.urlid=w1.urlid

and w0.wordid=10

and wl.wordid=17

Try calling this function with your first multiple-word search:

>> reload(searchengine)

>> e=searchengine.searcher('searchindex.db")

>> e.getmatchrows('functional programming')

([(a, 327, 23), (1, 327, 162), (1, 327, 243), (1, 327, 261),

(1, 327, 269), (1, 327, 436), (1, 327, 953),..

You’ll notice that each URL ID is returned many times with different combinations
of word locations. The next few sections will cover some ways to rank the results.
Content-based ranking uses several possible metrics with just the content of the page
to determine the relevance of the query. Inbound-link ranking uses the link structure
of the site to determine what’s important. We will also explore a way to look at what
people actually click on when they search in order to improve the rankings over time.

Content-Based Ranking

So far you’ve managed to retrieve pages that match the queries, but the order in
which they are returned is simply the order in which they were crawled. In a large set
of pages, you would be stuck sifting through a lot of irrelevant content for any men-
tion of each of the query terms in order to find the pages that are really related to
your search. To address this issue, you need ways to give pages a score for a given
query, as well as the ability to return them with the highest scoring results first.

This section will look at several ways to calculate a score based only on the query
and the content of the page. These scoring metrics include:

Word frequency
The number of times the words in the query appear in the document can help
determine how relevant the document is.

64 | Chapter4: Searchingand Ranking

Document location
The main subject of a document will probably appear near the beginning of the
document.

Word distance
If there are multiple words in the query, they should appear close together in the
document.

The earliest search engines often worked with only these types of metrics and were
able to give usable results. Later sections will cover ways to improve results with
information external to the page, such as the number and quality of incoming links.

First, you’ll need a new method that will take a query, get the rows, put them in a
dictionary, and display them in a formatted list. Add these functions to your
searcher class:

def getscoredlist(self,rows,wordids):
totalscores=dict([(row[0],0) for row in rows])

This is where you'll later put the scoring functions
weights=[]

for (weight,scores) in weights:
for url in totalscores:
totalscores[url]+=weight*scores[url]

return totalscores

def geturlname(self,id):
return self.con.execute(
"select url from urllist where rowid=%d" % id).fetchone()[0]

def query(self,q):
Tows ,wordids=self.getmatchrows(q)
scores=self.getscoredlist(rows,wordids)
rankedscores=sorted([(score,url) for (url,score) in scores.items()],reverse=1)
for (score,urlid) in rankedscores[0:10]:
print '%f\t%s' % (score,self.geturlname(urlid))

Right now the query method doesn’t apply any scoring to the results, but it does
display the URLs along with a placeholder for their scores:

>> reload(searchengine)

>> e=searchengine.searcher('searchindex.db")

>> e.query('functional programming")

0.000000 http://kiwitobes.com/wiki/XSLT.html

0.000000 http://kiwitobes.com/wiki/XQuery.html
0.000000 http://kiwitobes.com/wiki/Unified Modeling Language.html

The important function here is getscoredlist, which you’ll be filling in throughout
this section. As you add scoring functions, you can add calls to the weights list (the
line in bold) and start to get some real scores.

Content-Based Ranking | 65

Normalization Function

All the scoring methods introduced here return dictionaries of the URL IDs and a
numerical score. To complicate things, sometimes a larger score is better and
sometimes a smaller score is better. In order to compare the results from different
methods, you need a way to normalize them; that is, to get them all within the same
range and direction.

The normalization function will take a dictionary of IDs and scores and return a new
dictionary with the same IDs, but with scores between 0 and 1. Each score is scaled
according to how close it is to the best result, which will always have a score of 1. All
you have to do is pass the function a list of scores and indicate whether a lower or
higher score is better:
def normalizescores(self,scores,smalllsBetter=0):
vsmall=0.00001 # Avoid division by zero errors
if smallIsBetter:
minscore=min(scores.values())
return dict([(u,float(minscore)/max(vsmall,1l)) for (u,1) \
in scores.items()])
else:
maxscore=max(scores.values())
if maxscore==0: maxscore=vsmall
return dict([(u,float(c)/maxscore) for (u,c) in scores.items()])
Each of the scoring functions calls this function to normalize its results and return a
value between 0 and 1.

Word Frequency

The word frequency metric scores a page based on how many times the words in the
query appear on that page. If 1 search for “python,” I'd rather get a page about
Python (or pythons) with many mentions of the word, and not a page about a
musician who happens to mention near the end that he has a pet python.

The word frequency function looks like this. You can add it to your searcher class:

def frequencyscore(self,rows):
counts=dict([(row[0],0) for row in rows])
for row in rows: counts[row[0]]+=1
return self.normalizescores(counts)
This function creates a dictionary with an entry for every unique URL ID in rows,
and counts how many times each item appears. It then normalizes the scores (bigger
is better, in this case) and returns the result.

