Making Everything Easier!”

Sresponse = Stwitter->status->update
Turn your ideas into applications (‘Developing a killer new Twitter app!’);

Develop apps with a high chance of
success

Find out what users are looking for ®

Make money from your apps

é

Dusty Reagan, @DustyReagan

Creator of FriendOrFollow.com Twitter app

Get More and Do More at Dummies.come®
Start with FREE Cheat Sheets

C\N&a&‘ Cheat Sheets include
g\h@ * Checklists
* Charts
* Common Instructions
* And Other Good Stuff!

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/twitterappdev

g \

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s

of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
*Videos
* [llustrated Articles
* Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
+ Digital Photography
* Microsoft Windows & Office
* Personal Finance & Investing
* Health & Wellness
« Computing, iPods & Cell Phones
* eBay
* Internet
* Food, Home & Garden

Find out“HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Twitter
Application

Development
FOR

DUMMIES

by Dusty Reagan

WILEY
Wiley Publishing, Inc.

Twitter® Application Development For Dummies®
Published by

Wiley Publishing, Inc.

111 River Street

Hoboken, NJ 07030-5774

www.wiley.com
Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests

to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons,
Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http: //www.
wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affiliates in the United States and other countries, and may not be used without written permission.
All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2010921232
ISBN: 978-0-470-56862-0

Manufactured in the United States of America
10987654321

WILEY

www.wiley.com
www.wiley.com

About the Author

Dusty Reagan launched a Web development company called Floating Head
Studios in 2007. He developed the popular Twitter app Friend or Follow in
2008, and a few months later launched FeaturedUsers, a niche ad network for
the Twitter ecosystem.

Follow Dusty on Twitter at @dustyreagan.

Dedication

This book is dedicated to my parents, Randy & Sandy Reagan.

Author’s Acknowledgments

This book would not have been possible without the patience, love, and
encouragement of my wonderful wife, Sharlee. She was beside me through
the whole journey, proofreading every word, acting as my sounding board,
and being my emotional rock during those tight deadlines. Thank you Shar. I
love you!

To all of my friends and family who put up with my social absence during
the writing of this book, thank you for your encouragement and for enthusi-
astically accepting me back into your lives when I crawled out of my writing
cave, back into the daylight.

Thanks to Chris Treadaway for introducing me to Katie Feltman. Katie, you
are a wonderful project editor and writer’s therapist. Thank you for guiding
me through this wonderful experience.

Pat O’Brien, thank you for your professionalism and editing expertise.
Somehow you and Debbye Butler managed to make even my writing publish-
able.

Thank you Jaisen Mathai (@jmathai) and Abraham Williams (@abraham)

for your technical help with OAuth. You are both masters of your trade and
exceptionally generous with your knowledge. Follow them on Twitter and pay
attention to what they have to say about Twitter API happenings.

Thank you for reading. [hope this book brings value to your endeavors.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments at http://dummies.custhelp.com. For
other comments, please contact our Customer Care Department within the U.S. at 877-762-2974, out-
side the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media Composition Services
Development

Project Editor: Pat O’Brien Layout and Graphics: Ashley Chamberlain,
Acquisitions Editor: Katie Feltman Carl Byers, Joyce Haughey,
Melissa K. Jester

Project Coordinator: Sheree Montgomery

Copy Editor: Melba Hopper

Technical Editor: Vince McCune Proofreader: Sossity R. Smith

Editorial Manager: Kevin Kirschner Indexer: Becky Hornyak

Media Development Project Manager:
Laura Moss-Hollister

Media Development Assistant Project
Manager: Jenny Swisher

Media Development Associate Producers:
Josh Frank, Marilyn Hummel,
Douglas Kuhn, and Shawn Patrick

Editorial Assistant: Amanda Graham
Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www . the5thwave . com)

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director
Publishing for Consumer Dummies
Diane Graves Steele, Vice President and Publisher
Composition Services

Debbie Stailey, Director of Composition Services

www.dummies.com

Contents at a Glance

JOEFOAUCEION «eeeeeaaeaaeeeeeeeeeennnaaaaeeeeeeennnnnnaaseeeeeeennnnnaes |

Part I: Catching Up to Twitter and App Development...... 5

Chapter 1: Catching Twitter’s Coat TailS........ccecevvieriiniininniiiiiitceceec e 7
Chapter 2: Web Development Refresher Course..........ccoovivvinviinnienceniieniienieneeieenenn 13
Chapter 3: Setting Up to Create TWitter APPScocevveririenieieriereeeeteeereseeceee s 39
Part 1I: Ideation — Coming Up with an ldea................ 45
Chapter 4: Getting to Know the Twitter Application Ecosystemc...ccccveunen.e. 47
Chapter 5: Introducing the Twitter APL..........cccoovvivirieieeeeeeeee s 63
Chapter 6 : Logging In and Managing Your Account...........c.ceceevuerviencienienieeneeneenens 79
Chapter 7: Managing Users and Their Relationships...........cccccocovininiiinininnene. 105
Chapter 8: Communication Through TWeets.........ccccceeievieciieciiecieeiecieceeeeeeeieeae 179
Chapter 9: Selecting an Id€acocevviiriiriiniiniiieeeeeeee st 241

Part 1l1: Creation — Developing Your Application...... 249

Chapter 10: Selecting Libraries, Design Patterns, and Frameworks 251
Chapter 11: Hosting In the Clouds........cccooeririiiinieneinieeeeee e 255
Chapter 12: Coding Your AppliCationc.cccuevieiiiinieenieiecciecieeeeeee et eesveeneeenne 269
Chapter 13: Making It Pretty Makes It Credible.........cccccoccevviniiiniiiniiniiiinieneeeee 309
Chapter 14: What You Need to KNOW tO GroW........ccceeeuievierciiniiiniienienieeieseeseesieenne 315

Part IV: Monetization — Making Money
with Your Applicationcccccccceecaaaaaccnnnnneneees 321

Chapter 15: How Twitter Makes MONEYcccceververiieirerieienieneeeeeeeeeesseseeseeenas 323
Chapter 16: AAVErtiSingccoceeviieiiiriiiiieeieeiese ettt ettt e st sa e see s s e saeesaeenee 327
Chapter 17: Monetizing with Other Models............cccoeiviririiininininneeeeee 335
Chapter 18: Promoting Your Applicationccccccevieeeeiieciieciieieciecee e 345
Part U: The Part of Tensccccuueeeccccccacnneeeeaaaces 355
Chapter 19 : Ten Traits of a Respectable Twitter Developer.............ccccceevvenreneen. 357

Chapter 20: Ten Twitter API TIPS ..cccccveciirierienierieeeeee ettt eeseeesae e 361

Table of Contents

JOEPOAUCEION a..eeeeeeeeeeeenaaaeaeeeeeeennnnnnseaeeeeeeesnnnnsaseeees]

AbOUt This BOOKccuiviiiiiiiiiteitcecece ettt 1
What You Don’t Need to Readccccovviiriiniiniiniinieicccccceececieen 2
Foolish ASSUMPLIONS.......ccccviiiiieiieeeceee e 2
How This Book Is Organizedccceevveeiiiieeierieneeieeieee e 2
Part I: Catching Up to Twitter and App Development....................... 2
Part II: Ideation — Coming Up with an Idea...........cccccceevveevrierreenenenn. 3
Part III: Creation — Developing Your Application..........ccccceeeeuennee. 3
Part IV: Monetization — Making Money with Your Application......3
Part V: The Part of Tens......cccccooevvieriiiriiinieniiciestceceeeeieeeeeeenn 3
Icons Used in This BOOKcoceiiiiiiiiieniiniinteteeeeeeeeeeeee st 3
Where to GO from Here..........coveoiiiiieiiieieeieeeeeeees et 4

Part I: Catching Up to Twitter and App Development 5

Chapter 1: Catching Twitter's CoatTails.......................... 7
Why D0 People TWEEL?couiiiiiiiiieeieeeeeeetet ettt 7
What Makes Twitter SO Special?........ccccccveviieieeiiniecieceeceee e 8

Asymmetrical relationshipscccocveevieeviieciiiiiciececeecesee e, 9
Follow and update using SMS...........ccceceevierienieneeneereeie e 10
Trends and SEArCh........cccoeviivieiieiceeeeee e 10
The 0pen APooiiiieee e 11
Why Should You Develop a Twitter APpP?coocvevienieneenienienienienieneene 11
Turning Motivation into ACtioncccceeeeiriciiiiieceeeeeeee e 12

Chapter 2: Web Development Refresher Course 13

Writing HTML & CSS......ooiiieeeeeeee ettt 13
HTML EIEMENLESccvveiieiieiieieeieeie ettt seeae e eveevessae s e e 16
Styling YOur HTMLcooiiiiiiiiieiieieciestceteeeeee ettt st e e es 18
Formatting in XML & JSONcccoiviiiriiniiiiinieeceeeetee et 24
The Basics Of PHP........ccooiiiiiiicecceeseeeteee ettt 25
Conditional Statements..........ccoceevivrieneniiinieeeee e 26
I Yo o 1 J PR 28
FUNCHIONS ..ottt et e 29
ATTAYS .ottt ettt ettt ste et e et e s te s raeeae e be e be e baensaeaeentaens 30
CURL Lottt ettt st e seesa s enes 31
PHP DOMDocument Classcccocuervuerrienienieneeneenieeienieseessessennns 33
PHP json_decode Function...........ceceeeeievienienincinceeieieseseeeeeeeenns 35

Understanding MYSQLc.cooiiiiieiiieiienieeieceeee ettt a e e sre v 35

X

Twitter Application Development For Dummies

Chapter 3: Setting Up to Create Twitter Apps..................... 39
Create Your Developer ACCOUNt.........ccceevueeviieciiecieeieeiecieeee et ee e 39
The Importance of Version Controlcccceeeeviieiiienieeieniienieeieeeeseeeeen 40
HEIlo TWItEET ! ..c..eiiiieiie et 41

Part 11: Ideation — Coming Up with an ldea................. 45

Chapter 4: Getting to Know the Twitter Application Ecosystem. 47
DESKEOP CHENT....c.iiiiiiieiieieeieeeeteete ettt ettt re et e saesaa e beeaees 47
TWEELDECK ..evieiiieteeeteteeee ettt 48
SeesSmiC DESKLOPD ...ccveviiriiiiiiieeiecieeeeteetcrtee e 48
TWIHEEITIFIC .ttt 49
MODILE CHENES ..ottt sse s e eneens 49
TWEETIE ...ttt e et e e e e nre e nes 49
TWEEIDECK ...ttt ettt nnens 50
TINY TWILEET ettt naens 50
Web APPLICALIONSccveviiiiiciieieieeee et neas 50
Customer relationship
management (CRM)cccocveirriirenieieeeeeee e 51
Contact MANAZEMENLt........ccceceerierieeeerreecre e esre et et re e eae e e saee e 52
SEALISTICS ...veevieuieteieteete ettt ettt ettt b e s beere e ennens 53
Media Sharing........ccccoeeveeieiieieecece et 54
Information aggregation..........ccceceeieeecierienieeeeeeeeeeee e 55
Information publiShing..........ccccvvrieirieieieieeeeee s 57
AAVEITISING....ccveeeieiieieieeeeeteee ettt nnes 58
TWIEET BOES .ottt 59
Twittercal (@ZCal).........ccvevvieviieiiieiecieeeeeeeee e 59
Remember The Milk (@1tm)cccoecveevieeieniiinieneeeeieeeeeeeee e 60
Tweetname (@tWeetname)cocceevveeierienieneeneeneeieeeereeeesee s 60
HArAWATE ...ttt ettt st e es 60
BaKeITWEEL....cueiiieiiiieteeteeeee ettt 61
Botanicalls Kitccccocoiieiiiiiiiiceeeceecceeeeeeeenns 61
TWEEE-A-Watt......ocvieiiieieeteeee et 61
Chapter 5: Introducing the Twitter APIL. 63
Play Nice and Follow the Terms of Service..........cccccoeeeveecieecienvienceeneennen. 63
General Twitter Rules..........ccccooiivienieniiiieicececeee e 64
Developer EtQUELLE...........ccvevviviiiieieeeeeeee et 65
There Are Actually TWO APISccccoevevieriieieeeeeee e 65
Twitter API VErSIONING.......ccocvriiiirieieieseseetete e 66
Rate Limits and How to Get White Listedcccoooevirinvenenineneeenen. 67
REST API Rate Limit......cccccovieviieiiieiieiecieceeceeeeseee et 67
Search API Rate Limit.......cccccoceeririiiniiinieeiecieececcce e 68

Getting Blacklisted.........cccoceriiiiiniinieiciecccececeee e 69

Table of Contents

HTTP Response Status Codes and EXrors.cccccceeveecveecienieneeceesneennen. 69
Defining the Payload ..ot 71
The USer ODJECEcc.eivuiiiieiieieeiece ettt 71

The Status ODJECEcevuiiriieiieieeiecie et 72
AUthentiCationccuiiiiiiiiicce e 73
Chapter 6: Logging In and Managing Your Account 19
Account Methodscooviiiiiiiiiecee e 79
Verify a user’s credentialscoceevervieniieniienienienccecieeeeeeeeens 80
Check your rate limit.........ccoceeviirieniecieeceeeee e 81

End @ USEr’S SESSIONoeeeuviieiiecieeeeeeceeeeeeeeee et 83
Updating a user’s notification device..........ccccceeevveveeviercincieniennnenne. 85
Update a uSer’s Profile........cocecevciiriencienieniinieseeeeieeeeee e 86
Update a user’s profile Colorscccoovvieeiiiciiieiieeeeceeeeeee, 89
Update a user’s profile picture...........ccceeeerieeciiecieecieeceeeeeeeeee, 91
Update a user’s background imageccccoeeeveeveecieecieeseeeeeeneenne. 93
OAULR METROAS ...t 95
Log a user in with OAUthccccciviiiiiiceceee e 95

Get an OAuth request tOKen..........cccceeveeiiieiieneeiececieeeeeeeee e 96

Get an OAuth access toKen..........cccccveeeiieeiiiicieceeee e 99
Chapter 7: Managing Users and Their Relationships 105
USEr MEtNOMAS ...ttt ettt ettt eae e 105
Get the details of @ USETcccueveiiieiiieeeeeeeee e 106

Get user details of your friends and followers..........c...cccccveeueenenn. 109
Social Graph Methods.........ccceviiriririeieeeete e 112
Get the user IDs of your friends and followersccecveeuvennen. 112

LiSt METNOAS.......cooviieiiiteeteeeeee ettt ettt et e et eae e 115
Create @ NeW LiSt.....cc.oooiiiiiiiceeceee e e 116
Update an existing list........ccooeeviriiiniieniienieneenteeceeeeeseeseeeeenn 118

Get @ USEE’'S iISTS ..uiuieiieieieieeee s 120

Get details on a Specific liSt.......ccecevirirenieieeeee e 122
Delete @ liStooeiiieeiiciieeeeeee et e 124

Get a list’s tiMelineccooeeiiiiiieiice e 126

Get the lists a user belongs to.......ccocevevvieeviiineenieeceneneeeeeene 129

Get the lists a user folloOWS.........c.ccecuvveviieciieciieceeceeee s 132

List Members Methodsc.ccooviiriieiiiniiniiniieceeeeeeeee et 134
Get a list’s MEMDETSccviieviieieeeeeee e 134

Add amember to a liSt.......ccoeeiiiiiiiiiiceiceeee e, 136
Remove a list member...........ccccoooiiieiiiciiicieee e 138

Test if user is alist memberccooeviiiiiieiiiiciieeeeee e, 140

List Subscribers Methods..........cccooeiiiiiiceeeecee e, 142
Get a list’s SUDSCIIDErS........ccviviiiiieeeececeeeeeee e 143
FOIOW @ LiSt....uviiiirieiceeeeeee e e e 145

Stop fOllOWING @ liSt ..cc.eevieiieiieiecii et 147

Test if user fOlloWS @ LIStoceivuviiiiiiiiiiiiee e 149

xi

xii Twitter Application Development For Dummies

Friendship Methodscccoeiiiiiiieiiecececeeee et 151
FOIIOW @ USEYooeviiieiieieeeeeee ettt ve et e 152

StOp fOllOWING @ USETocviiiiiiieeieieieieteeeeeeeete e 154
Check if one user follows another user...........cccceeeervirciencierceennnnn. 156

Get information about the relationship between two users........ 158
Notification Methods..........ccociriirieniiniiiiee e 161
Follow a user to your phone..........cccccoeeiiiiiiniiiicieeeeeeeeee e 161

Stop receiving notifications............ccoocevevirieienenineeeeee 163
BlOCK METNOASooviiiiiiieiecieeeeteetee ettt et 165
BlOCK @ USEY ..ottt ettt 166
UNDIOCK @ USET.....eviiiiiiiiieieciectece ettt 168
Check if a user is blockedccocuvviiiirniiniininierieeenieeeeeeenn 170

Get a user details list of blocked users..........ccoceveevrceerierenennnne. 172
Retrieve a list of blocked users IDscccccoeevevieceecieecieeiecieenen, 174
Spam Reporting Method...........ccoeveeieiiiniinieeeeeeeeee e 176
How to report a Twitter account as spam..........ccccccevveevveecveevennnen. 176
Chapter 8: Communication Through Tweets..................... 179
Status MethodScoviviiinieiieiicieeeeeeecee et 179
Get the details of a specific tweet...........cccoeevieiiiiciiiciceees 180
Create a NEW tWEETooviruiiiiiieieeteeee ettt 182
Delete a tWeeT....o.iiiiiiiiiieeeeee et 184
ReEtWeet @ tWEEL.....ccueeeieiieeeeeeee et 186
Retrieve retweets of a particular tweet...........ccoecveveecinciieciecnennnnn. 188
Direct Messages Methodsccecveeieriiiiinieneeiecieceee e 190
Retrieve direct meSSaGES.cccecvvviirierierienienteneese et 191

Send a direCt MESSAZE......ccuevvuerviiriiirieriertereenteree et 194
Delete a received direct meSSage.cceecvveeveeerieenieeeieeeiee e 196
Timeline MethodsS..........ccieciiiiiiiiiieieceeeceeee e 198
Get tweets from the public timeline...........cccooveeveeviecincieecieeieene 199

Get your aggregated friends timeline...........cccccoeeeveeciirciennienceennne 201

Get A USEI'S tWEELS...ccueevieeiieiieiietereeie ettt ettt sresaesanens 203

Get tweets that mention your screen name...........cccocevvvevveneennnene 207

Get status updates retweeted by YOUcceeveevveecieeciieieeieeeeen, 210

Get your friend’s retWeetscocecvevererercieieeee e 212

Get the retweets of a specific tweetccccevveveevieciccieciecie, 215
Favorite Methods........ccovieciieiiiiiiciecieccceeee ettt 217
Retrieve a user’s favorite tweetsc.ccceceevverieneenencenienienieeenn 217

Add a tweet to your favorites..........coeeverviiniiinieniinieecceeeeen 220
Remove a tweet from your favorites.........cccccoeeeeeiiniiencienceeeeene 222
Saved Searches Methods.........cccooevieiiieniinenieeeeee e 224
Retrieve all your saved searches.........cccocevveveeneenieecieecieeciecieenns 225

Get the details of a saved search..........ccccoeveveevievinciniicieceee 227
Create a saved SEArChoccveviivienieececcceece e 229
Remove a saved search.........ccccevviriiiniiniiinienicccceceeeeeeeenn 231
Search API Methodscoceviiiriiniienienienieteecieceeee ettt 233
How to search for tweets with the APL............cccooovnirininiininne 233

Get the current trending tOPICScccooveverieiienenereceeeeeee 235

Table of Contents

Get the days trending tOPIiCSccoeeeevieeviieiiierieceece e 237

Get the weeks trending topiCS.........cccevererieiienenereceeeeeee 239
Chapter 9: Selectinganldeacviutt, 24
Imagining a Successful TWitter APDccccoveriririieniereneneeeteeee e 241
What Is Your Motivation? ...t 242
ENJOYMENToiiiiiiiiiiieiteeeeee ettt saeete e s ne e 242
MaKE MONEY......ccctiriiriiiieeiertertertert ettt sttt saesaae e 242
Filling @ Need......cccoooiiiiiiiiiieeeeeeeetete et 243
Make it DTcc.oviiiiiiiiiiceeccceccce e 243
Build your brand’s reputation..........c.cccceevvevienieneeneecieeceeiecieeene 244
SUPPOTL @ CAUSE.....ccuveeiiiieieeieeie et ete ettt e e e saeesaeebeeseesseesaessnens 244

Why Do People Use a TWitter APP?.....ccccoevvervienienieneeneeieeieeieevesnesenens 244
SOIVES @ PIrODIEIML......cccviiiiiieeieciece ettt et e 245

It's entertainingccccecvevierierieieieeseseee e eeees 245

It'S €ASY t0 USE...cuvieeeiieiieieeieete ettt ettt re e ae e e ve v aaeeenens 245
ThEY trUST it ..cciiiiicieeieieeeeee e 246

Do You Have the Skill and Resources to Build Your App?.......cccccueueenne 246
Enough Jibber Jabber! Start Building!..........cccoceevirniinenieniiieiieieeeeeene 247

Part I11: Developing Your Application 249

Chapter 10: Selecting Libraries, Design Patterns,

and Frameworks. ... e 251
Twitter API Libraries Can Speed Up Developmentccccceeeveevennenne 251

Web Application Frameworks...........ccceceecieeieeienienieceeceeeeie e 252
Model VIEW CONEYOL......ccueiiuiieieiiieieieieteeeeteie ettt 253
Chapter 11: Hosting inthe Clouds 255
Types of Web Hosting SOIUtions...........cccccoeeeieeiieiecienieniceceeeeieceseiee 255
Shared web hOoStingccocivieieiecieieeceeeeeee e 255

Dedicated web hoSting.........ccceveieierieninieeeieee ettt 256

Cloud COMPULING......ccoecveriiierieieieteere et enes 256

Choosing a Hosting Providerc.cccveveeiieciiecieccieeieceeceeeee e 257
Setting Up YOUT SEIVEYS........cccoviriirieieieienieeeeteee ettt s 258
Setting up Apache and PHPcccoooioiiieiciieeececeeeeeee 258

Setting up your MySQL SEIVETcccevvuerierienieneeieeieeieeveenennens 263

Uploading Files to Your Web Serverccoccoeevvieninnensienienienieneeneenne 266
Setting Up Your Domain Nameccecceviiriineinienninnenienieseeeeeneeseenne 267
Chapter 12: Coding Your Application 269
Setting Up the Zend FrameworKccoceeviininniininneniienienieseeneeneene 269
Create your project’s initial directories.........ccccceeevveciiecreecreceennnnn. 270

Install the Zend FrameworK...........coooovevvivieiiiiiiiiiieeeeeee s 271

XI

xi(/ Twitter Application Development For Dummies

Bootstrapping your application..........c.cccecveeeviiiiciiincieeeieeee e 272
Create your .htaccess filecocoeviiiinininniieee e 273
Create your index.php fil€cccccvvvierienienieieeeece e 273
Create your bootstrap file.........cccoceveeviriieneenieiecieeeeeeeeeene 275
Create your config fil€ccoceevieriinieniniiiiieieeiecieee e 276
Create your layout template..........ccoceeverrirniinennenninienienieseenenn 277
Create your first view and controller...........cccceevevieecieecreecveeeennnen, 278
Setting Up Your Data StruCtureccccoeuevevieieiienienienieneeceeeeeeeseeeene 280
Build the User table..........coooviiiiiiiiniiiieeeeeeeetetee e 280
Build the Tweet tablecccooeoiiiiiiiiiieeeeeeeeseee 282
Create Your Data Models.........ccccooerriiiniieniieiiiienieeieeieetestese e esieenne 283
Define your tables........ccivviiiiiiiiniiiiienieeeeet et 283
Create the Tweet MoOdel.........cccoevivinienninennineeneeenceeceeeen 284
Create the User model.........cccooceeieienieninenieieereseeeeee e 286

The Cron JODS ..ottt ettt s 295
1. Creating your auto-follow SCIipt........ccccevverieneeneeienieeieeieene 295

2. Creating your Tweet monitor SCript........ccocevveevenvierireniienceennn. 301
Schedule your Cron jobS.........coccevvirvieriieniienienienecreeeesiesieseeseenn 303
Creating the Scoreboard...........ccooveiiieiiieiiieiiceee e 303
Update your IndexControllercccoevireirnienieninineeieieneseeene 303

Add your pagination templatec.cccceevueeiiiicieniienieneeeeeeeen 305
Update your INAeX VIEWccceceeciiiierienienieneeseesieeie e sveene s 306
Release Early and Often.........ccocevvieriiniiinienieeiecieceeiesee et 307
Chapter 13: Making It Pretty Makes It Credible.................. 309
Hire a DeSIGNErcoviiiiiiieiiiiieieeeeteetestetee ettt st 309
PSD t0 XHTML.....cieiiiiiiniineteeeteeretei ettt sttt et 310
Integrating Your DeSign.........cccceeeiieeiiiieciieieeeeee et 311
Chapter 14: What You Need to Know to Grow 315
Automating Acceptance Testing........ccccceevveeveeeienienieceeceee e 315
UNIt TESHING ..ottt st 317
Continuous INtegrationccccveceeiierierieicie e 317
Performance CONCEINSccccoiriririiiienienieeeeeeteeee et 318

Part IV: Monetization — Making Money
with Your Application.............ceeeeeeeeeeennnnnnuiaacaaaaaaaeee 321

Chapter 15: How Twitter Makes Money 323
Understanding Venture Capitalcccccoevieviiniininninnenienienieneeneeneenne 323

How to Fund Your Applicationccccecveeiiieeiieniiecieeee e, 325
Self-fuNAINgc.cccveeieeieieeeeee e 325

OULSIAE INVESTOLS...couvviiiiiiiiieeeeeeeeeee ettt e e e e et e s senaeeeeeaes 326

Table of Contents

Chapter 16: Advertising...............c.ccoviiiiiiiiiinnnenns 327
Selecting a Traditional Ad NetWOTrKcccoccveeieviieniieiieeieciecieceeeeeseene 327
Pay Per CLick (PPC)...cc.coiiiiiiiieiieeceetetetet ettt 328

Cost Per Thousand (CPM)ccccoocuvvienirnieenieiieeieeiesiesiesveseesinens 329

Pay Per Action (PPA)......cooiiiiiiniiiieetetetetcteeee et 330

Cost Per Time (CPT)...ccoooueieieieeeieeeeee et 331
GOING VErtiCal.....ccuioiiiirieieieeee et 332
The Magpie NetWOrKcccuevuieiiieciiiiieiecieceese et 332

The Featured Users NetWork.........ccccoeverininnienininicninicenenenee 332

DO It YOUISEIS ...ttt st st sae e 333
Chapter 17: Monetizing with Other Models...................... 335
Requesting Payment for Service.........coccovivviininniininnienienieeieceeneeneene 335
Ask for donations..........cooeevieviiiiiiiiiieeee e 336

Sell YOUT SOftWATEcveevieiieieeiece et 337

Sell SUDSCIIPHIONSoueeiieieiiieeiieeeeeeeee e 338
SEIlNG GOOUS.....cccuviieiiiieiieieeie ettt eteete st e s esteesteesteesteeaeeaesssessaessaenseanes 339
Physical S0OdScccueviiiiiiieiieiect ettt 340
VIrtUAl GOOAS ...c.eveeieiiiiiiiieieieeeeeetee ettt 341
Building YOUr BUSINESS........cociviiiriienienienieteecicceeeete sttt 342
Brand awareness..........ooeevuerrieriieniiinienienteseese ettt 342

Be acqUIred........cocooveeriiiiiiiie e 343
Chapter 18: Promoting Your Application 345
Social NetWOrKINgG........cocoeieiieiieriieeiee ettt 346
TWItter STrategY....cccveeeiiiieiieieeeee et 346
Facebook Strategy........cccveveeveeiiieiiiiieciececseere e 347

WED SIte DLOZ.....eiiiiiiiiieiieiteeeeeeeee ettt 348
Opt-in e-Mail liSt.....c.oooiiieiiieieeeeee e 349

GO VITAL ettt 349
Public Relations Strategies.........cocooeeieiieriinenieieeeee e 351
Network in your indusStry.........cccceeveeeeiicreeeeeecieeieee e 351

TOOt YOUT OWN RO ...t 351

Be QUENENTIC.cviciiciiceeiciceeeeee et 352
AVETEISE. ..ottt 352
SEO ettt ettt ettt saene 353

Part U: The Part of Tens..............ccaccueeeeecccccaacnneeeeaeee 355

Chapter 19: Ten Traits of a Respectable Twitter Developer 357

ASK PEITNISSION ..ottt e e enes 357
Read the Documentation Firstcccccccooviiiiiiiiiiiiiiiiiececeec e 358

xv

X(/i Twitter Application Development For Dummies

Stay Within Your Rate Limit..........ccceceeviiiiiniicieececececeeee e 358
Don’t Promote Mass FOIIOWINGccccceeieiienieniieieeeeiecie e 358
Be Cautious of Trademarks............cceecveveviiienieeieieienieeteee e 359
GIVE BACK ...ttt ettt ettt 359
CaChe YOUT DAtc.ccceeeeieieierieciceeceeteesie ettt aese e eneeeas 359
USE OQAULN.....oeiiieeeeee ettt s sne e 359
DOn’t BE EVIL...coiiiiiiiiiciicccc ettt 360
Communicate With YOUT USErS.........cccccvevuieciiecieeciieieeieeeeeee e seesieenns 360
Chapter 20: Ten Twitter APITips ...t 361
Develop DefenSiVelyccccciiiiiiciieiiecieciesteeeee ettt re et sae s 361
Degrade GracCefullyccceeceeciieciieiieeieeieeieseese ettt ve e et ee e e seeenee 361
Don’t Rely On SCreen_Name...........cceecveeierienieneenieenieenieesieseeseeseeseeseeenee 362
Use 64-Bit INtEZEIS.....ccueiiiiiiiiiieeeeteteeee ettt 362
Subscribe to the Google Group..........ccocevievienernieinienienieeeeeeeeeeseeseee 362
Access the API in the Backgroundccocceeeiiieiieniieeieecee e 362
USE JSON ...ttt ettt ettt e e te st e s e e teesbe e te e baesaeesbesssassaessnanseanes 363
Optimize CAChING ..cveeieeiieieeteeeeeeeetete ettt s sae e 363
Support International Characters..........ccocevvieveeiieeiieneeiienieeieeeeseeneenne 363
DO It CENt SIAE ...eovieiiiieeieiieeieeee ettt st 363

ACCOUNT METNOMAS ... 365
account/verify_credentials.........c.cccocevvieriieniiinieneenineneeeeenn 365
account/rate_limit_status........cccccceeeevviiiiniiieeicieeceereee e 366
accoUNt/eNd_SEeSSION........ccccveiieiveeeeeieeeeeree e e 366
account/update_delivery_deviCecccccevvereeneeveecieecieeieeieennns 366
account/update_profile_Colors..........cccceevveriinieneeneecieeieeiecieeenn 366
account/update_profile_imagecccceevverieniineenennenieeieeieeene 367
account/update_profile_background_image...........c.cccecerruercuenncen. 367
account/update_profile...........c.ccoeeeiiieiiiicieeee e 368

BIOCK METROASuvvieeiiieeeeee ettt et e 368
DIOCKS/DIOCKINGueciieieeiieeiiecieeeeeeee ettt 369
blocks/blOCKING/IdScccveeiereiiiiiiiceeceeeeeee e 369
DIOCKS/CIEALE ...ttt eeavaeeeenas 369
DIOCKS/AESEIOY ...uviiiiiiieiieiectcteteeee ettt 370
DIOCKS/EXISTS ...cccvvviieeiriee ettt ettt eeae et eeraee e e 370

Direct Message Methodscccoecvieeciireciieeriieeeecee et 371
AITECT_INESSAZES...cueiuiinieiieiteiteeiteeteteete ettt sttt saee e 371
direct_mesSages/SENt......cccevveiierieneeniieieereesie e ete e ereere e 372
direct_MeSSAZES/MEWcccuveveiiiiieiieieerieeieerteesieeteesaeeeesressesaesaeens 372

direct_messages/desStroy.......ccouerieriererniienieenieeieeiesiesreevesaenanens 373

Table of Contents X(/'i i

Favorite Methods..........ccooviiieiieeee e 373
FAVOTILEES ..ottt e e v e eaaeen 373
fAVOTIEES/CIEALEeeeiieeeeeieeeeeee et 374
faVOTiteS/dESIOY ..ccveeeiiiiiiieieeiece et 374

Social Graph Methods...........ccveiieiiieiieiicieeeeeee e 375
fOILOWEYS/IAS ...t e e e ens 375
3 G 1S 6 1= 4 U K- J TR 375

Friendship Methodscocoiiiiriiiiiniiiceeee e 376
friendships/Create........covevieviieciieiieiecieeeceese e 376
friendships/deStrOycccvevievieeiiieiiiiieciececeee e 376
friendships/eXiStsc.cociieiiiieeiiiceeeeee e 377
friendships/ShOWcocuiieiiiceeee e 377

Help Methodsooooiieeieeeeeeeeee ettt 378
REIP/EEST ..t 378

Notification Methods..........ccoooiieiiieiiicececee e 378
NOtIficatioNS/fOlIOWcoovuviiiiiiiiieeie e 379
NOLIfiICAtIONS/ICAVEcevvviiieiieiieeeee e 379

OAUth Methods......c..oiiiiieeeeee e e 379
oauth/access_tOKEN.........cccuviieeiiviiieiiec e 380
oath/authenticatecocvieeeieiiiecieeee e 380
0aUth/aULNOTIZEc..ooiieiiiiiiceeee e 380
oauth/request_tOKEmNccocveviiniinieieeeeeeeece e 380

Saved Searches Methods...........coccvveeiiiiiiciiieecceeeee e, 380
SAVEA_SEATCIIES ...ttt e e s e e 381
saved_searches/Create.........occcuveeeeecveicecceeeccceee e 381
saved_searches/destroycccccvveeeciieccieicieerie e 381
saved_searches/ShOWcoooovviioiiciiecceeee e 382

Search Methodsooouiiiiieee et 382
SECATCH .ttt e 382
EFEIIAS ottt et e e ae e evee e tae e tbeestaeeeaseesabaeenraaens 383
trends/daily ...cooeeieeienieiee e 383
TrENAS/CUITENToeieeieiieeeee et eereeeeaeeeneeens 384
treNdS/WEEKILYcc.vieeeeiieiieeeeee ettt 384

Spam Reporting Methodsc.ceoeeiiiieiiinieniceeeeeee e 384
TEPOTT_SPAIM ...cuiiviiieeieiietestesteereeeesesesteereeseessesessessesseeseessessensessenses 385

Status MEthOASccveiviiiieiiciecieceeeee ettt e et eae s 385
StAtUSES/AESIIOY ..oovieiiiiiiiieieeeee ettt 386
StAtUSES/fOIIOWET'S........evvieieieee e e 386
StAtUSES/fHiENAS.....ccuveiieiieieeeeeee e 387
statuses/friends_timelinecccccooovvviiiiiiiieiiciiecceeee e 388
statuses/home_timeline..........ccooouveiieiviiiiiiiieiieeeec e 389
StatuSES/MENTIONScocvvviiiiiiiiiieieee e 389
statuses/public_timeline............ccceeeviieeiiiicieeiieeeeeeeeeee e, 390
StAtUSES/TEIWEET ..o e 390

statuses/retweeted_DY_Me.......c.cccoeviieiieiinienieceeceeeee e 390

X'(/iii Twitter Application Development For Dummies

statuses/retweeted_of_me....................
statuses/retweeted_to_me....................
statuses/retweets.......cccceeeeieeeivveeennnennn.
statuses/Showccccevvvvvieiieiiiiiieeecns
statuses/update...........cccceevveeeireeneenen.
statuses/user_timeline............cccc..cc.....
User Methods........coccveeeiiieciieiecieeeeeeeeee
USErS/SNOWoooveiiiieciieeceeececee s

Appendix B: Gallery of Twitter Applications

INAEK «....neeaanaaaaaaaaaaeeeeeeacacacaaceeeeeeeceeeaanneeececeececasee §13

Introduction

Welcome to the first edition of Twitter Application Development For
Dummies, the book written especially for people who want to create

Twitter applications but haven’t a clue about how to start.

About This Book

There are a couple of ways to use this book, depending on your preferences
and experience.

If you're a Twitter newbie, you can start reading and working with Chapter 1 and
keep going until you reach the index at the end. Everything falls in sequence as
you build experience and knowledge.

This book also works like a reference. Start with the topic you want to find
out about. Look for it in the table of contents or in the index to get going.
The table of contents is detailed enough that you should be able to find most
of the topics you're looking for. If not, turn to the index, where you can find
even more detail.

After you find your topic in the table of contents or the index, turn to the
area of interest and read as much as you need or want. Then close the book
and get on with it.

Of course, this book is loaded with information, so if you want to take a brief
excursion into your topic, you're more than welcome. If you want to know
the ins and outs of building an online store, read the whole chapter on store-
fronts. If you just want to know how to post a product on your site, read just
the section on adding products. You get the idea.

This book rarely directs you elsewhere for information — just about everything
that you need to know about is right here. If you find the need for additional
information on related topics, plenty of other For Dummies books can help.

2

Twitter Application Development For Dummies

What You Don’t Need to Read

Aside from the topics you can use right away, some of this book is skippable.
[carefully placed extra-technical information in self-contained sidebars and
clearly marked them so that you can steer clear of them. Don’t read this stuff
unless you're really into technical explanations and want to know a little of
what’s going on behind the scenes. Don’t worry; my feelings won’t be hurt if
you don’t read every word.

Foolish Assumptions

I’'m making only one assumption about who you are: You’re a computer user.

How This Book Is Organized

Inside this book, you find chapters arranged in five parts. Each chapter breaks
down into sections that cover various aspects of the chapter’s main subject.
The chapters are in a logical sequence, so reading them in order (if you want to
read the whole thing) makes sense. But the book is modular enough that you
can pick it up and start reading at any point.

Here’s the lowdown on what’s in each of the five parts.

Part I: Catching Up to Twitter
and App Development

The chapters in this part present a layperson’s introduction to what Twitter
development is all about.

The best thing about this part is that it starts at the very beginning and doesn’t
assume you know how to download and upload and extract and install software.
It also suggests simple solutions on how to get started. In other words, this
part is aimed at ordinary people who know almost nothing.

Introduction 3

Part 11: Ideation — Coming Up
with an ldea

The goal of the chapters in this section is to get you started working on a
great Twitter application. There are technical details, and blue-sky tips.

Part I1I: Creation — Developing
Vour Application

The chapters in this part show you how to take control of your application
and detail it.

Part IU: Monetization — Making
Money with Your Application

Hey, there’s more to life than money. That’s why we keep the money stuff
safely tucked away here.

Part U: The Part of Tens

This wouldn’t be a For Dummies book without a collection of lists of interest-
ing snippets.

Icons Used in This Book

Those nifty little pictures in the margin aren’t there just to pretty up the
place. They have practical functions:

Hold it — technical details lurk just around the corner. Read on only if you
have a pocket protector.

Pay special attention to this icon; it lets you know that some particularly
useful tidbit is at hand — perhaps a shortcut or a little-used command that
pays off big.