To activate frequency scoring in your results, change the weights line in
getscoredlist to read:

weights=[(1.0,self.frequencyscore(rows))]

Now you can try another search and see how well this works as a scoring metric:

66 | Chapter4: Searchingand Ranking

>> reload(searchengine)

>> e=searchengine.searcher('searchindex.db")

>> e.query('functional programming')

1.000000 http://kiwitobes.com/wiki/Functional programming.html

0.262476 http://kiwitobes.com/wiki/Categorical list of_programming_languages.html
0.062310 http://kiwitobes.com/wiki/Programming language.html

0.043976 http://kiwitobes.com/wiki/Lisp_programming language.html

0.036394 http://kiwitobes.com/wiki/Programming_paradigm.html

This returns the page on “Functional programming” in first place, followed by sev-
eral other relevant pages. Notice that “Functional programming” scored four times
better than the result directly below it. Most search engines don’t report scores to
end users, but these scores can be very useful for some applications. For instance,
you might want to take the user directly to the top result if it exceeds a certain
threshold, or display results in a font size proportional to the relevance of the result.

Document Location

Another simple metric for determining a page’s relevance to a query is the search
term’s location in the page. Usually, if a page is relevant to the search term, it will
appear closer to the top of the page, perhaps even in the title. To take advantage of
this, the search engine can score results higher if the query term appears early in the
document. Fortunately for us, when the pages were indexed earlier, the locations of
the words were recorded, and the title of the page is first in the list.

Add this method to searcher:

def locationscore(self,rows):
locations=dict([(row[0],1000000) for row in rows])
for row in rows:
loc=sum(row[1:])
if loc<locations[row[0]]: locations[row[0]]=1oc

return self.normalizescores(locations,smalllsBetter=1)

Remember that the first item in each row element is the URL ID, followed by the
locations of all the different search terms. Each ID can appear multiple times, once
for every combination of locations. For each row, the method sums the locations of
all the words and determines how this result compares to the best result for that URL
so far. It then passes the final results to the normalize function. Note that
smallIsBetter means that the URL with the lowest location sum gets a score of 1.0.

To see what the results look like using only the location score, change the weights
line to this:

weights=[(1.0,self.locationscore(rows))]
Now try the query again in your interpreter:

>> reload(searchengine)
>> e=searchengine.searcher('searchindex.db")
>> e.query('functional programming')

Content-Based Ranking | 67

You’'ll notice that “Functional programming” is still the winner, but the other top
results are now examples of functional programming languages. The previous search
returned results in which the words were mentioned several times, but these tended to
be discussions about programming languages in general. With this search, however,
the presence of the words in the opening sentence (e.g., “Haskell is a standardized
pure functional programming language”) gave them a much higher score.

It’s important to realize that neither one of the metrics shown so far is better in every
case. Both of these lists are valid depending on the searcher’s intent, and different
combinations of weights are required to give the best results for a particular set of
documents and applications. You can try experimenting with different weights for
the two metrics by changing your weights line to something like this:

weights=[(1.0,self.frequencyscore(rows)),
(1.5,self.locationscore(rows))]

Experiment with different weights and queries and see how your results are affected.

Location is a more difficult metric to cheat than word frequency, since page authors
can only put one word first in a document and repeating it doesn’t make any differ-
ence to the results.

Word Distance

When a query contains multiple words, it is often useful to seek results in which the
words in the query are close to each other in the page. Most of the time, when peo-
ple make multiple-word queries, they are interested in a page that conceptually
relates the different words. This is a little looser than the quoted-phrase searches
supported by most search engines where the words must appear in the correct order
with no additional words—in this case, the metric will tolerate a different order and
additional words between the query words.

The distancescore function looks pretty similar to locationscore:

def distancescore(self,rows):
If there's only one word, everyone wins!
if len(rows[0])<=2: return dict([(row[0],1.0) for row in rows])

Initialize the dictionary with large values
mindistance=dict([(row[0],1000000) for row in rows])

for row in rows:
dist=sum([abs(row[i]-row[i-1]) for i in range(2,len(row))])
if dist<mindistance[row[0]]: mindistance[row[0]]=dist
return self.normalizescores(mindistance,smalllsBetter=1)
The main difference here is that when the function loops through the locations (on
the line shown in bold), it takes the difference between each location and the previ-
ous location. Since every combination of distances is returned by the query, it is
guaranteed to find the smallest total distance.

68 | Chapter4: Searchingand Ranking

You can try the word distance metric by itself if you like, but it really works better
when combined with other metrics. Try adding distancescore to the weights list and
changing the numbers to see how it affects the results of different queries.

Using Inbound Links

The scoring metrics discussed so far have all been based on the content of the page.
Although many search engines still work this way, the results can often be improved
by considering information that others have provided about the page, specifically,
who has linked to the page and what they have said about it. This is particularly use-
ful when indexing pages of dubious value or pages that might have been created by
spammers, as these are less likely to be linked than pages with real content.

The crawler that you built at the beginning of the chapter already captures all the
important information about the links, so there’s no need to change it. The links
table has the URL IDs for the source and target of every link that it has encountered,
and the linkwords table connects the words with the links.

Simple Count

The easiest thing to do with inbound links is to count them on each page and use the
total number of links as a metric for the page. Academic papers are often rated in this
way, with their importance tied to the number of other papers that reference them.
The scoring function below creates a dictionary of counts by querying the link table
for every unique URL ID in rows, and then it returns the normalized scores:
def inboundlinkscore(self,rows):
uniqueurls=set([row[0] for row in rows])
inboundcount=dict([(u,self.con.execute(\
'select count(*) from link where toid=%d' % u).fetchone()[0]) \

for u in uniqueurls])
return self.normalizescores(inboundcount)

Obviously, using this metric by itself will simply return all the pages containing the
search terms, ranked solely on how many inbound links they have. In the dataset,
“Programming language” has many more inbound links than “Python,” but you’d
rather see “Python” first in the results if that’s what you searched for. To combine
relevance with ranking, you need to use the inbound-links metric in combination
with one of the metrics shown earlier.

This algorithm also weights every inbound link equally, which, while nice and egali-
tarian, is open to manipulation because someone can easily set up several sites
pointing to a page whose score they want to increase. It’s also possible that people
are more interested in results that have attracted the attention of very popular sites.
Next, you'll see how to make links from popular pages worth more in calculating
rankings.

Using Inbound Links | 69

The PageRank Algorithm

The PageRank algorithm was invented by the founders of Google, and variations on
the idea are now used by all the large search engines. This algorithm assigns every
page a score that indicates how important that page is. The importance of the page is
calculated from the importance of all the other pages that link to it and from the
number of links each of the other pages has.

A

In theory, PageRank (named after one of its inventors, Larry Page) cal-
culates the probability that someone randomly clicking on links will
arrive at a certain page. The more inbound links the page has from
other popular pages, the more likely it is that someone will end up
there purely by chance. Of course, if the user keeps clicking forever,
they’ll eventually reach every page, but most people stop surfing after
a while. To capture this, PageRank also uses a damping factor of 0.85,
indicating that there is an 85 percent chance that a user will continue
clicking on links at each page.

» ey

Figure 4-3 shows an example set of pages and links.

<+ B A «c —
S > < —
“«— 5 ? 7 —>

A

D

2

Figure 4-3. Calculating the PageRank of A

Pages B, C, and D all link to A, and they already have their PageRanks calculated. B
also links to three other pages and C links to four other pages. D only links to A. To
get A’s PageRank, take the PageRank (PR) of each of the pages that links to A divided
by the total number of links on that page, then multiply this by a damping factor of
0.85, and add a minimum value of 0.15. The calculation for PR(A) is:

PR(A)

0.15 + 0.85 * (PR(B)/links(B) + PR(C)/links(C) + PR(D)/links(D))
0.15 + 0.85 * (0.5/4 + 0.7/5 + 0.2/1)

0.15 + 0.85 * (0.125 + 0.14 + 0.2)

0.15 + 0.85 * 0.465

0.54525

70 | Chapter4: Searching and Ranking

You’ll notice that D actually contributes more to A’s PageRank than either B or C
does, even though it has a lower PageRank of its own, because it links exclusively to
A and is able to contribute its entire score.

Pretty easy, right? Well, there’s a small catch—in this example, all the pages linking
to A already had PageRanks. You can’t calculate a page’s score until you know the
scores of all the pages that link there, and you can’t calculate their scores without
doing the same for all the pages that link to them. How is it possible to calculate
PageRanks for a whole set of pages that don’t already have PageRanks?

The solution is to set all the PageRanks to an initial arbitrary value (the code will use
1.0, but the actual value doesn’t make any difference), and repeat the calculation
over several iterations. After each iteration, the PageRank for each page gets closer to
its true PageRank value. The number of iterations needed varies with the number of
pages, but in the small set you’re working with, 20 should be sufficient.

Because the PageRank is time-consuming to calculate and stays the same no matter
what the query is, you’ll be creating a function that precomputes the PageRank for
every URL and stores it in a table. This function will recalculate all the PageRanks
every time it is run. Add this function to the crawler class:

def calculatepagerank(self,iterations=20):
clear out the current PageRank tables
self.con.execute('drop table if exists pagerank')
self.con.execute('create table pagerank(urlid primary key,score)')

initialize every url with a PageRank of 1
self.con.execute('insert into pagerank select rowid, 1.0 from urllist')
self.dbcommit()

for i in range(iterations):
print "Iteration %d" % (i)
for (urlid,) in self.con.execute('select rowid from urllist'):
pr=0.15

Loop through all the pages that link to this one
for (linker,) in self.con.execute(
'select distinct fromid from link where toid=%d' % urlid):
Get the PageRank of the linker
linkingpr=self.con.execute(
'select score from pagerank where urlid=%d' % linker).fetchone()[0]

Get the total number of links from the linker
linkingcount=self.con.execute(
"select count(*) from link where fromid=%d' % linker).fetchone()[0]
pr+=0.85*(1linkingpr/linkingcount)
self.con.execute(
'update pagerank set score=%f where urlid=%d' % (pr,urlid))
self.dbcommit()

Using Inbound Links | 71

This function initially sets the PageRank of every page to 1.0. It then loops over every
URL and gets the PageRank and the total number of links for every inbound link.
The line in bold shows the formula being applied for each of the inbound links.

Running this function will take a few minutes, but you only need to do it when you
update the index.