Twitter Application Development For Dummies

\‘&N\BER
&
Did I tell you about the memory course [took?

\NG/
S

Danger, Will Robinson! This icon highlights information that may help you
avert disaster.

Where to Go from Here

Yes, you can get there from here. With this book in hand, you're ready to build
your own robust and useful Twitter application. Browse through the table

of contents and decide where you want to start. Be bold! Be courageous! Be
adventurous! Above all, have fun!

Part|
Catching Up to
Twitter and App
Development

The 5th Wave By Rich Tennant

@m e \
HTENNANT

“T'd respond to this person’s comment on Twitter,
but T’'m a former Marine, Bernard, and a
Marine never retweets.”

In this part . . .

' he chapters in this part present a layperson’s intro-
duction to what Twitter development is all about.

Chapter 1
Catching Twitter's Coat Tails

In This Chapter

Why Twitter is a compelling platform
The rationale behind building a Twitter app

A few years ago a small Web site called Twitter appeared on the Internet.
Twitter is kind of like a blog, but your posts must be less than 140 char-
acters. Twitter users call their posts fweets. Of course, your tweets have to
be that small to be sent as a text message to your followers. That’s Twitter
lingo for subscribers to your Twitter updates, usually your friends, family,
and fans. As it turns out, my dad is one of my biggest fans. All of my small
daily updates about my life go straight to his cell phone. Likewise, all of his
updates go to my phone. This way we get to share little things we wouldn’t
otherwise take the time to call and talk about. This helps bring us closer
together, even though we live miles apart.

The idea of keeping in touch with friends and family is comforting and
increases Twitter’s appeal, but Twitter has even larger implications.

Why Do People Tweet?

You already know one reason I tweet, to stay close to friends and family.
But there are several other reasons why people might be compelled to get
involved with Twitter. Here are a few examples:

v Stay in touch with friends and family.

v Get instant advice from friends.

v Meet new people.

v Keep informed of stock market trends.

v Build cool stuff with their open API.

v+~ Build a business around Twitter.

8 Part I: Catching Up to Twitter and App Development

» Promote a business with Twitter and interact with customers.
»* Get involved in politics.
v~ Stay informed of breaking current events as they happen.

v~ Talk to influential people and celebrities.

These are just a few common reasons why someone might be on Twitter.
There are even more creative uses of Twitter. In Chapter 4, you learn about
a plant that tweets when it needs to be watered. You can also use Twitter to
update your Google Calendar by sending a direct message to @gcal. If you
want to know the time in London, you can follow @big_ben_clock that bongs
every hour on the hour.

Perhaps a more practical example of creative Twitter use is @AusTralffic, run
by the Austin American Statesmen newspaper. The account includes only
tweets on traffic conditions in Austin, Texas. People can even direct message
(DM) the account to send traffic reports, which are then shared with all the
account’s followers. If you follow this account to your phone, you have an
instant, real-time feed of traffic conditions in Austin.

One of Twitter’s strengths is that it doesn’t limit what people can do with it.
Nor do they presume to know exactly how everyone should interact with it.
The founders of Twitter have left it up to the users to discover what Twitter
is to be used for and how.

Some now common features of Twitter were originally derived out of how the
Twitter community decided to use the application. @ replies for instance were
invented and adopted by the Twitter community first. @ replies are used when
one Twitter user references another Twitter user’s screen name. For example,
if someone wanted to mention me in a tweet, they would type @DustyReagan.
Twitter noticed how people were using the @ sign when they referred to
another Twitter account, and to make the @ sign more helpful, Twitter linked
it to the referred users account. Then they made it so you could search for all
mentions of your screen name. Some other conventions that came out of the
Twitter community include hashtags and retweets.

What Makes Twitter So Special?

Twitter’s premise is simple, but its effects are wide-reaching. Here are four
features of Twitter that make it more than a blog with 140 character posts:
v Asymmetrical relationships
v Follow and update using SMS
v Trends and Search
v Open API

Chapter 1: Catching Twitter's Coat Tails

A brief glossary of terms

If you haven't been around the Twitter block,
you need to learn a few Twitter-specific terms
to communicate with your new Twitter friends
and colleagues.

v~ direct message — Sometimes referred to
as a DM, a direct message is a private mes-
sage sent to you, or by you, over Twitter.

v FailWhale — In the early days of Twitter,
the small company suffered from growing
pains as its application became popular.
Unfortunately, this caused Twitter to crash
frequently. When Twitter was down, an
illustration of several birds lifting a whale
out of the sea via ropes held from their
beaks was displayed. This image became
known as the FaillWhale.

v hashtag— A word proceeded with a # sign.
Hashtags are used to signify that a status
update is about a particular topic to allow
for easy searching. For example, confer-
ence goers may tag all of their updates
with a hashtag unique to the conference so

other attendees can read all the updates
pertaining to the event.

@ replies — Pronounced “at replies.”
@ replies are how you reference another
Twitter user. For example, | am @Dusty
Reagan. You use @ replies to direct a tweet
to a user or to mention a user in passing.
@ replies are sometimes referred to as
“mentions” or a “mention.”

retweet — Abbreviated RT. A retweet is
a status update from someone you follow
that you share with your followers, by using
Twitter’s built-in retweet feature or by copy-
ing the update attributing the original author
and posting it from your Twitter account.

tweet — A tweet is another word for a
status update. It can be used as anoun or a
verb. For example, you can tweet a tweet.

v twoosh — A tweet that is exactly 140

characters.

Asymmetrical relationships

Twitter’s relationships structure is simple, but revolutionary. Before Twitter,
most social networking sites, such as Facebook (http: //facebook.com)
and MySpace (http://myspace.com), required mutual friendships. You
couldn’t see a user’s information if he or she didn’t specify you as a friend.
Twitter threw this model out the window.

On Twitter, you can follow the updates of anyone who has a public account,
and they don’t have to follow you back. This means celebrities and politicians
can communicate with their fans and constituents without becoming friends
with half of the Internet’s population. This asymmetrical relationship model
parallels relationships in real life. There are people whom I admire, who have
simply never met me. Now | have a way to stalk those people! I can even send
their updates to my phone. I write this with tongue in cheek — well, the stalking
part anyway. Unless your account is private, tweets are intended to be public
broadcasts of information.

9

1 0 Part I: Catching Up to Twitter and App Development

\\3

Follow and update using SMS

[usually attend one or two technical conferences per year. These conferences
usually last a few days, and [may know a few people at the event. Attending the
panels is straightforward enough, but there is valuable time in-between panels
and after the conference when people meet up, have a good time, exchange
ideas, and so on. At these times, you have two options: find out where every-
one is hanging out and join them, or go back to the hotel.

Twitter is my lifeline during these times. At conferences, I follow the people |
know using SMS updates that are sent to my phone. This way, [know where
the good parties are, where the free beer is, and where the conference pre-
senters are hanging out.

Still not convinced about the usefulness of SMS updates? Here’s another
example.

Many news organizations have seen the potential of broadcasting news to
Twitter. If you want to stay up-to-date on current events, you can’t get much
more current than having headlines sent to your phone in near real-time.

Along with receiving updates to your mobile phone, you can post updates to
Twitter using SMS. This feature allows users to update their Twitter status while
they’re on the go, in real-time. The next time you go downtown for drinks or
head to the coffee shop for a mid-afternoon cup of espresso, you can alert your
friends. This may cause an impromptu gathering of good friends.

Trends and search

Following the Twitter accounts of news organizations to stay on top of current
events is one option, but using Twitter, you can get information on newsworthy
events even before the news organizations do.

One way to do this is by monitoring trending words and phrases on Twitter.
Twitter has this functionality built in and provides the current trending topics
to all users. When real-time events occur, they often spread organically by
word of mouth, bubbling up in popularity until they become a trending topic.

A frequently referenced Twitter news-breaking event happened on December 20,
2008, when Mike Wilson (@2drinksbehind) tweeted that he was just in a plane
crash. Thirty-eight people in the crash were injured. Everyone survived.
News of the event spread quickly on Twitter before any major media outlet
could cover the event.

Chapter 1: Catching Twitter's Coat Tails ’ ’

Trends are helpful in finding recent interesting topics, but if you're looking
for news on a particular subject, you can use Twitter’s search functionality.
Using Twitter Search, you can monitor Twitter for words and phrases in near
real-time. You can even limit your results to tweets from particular geographical
locations.

<P Search is also useful for monitoring mentions of your company’s brand name or
product. You can then interact with users who are talking about your brand from
your company’s Twitter account. Never before has it been this easy for a brand
to contact customers about their concerns before their customers contact them.

The open APl

The real reason Twitter is so appealing to developers, inventors, hackers, and
entrepreneurs is the open API. Twitter provides all its data and functionality
for free as an open API This means you can invent and build new applications
around Twitter’s functionality. You can even create a whole new Twitter inter-
face from the ground up.

Twitter encourages development with its API and has even acquired compa-
nies that build spectacular applications on top of Twitter. Twitter’s current
search engine was once an independent company called Summize.

The open APl is probably the reason you picked up this book.

Why Should Vou Develop a Twitter App?

Opportunities to build interesting and compelling things in and around Twitter
abound. Some third-party applications have started to show themselves as
the leader in a particular facet of the Twitter ecosystem. But these leaders
could use some competition, and there are still opportunities to use Twitter
in ways no one has even thought of before. Developers are constantly pushing
the envelope on how Twitter can be useful and entertaining.

[built my first Twitter app, Friend Or Follow (http://friendorfollow.com),
because [wanted to know who wasn’t following me back on Twitter. Plus

it was something fun to do on the weekend. As it turned out, other people
found Friend Or Follow useful as well. As my app’s popularity began to grow,
[realized I could make money with it through advertising. Suddenly I had a
small business built on top of Twitter.

1 2 Part I: Catching Up to Twitter and App Development

If you're looking for a reason to build a Twitter app, money could be one of
them. However, it can also be fun and rewarding to learn something new, and
if you're fortunate enough to gain an audience with your app, it can be really
gratifying to build something people appreciate.

Here are few reasons why you might want to develop a Twitter app:

1 Make money: Twitter is trendy right now, and its user base is growing
every day. There are numerous ways to make money developing Twitter
applications. I cover this in detail in Part IV.

v Build your reputation: Twitter is a social platform. If you build something
people find useful or entertaining, you will gain a reputation with the
users of your app.

+* Support a cause: Leveraging the social nature of Twitter, you could build
an app that raises awareness and money for a charitable cause or a
philosophical idea. See TwitCause (http://twitcause.com) for an
example of this.

v+~ Fill a need: If there is something you don’t like about Twitter, you can fix it
using the APL. It’s quite likely several other people share your sentiments
and will enjoy your fix.

+* Promote a brand: In much the same way in which you can support a
cause building a Twitter app, you can promote a brand with a Twitter
app. For example, @twelpforce is a Twitter account used by Best
Buy. They built an internal application that allows their employees to
respond easily to technical inquiries directed to the account.

v Scratch an itch: Sometimes you just want to build something cool. You
can’t help it, and that’s awesome! Build something cool because it’s fun.

Turning Motivation into Action

A\

[hope you're now motivated to start building a Twitter app. Now it’s time to
turn that motivation into action.

The next chapter is a refresher course on Web application development
using a LAMP (Linux, Apache, MySQL, and PHP) stack.

If your Web development skills are strong, feel free to head straight to Chapter 3
where you post your first message to Twitter using the APIL

Chapter 2

Web Development
Refresher Course

In This Chapter

The basics of Web development
Alook at the LAMP stack
Reference material for the Web developer

A\

A n interesting thing about Twitter application development is you can
interact with the APl in any language and on any platform. Windows
clients, iPhone applications, and Android apps use different programming
languages and still interact with the Twitter API in similar ways.

In this book, [use a typical LAMP (Linux, Apache, MySQL, and PHP) stack

to demonstrate the Twitter API. I use the Web platform as a teaching tool
because it has become prevalent, multiplatform, and Twitter itself is a Web
app. I use a LAMP stack because it is a widely adopted development platform
and all the components are open source and free.

If you're already an expert LAMP user, you can skip to Chapter 3.

If Web programming isn’t your native language, read this chapter. However,
this isn’t a definitive LAMP resource. The topics in this chapter could easily
fill several books on their own. My aim here is to show you enough to get you
through the rest of the book.

Writing HTML & CSS

If you've done Web development work before, you're probably familiar with
HTML and CSS. HTML (Hypertext Markup Language) is the language of the
Web. Web browsers interpret the semantics of the HTML elements, called
tags, and render a human readable page for the visitor. CSS (Cascading Style

1 4 Part I: Catching Up to Twitter and App Developement

Sheets) is the markup language that tells the browser how the HTML ele-
ments are to be styled and displayed. In the early days of the Web, HTML
often contained both the content of the Web page and information on how
the page was to be styled. Developers would often inappropriately use HTML
tables to structure page elements, and the HTML specification included tags
that defined display style such as “font” and “bold.” These tags have since
been deprecated. The modern practice is to separate content from style.

There are several reasons to separate content from style.

v Style changes are simple. For example, using external CSS you can
change style elements site wide, like font size and background color.

v HTML code is easier to read with the style elements removed. This
makes maintenance easier.

v File sizes are decreased, which increases the speed of your Web site.

v Coding to Web standards increases the likelihood your site will render
correctly in a wide variety of Web browsers.

v The order of your content can be structured logically like a document
because you can rearrange elements aesthetically using CSS. This means
in cases where aesthetics are irrelevant, such as screen readers for the
blind, and search engine spiders, your Web page will still be readable.

The organization that writes the standards on HTML, CSS, XML, and numer-
ous other Internet protocols is the W3C (World Wide Web Consortium). This
organization is made up of organizations that have a stake in Web standards.
Some obvious examples are companies that build Web browsers, such as
Microsoft, Mozilla, and Apple. Without the W3C there would be numerous
proprietary versions of HTML and developers would be forced to develop to
the most popular browsers.

The W3C writes specification documents on how each version of HTML is to
function. With each new version of HTML comes a new specification docu-
ment. Web browsers are supposed to render your HTML based on the speci-
fication document, called a doctype, which you choose and declare in your
HTML. So if you declare your page HTML 4.01, the browser should render
your page based on HTML 4.01 rules. Current doctypes include
v HTML 2.0
v HTML 3.2
v HTML 4.01
* Frameset
¢ Transitional

e Strict

Chapter 2: Web Development Refresher Course

v XHTML 1.0
* Frameset
¢ Transitional
e Strict

v XHTML 1.1

Unless your target audience is known to run legacy browsers, use either
HTML 4.01 Strict or XHTML 1.0 Strict.

The “strict” doctype of HTML 4.01 and XHTML 1.0 removes many deprecated
tags and creates a more future proof document than transitional or frameset
doctypes. These later two doctypes include some deprecated tags to make the
transition for older Web sites easier.

XHTML (Extensible Hypertext Markup Language) is an HTML specification
that is designed to make HTML more like a semantic collection of data, simi-
lar to XML. It relies on CSS to define the page’s design. The key difference
between HTML and XHTML is that XHTML must be valid XML. The rules for
HTML are much more lenient in this regard.

Here are some rules to make your HTML valid XHTML:

v The root element must be html and must contain an xmlns attribute that
defines the XHTML namespace.

» You must always close XHTML tags including empty elements like the
break and image tag. A closed break tag looks like this:

v+~ All XHTML tags must be lowercase.

v All XHTML tag attributes must have a value. You cannot shorten
an attribute such as readonly. That attribute must appear as:
readonly="readonly".

v~ All XHTML tag attributes must be surrounded by quotes.
Here is an example of a short valid XHTML document:

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" >
<head>
<title>Example XHTML Document</title>
</head>
<body>
<p>Tags must be lowercase and closed,

including singleton tags like the break tag.</p>
</body>
</html>

15

1 6 Part I: Catching Up to Twitter and App Developement

HTML Elements

HTML documents contain two main sections: the head and the body.

The head occurs at the top of the file and is denoted by the <head> tag. It
contains non-visual information about the page, and usually contains these
tags:

v~ title: Denotes the name of the Web page. This usually appears at the
top of the browser window, and is used in bookmark labels and search
engine results.

v~ link: The link tag is used to link other resources to this Web page.
Examples include external CSS files and favicons (the tiny 16 x 16 icon
that is displayed in your bookmarks and browser address bar).

1 meta: The meta tag is used to define ancillary information about a Webpage,
such as keywords, a short description, or copyright information.

v style: Used to embed document wide CSS code directly in the head
section.

v script: Both embedded and external JavaScript code make use of the
script tag.

The body of the HTML document, denoted by the <body> tag, is where the
content of the page resides. All content tags can be categorized into two
groups: block-level elements and inline elements.

By default, block-level elements occur on a new line. Block-level elements
may contain nested block-level tags and inline tags. Examples include

1 Headings: Heading tags are used to separate a document by topics and
sub-topics. Example:

<hl>Animals</hl>
<h2>Domestic</h2>
<h3>Dogs</h3>
<h3>Cats</h3>

v Paragraphs: Paragraph tags are naturally used to define a paragraph.

<p>This is a paragraph.</p>

1 Unordered lists: Used for bulleted lists.

eggs</1li>
bacon</1i>
milk</11i>

Chapter 2: Web Development Refresher Course 1 7

v Tables: Used for tabular data, tables contain other block-level elements
to define the header row <th>, a row <tr>, and a column <td>.

<table>
<th>
<td>Name</td>
<td>Number</td>
</th>
<tr>
<td>Dusty</td>
<td>555-2368</td>
</tr>
<tr>
<td>Jenny</td>
<td>867-5309</td>
</tr>
</table>

v Forms: Forms are used to send user input data back to the hosting
server. Forms are vital part of HTML and are necessary for nearly all
ecommerce and Web applications, including Twitter. While the form tag
is a block-level element, the field tags are inline elements.

<form name="input" action="login.php" method="post">
Username: <input type="text" name="username" />
Password: <input type="password" name="password">
<input type="submit" value="Submit" />

</form>

v DIVs: The div tag is a generic block-level element. It is used primarily to
wrap sections of your document in logical blocks, so they can be easily
manipulated and styled with CSS.

<div id="footer">
<p>Copyright 2011</p>
</div>

In contrast to block-level elements, inline elements may only contain other
inline tags. Examples include

v Anchor links: Anchor tags make the World Wide Web a Web. Links to
external sites and internal pages weave a Web of information and con-
nects the Web. The anchor tag contains an important element called
“target” that tells the browser to open the link in a new or the current
window. By default the link will open in the current window. You can
specify target="_blank” to have a link open in a new window.

Twitter</
a>

1 8 Part I: Catching Up to Twitter and App Developement

v Images: Image tags display images. They contain several important attri-
butes including alt, title, height, and width. The alt attribute is short for
alternative text; it’s used to provide text description of the image. The
title attribute is the text that will appear in a browser tooltip when your
cursor is hovering over the image. Naturally. the height and width attri-
butes define the images height and width. By defining an image’s height
and width, the browser doesn’t have to wait for the image to finish
download to correct render the elements around the image. You can
also use height and width to force an image’s size. However, this doesn’t
alter its file size.

<img src="http://twitter.com/logo.gif" alt="Twitter
Logo" title="Twitter" height="100" width="80"
/>

v Strong: The strong tag is used to denote a word or phrase as important.
Its default behavior is to bold the word or phrase. However, using CSS
you may style the important text however you wish.

Please do not delete these files.

v Line break: Browsers ignore line breaks in HTML markup. To tell the
browser you want a new line, you must use a
 tag.

<p>The White House

1600 Pennsylvania Avenue NW

Washington, DC 20500</p>

Styling Your HTML

You can style HTML with CSS in three different ways:

v Inline: You can use the style attribute on any HTML tag to add style to
an element. It looks like this:

<p style="margin:10px">Hello Twitter!</p>

This is a poor method for styling your page, because your style only
applies to the element it’s on. So if you want all your paragraphs to have
a margin of 10px, you have to add this style to every paragraph tag. This
also means that if you want to change the design, you have to update
every tag.

Chapter 2: Web Development Refresher Course

v Embedded: You can embed your style in the head section of your HTML
page by placing your CSS in between the style tags, like this:

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.
dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" >
<head>
<title>Example XHTML Document</title>
<style type="text/css">
p { margin: 20px; }
</style>
</head>
<body>
<p>Hello Twitter!</p>
</body>
</html>
o Embedding your CSS centralizes your style elements. If you want to
make a style change, you only have to change it once at the top of the

page.

v External File: The best option is to create an external CSS file with all
your styles in it and link to it from your HTML file, like this:

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3 .org/TR/xhtmll/DTD/xhtmll-strict.
dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" >
<head>
<title>Example XHTML Document</title>
<link rel="stylesheet" type="text/css"
href="test.css" />
</head>
<body>
<p>Hello Twitter!</p>
</body>
</html>

Using an external CSS file is the best way to style your Web site. The external
file can be applied to multiple Web pages, centralizing the design for your
entire site. This also decreases your Web site’s download size, because the
user doesn’t have to download redundant style data.

19

20 Part I: Catching Up to Twitter and App Developement

If these three methods are applied to the same element at the same time, the
inline CSS takes precedence over the embedded CSS, which takes precedence
over the external CSS file.

When styling your CSS, you use selectors to specify what HTML attributes
you want to style. There are four main CSS selectors you should know for this
book:

v Type selectors: Type selectors use the HTML tag name to identify what
tags you want to style. For example, to give all the paragraphs on your
Web site a margin of 10px, you would do this:

p { margin:10px; }

v (Class selectors: You can add a class attribute to any HTML tag and
select elements with a particular class name using a dot followed by the
class name. For example, you might want to add a class called e-mail to
all link tags that link to an e-mail address. To select and style all those
e-mail links, you would do this:

.email { color:red; }

v ID selectors: You can give any HTML element an ID attribute. However,
the ID you give the element must be unique to the page. You can’t have
duplicate IDs on the same page. To select an element based on its ID you
use a pound sign like this:

#navigation { margin-top:20px; }

v Descendant selectors: You can select elements nested inside of other
elements by using a descendant selector. For example, if you wanted
to select all the links inside of a div tag with and ID called “footer” you
would do this:

#footer a { color:red; }

These are the primary CSS selectors you need to have a firm grasp on.

When dealing with CSS selectors, you need to consider the nature of cascading
style sheets. Cascading styles work by applying the styles of the most general
selector first, then overwriting those styles with more specific selectors. The
order of which the rules are encountered by the browser is irrelevant. To give
you an example, a general selector could be a style applied to all paragraphs
like this:

p { margin:10px; color: red;}

Chapter 2: Web Development Refresher Course

Figure 2-1: |

Use the box

model to !
adjust

spacing on

your page. |

A more specific selector might pick a specific paragraph with an ID of “intro”
like this:

p #intro { color:blue; }

In this example, the 1st CSS rule will give all your paragraphs a 10px margin
and red text. The specific “intro” paragraph will have a 10px margin like all
the other paragraphs. However, because we have a second rule that styles
the “intro” paragraph specifically, that style will make the “intro” paragraph
text blue instead of red.

Here are the most basic CSS styles you will encounter regularly in the wild.

The Box Model

The box model is an HTML element’s margin, border, padding, height, and
width. Look at Figure 2-1 for an illustration of each one of these spaces. The
most common units of measurement to adjust spacing are px for pixels and
em for em-length. Em-length is defined as the width of the letter “m” in your
currently selected font.

Border
Padding
Content

width

Margin & Padding

You can specify the side of the box you want to apply your margin, or pad-
ding, by using the indicators top, right, bottom, or left, seen in Listing 2-1.

Listing 2-1: Margin and Padding

#contentBox {
margin-top: 10px;
padding-bottom: 10px;

21

22 Part I: Catching Up to Twitter and App Developement

If you just apply one measurement, it’s applied to all sides of the box. You
can also use shorthand by putting the measurements in the order of top,
right, bottom, left, as seen in Listing 2-2.

Listing 2-2: Margin and Padding Shorthand

#contentBox {
margin: 10px;
padding: 10px 5px 10px 5px;

}

Border

You can set the border’s width, style, and color. Like the margin and padding,
it can be applied to specific sides using the indicators top, right, bottom, left,
or it can be applied to all sides at once.

Listing 2-3 shows an example of how to set the border CSS.

Listing 2-3: Border Styles

#contentBox {
border: 2px solid #000;
border-bottom: 5px dashed red;
}

Height & Width
Setting the height and width of an element is straightforward. See Listing 2-4.

Listing 2-4: Height and Width

#contentBox {
height: 100px;
width: 200px;

}

Font Styles

You can alter fonts by changing their size, font-family, weight, style, and
color. You can change the alignment of your text by using the text-align style.
Possible alignments include left, right, center, and justify. Listing 2-5 shows
an example of how to decorate your fonts.

Chapter 2: Web Development Refresher Course 23

Listing 2-5: Font Decorations

p {
font-family: "Times New Roman", Georgia, Serif;
font-style: italic;
font-weight: bold;
font-size: 16px;
color: #333;
text-align: center;

}
Floating

The floating style is used to position an element to the left or right on the
surrounding elements. It’s commonly used to position images in text, but can
also be used to layout other page elements. See the example in Listing 2-6.

Listing 2-6: Font Decorations

img {
float: left;
}

Display

The display style can be used to change a block level HTML element into an
inline element, and vice versa, but the main reason you need to know about
the display style is because it can hide elements if you set the property to
none. This is useful for dynamic JavaScript elements and can make a Web
page feel truly interactive. See Listing 2-7.

Listing 2-7: Hide an Element with display:none

img {
display:none;

}

Background Styles

You can alter the background image or color on any element using back-
ground styles. The example in Listing 2-8 sets the background color to white,
and positions a non-repeating background image in the top left-corner.

Listing 2-8: Background Styles

body {
background: #fff url ('example.png') no-repeat top left;
}

24 Part I: Catching Up to Twitter and App Developement

Formatting in XML & JSON

XML (Extensible Markup Language) and JSON (JavaScript Object Notation)
are types of textual data formatting. By formatting textual data in a standard
format, the data can be easily exchanged and parsed. This is particularly
useful for Web site data exchange through Web services and APIs, such as
Twitter’s API. When you make a request to Twitter, they respond by return-
ing XML or JSON data, depending on which data format you requested. You
can then parse that data and go merrily on your programming way.

If you're writing a JavaScript application, JSON is the data format for you.
Using JSON, you can take the response from the Twitter API and access
natively like an object. You can see an example JSON response from Twitter
in Listing 2-9.

Listing 2-9: Example JSON Object

{"trends": [{"name": "#amazonfail", "url":"http:\/\/search.twitter.com\/
search?g=%23amazonfail"},... truncated ...],"as_of":"Mon, 13 Apr
2009 20:48:29 +0000"}

XML is a popular data formatting choice because it has been around for a
while. XHTML is a type of XML. It is made up of tags, elements, and attri-
butes. Due to the establishment of XML, most program languages either have
native parsers or open source libraries with XML parsers that you can use to
easily extract data out of an XML file. You can see an example XML response
in Listing 2-10.

Listing 2-10: Example XML Object

<?xml version="1.0" encoding="UTF-8"?>
<status>
<created_at>Tue Apr 07 22:52:51 +0000 2009</created_at>
<id>1472669360</1d>
<text>At least I can get your humor through tweets. RT @abdur: I don't mean
this in a bad way, but genetically speaking you're a cul-de-sac.</
text>
<source>TweetDeck</source>
<truncated>false</truncated>
<in_reply_to_status_id></in_reply_to_status_id>
<in_reply_to_user_id></in_reply to_user_id>
<favorited>false</favorited>
<in_reply_ to_screen_name></in_reply_to_screen_name>
<geo/>
</status>

Chapter 2: Web Development Refresher Course 25

The Basics of PHP

\\3

PHP is an open-source server side programming language. It is used to
dynamically create Web pages on the fly. With a language like PHP, you can
create a custom experience for every viewer.

The examples in this book are written for PHP version 5 and newer. PHP is so
prevalent on the Web that most Web hosting companies come with PHP pre-
installed. If you don’t already have a favorite Web hosting company to try the
PHP examples in this book on, I recommend Nearly Free Speech (http://
nearlyfreespeech.net).

PHP is a rich language with a huge library of built-in functionality. In this
chapter, I cover the essentials you need to understand the Twitter APl exam-
ples in this book, including

v Conditional Statements

v Loops

v Functions

v Arrays

v cURL

v PHP DOMDocument Class

v PHP JSON Functions

The first thing you need to know about PHP is the echo command. Echo
simply prints a string to the screen, as seen in Listing 2-11.

Listing 2-11: Print a String to the Screen

<?php
echo "Hello world!";

?>

The next thing you need to know about PHP is its comments syntax. use
comments in example code throughout this book to help you understand
what is going on in the code. Example of PHP comments syntax can be seen
in Listing 2-12.

26 Part I: Catching Up to Twitter and App Developement

Listing 2-12: PHP Comments Syntax

<?php

echo "This will be printed";

// This will not

Nor will this

/*

This also won't print,

and is useful for commenting out multiple lines.
*/

?>

Conditional Statements

Conditional statements are programming statements that perform differ-
ent actions depending on whether a specified condition is true or false.
Conditional statements are a common structure across most programming
languages.

The conditional statement used most often in this book is the if-then-else
statement. It works just like the name implies: if a condition is true, then per-
form a task. Else perform a different task. The code for an if-then-else state-
ment in PHP looks like Listing 2-13.

Listing 2-13: If-Then-Else

<?php

if($x == 1)
{

echo "x equals 1";

}
else

{
echo "x does not equal 1";

}

?>

Chapter 2: Web Development Refresher Course 2 7

To determine whether a condition is true or false, a comparison operator is
used. PHP comparison operators you need to know for this book include
V¥ == equal to
Example: (1 == 2) returns false
v |= not equal to
Example: (1 != 2) returns true
V” < less than
Example: (1 < 2) returns true
V¥ > greater than
Example: (1 > 2) returns false
1 <= less than or equal to
Example: (1 <= 2) returns true
v >= greater than or equal to
Example: (1 >= 2) returns false
You can test for multiple conditions using logical operators. Logical opera-
tors you need to know for this book include
v && and

Example: ($x && $y) return TRUE if $x and $Y are both TRUE.
V¥ || or

Example: ($x | | $y) return TRUE if either $x or $Y are TRUE.
» ! not
Example: (1$x) return TRUE if $x is not TRUE.

Another conditional statement that is used in this book is the elseif part. You
can use one or more elseif parts in an if-then-else to combine multiple state-
ments. The first statement that is found to be true is executed. The other
statements are ignored, including the final else statement. Listing 2-14 shows
an example if-then-else statement with an elseif part.

28 Part I: Catching Up to Twitter and App Developement

Listing 2-14: Elself Part
<?php

echo "x equals y";
}
elseif ($x > Sy)
{
echo "x is greater than y";
}

else

{

echo "x is less than y";

}

?>

Loops

There are occasions in any programming language when you need to repeat a
task until a certain condition is met. For these scenarios, it is appropriate to
use a loop. For the examples in this book I use two types of PHP loops:

v foreach
v do while

foreach

Foreach loops iterate over every element inside of an array, starting with the
first element. Foreach only works on arrays, and will produce an error if you
try using it on anything other than an array.

You can use a foreach loop one of two ways. The first way, shown in Listing

2-15, iterates over the given array and assigns the value of the current ele-
ment to a variable [named $value.

Listing 2-15: foreach

<?php

foreach (SarrayElements as S$value)

{
echo "Value: Svalue";

}

?>

Chapter 2: Web Development Refresher Course 29

The second way to use a foreach is to assign the current elements value to a
variable, and also assign that element’s key value to a variable. This is help-
ful for arrays with key value pairs. Listing 2-16 shows an example of how to
assign the key value as well as the elements value.

Listing 2-16: foreach

<?php

foreach (SarrayElements as Skey => Svalue)
{

echo "Key: Skey";

echo "Value: S$value";

}

?>

do-while

Do-while loops work by “doing” something over and over “while” a condition
remains true. As soon as that condition is no longer true, the do-while loop
stops. A do-while loop will always run at least once. Listing 2-17 shows an
example of a do-while loop counting to 10.

Listing 2-17 uses the shorthand $x++. Placing two pluses behind a variable is
the functional equivalent of writing $x = $x + 1.

Listing 2-17: do-while Loop that Counts to 10

<?php

$x = 0;
do
{
SxX++;
echo "S$x
";
}
while($x < 10)

?>

Functions

Another common programming structure in PHP and the examples in this
book, is a function. Functions are chunks of code that can be referenced and
reused. The purpose of functions is to reduce code duplication and make
code more readable. Functions can also take input in the form of parameters
and return a value as output. An example of a function with parameters and a
return value is show in Listing 2-18.

30 Part I: Catching Up to Twitter and App Developement

Listing 2-18: An Example of a Function

<?php

function addTwoNumbers ($x, $y)
{

$z = $x + Sy;

return $z;

}
echo addTwoNumbers (1, 2);

?>

Arrays

An array is a collection of data stored in memory. Each element in an array
contains a key identifier and a value.

v The value can be any type, including an integer, string, object, or even
another array.
v The key must be either an integer or a string.
If no key is specified, PHP will assign the key:
e If no integer key currently exists, PHP assigns a key of 0.
e [f there are already integer keys, PHP assigns the next higher
integer key.

Listing 2-19 shows an example of how to create an array with keys and
values.

Listing 2-19: Creating an Array

<?php

SexampleArray = array ("publisher" => "Wiley", true);
echo SexampleArray [0]; // 1

echo SexampleArray ["publisher"]l; // Wiley

?>

To create an empty array, you would write: $myArray = array();

To add a value to the end of the array, write: $myArray[] = $x;

Chapter 2: Web Development Refresher Course

A\\S

A\

PHP includes numerous functions that allow you to work with and manipulate
arrays and their contents. The online PHP manual includes a list of all the
array functions (http://php.net/manual/en/function.array.php).
For the purpose of the examples in this book, you need to be familiar with the
following array functions:

Vv array_intersect: Takes two arrays, compares the contents of each array,
and returns a new array of the duplicate content.

Example: $mutualFollows = array_intersect($friendslds, $followerslds);

v array_diff: Compares the contents of two array and returns a new array
with the elements that exist in the first array, but don’t exist in the
second array.

Example: $notFollowingYouBack = array_diff($following, $followers);
v array_merge: Combines two arrays into one new array:
e If string keys are duplicated, the later key value is assigned.

e If numeric keys are duplicated, the keys are reassigned in numeri-
cal order.

Example: $newArray = array_merge($arrayl, $array?2);

v array_values: Discards an array’s keys and returns a new array with the
original array’s values but with numerical keys.

This is useful if you want to merge arrays with duplicate keys.
Example: $newArray = array_values($arrayl);
v count: Returns the amount of elements in the array.
Example: $length = count($myArray);
v ksort: Sorts the array by the name of the key.
Example: ksort($myArray);

cURL

cURL stands for client for URLs. It is an open source software project that
consists of two products:

v libcurl
v curl

31

32 Part I: Catching Up to Twitter and App Developement

Libcurl is a multi-platform C-based URL transfer library. It supports numer-
ous protocols, and runs on every platform from Linux to Windows. PHP has
functions built in to support libcurl, making it super easy to interact with the
Twitter API over HTTP.

Curl is a client-side command line tool used to interact with the libcurl
library. With the curl client, you can play with the Twitter API via a basic
command line. To get started, you need to know a few basic case-sensitive
command line options, including

v -u: The username and password to use.

v -d: The data to send in a post request.

v -k: Turn off SSH certificate verification.

Listings 2-20 and 2-21 are some examples of how to interact with the Twitter
API using the curl command line client.

Listing 2-20: Pull Up the Public Timeline

curl http://twitter.com/statuses/public_timeline.xml

Listing 2-21: Post a Tweet

curl -u username:password -k -d "status=Testing curl." https://twitter.com/
statuses/update.xml

To interact with libcurl using PHP, you need the help of a few built-in func-
tions. The functions you need to know for this book include
v curl_init: Create the object to interact with libcurl.

v curl_setopt: Sets the options for the connection, such as post data, URL,
and authentication.

v curl_exec: Executes the connection and returns to remote servers
response.

v curl_getinfo: Use to get information on the last request, such as transfer
speed, and header data.

v curl_close: Closes the connection to the remote server and frees system
resources.

To set the curl_setopt function, there are a few predefined constants you
need to know.

Chapter 2: Web Development Refresher Course

v CURLOPT_URL: The URL you are requesting.

v CURLOPT_USERAGENT: A string that will identify your requests to host-
ing server.

v CURLOPT_RETURNTRANSFER: A Boolean that, when set to TRUE or 1,
returns the response of the request as a string return value of the curl_
exec function.

v CURLOPT_POST: A Boolean that indicates the request is a HTTP POST.

v CURLOPT_POSTFIELDS: The fields you want to include in a HTTP POST
request.

v CURLOPT_SSL_VERIFYPEER: A Boolean on whether you want to verify a
SSH certificate.

v CURLOPT_USERPWD: The username and password for an authenticated
request.

Put all these pieces together, and you see the example in Listing 2-22 that
posts to your Twitter stream.

Listing 2-22: Post a Tweet

Surl = "https://api.twitter.com/1l/statuses/update.xml";
$curlHandle = curl_init();

curl_setopt($ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt ($ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt ($ScurlHandle, CURLOPT_POSTFIELDS, "status=test");

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;
$info = curl_getinfo($curlHandle) ;

curl_close($curlHandle) ;

PHP DOMDocument Class

PHP provides a class to parse any standard DOM (Document Object Model)
markup. XML fits this category, so you can use PHP’s DOMDocument class to
parse the XML results from the Twitter API.

33

34

Part I: Catching Up to Twitter and App Developement

WMBER
e&
&

To get started, create a new DOMDocument object and then call its loadXML
class, as seen in Listing 2-23. The loadXML class loads an XML document
from a string.

cURL'’s curl_exec method returns the response from Twitter in a string. When

requesting XML from Twitter, you simply load that response string into the
DOMDocument object using the loadXML method.

Listing 2-23: Creating a DOMDocument Object

$xml = new DOMDocument () ;
S$xml->1o0adXML (SapiResponse) ;

Now that your DOMDocument is loaded with your XML data, you can parse
the data using the getElementsByTagName method. This method returns a
class called DOMNodelList. It’s essentially a list of all the nodes the method
found. See Listing 2-24.

Listing 2-24: getElementsByTagName

SnodesFound = $xml->getElementsByTagName ('nameOfSomeTag') ;

You can evaluate a collection of tags by using the nodeValue property and a
foreach loop. Listing 2-25 shows an example of how to do this.

Listing 2-25: Loop through a DOMNodelList Object

$screenNameNodes = S$xml->getElementsByTagName ("screen_name") ;

foreach ($screenNameNodes as $screenNameNode)
{
SscreenName = $screenNameNode->nodeValue;
echo $screenName;

}

If you know that your DOMNodeList only contains one node, you can
go straight to that node using the item method, and print its value. See
Listing 2-26.

Listing 2-26: Go Straight to the First Node in a DOMNodeList Object

SerrorMessage = Serrors->item(0)->nodeValue;

You can check the amount of nodes found by reading the public property
length on the DOMNodelList object. If the length is greater than 1, you have
found the tag (or tags) you're looking for.

Chapter 2: Web Development Refresher Course

A\

I often use the length attribute in the API example to check when any error
tags were found in the returned XML. If so, I print them; else, I continue on.

Listing 2-27 shows an example of this.

Listing 2-27: Check the Length of DOMNodeList

Serrors = $xml->getElementsByTagName ("error");

if (Serrors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";

}

else

{
// continue with process

}

PHP json_decode Function

The json_decode function, included in PHP version 5 and greater, takes a
string of JSON formatted data and returns an object of that data.

In this book, I use the json_decode function to parse Twitter API search
results.

An example of how this function works can be seen in Listing 2-28.

Listing 2-28: getElementsByTagName

<?php

S$json = '{"screenname": DustyReagan}';

Sobj = json_decode(Sjson) ;

echo Sobj->screenname; // displays: DustyReagan

?>

Understanding MySQOL

MySQL is an open source relational database server and structured query
language (SQL). It is a common fixture in Web development and is found as
an optional add-on on most Web hosting companies.

35

36 Part I: Catching Up to Twitter and App Developement

3

Relational databases are collections of related tables that store data in fields.
To interact with the databases you use the MySQL query language. You will
need to know a few basic MySQL commands for this book, including

v select: Use to query the database.

»” create: Create a new table.

v insert: Insert a new row into a table.

v update: Update the values in a database.

v delete: Delete a row.
The select query is probably the most common MySQL command. It is used
to query data in the database. It also uses some common MySQL clauses that
you will recognize in other MySQL commands. These common clauses are

v from: Specifies the table you want to query.

v join: Allows you to include the data from another table with your query,
by joining the two tables on a common row identifier, such as an id field.

v where: Limit the results of the query to data that meets the conditions
specified in the where clause.

v group by: Group data by common fields.

» having: Use to limit data after it has grouped by the conditions specified
in the having clause.

v order by: Sort the data by a column or multiple columns.
v limit: Use to limit the row count to a specific number. Useful for getting a
sample of an extremely large result set.

To use the select query, you must specify the fields you want to return, and
the database and table you want to query. You can return all the fields in the
table by using an asterisk *. To start, select the database you want to work
with the command:

use databaseName;

Once you select your database, you can run a simple select query, as seen in
Listing 2-29, to return all the rows in a table.

Listing 2-29: A Basic SQL Select Query

select *
from tableName;

Chapter 2: Web Development Refresher Course

If you have data stored in two different tables, it might be necessary to join
those tables based on a common id field. An example of this is seen in Listing
2-30.

Listing 2-30: A SQL Select Query Using a Join

select *
from tableName tl
join tableName2 t2 on tl.id = t2.id;

In Listing 2-31, I show you the proper syntax for a where, order by, and limit
clause. In this query, I get the ten products that are lowest in stock.

Listing 2-31: A Select Query Using a Where, Order By, and Limit Clause

select productName, quantityInStock
from tableName

where quantityInStock < 100

order by quantityInStock

limit 0, 10;

Listing 2-32 is an example of a group by and having clause. The count(*)
statement returns the amount of rows.

Listing 2-32: Group By and Having

select year, count (*)
from tableName
group by year
having count(*) > 5;

To create a new table in MySQL, use the create statement. When you create
a new table, you must specify the field names, their data type, whether they
are allowed to contain a NULL value, whether they should be indexed for
quick searching, and whether they should be indexed as the primary key.
The primary key exists for unique row identifiers, and is perfectly suitable
for ids that join tables together. Create keys for fields that you want indexed
for quick searching, but are not unique row identifiers. Listing 2-33 shows an
example of a create statement.

Listing 2-33: A Create Statement

create table 'exampleTable' (
exampleTableId int (6) not null,
firstName varchar (60) not null,
lastName varchar (60) not null,
dateOfBirth timestamp not null,
cellPhoneNumber default null

) engine=innodb default charset=utf-8;

37

38 Part I: Catching Up to Twitter and App Developement

Inserting a new row into a table requires the use of the insert statement, as
seen in Listing 2-34.

Listing 2-34: An Insert Statement

insert into exampleTable (columnl, column2)
values (valuel, value2);

To update the data in a table, use the update statement as seen in Listing
2-35. Use the where clause you can limit the field updates to one particular
row or a set of rows.

Listing 2-35: An Update Statement

update exampleTable
set columnl = bacon, column2 = eggs
where meal == 'breakfast';

The delete statement can be used to delete rows, tables, and even databases.
In Listing 2-36, | delete a few rows from a table whose ids are less than 10.

Listing 2-36: A Delete Statement

delete from exampleTable
where id > 10;

Chapter 3
Setting Up to Create Twitter Apps

In This Chapter
Signing up for Twitter
Establishing version control

Creating your first Twitter app

n this chapter, you create your first Twitter application. Don’t get too
excited. The example Twitter app in this chapter is not the next “killer
app.” But it does illustrate how to work with the Twitter API. I also cover the
importance of version control software, which helps you manage your code

files

Create Vour Developer Account

Before you can start writing Twitter applications, you need a Twitter account.
[assume that since you are interested in developing Twitter apps, you must
have some experience with Twitter using a personal account. If not, no wor-
ries; now is an excellent time to create your personal account. However, you
will also need an account dedicated to your application.

Your application needs a Twitter account to authenticate with Twitter’s API.
You can use your personal account to do this, but if any problems arise with
your application, your personal account may be penalized. There’s no reason
to take that risk.

Creating a Twitter account for development is easy:

1. Go to https://twitter.com/signup and fill out the provided fields.

2. Twitter asks if you want to look up any of your e-mail contacts on
Twitter.

[don’t recommend this option.

40

Part I: Catching Up to Twitter and App Developement

Twitter recommends a list of popular Twitter accounts for you to follow.
Since this account is dedicated to your application and is not used for
light reading, [recommend not following any of the suggested users.

3. Click the Finish button, and you’re done creating your account.

The Importance of Version Control

A\

A\

Use a hosted version control repository instead of installing and managing your
own server. You can easily get up and running in minutes with version control
by going to a site like Beanstalk (http: //beanstalkapp . com), Unfuddle
(http://unfuddle.com), or GitHub (http://github.com), signing up for
a free account, and using their online repository URL and Web-based adminis-
tration tools.

Version control software makes programming more manageable in a few dif-
ferent ways:

v Track file changes over time.

This is useful to development teams because they can resolve conflicts
that arise when two or more developers simultaneously update the
same line of code. When this happens, version control software is used
to inspect the differences and correctly merge the files.

v Compare the differences between the current version of a file and an
older version of the same file.

v Roll a file back to a previous version.

This is a lifesaver if you accidentally introduce a debilitating bug into
your program because you can simply roll your code back to the last
known working version while you chase down the new bug. Even if
you’re coding by yourself and you're not on a team, version control can
give you the security to try new things with your code because you can
always roll any changes back if you break something.

If you're new to version control, | recommend signing up for a free
Subversion account with Beanstalk.. Subversion is a widely adopted version
control system and it’s easy to learn. By using Beanstalk, you don’t have to
set up or manage your own Subversion servers. They do that for you. To
create your free Beanstalk Subversion account, sign up at
https://signup.beanstalkapp.com/accounts/new?plan=£free.

Chapter 3: Setting Up to Create Twitter Apps

Hello Twitter!

It’s time to write your first Twitter app! Writing the app is actually a lot easier
than you might think. Follow these steps:

1. Create a new file titled HelloTwitter.html and save it anywhere on

o your local hard drive.

This is a great chance to try a version control program, like Subversion.
2. In the new file, add the HTML from Listing 3-1.

Listing 3-1: HelloTwitter.html

<html>
<head>
<title>Hello Twitter!</title>
</head>
<body>

<form name="input"
action="http://username:password@twitter.com/statuses/update.xml"
method="post">
Tweet: <textarea cols="40" rows="3" name="status">Hello Twitter!</
textarea>

<input type="submit" value="Submit" />
</form>

</body>
</html>

Listing 3-1 is an HTML form that posts the status message “Hello
Twitter!” to your Twitter account:

a. The form’s action performs an HTTP POST to the address
twitter.com/statuses/update.xml.

b. The post address passes your Twitter login credentials to the API
method.

c. The field named “status” allows you to input the text of your status
update.

3. Replace username and password in the form action (seen bolded in
Listing 3-1) with your application’s Twitter account credentials (as cre-
ated previously in this chapter).

QWNG/ Do not upload this file to the Internet or use this example for production

Y code. Your username and password are clearly viewable in this file, and
that is a major security hole. You do not want the general public to have
access to your Twitter account credentials.

41

4 2 Part I: Catching Up to Twitter and App Developement

A\

4. Open this file locally on your computer with your Web browser (I
recommend using Firefox or Internet Explorer to properly view the
results); then click the Submit button.

Some browsers don’t display XML in a human readable format. I use
either Firefox or Internet Explorer to view XML files. If you are using
Safari or Google Chrome, you need to view the source code of the
response page to see code that looks similar to Listing 3-2. You can

view the source code by right clicking on the results page, then selecting
“View Source” in the popup menu.

After you click the Submit button, Twitter responds with the details
of the status message you just submitted. The status message details
include the details of the user account. The response is an XML file
that should look similar to Listing 3-2.

Listing 3-2: Twitter Status Update XML Response

<?xml version="1.0" encoding="UTF-8"?>
<status>

<created_at>Sat Sep 19 04:19:17 +0000 2009</created_at>
<1d>4096090186</1id>
<text>Hello World!</text>

<source>
API

</source>

<truncated>false</truncated>

<in_reply_to_status_id/>

<in_reply to_user_id/>

<favorited>false</favorited>

<in_reply_to_screen_name/>

<user>
<id>75155000</1d>
<name>testfordummies</name>
<screen_name>testfordummies</screen_name>
<location/>
<description/>
<profile_image_url>
http://s.twimg.com/a/1253301564/images/default_profile_4_normal.png
</profile_image_url>
<url/>
<protected>false</protected>
<followers_count>0</followers_count>
<profile_background_color>9aede8</profile_background_color>
<profile_text_color>000000</profile_text_color>
<profile_link_color>0000ff</profile_link_color>
<profile_sidebar_fill_color>e0ff92</profile_sidebar_fill_color>
<profile_sidebar_border_color>87bcdd</profile_sidebar_border_color>

(continued)

Chapter 3: Setting Up to Create Twitter Apps 43

3

Listing 3-2 (continued)

<friends_count>0</friends_count>

<created_at>Fri Sep 18 00:19:49 +0000 2009</created_at>
<favourites_count>0</favourites_count>

<utc_offset/>

<time_zone/>

<profile_background_ image_url>
http://s.twimg.com/a/1253301564/images/themes/themel /bg.png
</profile_background_image_url>
<profile_background_tile>false</profile_background_tile>
<statuses_count>3</statuses_count>
<notifications>false</notifications>
<verified>false</verified>
<following>false</following>
</user>
</status>

5. Open the Twitter account and verify that the form updated your
status.

Congratulations! You've written your first Twitter application!
Chapter 4 covers several areas of the Twitter application ecosystem and

will provide you with inspiration and a general idea of what you can do
with the APL

4 4 Part I: Catching Up to Twitter and App Developement

Part I

ldeation — Coming
Up with an Idea

T_he 5th Wave By Rich Tennant

?

—

“These are the parts of our life that aren’t
on Twitter.”

In this part . . .

' he goal of the chapters in this section is to get you
started working on a great Twitter application.

Chapter 4

Getting to Know the Twitter
Application Ecosystem

In This Chapter

Types of Twitter applications
Examples of Twitter applications

Sources for inspiration

Tzvitter has strategically taken on a role as a communication platform and
is seemingly not out to solve every user requested feature demand. With
their open API, this allows developers to find a niche in the Twitter appli-
cation ecosystem by identifying a feature that Twitter users want but that
Twitter itself does not address.

Before you jump in and start creating your Twitter application, you need to
investigate the various applications that have already been developed. This
is your opportunity to learn from those applications and gain inspiration,
identify opportunities, and find your niche.

The Twitter application ecosystem can be broken into five different categories:
desktop clients, mobile clients, Web applications, Twitter bots, and hardware.
There are over 10,000 Twitter applications. In this chapter, I profile 34 example
applications across all five categories just identified. You will get a sense of what
each application is about, who made it, and how it is monetized, if it is monetized
at all. Popular applications that don’t have a direct revenue stream may still ben-
efit the creators indirectly by increasing their name recognition, providing them
with job leads, or simply satisfying their need to create. However, in the applica-
tions profiled in this chapter, I focus on how they create cash directly. Many of
these applications are illustrated in Appendix B.

Desktop Client

Desktop clients are applications that run directly on your operating system
whether that is Linux, Windows, or OS X. One of the key strengths of Twitter

48 Part Il: Ideation — Coming Up with an Idea

desktop applications is that they allow you to keep a constant eye on your
Twitter stream due to the dedicated application window and process. Here
are a few popular Twitter desktop clients.

TweetDeck

Web site: http://tweetdeck.com
Creator: TweetDeck, Inc. Founded by lain Dodsworth (@iaindodsworth)

Description: TweetDeck’s claim to fame is its multiple column layout. This
allows users to segment their Twitter streams into groups. For example, you
can add your close friends to one column and your professional contacts to
another column. You can also create a column for search terms, @ replies, and
direct messages. Additionally, TweetDeck integrates with Facebook. TweetDeck
is an Adobe Air application so it can run on any operating system that Adobe Air
can run on. There is also a complimentary iPhone application and Web version
of this popular Twitter client. TweetDeck will even backup and sync your column
settings across environments.

Monetization: TweetDeck is a funded company that has not settled on a
revenue stream. However, TweetDeck is experimenting with allowing other
Twitter services to bid on having their service integrated into TweetDeck. It
is unclear whether any deals of this nature have been made.

Seesmic Desktop
Web site: http://seesmic.com
Creator: Seesmic, Inc. Founded by Loic Le Meur (@loic)

Description: Seesmic Desktop is TweetDeck’s primary competitor. They pur-
chased Twhirl, another popular Twitter desktop client, in 2009 and added
column-based grouping similar to TweetDeck’s. Since that time, TweetDeck
and Seesmic Desktop have been in an arms race to add features and improve
usability. Both clients have very similar features, and choosing between the
two seemingly boils down to personal preference regarding the user interface.

Monetization: Similar to TweetDeck, Seesmic is a funded company that has
not yet settled on a revenue stream. However, Seesmic founder, Loic Le
Meur, has mentioned a paid pro version.

Chapter 4: Getting to Know the Twitter Application Ecosystem

Twitterrific
Web site: http://twitterrific.com
Creator: The Iconfactory

Description: Twitterrific is a Twitter client for OS X and iPhone. It has a long
history with Twitter users and has been around since early 2007. It is strictly
a Twitter client and does not interface with other social networking sites
such as Facebook. It also cannot manage multiple Twitter accounts, but its
small desktop footprint and simple interface make it a popular choice among
Twitter users.

Monetization: Twitterrific is shareware. The free shareware version is fully
functional and ad-supported. The full version can be purchased for just
under $15 and removes the ads.

Mobile Clients

Twitter is all about broadcasting to the world what is going on in your life

at this very moment. However, not everyone sits near their computer all

day waiting to tweet something interesting about their lives. As it turns out,
interesting tweet-worthy events frequently happen to people when they are
away from their computers. Twitter has addressed this problem by including
text messaging with its service. If you have a cell phone, you can update your
status anytime, anywhere. With smartphones becoming more prevalent, a
market has opened up for mobile Twitter clients that provide a more enrich-
ing experience than text messaging.

Tweetie

Web site: http://atebits.com/tweetie-iphone
Creator: Loren Britcher (@atebits)

Description: Due to its simple interface and its ability to manage multiple Twitter
accounts on the go, Tweetie has become one of the most popular Twitter clients
for the iPhone. Nearly anything you can do on Twitter’s Web site, you can do
easily using Tweetie, including viewing popular trends, and saving searches.
Tweetie also provides features absent from Twitter’s Web site such as post-
ing pictures directly to TwitPic, creating a Google Maps link based on your
GPS location, and retweeting a post with one button click.

49

50 Part Il: Ideation — Coming Up with an Idea

Monetization: Tweetie is sold in the Apple iPhone store for $2.99. Tweetie
also has a free OS X desktop client that generates revenue through ads.

TweetDeck

Web site: http://tweetdeck.com/iphone
Creator: TweetDeck, Inc. Founder lain Dodsworth (@iaindodsworth)

Description: TweetDeck for iPhone provides much of the same functionality
as TweetDeck for the desktop. Its signature draw is the ability to group the
tweets of the people you're following into multiple columns. The other inter-
esting aspect of TweetDeck is that it can back up and sync your groups and
settings to your TweetDeck desktop client, and vice versa.

Monetization: Like the desktop version, TweetDeck for the iPhone is cur-
rently free.

Tiny Twitter
Web site: http://tinytwitter.com
Creator: Kevin Cawley (@kcbigring)

Description: Tiny Twitter is a Java-based Twitter client that works on any
Java enabled phone including Blackberry, Windows Mobile, and Pocket PC. It
has many of the same features found on Twitter’s Web site and most notably,
allows you to save money on text messaging costs.

Monetization: Tiny Twitter is free and has no monetization scheme that [am
aware of.

Web Applications

Web applications are applications that you can access on the Internet
through your Web browser. Twitter.com itself is an example of a Web appli-
cation. Web applications have a lower barrier to entry for end users than
desktop applications because the user does not need to install software. Web
applications also don’t typically require a specific operating system to run.
This increases the potential market for Web applications.

There are probably more Twitter Web applications than any other type of
Twitter application. To help in reviewing the Twitter Web application ecosystem,

Chapter 4: Getting to Know the Twitter Application Ecosystem

I've identified seven popular types of Twitter Web applications including cus-
tomer relationship management (CRM), contact management, statistics, media
sharing, information aggregation, information publishing, and advertising.

Customer relationship
management (CRM)

CRM applications help businesses communicate effectively with customers by
helping the organization keep track of who communicated with the customer,
what they talked about, and when. As businesses begin to rely on Twitter as

a customer communication channel, the demand for a Twitter CRM system
grows. And it’s not just businesses that benefit from using a Twitter CRM
system. Any Twitter account with multiple editors can use a CRM system to
keep from stepping on each other’s toes and improve communication with
their readers.

HootSuite
Web site: http://hootsuite.com

Creator: Invoke Media Inc.

Description: HootSuite may have been first to address the growing need of
a Twitter CRM system. Its interface allows you to manage multiple Twitter
accounts and to assign multiple editors to a Twitter profile. Each editor
receives a unique login, so you don’t have to share the organization’s pri-
mary Twitter login credentials.

Monetization: HootSuite currently accepts donations. However, | suspect it
will eventually implement a paid pro version of its Web application.

CoTweet
Web site: http://cotweet.com

Creator: CoTweet Inc.

Description: CoTweet has similar features to HootSuite, but you can also
assign tweets to specific editors and leave notes about previous conversations
with the customer. Assigning tweets to a specific editor keeps members of the
organization from addressing a customer more than once on a single issue.

Monetization: CoTweet is currently in free beta. It has plans to create a paid
pro version of its application.

51

52 Part II: Ideation — Coming Up with an Idea

Contact management

Twitter has two basic types of contacts: those you follow and those who
follow you. This raises the question of whom should I follow and whom should

[allow to follow me. Twitter’s interface for managing contacts is a relatively
simple paged list. The simplicity of Twitter’s own contact management solution
has created an opportunity in the Twitter API developer world to improve con-
tact management. Here are a few examples of contact management applications.

Friend Or Follow

Web site: http://friendorfollow.com
Creator: Dusty Reagan (@dustyreagan; and author of this book)

Description: Friend Or Follow shows users whom they’re following who aren’t
following them back, and vice versa, using a visual grid of profile pictures. It
also shows users their reciprocated followers. The users can sort their contact
list by a variety of options such as name, last tweet, and location.

Friend Or Follow is probably the most useful, well written, and sexiest appli-
cation on the Internet, according to your author, the creator of Friend Or
Follow. Please send money.

Monetization: Friend Or Follow makes its revenue through the Featured

Users ad network and by giving its creator enough exposure to land a book
deal on Twitter application development.

Mr. Tweet
Web site: http://mrtweet.com

Creator: Yu-Shan Fung (@ambivalence) and Ming Yeow Ng (@mingyeow)
Description: Mr. Tweet recommends users for you to follow by comparing
your social graph to other users, weighing recommendations from other

Twitter users, and other user commonalities.

Monetization: Mr.Tweet currently does not have a revenue stream.

WeFollow

Web site: http://wefollow.com
Creator: Kevin Rose (@kevinrose)

Description: WeFollow.com is a tag-based Twitter user directory where you
select up to three tags that you believe best describe your Twitter account.

Chapter 4: Getting to Know the Twitter Application Ecosystem

To be allowed in the directory, you must tweet your selected tags, adding to
the viral nature of the directory.

Monetization: We Follow monetizes with Google Ad Sense.

Statistics

Statistical Twitter analysis became a hot topic when businesses started
marketing on Twitter. This is because businesses are interested in determin-
ing their marketing reach and the return on their marketing efforts. Twitter
statistics can also be fun and interesting to non-business users who are curi-
ous about how they interact on Twitter. Twitter statistics are also useful for
academic research.

TwitterCounter
Web site: http://twittercounter.com

Creator: Boris Veldhuijzen van Zanten (@boris) and Arjen Schat (@arjenschat)

Description: TwitterCounter tracks Twitter users’ follower count over time.
Users can proudly display their follower count on their Web site or blog using
the TwitterCounter badge. TwitterCounter also keeps an updated list of the
most followed profiles on Twitter.

Monetization: TwitterCounter sells a featured user position on its Web site
that Twitter users use to promote their profile and gain new followers.

TweetReach
Web site: http://tweetreach.com

Creator: Hayes Davis (@hayesdavis)

Description: TweetReach calculates how many people have seen a word

or phrase you've shared on Twitter. It does this by counting the amount of
tweets that contain your word or phrase and then counts how many Twitter
profiles may have seen those tweets. The tweets are broken into retweets, @
replies, and regular tweets.

Monetization: TweetReach searches at a fixed depth, but the user can pay
a fee to get a deeper and more accurate report. TweetReach also uses the
Featured Users advertising network to make money.

53

54 Part ll: Ideation — Coming Up with an Idea

TweetStats
Web site: http://tweetstats.com

Creator: Damon Cortesi (@dacort)

Description: TweetStats graphs your personal Twitter stats including your
tweets per hour, your tweets per month, your tweet timeline, and your reply
statistics. It also generates a tag cloud of your most tweeted words.

Monetization: TweetStats users can order custom-built reports from Damon.
TweetStats also makes money using the Featured Users advertising network.

Follow Cost
Web site: http://followcost.com

Creator: Luke Francl (@lof) and Barry Hess (@bjhess)

Description: You can use Follow Cost to see how frequently a user tweets per
day. Creators Luke Francl and Barry Hess also humorously provide the average
tweets per day in milliscobles, a unit of measurement they created that was
inspired by the prolific Twitterer Robert Scoble (@scobleizer). Aside from visit-
ing the Web site to get a user’s average tweets per day, you can use the site’s
bookmarklet or Fluid/Greasemonkey script.

Monetization: Follow Cost makes its revenue through the Featured Users ad
network.

Media Sharing

Twitter limits status updates to 140 characters or less. However, users aren’t
always content with this limitation. There are times when you might like to
share pictures, movies, or long URLs with your followers. This need has gen-
erated several apps like the ones below.

TwitPic
Web site: http://twitpic.com

Creator: Noah Everett (@noaheverett)

Description: TwitPic is the most popular photo-sharing site on Twitter. It owes
most of its popularity to its ease of adoption and API. Anyone with a Twitter
account automatically has a TwitPic account, and the API has allowed third-
party Twitter clients to integrate with TwitPic. For example, the iPhone app,
Tweetie, allows users to take a picture using their iPhone and post the picture
directly to their Twitter stream using TwitPic’s API.

Chapter 4: Getting to Know the Twitter Application Ecosystem

Monetization: TwitPic generates ad revenue using a combination of the video
ad network VideoEgg and Google AdSense.

Snap Tweet
Web site: http://snaptweet.com

Creator: Damon Clinkscales (@damon)

Description: Using SnapTweet, you can easily post a link to your Flickr
photos to Twitter. SnapTweet does this by monitoring your Flickr stream
looking for new pictures or pictures with a specific tag that marks that the
photo should be posted to Twitter. You can also direct-message a request to
have a photo tweeted.

Monetization: SnapTweet currently does not have a revenue model.

Blip.fm

Web site: http://blip.fm
Creator: Blip.fm. Founded by Brian Venneman & Jeff Yasuda (@jeffyasuda)

Description: You can use Blip.fm to share and discover music with your friends.
You start by creating a profile and typing in a song you want to share. Blip.fm
searches for the song on various public sites such as youtube.com. It then allows
you to post that song along with a comment to your Blip.fm music stream, where
all your friends can listen to it. Blip.fm can also cross-post your song selections
to Twitter and Facebook.

Monetization: Blip.fm monetizes through advertising, selling merchandise,
and by making referral sales on iTunes and Amazon.

Information aggregation

Your Twitter stream is a flow of information. However, that stream is unfiltered,
and it is difficult to key in on any one particular topic. You may be reading your
graduate professor’s tweet on quantum physics, while right above it is your
grandmother’s tweet about her cat Fluffo. Here is an opportunity to create an
application that aggregates topical information in a central location.

CheapTweet

Web site: http://cheaptweet.com

Creator: Hayes Davis (@hayesdavis) and Jenn Deering Davis (@jdeeringdavis)
of Appozite, LLC

55

56 Part Il: Ideation — Coming Up with an Idea

Description: CheapTweet is a social search engine for deals on Twitter. It
automatically aggregates and categorizes tweets about coupons, discounts,
and promotions into an easily searchable index. The CheapTweet user
community votes on the deals, and the most popular ones filter into the
“Cheapest Tweets” list.

Monetization: CheapTweet monetizes its Web site using paid sponsorships.
Businesses and individuals can pay to have their Twitter profiles featured on
the Web site. CheapTweet also has sponsored Tweets where a business can
pay to have its tweeted deal placed on the top of the deal list. Retailers can
also pay for the privilege of having a page totally dedicated to the deals of
that particular store.

ExecTweets
Web site: http://exectweets.com

Creator: Federated Media, in partnership with Microsoft

Description: ExecTweets is a Web site that aggregates the tweets from numerous
business executives from large companies. Users vote on the tweets they find
most compelling, and ExecTweets then posts the most popular tweets to its
@ExecTweets Twitter stream. There is also a list of the current most popular
links that the executives are tweeting about.

Monetization: Federated Media makes money through Microsoft’s sponsorship.

Tweeting Too Hard
Web site: http://tweetingtoohard.com

Creator: Trey Philips (@treyp), Michael Cummings (@michaelcummings),
Jacob Morse (@jacobmorse), and Keith Hanson (@big_love)

Description: Tweeting Too Hard was created to give attention to Tweets that
are braggadocios or arrogant. Users submit tweets they feel fit in this vein,
and then the community votes the tweets up or down. The most self-impor-
tant tweets get featured on the front page.

Monetization: Tweeting Too Hard makes its revenue through the Featured
Users ad network.

Twistori
Web site: http://twistori.com

Creator: Amy Hoy (@amyhoy) and Thomas Fuchs (@thomasfuchs) of slash7

Description: Twistori has a unique twist on information aggregation. Instead
of aggregating tweets by topics such as celebrities or deals, Twistori.com

Chapter 4: Getting to Know the Twitter Application Ecosystem

aggregates tweets by emotions. It includes a scrolling list of tweets that con-
tain phrases such as “I love,” “I hate,” and “I think.”

Monetization: Twistori sells a desktop version that allows users to visualize
their own search terms.

Hashtags.org
Web site: http://hashtags.org

Creator: Cody Marx Bailey (@superphly), Aaron Farnham (@afarnham), Brian
Smith (@brianthecoder), & Ben Burkert (@benburkert)

Description: Hashtags.org is a Web site that tracks the frequency that a
hashtag is used on Twitter. You can search for a hashtag, and it will show
you a graph of the hashtags use over time. You can also drill down and get
details on a hashtag, such as the tweets that contained the hashtags, the
people who tweeted about the hashtag, and related hashtags. Hashtags.org
also shows you the current most popular hashtags, and it provides a direc-
tory of hashtags.

Monetization: Hashtags.org is monetized through the use of the ad network
Featured Users and user donations. It is also exploring other revenue models.

Information publishing

I'll admit “information publishing” is a pretty broad category for Twitter. After
all, tons of Twitter applications post information to Twitter. But what I'm focusing
on here are applications that specialize in posting tweets to Twitter in unique
ways. Read on; you’ll see what I mean.

SecretTweet
Web site: http://secrettweet.com

Creator: Kevin Smith (@mozunk)
Description: SecretTweet user’s can anonymously post their secrets to
the Web site, allowing the curious to read all about them on SecretTweet’s

Twitter account, @SecretTweetor, on the Web site.

Monetization: SecretTweet generates its revenue through banner advertising
using BuySellAds, Google AdSense, and Featured Users.

Twitterfeed
Web site: http://twitterfeed.com

57

58 Part Il: Ideation — Coming Up with an Idea

Creator: Twitterfeed, Inc. Founded by Mario Menti (@mario)

Description: Twitterfeed allows users to push RSS feed updates to Twitter,
Laconcia, Ping.fm, or HelloText automatically. It was originally created as a
side project by Mario Menti and has since become its own company, receiv-
ing investments from Betaworks and TAG.

Monetization: Twitterfeed currently has no publicly disclosed revenue source.

Advertising

Twitter has opened a new channel for business owners, brands, and person-
alities to communicate with their customers, fans, and critics. Along with
the ability to communicate, an advertising opportunity has emerged. Brands
want to gain exposure to the millions of people twittering, but Twitter itself
does not have a means for these brands to advertise on Twitter. However, a
few third-party solutions have arisen to cater to advertisers’ needs. Here are
a few examples.

Featured Users
Web site: http://featuredusers.com

Creator: Dusty Reagan (@dustyreagan; and author of this book)

Description: Featured Users is an ad network where Twitter users promote
their Twitter profile across a network of third-party Twitter applications by
purchasing banner impressions. It provides a means for Twitter application
developers to monetize their site with relevant ads, and it provides advertis-
ers with the ability to promote their brand to Twitter users.

Monetization: Featured Users makes money by taking a percentage of each
ad sale.

Magpie
Web site: http://be-a-magpie.com

Creator: Magpie and Friends Ltd. (@beamagpie)

Description: Magpie is a Twitter ad network where advertisers pay Twitter users
to tweet a marketing message to their followers. Magpie brokers the transac-
tion and facilitates the whole process, including matching advertisers to Twitter
users, reporting click stats, and giving the Twitter users the ability to manage the
type and frequency of ads that are posted to their Twitter stream.

Monetization: Magpie takes a percentage of each transaction.

Chapter 4: Getting to Know the Twitter Application Ecosystem

Twittad
Web site: http://twittad.com

Creator: James Eliason (@jameseliason)

Description: Twittad allows advertisers to purchase and advertise on the
background image of a Twitter user’s profile for a limited amount of time.
Twitter users pay a small fee to have their listing posted on Twittad; then
they set the price and duration they’re willing to sell their background.
Advertisers then select from the list of Twitter users who have put their
Twitter backgrounds up for sale. When advertisers select a Twitter account,
they pay Twittad the money, which then releases the money to the Twitter
user after each day of advertising.

Monetization: Twittad makes its revenue by taking a percentage of each
transaction, and it makes a small fee for each Twitter publisher listing.

Twitter Bots

Twitter bots are Twitter accounts that are automated to accomplish a certain
task. They may alert you of events on Twitter, such as when someone stopped
following you, or they may perform a task if you tweet them a command. One
compelling aspect to Twitter bots is Twitter’s built-in support for text messag-
ing. Twitter bots can leverage Twitter’s text message support to allow users to
accomplish tasks from their cell phones. You could consider Twitter accounts
that are simply an automated import of blog’s RSS feed a Twitter bot. However,
[review some more complex and compelling Twitter bots next.

Twittercal (@gcal)

Web site: http://twittercal.com

Creator: Fred Brunel (@fbrunel)

Description: Twittercal is a Twitter bot that updates your Google calen-
dar. Simply start following @gcal and grant access to your Google Calendar
account at its Web site, twittercal.com. Then you can direct-message @gcal

events.

Monetization: Twittercal has no monetization strategy.

59

60 Part Il: Ideation — Coming Up with an Idea

Remember The Milk (@rtm)

Web site: http://rememberthemilk.com/services/twitter
Creator: Remember The Milk Pty Ltd.

Description: Remember The Milk is a Web-based to-do list. They have a
Twitter bot you can follow and send direct messages to in order to update
your to-do list. This is helpful because by using this Twitter bot, you can
update your Remember The Milk to-do list via text message.

Monetization: The Remember The Milk Twitter bot is free. However, the bot
adds value to the Remember The Milk Web service and encourages the user
to purchase the pro account.

Tweetname (@tweetname)

Web site: http://tweetname.com
Creator: Philip Kaplan (@pud)

Description: With Tweetname, you can check domain name availability and
purchase domain names impulsively by direct messaging the Tweetname bot.
To do this, you must first register your payment information at Tweetname.
com. Tweetname stores your payment information and associates it with
your Twitter account. Then when you want to check on the availability of or
purchase a domain name, you simply direct-message @tweetname the com-
mand.

Monetization: Tweetname makes a commission on every domain name it sells.

Hardware

Probably one of the least pioneered applications of the Twitter API is in the
area of hardware integration. There are a few good reasons this area is rela-
tively underdeveloped. For one, the Twitter API is constantly changing, and
there is a risk that a Twitter hardware device will become obsolete if Twitter
makes a change to its APIL. You have the same risk with software, but it’s much
easier to roll out a change to a Web site, and users are used to upgrading soft-
ware. There is also a high cost barrier to manufacture and distribute Twitter
hardware devices to a mass market. Therefore, most Twitter hardware devices
are left to the do-it-yourself crowd. Still, the potential is there, and you may
eventually see mass-market devices with Twitter integration built in.

Chapter 4: Getting to Know the Twitter Application Ecosystem

BakerTweet

Web site: http: //bakertweet.com
Creator: Poke

Description: BakerTweet is a wireless device for bakeries that alerts their cus-
tomers on Twitter when something fresh has come out of the oven. The plain
white box contains a simple text display, a dial, and one button. The baker
uses the dial on BakerTweet to select the baked goods that just came out of the
oven and then presses the button to tweet the news. The baker can customize
BakerTweets preprogrammed tweets and items via a Web interface.

Monetization: Poke sells BakerTweet on a custom order basis.

Botanicalls Kit

Web site: http://botanicalls.com
Creator: Botanicalls

Description: Botanicalls is a company that aims to bridge the communica-
tion gap between humans and plants. It sells a do-it-yourself plant monitoring
kit. The kit consists of a leaf-shaped circuit board, soil probes, Ethernet port,
power adapter, and various transistors, resistors, and other circuitry-related
bits. Once assembled, the Bontanicalls Kit will alert you via your plant’s
Twitter account when your plant needs water or if it has been over-watered.

Monetization: The Botanicalls Kit can be purchased on several popular tech-
nology and DIY-related Web sites.

Tweet-a-Watt

Web site: http://adafruit.com
Creator: Phil Torrone (@ptorrone) of Adafruit Industries

Description: Tweet-a-Watt is a do-it-yourself kit used to hack a P3 Kill-a-Watt
power meter. Tweet-a-Watt plugs into any standard 140-volt US electrical outlet
and tracks the power consumption of the device you plug into Tweet-a-Watt.
As the name suggests, Tweet-a-Watt tweets your device’s power consumption.
It also allows you to log and graph the power consumption over time on your
computer.

Monetization: Adafruit Industries sells the kit on its Web site.

01

62 Part Il: Ideation — Coming Up with an Idea

Chapter 5
Introducing the Twitter AP

In This Chapter
Defining an API
Interacting with Twitter’s API

A PI stands for Application Programming Interface. It’s kind of like a user
interface, except instead of delivering content that humans can read
and use, an API delivers content that software can read and use. For example,
a Web site can deliver beautiful graphics that are thoughtfully laid out, with
large readable fonts, so that the user can easily find and read the information
he or she is looking for. This type of human-oriented design is difficult for a
program to read because it relies on context. A program can access the same
Web site using an API. The API returns an XML or JSON data file that can then
be parsed and processed easily.

An API does more than allow your program to easily read data. It also allows
you to perform actions on the remote system. With the Twitter API, by simply
requesting a URL with a few HTTP POST parameters, you can post a tweet or
send a direct message.

Twitter’s APl is designed to be RESTful. REST (Representational State
Transfer) is a software design pattern for creating APIs. In a nutshell, it
means the API is designed to leverage HTTP requests, such as GET, POST,
DELETE, and PUT. And it means that requesting data from the API is as
straightforward as requesting a Web page.

Play Nice and Follow
the Terms of Service

When developing your Twitter application, keep in mind that you're eating at
Twitter’s dinner table and you’re their guest. Be respectful, gracious, follow
the rules of the house, and don’t take more than your share. If you're not a
good guest, your dinner host may throw you out and not invite you back to
dinner.

64 Part Il: Ideation — Coming Up with an Idea

You need to be aware of and follow two sets of rules. The first set consists of
the general rules that apply to all Twitter users. The second set consists of
those that apply to developers of the APIL.

Both sets of rules apply to you as a Twitter application developer.

General Twitter Rules

A regular Twitter user could be banned from Twitter for breaking any of the

following rules. As a developer you may not only have your account banned,

but your application as well. So pay special attention to the following rules:
v+ Do not impersonate someone else.

v Do not infringe on anyone else’s trademarks or copyrights.

v Do not publish anyone’s private or confidential information without his
or her permission.

v Do not threaten violence against other users.

v+ Do not copy and use the Verified Account badge anywhere on your
Twitter profile, unless Twitter provides it to you.

» You may not use pornographic images in your background or profile pic-
ture.

v Do not mass create serial accounts for disruptive purposes.

v Do not name squat. Name squatting means signing up for an account
name and not using it, for the sole purpose of preventing other people
from using it.

v Do not sell usernames you have control of.
v Do not publish links to malware, phishing sites, or viruses.
v+ Do not engage in follower churn.

Follower churn is the act of egregiously following thousands of users,
dropping the ones who don’t follow back, and then repeating the act
over and over to grow your follower base.

v Do not post the same link or tweet over and over again.

+* Do not @ reply everyone in your follow list with the same tweet.

Chapter 5: Introducing the Twitter API 65

Stay Informed with Online Resources

For updates on the latest Twitter APl develop- 1~ Twitter APl Announcements Only
ments, consult these online resources: Google Group — http://groups.

v @twitterapi — The Official Twitter API google.com/group/twitter-
Twitter account api-announce

v @twitter — The Official Twitter account P ST (45 Vyiki. ar.]d dolcumentation -
http://apiwiki.twitter.com
v~ Twitter Development Talk Google Group —
http://groups.google.com/
group/twitter-development-
talk

v~ Chat via #twitterapi on irc.freenode.net.

Developer Etiquette

The following rules are not applicable to regular Twitter users, but as a devel-
oper you need to be conscious of them:

+* Do not tweet or perform any other behavior on users’ behalf without
first asking them to do so.

v~ Call the API as little as possible to achieve your goal. Keeping a local
cache of results can aid greatly in this effort.

v Be conscientious of your API rate limit. Avoid making requests after your
limit is reached.

v Do not create applications that perform follower churn.

v Stay informed about API developments and updates using the Developer
Google Group.