>> reload(searchengine)

>> crawler=searchengine.crawler('searchindex.db')
>> crawler.calculatepagerank()

Iteration 0

Iteration 1

If you’re curious about which pages from the example dataset have the highest Page-
Ranks, you can query the database directly:

>> cur=crawler.con.execute('select * from pagerank order by score desc')
>> for i in range(3): print cur.next()

(438, 2.5285160000000002)

(2, 1.1614640000000001)

(543, 1.064252)

>> e.geturlname(438)

u'http://kiwitobes.com/wiki/Main_Page.html'

“Main Page” has the highest PageRank, which is not surprising since every other
page in Wikipedia links to it. Now that you have a table of PageRank scores, using
them is just a matter of creating a function to retrieve them from the database and to
normalize the scores. Add this method to the searcher class:
def pagerankscore(self,rows):
pageranks=dict([(row[0],self.con.execute('select score from pagerank where
urlid=%d' % row[0]).fetchone()[0]) for row in rows])
maxrank=max (pageranks.values())

normalizedscores=dict([(u,float(1l)/maxrank) for (u,l) in pageranks.items()])
return normalizedscores

Once again, you should modify the weights list to include PageRank. For example,
try:
weights=[(1.0,self.locationscore(rows))

(1.0,self.frequencyscore(rows)),
(1.0,self.pagerankscore(rows))]

The results for your searches will take into account content and ranking scores. The
results for “Functional programming” now look even better:

2.318146 http://kiwitobes.com/wiki/Functional programming.html

1.074506 http://kiwitobes.com/wiki/Programming_language.html

0.517633 http://kiwitobes.com/wiki/Categorical_list of_programming_languages.html
0.439568 http://kiwitobes.com/wiki/Programming paradigm.html

0.426817 http://kiwitobes.com/wiki/Lisp programming_language.html

72 | Chapter4: Searching and Ranking

http://kiwitobes.com/wiki/Lisp_programming_language.html

The value of the PageRank score is a little harder to see with this closed, tightly con-
trolled set of documents, which likely contains fewer useless pages or pages intended
solely to get attention than you’d find on the Web. However, even in this case, it’s
clear that PageRank is a useful metric for returning higher-level, more general pages.

Using the Link Text

Another very powerful way to rank searches is to use the text of the links to a page to
decide how relevant the page is. Many times you will get better information from what
the links to a page say about it than from the linking page itself, as site developers tend
to include a short description of whatever it is they are linking to.

The method for scoring the pages by their link text takes an additional argument,
which is the list of word IDs produced when you perform a query. You can add this
method to searcher:
def linktextscore(self,rows,wordids):
linkscores=dict([(row[0],0) for row in rows])
for wordid in wordids:
cur=self.con.execute('select link.fromid,link.toid from linkwords,link where
wordid=%d and linkwords.linkid=link.rowid' % wordid)
for (fromid,toid) in cur:
if toid in linkscores:
pr=self.con.execute('select score from pagerank where urlid=%d' % fromid).
fetchone(')[0]
linkscores[toid]+=pr
maxscore=max(linkscores.values())
normalizedscores=dict([(u,float(l)/maxscore) for (u,l) in linkscores.items()])
return normalizedscores

This code loops through all the words in wordids looking for links containing these
words. If the target of the link matches one of the search results, then the PageRank
of the source of the link is added to the destination page’s final score. A page with a
lot of links from important pages that contain the query terms will get a very high
score. Many of the pages in the results will have no links with the correct text, and
will get a score of 0.

To enable link-text ranking, just add the following anywhere in your weights list:
(1.0,self.linktextscore(rows,wordids))

There is no standard set of weightings for these metrics that will work in all cases.
Even the major search sites frequently change their methods of ranking results. The
metrics you’ll use and the weights you’ll give them are highly dependent on the
application you’re trying to build.

Using Inbound Links | 73

http://kiwitobes.com/wiki/Lisp_programming_language.html

Learning from Clicks

One of the major advantages of online applications is that they receive constant feed-
back in the form of user behavior. In the case of a search engine, each user will
immediately provide information about how much he likes the results for a given
search by clicking on one result and choosing not to click on the others. This section
will look at a way to record when a user clicks on a result after a query, and how that
record can be used to improve the rankings of the results.

To do this, you’re going to build an artificial neural network that you’ll train by
giving it the words in the query, the search results presented to the user, and what
the user decided to click. Once the network has been trained with many different
queries, you can use it to change the ordering of the search results to better reflect
what users actually clicked on in the past.

Design of a Click-Tracking Network

While there are many different kinds of neural networks, they all consist of a set of
nodes (the neurons) and connections between them. The network you’ll learn how to
build is called a multilayer perceptron (MLP) network. This type of network consists
of multiple layers of neurons, the first of which takes the input—in this case, the
words entered by the user. The last layer gives the output, which in this example is a
list of weightings for the different URLs that were returned.

There can be multiple middle layers, but the network in this example will just use a
single one. This is called the hidden layer because the outside world never interacts
with it directly, and it responds to combinations of inputs. In this case, a combina-
tion of inputs is a set of words, so you could also think of this as the query layer.
Figure 4-4 shows the structure of the network. All the nodes in the input layer are
connected to all the nodes in the hidden layer, and all the nodes in the hidden layer
are connected to all the nodes in the output layer.

word1 »-| hidden1 > url1
word2 | hidden2 = url2
word3 hidden3 = url3

Figure 4-4. Design of a click-tracking neural network

74 | Chapter4: Searching and Ranking

To ask the neural network to get the best results for a query, the input nodes for the
words in that query have their values set to 1. The outputs of those nodes are turned
on and they attempt to activate the hidden layer. In turn, the nodes in the hidden
layer that get a strong enough input will turn on their outputs and try to activate
nodes in the output layer.