There Are Actually Two APls

The Twitter API is actually made up of two different RESTful APIs.

V¥ http://api.twitter.com
V¥ http://search.twitter.com

66 Part Il: Ideation — Coming Up with an Idea
s

The Streaming API Is Around the Corner

Twitter currently has a Streaming APl in alpha
testing. The Streaming APl is a near-real-time
feed of Twitter status updates that developers
can tap into. To work with the Streaming API,
you open a connection to the feed and parse
the data as it constantly flows.

The Streaming APl contains the legend-
ary statuses/firehose method, often
referred to as the Firehose. The Firehose returns
all real-time public statuses as fast as possible.
This method has only been made available to
exclusive parties that have partnered with

Twitter. However, Twitter has announced that
this method will eventually be made available
to all developers.

The Streaming API is currently under heavy
development and isn't ready for production
applications, but you can learn more about
what is going on with the Streaming APl on
the Twitter wiki at http://apiwiki.
twitter.com/Streaming-API-
Documentation

The http://api.twitter.com API contains the majority of Twitter’s API
methods. It is commonly referred to as the REST APIL. http://search.
twitter.com contains only five search-specific methods, including:

V¥ search

V¥ trends

V¥ trends/current
V¥ trends/daily
V¥ trends/weekly

The Search APl is currently separate from the rest of the Twitter API because
a company named Summize built it independently of Twitter. Twitter
acquired Summize in 2008 and integrated Search into its front end, but hasn’t
yet integrated the Search API with the rest of its system. However, the Search
APl is planned to be integrated into the rest of the Twitter API soon.

Twitter APl Versioning

Twitter has a version for every API method, starting with version 1, except
for methods in the Search APIL.

This is done so Twitter can release new updates as new version numbers with-
out breaking developer code that uses an older version number.

Chapter 5: Introducing the Twitter API

A\\S

Rate

A\\S

The methods in this book refer to the latest version as of the time of this writ-
ing, version 1 of the API. The version number of the method is specified in
the URL between the domain name and the method specification. In the fol-
lowing code, you can see the number 1 between the domain and the users/
show method. That signifies I'm requesting version 1 of the users/show
method.

http://api.twitter.com/1/users/show

Consult Twitter’s online documentation at http://apiwiki.twitter.com
for the latest version of each method.

Limits and How to Get White Listed

Twitter places limits on how frequently developers and users can interact
with the system. The current limits are

v 1,000 status updates per day
v 250 direct messages per day
v 150 REST API requests per hour

There is also a limit on the number of people you can follow. This limit starts
at 2,000 people. Once you have followed 2,000 people, the limit may increase
based on an undocumented algorithm that considers the ratio of friends to
followers you have.

These limits are in place to prevent edge case users from straining the Twitter
servers. Fortunately, these limits are reasonable for most normal Twitter inter-
actions.

These limits have a history of changing as Twitter grows. For the most
recent update limits, see http://help.twitter.com/forums/10711/
entries/15364.

REST APl Rate Limit

The REST API rate limit is based on IP address and Twitter account. If you
authenticate a Twitter account with your API requests, that Twitter account
will be subject to the rate limit. If you don’t authenticate a Twitter account,
the IP address the request is made from is subject to the rate limit.

Only GET requests are subject to the REST API rate limit. REST API methods
that use HTTP POST do not affect your rate limit.

67

68 Part Il: Ideation — Coming Up with an Idea

3

With every GET request you make, Twitter includes three HTTP response
headers in the results that show details on your rate limit status. These head-
ers are

V* X-RateLimit-Limit - your maximum rate limit
»* X-RateLimit-Remaining - your remaining API hits

V¥ X-RateLimit-Reset - the time your rate limit resets in epoch time

You can also use the account/rate_limit_status method, profiled in
Chapter 6, to retrieve your current rate limit status. Calling this method does
not count against your rate limit.

As a Twitter application developer, you may be able to increase your API rate
limit to 20,000 requests per hour by submitting your application for white
listing. You can have a Twitter account or IP address white listed. The appli-
cation for white listing can be found here: http://twitter.com/help/
request_whitelisting. It may take up to a week before you receive an
email response to your white listing request.

IP addresses that are white listed have their rate limit reduced before authen-
ticated accounts from that address. That means if your application has numer-
ous authenticating users, you can save those users’ rate limit by having your
[P address white listed.

Search APl Rate Limit

The Search API has a rate limit independent of the REST API based entirely
on the requesting IP address. Twitter does not document the maximum rate
limit for the Search API and there is no white listing available for this APL
However, if you include a unique User Agent string in your HTTP Request
Header, Twitter increases the amount of Search API calls you can make.
Listing 5-1 shows an example of how to specify the User Agent string using
PHP and cURL.

Listing 5-1: Specify The User Agent to Increase Your Rate Limit

// The Twitter search method
Surl = "http://search.twitter.com/search.json?lang=en&q=twitter";

// Get Twitter API results with cURL

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT URL, "$url");

curl_setopt ($curlHandle, CURLOPT USERAGENT, "Twitter App Development For
Dummies: Example User Agent");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

SapiResponse = curl_exec($ScurlHandle) ;

curl_close($curlHandle) ;

Chapter 5: Introducing the Twitter API 69

If you hit the Search API rate limit, you receive an HTTP response code of 420
and an included response header called Retry-After. Retry-After speci-
fies the amount of seconds until you can access the Search API again.

Getting Blacklisted

If your application consistently ignores the API rate limits, your account or IP
address may be blacklisted. Blacklisted accounts and IP address receive no
response from the Twitter AP

If you believe you’'ve been erroneously blacklisted, you can contact api@twit-
ter.com to discuss your situation.

HTTP Response Status Codes and Errors

Anytime you make a request to the Twitter API, Twitter attempts to return an
appropriate HTTP status code.

An HTTP status code is a number sent in the header information of a Web
request. The Web browser doesn’t display this number, but you can retrieve
the status code programmatically when you work with the APIL

In Listing 5-2, there is an example of how to read an HTTP status code using
PHP and cURL.

Listing 5-2: Reading an HTTP Status Code With PHP and cURL

<?php

// The Twitter users/show method
Surl = 'http://api.twitter.com/l/users/show/dustyreagan.xml ';

// Get API results using curl

$curlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "$url");
curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);
SapiResponse = curl_exec (ScurlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: Shttp_code</hl>";

// Close cURL connection
curl_close($ScurlHandle) ;

?>

70

Part II: Ideation — Coming Up with an Idea

Every status code has a meaning that informs you what happened when you
made your last request. For example, a status code of 404 means that the file or
resource you requested was not found on the server. Here is a complete list of
possible status codes you could receive from Twitter, and their meanings:

v 200 OK: Everything was successful.

v+ 304 Not Modified: Nothing has changed since your last request. Used to
save bandwidth and processing power, this request does not include
message content. You have to rely on data gathered from your previous
request.

v 400 Bad Request: There is an error in your request. This is common if you
fail to provide a method with valid or required parameters. A 400 code
can also mean you've exceeded your rate limit allowance. Twitter also
returns an error message to help explain why your request is invalid.

+* 401 Not Authorized: Your account credentials are incorrect or missing.

v 403 Forbidden: This error is returned if you hit an update limit. Update
limits differ from rate limits; they refer to such actions as posting the
maximum amount of tweets per day or following too many people

v 404 Not Found: The resource you requested can’t be found on the
server. This is common if a Twitter username can’t be found or if you
provide an incorrect APl method path.

1 406 Not Acceptable: The Search API returns this status code if you
request a format that is invalid or that it does not support.

v 420 Rate Limited: This code is returned if you hit your rate limit.

v 500 Internal Server Error: This usually indicates something is broken on
Twitter’s end. You can alert them by posting to the Twitter Developer’s
Google Group (http://groups.google.com/group/twitter-
development-talk).

v 502 Bad Gateway: Twitter is down for maintenance.
v 503 Service Unavailable: Twitter is overloaded with traffic so your
request temporarily failed. Try again.

When possible, Twitter provides an explanation for the error in the response
body. Listing 5-3 shows the error message after trying to delete a direct mes-
sage that has already been deleted. The accompanying HTTP status code
with this error is 404.

Listing 5-3: Example Error Message in XML

<?xml version="1.0" encoding="UTF-8"?>

<hash>
<request>/1/direct_messages/destroy/486489555.xml</request>
<error>No direct message with that ID found.</error>

</hash>

Defining the Payload

A\

The payload is what Twitter calls the results it sends back to you after an API

call. That could mean XML, JSON, RSS or any data type.
You might also call this the output, or the result set.

These payloads are usually made of common sets of data called objects,
which represent concepts in the Twitter universe like a “user,” a “status,”

and so on. It is not guaranteed that all payloads will contain common objects,
but Twitter does strive for consistency. Many methods return an array or list

of common objects. For example, requesting the public timeline returns an
array of status objects. Some methods return only a list of IDs or a simple
true or false value.

Here are the two most common objects returned by the Twitter API: the

user object and the status object. You will see these objects included in
most Twitter API responses.

The User Object

The user object contains all the details about a Twitter user and includes
their last tweet in an embedded status object. If the user account is pro-
tected, the last tweet is omitted from the user details.

Listing 5-4 shows my user object.

Listing 5-4: An Example user Object in XML

Chapter 5: Introducing the Twitter API

<user>

<id>973261</id>

<name>Dusty Reagan</name>

<screen_name>DustyReagan</screen_name>

<location>Austin, TX</location>

<description>Started Jelly in Austin. Co-Founded Conjunctured. Made
FriendOrFollow.com and FeaturedUsers.com. Writing Twitter App
Development For Dummies.</description>

<profile_image_url>http://a3.twimg.com/profile_images/500150827/2209569192_816b

28049d_bigger_normal.jpg</profile_image_url>
<url>http://dustyreagan.com</url>
<protected>false</protected>
<followers_count>2742</followers_count>
<profile_background color>8B542B</profile_background_color>
<profile_text_color>333</profile_text_color>
<profile_link_ color>9D582E</profile_link_color>
<profile_sidebar_fill_color>EADEAA</profile_sidebar_fill_ color>

(continued)

/1

72 Part II: Ideation — Coming Up with an Idea

Listing 5-4 (continued)

<profile_sidebar_border_color>D9B17E</profile_sidebar_border_color>
<friends_count>496</friends_count>
<created_at>Mon Mar 12 01:39:06 +0000 2007</created_at>
<favourites_count>31</favourites_count>
<utc_offset>-21600</utc_offset>
<time_zone>Central Time (US & Canada)</time_zone>
<profile_background_image_url>http://al.twimg.com/profile_background_
images/976552/bar.jpg</profile_background_image_url>
<profile_background_tile>false</profile_background_tile>
<statuses_count>3192</statuses_count>
<notifications></notifications>
<geo_enabled>false</geo_enabled>
<verified>false</verified>
<following></following>
<status>
<created_at>Tue Nov 10 00:38:21 +0000 2009</created_at>
<id>5574474617</1d>
<text>@btruax Agreed. I like the freemium model. Free base, paid tiers. I
think some startups are getting carried away & shrinking their
market.</text>
<source>web</source>
<truncated>false</truncated>
<in_reply_to_status_id>5574372577</in_reply_ to_status_id>
<in_reply_to_user_1id>21057898</in_reply_to_user_id>
<favorited>false</favorited>
<in_reply_to_screen_name>btruax</in_reply_to_screen_name>
<geo/>
</status>
</user>

The Status Object

The status object includes all the details about a particular tweet and has
the complete user object of the author embedded in it.

Listing 5-5 shows the status object of the first tweet.

Listing 5-5: An Example status Object in XML

<?xml version="1.0" encoding="UTF-8"?>

<status>
<created_at>Tue Mar 21 20:50:14 +0000 2006</created_at>
<id>20</id>
<text>just setting up my twttr</text>
<source>web</source>
<truncated>false</truncated>
<in_reply to_status_id>0</in_reply_to_status_id>
<in_reply to_user_id></in_reply to_user_id>

Chapter 5: Introducing the Twitter API 73

<favorited>false</favorited>
<in_reply_to_screen_name></in_reply_to_screen_name>
<user>
<id>12</id>
<name>Jack Dorsey</name>
<screen_name>jack</screen_name>
<location>NYC & San Francisco</location>
<description>Creator, Co-founder and Chairman of Twitter</description>
<profile_image_url>http://al.twimg.com/profile_images/54668082/Picture_2_
normal.png</profile_image_url>
<url></url>
<protected>false</protected>
<followers_count>1428625</followers_count>
<profile_background_color>8B542B</profile_background_color>
<profile_text_color>333333</profile_text_color>
<profile_link_color>9D582E</profile_link_color>
<profile_sidebar_fill_color>EADEAA</profile_sidebar_fill_color>
<profile_sidebar_border_color>D9B17E</profile_sidebar_border_color>

<friends_count>689</friends_count>
<created_at>Tue Mar 21 20:50:14 +0000 2006</created_at>
<favourites_count>682</favourites_count>
<utc_offset>-28800</utc_offset>
<time_zone>Pacific Time (US & Canada)</time_zone>

<profile_background_image_url>http://s.twimg.com/a/1257465343/images/themes/

theme8/bg.gif</profile_background_image_url>

<profile_background_tile>false</profile_background_tile>
<statuses_count>5458</statuses_count>
<notifications></notifications>
<geo_enabled>false</geo_enabled>
<verified>false</verified>
<following></following>

</user>

<geo/>

</status>

Authentication

In order to see and do some things on Twitter’s Web site, you need to be
logged in, whereas you can see and do other things without logging in. For
example, when you’re not logged in, you can still view the public timeline,
search, and view public profile pages. However, you can’t follow people, view
a timeline of the people you follow, or tweet.

74 Part ll: Ideation — Coming Up with an Idea

The API works in exactly the same way. For this reason, some API methods
require you to log in (authenticate), while other methods are publicly avail-
able without a login. There are two ways to authenticate with the Twitter API:

v Basic HTTP authentication
»* OAuth

Basic HTTP authentication is the login method that Twitter was founded on.
It is very simple for developers to grasp and easy to start working with. For
this reason, I use basic HTTP authentication for the examples in this book.
However, it has one major disadvantage. If you are doing a task using the API
for another user, which happens quite frequently, you need to authenticate
your application as that user. To do that using basic authentication, you have
to ask the user for his or her Twitter username and password. This is a bad
thing.

As a developer, handling users’ passwords carries a great deal of liability
and responsibility. You need to take care that you store the passwords in an
encrypted format and that you use SSH to secure the HTTP connection when
users submit their login credentials. Asking for users’ passwords also creates
a barrier to entry on your application. Before users can use your app, they
must consider whether they trust your application enough to give you their
usernames and passwords. This could be a deal breaker for some users, and
it may cause you to lose traffic.

Fortunately, there is a solution to basic authentication: OAuth (http://
oauth.net). OAuth is an open protocol that Twitter implemented in March
2009, with the promise to solve the downfalls of basic authentication. The
wonderful thing about OAuth is that it doesn’t require users to give Twitter
application developers their passwords. Using OAuth, users give your appli-
cation permission to interact with their Twitter account, Twitter gives you a
token to authenticate with, and you never have to ask for or handle the users’
passwords.

The typical user sign-in workflow for OAuth looks like Figure 5-1.

An application can request read or read and write access to your Twitter
account. When you grant an application permission to your Twitter account,
the application is then listed in your Twitter settings under “Connections”
here: http://twitter.com/account/connections. From that page, you
have the option to revoke access to applications you authorized in the past.

Once an application has a user’s authorization to interface with his or her
Twitter account, the app doesn’t have to ask for it again.

Chapter 5: Introducing the Twitter API

|
Figure 5-1:
OAuth login
workflow.
|

Authenticated and
| VA Redirected back to app
Not logged in to Twitter
caunten
counfen a
& 9 e
= ~
B 1] | s 3

Logged in to Twitter

Authenticated and
Redirected back to app

Twitter provides four methods for working with OAuth.

V¥ oauth/authenticate

V¥ oauth/authorize

V¥ oauth/request_token

V¥ oauth/access_token
Two of these methods are used as links for your users to login. Here are the
two methods used as links:

V¥ oauth/authenticate

V¥ oauth/authorize
With the oauth/authenticate URL, if users are logged in to Twitter and
have already approved your application, they will immediately be redirected
back to your Web site. The cauth/authorize URL will always ask the user

to reconfirm your application’s permissions. If you're building a desktop
application, you must use oauth/authorize.

75

76 Part Il: Ideation — Coming Up with an Idea

A\

3

From the developer’s point of view, OAuth takes six steps.

1.

Register your application with Twitter, if you have not already, to get a
consumer token and secret for your application. (You only need to do
this once.)

. Pass your application’s assigned consumer token and secret to the

oauth/request_token method to get a request token from Twitter.

. Present the user with a link to either cauth/authenticate or cauth/

authorize and include the request token as a query string value named
oauth_token.

. When the user clicks on the cauth/authenticate or oauth/

authorize URL, he or she is taken to Twitter.com to log in and approve
your application. Once completed, the user is redirected back to your
application with the original request token included in the URL query
string labeled coauth_token.

. Once the user is back on your application, pass the request token to the

oauth/access_token method. That method returns the access token
in the body of the response.

. Use the access token to make your API calls to Twitter on behalf of the

user. You can store this access token and use it to make future calls.

To implement this process, the first thing you must do is register your appli-
cation with Twitter.

There is a link to the application registration page in your Twitter settings
under the Connection tab. Alternatively, you can visit this URL: http://
twitter.com/apps.

1.

2.

Click the Register a new application link.
The registration page is shown in Figure 5-2.

At the bottom of the registration form is a check box labeled Use Twitter
for login.

Check the box if you intend to log your users into your application by
checking if they are logged in to Twitter.

If you're not sure, check the box.

3. Complete the rest of the fields and click save.

When you submit the registration form, Twitter assigns you

v A consumer key

» A consumer secret

These keys are unique to your application and are used as parameters in the
oauth/request_token and ocauth/access_token methods.

Chapter 5: Introducing the Twitter API 77

|
Figure 5-2:
Twitter
applica-

tion OAuth
registration
form.

<P Another nice thing about registering your application with Twitter is that
when you use OAuth to tweet from an authorized account, the tweet contains
your application’s name and a link to your application’s Web site. Figure 5-3
shows a tweet from @Starbucks sent from the Twitter application CoTweet.
You can see the link in small print below the tweet text.

— Walked from our house to Starbucks w/
Figure 5-3: | 4% @5Sharlee & the dog. Took ~23mins. Not
Tweeting | bad in this beautiful weather.
using OAuth '
mclude_s - DustyReagan
your appli- £ Dusty Reagan
cation as ;
the source B W e
of the tweet. L, 000 Torimer ARt Ly Castact a s A W R

78 Part Il: Ideation — Coming Up with an Idea

3

The tricky part in dealing with OAuth authentication is passing the required
parameters to the OAuth methods correctly. OAuth specifications require
very particular parameter encoding, and it’s easy to make small mistakes in
the encoding process that are very hard to identify and fix. If you get any part
of the encoding incorrect, you receive a 401 “Failed to validate oauth signa-
ture and token” HTTP status error, which doesn’t help identify the encoding
problem.

OAuth parameter-encoding requirements are highly convoluted and will drive
even the most patient developers batty. Due to this, I highly recommend that
you not roll your own OAuth authentication methods and instead use an
open source Twitter APl and OAuth library. There are libraries in numerous
languages available, and because they’re open source, you have the ability

to manipulate them and see their inner workings. Using a library will hide the
technical implementation of OAuth from you, and all you have to worry about
is the high-level workflow. There is a fairly comprehensive Twitter API library
list maintained by Twitter employees on the Twitter wiki at http: //api-
wiki.twitter.com/Libraries.

An excellent PHP library with OAuth functionality is Twitter-async (http://
github.com/jmathai/twitter-async), created by Jaisen Mathai (@
jmathai). You can download an example Twitter-async OAuth implementa-
tion at http://jaisenmathai.com/blog/2009/04/30/1letting-your-
users-sign-in-with-twitter-with-oauth.

If you are persistent in rolling your own OAuth implementation, Chapter 6
profiles each of the Twitter OAuth methods and includes some PHP code
examples to get you started.

Chapter 6

Logging In and Managing
Your Account

In This Chapter
Manage a user’s account from the API
Logging in with OAuth methods
Working examples of the API in PHP

l his chapter profiles methods for logging in and managing your account.
This includes
v Account methods

»* OAuth methods

You can use account management methods to do things like change your
profile picture, update personal information, view your API rate limit, and
so on. The details on the OAuth methods can help you roll your own OAuth
login system.

Account Methods

Account methods are used to modify or view data pertaining to a particular

Twitter profile. Profile data includes things such as your name, location, bio,
Web page link, profile background, and profile colors. It also includes meth-

ods that verify the provided account credentials, check the profiles remain-

ing rate limit, and end the users Twitter session.

Here are the Twitter account methods:

V¥ account/verify credentials

V¥ account/rate_limit_status

80 Part Il: Ideation — Coming Up with an Idea

\NG/
Vg,\\

V¥ account/end_session

V¥ account/update_delivery device
V¥ account/update_profile

V¥ account/update_profile_colors
V¥ account/update_profile_image

V¥ account/update_profile_background_image

Verify a user’s credentials

To verify a user’s supplied Twitter credentials, authenticate and call the
account/verify credentials method.

This method presumes you are asking users for their Twitter credentials to
carry out API calls on their behalf. This type of authentication is not neces-
sary anymore, and Twitter recommends that you use OAuth to authenticate
users. However, this method is provided for applications still using basic
authentication.

This method requires a GET request and is not rate limited.

Output
This method has two output formats:

1+ XML
» JSON

A successful request and authentication returns an HTTP status code of 200
and the authenticating user’s user details object. A failed attempt to authen-
ticate returns a 401 not authorized HTTP status code and an error message.

Input

This method has no input parameters.

Example

Listing 6-1 shows you an example of how to test a user’s Twitter login
credentials.

Chapter 6: Logging In and Managing Your Account 8 ’

Listing 6-1: Check a User’s Twitter Username and Password

<?php

// Set username and password to test
Susername = 'username';
Spassword = 'password';

// The Twitter account/verify_credentials method
Surl = "https://api.twitter.com/l/account/verify credentials.xml";

// GET Twitter API using cURL

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "$Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle) ;

Shttp_code = S$info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

if (Shttp_code == 200)

echo "<hl>Login Credentials Are Valid</hl>";
else if (Shttp_code == 401)

echo "<hl>Login Credentials Are NOT Valid</hl>";

?>

Check your rate limit

You should always be conscious about how much you are accessing the
Twitter APL. It’s good Twitter developer etiquette to request the API as little
as possible; going over your rate limit frequently is grounds to have your
access to the API taken away. To check your rate limit, Twitter provides the
account/rate_limit_status method.

82 Part Il: Ideation — Coming Up with an Idea

If you provide the account/rate_limit_status method authentication
credentials, it will return the authenticating user’s rate limit status. If you
do not provide authentication credentials, it will check the rate limit for the
requesting IP address.

This method requires a GET request and is not rate limited.

Output
This method has two output formats:

1 XML
»* JSON

A successful request returns the remaining API requests allowed, the hourly
limit, the time the limit will be reset, and the seconds remaining until a reset.

Input

This method has no input parameters.

Example
Listing 6-2 shows you an example of how to look up your rate limit.

Listing 6-2: Look Up Your Rate Limit Status

<?php

// Set username and password to test
Susername = 'username';
$password = 'password';

// The Twitter account/verify credentials method
S$url = "https://api.twitter.com/l/account/rate_limit_status.xml";

// GET Twitter API results using cURL

$curlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt($ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code
Sinfo = curl_getinfo(ScurlHandle) ;

Chapter 6: Logging In and Managing Your Account

Shttp_code = S$info['http_code'];
echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

S$xml = new DOMDocument () ;
$xml->1loadXML (SapiResponse) ;

// Check for an error tag
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!

if (Serrors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>S$errorMessage</hl>";

}

else

{
SremainingHitsNode = $xml->getElementsByTagName ("remaining-hits");
SremainingHits = SremainingHitsNode->item(0)->nodeValue;
echo $remainingHits;

?>

End a user’s session

You can end an established persistent Basic HTTP Authentication user ses-
sion by calling account/end_session.

This method requires a POST request and is not rate limited.

Output
This method has two output formats:

v+ XML
1 JSON

Input

This method has no input parameters.

Example
Listing 6-3 shows you an example of how to log a user out.

83

84 Part Il: Ideation — Coming Up with an Idea

Listing 6-3: End a Persistent Basic HTTP Auth Session

<?php

// Set username and password to test
Susername = 'username';
Spassword = 'password';

// The Twitter account/verify_credentials method
Surl = "https://api.twitter.com/l/account/end_session.xml";

// GET Twitter API results using cURL

$curlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "$Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:S$Spassword");

SapiResponse = curl_exec(ScurlHandle) ;

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

$xml = new DOMDocument () ;
Sxml->loadXML (SapiResponse) ;

// Check for an error tag
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error. Else, success!

if ($errors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$SerrorMessage</hl>";

}

else

{

print_r (SapiResponse) ;

?>

Chapter 6: Logging In and Managing Your Account 85

\NG/
S

Updating a uset’s notification device

The account/update_delivery_device method is designed to allow you
to update a user’s notification device. This method was originally designed
to allow you to switch between SMS, IM, and none as your delivery device.
However, IM is currently unavailable, and there is no talk of it being re-
enabled. Furthermore, trying to switch the device to SMS via this method
currently does nothing. So really the only thing you can do with this method
is turn off SMS notifications. There is no way to turn SMS back on with this
method.

This method requires a POST request and is not rate limited.

Output
This method has two output formats:

v+ XML
» JSON

On a successful post, this method will return the updated user details object.
A failed post receives an error message.

Input
This method requires one of the following parameters:
v device — Values include: sms or none.

Example: device=none

Example

Listing 6-4 is an example of how to programmatically update your Twitter
profile’s device settings using PHP and cURL to post to the account/
update_delivery_device method.

Listing 6-4: How to Programmatically Update Your Device Settings

<?php
// Set username and password
Susername = 'username';

Spassword = 'password';

// The Twitter account/update_profile method

(continued)

86 Part Il: Ideation — Coming Up with an Idea

Listing 6-4 (continued)

$apiUrl = "https://api.twitter.com/1l/account/update_delivery_device.xml";

// POST to Twitter API using cURL

$curlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT URL, "SapiUrl");

curl_setopt ($ScurlHandle, CURLOPT USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt(ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS, "device=none");

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "S$Susername:S$password");

SapiResponse = curl_exec (ScurlHandle) ;

// Print HTTP Status Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

$xml = new DOMDocument () ;
$xml->1oadXML (SapiResponse) ;

// Check for an error tag
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!

if (Serrors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>S$errorMessage</hl>";

}

else

{
$nameNode = $xml->getElementsByTagName ("name") ;
Sname = $nameNode->item(0)->nodeValue;
echo "<p>Turned off notification for: $name</p>";

?>

Update a user’s profile

To update a user’s profile fields, including name, URL, location, and descrip-
tion, use the account/update_profile method.

This method requires a POST request and is not rate limited.

Chapter 6: Logging In and Managing Your Account 8 7

Output
This method has two output formats:

1 XML
»” JSON

On a successful post, this method will return the updated user details object.
A failed post receives an error message.

Input
This method requires one of the following parameters:
»* name — A string under 20 characters intended for the full name of the user.
Example: name=Dusty+Reagan

»* url — A string under 100 characters intended for the personal URL of
the user. “http://” is added if not already included.

Example: url=http%3A%2F%2Fdustyreagan.com

V¥ location — A string under 30 characters intended for the geographical
location of the user.

Example: location=Austin+Texas

v description — A string under 160 characters intended to describe the
user.

Example: description=They+think+he's+a+righteous+dude
Example

Listing 6-5 is an example of how to programmatically update your Twitter pro-
file using PHP and cURL to post to the account /update_profile method.

Listing 6-5: How to Programmatically Update Your Twitter Profile

<?php

// Set username and password
S$username = 'username';
Spassword = 'password';

$name = urlencode("Dusty Reagan");

Surl = "http://dustyreagan.com";

Slocation = urlencode("Austin, TX");

Sdescription = urlencode("Writing Twitter App Development For Dummies.");

// The Twitter account/update_profile method

(continued)

88 Part II: Ideation — Coming Up with an Idea

Listing 6-5 (continued)

SapiUrl = "https://api.twitter.com/1/account/update_profile.xml";

// POST to Twitter API using cURL

$curlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT URL, "SapiUrl");

curl_setopt ($ScurlHandle, CURLOPT USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt(ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS,

"name=S$name&url=Surl&location=$location&description=$description") ;

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:S$password");

SapiResponse = curl_exec ($ScurlHandle) ;

// Print HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

$xml = new DOMDocument () ;
S$xml->loadXML (SapiResponse) ;

// Check for an error tag
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error. Else, success!

if ($errors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$SerrorMessage</hl>";

}

else

{
SnameNode = $xml->getElementsByTagName ("name") ;
Sname = $nameNode->item(0)->nodeValue;
echo "<p>name: $name</p>";

SurlNode = $xml->getElementsByTagName ("url");
Surl = SurlNode->item(0)->nodeValue;
echo "<p>url: Surl</p>";

SlocationNode = $xml->getElementsByTagName ("location");
Slocation = $locationNode->item(0)->nodeValue;

echo "<p>location: $location</p>";

SdescriptionNode = $xml->getElementsByTagName ("description");

Chapter 6: Logging In and Managing Your Account 89

Sdescription = $SdescriptionNode->item(0)->nodeValue;

echo "<p>description: $description</p>";

?>

Update a user’s profile colors

To update a user’s profile colors, including background color, text, links, and
sidebar, use the account /update_profile_colors method.

This method requires a POST request and is not rate limited.

Output
This method has two output formats:

v XML
»* JSON

On a successful post, this method will return the updated user details object.
A failed post receives an error message.

Input

This method requires one of the following parameters:

v profile_background_color — Hexadecimal color code for the back-
ground, if no background image is present.
Example: profile_background_color=333

Vv profile_text_color — Hexadecimal color code for text.
Example: profile_text_color=000000

V¥ profile_link_color — Hexadecimal color code for links.
Example: profile_link_color=00C2FC

Vv profile_sidebar_fill_color — Hexadecimal color code for the
background of the sidebar.

Example: profile_sidebar_fill_color=fff

V¥ profile_sidebar_border_color — Hexadecimal color code for the
border around the sidebar.

Example: profile_sidebar_border_color=000

90 Part Il: Ideation — Coming Up with an Idea

Listing 6-6 is an example of how to programmatically update your Twitter
profile colors using PHP and cURL to post to the account /update_pro-
file colors method.

Listing 6-6: How to Update Your Twitter Profile Colors

<?php

// Set username and password
S$username = 'username';
Spassword = 'password';

Sprofile_background_color = "fff";
Sprofile_text_color = "333333";
S$profile_link_color = "990000";
Sprofile_sidebar_fill_color = "003";
Sprofile_sidebar_border_color = "090";

// The Twitter account/update_profile_colors method
$apiUrl = "https://api.twitter.com/l/account/update_profile_colors.xml";

// POST to Twitter API using cURL

ScurlHandle = curl_init();

curl_setopt(ScurlHandle, CURLOPT_URL, "SapiUrl");

curl_setopt(ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For

Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS,
"profile_background_color=$profile_background_color&"
"profile_text_color=$profile_text_color&"
"profile_link_color=$profile_link_color&"
"profile_sidebar_fill_color=$profile_sidebar_fill_color&"
"profile_sidebar_border_ color=$profile_sidebar_border_color");

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Print HTTP Status Code

S$info = curl_getinfo(ScurlHandle);

Shttp_code = S$info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

$xml = new DOMDocument () ;
$xml->1loadXML (SapiResponse) ;

// Check for an error tag

Chapter 6: Logging In and Managing Your Account

Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error. Else, success!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>SerrorMessage</hl>";
}
else
{
echo "<hl>Updated your profile colors.</hl>";
}

?>

Update a user’s profile picture

To update a user’s profile picture use the account /update_profile_
image method.

This method requires a POST request and is not rate limited.

Output
This method has two output formats:

v+ XML
»* JSON

On a successful post, this method will return the updated user details object.
A failed post receives an error message.

Input
This method requires one of the following parameters:
v image — A GIF, JPG, or PNG image less than 700 kilobytes. Widths
greater than 500 pixels are scaled down.
Example: image=@mypic.gif; type=image/gif
Listing 6-7 is an example of how to programmatically update your Twitter

profile picture using PHP and cURL to post to the account /update_pro-
file method.

91

92 Part II: Ideation — Coming Up with an Idea

Listing 6-7: How to Programmatically Update Your Twitter Picture

<?php

// Set username and password

Susername = 'username';
Spassword = 'password';
SimageFilename = "mypic.jpg";

// The Twitter account/update_profile_image method
$apiUrl = "https://twitter.com/account/update_profile_image.xml";

// POST to Twitter API using cURL

ScurlHandle = curl_init();

curl_setopt(ScurlHandle, CURLOPT_URL, "SapiUrl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

$curlHandle, CURLOPT_POST, 1);

ScurlHandle, CURLOPT_HTTPHEADER, array('Expect:'));

ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

ScurlHandle, CURLOPT_USERPWD, "Susername:Spassword");

ScurlHandle, CURLOPT_POSTFIELDS,array('image' =>
"@SimageFilename; type=image/jpg")) ;

curl_setopt
curl_setopt
curl_setopt
curl_setopt
curl_setopt
curl_setopt

SapiResponse = curl_exec(ScurlHandle) ;

// Print HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

$xml = new DOMDocument () ;
Sxml->loadXML (SapiResponse) ;

// Check for an error tag
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error. Else, success!
if ($errors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>SerrorMessage</hl>";
}
else
{
SpicNode = $xml->getElementsByTagName ("profile_image_url");
Sprofile_image_url = $picNode->item(0)->nodeValue;

Chapter 6: Logging In and Managing Your Account

echo "<hl>Updated your picture to:</hl>";
echo "";

?>

Update a user’s background image

To update a user’s profile background image, use the account /update_
profile_background_image method.

This method requires a POST request and is not rate limited.

Output
This method has two output formats:

1 XML
»* JSON

On a successful post, this method will return the updated user details object.
A failed post receives an error message.

Input

This method requires one of the following parameters:
v image — A GIF, JPG, or PNG image less than 800 kilobytes. Widths
greater than 2048 pixels are scaled down.
Example: image=@mypic.gif;type=image/gif
v tile — Tile the background image by setting a value of true.
Example: tile=true
Listing 6-8 is an example of how to programmatically update your Twitter

profile background image using PHP and cURL to post to the account/
update_profile_background_image method.

Listing 6-8: How to Programmatically Update Your Twitter Background

<?php

// Set username and password
Susername = 'username';

(continued)

93

94 Part ll: Ideation — Coming Up with an Idea

Listing 6-8 (continued)

Spassword = 'password';
$imageFilename = "TwitterBackground.gif";

// The Twitter account/update_profile_background_image method
SapiUrl = "https://twitter.com/account/update_profile_background_image.xml";

// POST to Twitter API using cURL

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT URL, "$SapiUrl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT HTTPHEADER, array('Expect:'));

curl_setopt(ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:Spassword");

curl_setopt (ScurlHandle, CURLOPT_CONNECTTIMEOUT, 4);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS,array('image' =>
"@$imageFilename; type=image/gif"));

SapiResponse = curl_exec ($curlHandle) ;

// Print HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle) ;

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

$xml = new DOMDocument () ;
$xml->1oadXML (SapiResponse) ;

// Check for an error tag
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>S$errorMessage</hl>";
}
else
{
SbackgroundNode = $xml->getElementsByTagName ("profile_background_image_url");
Sprofile_background_image_url = $backgroundNode->item(0)->nodeValue;

SbackgroundTileNode = $xml->getElementsByTagName ("profile_background_tile");
Sprofile_background_tile = $backgroundTileNode->item(0)->nodeValue;

StileBackgroundCSS = "repeat";

Chapter 6: Logging In and Managing Your Account

if ($profile_background_tile == "false")
$tileBackgroundCSS = "no-repeat";

echo "<body style=\"
background-image:url ('Sprofile_background_image_url');
background-repeat: $tileBackgroundCssS;

\">";

echo "<hl>Updated your background!</hl>";

echo "</body>";

?>

OAuth Methods

<MBER
S

Twitter’s API OAuth methods are used to authenticate a user using the open
OAuth protocol (http://oauth.net). In Chapter 5, I cover the OAuth work-
flow. Here, I cover each of the methods used in that workflow, and include exam-
ples of how these methods are used in PHP. There are four OAuth methods:

V¥ oauth/authenticate

V¥ oauth/authorize

V¥ oauth/request_token

V¥ oauth/access_token
You can use an open source Twitter API and OAuth library to save yourself a

lot of time. You can find a list of Twitter API libraries at http://apiwiki.
twitter.com/Libraries.

Log a user in with OAuth

To log a user in with OAuth, you must use either one of the following:

V¥ coauth/authenticate

V¥ oauth/authorize

However, these are not API methods like the rest of the Twitter API. These
are actual links that direct users back to Twitter.com so they can log in and
approve or disapprove your application.

With the authenticate URL, if users are logged in to Twitter and have already
approved your application, they will immediately be redirected. The autho-
rize URL will always ask users to reconfirm your application’s permissions. If
you're building a desktop application, you must use cauth/authorize.

95

96 Part Il: Ideation — Coming Up with an Idea

Both links require that you pass a request token in the URL query string as
a parameter named oauth_token. You can get a request token using the
oauth/request_token method.

After users log in and authenticate your application from Twitter.com, Twitter
redirects them back to your application. At this point, you can trade your
request token in for an access token using the oauth/access_token method.

Get an OAuth request token

The cauth/request_token method is used to create the cauth_token
parameter that you pass to the OAuth authenticate URL: http://twitter.
com/oauth/authenticate.

This method requires a GET request and is not rate limited.

Output

The request_token method returns an oauth_token parameter and an
oauth_token_secret parameter in the response body. Listing 6-9 shows an
example of the results.

Listing 6-9: An Example oauth/request_token Response Body

oauth_token=Y2elaltZ2krvwtgksGbzy4BnZhjrvVhgqGOPsqSfTVkk&oauth_ token_ secret=Tv0Uwv
H7UPTy2fLM4P8zSLsqgd6i3RaYFuCr6avzpng

You must parse the string to get the oauth_token parameter. You use that
parameter to create the authentication login URL seen in Listing 6-10.

Listing 6-10: An Example Authentication Login URL

http://twitter.com/oauth/authenticate?oauth_token=
Y2elaltZ2krvwtgksGbzy4BnzhjrvhqGOPsqS{fTVkk

A failed request is usually due to malformed input parameters, and it will
return a 401 “Failed to validate oauth signature and token” error.

Input

These input parameters are all required and must be passed in the authoriza-
tion header. Note that this is not the usual GET and POST HTTP parameter
passing. See the code example in Listing 6-12 on how to pass parameters in
the authorization header using cURL.

Chapter 6: Logging In and Managing Your Account

Each parameter value must have all non-alphanumeric characters percent-
encoded with two-digit hex notation, except for the characters -, ‘", ‘_’, and
‘~’. The hexadecimal encoding character must be in uppercase. I refer to this

as parameter-encoding.

In practical terms, this means you must use PHP’s rawurlencode function on
the parameter value, except for the ‘~’ character and spaces.
V¥ oauth_nonce — A random number used to prevent replay attacks.
Example: cauth_nonce="d9%al704f6dd2bfe2dc2e201dfe3274d4"

v oauth_consumer_key — The consumer key assigned to your applica-
tion by Twitter. (It can be found here: http://twitter.com/oauth.)

Example: ocauth_consumer_key="W2uDOozuH1286mvV7k10gPg"
V¥ cauth_version — The version of OAuth you’re using.
Example: cauth_version="1.0a"
»* oauth_token — This parameter is left empty for this method request.
Example: oauth_token=""
V¥ cauth_timestamp — The current Unix timestamp.
Example: cauth_timestamp="1256877296"

V¥ oauth_signature_method — The cryptography method used on the
parameters. Twitter only accepts HMAC-SHAL.

Example: cauth_signature_method ="HMAC-SHAl"
V¥ oauth_signature — You must create this string value by:

1. Concatenating the HTTP request method (GET), the full URL
of the method you’re requesting (http://twitter.com/
oauth/request_token), and all the other parameters in
alphabetical order, and all these parameters must be separated
by the ‘&’ character and be parameter-encoded. Listing 6-11
shows an example of this string.

2. Next, you must encrypt the string using HMAC-SHA1 encryption.
3. Finally, you must parameter-encode the encrypted string.

Example: oauth_signature="bQleSDgD4GQkJIkuBIm%2B0990Dyys%3D"

Listing 6-11: An Example of the Concatenated oauth_signature String
Before It's Encrypted and Finally Parameter Encoded

GET&http%3A%2F%2Ftwitter.com¥2Foauth%2Frequest_token&oauth_consumer_key$3
DF6uCOoyuH1414mvV7k00gtg%260auth_nonce%3Dcda56f5c142e4££3024
0084923¢c36446%260auth_signature_method%3DHMAC-SHA1%260auth_
timestamp%3D1257853543%260auth_token%3D%260auth_version%3D1.0

97

98

Part II: Ideation — Coming Up with an Idea

Example

In Listing 6-12 is an example of how you can generate a request token to
create a Twitter authorization link. The parameter-encoding can get pretty
confusing. Use the code comments to help you understand what’s going on.

Listing 6-12: Generating a Request Token

<?php
// This is how to encode OAuth parameters
function encode_rfc3986 ($Sstring)
{
return str_replace('+', ' ', str_replace('%7E', '~',
rawurlencode ((S$Sstring)))) ;

// These values are given to you by Twitter
// http://twitter.com/oauth

SconsumerSecret = "YOUR_CONSUMER_SECRET";
Soauth_consumer_key = "YOUR_CONSUMER_KEY";

// The Twitter oauth/request_token method
Surl = "http://twitter.com/oauth/request_token";

// OAuth paramaters

Soauth_nonce = md5 (unigid(rand(), true));
Soauth_version = "1.0a";

Soauth_token = "";

Soauth_timestamp = time() ;
Soauth_signature_method = "HMAC-SHA1l";

// Create Soauth_signature

// First concatenate all parameters except oauth_signature
SparametersSoFar = "oauth_consumer_key=$oauth_consumer_key&"
"oauth_nonce=$oauth_nonce&"
"oauth_signature_method=$oauth_signature_method&"
"oauth_timestamp=$oauth_timestampé&"
"oauth_token=$oauth_token&"

"oauth_version=$oauth_version";

// Next encode them to OAuth spec
SencodedParams = encode_rfc3986 (SparametersSoFar) ;

// Next create your signature base string
$signatureBaseString = "GET&" . encode_rfc3986 (Surl) . "&"
SencodedParams ;

// Next create your key, hash your signature base string, and
the new parameter
Skey = "SconsumerSecret&Soauth_token";

encode

Chapter 6: Logging In and Managing Your Account

Soauth_signature = encode_rfc3986 (base64_encode (hash_hmac('shal',
$signatureBaseString, S$key, true)));

// Now create your Authorization Header with all of your parameters

SauthorizationHeader = "Authorization: OAuth
oauth_consumer_key=\"$oauth_consumer_key\", oauth_
token=\"$oauth_token\", cauth_nonce=\"$oauth_nonce\", ocauth_
timestamp=\"$oauth_timestamp\", cauth_signature_
method=\"S$Soauth_signature_method\", oauth_version=\"S$oauth_
version\",oauth_signature=\"$oauth_signature\"";

S_header[] = 'Expect:';
$_header[] = SauthorizationHeader;

// GET Twitter API results using cURL

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "Surl");
curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);
curl_setopt ($ScurlHandle, CURLOPT_HTTPHEADER, $_header);
SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Code
Sinfo = curl_getinfo($ScurlHandle) ;
Shttp_code = $info['http_code'];

// Close cURL connection
curl_close ($curlHandle) ;

// The tokens are returned in the body of the cURL response
// Dig them out here

list($Soauth_token, S$oauth_token_secret) = explode("&",
SapiResponse) ;

Soauth_token = str_replace("oauth_token=", '', S$Soauth_token);

Soauth_token_secret = str_replace("oauth_token_secret=", '', S$oauth_

token_secret) ;
echo "<hl>HTTP Status Code: S$http_code</hl>";
echo "<p>S$apiResponse</p>";
// Deliver the authorization link
echo "<a href=\"http://twitter.com/oauth/authenticate?oauth_

token=$oauth_token\">Authorize with Twitter";
?>

Get an OAuth access token

The coauth/access_token method is used to create the oauth_token
used to make API calls on behalf of the user. Note this method is very similar
to the cauth/request_token method.

This method requires a GET request and is not rate limited.

99

’ 00 Part Il: Ideation — Coming Up with an Idea

Output

The access_token method returns an oauth_token, an oauth_token_
secret parameter, the authorized user’s Twitter ID and screen name. Listing
6-13 shows an example of the results.

Listing 6-13: An Example oauth/access_token Response Body

oauth_token=973261-wpmlnliUOE1P982jwBAylJ1kCIamagZiSmRRMRLTQO&oauth_token_secret=
mA6WrrvP92e27QXGmCUkPbD32SwAThpMz1QiodZpEu8&user_id=973261&screen_
name=DustyReagan

You must parse the string to get the cauth_token and oauth_token_
secret.

A failed request is usually due to malformed input parameters and will return
a 401 “Failed to validate oauth signature and token” error.

Input

These input parameters are all required and must be passed in the authoriza-
tion header. Note that this is not the usual GET and POST HTTP parameter
passing. See the code example in Listing 6-15 on how to pass parameters in
the authorization header using cURL.

Each parameter value must have all non-alphanumeric characters percent-
encoded with two-digit hex notation, except for the characters -, ‘", *_’, and
‘~’. The hexadecimal encoding character must be in uppercase. [refer to this

as parameter-encoding.

In practical terms, this means you must use PHP’s rawurlencode function on
the parameter value, except for the ‘~’ character and spaces.
V¥ oauth_nonce — A random number used to prevent replay attacks.
Example: cauth_nonce="d9%al704f6dd2bfe2dc2e201dfe327444d"

V¥ oauth_consumer_key — The consumer key assigned to your applica-
tion by Twitter. (It can be found here: http://twitter.com/oauth.)

Example: cauth_consumer_key="W2uDOozuH1286mV7k10gPg"
»* cauth_version — The version of OAuth you’re using.

Example: cauth_version="1.0a"
v oauth_token — This is the request token.

Example: auth_token="mn2NKACfnHAOShW2eDGt1m9rPOXIXR3IE7 zp
3zfddsk"

Chapter 6: Logging In and Managing Your Account 1 0 ’

V¥ oauth_timestamp — The current Unix timestamp.
Example: cauth_timestamp="1256877296"

V¥ oauth_signature_method — The cryptography method used on the
parameters. Twitter only accepts HMAC-SHAL.

Example: cauth_signature_method ="HMAC-SHALl"
V¥ oauth_signature — You must create this string value by:

1. Concatenating the HTTP request method (GET), the full URL
of the method you're requesting (http://twitter.com/
oauth/access_token), and all the other parameters in alpha-
betical order, and all these parameters must be separated by
the ‘& character and be parameter-encoded. Listing 6-14 shows
an example of this string.

2. Next, you must encrypt the string using HMAC-SHA1 encryption.
3. Finally, you must parameter-encode the encrypted string.

Example: oauth_signature="bQleSDgD4GQkIkuBIm%2B0990Dyys%3D"

Listing 6-14: An Example of the Concatenated oauth_signature String
Before It's Encrypted and Finally Parameter-Encoded

GET&http%3A%2F%2Ftwitter.com¥2Foauth%2Faccess_token&oauth_consumer_key$%3D
F6uCOoyuH1414mv7k00gtg%260auth_nonce%3D941862b6d24bfbc2ed£9
181869dc5386%260auth_signature_method%3DHMAC-SHA1%260auth_
timestamp%3D1257855285%260auth_token$%3DKWVYLK3xg8YW2PAAAOksTCMAK3K
J187gqnnIRhOu90%260auth_version%3D1.0

Example

In Listing 6-15 is an example of how you can generate an access token to
access the Twitter APL. The parameter-encoding can get pretty confusing. Use
the code comments to help you understand what’s going on.

Listing 6-15: Generating an Access Token

<?php
// This is how to encode OAuth parameters
function encode_rfc3986 ($Sstring)
{
return str_replace('+', ' ', str_replace('S$7E', '~',
rawurlencode (($Sstring))));

}

// These values are given to you by Twitter
// http://twitter.com/oauth
SconsumerSecret = "YOUR_CONSUMER_SECRET";

(continued)

’ 02 Part Il: Ideation — Coming Up with an Idea

Listing 6-15 (continued)

Soauth_consumer_key = "YOUR_CONSUMER_KEY";

// The Twitter oauth/access_token method
Surl = "http://twitter.com/oauth/access_token";

// OAuth paramaters

Soauth_nonce = md5 (unigid(rand(), true));
Soauth_version = "1.0a";

Soauth_token = $_GET['oauth_token'];
Soauth_timestamp = time() ;
Soauth_signature_method = "HMAC-SHAl";

// Create S$oauth_signature

// First concatenate all parameters except oauth_signature
SparametersSoFar = "oauth_consumer_key=$oauth_consumer_key&"
"oauth_nonce=$Soauth_nonce&"
"oauth_signature_method=$oauth_signature_method&"
"oauth_timestamp=$oauth_timestamp&"
"oauth_token=Soauth_token&"

"oauth_version=Soauth_version";

// Next encode them to OAuth spec
SencodedParams = encode_rfc3986 (SparametersSoFar) ;

// Next create your signature base string
SsignatureBaseString = "GET&" . encode_rfc3986 (Surl) . "&"
SencodedParams ;

// Next create your key, hash your signature base string, and encode
the new parameter

Skey = "SconsumerSecret&$Soauth_token";

Soauth_signature = encode_rfc3986 (base64_encode (hash_hmac ('shal',
$signatureBaseString, S$key, true)));

// Now create your Authorization Header with all of your parameters

SauthorizationHeader = "Authorization: OAuth
oauth_consumer_key=\"$oauth_consumer_key\", cauth_
token=\"Soauth_token\",ocauth_nonce=\"Soauth_
nonce\",oauth_timestamp=\"$Soauth_timestamp\", cauth_
signature_method=\"$oauth_signature_method\", cauth_
version=\"$Soauth_version\",ocauth_signature=\"Soauth_

signature\"";
S_header[] = 'Expect:';
$S_header[] = SauthorizationHeader;

// GET Twitter API results using cURL
ScurlHandle = curl_init();
curl_setopt ($ScurlHandle, CURLOPT_URL, "Surl");

Chapter 6: Logging In and Managing Your Account 1 03

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);
curl_setopt (ScurlHandle, CURLOPT_HTTPHEADER, $_header);
SapiResponse = curl_exec ($ScurlHandle) ;

// Get HTTP Code
Sinfo = curl_getinfo (ScurlHandle) ;
Shttp_code = $info['http_code'];

// Close cURL connection
curl_close(ScurlHandle) ;

// The tokens are returned in the body of the cURL response
// Dig them out here
list(Soauth_token, S$oauth_token_secret) = explode("&",

SapiResponse) ;
Soauth_token = str_replace("oauth_token=", '', S$oauth_token) ;
Soauth_token_secret = str_replace("oauth_token_secret=", '', S$oauth_

token_secret) ;

echo "<hl>HTTP Status Code: Shttp_code</hl>";
echo "<p>$apiResponse</p>";

// Token parameters
echo "<p>OAuth Token: parameter: Soauth_token</p>";
echo "<p>0Auth Token Secret: parameter: Soauth_token_secret</p>";

’ 04 Part Il: Ideation — Coming Up with an Idea

Chapter 7

Managing Users and
Their Relationships

In This Chapter
Working examples of the API in PHP
Getting data on users and their friends
Managing Twitter lists
Following, unfollowing, blocking, and reporting spam

' his chapter covers Twitter APl methods that deal with users and their
relationships with other Twitter users. It covers 17 methods that you can
use to do things like:

v Follow a new user

v Get a list of users friends

v Create and manage a list of users

v Block a user

1 Report a user as a spammer

User Methods

Every Twitter user has site usage data, such as their profile information, how
many followers they have, their last status update, the date they created
their account, their total amount of tweets, and et cetera. To get at that data
you need to pull the user object for that Twitter user. You can get that data
with API most effectively, using these three methods:

V¥ users/show
V¥ statuses/friends

V¥ statuses/followers

’ 06 Part Il: Ideation — Coming Up with an Idea

Get the details of a user

You can get the complete details of any public user on Twitter by using the
users/show method.

This method doesn’t require authentication, but to get the details of a pro-
tected Twitter account, you must

v Authenticate your API call

v Have permission to view the protected account.

This method requires a GET request and is rate limited. The sidebar “Hard
Knocks” explains the concern with rate limits.

Output
This method has two output formats:

1+ XML
»* JSON

On a successful method call it returns the complete user object, which con-
tains the last status update.

If an account doesn’t exist or is disabled by Twitter, you will receive an error
message and a HTTP status code of 404.

Input

This method requires only one of three parameters:

v id: The user’s screen name or numerical user ID.
Example: /users/show/bob.xml

v user_id: The numerical IDof the user.
Example: /users/show.xml?user_1d=12345

V¥ screen_name: The screen name of the user.
@ Example: /users/show.xml?screen_name=101010
<
Avoid using the 1d parameter and use user_id, over screen_name if pos-
sible. The sidebar “Hard Knocks” explains why.

Chapter 7: Managing Users and Their Relationships

107

Hard Knocks

| make mistakes so you don't have to! In this
section are tips to avoid some common API pit-
falls. | refer to these tips throughout this chapter.

time, but their account’'s user_id never
changes.

v~ | store API results locally and try to call the

v | don't use the 1d parameter in cases where Twitter API as little as possible, because |

it can take either a screen name or numeric
user ID, because | can't be sure who it finds.
It's possible for one user’s screen name to
be the same numbers as another user’s
numeric userlD. For example, a user’s screen

don’t want to use up my hourly rate limit.
Twitter limits access to their APl with
hourly “rate limits.” Every IP address and
Twitter account has a rate limit allowance.
If you call a method that is rate limited, your

name might be 101010. There might also be a
numeric user ID 101010.

rate limit is reduced by 1. To increase your
rate limit allowance, request white listing
at: http://twitter.com/help/

v Whenever possible, | use the user_id . ..
request_whitelisting.

parameter over screen_name. A user
can change their screen name at any

Example

You can try the users/show method easily by typing http: //api.twitter.

com/1/users/show.xml?screen_name=dustyreagan into your browser’s
URL address bar.

One example of how you can use the users/show method is by customizing
your applications appearance to match the user’s profile settings. For exam-
ple, if you wanted to get the background color of a Twitter user for use on
your application results page, you could call this method and parse the back-
ground color out of the XML results. In Listing 7-1, use PHP to get a user’s
background color and their profile image and print it to a HTML page.

Listing 7-1: Get User Data with the Users/Show Method

<?php

// Set username and password
Susername = 'username';
Spassword = 'password';

// The Twitter users/show method
Surl = 'https://api.twitter.com/l/users/show/dustyreagan.xml ';

// GET API results using curl
ScurlHandle = curl_init();

(continued)

’ 08 Part II: Ideation — Coming Up with an Idea

Listing 7-1 (continued)

curl_setopt (ScurlHandle, CURLOPT_URL,

"Surl") ;

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For

Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);
curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);
curl_setopt (ScurlHandle, CURLOPT_USERPWD, "S$Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code
Sinfo = curl_getinfo(ScurlHandle) ;
Shttp_code = S$info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;

S$xml->loadXML (SapiResponse) ;

// Check for an error tag.

Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error. Else, success!

if ($errors->length > 0)
{

SerrorMessage = Serrors->item(0)->nodeValue;

echo "<hl>$SerrorMessage</hl>";
}
else

{

Selements = $xml->getElementsByTagName ("profile_background_color") ;
Sprofile_background_color = $elements->item(0)->nodeValue;

// Parse XML for profile image

Selements = $xml->getElementsByTagName ("profile_image_url");
Sprofile_image_url = S$elements->item(0)->nodeValue;

// Use profile data in HTML
echo "

<body style=\"background-color:#Sprofile_background_color\">

</body>";

?>

Chapter 7: Managing Users and Their Relationships 1 09

Get user details of your
friends and followers

You can get an array of user details objects for each of the user’s followers
and for the people a user is following by using:

V¥ statuses/friends: Retrieves user details for members a user is
following.
V¥ statuses/followers: Retrieves user details for members following

a user.

These methods don’t require authentication, but to get the details of a pro-
tected Twitter account, you must

v Authenticate your API call

v Have permission to view the protected account.

Both of these methods require a GET request and are rate limited. The side-
bar “Hard Knocks” explains the concern with rate limits.

Output
These methods have two output formats:

1+ XML
1 JSON

On a successful method call they return:

v An array of user objects 100 users at time.
v~ 1f the optional cursor parameter is provided, next_cursor and
previous_cursor nodes are also returned.

If the requested user account doesn’t exist or is disabled by Twitter, you will
receive an error message and a HTTP status code of 404.

Input

Both methods require only one of three parameters:
v id: The user’s screen name or numerical user ID.
Example: /statuses/friends/bob.xml

v user_id: The numerical id of the user.
Example: /statuses/friends.xml?user_1id=12345

V¥ screen_name: The screen name of the user.
Example: /statuses/friends.xml?screen_name=101010

’ ’ 0 Part Il: Ideation — Coming Up with an Idea

a\\J

Avoid using the 14 parameter and use user_id, over screen_name if
possible. The sidebar “Hard Knocks” explains why.

There is one optional parameter:

v cursor: Use to retrieve additional sets of user data.
Example: /statuses/friends/bob.xml?cursor=-1

Example

You can try the users/show method easily by typing http://api.twitter.
com/1l/ statuses/friends.xml?screen_name=dustyreagan into your
browser’s URL address bar.

To retrieve more than 100 user accounts, you must call the method multiple
times. To advance through the user list, pass the parameter cursor=-1

to the method. It will then return two more values in addition to the user
objects:

V¥ next_cursor

V¥ previous_cursor.

On your next method call, pass the cursor parameter with the value con-
tained in next_cursor. The results from this call will give you 100 new
users and a new next_cursor and previous_cursor that you can use

on your next call. For an example of how to page through the list of a user’s
friends using the cursor parameter and print each user’s profile picture, see
Listing 7-2. You can page through a user’s followers by changing the method
call in Listing 7-2 from statuses/friends to statuses/followers.

Listing 7-2: Use the Cursor to Print the Profile Picture of People You Follow

<?php

function getFriendsPage ($screen_name, $cursor)
{

// Set username and password

Susername = 'username';

Spassword = 'password';

// The Twitter statuses/friends method
Surl =
"https://api.twitter.com/1/statuses/friends.xml?screen_name=$screen_
name&cursor=$cursor";

// GET API results using curl

ScurlHandle = curl_init();

curl_setopt(ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt(ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

Chapter 7: Managing Users and Their Relationships 1 ’ ’

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);
curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:S$password");
SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle);

Shttp_code = S$info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

return SapiResponse;

Scursor = -1;

do {
// Get response from Twitter statuses/friends method
SapiResponse = getFriendsPage ('dustyreagan', Scursor);

// Get XML
$xml = new DOMDocument () ;
$xml->1loadXML (SapiResponse) ;

// Parse XML for profile image
Selements = $xml->getElementsByTagName ("profile_image_url");

// Print user's profile picture
foreach ($elements as $node)
{
Sprofile_image_url = $node->nodeValue;
echo "";

// Look for next_cursor
Selements = $xml->getElementsByTagName ("next_cursor");

// Get next_cursor. Break if you can't find it.
if (lempty (Selements))
{
Scursor = $elements->item(0)->nodeValue;
echo "<hl>cursor: S$Scursor</hl>";
}
else
{
echo "<hl>No cursor found</hl>";
break;
}

} while($cursor != 0);

?>

’ ’ 2 Part II: Ideation — Coming Up with an Idea

Social Graph Methods

Every Twitter user has a collection of followers and people whom they are
following. You can get a detailed list of all of these accounts using these two
methods from the previous section on user methods:

V¥ statuses/friends

V¥ statuses/followers
However, these methods can return only 100 users per page, and they return

a lot of data, possibly more than you need. This may be too much overhead
for processing a large social graph.

The most straightforward way to find who a user is following and is being fol-
lowed by is to use the two social graph methods:

v friends/ids
V¥ followers/ids

These methods only return the user IDs, and in batches of 5000 or more.

Get the user 1Ds of your
friends and followers

To get a list of people a user is following, use the friends/ids method. To
get a list of a user’s followers, use the followers/ids method. Beyond this
difference, these methods function exactly the same. These methods don’t
require authentication, but to get the details of a protected Twitter account,
you must

v Authenticate your API call

v Have permission to view the protected account.

Both of these methods require a GET request and are rate limited. The side-
bar “Hard Knocks” explains the concern with rate limits.

Output
These methods have two output formats:

1 XML
» JSON

Chapter 7: Managing Users and Their Relationships

A\\S

NG/
$

On a successful method call they return:

v A complete list of all the requested userIDs.
v~ If the optional cursor parameter is provided, next_cursor and
previous_cursor nodes are also returned.

If the requested user account doesn’t exist or is disabled by Twitter, you will
receive an error message and a HTTP status code of 404.

Input

Both methods require only one of three parameters:

v id: The user’s screen name or numerical user ID.
Example: /friends/ids/bob.xml

v user_id: The numerical ID of the user.
Example: /friends/ids.xml?user_1id=12345

V¥ screen_name: The screen name of the user.
Example: /friends/ids.xml?screen_name=101010

Avoid using the 1d parameter and use user_id, over screen_name if pos-
sible. The sidebar “Hard Knocks” explains why.

There is one optional parameter:

v cursor: Use to page through results 5000 IDs per call.
Example: /friends/ids/bob.xml?cursor=-1

These methods return the entire following or follower list of user IDs. If the list
is greater than a couple thousand users, your request may timeout. Use the
cursor parameter to page through the ids at 5000 IDs per call to avoid timeouts.

To advance through the ID list, pass the parameter cursor=-1 to the
method. It will then return two more values in addition to the user objects:

V¥ next_cursor

V¥ previous_cursor

On your next method call, pass the cursor parameter with the value con-
tained in next_cursor. The results from this call will give you 100 new users
and a new next_cursor and previous_cursor that you can use on your
next call. For an example of how to use the cursor parameter on the similar
method statuses/friends, see Listing 7-2.

113

’ ’4 Part II: Ideation — Coming Up with an Idea

Example
You can try the users/show method by typing http://api.twitter.

com/1l/friends/ids.xml?screen_name=dustyreagan into your brows-
er’s URL address bar.

Both the friends/ids and followers/ids methods are to be used in
conjunction with a local cache of detailed user data. For example, if you keep
a database of user details, you can use the friends/ids or followers/
ids methods to get an update of a user’s social graph, and then look up the
details for those users in your database based on the user ID.

In Listing 7-3, [show you how to use the friends/ids and followers/ids
methods to create a list of people you follow who also follow you back.

Listing 7-3: Get the User IDs of Mutual Followers

<?php

function getApiResponse ($Smethod, $screen_name)
{

// Set username and password

Susername = 'username';

Spassword = 'password';

// The Twitter statuses/friends method
Surl = "https://api.twitter.com/1/$method/ids.xml?screen_name=$screen_name";

// Get API results using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT URL, "$url");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo(ScurlHandle) ;

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

return SapiResponse;

Chapter 7: Managing Users and Their Relationships 1 ’5

// Get array of IDs from API response
function getIdArray ($apiResponse)
{
// Get XML
$xml = new DOMDocument () ;
Sxml->loadXML (SapiResponse) ;

Sdomelements = $xml->getElementsByTagName ("id");
$ids = array();
foreach ($domelements as $node)

array_push($ids, $node->nodeValue) ;

return $ids;

$screen_name = 'dustyreagan';

SapiResponseFriends = getApiResponse('friends', S$screen_name);
SapiResponseFollowers = getApiResponse('followers', $screen_name);

SfriendsIds = getIdArray(SapiResponseFriends) ;
$followersIds = getIdArray ($SapiResponseFollowers);

// Get the IDs that are in both your following and followers list.
SmutualFollows = array_intersect($friendsIds, $followersIds);

echo "<hl>You have: " . count($SmutualFollows) . " mutual followers.</hl>";

?>

List Methods

Lists in Twitter allow you to group individuals however you wish to create a
custom Twitter stream with the people in the list. You could create a list of
close friends, family, entrepreneurs, or Twitter developers.

The list methods behave differently than the other REST API methods. For
instance, a list method may do one thing when you issue an HTTP POST
request, and something else when you give the same method a GET request.

’ ’ 6 Part Il: Ideation — Coming Up with an Idea

W When you see a colon in a method path, that signifies a required variable. For

example, if I call :user/1ists for my Twitter account @dustyreagan, the
method would be written as dustyreagan/lists.

v POST :user/lists

v POST :user/lists/:id

v GET :user/lists

v GET :user/lists/:id

v DELETE :user/lists/:id

v GET :user/lists/:1list_id/statuses

v GET :user/lists/memberships

v GET :user/lists/subscriptions

Create a new list

To create a new list for the authenticated user, you can POST to the :user/
lists method.

This method is not rate limited, but each user may only have up to 20 lists.

Output
This method has two output formats:

1+ XML
» JSON

A successful POST returns a 1ist object that includes the detailed user
object for the authenticated user. A failed POST returns an error message
explaining why the list creation failed.

Input

The :user/1lists method requires two parameters:

v user: The screen name of the user you're creating a list for. This vari-
able is passed in the method path.
Example: dustyreagan/lists

v name: The desired name of the list, passed as a POST field.
Example: name=austin

Chapter 7: Managing Users and Their Relationships

These parameters are optional and passed as a POST field:

v mode: Pass the values private or public to set the mode of the list. If no
mode parameter is passed, the list is set to public as default.
Example: mode=private

v description: A description of your list.
Example: description=Twitter+developers+in+Austin

Example
Listing 7-4 illustrates how to create a list with the :users/1ist method.

Listing 7-4: Creating a List
<?php

// Set username and password
Susername = 'username';
Spassword = 'password';

// The Twitter create list method
Surl = "http://api.twitter.com/1l/Susername/lists.xml";

$name = urlencode("Twitter Developers");
Sdescription = urlencode("My favorite Twitter developers");

// Get API results using curl

$curlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt($ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt(ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS, "name=$name&description=$descript
ion");

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:S$password");

SapiResponse = curl_exec($curlHandle) ;

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;

(continued)

117

’ ’ 8 Part Il: Ideation — Coming Up with an Idea

Listing 7-4 (continued)

Sxml->1loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error and break. Else, keep going!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>SerrorMessage</hl>";
break;
}
else
{
// Get new list URL
SuriNode = S$xml->getElementsByTagName ("uri");
Suri = SuriNode->item(0)->nodeValue;

echo "Suri";

?>

Update an existing list

To update the authenticated user’s existing list, use the :user/lists/:id
method.

This method is not rate limited, and you can perform an HTTP POST or PUT
request.

Output
This method has two output formats:

1 XML
v JSON
A successful POST or PUT returns a 1ist object that includes the detailed

user object for the list’s owner. A failed POST or PUT returns an error mes-
sage explaining why the list creation failed.

Chapter 7: Managing Users and Their Relationships

Input

The :user/1lists/:id POST method requires two parameters:

v user: The screen name of the user whose list you're updating. This vari-
able is passed in the method path.
Example: dustyreagan/lists

v id: The list’s numeric ID or the list’s slug, passed in the method path.
Example: dustyreagan/lists/5065754 .xml
Example: dustyreagan/lists/twitter-developers.xml

To update the list, you can provide the following optional parameters in the
POST or PUT fields.

v name: The desired name of the list.
Example: name=austin

»” mode: Pass the values private or public to set the access value of the
list. If no mode parameter is passed, the list is set to public as default.
Example: mode=private

v description: A description of your list.
Example: description=Twitter+developers+in+Austin

Example

Listing 7-5 illustrates how to update a list with the :users/1ist/:id
method.

Listing 7-5: Updating a List

<?php

// Set username and password
Susername = 'username';
Spassword = 'password';

$1istId = 5065754;

// The Twitter lists update method
Surl = "http://api.twitter.com/1l/$username/lists/$listId.xml";

Sname = urlencode ("Updated: Twitter Developers");
S$description = urlencode("Updated: My favorite Twitter developers");

// Get API results using curl
ScurlHandle = curl_init();
curl_setopt (ScurlHandle, CURLOPT URL, "$url");

(continued)

119

’ 20 Part Il: Ideation — Coming Up with an Idea

Listing 7-5 (continued)

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS, "name=$name&description=$descript
ion");

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "S$Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle) ;

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error and break. Else, keep going!
if ($errors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";
break;
}
else
{
// Get new list URL
SuriNode = S$xml->getElementsByTagName ("uri");
Suri = SuriNode->item(0)->nodeValue;

echo "Suri";

?>

Get a user’s lists

You can get a list of a user’s Twitter lists by issuing a GET request to the
:user/lists method.

This method is rate limited and you must be authenticated.

Chapter 7: Managing Users and Their Relationships 1 2 ’

Output
This method has two output formats:

1 XML
»” JSON

A successful GET request returns an array of 1ist objects that includes
the detailed user object for the list’s creator. If the user you are request-
ing is the authenticated user, the method results include their private lists.
Otherwise, only that user’s public lists are returned.

A failed GET request returns an error message explaining why the request
failed.

Input

The :user/1ists method requires one parameter:

v user: The screen name of the user you're pulling list data for. This vari-
able is passed in the method path.
Example: dustyreagan/lists.xml

Listing 7-6 illustrates how to get a list of a user’s lists using the :user/lists
method.

Listing 7-6: Get a User's List of Lists
<?php

// Set username and password

Susername = 'username';
Spassword = 'password';
SrequstedUser = 'dustyreagan';

// The Twitter GET lists method
Surl = "http://api.twitter.com/1/SrequstedUser/lists.xml";

// Get API results using curl

ScurlHandle = curl_init();

curl_setopt($ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt(ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:S$Spassword");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

(continued)

’ 22 Part II: Ideation — Coming Up with an Idea

Listing 7-6 (continued)
$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];
echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error and break. Else, keep going!
if ($errors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";
break;
}
else
{
$lists = $xml->getElementsByTagName ("list");

foreach($lists as $list)
{
$nameNode = $list->getElementsByTagName ("name");

S$name = $nameNode->item(0)->nodeValue;

S$uriNode = $list->getElementsByTagName ("uri");
Suri = SuriNode->item(0)->nodeValue;

echo "S$name
";

?>

Get details on a specific list

To get the details on a specific user list, issue a GET request on the :user/
lists/:1d method.

This method is rate limited and you must be authenticated.

Chapter 7: Managing Users and Their Relationships 1 23

Output
This method has two output formats:

1 XML
» JSON
A successful GET request returns the detailed 1ist object that includes the

detailed user object for the lists creator. To view the details of a private list,
you must be authenticated as that list’s owner.

A failed request returns an error message explaining why the request failed.

Input

The :user/lists/:1d GET method requires two parameters:

v user: The screen name of the user whose list you're retrieving details
for. This variable is passed in the method path.
Example: dustyreagan/lists

v id: The list’s numeric ID or the list’s slug, passed in the method path.
Example: dustyreagan/lists/5065754 .xml
Example: dustyreagan/lists/twitter-developers.xml

Listing 7-7 illustrates how to get a list’s details by issuing a GET request to
the :user/lists/:id method.

Listing 7-7: Get List Details

<?php

// Set username and password
Susername = 'username';
S$password = 'password';

$listId = 'twitter-developers';

// The Twitter lists update method
Surl = "http://api.twitter.com/1l/$username/lists/$1listId.xml";

// Get API results using curl

ScurlHandle = curl_init();

curl_setopt(ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt(ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

(continued)

’ 24 Part II: Ideation — Coming Up with an Idea

Listing 7-7 (continued)

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:S$Spassword");
SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1oadXML ($SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error and break. Else, keep going!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";
break;
}
else
{
// Get new list URL
SuriNode = $xml->getElementsByTagName ("uri");
Suri = SuriNode->item(0)->nodeValue;

echo "Suri";

?>

Delete a list

To delete an authenticated users list, issue an HTTP DELETE command to the
:user/lists/:id method. If you can’t issue a DELETE command, you can
POST with the added parameter _method=DELETE.

This method is not rate limited.

Chapter 7: Managing Users and Their Relationships 1 25

Output
This method has two output formats:

1 XML
»” JSON

A successful DELETE returns the deleted list’s 1ist object, which includes
the detailed user object for list’s owner. A failed DELETE returns an error
message explaining why the list deletion failed.

Input

The :user/lists/:id method requires two parameters:

v user: The screen name of the user you're deleting a list for. This vari-
able is passed in the method path.
Example: dustyreagan/lists

v id: The list’s numeric ID or the list’s slug, passed in the method path.
Example: dustyreagan/lists/5065754 .xml
Example: dustyreagan/lists/twitter-developers.xml

Example

Listing 7-8 illustrates how to delete a list with the :users/lists/:id
method.

Listing 7-8: Delete a List

<?php

// Set username and password
Susername = 'dustytest2';
Spassword = 'password77';

$listId = 'twitter-developers';

// The Twitter delete list method
Surl = "http://api.twitter.com/1/$username/lists/$1listId.xml";

$name = urlencode("Twitter Developers");
Sdescription = urlencode("My favorite Twitter developers");

// Get API results using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt ($ScurlHandle, CURLOPT USERAGENT, "Twitter App Development For
Dummies: Example");

(continued)

’ 26 Part Il: Ideation — Coming Up with an Idea

Listing 7-8 (continued)

ScurlHandle, CURLOPT_CUSTOMREQUEST, "DELETE");
ScurlHandle, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);
curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:S$password");
SapiResponse = curl_exec ($ScurlHandle) ;

curl_setopt
curl_setopt

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle) ;

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
Sxml->loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error and break. Else, keep going!
if ($errors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>SerrorMessage</hl>";
}
else
{
// Get new list URL
SuriNode = S$xml->getElementsByTagName ("uri");
Suri = SuriNode->item(0)->nodeValue;

echo "Suri";

?>

Get a list’s timeline

To get the tweets for all the members of a specific list, use a GET request on
the :user/lists/:1list_id/statuses method.

This method is rate limited and does not require authentication.

Chapter 7: Managing Users and Their Relationships 1 2 7

Output
This method has three output formats:

» XML
1 JSON
v ATOM

A successful method request returns the complete status object for the 20
most recent tweets. A failed request returns an error message explaining why
the list’s tweets could not be returned.

Input

The :user/lists/:1list_id/statuses method requires two parameters:

v user: The screen name of the user you're deleting a list for. This vari-
able is passed in the method path.
Example: dustyreagan/lists

v 1ist_id: The list’s numeric ID or the list’s slug, passed in the method
path.
Example: dustyreagan/lists/5065754/statuses.xml
Example: dustyreagan/lists/twitter-developers/statuses.xml

The following parameters are optional:

v since_id: The numerical ID of a tweet. Use to return list tweets that are
more recent than the id specified.
Example: /dustyreagan/lists/twitter/statuses.xml?since_
id=12345

» max_id: The numerical ID of a tweet. Use to return list tweets that are
older than the ID specified.
Example: /dustyreagan/lists/twitter/statuses.xml?max_
1d=54321

v per_page: Limits the results per page to an amount specified that is
less than 200.
Example: /dustyreagan/lists/twitter/statuses.
xml?count=100

v page: Page backwards to retrieve older list tweets.
Example: /dustyreagan/lists/twitter/statuses.xml?page=5

Example

In Listing 7-9 [use the page and per_page parameter loop through the
:user/lists/:1list_id/statuses method to display the maximum
amount of tweets in a list that the API will allow.

’ 28 Part Il: Ideation — Coming Up with an Idea

Listing 7-9: Getting a List's Tweets

<?php

function getStatusesPage (Spage)

{
// Set username and password
Susername = 'username';
Spassword = 'password';

// The Twitter list timeline method
Surl = "https://api.twitter.com/1/dustyreagan/lists/twitter-developers/
statuses.xml?per_page=200&page=$page" ;

// Get API results using curl

$curlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt ($ScurlHandle, CURLOPT USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:S$password");

SapiResponse = curl_exec($ScurlHandle) ;

// Get HTTP Code

Sinfo = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

return $apiResponse;

Spage = 1;

do

{
echo "<hl>Page: S$page</hl>";
// Get a page of statuses
SapiResponse = getStatusesPage ($Spage) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error and break. Else, keep going!
if (Serrors->length > 0)
{

SerrorMessage = Serrors->item(0)->nodeValue;

echo "<hl>S$errorMessage</hl>";

Chapter 7: Managing Users and Their Relationships 1 29

break;
}
else
{
// Get tweets
SstatusNodes = $xml->getElementsByTagName ("status");

foreach ($statusNodes as $statusNode)

{
// Get the tweet text
StextNode = $statusNode->getElementsByTagName ("text");
Stext = StextNode->item(0)->nodevalue;

// Get the author's picture

SsenderNode = $statusNode->getElementsByTagName ("user");

SprofilePicNode = $senderNode->item(0)->getElementsByTagName ("profile_
image_url");

Sprofile_image_url = $profilePicNode->item(0)->nodeValue;

echo "<img style=\"float:left\" src=\"$profile_image_url\" width=\"48\"
height=\"48\" />";

echo "<p>S$text</p>";

echo "<hr style=\"clear:both\" />";

// increment page count and loop
Spage++;

}

while ($statusNodes->length > 0)

?>

Get the lists a user belongs to

You can get all of the lists a user is listed in by using a GET request on the
:user/lists/memberships method.

This method is rate limited and requires authentication.

Output
This method has two output formats:

v+ XML
»* JSON

’30 Part Il: Ideation — Coming Up with an Idea

A successful method request returns an array of 1ist objects of the most
recent 20 lists the user was added to. Each list object includes the detailed
user object of the creator of the list. A failed request returns an error mes-
sage explaining why the lists could not be returned.

Input

The :user/lists/memberships method requires the user parameter:
v user: The screen name of the user you're deleting a list for. This vari-
able is passed in the method path.
Example: dustyreagan/lists

The cursor parameter is optional:

v cursor: Use to retrieve additional sets of user data.
Example: / :user/lists/memberships.xml?cursor=-1

Example

Listing 7-10 illustrates how to pull a list of lists a user belongs to using the
:user/lists/memberships method.