The nodes in the output layer then become active in various degrees, and their activity
level can be used to determine how strongly a URL is associated with the words in the
original query. Figure 4-5 shows a query for “world bank.” The solid lines indicate
strong connections, and the bold text indicates that a node has become very active.

world j— hidden1 World Bank
river A hidden2 River
..... v
bank »| hidden3 Earth

Figure 4-5. Neural network response to “world bank”

This, of course, depends on the connection strengths being correct. This is achieved
by training the network every time someone performs a search and chooses one of
the links out of the results. In the network pictured in Figure 4-5, a number of peo-
ple had previously clicked the World Bank result after a search for “world bank,”
and this strengthened the associations between the words and the URL. This section
will show you how the network is trained with an algorithm called backpropagation.

You might be wondering why you would need a sophisticated technique like a neural
network instead of just remembering the query and counting how many times each
result was clicked. The power of the neural network you’re going to build is that it
can make reasonable guesses about results for queries it has never seen before, based
on their similarity to other queries. Also, neural networks are useful for a wide variety
of applications and will be a great addition to your collective intelligence toolbox.

Setting Up the Database

Since the neural network will have to be trained over time as users perform queries,
you’ll need to store a representation of the network in the database. The database
already has a table of words and URLs, so all that’s needed is a table for the hidden
layer (which will be called hiddennode) and two tables of connections (one from the
word layer to the hidden layer, and one that links the hidden layer to the output
layer).

Learning from Clicks | 75

Create a new file called nn.py, and create a new class in it called searchnet:

from math import tanh
from pysqlite2 import dbapi2 as sqlite

class searchnet:
def _init (self,dbname):
self.con=sqglite.connect(dbname)

def _del (self):
self.con.close()

def maketables(self):
self.con.execute('create table hiddennode(create key)')
self.con.execute('create table wordhidden(fromid,toid,strength)")
self.con.execute('create table hiddenurl(fromid,toid,strength)")
self.con.commit()

The tables currently have no indices, but you can add them later if speed is an issue.

You’ll need to create a couple of methods to access the database. The first method,
called getstrength, determines the current strength of a connection. Because new
connections are only created when necessary, this method has to return a default
value if there are no connections. For links from words to the hidden layer, the
default value will be —0.2 so that, by default, extra words will have a slightly negative
effect on the activation level of a hidden node. For links from the hidden layer to
URLs, the method will return a default value of 0.

def getstrength(self,fromid,toid,layer):
if layer==0: table="wordhidden'
else: table="hiddenurl'
res=self.con.execute('select strength from %s where fromid=%d and toid=%d' %
(table,fromid,toid)).fetchone()
if res==None:
if layer==0: return -0.2
if layer==1: return 0
return res[0]

You’ll also need a setstrength method to determine if a connection already exists,
and to update or create the connection with the new strength. This will be used by
the code that trains the network:

def setstrength(self,fromid,toid,layer,strength):
if layer==0: table="wordhidden'
else: table="hiddenurl'
res=self.con.execute('select rowid from %s where fromid=%d and toid=%d' %
(table,fromid,toid)).fetchone()
if res==None:
self.con.execute('insert into %s (fromid,toid,strength) values (%d,%d,%f)" %
(table,fromid,toid,strength))
else:
rowid=res[0]
self.con.execute('update %s set strength=%f where rowid=%d' %
(table,strength,rowid))

76 | Chapter4: Searching and Ranking

Most of the time, when building a neural network, all the nodes in the network are
created in advance. You could create a huge network up front with thousands of
nodes in the hidden layer and all the connections already in place, but in this case, it
will be faster and simpler to create new hidden nodes as they are needed.

This function will create a new node in the hidden layer every time it is passed a
combination of words that it has never seen together before. The function then
creates default-weighted links between the words and the hidden node, and between
the query node and the URL results returned by this query.

def generatehiddennode(self,wordids,urls):
if len(wordids)>3: return None
Check if we already created a node for this set of words
createkey="_".join(sorted([str(wi) for wi in wordids]))
res=self.con.execute(
"select rowid from hiddennode where create key='%s'" % createkey).fetchone()

If not, create it
if res==None:
cur=self.con.execute(
"insert into hiddennode (create key) values ('%s')" % createkey)
hiddenid=cur.lastrowid
Put in some default weights
for wordid in wordids:
self.setstrength(wordid,hiddenid,0,1.0/1en(wordids))
for urlid in urls:
self.setstrength(hiddenid,urlid,1,0.1)
self.con.commit()

In the Python interpreter, try creating a database and generating a hidden node with
some example word and URL IDs:

>>
>>
>>
>>
>>
>>
>>

import nn

mynet=nn.searchnet('nn.db")

mynet.maketables()

whorld,wRiver,wBank =101,102,103

ulWorldBank,uRiver,uEarth =201,202,203
mynet.generatehiddennode([whorld,wBank], [uWorldBank,uRiver,uEarth])
for c in mynet.con.execute('select * from wordhidden'): print c

(101, 1, 0.5)
(103, 1, 0.5)

>>

(1,
(1,

for c in mynet.con.execute('select * from hiddenurl'): print c
201, 0.1)
202, 0.1)

A new node has been created in the hidden layer, and links to the new node have
been created with default values. The function will initially respond whenever
“world” and “bank” are entered together, but these connections may weaken over

time.