Listing 7-10: Getting the Lists a User Belongs To

<?php

function getListsPage($screen_name, S$cursor)
{

// Set username and password

S$username = 'username';

Spassword = 'password';

// The Twitter method
Surl =
"http://api.twitter.com/1/$screen_name/lists/memberships.xml?cursor=Scursor";

// GET API results using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "$url");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code
S$info = curl_getinfo(ScurlHandle) ;

Chapter 7: Managing Users and Their Relationships 13 ’

Shttp_code = $info['http_code'];
echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

return $apiResponse;

Scursor = -1;
do {
// Get lists for user
SapiResponse = getListsPage('dustyreagan', S$cursor);

// Get XML
$xml = new DOMDocument () ;
$xml->loadXML (SapiResponse) ;

$lists = $xml->getElementsByTagName ("list");

foreach($lists as $list)

{
SnameNode = $list->getElementsByTagName ("name") ;
S$name = $nameNode->item(0)->nodeValue;

SuriNode = S$list->getElementsByTagName ("uri");
Suri = SuriNode->item(0)->nodeValue;

echo "S$name
";

// Look for next_cursor
Selements = $xml->getElementsByTagName ("next_cursor");

// Get next_cursor. Break if you can't find it.
if (!empty (Selements))
{
Scursor = Selements->item(0)->nodevalue;
echo "<hl>cursor: S$cursor</hl>";
}
else
{
echo "<hl>No cursor found</hl>";
break;
}

} while($cursor != 0);

?>

’32 Part II: Ideation — Coming Up with an Idea

Get the lists a user follows

To get the lists a user subscribes to, you can issue a GET request to the
:user/lists/subscriptions method.

This method requires authentication and is rate limited.

Output
This method has two output formats:

v XML
» JSON

A successful method request returns an array of 1ist objects of the lists the
user subscribes to. Each 1ist object includes the detailed user object of the
creator of the list. A failed request returns an error message explaining why
the lists could not be returned.

Input

The :user/lists/subscriptions method requires the user parameter:

v user: The screen name of the user whose list subscriptions you want.
This variable is passed in the method path.
Example: dustyreagan/lists/subscriptions.xml

The cursor parameter is optional:

v cursor: Use to retrieve additional sets of user data.
Example: /dustyreagan/lists/subscriptions.xml?cursor=-1

Example

Listing 7-11 illustrates how to pull a list of lists a user subscribes to using the
:user/lists/subscriptions method.

Listing 7-11: Getting the Lists a User Subscribes To
<?php

function getListsPage($screen_name, S$cursor)
{

// Set username and password

S$username = 'username';

Spassword = 'password';

// The Twitter method

Chapter 7: Managing Users and Their Relationships 133

Surl =
"http://api.twitter.com/1/$Sscreen_name/lists/subscriptions.xml?cursor=$cursor";

// GET API results using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT URL, "$url");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "S$Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle) ;

Shttp_code = S$info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

return SapiResponse;

Scursor = -1;
do {
// Get lists for user
SapiResponse = getListsPage('Scobleizer', S$cursor);

// Get XML
$xml = new DOMDocument () ;
$xml->1loadXML (SapiResponse) ;
Slists = $xml->getElementsByTagName("list");
foreach($lists as $list)
{
$nameNode = $1list->getElementsByTagName ("name") ;

$name = SnameNode->item(0)->nodeValue;

SuriNode = $list->getElementsByTagName ("uri");
Suri = SuriNode->item(0)->nodeValue;

echo "$name
";

// Look for next_cursor
Selements = $xml->getElementsByTagName ("next_cursor");

(continued)

734 Part II: Ideation — Coming Up with an Idea

Listing 7-11 (continued)

// Get next_cursor. Break if you can't find it.
if (!empty (Selements))
{
Scursor = Selements->item(0)->nodeValue;
echo "<hl>cursor: S$cursor</hl>";
}
else
{
echo "<hl>No cursor found</hl>";
break;
}

} while(Scursor != 0);

?>

List Members Methods

List members are the Twitter user’s a list follows. You can view, add, and
remove members, as well as check for membership using the four list mem-
bers methods:

v GET :user/:1ist_id/members

v POST :user/:1list_id/members

v DELETE :user/:1ist_id/members

v GET :user/:1list_id/members/:id

Get a list's members

To get the users a list includes, issue a GET request to the :user/:1ist_
id/members method.

This method requires authentication and is rate limited.

Output
This method has two output formats:

v XML
v JSON
A successful method request returns an array of user objects. A failed

request returns an error message explaining why the lists could not be
returned.

Chapter 7: Managing Users and Their Relationships

Input

The :user/:1ist_id/members method requires two parameters:

v user: The screen name of the user whose list you're querying. This vari-
able is passed in the method path.
Example: /dustyreagan/twitter-developers/members.xml

v 1ist_id: The list’s numeric ID or the list’s slug, passed in the method
path.
Example: /dustyreagan/5065754/members .xml
Example: /dustyreagan/twitter-developers/members.xml

The cursor parameter is optional:
v cursor: Use to retrieve additional sets of user data.

Example: /dustyreagan/twitter-developers/members.
xml?cursor=-1

Example

Listing 7-12 illustrates how to get a list of users a list follows using the
:user/:list_id/members method.

Listing 7-12: Getting the Users a List Follows

<?php

function getMembersPage (Scursor)
{
// Set username and password
Susername = 'dustytest2';
Spassword = 'password77';

// The Twitter method
Surl =
"https://api.twitter.com/1/dustyreagan/twitter-developers/members.
xml?cursor=$cursor";

// GET API results using curl

ScurlHandle = curl_init();

curl_setopt(ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt(ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:Spassword");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code
$info = curl_getinfo($curlHandle);

(continued)

135

’36 Part Il: Ideation — Coming Up with an Idea

Listing 7-12 (continued)

Shttp_code = $info['http_code'];
echo "<hl>HTTP Status Code: Shttp_code</hl>";

// Close cURL connection
curl_close($ScurlHandle) ;

return SapiResponse;

Scursor = -1;
do {
// Get lists for user
SapiResponse = getMembersPage ($cursor) ;

// Get XML
$xml = new DOMDocument () ;
Sxml->1loadXML (SapiResponse) ;

Susers = $xml->getElementsByTagName ("user");

foreach ($users as Suser)

{
SnameNode = Suser->getElementsByTagName ("screen_name") ;
$name = SnameNode->item(0)->nodeValue;

echo "$name
";

// Look for next_cursor
Selements = $xml->getElementsByTagName ("next_cursor");

// Get next_cursor. Break if you can't find it.
if (!empty ($elements))
{
Scursor = Selements->item(0)->nodeValue;
echo "<hl>cursor: Scursor</hl>";
}
else
{
echo "<hl>No cursor found</hl>";
break;
}
} while(Scursor != 0);

?>

Add a member to a list

To add a user to a list, issue a POST request to the :user/:1ist_id/
members method. You must be authenticated as the owner of the list to add
a new member to the list.

Chapter 7: Managing Users and Their Relationships

This method is not rate limited, however lists are limited to 500 members.
This method requires authentication.

Output
This method has two output formats:

v+ XML
» JSON

A successful POST returns a 1ist object of the list you added a new user to.
The 1ist object includes a detailed user object for the lists owner. A failed
POST returns an error message explaining why the user couldn’t be added.

Input

The :user/:1list_id/members POST method requires three parameters:

v user: The screen name of the user whose list you're updating. This vari-
able is passed in the method path.
Example: /dustyreagan/twitter-developers/members.xml

v 1list_id: The list’s numeric ID or the list’s slug, passed in the method
path.
Example: /dustyreagan/5065754/members .xml
Example: /dustyreagan/twitter-developers/members.xml

v id: The numeric ID of the user you want to add passed as a POST field.
Example: 1d=1234

Example

Listing 7-13 illustrates how to add a new member to a list with the
:user/:list_id/members method.

Listing 7-13: Add a New List Member

<?php

// Set username and password
$username = 'username';
Spassword = 'password';

$1istId = 'twitter-developers';

// The Twitter add list member method
Surl = "https://api.twitter.com/1/Susername/$listId/members.xml";

SuserId = 973261;

// Get API results using curl

(continued)

137

’38 Part Il: Ideation — Coming Up with an Idea

Listing 7-13 (continued)

$curlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "$Surl");

curl_setopt ($ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt(ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_ POSTFIELDS, "id=SuserId");

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "S$Susername:S$password");

SapiResponse = curl_exec (ScurlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error and break. Else, keep going!
if ($errors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";
}
else
{
// Get list URL
SuriNode = $xml->getElementsByTagName ("uri");
Suri = SuriNode->item(0)->nodeValue;

echo "Suri";

?>

Remove a list member

To remove a user that a list is following, authenticate as the list’s owner and
issue a HTTP DELETE command to the :user/:1ist_id/members method.
If you can’t issue a DELETE command, you can POST with the added param-
eter _method=DELETE.

Chapter 7: Managing Users and Their Relationships

This method is not rate limited.

Output
This method has two output formats:

v XML
»* JSON

A successful DELETE returns the modified list’s 1ist object details, which
includes the detailed user object for the list’s owner. A failed DELETE
returns an error message explaining why the user couldn’t be removed.

Input

The :user/:1list_id/members DELETE method requires three parameters:

v user: The screen name of the user whose list you're updating. This vari-
able is passed in the method path.
Example: /dustyreagan/twitter-developers/members .xml

v 1ist_id: The list’s numeric ID or the list’s slug, passed in the method
path.
Example: /dustyreagan/5065754 /members . xml
Example: /dustyreagan/twitter-developers/members.xml

v id: The numeric ID of the user you want to remove passed as a POST
field.
Example: id=1234

Example

Listing 7-14 shows how to remove a user from a list by issuing an HTTP
DELETE command to the :user/:1ist_id/members method.

Listing 7-14: Remove a List Member
<?php

// Set username and password
$username = 'username';
Spassword = 'password';

$1istId = 'twitter-developers';

// The Twitter list method
S$url = "http://api.twitter.com/1l/Susername/$listId/members.xml";

SuserId = 973261;

// Get API results using curl

(continued)

139

’ 4 0 Part Il: Ideation — Coming Up with an Idea

Listing 7-14 (continued)

$curlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "$Surl");

curl_setopt ($ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_CUSTOMREQUEST, "DELETE");

curl_setopt(ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_ POSTFIELDS, "id=SuserId");

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "S$Susername:S$password");

SapiResponse = curl_exec (ScurlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error and break. Else, keep going!
if ($errors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";
}
else
{
// Get list URL
SuriNode = $xml->getElementsByTagName ("uri");
Suri = SuriNode->item(0)->nodeValue;

echo "Suri";

?>

Test if user is a list member

You can check if a user is being followed by a specific list by issuing a GET
request to the :user/:1list_id/members/:id method.

This method is rate limited, and requires authentication.

Chapter 7: Managing Users and Their Relationships

Output
This method has two output formats:

1 XML
»” JSON

If the user is a member of the specified list, the method returns the checked
user’s user object and an HTTP status code of 200. If the user is not a
member, an error message containing the explanation: “The specified user is
not a member of this list” is returned, along with an HTTP status code of 404.

Input
The :user/:1ist_id/members/:1id GET method requires three
parameters:

v user: The screen name of the user whose list you're checking. This vari-
able is passed in the method path.
Example: /dustyreagan/5065754 /members /1234 .xml

v 1ist_id: The list’s numeric ID or the list’s slug, passed in the method
path.
Example: /dustyreagan/5065754 /members /1234 .xml
Example: /dustyreagan/twitter-developers/members/
1234 .xml

v id: The numeric ID of the user you want to check passed in the method
path.
Example: /dustyreagan/twitter-developers/members/1234 .xml

Example

Listing 7-15 shows how to check if a user is a member of a list using a GET
request on the :user/:1ist_id/members/:1id method.

Listing 7-15: Check if a User Is a Member of a List

<?php

// Set username and password
Susername = 'username';
Spassword = 'password';

$listId = 'twitter-developers';

SuserId = 973261;

// The Twitter check list method

Surl = "http://api.twitter.com/1/Susername/$listId/members/SuserId.xml";

(continued)

141

’ 42 Part II: Ideation — Coming Up with an Idea

Listing 7-15 (continued)

// Get API results using curl

ScurlHandle = curl_init();

curl_setopt($ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt(ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:S$Spassword");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, print the user's picture.
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>S$errorMessage</hl>";
}
else
{
$profileImageNode = $xml->getElementsByTagName ("profile_image_url");
Sprofile_image_url = SprofileImageNode->item(0)->nodeValue;

echo "";

?>

List Subscribers Methods

List subscribers are the people who follow a Twitter list. You can view a list’s
subscribers, follow a list, unfollow a list, and test if a user is following a list
using the four list subscribers methods:

v GET :user/:1list_id/subscribers

v POST :user/:id/subscribers

Chapter 7: Managing Users and Their Relationships 1 43

v DELETE :user/:1ist_id/subscribers
v GET :user/:1list_id/subscribers/:id

Get a list’s subscribers

To get the users that follow a list, issue a GET request to the :user/:1list_
id/subscribers method.

This method requires authentication and is rate limited.

Output
This method has two output formats:

1+ XML
» JSON

A successful method request returns an array of user objects. A failed
request returns an error message explaining why the list’s subscribers could
not be returned.

Input

The :user/:1ist_id/subscribers method requires two parameters:

v user: The screen name of the user whose list you're querying. This vari-
able is passed in the method path.
Example: /dustyreagan/twitter-developers/subscribers.xml

v 1ist_id: The list’s numeric ID or the list’s slug, passed in the method
path.
Example: /dustyreagan/5065754/subscribers.xml
Example: /dustyreagan/twitter-developers/subscribers.xml

The cursor parameter is optional:

v cursor: Use to retrieve additional sets of user data.
Example: /dustyreagan/twitter-developers/subscribers.
xml?cursor=-1

Example

Listing 7-16 illustrates how to use the cursor method to loop through the
:user/:1list_id/subscribers method and print all of a list’s subscribers.

’ 44 Part II: Ideation — Coming Up with an Idea

Listing 7-16: Getting a List's Followers

<?php

function getSubscribersPage (Scursor)
{
// Set username and password
Susername = 'dustytest2';
Spassword = 'password77';

// The Twitter method
Surl =
"https://api.twitter.com/1/dustyreagan/twitter-developers/subscribers.
xml?cursor=$cursor";

// GET API results using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT URL, "$url");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "S$Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle) ;

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

return SapiResponse;

Scursor = -1;
do {
// Get lists for user
SapiResponse = getSubscribersPage (Scursor) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1oadXML (SapiResponse) ;

Susers = $xml->getElementsByTagName ("user");

foreach ($users as Suser)
{

$nameNode = S$user->getElementsByTagName ("screen_name") ;
$name = $nameNode->item(0)->nodeValue;

Chapter 7: Managing Users and Their Relationships 1 45

echo "$name
";

}

// Look for next_cursor
Selements = $xml->getElementsByTagName ("next_cursor");

// Get next_cursor. Break if you can't find it.
if (!empty ($elements))
{
Scursor = $Selements->item(0)->nodeValue;
echo "<hl>cursor: S$Scursor</hl>";
}
else
{
echo "<hl>No cursor found</hl>";
break;
}

} while($cursor != 0);

?>

Follow a list

The authenticated user can follow a list by issuing a POST request to the
:user/:list_id/subscribers method.

This method is not rate limited, however you can only follow a maximum of
40 lists.

Output
This method has two output formats:

1 XML
¥ JSON
A successful POST returns a 1ist object of the list you followed. The 1ist

object includes a detailed user object for the list’s owner. A failed POST
returns an error message explaining why you can’t follow the list.

’ 46 Part Il: Ideation — Coming Up with an Idea

Input
The :user/:1ist_id/subscribers POST method requires two
parameters:

v user: The screen name of the user whose list you're updating. This vari-
able is passed in the method path.
Example: dustyreagan/twitter-developers/subscribers.xml

v 1list_id: The list’s numeric ID or the list’s slug, passed in the method
path.
Example: dustyreagan/5065754/subscribers .xml
Example: dustyreagan/twitter-developers/subscribers.xml

Example

Listing 7-17 illustrates how to follow a list programmatically with the
:user/:list_id/subscribers method.

Listing 7-17: Add a List Subscriber

<?php

// Set username and password
S$username = 'username';
Spassword = 'password';

$listId = 'twitter-developers';

// The Twitter add list subscriber method
Surl = "https://api.twitter.com/1/Susername/$listId/members.xml";

SuserId = 973261;

// Get API results using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT URL, "$url");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS, "id=S$userId");

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:S$Spassword");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

Chapter 7: Managing Users and Their Relationships 1 4 7

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error and break. Else, keep going!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>S$errorMessage</hl>";
}
else
{
// Get list URL
SuriNode = S$xml->getElementsByTagName ("uri");
Suri = SuriNode->item(0)->nodeValue;

echo "Suri";

?>

Stop following a list

The authenticated user can stop following a list by issuing an HTTP DELETE
command using the :user/:1list_id/subscribers method. If you can’t
issue a DELETE command you can POST with the added field parameter
_method=DELETE.

This method is not rate limited.

Output
This method has two output formats:

1 XML
v JSON
A successful DELETE returns the 1ist object of the unfollowed list, which

includes the detailed user object for the list’s owner. A failed DELETE
returns an error message explaining why the list couldn’t be unfollowed.

’ 48 Part Il: Ideation — Coming Up with an Idea

Input

The :user/:1ist_id/members DELETE method requires three parameters:

v user: The screen name of the user whose list you're updating. This vari-
able is passed in the method path.
Example: dustyreagan/lists

v 1list_id: The list’s numeric ID or the list’s slug, passed in the method
path.
Example: dustyreagan/lists/5065754 .xml
Example: dustyreagan/lists/twitter-developers.xml

Example

Listing 7-18 illustrates how to unfollow a list by issuing an HTTP DELETE
command to the :user/:1ist_id/subscribers method.

Listing 7-18: Unfollow a List

<?php

// Set username and password
Susername = 'username';
Spassword = 'password';

$listId = 'twitter-developers';

// The Twitter list method
Surl = "http://api.twitter.com/1/$username/$1listId/subscribers.xml";

SuserId = 973261;

// Get API results using curl

ScurlHandle = curl_init();

curl_setopt(ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_CUSTOMREQUEST, "DELETE");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS, "id=S$userId");

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:S$Spassword");

SapiResponse = curl_exec(ScurlHandle) ;

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle) ;

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

Chapter 7: Managing Users and Their Relationships 1 4 9

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1oadXML ($SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error and break. Else, keep going!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>S$errorMessage</hl>";
}
else
{
// Get list URL
SuriNode = S$xml->getElementsByTagName ("uri");
Suri = SuriNode->item(0)->nodeValue;

echo "Suri";

?>

Test if user follows a list

You can check if a user is following a specific list by issuing a GET request on
the :user/:1list_id/subscribers/:id method.

This method is rate limited, and requires authentication.

Output
This method has two output formats:

v+ XML
» JSON

If the specified user follows the list, their user object is returned. A failed POST
returns an error message explaining why the test could not be performed.

’50 Part Il: Ideation — Coming Up with an Idea

Input
The :user/:1ist_id/subscribers/:id GET method requires three
parameters:

v user: The screen name of the user whose list you're checking. This vari-
able is passed in the method path. Example: dustyreagan/twitter-
developers/subscribers/1234 .xml

v 1ist_id: The list’s numeric ID or the list’s slug, passed in the method
path. Example: dustyreagan/5065754/subscribers/1234.xml
Example: dustyreagan/twitter-developers/subscribers/1234.
xml

v id: The numeric ID of the user you want to check passed in the method
path. Example: dustyreagan/twitter-developers/subscribers/
1234 .xml

Example

Listing 7-19 shows how to check if a user is following a list using a GET
request on the :user/:1ist_id/subscribers/:1id method.

Listing 7-19: Check if a User Is Following a List

<?php

// Set username and password
Susername = 'username';
S$password = 'password';

$listId = 'twitter-developers';
SuserId = 'dustyreagan';

// The Twitter check list method
Surl = "https://api.twitter.com/1/$Susername/$listId/subscribers/SuserId.xml";

echo Surl;

// Get API results using curl

ScurlHandle = curl_init();

curl_setopt(ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt(ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:Spassword");

SapiResponse = curl_exec ($curlHandle) ;

Chapter 7: Managing Users and Their Relationships 15 ’

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
Sxml->loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error. Else, print the user's picture.
if ($errors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>SerrorMessage</hl>";
}
else
{
SprofileImageNode = $xml->getElementsByTagName ("profile_image_url");
$profile_image_url = S$profileImageNode->item(0)->nodeValue;

echo "";

?>

Friendship Methods

The term friendship in Twitter is used loosely. More appropriately, it means
to follow someone’s Twitter account. Using the friendship methods you can
follow and unfollow a Twitter account, as well as check if one user follows
another user. This is all done with these four methods:

v friendships/create

V¥ friendships/destroy

Vv friendship/exists

Vv friendships/show

’52 Part II: Ideation — Coming Up with an Idea

\\3

Follow a user

To programmatically follow a user on Twitter, you must authenticate as the
follower and post the ID of the person you want to follow to the friend-
ship/create method. Following a protected Twitter account will send a fol-
lower request to the account holder. They must approve your request before
you begin following them.

This method requires a POST request and isn’t rate limited. However, you
may only follow an unspecified number of users per day. Twitter doesn’t dis-
close how many.

Output
This method has two output formats:

v XML
v+ JSON

On a successful post, this method will return the user object of the person
you followed. On a failed post, you will receive an error message explaining
why the follow failed.

Input

The friendship/create method requires only one of three parameters:

v id: The user’s screen name or numerical user id.
Example: /friendships/create/bob.xml
Example: /friendships/create/12345.xml

v user_id: The numerical id of the user.
Example: /friendships/create.xml?user_id=12345

V¥ screen_name: The screen name of the user.
Example: /friendships/create.xml?screen_name=101010

Avoid using the 1d parameter and use user_id, over screen_name if pos-
sible. The sidebar “Hard Knocks” explains why.

In addition to following a user, the friendships/create method allows you
to turn on SMS notifications at the same time with this optional parameter:

v follow: Use to turn on SMS notifications for the user.
Example: /friendships/create/bob.xml?follow=true

Example

Listing 7-20 shows you an example of how to programmatically follow a new
user by using curl to post to the friendships/create method.

Chapter 7: Managing Users and Their Relationships 153

Listing 7-20: How to Programmatically Follow a New User

<?php
// Set username and password

Susername = 'username';
Spassword = 'password';

$follow = 'dustyreagan';

// The Twitter friendships/create method
Surl = "https://api.twitter.com/1/friendships/create.xml";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT URL, "$url");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS, "screen_name=$follow");

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:Spassword");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $Shttp_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>S$errorMessage</hl>";
}
else
{
SprofileImageNode = $xml->getElementsByTagName ("profile_image_url");
Sprofile_image_url = $profileImageNode->item(0)->nodeValue;
echo "<hl>Now following: <img src=\"Sprofile_image _url\" width=\"48\"
height=\"48\" alt=\"S$follow\" /></hl>";

?>

754 Part II: Ideation — Coming Up with an Idea

3

Stop following a user

To stop following a user, authenticate as the user who’s doing the unfollow-
ing and post the ID of the person you want to unfollow to the friendship/
destroy method.

This method requires a POST or DELETE request and isn’t rate limited.
However, you may only unfollow an unspecified number of users per day.
Twitter doesn’t disclose how many.

Output
This method has two output formats:

v+ XML
»* JSON

On a successful post, this method will return the user object of the person
you unfollowed. On a failed post, you will receive an error message explain-
ing why you were unable to unfollow the user.

Input
The friendships/destroy method requires only one of three parameters:
v id: The user’s screen name or numerical user ID.

Example: /friendships/destroy/bob.xml
Example: /friendships/destroy/12345.xml

v user_id: The numerical ID of the user.
Example: /friendships/destroy.xml?user_1id=12345

V¥ screen_name: The screen name of the user.
Example: /friendships/destroy.xml?screen_name=101010

Avoid using the id parameter and use user_id, over screen_name if
possible. The sidebar “Hard Knocks” explains why.

Example

Listing 7-21 shows you an example of how to programmatically unfollow a
new user by using curl to post to the friendships/destroy method.

Listing 7-21: How to Programmatically Unfollow a User

<?php

// Set username and password
Susername = 'username';

Chapter 7: Managing Users and Their Relationships 155

Spassword = 'password';
Sunfollow = 'dustyreagan';

// The Twitter friendships/destroy method
Surl = "https://api.twitter.com/1/friendships/destroy.xml";

// POST to Twitter API using curl

$ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT _URL, "Surl");

curl_setopt ($ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt(ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt(ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS, "screen_name=Sunfollow");

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle);

Shttp_code = S$info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error. Else, success!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodevValue;
echo "<hl>$SerrorMessage</hl>";
}
else
{
SprofileImageNode = $xml->getElementsByTagName ("profile_image_url");
S$profile_image_url = $profileImageNode->item(0)->nodeValue;
echo "<hl>Un-Followed: <img src=\"S$profile_image_url\" width=\"48\"
height=\"48\" alt=\"$unfollow\" /></hl>";

?>

’56 Part Il: Ideation — Coming Up with an Idea

\\3

Check if one user follows another user

If you want to check if one user is following another, you can run the
friendships/exists method. It returns a simple true or false answer.

This method doesn’t require authentication, but if either of the two user
accounts you are checking is protected you must

v Authenticate your API call

v Have permission to view the protected accounts.

This method requires a GET request and is rate limited. The sidebar “Hard
Knocks” explains the concern with rate limits.

Output
This method has two output formats:

1 XML
v JSON
On a successful method call you will receive a value of true or false. If the

either user accounts doesn’t exist or is disabled by Twitter you will receive
an error message and a HTTP status code of 404.

Input

This method requires two parameters:
v user_a: The user ID or screen name of a user
v user_id: The user ID or screen name of the user you want to know
if user_a is following.

This method asks, “is user_a following user_b?”

Avoid using the 14 parameter and use user_id over screen_name if
possible. The sidebar “Hard Knocks” explains why.

Example

You can try the friendships/exists method easily by typing http://api.
twitter.com/1l/friendships/exists.xml?user_a=dustyreagan&
user_b=ev into your browser’s URL address bar.

In Listing 7-22 you can see an example of how to test for friendships using
PHP and cURL.

Listing 7-22: Testing if One User Follows Another

Chapter 7: Managing Users and Their Relationships

<?php

// Set username and password
Susername = 'username';
Spassword = 'password';
Suser_a = 'dustyreagan';

Suser_b = 'z_bill';

// The Twitter friendships/exists method

Surl = "https://api.twitter.com/1/friendships/exists.xml?user_a=Suser_a&user_

b=Suser_b";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt(ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt(ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt(ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt(ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:Spassword");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $Shttp_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>S$errorMessage</hl>";
}
else
{
SfriendsNode = $xml->getElementsByTagName ("friends");
Sfriends = $friendsNode->item(0)->nodeValue;

(continued)

157

’58 Part Il: Ideation — Coming Up with an Idea

Listing 7-22 (continued)

if ($friends == "true")
echo "<hl>@Suser_a follows @Suser_b</hl>";
else

echo "<hl>@Suser_a does NOT follow @Suser_b</hl>";

?2>

Get information about the relationship
between two users

While the friendships/exists method will tell you if one user follows
another, the friendships/show method will give you the bidirectional
relationship between both users, as well as the user ID and screen name of
both users.

So, if you want to know if user A follows user B, and you want to know if user
B follows user A, you can do that in one call with the friendships/show
method.

This method doesn’t require authentication, but if either of the two user
accounts you are checking is protected you must

v Authenticate your API call

v Have permission to view the protected accounts.

This method requires a GET request and is rate limited. The sidebar “Hard
Knocks” explains the concern with rate limits.

Output
This method has two output formats:

v+ XML
»* JSON

On a successful method call you will receive a response similar to Listing 7-23.

Listing 7-23: Example XML Response from the Friendships/Show Method

<?xml version="1.0" encoding="UTF-8"?>
<relationship>

<source>
<blocking type="boolean">false</blocking>

Chapter 7: Managing Users and Their Relationships

WING/
&

<following type="boolean">true</following>
<screen_name>DustyReagan</screen_name>
<followed_by type="boolean">true</followed_by>
<id type="integer">973261</id>
<notifications_enabled type="boolean">true</notifications_enabled>

</source>

<target>
<following type="boolean">true</following>
<screen_name>z_bill</screen_name>
<followed_by type="boolean">true</followed_by>
<id type="integer">17643038</id>

</target>

</relationship>

Notification data is private, so the notification_enabled element is only
returned if the source user is the authenticated user.

If the either user accounts doesn’t exist or is disabled by Twitter you will
receive an error message and a HTTP status code of 404.

Input

This method has four parameters.

v source_id: The numerical ID of the source user.
Example: /friendships/show.xml?source_id=123&target_
1d=456

V¥ source_screen_name: The screen name of the source user.
Example: /friendships/show.xml?source_screen_name=bob
&target_id=456

v target_id: The numerical ID of the target user.
Example: /friendships/show.xml?target_1id=456

V¥ target_screen_name: The screen name of the target user.
Example: /friendships/show.xml?target_screen_name=bob

You are required to provide a source user and a target user to compare. You
can do that using either their user ID or screen name. If you are authenti-
cated, you can omit specifying the source user and the method will assume
you are using the authenticated user as the source.

Example

You can try the friendships/show method easily by typing http: //
api.twitter.com/1/friendships/show.xml?source_screen_
name=dustyreagan&target_screen_name=z_bill into your browser’s
URL address bar.

159

’ 60 Part Il: Ideation — Coming Up with an Idea

Listing 7-24 includes an example of how you can use the friendships/show
method to show if two users follow each other.

Listing 7-24: Check if Two Users Follow Each Other

<?php

// Set username and password

Susername = 'username';
Spassword = 'password';
$source_user = 'dustyreagan';

Starget_user = 'z_bill';

// The Twitter friendships/exists method

Surl =

"https://api.twitter.com/1/friendships/show.xml?source_screen_name=$source_
user&target_screen_name=$target_user";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "$url");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

S$info = curl_getinfo(ScurlHandle) ;

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error. Else, success!

if (Serrors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$SerrorMessage</hl>";

}

else

Chapter 7: Managing Users and Their Relationships 1 6 ’

$sourceNode = $xml->getElementsByTagName ("source");
SfollowingNode = S$sourceNode->item(0)->getElementsByTagName ("following");
SsourceFollowsTarget = $followingNode->item(0)->nodeValue;

// does the source user follow the target user?

if (SsourceFollowsTarget == "true")
echo "<hl>@$source_user follows @Starget_user</hl>";
else

echo "<hl>@$source_user does NOT follow @Starget_user</hl>";
StargetNode = $xml->getElementsByTagName ("target");
SfollowingNode = StargetNode->item(0)->getElementsByTagName ("following");

StargetFollowSource = $followingNode->item(0)->nodeValue;

// does the target user follow the source user?

if ($targetFollowSource == "true")
echo "<hl>@$target_user follows @$source_user</hl>";
else

echo "<hl>@$target_user does NOT follow @$source_user</hl>";

?>

Notification Methods

The term notification in the Twitter APl means to receive a specific user’s
tweets to your phone via SMS. You can manage who you receive notifications
for using these two methods:

v notifications/follow

V¥ notifications/leave

Follow a user to your phone

You can follow a user to your phone via SMS by calling the notifications/
follow method. To follow a user to your phone you must

v Authenticate

v Be following the user

If the user you want to receive notifications on has a protected account, you
must have permissions to view their tweets.

’ 62 Part Il: Ideation — Coming Up with an Idea

A\

This method requires a POST request and isn’t rate limited.

Output
This method has two output formats:

v XML
»* JSON

On a successful post, this method will return the user object of the person
you followed. On a failed post, you will receive an error message explaining
why the follow failed.

Input

The notifications/follow method requires only one of three parameters:
v id: The user’s screen name or numerical user ID.

Example: /notifications/follow/bob.xml
Example: /notifications/follow/12345.xml

v user_id: The numerical ID of the user.
Example: /notifications/follow.xml?user_1id=12345

V¥ screen_name: The screen name of the user.

Example: /notifications/follow.xml?screen_name=101010

Avoid using the 1d parameter and use user_id, over screen_name if pos-
sible. The sidebar “Hard Knocks” explains why.

Example

Listing 7-25 shows you an example of how to receive notifications from a user
by using curl to post to the notifications/follow method.

Listing 7-25: How to Programmatically Receive Notifications from a User

<?php

// Set username and password
Susername = 'username';
$password = 'password';

$follow = 'dustyreagan';

// The Twitter notifications/follow method
Surl = "https://api.twitter.com/l/notifications/follow.xml";

// POST to Twitter API using curl
ScurlHandle = curl_init();
curl_setopt (ScurlHandle, CURLOPT URL, "$url");

Chapter 7: Managing Users and Their Relationships 1 63

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS, "screen_name=$follow");

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:Spassword");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: Shttp_code</hl>";

// Close cURL connection
curl_close($ScurlHandle) ;

// Get XML
S$xml = new DOMDocument () ;
$xml->1loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>S$errorMessage</hl>";
}
else
{
SprofileImageNode = $xml->getElementsByTagName ("profile_image_url");
Sprofile_image_url = SprofileImageNode->item(0)->nodeValue;
echo "<hl>Now receiving notifications for: <img src=\"S$profile_image_url\"
width=\"48\" height=\"48\" alt=\"$follow\" /></hl>";

?>

Stop receiving notifications

To stop receiving SMS notifications for a user, authenticate and call the
notifications/leave method.

This method requires a POST request and isn’t rate limited.

’ 64 Part Il: Ideation — Coming Up with an Idea

\\j

Output
This method has two output formats:

1+ XML
»* JSON

On a successful POST, this method will return the user object of the person
you turned off notification for. On a failed POST, you will receive an error
message explaining why you were unable to turn off notifications for the user.

Input

The notifications/leave method requires only one of three parameters:

v id: The user’s screen name or numerical user ID.
Example: /notifications/leave/bob.xml
Example: /notifications/leave/12345.xml

v user_id: The numerical ID of the user.
Example: /notifications/leave.xml?user_id=12345

» screen_name: The screen name of the user.

Example: /notifications/leave.xml?screen_name=101010

Avoid using the id parameter and use user_id over screen_name if pos-
sible. The sidebar “Hard Knocks” explains why.

Example

Listing 7-26 shows you an example of how to programmatically turn off noti-
fications for a user using curl to post to the notifications/leave method.

Listing 7-26: How to Programmatically Turn Off SMS Notifications

<?php

// Set username and password

$username = 'username';
Spassword = 'password';
$leave = 'dustyreagan';

// The Twitter notifications/leave method
Surl = "https://api.twitter.com/l/notifications/leave.xml";

// POST to Twitter API using curl

$curlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt ($ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

Chapter 7: Managing Users and Their Relationships 1 65

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);
curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS, "screen_name=$leave");
curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:S$Spassword");
SapiResponse = curl_exec(ScurlHandle) ;

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
Sxml->1loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error. Else, success!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>SerrorMessage</hl>";
}
else
{
SprofileImageNode = $xml->getElementsByTagName ("profile_image_url");
Sprofile_image_url = $profileImageNode->item(0)->nodeValue;
echo "<hl>Turned off notifications for: <img src=\"Sprofile_image_url\"
width=\"48\" height=\"48\" alt=\"$leave\" /></hl>";

?>

Block Methods

Blocking a user in Twitter prevents them from following you and vice versa.
You can block, unblock, and view existing user blocks using the API's block
methods. These methods include:

V¥ blocks/create

v blocks/destroy

’ 66 Part Il: Ideation — Coming Up with an Idea

A\

V¥ blocks/exists
¥ blocks/blocking
V¥ blocks/blocking/ids

Block a user

Blocking a user removes them from the people you follow (if you're following
them), and prevents the user from following you. To block a user with the API
use the blocks/create method. To block a user you must be authenticated
as the blocker.

This method requires a POST request and isn’t rate limited. However, you
may only block an unspecified number of users per day. Twitter doesn’t dis-
close how many.

Output
This method has two output formats:

v XML
» JSON

On a successful POST, this method will return the user object of the person
you blocked. On a failed POST, you will receive an error message explaining
why you were unable to block the user.

Input

The blocks/create method requires only one of three parameters:

v id: The user’s screen name or numerical user ID.
Example: /blocks/create/bob.xml
Example: /blocks/create/12345.xml

v user_id: The numerical ID of the user.
Example: /blocks/create.xml?user_1id=12345

V¥ screen_name: The screen name of the user.
Example: /blocks/create.xml?screen_name=101010

Avoid using the id parameter and use user_id over screen_name if pos-
sible. The sidebar “Hard Knocks” explains why.

Example

Listing 7-27 shows you an example of how to programmatically block a new
user by using curl to post to the blocks/create method.

Chapter 7: Managing Users and Their Relationships 1 6 7

Listing 7-27: How to Programmatically Block a User

<?php

// Set username and password
Susername = 'username';
$password = 'password';

Sblock = 'examplespammer';

// The Twitter blocks/create method
Surl = "https://api.twitter.com/1/blocks/create.xml";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT URL, "$url");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_ POSTFIELDS, "screen_name=$block");

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:Spassword");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $Shttp_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>S$errorMessage</hl>";
}
else
{
$profileImageNode = $xml->getElementsByTagName ("profile_image_url");
Sprofile_image_url = $profileImageNode->item(0)->nodeValue;
echo "<hl>Blocked: <img src=\"Sprofile_image_url\" width=\"48\" height=\"48\"
alt=\"$block\" /></hl>";

?>

’ 68 Part Il: Ideation — Coming Up with an Idea

3

Unblock a user

To unblock a user you previously blocked, use the blocks/destroy
method. This method requires you authenticate as the user who’s doing
the unblocking and post the ID of the person you want to unblock to the
blocks/destroy method.

This method requires a POST or DELETE request and isn’t rate limited.
However, you may only unblock an unspecified number of users per day.
Twitter doesn’t disclose how many.

Output
This method has two output formats:

1 XML
»* JSON

On a successful post, this method will return the user object of the person
you unblocked. On a failed post, you will receive an error message explaining
why you were unable to unblock the user.

Input

The blocks/destroy method requires only one of three parameters:

v id: The user’s screen name or numerical user ID.
Example: /blocks/destroy/bob.xml
Example: /blocks/destroy/12345.xml

v user_id: The numerical ID of the user.
Example: /blocks/destroy.xml?user_1id=12345

V¥ screen_name: The screen name of the user.
Example: /blocks/destroy.xml?screen_name=101010

Avoid using the 1d parameter and use user_id over screen_name if pos-
sible. The sidebar “Hard Knocks” explains why.

Example

Listing 7-28 shows you an example of how to programmatically unfollow a
new user by using curl to post to the blocks/destroy method.

Listing 7-28: How to Programmatically Unblock a User

<?php

// Set username and password
Susername = 'username';

Chapter 7: Managing Users and Their Relationships 1 69

Spassword = 'password';
Sblock = 'examplespammer';

// The Twitter blocks/create method
Surl = "https://api.twitter.com/1l/blocks/destroy.xml";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt(ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS, "screen_name=S$block");

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:S$Spassword");

SapiResponse = curl_exec(ScurlHandle) ;

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
Sxml->1loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error. Else, success!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>SerrorMessage</hl>";
}
else
{
SprofileImageNode = $xml->getElementsByTagName ("profile_image_url");
Sprofile_image_url = $profileImageNode->item(0)->nodeValue;
echo "<hl>Unblocked: <img src=\"S$profile_image url\" width=\"48\"
height=\"48\" alt=\"$block\" /></hl>";

?>

’ 70 Part Il: Ideation — Coming Up with an Idea

A\\S

Check if a user is blocked

You can test to see if the authenticating user is blocking another user by
using the blocks/exists method.

This method requires a GET request and is rate limited. The sidebar “Hard
Knocks” explains the concern with rate limits.

Output
This method has two output formats:

1+ XML
1 JSON

If a user is blocked, you will receive the complete user object for the blocked
user. If the user isn’t blocked, or doesn’t exist, you will receive an error mes-
sage similar to Listing 7-29 and an HTTP status code of 404.

Listing 7-29: User Is Not Blocked Message

<?xml version="1.0" encoding="UTF-8"?>

<hash>
<request>/blocks/exists.xml?user_id=z_bill</request>
<error>You are not blocking this user.</error>

</hash>

Input

This method requires only one of three parameters:

v i1d: The user’s screen name or numerical user ID.
Example: /blocks/exists /bob.xml

v user_id: The numerical ID of the user.
Example: /blocks/exists.xml?user_id=12345

V¥ screen_name: The screen name of the user.
Example: /blocks/exists.xml?screen_name=101010

Avoid using the 1d parameter and use user_id, over screen_name if pos-
sible. The sidebar “Hard Knocks” explains why.

Example

You can try the blocks/exists method easily by typing http://api.
twitter.com/1/blocks/exists.xml?screen_name=dustyreagan into
your browser’s URL address bar.

Chapter 7: Managing Users and Their Relationships 1 7 ’

You can see an example of how to use the blocks/exists method to pro-
grammatically test if a user is blocked in Listing 7-30.

Listing 7-30: Check if a User Is Blocked

<?php

// Set username and password

Susername = 'username';
Spassword = 'password';
StestForBlock = 'examplespammer';

// The Twitter blocks/exists method
Surl = "https://api.twitter.com/1/blocks/exists.xml?screen_name=$testForBlock";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "$url");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

S$info = curl_getinfo(ScurlHandle) ;

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error. Else, success!
if (Serrors->length > 0)
{

SerrorMessage = Serrors->item(0)->nodeValue;

if (SerrorMessage == "You are not blocking this user.")
echo "<hl>$testForBlock is NOT blocked</hl>";
else

echo "<hl>$SerrorMessage</hl>";

(continued)

172

Part ll: Ideation — Coming Up with an Idea

\NG/
§&§

\NG/
&‘g‘“

Listing 7-30 (continued)

else
{
S$profileImageNode = $xml->getElementsByTagName ("profile_image_url");
$profile_image_url = $profileImageNode->item(0)->nodeValue;
echo "<hl>User is blocked: <img src=\"S$profile_image_url\" width=\"48\"
height=\"48\" alt=\"S$testForBlock\" /></hl>";

?>

Get a user details list of blocked users

You can retrieve a list of user detail objects for all the users the authenti-
cated user has blocked with the details/blocking method.

This method requires a GET request and is rate limited. The sidebar “Hard
Knocks” explains the concern with rate limits.

Output
This method has two output formats:

v+ XML
1 JSON

On a successful call this method returns a list of user objects with a docu-
mented maximum of 20 users returned per call. However, at the time of this
writing all blocked user objects are returned at once.

If the method call fails it returns an error message and a HTTP status code
of 404.

Input

This method has no required parameters, but has an optional page param-
eter to retrieve more than the maximum number of user objects per page.

V¥ page: Page to retrieve older blocked user details.
Example: /blocks/blocking.xml?page=5

The page parameter may eventually be replaced with the cursor parameter
as seen in the statuses/friends, statuses/followers, followers/ids, and friends/
ids methods. However, at the time of this writing, the page parameter is still
the appropriate way to retrieve additional results for the blocks/blocking
method.

Chapter 7: Managing Users and Their Relationships 1 73

Example

You can try the blocks/blocking method easily by typing http://api.
twitter.com/1l/blocks/blocking.xml into your browser’s URL
address bar.

The code example in Listing 7-31 displays the profile pictures of users
blocked by the authenticated account.

Listing 7-31: Displays Blocked Users

<?php

// Set username and password
Susername = 'username';
Spassword = 'password';

// The Twitter blocks/blocking/ids method
Surl = "https://api.twitter.com/1/blocks/blocking.xml";

// POST to Twitter API using curl

$curlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT _URL, "Surl");

curl_setopt ($ScurlHandle, CURLOPT USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt(ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:S$password");

SapiResponse = curl_exec($ScurlHandle) ;

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
Sxml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error. Else, success!

if ($errors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>SerrorMessage</hl>";

(continued)

’ 74 Part II: Ideation — Coming Up with an Idea

Listing 7-31 (continued)

else
{

$screenNameNodes = $xml->getElementsByTagName ("screen_name") ;

echo "<p>You have blocked " . S$screenNameNodes->length . " users.</p>";
foreach ($screenNameNodes as $screenNameNode)
{
$screenName = SscreenNameNode->nodeValue;
echo "<a href=\"http://api.twitter.com/1l/users/show.xml?screen_
name=$screenName\ ">$screenName
";

?>

Retrieve a list of blocked users IDs

The blocks/blocking method is great for retrieving detailed blocked user
records, but if you don’t need that detailed user data, you can retrieve a list
of only the user IDs of your blocked users with the blocks/blocking/ids
method.

This method requires authentication, a GET request, and is rate limited. The
sidebar “Hard Knocks” explains the concern with rate limits.

Output
This method has two output formats:

v+ XML
1+ JSON

A successful method call returns a list of all the blocked user IDs. A failed call
returns an error message and a HTTP status code of 404.

Input

This method has no input parameters. It uses the authenticated user as the
source.

Example

You can try the blocks/blocking/id method easily by typing http: //api.
twitter.com/1/ /blocks/blocking/ids.xml into your browser’s URL
address bar. When requested by your browser, enter your Twitter user name
and password. Then you receive the IDs of your blocked users in XML format.

Chapter 7: Managing Users and Their Relationships

The blocks/blocking/id method is to be used in conjunction with a

local cache of detailed user data. For example, if you keep a database of

user details, you can use the blocks/blocking/id method to get a list of
blocked users, then lookup the details for those users in your database based
on the user ID.

In Listing 7-32 is an example of how to count the amount of users you have
blocked, and return a list a blocked user IDs that link to the user details XML.

Listing 7-32: Get a Count and List of Blocked User IDs

<?php

// Set username and password
Susername = 'username';
$password = 'password';

// The Twitter blocks/blocking/ids method
Surl = "https://api.twitter.com/1/blocks/blocking/ids.xml";

// POST to Twitter API using curl

$curlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt ($curlHandle, CURLOPT USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:S$password");

SapiResponse = curl_exec($ScurlHandle) ;

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
Sxml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error. Else, success!

if ($errors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>SerrorMessage</hl>";

(continued)

175

’ 76 Part Il: Ideation — Coming Up with an Idea

Listing 7-32 (continued)
}

else

{
$idNodes = $xml->getElementsByTagName ("id") ;

echo "<p>You have blocked " . $idNodes->length . " users.</p>";
foreach ($idNodes as $idNode)
{
$id = $idNode->nodeValue;
echo "$id</
a>
";

?>

Spam Reporting Method

Reporting a user as spam blocks them from your account and sends a mes-
sage to Twitter alerting them to investigate the account for spam activities.
To mark a user as spam with the API you need one method:

V¥ report_spam

How to report a Twitter account as spam

This method requires a POST request and isn’t rate limited. However, you
may only mark an unspecified number of users as spam per hour. Twitter
doesn’t disclose how many.

Output
This method has two output formats:

1 XML
» JSON
On a successful POST, this method will return the user object of the person

you marked as spam. On a failed POST, you will receive an error message
explaining why you were unable to mark the user as spam.

Chapter 7: Managing Users and Their Relationships

3

Input

The report_spam method requires only one of three parameters:

v id: The user’s screen name or numerical user ID.
Example: /report_spam/bob.xml
Example: /report_spam/12345.xml

v user_id: The numerical ID of the user.
Example: /report_spam.xml?user_id=12345

V¥ screen_name: The screen name of the user.

Example: /report_spam.xml?screen_name=101010

Avoid using the id parameter and use user_id, over screen_name if possible.
The sidebar “Hard Knocks” explains why.

Example

Listing 7-33 shows you an example of how to programmatically block a new
user by using curl to post to the report_spam method.

Listing 7-33: How to Programmatically Mark a User as Spam
<?php

// Set username and password

Susername = 'username';
Spassword = 'password';
Sspammer = 'examplespammer';

// The Twitter report_spam method
Surl = "https://api.twitter.com/1/report_spam.xml";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt(ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt(ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS, "screen_name=$spammer");

curl_setopt (ScurlHandle, CURLOPT USERPWD, "Susername:S$password");

SapiResponse = curl_exec($ScurlHandle) ;

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

(continued)

177

’ 78 Part Il: Ideation — Coming Up with an Idea

Listing 7-33 (continued)

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1oadXML ($SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>S$errorMessage</hl>";
}
else
{
S$profileImageNode = $xml->getElementsByTagName ("profile_image_url");
Sprofile_image_url = $profileImageNode->item(0)->nodeValue;
echo "<hl>Marked as spam: <img src=\"Sprofile_image_url\" width=\"48\"
height=\"48\" alt=\"S$spammer\" /></hl>";

?>

Chapter 8
Communication Through Tweets

In This Chapter

Working with AP communication methods
Update your Twitter status
Manage a user’s timeline

More working examples of the API in PHP

' his chapter covers APl methods that allow users to communicate over
Twitter. Communicating over Twitter involves consuming and creating
tweets. Some ways you can work with tweets are by:

v Updating your status

v Sending a direct message

v Favoriting a tweet

v Searching for tweets

Status Methods

Status methods are methods that deal directly with tweets. They are used to
create, delete, get details on, and retweet a tweet. There are six status methods,
including:

V¥ statuses/show

V¥ statuses/update

V¥ statuses/destroy

V¥ statuses/retweet

V¥ statuses/retweets

1 80 Part Il: Ideation — Coming Up with an Idea

Get the details of a specific tweet

You can get the complete details of a tweet and the user who wrote it with
the statuses/show method.

This method doesn’t require authentication, but to get the details of a
protected Twitter account, you must

v Authenticate your API call.

v Have permission to view the protected account.

This method requires a GET request and is rate limited. Chapter 7 explains
the concern with rate limits.

Output
This method has two output formats:

» XML
» JSON

On a successful method call, it returns the complete status object, which
contains the complete user object of the author.

If the tweet doesn’t exist you will receive an error message and a HTTP status
code of 404.

Input

This method requires one parameter, the id of the tweet.

v id: The numerical id of the status update.
Example: /statuses/show/1234.xml

Example

You can try the statuses/show method easily by typing http://api.
twitter.com/1l/statuses/show/20.xml into your browser’s URL
address bar.

In Listing 8-1, [use the statuses/show method to pull the details of Twitter’s
first tweet and I display the author’s picture with provided data.

Listing 8-1: Example of How to Get a Tweet's Details
<?php

// Set username and password

Chapter 8: Communication Through Tweets 1 8 ’

Susername = 'username';
S$password = 'password';

// The Twitter statuses/show method
Surl = "https://api.twitter.com/1l/statuses/show/20.xml";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "S$url");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "S$Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo(ScurlHandle);

Shttp_code = Sinfo['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!

if ($errors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";

}

else

{
// Get tweet text
StextNode = $xml->getElementsByTagName ("text");
Stext = S$textNode->item(0)->nodevValue;

// Get author's profile picture
SprofilePicNode = $xml->getElementsByTagName ("profile_image_url");
Sprofile_image_url = SprofilePicNode->item(0)->nodeValue;

// Print tweet and user's picture

echo "";
echo "<p>Stext</p>";

?>

1 82 Part Il: Ideation — Coming Up with an Idea

\\J

Create a new tweet

To post a new status update, authenticate as the author and post the tweet
to the statuses/update method.

This method requires a GET request and isn’t rate limited. However, there
is an unspecified limit to the amount of status updates a user may tweet per
day. If this limit is reached a 403 HTTP status error is returned.

Output
This method has two output formats:

»* XML
» JSON

On a successful method call, it returns the complete status object, which
contains the complete user object of the author. On a failed post attempt,
this method returns an error message.

Input

This method requires one parameter, the id of the tweet.

v status: The contents of the tweet. Anything over 140 characters is
truncated.
Example: status=Hello

V¥ in_reply_to_status_id: The id of a tweet that is being replied to.
The new tweet reply must contain the username of the author of the
original tweet, or this parameter is ignored.

Example: in_reply_to_status_1id=1234

At the time of this writing, Twitter was working on adding geolocation to
individual status updates. They included two parameters on the statuses/
update method to facilitate geolocation, but they weren’t yet functional.
These two parameters are

v lat: The geographical latitude of the tweet. Must be a valid latitude
value between -90.0 and +90.0, the long parameter must be valid, and the
user mustn’t have geo_enabled disabled, otherwise this parameter is
ignored.

Example: lat=30.4

v long: The geographical longitude of the tweet. Must be a valid longitude
value between -180.0 and +180.0, the lat parameter must be valid, and
the user mustn’t have geo_enabled disabled, otherwise this parameter
is ignored.

Example: long=-90.1

Chapter 8: Communication Through Tweets

Example

In Listing 8-2, [programmatically send a status update to the authenticated
user’s Twitter account.

Listing 8-2: Use the API to Post a Tweet
<?php

// Set username and password
Susername = 'username';
S$password = 'password';

$status = urlencode("Testing Twitter's API. #TADD");

// The Twitter statuses/update method
Surl = "https://api.twitter.com/l/statuses/update.xml";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "$url");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_ POSTFIELDS, "status=$status");

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:Spassword");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $Shttp_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
S$xml = new DOMDocument () ;
$xml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!

if (Serrors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";

}

else

(continued)

183

1 84 Part Il: Ideation — Coming Up with an Idea

Listing 8-2 (continued)

{
// Get the text from the new tweet
StextNode = $xml->getElementsByTagName ("text");
Stext = $textNode->item(0)->nodeValue;

// Get author's profile picture

SuserNode = $xml->getElementsByTagName ("user");

$profilePicNode = S$userNode->item(0)->getElementsByTagName ("profile_image_
url");

Sprofile_image_url = $profilePicNode->item(0)->nodeValue;

// Print tweet's text and user's picture

echo "<hl>Successfully posted the following tweet:</hl>";

echo "";
echo "<p>Stext</p>";

?>

Delete a tweet

To delete a status update, authenticate as the author of the tweet and pass
the tweet’s id to the statuses/destroy method.

This method requires a POST or DELETE request and isn’t rate limited.

Output
This method has two output formats:

v XML
» JSON

On a successful post, this method will return the details of the tweet you just
delete, including the complete user details object of the author.

On a failed post, you will receive an error message explaining why you were
unable to delete the tweet.

Input

This method requires one parameter, the id of the tweet you want to delete.

v id: The numerical id of the status update.
Example: /statuses/destroy/1234 .xml

Chapter 8: Communication Through Tweets 1 85

Example

Listing 8-3 is an example of how to programmatically delete a tweet by using
curl to post to the statuses/destroy method. If a tweet is successfully
deleted, it displays the text of the recently deleted tweet and the profile
picture of the author.

Listing 8-3: How to Programmatically Delete a Tweet
<?php

// Set username and password
Susername = 'username';
Spassword = 'password';

StweetIdToDelete = 5348310879;

// The Twitter statuses/destroy method
Surl = "http://api.twitter.com/1/statuses/destroy/$StweetIdToDelete.xml";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt(ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS, "");

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo(ScurlHandle);

Shttp_code = Sinfo['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error. Else, success!
if (Serrors->length > 0)
{

(continued)

1 86 Part Il: Ideation — Coming Up with an Idea

A\

Listing 8-3 (continued)

SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";

}

else

{
// Get delete tweet text
StextNode = $xml->getElementsByTagName ("text");
Stext = StextNode->item(0)->nodeValue;

// Get author's profile picture
SprofilePicNode = $xml->getElementsByTagName ("profile_image_url");
Sprofile_image_url = $profilePicNode->item(0)->nodeValue;

// Print tweet and user's picture

echo "<hl>Successfully deleted the following tweet:</hl>";

echo "";
echo "<p>Stext</p>";

Retweet a tweet

To retweet a tweet, authenticate and use the statuses/retweet method.

This method requires a POST or PUT request and isn’t rate limited.

Output
This method has two output formats:

»» XML

v JSON
On a successful post, this method will return the original tweet and retweet
details, including the complete user details object of the author and the

authenticated user.

On a failed post, you receive an error message explaining why you were
unable to retweet. An HTTP 403 is returned if you hit an update limit.

Twitter ignores duplicate retweets and attempts to retweet your own tweets.

Input

This method requires one parameter, the id of the tweet you want to delete.

v id: The numerical id of the status update.
Example: /statuses/retweet /1234 .xml

Chapter 8: Communication Through Tweets 1 8 7

Example

Listing 8-4 is an example of how to retweet a tweet by using curl to post to
the statuses/retweet method. If a tweet is successfully retweeted, it
displays the text tweet and the profile picture of the author.

Listing 8-4 How to Retweet a Tweet with the API
<?php

// Set username and password
Susername = 'dustytest2';
Spassword = 'password77';

// The Twitter status id
StweetId = 5608180464;

// The Twitter statuses/retweet method
Surl = "https://api.twitter.com/l/statuses/retweet/StweetId.xml";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt ($ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "S$Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!

if (Serrors->length > 0)

{
SerrorMessage = $errors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";

(continued)

1 88 Part Il: Ideation — Coming Up with an Idea

Listing 8-4 (continued)

else

{
// Get the text from the new tweet
StextNode = $xml->getElementsByTagName ("text");
Stext = StextNode->item(0)->nodeValue;

// Get author's profile picture

SuserNode = $xml->getElementsByTagName ("user");

$profilePicNode = S$SuserNode->item(0)->getElementsByTagName ("profile_image_
url");

S$profile_image_url = $profilePicNode->item(0)->nodeValue;

// Print tweet's text and user's picture

echo "<hl>Successfully retweeted the following tweet:</hl>";

echo "";
echo "<p>Stext</p>";

Retrieve retweets of a particular tweet

You can retrieve a list of retweets of a specific tweet by using the statuses/
retweets method.

This method requires authentication, a GET request, and is rate limited.

Output
This method has two output formats:

v XML

v JSON
On a successful call, this method returns a list of the 20 most recent retweets
of a tweet. This list includes the complete status object for the original tweet

and the retweet, which contains the complete user object of the original
author and the retweeter. A failed call returns an error message.

Input

This method has two parameters:

Chapter 8: Communication Through Tweets

v id: The numerical id of the original tweet.
Example: /statuses/retweet /1234 .xml

v count: Limits the results per page to an amount specified that is less
than 100.
Example: /statuses/retweet/1234.xml?count=100

You can try the statuses/retweets method easily by typing http://
api.twitter.com/1l/statuses/retweets/5608180464.xml into your
browser’s URL address bar. When requested by your browser, enter your
Twitter user name and password. Then you receive the requested tweets last
20 retweets.

In Listing 8-5, | use the statuses/retweets method to retrieve the profile
pictures and retweet text of the users who retweeted a specific tweet.

Example

Listing 8-5: Page Through All of Your Favorites and Print Them

<?php

// Set username and password
Susername = 'dustytest2';
$password = 'password77';

// The Twitter statuses/friends method
Surl = "http://api.twitter.com/1l/statuses/retweets/5466220198.xml";

// Get API results using curl

ScurlHandle = curl_init();

curl_setopt(ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt(ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt ($ScurlHandle, CURLOPT_USERPWD, "S$Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
Sxml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

(continued)

189

1 90 Part Il: Ideation — Coming Up with an Idea

Listing 8-5 (continued)

// If found, print the error and break. Else, keep going!
if (Serrors->length > 0)
{
SerrorMessage = $errors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";
break;
}
else
{
// Get favorited tweets
$statusNodes = $xml->getElementsByTagName ("status");

foreach ($statusNodes as $statusNode)

{
// Get the tweet text
StextNode = $statusNode->getElementsByTagName ("text");
Stext = StextNode->item(0)->nodeValue;

// Get the author's picture
SprofilePicNodes = $statusNode->getElementsByTagName ("profile_image_url");
Sprofile_image_url = SprofilePicNodes->item(1)->nodeValue;

echo "<img style=\"float:left\" src=\"$profile_image_url\" width=\"48\"
height=\"48\" />";

echo "<p>S$text</p>";

echo "<hr style=\"clear:both\" />";

Direct Messages Methods

Direct Messages (DMs) are private tweets that users can send to other
Twitter users that are following them. Using the API Direct Messages meth-
ods you can view these DMs, send them, and delete them. There are four
Direct Messages methods including:

¥ direct_messages

V¥ direct_messages/sent

V¥ direct_messages/new

¥ direct_messages/destroy

Chapter 8: Communication Through Tweets 1 9 ’

Retrieve direct messages

You can get a list of your most recently sent and received direct messages by
authenticating and calling either:
v direct_messages: Received direct messages.

» direct_messages/sent: Sent direct messages.

Both of these methods require a GET request and are rate limited.

Output
These methods have four output formats:

1 XML
v JSON
»” RSS

»” Atom

On a successful method call these methods return an array of detailed direct
message objects that include the user details object for the sender and
receiver of the message. By default these methods return the 20 most recent
direct messages.

If the authenticated user has no direct messages, this method returns an
empty array and a HTTP status of 200.

Input

These methods have four optional input parameters:

V¥ since_id: The numerical id of direct message. Use to return direct
messages that are more recent than the id specified.
Example: /direct_messages.xml?since_1d=12345

v max_id: The numerical id of a direct message. Use to return direct
messages that are older than the id specified.
Example: /direct_messages.xml?max_1d=54321

» count: Limits the results per page to an amount specified that is less
than 200.
Example: /direct_messages.xml?count=100

V¥ page: Page backwards to retrieve older direct messages.
Example: /direct_messages.xml?page=5

1 92 Part Il: Ideation — Coming Up with an Idea

\NG/
‘33\

Example

You can try the direct_messages method easily by typing http://api.
twitter.com/1l/direct_messages.xml into your browser’s URL address
bar. When requested by your browser, enter your Twitter user name and
password. Then you receive your last 20 received direct messages in XML
format. To try the direct_messages/sent method, type this URL in your
browser’s address bar: http://api.twitter.com/1/direct_messages/
sent .xml.

In Listing 8-5, I retrieve more than the default 20 most recently received
direct messages by setting the count parameter to the maximum 200 results
per page, then I incrementally increase the page parameter until the direct
messages method returns no more results.

You can use this same example code found in Listing 8-6 to test the direct_
messages/sent method. Simply update the $url variable in the example
code to point to the direct_messages/sent method, like this:

Surl = "http://api.twitter.com/1l/direct_messages/sent.xml?count=200&page=$page";

Twitter will only let you go back about 4 pages with a count parameter of
200 until it stops returning data. To get older direct messages, you can
use the max_id parameter. However, even the max_1id parameter has an
undocumented limit to how far in time it will go back.

If you have all the user’s previously received direct messages, the next time
you collect direct messages for the user, use the since_id parameter to save
API calls.

Listing 8-6: Get Old Received Direct Messages Using Paging

<?php
function getDirectMessagesPage ($Spage)
{
// Set username and password
Susername = 'username';
Spassword = 'password';

// The Twitter direct_messages method
Surl = "https://api.twitter.com/l/direct_messages.xml?count=200&page=S$page";

// Get API results using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt(ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:Spassword");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: Shttp_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

return SapiResponse;

$page = 1;

do

{
echo "<hl>Page: $page</hl>";
// Get a page of direct messages
SapiResponse = getDirectMessagesPage (Spage);

// Get XML
$xml = new DOMDocument () ;
$xml->loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error and break. Else, keep going!
if (Serrors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";
break;

}

else

{

// Get direct messages
$dmNodes = S$xml->getElementsByTagName ("direct_message");

foreach ($dmNodes as $dm)

{
// Get the tweet text
StextNode = $dm->getElementsByTagName ("text");
Stext = S$textNode->item(0)->nodevalue;

// Get the author's picture

$senderNode = $dm->getElementsByTagName ("sender") ;

SprofilePicNode = $senderNode->item(0)->getElementsByTagName ("profile_
image_url");

Sprofile_image_url = $profilePicNode->item(0)->nodeValue;

echo "<img style=\"float:left\" src=\"$profile_image_url\" width=\"48\"
height=\"48\" />";

(continued)

Chapter 8: Communication Through Tweets 1 93

1 94 Part Il: Ideation — Coming Up with an Idea

Listing 8-6 (continued)

echo "<p>S$text</p>";
echo "<hr style=\"clear:both\" />";

}

// increment page count and loop
Spage++;

}

while ($dmNodes->length > 0)

?>

Send a direct message

You can send a direct message by authenticating as the sender using the
direct_messages/new method. However, to send a direct message
the receiver must be following you.

This method requires a POST request and isn’t rate limited.

Output
This method has two output formats:

v XML

»* JSON
On a successful post, this method will return the details of the direct
message you just sent, including the complete user detail of the sender and

receiver of the message.

On a failed post, you will receive an error message explaining why you were
unable to send the message.

Input

This method requires two parameters, the numeric user id or screen name of

the recipient, and the text content of the direct message.

v user_id: The numerical id of the user.
Example: user_id=12345

V¥ screen_name: The screen name of the user.
Example: screen_name=101010

v text: The content of the direct message URL encoded. Must be fewer
than 140 characters.
Example: text=test

Chapter 8: Communication Through Tweets 1 95

? 9.
» Be sure to URL encode the text parameter. Your message mayn’t be sent

properly otherwise. In PHP you can use the urlencode function, like I have in
Listing 8-7.

Example

Listing 8-7 is an example of how to programmatically send a direct message
by using cURL and PHP to post to the direct_messages/new method. If a
message is successfully sent, it displays the text of the recently sent message
and the profile picture of the sender.

Listing 8-7: How to Programmatically Send a Direct Message

<?php

// Set username and password

Susername = 'username';
S$password = 'password';
SsendToUser = 'dustyreagan';

$dmText = urlencode("Hey! This is a test DM sent from the API");

// The Twitter direct_messages/new method
Surl = "https://api.twitter.com/l/direct_messages/new.xml";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT _URL, "S$Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS, "screen_ name=S$sendToUser&text=S$dmT
ext");

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo(ScurlHandle);

Shttp_code = Sinfo['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->loadXML (SapiResponse) ;

// Check for an error tag.

(continued)

1 96 Part Il: Ideation — Coming Up with an Idea

Listing 8-7 (continued)

Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!

if ($errors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";

}

else

{
// Get new DM text
StextNode = $xml->getElementsByTagName ("text");
Stext = $textNode->item(0)->nodeValue;

// Get author's profile picture

$senderNode = $xml->getElementsByTagName ("sender");

$profilePicNode = $senderNode->item(0)->getElementsByTagName ("profile_image_
url");

Sprofile_image_url = $profilePicNode->item(0)->nodeValue;

// Print DM and user's picture

echo "<hl>Successfully sent the following DM:</hl>";

echo "";
echo "<p>Stext</p>";

?>

Delete a received direct message

You can delete a direct message you received by authenticating and passing
the id of the direct message to the direct_messages/destroy method.

This method requires a POST or DELETE request and isn’t rate limited.

Output
This method has two output formats:

1 XML
v JSON
On a successful post, this method will return the details of the direct message

you just delete, including the complete user detail of the sender and receiver
of the message.

Chapter 8: Communication Through Tweets

On a failed post, you will receive an error message explaining why you were
unable to delete the message.

Input
This method requires one parameter, the id of the direct message you want
to delete.

v id: The numerical id of the direct message.
Example: /direct_messages/destroy/1234.xml

Example

Listing 8-8 is an example of how to programmatically delete a direct message
by using curl to post to the direct_messages/destroy method. If a
message is successfully deleted, it displays the text of the recently deleted
tweet and the profile picture of the sender.

Listing 8-8: How to Programmatically Delete a Direct Message
<?php

// Set username and password
Susername = 'username';
Spassword = 'password';

SmessageIdToDelete = 486489555;

// The Twitter direct_messages/destroy method
Surl = "https://api.twitter.com/l/direct_messages/destroy/$SmessageIdToDelete.
xml";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt ($ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt ($ScurlHandle, CURLOPT_POST, 1);

curl_setopt(ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt ($ScurlHandle, CURLOPT_POSTFIELDS, "");

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "S$username:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

(continued)

197

1 98 Part Il: Ideation — Coming Up with an Idea

Listing 8-8 (continued)

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!

if (Serrors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";

}

else

{
// Get deleted DM text
StextNode = $xml->getElementsByTagName ("text");
Stext = S$textNode->item(0)->nodevalue;

// Get author's profile picture

$senderNode = $xml->getElementsByTagName ("sender");

SprofilePicNode = $senderNode->item(0)->getElementsByTagName ("profile_image_
url");

Sprofile_image_url = $profilePicNode->item(0)->nodeValue;

// Print DM and user's picture

echo "<hl>Successfully deleted the following DM:</hl>";

echo "";
echo "<p>Stext</p>";

?>

Timeline Methods

The timeline is the main way all tweets are consumed by the user. It is the
river of real-time incoming tweets. There are several ways to view and
segment the timeline, including viewing all public tweets, the tweets of the
people you follow, tweets with your name mentioned, and viewing a timeline
or retweets. There are seven methods you can use to interact with the
timeline, including:

Chapter 8: Communication Through Tweets 1 99

V¥ statuses/public_timeline
V¥ statuses/friends_timeline
V¥ statuses/user_timeline

V” statuses/mentions

V¥ statuses/retweeted_by_me
V¥ statuses/retweeted_to_me

V¥ statuses/retweets_of_me

Get tweets from the public timeline

The public timeline includes tweets from all public Twitter accounts with a
custom profile picture. You can use the statuses/public_timeline to
get the 20 most recent tweets from the public timeline.

This method doesn’t require authentication. It does require a GET request,
and is rate limited. Chapter 7 explains the concern with rate limits.

Output
This method has four output formats:

1 XML
v JSON
¥ RSS

»” Atom

On a successful call, this method returns the 20 most recent public tweets
from users with a custom profile picture. This list includes the complete
status object, which contains the complete user object of the tweet’s author.
A failed call returns an error message.

Input

This method has no input parameters.

Example

You can try the statuses/public_timeline method easily by typing
http://api.twitter.com/1l/statuses/public_timeline.xml into
your browser’s URL address bar. It returns a list of the last 20 public tweets
in XML format.

200 Part Il: Ideation — Coming Up with an Idea

In Listing 8-9, I use the statuses/public_timeline method to print the
profile pictures of the author’s of the most recent 20 public tweets.

Listing 8-9: Page Through All Your Favorites and Print Them

<?php

// The Twitter friendships/destroy method
Surl = "http://api.twitter.com/1l/statuses/public_timeline.xml";

// Get Twitter API results with cURL

ScurlHandle = curl_init();

curl_setopt(ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo(ScurlHandle);

Shttp_code = Sinfo['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error. Else, success!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";
}
else
{
SstatusNodes = $xml->getElementsByTagName ("status");

foreach ($statusNodes as S$status)

{
SprofileImageNode = S$status->getElementsByTagName ("profile_image_url");
Sprofile_image_url = $profileImageNode->item(0)->nodeValue;
echo "";

?>

Chapter 8: Communication Through Tweets 20 ’

Get your aggregated friends timeline

Your friends timeline is the aggregated stream of tweets from all the people
you follow and includes your own tweets. It is the tweets you see when you
go to your Twitter home page. You can retrieve this stream of tweets with the
statuses/friends_timeline method.

This method requires authentication, a GET request, and is rate limited.
Chapter 7 explains the concern with rate limits.

Output
This method has four output formats:

1 XML
»* JSON
» RSS

¥ Atom

On a successful call, this method returns an array of the 20 most recent
tweets in you friends timeline. This list includes complete status objects,
which contains the complete user object of each author. A failed call returns
an error message.

Input

This method has four optional input parameters.

v since_id: The numerical id of a tweet. Use to return tweets that are
more recent than the id specified.
Example: /statuses/friends_timeline.xml?since_1d=12345

v max_id: The numerical id of a tweet. Use to return tweets that are older
than the id specified.
Example: /statuses/friends_timeline.xml?max_id=54321

V¥ count: Limits the results per page to an amount specified that is less
than 200.

Example: /statuses/friends_timeline.xml?count=100

» page: Page backwards to retrieve older tweets.
Example: /statuses/friends_timeline.xml?page=5

Example

You can try the statuses/friends_timeline method easily by typing
http://api.twitter.com/1/statuses/friends_timeline.xml into
your browser’s URL address bar. When requested by your browser, enter

202 Part Il: Ideation — Coming Up with an Idea

your Twitter user name and password. Then you receive the most recent 20
tweets in your friends timeline.

In Listing 8-10, I retrieve more than the default 20 most tweets by setting the
count parameter to the maximum 200 results per page, then [incrementally
increase the page parameter until the statuses/friends_timeline
method returns no more results.

Listing 8-10: Page Through Your Friends Timeline

<?php

function getStatusesPage ($page)

{
// Set username and password
Susername = 'username';
$password = 'password';

// The Twitter statuses/friends_timeline method
Surl = "https://api.twitter.com/l/statuses/friends_timeline.
xml ?count=200&page=$page" ;

// Get API results using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "S$Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSI,_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:Spassword");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Code

$info = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

return $apiResponse;

$page = 1;

do

{
echo "<hl>Page: $page</hl>";
// Get a page of statuses
SapiResponse = getStatusesPage ($Spage);

// Get XML

Chapter 8: Communication Through Tweets 203

$xml = new DOMDocument () ;
$xml->1oadXML ($SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error and break. Else, keep going!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>SerrorMessage</hl>";
break;
}
else
{
// Get direct messages
SstatusNodes = $xml->getElementsByTagName ("status");

foreach($statusNodes as S$statusNode)

{
// Get the tweet text
StextNode = $statusNode->getElementsByTagName ("text");
Stext = $textNode->item(0)->nodeValue;

// Get the author's picture

SsenderNode = $statusNode->getElementsByTagName ("user");

SprofilePicNode = $senderNode->item(0)->getElementsByTagName ("profile_
image_url");

Sprofile_image_url = SprofilePicNode->item(0)->nodeValue;

echo "<img style=\"float:left\" src=\"Sprofile_image_url\" width=\"48\"
height=\"48\" />";

echo "<p>Stext</p>";

echo "<hr style=\"clear:both\" />";

// increment page count and loop
Spage++;

}

while ($statusNodes->length > 0)

?>

Get a user’s tweets

Using the statuses/user_timeline method you can get a user’s most
recent tweets. These are the same tweet’s that are viewable on a user’s
profile page on the Twitter Web site.

204 Part Il: Ideation — Coming Up with an Idea

This method doesn’t require authentication, but to get the tweets of a
protected Twitter account, you must

v Authenticate your API call.
1 Have permission to view the protected account.

This method requires a GET request and is rate limited. Chapter 7 explains
the concern with rate limits.

Output
This method has four output formats:

v XML
»* JSON
»* RSS

1 Atom

On a successful call, this method returns an array of the 20 most recent
tweets in the requested user’s timeline. This list includes complete status
objects, which contains the complete user object of each author. A failed call
returns an error message.

Input

This method has seven optional input parameters.

v id: The user’s screen name or numerical user id.
Example: /notifications/leave/bob.xml
Example: /notifications/leave/12345.xml

v user_id: The numerical id of the user.
Example: /notifications/leave.xml?user_id=12345

V¥ screen_name: The screen name of the user.
Example: /notifications/leave.xml?screen_name=101010

v since_id: The numerical id of a tweet. Use to return tweets that are
more recent than the id specified.
Example: /statuses/friends_timeline.xml?since_id=12345

v max_id: The numerical id of a tweet. Use to return tweets that are older
than the id specified.
Example: /statuses/friends_timeline.xml?max_id=54321

v count: Limits the results per page to an amount specified that is less
than 200.

Example: /statuses/friends_timeline.xml?count=100

» page: Page backwards to retrieve older tweets.
Example: /statuses/friends_timeline.xml?page=5

Chapter 8: Communication Through Tweets

\\3

Avoid using the id parameter and use user_id, over screen_name if
possible. Chapter 7 explains why.

If you want to retrieve the tweet’s for the authenticated user, you don’t have
to specify a user id or screen name. The method retrieves the authenticated
user’s timeline by default.

Example

You can try the statuses/user_timeline method easily by typing
http://api.twitter.com/1l/statuses/user_timeline.xml?screen_
name=bob into your browser’s URL address bar. It returns the most recent 20
tweets in Bob’s timeline.

In Listing 8-11, [retrieve more than the default 20 user tweets by setting the
count parameter to the maximum 200 results per page, then [incrementally
increase the page parameter until the statuses/user_timeline method
returns no more results.

Listing 8-11: Page Through a User's Timeline

<?php

function getStatusesPage ($page)

{
// Set username and password
Susername = 'username';
S$password = 'password';

// The Twitter statuses/user_timeline method
Surl = "https://api.twitter.com/l/statuses/user_timeline.
xml?count=200&page=$page" ;

// Get API results using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "S$Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "S$Susername:S$password");

SapiResponse = curl_exec ($ScurlHandle) ;

// Get HTTP Code

$info = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

(continued)

205

206 Part Il: Ideation — Coming Up with an Idea

Listing 8-11 (continued)

return $apiResponse;

$page = 1;

do

{
echo "<hl>Page: $page</hl>";
// Get a page of statuses
SapiResponse = getStatusesPage ($page);

// Get XML
$xml = new DOMDocument () ;
$xml->1oadXML ($SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error and break. Else, keep going!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";
break;
}
else
{
// Get direct messages
SstatusNodes = $xml->getElementsByTagName ("status");

foreach($statusNodes as S$SstatusNode)

{
// Get the tweet text
StextNode = $statusNode->getElementsByTagName ("text");
Stext = $textNode->item(0)->nodeValue;

// Get the author's picture

SsenderNode = $statusNode->getElementsByTagName ("user");

SprofilePicNode = $senderNode->item(0)->getElementsByTagName ("profile_
image_url");

Sprofile_image_url = SprofilePicNode->item(0)->nodeValue;

echo "<img style=\"float:left\" src=\"$profile_image_url\" width=\"48\"
height=\"48\" />";

echo "<p>Stext</p>";

echo "<hr style=\"clear:both\" />";

// increment page count and loop

Chapter 8: Communication Through Tweets 20 7

Spage++;
}
while ($statusNodes->length > 0)

?2>

Get tweets that mention your screen name

The statuses/mentions method returns all the tweets that contain the
authenticated user’s screen name (example: @DustyReagan).

This method requires authentication, a GET request, and is rate limited.
Chapter 7 explains the concern with rate limits.

Output
This method has four output formats:

v XML
»* JSON
»” RSS

v Atom

On a successful call, this method returns an array of the 20 most recent
tweets with mentions. This list includes complete status objects, which
contains the complete user object of each author. A failed call returns an
error message.