Learning from Clicks | 77

Feeding Forward

You’re now ready to make functions that will take the words as inputs, activate the
links in the network, and give a set of outputs for the URLs.

First, choose a function that indicates how much each node should respond to its
input. The neural network described here will use the hyperbolic tangent (tanh) func-
tion, shown in Figure 4-6.

tanhX

05k

Figure 4-6. The tanh function

The x-axis is the total input to the node. As the input approaches 0, the output starts
to climb quickly. With an input of 2, the output is almost at 1 and doesn’t get much
higher. This is a type of sigmoid function, all types of which have this S shape. Neu-
ral networks almost always use sigmoid functions to calculate the outputs of the
neurons.

Before running the feedforward algorithm, the class will have to query the nodes and
connections in the database, and build, in memory, the portion of the network that
is relevant to a specific query. The first step is to create a function that finds all the
nodes from the hidden layer that are relevant to a specific query—in this case, they
must be connected to one of the words in the query or to one of the URLs in the
results. Since the other nodes will not be used either to determine an outcome or to
train the network, it’s not necessary to include them:

def getallhiddenids(self,wordids,urlids):

11={}

for wordid in wordids:
cur=self.con.execute(
'select toid from wordhidden where fromid=%d' % wordid)
for row in cur: li[row[0]]=1

for urlid in urlids:
cur=self.con.execute(
'select fromid from hiddenurl where toid=%d' % urlid)
for row in cur: l1[row[0]]=1

return 11.keys()

78 | Chapter4: Searching and Ranking

You will also need a method for constructing the relevant network with all the cur-
rent weights from the database. This function sets a lot of instance variables for this
class—the list of words, query nodes and URLs, the output level of every node, and
the weights of every link between nodes. The weights are taken from the database
using the functions that were defined earlier.

def setupnetwork(self,wordids,urlids):
value lists
self.wordids=wordids
self.hiddenids=self.getallhiddenids(wordids,urlids)
self.urlids=urlids

node outputs

self.ai = [1.0]*1len(self.wordids)
self.ah = [1.0]*1len(self.hiddenids)
self.ao = [1.0]*1en(self.urlids)

create weights matrix

self.wi = [[self.getstrength(wordid,hiddenid,0)
for hiddenid in self.hiddenids]
for wordid in self.wordids]

self.wo = [[self.getstrength(hiddenid,urlid,1)
for urlid in self.urlids]
for hiddenid in self.hiddenids]

You’re finally ready to create the feedforward algorithm. This takes a list of inputs,
pushes them through the network, and returns the output of all the nodes in the out-
put layer. In this case, since you’ve only constructed a network with words in the
query, the output from all the input nodes will always be 1:

def feedforward(self):
the only inputs are the query words
for i in range(len(self.wordids)):
self.ai[i] = 1.0

hidden activations
for j in range(len(self.hiddenids)):
sum = 0.0
for i in range(len(self.wordids)):
sum = sum + self.ai[i] * self.wi[i][]]
self.ah[j] = tanh(sum)

output activations
for k in range(len(self.urlids)):
sum = 0.0
for j in range(len(self.hiddenids)):
sum = sum + self.ah[j] * self.wo[j][k]
self.ao[k] = tanh(sum)

return self.ao[:]

Learning from Clicks | 79

The feedforward algorithm works by looping over all the nodes in the hidden layer
and adding together all the outputs from the input layer multiplied by the strengths
of the links. The output of each node is the tanh function of the sum of all the inputs,
which is passed on to the output layer. The output layer does the same thing, multi-
plying the outputs of the previous layer by their strengths, and applies the tanh
function to produce the final output. It is easy to extend the network to have more
layers by continually using the output of one layer as the input to the next layer.

Now you can write a short function that will set up the network and use feedforward
to get the outputs for a set of words and URLs:
def getresult(self,wordids,urlids):

self.setupnetwork(wordids,urlids)
return self.feedforward()

You can use Python to try this in the network:

>> reload(nn)

>> mynet=nn.searchnet('nn.db")

>> mynet.getresult([whorld,wBank], [uWorldBank,uRiver,uEarth])

[0.76,0.76,0.76]
The numbers in the returned list correspond to the relevance of the input URLs. Not
surprisingly, because it hasn’t yet had any training, the neural network gives the
same answer for every URL.

Training with Backpropagation

Here’s where things get interesting. The network will take inputs and give outputs,
but because it hasn’t been taught what a good result looks like, the results are pretty
useless. You’re now going to train the network by showing it some actual examples
of what people searched for, which results were returned, and what the users decided
to click on.

For this to work, you need an algorithm that alters the weights of the links between
the nodes to better reflect what the network is being told is the right answer. The
weights have to be adjusted slowly because you can’t assume that the each user will
click on an answer that’s appropriate for everyone. The algorithm you’ll use is called
backpropagation because it moves backward through the network adjusting the
weights.

When training a network, you always know the desired output of each node in the
output layer. In this case, it should be pushed toward 1 if the user clicked on that
result, and pushed toward 0 if he did not. The only way to change the output of a
node is to change the total input to that node.

To determine how much the total input should be changed, the training algorithm
has to know the slope of the tanh function at its current level of output. In the
middle of the function, when the output is 0.0, the slope is very steep, so changing

80 | Chapter4: Searchingand Ranking

the input by only a small amount gives a big change. As the outputs get closer to —1
or 1, changing the input has a smaller effect on the output. The slope of the function
for any output value is specified by this function, which you can add to the start of
nn.py:
def dtanh(y):
return 1.0-y*y

Before running the backpropagation method, it’s necessary to run feedforward so
that the current output of every node will be stored in the instance variables. The
backpropagation algorithm then performs the following steps.

For each node in the output layer:

1. Calculate the difference between the node’s current output and what it should

be.

2. Use the dtanh function to determine how much the node’s total input has to
change.

3. Change the strength of every incoming link in proportion to the link’s current
strength and the learning rate.

For each node in the hidden layer:

1. Change the output of the node by the sum of the strength of each output link
multiplied by how much its target node has to change.

2. Use the dtanh function to determine how much the node’s total input has to
change.

3. Change the strength of every input link in proportion to the link’s current
strength and the learning rate.

The implementation of this algorithm actually calculates all the errors in advance
and then adjusts the weights, because all the calculations rely on knowing the cur-
rent weights rather than the updated weights. Here’s the code for the algorithm,
which you can add to the searchnet class:

def backPropagate(self, targets, N=0.5):
calculate errors for output
output_deltas = [0.0] * len(self.urlids)
for k in range(len(self.urlids)):
error = targets[k]-self.ao[k]
output_deltas[k] = dtanh(self.ao[k]) * error

calculate errors for hidden layer
hidden deltas = [0.0] * len(self.hiddenids)
for j in range(len(self.hiddenids)):
error = 0.0
for k in range(len(self.urlids)):
error = error + output deltas[k]*self.wo[j][k]
hidden_deltas[j] = dtanh(self.ah[j]) * error

Learning from Clicks | 81

update output weights
for j in range(len(self.hiddenids)):
for k in range(len(self.urlids)):
change = output_deltas[k]*self.ah[]j]
self.wo[j][k] = self.wo[j][k] + N*change

update input weights
for i in range(len(self.wordids)):
for j in range(len(self.hiddenids)):
change = hidden deltas[j]*self.ai[i]
self.wi[i][]j] = self.wi[i][j] + N*change

Now all you need is a simple method that will set up the network, run feedforward,
and run the backpropagation. This method takes the list of wordids, urlids, and a
selected URL:

def trainquery(self,wordids,urlids,selectedurl):
generate a hidden node if necessary
self.generatehiddennode(wordids,urlids)

self.setupnetwork (wordids,urlids)
self.feedforward()
targets=[0.0]*len(urlids)
targets[urlids.index(selectedurl)]=1.0
error = self.backPropagate(targets)
self.updatedatabase()

To save the results, you’ll also need a method to update the database with the new
weights, which are stored in the wi and wo instance variables:

def updatedatabase(self):
set them to database values
for i in range(len(self.wordids)):
for j in range(len(self.hiddenids)):
self.setstrength(self.wordids[i],self. hiddenids[j],0,self.wi[i][]])
for j in range(len(self.hiddenids)):
for k in range(len(self.urlids)):
self.setstrength(self.hiddenids[j],self.urlids[k],1,self.wo[j][k])
self.con.commit()

Now you can do a simple test with the query you tried earlier to see how the net-
work responds to training:

>> reload(nn)

>> mynet=nn.searchnet('nn.db")

>> mynet.trainquery([wWorld,wBank], [ulWorldBank,uRiver,uEarth],ulorldBank)

>> mynet.getresult([whorld,wBank], [uWorldBank,uRiver,uEarth])

[0.335,0.055,0.055]
The output for the World Bank URL increased and the output for the other URLs
decreased after the network learned that a particular user made that selection. The
more users make this selection, the bigger the difference will get.

82 | Chapter4: Searchingand Ranking

Training Test

So far you’ve seen that training with one sample result increases the output for that
result. Although that’s useful, it doesn’t really demonstrate what neural networks are
capable of—that is, reasoning about inputs they’ve never seen before. Try this code
in your interactive Python session:
>> allurls=[uWorldBank,uRiver,uEarth]
>> for i in range(30):
mynet.trainquery([wWorld,wBank],allurls,ulorldBank)

mynet.trainquery([wRiver,wBank],allurls,uRiver)
mynet.trainquery([whorld],allurls,uEarth)

>> mynet.getresult([whorld,wBank],allurls)

[0.861, 0.011, 0.016]

>> mynet.getresult([wRiver,wBank],allurls)

[-0.030, 0.883, 0.006]

>> mynet.getresult([wBank],allurls)

[0.865, 0.001, -0.85]
Even though the network has never seen a query for “bank” by itself before, it gives a
reasonable guess. Not only that, it gives the World Bank URL a much better score
than the River URL, even though in the training sample queries “bank” was associ-
ated just as often with “river” as it was with World Bank. The network has not only
learned which URLs are related to which queries, it has also learned what the impor-
tant words are in a particular query—something that could not have been achieved
with a simple query-URL correlation.

Connecting to the Search Engine

The query method of the searcher class gets a list of URL IDs and word IDs in the
course of creating and printing the results. You can have the method return these
results by adding the following line to the end of the query in searchengine.py:

return wordids,[r[1] for r in rankedscores[0:10]]
These can be passed directly to the trainquery method of searchnet.

The method for capturing which of the results the user liked best is specific to the
design of your application. It’s possible that a web page could include an intermedi-
ate page that captures the click and calls trainquery before redirecting to the actual
search, or you could even let users vote on the relevance of search results to help
improve your algorithm.

The final step in building the artificial neural network is creating a new method in
the searcher class to allow you to weight the results. This function looks pretty simi-
lar to the other weighting functions. The first thing you’ll need to do is import the
neural network class in searchengine.py:

import nn
mynet=nn.searchnet('nn.db")

Learning from Clicks | 83

And add this method to the searcher class:

def nnscore(self,rows,wordids):
Get unique URL IDs as an ordered list
urlids=[urlid for urlid in set([row[0] for row in rows])]
nnres=mynet.getresult(wordids,urlids)
scores=dict([(urlids[i],nnres[i]) for i in range(len(urlids))])
return self.normalizescores(scores)

Again, you can experiment by including this in your weights list with various
weights. In practice, it’s better to hold off on including it as part of your scoring until
the network has been trained on a large number of different examples.

This chapter has covered a wide range of possibilities for developing a search engine,
but it’s still very limited compared to what’s possible. The exercises will explore
some further ideas. This chapter has not focused on performance—which would
require work to index millions of pages—but what you’ve built will perform
adequately on a set of 100,000 pages, enough for a news site or corporate intranet.

Exercises

1.

Word separation. The separatewords method currently considers any nonalpha-
numeric character to be a separator, meaning it will not properly index entries
like “C++,” “$20,” “Ph.D.,” or “617-555-1212.” What is a better way to sepa-
rate words? Does using whitespace as a separator work? Write a better word
separation function.

. Boolean operations. Many search engines support Boolean queries, which allow

users to construct searches like “python OR perl.” An OR search can work by
doing the queries separately and combining the results, but what about “python
AND (program OR code)”? Modify the query methods to support some basic
Boolean operations.

. Exact matches. Search engines often support “exact match” queries, where the

words in the page must match the words in the query in the same order with no
additional words in between. Create a new version of getrows that only returns
results that are exact matches. (Hint: you can use subtraction in SQL to get the
difference between the word locations.)

. Long/short document search. Sometimes the length of a page will be a determin-

ing factor in whether it is relevant to a particular search application or user. A
user may be interested in finding a long article about a difficult subject or a
quick reference page for a command-line tool. Write a weighting function that
will give preference to longer or shorter documents depending on its parameters.

. Word frequency bias. The “word count” metric is biased to favor longer docu-

ments, since a long document has more words and can therefore contain the tar-
get words more often. Write a new metric that calculates frequency as a
percentage of the number of words in the document.

84

Chapter4: Searching and Ranking

6. Inbound link searching. Your code can rank items based on the text of the
inbound links, but they must already be results based on the content of the page.
Sometimes the most relevant page doesn’t contain the query text at all, but
rather a lot of links with the text pointing to it—this is often the case with links
to images. Modify the search code to also include results where an inbound link
contains some of the search terms.

7. Different training options. The neural network is trained with a set of 0Os for all
the URLs that a user did not click, and a 1 for the URL that she did click. Alter
the training function so that it works instead for an application where users get
to rate results from 1 to 5.

8. Additional layers. Your neural network has only one hidden layer. Update the
class to support an arbitrary number of hidden layers, which can be specified
upon initialization.

Exercises | 85

CHAPTER 5
Optimization

This chapter will look at how to solve collaboration problems using a set of tech-
niques called stochastic optimization. Optimization techniques are typically used in
problems that have many possible solutions across many variables, and that have
outcomes that can change greatly depending on the combinations of these variables.
These optimization techniques have a wide variety of applications: we use them in
physics to study molecular dynamics, in biology to predict protein structures, and
in computer science to determine the worst possible running time of an algorithm.
NASA even uses optimization techniques to design antennas that have the right oper-
ating characteristics, which look unlike anything a human designer would create.

Optimization finds the best solution to a problem by trying many different solutions
and scoring them to determine their quality. Optimization is typically used in cases
where there are too many possible solutions to try them all. The simplest but least
effective method of searching for solutions is just trying a few thousand random
guesses and seeing which one is best. More effective methods, which will be dis-
cussed in this chapter, involve intelligently modifying the solutions in a way that is
likely to improve them.

The first example in this chapter concerns group travel planning. Anyone who has
planned a trip for a group of people, or perhaps even for an individual, realizes that
there are a lot of different inputs required, such as what everyone’s flight schedule
should be, how many cars should be rented, and which airport is easiest. Many out-
puts must also be considered, such as total cost, time spent waiting at airports, and
time taken off work. Because the inputs can’t be mapped to the outputs with a sim-
ple formula, the problem of finding the best solution lends itself to optimization.

The other examples in the chapter show the flexibility of optimization by considering
two completely different problems: how to allocate limited resources based on peo-
ple’s preferences, and how to visualize a social network with minimal crossed lines.
By the end of the chapter, you’ll be able to spot other types of problems that can be
solved using optimization.

86

Group Travel

Planning a trip for a group of people (the Glass family in this example) from different
locations all arriving at the same place is always a challenge, and it makes for an
interesting optimization problem. To begin, create a new file called optimization.py
and insert the following code:

import time

import random

import math

people = [('Seymour','BOS'),
('Franny','DAL"),
('Zooey"', 'CAK"),
('Walt','MIA'),
('Buddy"','ORD"),