Input

This method has four optional input parameters.

v since_id: The numerical id of a tweet. Use to return tweets that are
more recent than the id specified.
Example: /statuses/friends_timeline.xml?since_id=12345

v max_id: The numerical id of a tweet. Use to return tweets that are older
than the id specified.
Example: /statuses/friends_timeline.xml?max_id=54321

v count: Limits the results per page to an amount specified that is less
than 200.
Example: /statuses/friends_timeline.xml?count=100

» page: Page backwards to retrieve older tweets.
Example: /statuses/friends_timeline.xml?page=5

208 Part Il: Ideation — Coming Up with an Idea

Example

You can try the statuses/mentions method easily by typing http://
api.twitter.com/1l/statuses/mentions.xml into your browser’s URL
address bar. When requested by your browser, enter your Twitter user name
and password. It returns the most recent 20 mentions in XML.

In Listing 8-12, [retrieve more than the default 20 mentions by setting the
count parameter to the maximum 200 results per page, then I incrementally
increase the page parameter until the statuses/mentions method returns
no more results.

Listing 8-12: Page Through Tweets that Mention Your Screen Name

<?php

function getMentions ($page)

{
// Set username and password
Susername = 'username';
$password = 'password';

// The Twitter statuses/mentions method
Surl = "https://api.twitter.com/1/statuses/mentions.xml?count=200&page=S$page";

// Get API results using curl

ScurlHandle = curl_init();

curl_setopt(ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "S$Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

return SapiResponse;

$page = 1;
do

}

echo "<hl>Page: $page</hl>";
// Get a page of mentions
SapiResponse = getMentions (Spage) ;

// Get XML
$xml = new DOMDocument () ;
Sxml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error and break. Else, keep going!
if ($errors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>SerrorMessage</hl>";
break;
}
else
{
// Get direct messages
SstatusNodes = $xml->getElementsByTagName ("status");

foreach($statusNodes as S$SstatusNode)

{
// Get the tweet text
StextNode = $statusNode->getElementsByTagName ("text");
Stext = $textNode->item(0)->nodeValue;

// Get the author's picture

SsenderNode = $statusNode->getElementsByTagName ("user");

SprofilePicNode = $senderNode->item(0)->getElementsByTagName ("profile_
image_url");

Sprofile_image_url = SprofilePicNode->item(0)->nodeValue;

echo "<img style=\"float:left\" src=\"Sprofile_image_url\" width=\"48\"
height=\"48\" />";

echo "<p>Stext</p>";

echo "<hr style=\"clear:both\" />";

// increment page count and loop
Spage++;

while ($statusNodes->length > 0)

?>

Chapter 8: Communication Through Tweets 209

2 ’ 0 Part Il: Ideation — Coming Up with an Idea

\\3

Get status updates retweeted by you

To get status updates that you have retweeted using Twitter’s retweet
function, use the statuses/retweeted_by_me method.

This method requires authentication, a GET request, and is rate limited.

Output
This method has three output formats:

v XML
1 JSON
¥ Atom

On a successful call, this method returns an array of the authenticated user’s
more recent 20 retweets. This list includes complete status objects, which
contains the complete user object for the original tweet’s author, and the
authenticated user. A failed call returns an error message.

Input

This method has four optional input parameters.

v since_id: The numerical id of a tweet. Use to return retweets that are
more recent than the id specified.
Example: /statuses/retweeted_by_me?since_i1d=12345

v max_id: The numerical id of a tweet. Use to return retweets that are
older than the id specified.
Example: /statuses/retweeted_by_me?max_id=54321

v count: Limits the results per page to an amount specified that is less
than 200.
Example: /statuses/retweeted_by_me?count=100

V¥ page: Page backwards to retrieve older retweets.
Example: /statuses/retweeted_by_me?page=5

Avoid using the id parameter, and use user_id, over screen_name if
possible.

Example

You can try the statuses/retweeted_by_me method easily by typing
http://api.twitter.com/1l/statuses/retweeted_by_me.xml

into your browser’s URL address bar. When requested by your browser,
enter your Twitter user name and password. Then you receive your last 20
retweets in XML format.

Chapter 8: Communication Through Tweets 2 ’ ’

In Listing 8-13, I retrieve the authenticating user’s most recent 100 retweets
using statuses/retweeted_by_me and the count parameter.

Listing 8-13: Get User’s Most Recent 100 Retweets
<?php

// Set username and password
Susername = 'username';
Spassword = 'password';

// The Twitter statuses/retweeted_by me method
Surl = "https://api.twitter.com/l/statuses/retweeted by_me.xml?count=200";

// Get API results using curl

ScurlHandle = curl_init();

curl_setopt(ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt(ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt(ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt(ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:Spassword");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: Shttp_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
S$xml = new DOMDocument () ;
$xml->1loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error and break. Else, keep going!
if (Serrors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";
break;
}
else
{
// Get direct messages
$statusNodes = $xml->getElementsByTagName ("status");

(continued)

2 ’ 2 Part Il: Ideation — Coming Up with an Idea

Listing 8-12 (continued)

foreach ($statusNodes as $statusNode)

{
// Get the tweet text
StextNode = $statusNode->getElementsByTagName ("text");
Stext = StextNode->item(0)->nodeValue;

// Get the author's picture

$senderNode = S$statusNode->getElementsByTagName ("user");

SprofilePicNode = $senderNode->item(0)->getElementsByTagName ("profile_
image_url");

S$profile_image_url = $profilePicNode->item(0)->nodeValue;

echo "<img style=\"float:left\" src=\"$profile_ image_url\" width=\"48\"
height=\"48\" />";

echo "<p>Stext</p>";

echo "<hr style=\"clear:both\" />";

?>

Get your friend’s retweets

To get the retweets of the people you follow, use the statuses/
retweeted_to_me method.

This method requires authentication, a GET request, and is rate limited. The
sidebar “Hard Knocks” explains the concern with rate limits.

Output
This method has three output formats:

v XML
1 JSON
¥ Atom

On a successful call, this method returns an array of the most recent 20
retweets from the people the authenticated user follows. This list includes
complete status objects, which contains the complete user object for the
original tweet’s author, and the authenticated user. A failed call returns an
error message.

Chapter 8: Communication Through Tweets

A\

Input

This method has four optional input parameters.

v since_id: The numerical id of a tweet. Use to return retweets that are
more recent than the id specified.
Example: /statuses/retweeted_to_me?since_id=12345

v max_id: The numerical id of a tweet. Use to return retweets that are
older than the id specified.
Example: /statuses/retweeted_to_me?max_1id=54321

» count: Limits the results per page to an amount specified that is less
than 200.
Example: /statuses/retweeted_to_me?count=100

V¥ page: Page backwards to retrieve older retweets.
Example: /statuses/retweeted_to_me?page=5

Avoid using the id parameter and use user_id, over screen_name if
possible.

Example

You can try the statuses/retweeted_to_me method easily by typing
http://api.twitter.com/1l/statuses/retweeted_to_me.xml into
your browser’s URL address bar. When requested by your browser, enter
your Twitter user name and password. Then you receive the last 20 retweets
of the people you follow retweets in XML format.

In Listing 8-14, I retrieve the retweets of the people the authenticating user
follows using statuses/retweeted_by_me and the count parameter.

Listing 8-14: Get the Last 100 Retweets of the People You Follow
<?php

// Set username and password
Susername = 'username';
$password = 'password';

// The Twitter statuses/retweeted_to_me method
Surl = "https://api.twitter.com/l/statuses/retweeted_to_me.xml?count=200";

// Get API results using curl
ScurlHandle = curl_init();
curl_setopt (ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

(continued)

213

2 ’ 4 Part Il: Ideation — Coming Up with an Idea

Listing 8-14 (continued)

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt ($ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);
curl_setopt (ScurlHandle, CURLOPT_USERPWD, "S$Susername:S$password");
SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Code

$info = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error and break. Else, keep going!
if ($errors->length > 0)
{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";
break;
}
else
{
// Get tweets
$statusNodes = $xml->getElementsByTagName ("status");

foreach ($statusNodes as $statusNode)

{
// Get the tweet text
StextNode = $statusNode->getElementsByTagName ("text");
Stext = S$textNode->item(0)->nodevalue;

// Get the author's picture

$senderNode = $statusNode->getElementsByTagName ("user");

SprofilePicNode = $senderNode->item(0)->getElementsByTagName ("profile_
image_url");

Sprofile_image_url = $profilePicNode->item(0)->nodeValue;

echo "<img style=\"float:left\" src=\"$profile_image_url\" width=\"48\"
height=\"48\" />";

echo "<p>Stext</p>";

echo "<hr style=\"clear:both\" />";

\\3

Chapter 8: Communication Through Tweets 2 ’5

Get the retweets of a specific tweet

To get the tweets of the authenticated user that others have retweeted, use
the statuses/retweets_of_me method.

This method requires authentication, a GET request, and is rate limited. The
sidebar “Hard Knocks” explains the concern with rate limits.

Output
This method has three output formats:

» XML
1 JSON
¥ Atom

On a successful call, this method returns an array of the most recent 20
retweets of the authenticated users. This list includes complete status
objects, which contains the complete user object for the original tweet’s
author, and the authenticated user. A failed call returns an error message.

Input

This method has four optional input parameters.

v since_id: The numerical id of a tweet. Use to return retweets that are
more recent than the id specified.
Example: /statuses/retweets_of_me?since_id=12345

v max_id: The numerical id of a tweet. Use to return retweets that are
older than the id specified.
Example: /statuses/retweets_of_me?max_id=54321

v count: Limits the results per page to an amount specified that is less
than 200.
Example: /statuses/retweets_of_me?count=100

v page: Page backwards to retrieve older retweets.
Example: /statuses/retweets_of_me?page=5

Avoid using the id parameter and use user_id, over screen_name if
possible.

Example

You can try the statuses/retweets_of_me method easily by typing
http://api.twitter.com/1l/statuses/retweets_of_me.xml into
your browser’s URL address bar. When requested by your browser, enter
your Twitter user name and password. It returns your most recent 20 tweets
that have been retweeted.

2 ’ 6 Part Il: Ideation — Coming Up with an Idea

In Listing 8-15, I retrieve the authenticating user’s most recent 100 tweets
that have been retweeted using statuses/retweets_of_me and the count
parameter.

Listing 8-15: Get the Retweets of a Tweet

<?php

// Set username and password
Susername = 'username';
$password = 'password';

// The Twitter statuses/retweets_of_me method
Surl = "https://api.twitter.com/l/statuses/retweets_of_me.xml?count=200";

// Get API results using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "S$url");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "S$Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Code

$info = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error and break. Else, keep going!
if (Serrors->length > 0)
{
SerrorMessage = $Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";
break;
}
else
{
// Get tweets

Chapter 8: Communication Through Tweets 2 ’ 7

$statusNodes = $xml->getElementsByTagName ("status");

foreach ($statusNodes as $statusNode)

{
// Get the tweet text
StextNode = $statusNode->getElementsByTagName ("text");
Stext = S$textNode->item(0)->nodevValue;

// Get the author's picture

$senderNode = $statusNode->getElementsByTagName ("user");

SprofilePicNode = $senderNode->item(0)->getElementsByTagName ("profile_
image_url");

Sprofile_image_url = $profilePicNode->item(0)->nodeValue;

echo "<img style=\"float:left\" src=\"$profile image_url\" width=\"48\"
height=\"48\" />";

echo "<p>S$text</p>";

echo "<hr style=\"clear:both\" />";

Favorite Methods

Favoriting a status update is one way to bookmark a memorable tweet. Using
the API you can view a user’s favorites, favorite, or un-favorite a tweet, with
the following three methods:

V¥ favorites

Vv favorites/create

Vv favorites/destroy

Retrieve a user’s favorite tweets

You can retrieve a list of a user’s favorite tweets by using the favorites
method.

This method requires authentication, a GET request, and is rate limited.
Chapter 7 explains the concern with rate limits.

2 ’ 8 Part Il: Ideation — Coming Up with an Idea

A\

To view a protected account’s favorited tweet, the authenticated account
must have permission to view them.

Output
This method has four output formats:

1 XML
»* JSON
»* RSS

v Atom

On a successful call, this method returns a list of the 20 most recent favorited
tweets. This list includes the complete status object, which contains the
complete user object of the author. A failed call returns an error message.

Input

This method has four parameters:

v id: The user’s screen name or numerical user id.
Example: /favorites/bob.xml

v user_id: The numerical id of the user.
Example: /favorites.xml?user_id=12345

V¥ screen_name: The screen name of the user.
Example: /favorites.xml?screen_name=101010

V¥ page: Page to retrieve older favorites.
Example: /favorites.xml?page=5

If you are authenticated, you can omit specifying the user and the method will
return the favorites for the authenticated user.

Example

You can try the favorites method easily by typing http: //api.twitter.
com/1/favorites.xml into your browser’s URL address bar. When
requested by your browser, enter your Twitter user name and password.
Then you receive your last 20 favorited tweets in XML format.

In Listing 8-16, use the favorites method page parameter to collect all my
previous tweets and display them along with the profile picture of the author.

Chapter 8: Communication Through Tweets 2 ’ 9

Listing 8-16: Page Through All Your Favorites and Print Them

<?php
function getFavorites ($screen_name, $page)
{

// Set username and password
Susername = 'username';
Spassword = 'password';

// The Twitter statuses/friends method
Surl = "https://api.twitter.com/1l/favorites.xml?page=Spage";

// Get API results using curl

ScurlHandle = curl_init();

curl_setopt(ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:Spassword");

SapiResponse = curl_exec ($curlHandle) ;

curl_close($curlHandle) ;

return $apiResponse;

$page = 1;
do
{

// Get a page of favorites results
SapiResponse = getFavorites('dustyreagan', $page);

// Get XML
$xml = new DOMDocument () ;
Sxml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error and break. Else, keep going!
if ($errors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$SerrorMessage</hl>";
break;

}

else

(continued)

220 Part Il: Ideation — Coming Up with an Idea

Listing 8-16 (continued)

{

}

// Get favorited tweets
$statusNodes = $xml->getElementsByTagName ("status");

foreach ($statusNodes as $statusNode)

{

// Get the tweet text
StextNode = $statusNode->getElementsByTagName ("text");
Stext = StextNode->item(0)->nodeValue;

// Get the author's picture

SprofilePicNodes = $statusNode->getElementsByTagName ("profile_image_
url");

Sprofile_image_url = $profilePicNodes->item(0)->nodeValue;

echo "<img style=\"float:left\" src=\"$profile_image_url\" width=\"48\"
height=\"48\" />";

echo "<p>Stext</p>";

echo "<hr style=\"clear:both\" />";

// increment page count and loop
Spage++;

}

while ($statusNodes->length > 0)

?>

Add a tweet to your favorites

You can add a tweet to your favorites list by authenticating and calling the
favorites/create method.

This method requires a POST request and isn’t rate limited.

Output
This method has two output formats:

v XML

» JSON

On a successful post, this method will return the details of the tweet you just
added to your favorites, including the complete user details object of the
author.

Chapter 8: Communication Through Tweets

On a failed post, you will receive an error message explaining why you were
unable to add the tweet.

Input
This method requires one parameter, the id of the tweet you want to add to
your favorites.

v id: The numerical id of the status update.
Example: /favorites/destroy/1234.xml

Example

Listing 8-17 is an example of how to programmatically add a tweet to your
favorites by using PHP and cURL to post to the favorites/create method.
If a tweet is successfully added, it displays the text of the recently added
tweet and the profile picture of the author.

Listing 8-17: How to Programmatically Add a Tweet from Your Favorites
<?php

// Set username and password
Susername = 'username';
Spassword = 'password';

StweetIdToAdd = 5142491385;

// The Twitter favorites/create method
Surl = "https://api.twitter.com/1l/favorites/create/S$tweetIdToAdd.xml";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "S$Surl");

curl_setopt ($ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS, "");

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "S$Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

(continued)

221

222 Part Il: Ideation — Coming Up with an Idea

Listing 8-17 (continued)

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!

if ($errors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";

}

else

{
// Get favorited tweet text
StextNode = $xml->getElementsByTagName ("text");
Stext = S$textNode->item(0)->nodevalue;

// Get author's profile picture
SprofilePicNode = $xml->getElementsByTagName ("profile_image_url");
Sprofile_image_url = SprofilePicNode->item(0)->nodeValue;

// Print tweet and user's picture

echo "<hl>Successfully added the following tweet to your favorites:</hl>";
echo "";

echo "<p>S$text</p>";

Remove a tweet from your favorites

You can remove a tweet from your favorites list by authenticating and calling
the favorites/destroy method.

This method requires a POST or DELETE request and isn’t rate limited.

Output
This method has two output formats:

1 XML
» JSON

Chapter 8: Communication Through Tweets

On a successful post, this method will return the details of the tweet you just
removed from your favorites, including the complete user details object of
the author.

On a failed post, you will receive an error message explaining why you were
unable to remove the tweet.

Input

This method requires one parameter, the id of the tweet you want to remove
from your favorites.

v id: The numerical id of the status update.
Example: /favorites/destroy/1234.xml

Example

Listing 8-18 is an example of how to programmatically remove a tweet from
your favorites by using PHP and cURL to post to the favorites/destroy
method. If a tweet is successfully removed, it displays the text of the recently
removed tweet and the profile picture of the author.

Listing 8-18: How to Programmatically Remove a Tweet from Your
Favorites

<?php

// Set username and password
Susername = 'username';
$password = 'password';

StweetIdToDelete = 5142491385;

// The Twitter favorites/destroy method
Surl = "https://api.twitter.com/1l/favorites/destroy/StweetIdToDelete.xml";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt ($ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT USERAGENT, "Twitter App Development For
Dummies: Example");

ScurlHandle, CURLOPT_POST, 1);

ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt ($ScurlHandle, CURLOPT_POSTFIELDS, "");

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

curl_setopt
curl_setopt

// Get HTTP Status Code
$info = curl_getinfo(ScurlHandle);

(continued)

223

224 Part Il: Ideation — Coming Up with an Idea

Listing 8-18 (continued)

Shttp_code = $info['http_code'];
echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->1loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!

if (Serrors->length > 0)

{
SerrorMessage = $errors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";

}

else

{
// Get favorited tweet text
StextNode = $xml->getElementsByTagName ("text");
S$text = StextNode->item(0)->nodeValue;

// Get author's profile picture
SprofilePicNode = $xml->getElementsByTagName ("profile_image_url");
Sprofile_image_url = $profilePicNode->item(0)->nodeValue;

// Print tweet and user's picture

echo "<hl>Successfully removed the following tweet to your favorites:</hl>";
echo "";

echo "<p>Stext</p>";

?>

Saved Searches Methods

Twitter provides the Search API to allow users to search Twitter for words
and phrases. If you want to regularly monitor a word or phrase on Twitter,
you can save your search query as a “saved search.” Twitter links to your
saved searches on your Twitter home page, and 3rd party applications can
interact with your saved searches using the following four methods:

Chapter 8: Communication Through Tweets 225

V¥ saved_searches
V¥ saved_searches/show
V¥ saved_searches/create

V¥ saved_searches/destroy

Retrieve all your saved searches

You can get a list of all your saved searches by authenticating and calling the
saved_searches method.

This method requires a GET request and is rate limited. Chapter 7 explains
the concern with rate limits.

Output
This method has two output formats:

v XML
» JSON

On a successful method call, it returns an array of detailed saved search
objects for the authenticated user’s entire saved searches.

If the authenticated user has no saved searches it returns an empty array and
a HTTP status of 200.

Input

This method requires no input parameters.

Example

You can try the saved_searches method easily by typing http://api.
twitter.com/1/saved_searches.xml into your browser’s URL address
bar. When requested by your browser, enter your Twitter user name and
password. Then you receive the details of all your saved searches in XML
format.

In Listing 8-19, [use the saved_searches method to pull all the authenticated
user’s saved searches and print their queries and the date they were created.

226 Part Il: Ideation — Coming Up with an Idea

Listing 8-19: How to Get the Details of a Saved Search

<?php

// Set username and password
Susername = 'username';
Spassword = 'password';

// The Twitter saved_searches method
Surl = "https://api.twitter.com/1l/saved_searches.xml";

// GET Twitter API results using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "S$Susername:S$password");

SapiResponse = curl_exec($ScurlHandle) ;

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
Sxml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!

if ($errors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$SerrorMessage</hl>";

}

else

{

$savedSearchNodes = $xml->getElementsByTagName ("saved_search");

foreach ($savedSearchNodes as $savedSearch)

{
// Get search query
SqueryNode = $savedSearch->getElementsByTagName ("query") ;
Squery = S$queryNode->item(0)->nodeValue;

Chapter 8: Communication Through Tweets 22 7

// Get date search was created and saved
ScreatedAtNode = S$savedSearch->getElementsByTagName ("created_at");
Screated_at = ScreatedAtNode->item(0)->nodevValue;

// Print saved search query and created date
echo "<p>Query: S$query</p>";

echo "<p>Created On: Screated_at</p>";

echo "<hr />";

Get the details of a saved search

You can get the details of a specified save search for the authenticated user
by calling the saved_searches/show method.

This method requires a GET request and is rate limited. Chapter 7 explains
the concern with rate limits.

Output
This method has two output formats:

» XML
» JSON

On a successful method call, it returns the complete saved search object.

If the saved search id doesn’t exist you will receive an error message and a
HTTP status code of 404.

Input

This method requires one parameter, the id of the saved search.

v id: The numerical id of the saved search.
Example: /saved_searches/show/1234.xml

Example

In Listing 8-20, I use the saved_searches/show method to pull the details
of saved search and print the query and the date it way created.

228 Part Il: Ideation — Coming Up with an Idea

Listing 8-20: How to Get the Details of a Saved Search

<?php

// Set username and password
Susername = 'username';
Spassword = 'password';

// The Twitter saved_searches/show method
Surl = "https://api.twitter.com/1/saved_searches/show/2502630.xml";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "S$Susername:S$password");

SapiResponse = curl_exec ($ScurlHandle) ;

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
Sxml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!

if ($errors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$SerrorMessage</hl>";

}

else

{
// Get search query
SqueryNode = $xml->getElementsByTagName ("query");
Squery = SqueryNode->item(0)->nodeValue;

// Get date search was created and saved
ScreatedAtNode = $xml->getElementsByTagName ("created_at");
Screated_at = $createdAtNode->item(0)->nodeValue;

Chapter 8: Communication Through Tweets 229

// Print saved search query and created date
echo "<p>Query: S$query</p>";
echo "<p>Created On: Screated_at</p>";

?>

Create a saved search

To create a new saved search, authenticate as the user you want to save the
search for, and call the saved_searches/create method.

This method requires a POST request and is rate limited. Chapter 7 explains
the concern with rate limits.

Output
This method has two output formats:

» XML
» JSON

On a successful post, this method will return the details of the saved search
you just created. On a failed post, you will receive an error message explain-
ing why you were unable to create the saved search.

Input

This method requires one parameter, the query text of the search you want
to save.

v query: The search query you want to save.
Example: /saved_searches/create.xml?query=test
\3
P Be sure to URL encode the query parameter. Your query may not be saved
properly otherwise. In PHP you can do this with the urlencode function, like I
have in Listing 8-21.

Example

Listing 8-21 is an example of how to programmatically create a saved search
using PHP and cURL to post to the saved_searches/create method. If

a saved search is successfully create, it displays the name of the recently
create search.

230 Part Il: Ideation — Coming Up with an Idea

Listing 8-21: How to Programmatically Create a Saved Search

<?php

// Set username and password
Susername = 'username';
Spassword = 'password';

$searchQuery = urlencode ("#TADD") ;

// The Twitter saved_searches/create method
Surl = "https://api.twitter.com/1/saved_searches/create.xml";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT _URL, "S$url");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS, "query=$searchQuery");

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:Spassword");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
S$xml = new DOMDocument () ;
$xml->1oadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error");

// If found, print the error. Else, success!

if (Serrors->length > 0)

{
SerrorMessage = Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";

}

else

{
// Get name of the recently created saved search

Chapter 8: Communication Through Tweets 23 ’

$nameNode = $xml->getElementsByTagName ("name") ;
$name = $nameNode->item(0)->nodeValue;

// Print the name of the saved search
echo "<hl>Successfully created the saved search: S$name</hl>";

Remove a saved search

You can remove a saved search from your profile by authenticating and
calling the saved_searches/destroy method.

This method requires a POST or DELETE request and is rate limited. Chapter 7
explains the concern with rate limits.

Output
This method has two output formats:

v XML
» JSON

On a successful post, this method will return the details of the saved search
you just removed. On a failed post, you will receive an error message
explaining why you were unable to remove the saved search.

Input
This method requires one parameter, the id of the saved search you want to
remove from your profile.

v id: The numerical id of a saved search.
Example: /saved_searches/destroy/1234.xml

Example

Listing 8-22 is an example of how to programmatically remove a saved search
from your profile by using PHP and cURL to post to the saved_searches/
destroy method. If a saved search is successfully removed, it displays the
name of the recently removed saved search.

232 Part Il: Ideation — Coming Up with an Idea

Listing 8-22: How to Programmatically Remove a Saved Search

<?php

// Set username and password
Susername = 'username';
Spassword = 'password';

$savesSearchIdToRemove = 2502585;

// The Twitter saved_searches/destroy method
Surl =
"https://api.twitter.com/1/saved_searches/destroy/$savesSearchIdToRemove.xml";

// POST to Twitter API using curl

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_POST, 1);

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

curl_setopt (ScurlHandle, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt (ScurlHandle, CURLOPT_POSTFIELDS, "");

curl_setopt (ScurlHandle, CURLOPT_USERPWD, "Susername:S$password");

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo(ScurlHandle);

Shttp_code = Sinfo['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

// Get XML
$xml = new DOMDocument () ;
$xml->loadXML (SapiResponse) ;

// Check for an error tag.
Serrors = $xml->getElementsByTagName ("error") ;

// If found, print the error. Else, success!

if (Serrors->length > 0)

{
SerrorMessage = $Serrors->item(0)->nodeValue;
echo "<hl>$errorMessage</hl>";

}

elseif (Shttp_code == "200")

{
// Get name of the deleted saved search
$nameNode = $xml->getElementsByTagName ("name") ;
$name = $nameNode->item(0)->nodeValue;

// Print the name of the deleted saved search

Chapter 8: Communication Through Tweets 233

echo "<hl>Successfully removed the saved search: S$name</hl>";
}
else

echo "<hl>Error</hl>";
?>

Search APl Methods

MBER
@&
&

The Search API allows you to find words and phrases in the Twitter public
timeline. This gives you the ability to monitor what the general Twitter public
is tweeting about. The Search API even provides the most popular trending
topics to give you an idea of what topics are popular at the moment. You can
interact with the Search API using the following methods.

V¥ search.twitter.com/search

V¥ search.twitter.com/trends

V¥ search.twitter.com/trends/daily

V¥ search.twitter.com/trends/weekly

The URL for the search APl is different from the rest of the API. The search API
URL is: http://search.twitter.com.

Also, remember that the Search API has a different and separate rate limit than
the rest of the Twitter API that is based entirely on the requesting IP address.

How to search for tweets with the APl

To search for a tweets on Twitter use the http://search.twitter.com/
search method.

This method doesn’t require authentication, it requires a GET request, and is
rate limited. Chapter 7 explains the concern with rate limits.

Output
This method has two output formats:

»* JSON
¥ Atom
On a successful post, this method will return the details of the saved search

you just removed. On a failed post, you will receive an error message
explaining why you were unable to remove the saved search.

234 Part Il: Ideation — Coming Up with an Idea

Input

This method requires one parameter, the id of the saved search you want to
remove from your profile. The other parameters are optional.

v q: The URL encoded search query to be performed.
Example: search.twitter.com/search.atom?q=tadd

v callback: The callback function for JSON requests.
Example: search.twitter.com/search.json?callback=foo&q=tadd

v lang: The ISO 639-1 code used to filter tweets by language.
Example: search.twitter.com/search.atom?lang=en&q=tadd

1 locale: Used to declare the language of the search query. “ja” is
currently the only available value.
Example: search.twitter.com/search.atom?q=% K &locale=ja

v rpp: The desired amount of search results per page less than 100.
Example: search.twitter.com/search.atom?q= tadd&rpp=15

V¥ page: Page to retrieve older search results.
Example: search.twitter.com/search.atom?q=tadd&rpp=15&page=6

V¥ since_1d: Returns tweets that are more recent than the id specified.
Example: search.twitter.com/search.atom?q=tadd&since_id=12345

»” geocode: Return results in a radius around a latitude and longitude
based on the users geocode location in their profile. The string must be
in the form “latitude,longitude,radius” where radius is declared as “mi”
(miles) or “km” (kilometers).
Example: search.twitter.com/search.atom?geocode=41.353129%2C-
62.155203%2C60mi

v show_user: When set to true it adds “<user>:” to the front of retrieved
tweets.
Example: search.twitter.com/search.atom?q=twitterapi&show_user=true

Example

Listing 8-23 is an example of how to programmatically remove a saved search
from your profile by using PHP and cURL to post to the saved_searches/
destroy method. If a saved search is successfully removed, it displays the
name of the recently removed saved search.

Chapter 8: Communication Through Tweets 235

Listing 8-23: How to Search Using the API

<?php

// The Twitter search method
Surl = "http://search.twitter.com/search.json?lang=en&qg=twitter";

// Get Twitter API results with cURL

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "S$Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

SapiResponse = curl_exec(ScurlHandle) ;

// Get HTTP Status Code

Sinfo = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

$json = json_decode (SapiResponse) ;

// Print each search status
foreach($json->results as S$status)
{
$statusText = Sstatus->text;
$statusId = $status->id;
SuserName = S$status->from_user;

echo "<p>SstatusT
ext</p>";

Get the current trending topics

There are two methods to get the current top 10 trending topics on Twitter:

V¥ search.twitter.com/trends

V¥ search.twitter.com/trends/current

Both of these methods don’t require authentication, require a GET request,
and are rate limited. Chapter 7 explains the concern with rate limits.

236 Part Il: Ideation — Coming Up with an Idea

Output
These methods have one output format:

» JSON

Both of these methods return the names of the top 10 trends and the time
of the request. However, search.twitter.com/trends includes a URL to the
search results for the current trends, while search.twitter.com/trends/
current returns the search query for the trend.

A failed request will return an error message.

Input

The search.twitter.com/trends method has no input parameters.
However, the search. twitter.com/trends/current method has one
optional parameter:

v exclude: You can exclude hashtags from your results by setting this
parameter value to “hashtags.”
Example: search.twitter.com/trends/current.
json?exclude=hashtags

Example

Listing 8-24 is an example of how to retrieve the current trends on Twitter
using cURL, PHP, JSON, and the search.twitter.com/trends method. In
this example I print each of the current top 10 trends and link them to their
Twitter search page.

Listing 8-24: How to Retrieve the Current Trends on Twitter

<?php

// The Twitter search trends method
Surl = "http://search.twitter.com/trends.json";

// Get Twitter API results with cURL

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

SapiResponse = curl_exec (ScurlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo(ScurlHandle);

Shttp_code = S$info['http_code'];

echo "<hl>HTTP Status Code: S$http_code</hl>";

Chapter 8: Communication Through Tweets 23 7

// Close cURL connection
curl_close($curlHandle) ;

$json = json_decode ($SapiResponse) ;
// Print each trend

foreach($json->trends as $trend)
{
StrendName = S$trend->name;
StrendUrl = S$trend->url;

echo "<p>$trendName</p>";

?>

Get the days trending topics

You can get the top 20 trends per hour for a specific day by using the
search.twitter.com/trends/daily method.

This method doesn’t require authentication, it requires a GET request, and is
rate limited. Chapter 7 explains the concern with rate limits.

Output
This method has one output format:

» JSON

On a successful request this method will return an array per hour that
includes the name of each trend and the search query for the trend. A failed
request will return an error message.

Input

This method has two optional input parameters.

v date: The day you want to retrieve trends for. It should be formatted
like YYYY-MM-DD.
Example: search.twitter.com/trends/daily.
json?date=2009-03-03

1 exclude: You can exclude hashtags from your results by setting this
parameter value to “hashtags.”
Example: search.twitter.com/trends/daily.
json?exclude=hashtags

238 Part Il: Ideation — Coming Up with an Idea

Example

Listing 8-25 is an example of how to retrieve today’s current trends on
Twitter using cURL, PHP, and JSON. The results aren’t guaranteed to be in
chronological order, so I make sure to sort the results in the example.

Listing 8-25: How to Retrieve the Day's Trends

<?php

// The Twitter search trends method
Surl = "http://search.twitter.com/trends/daily.json";

// Get Twitter API results with cURL

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "S$Surl");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

SapiResponse = curl_exec ($curlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo($curlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

$json = json_decode(SapiResponse) ;

// The results don't come back in chronological order

// So here I add them to an array I can sort

SdaysTrends = array();

foreach ($json->trends as $key => $hourlyTrends) {
$daysTrends [$key] = ShourlyTrends;

// Sort the trends by hour
ksort (SdaysTrends) ;

// Print each hours trend
foreach(SdaysTrends as Skey => ShourlyTrends)
{
echo "<hl>$key</hl>";
echo "";
foreach (ShourlyTrends as $trend)
{
StrendName = Strend->name;
StrendQuery = urlencode ($trend->query) ;

Chapter 8: Communication Through Tweets 23 9

echo "$tren
dName</1i>";
}
echo "";

Get the weeks trending topics

You can get the top 30 trends per day for a specific week by using the
search.twitter.com/trends/weekly method

This method doesn’t require authentication, it requires a GET request, and is
rate limited. Chapter 7 explains the concern with rate limits.

Output
This method has one output format:

» JSON

On a successful request this method will return an array per day that
includes the name of each trend and the search query for the trend. A failed
request will return an error message.

Input

This method has two optional input parameters.

v date: The day you want to start your retrieved week. It should be for-
matted like YYYY-MM-DD.
Example: search.twitter.com/trends/weekly.
json?date=2009-03-03

1 exclude: You can exclude hashtags from your results by setting this
parameter value to “hashtags.”
Example: search.twitter.com/trends/weekly.
json?exclude=hashtags

Example

Listing 8-26 is an example of how to retrieve this week’s current trends on
Twitter using cURL, PHP, and JSON. The results aren’t guaranteed to be in
chronological order, so I make sure to sort the results in the example.

240 Part Il: Ideation — Coming Up with an Idea

Listing 8-26: How to Retrieve the Week's Trends

<?php

// The Twitter search trends/weekly method
Surl = "http://search.twitter.com/trends/weekly.json";

// Get Twitter API results with cURL

ScurlHandle = curl_init();

curl_setopt (ScurlHandle, CURLOPT_URL, "S$url");

curl_setopt (ScurlHandle, CURLOPT_USERAGENT, "Twitter App Development For
Dummies: Example");

curl_setopt (ScurlHandle, CURLOPT_RETURNTRANSFER, 1);

SapiResponse = curl_exec ($ScurlHandle) ;

// Get HTTP Status Code

$info = curl_getinfo(ScurlHandle);

Shttp_code = $info['http_code'];

echo "<hl>HTTP Status Code: $http_code</hl>";

// Close cURL connection
curl_close($curlHandle) ;

$json = json_decode (SapiResponse) ;

// The results don't come back in chronological order

// So here I add them to an array I can sort

SweeksTrends = array();

foreach($json->trends as S$key => SdailyTrends) {
SweeksTrends [$Skey] = $dailyTrends;

// Sort the trends by day
ksort (SweeksTrends) ;

// Print each hours trend
foreach (SweeksTrends as $key => $dailyTrends)
{
echo "<hl>$key</hl>";
echo "";
foreach(sdailyTrends as $trend)
{
StrendName = S$trend->name;
StrendQuery = urlencode ($trend->query) ;
echo "Stren
dName</1i>";
}

echo "";

?>

Chapter 9
Selecting an Idea

In This Chapter

How to come up with an idea for a Twitter app
Why build a Twitter app
A description of the demo product, Twooshes

Fe goal of this chapter is to cover the reasons why you might want to
build a Twitter app and help you settle on an idea with wings. Whatever
you decide to build, it should be something that interests you, something
that users want, and something you can actually build. But the most impor-
tant thing is to pick something and get started on it.

Vg‘“\NG!
Most good ideas die before they ever have a chance of being realized. Don’t
spend too much time thinking up the perfect app. Pick an idea and go with it.
The discussion in this chapter is framed for Twitter applications. However, the
concepts in this chapter could be applied to any consumer-based application.
A\

If you don’t need inspiration or advice on settling on a Twitter application
idea, you can skip this chapter and get started on this book’s project demo,
Twooshes.

Imagining a Successful Twitter App

For the purpose of this chapter I define success as a popular application with
many happy users that satisfies the developer’s initial desires for developing
the app.

To build a popular application, you can’t just consider what you want. You
must consider what your users want, and whether you have the skills and
resources to deliver that magnificent concept in your head.

242 Part II: Ideation — Coming Up with an Idea

When you are thinking up your next application, consider these three points:

»* What is my motivation?
v+ What do people want in my application?

v Do I have the available skills and resources to develop my idea?

What Is Your Motivation?

3

If you know you want to build a Twitter app, but you're not sure what you
want to build, it’s helpful to look at the reasons why you want to build an app
in the first place. Identifying these reasons can help inspire you.

Understanding your motivation behind building an application is important
for another reason: if you are unable to satisfy your desires for building your
app, you may not develop your idea to its full potential, or abandon your app
all together. Understanding your motivation and fulfilling your wants will

fuel your passion for your application, and increase your work quality and
output. If you are developing an application for a client, your motivation may
differ from your employer, but it will still affect your work.

Your application idea is a product of your motivation to build an app. Generally,
your motivation will come first, then your idea will take shape. There could be
numerous reasons why you are motivated to create your application.

Enjoyment

One of the best reasons to set out on any endeavor, including Twitter app
development, is the sheer enjoyment of it.

If you have an idea that someone’s already done, or you don’t think it will be
successful, that’s no reason to kill the idea. Sometimes you simply must fulfill
an inner need. Usually the best products are born out of their creator’s enjoy-
ment. So stop worrying and start building!

You can always make changes to your application. Once you receive feed-
back from your users, you can improve it.

Make money

Making money and creating a business is a common topic in most software
niches, such as iPhone and desktop application development. However,

Chapter 9: Selecting an Idea 243

\\3

many people gloss over third-party Twitter applications making money and
becoming businesses. It is possible, and you're doing yourself a disservice if
you instantly discredit the idea.

Part III of this book covers money making in detail.

If you have an idea you're really excited about, but you aren’t sure how to
make money with it now, don’t worry too much about it. Get started build-
ing your application. You can figure out how to monetize it later. Just look
at Twitter. At the time of this writing, they still don’t have a solid revenue
model. It’s important to understand, if you have a good product, you can
make money with it. However, you can’t make money with only an idea for a
product.

Filling a need

It’s cliché, but necessity is indeed the mother of invention. When I created
Friend Or Follow (http://friendorfollow.com) I did it to help myself
manage my Twitter friends and followers, and because I had a weekend to
play around with the Twitter APL. [had no intentions of creating a business or
writing a book about Twitter application development. Luckily, I managed to
fill a need not only for myself, but also for many other Twitter users.

So when you’re looking for ideas on Twitter applications, ask yourself, “What
do I wish Twitter could do?” If you have a good answer to that question, it’s
likely that at least a few other people share your need, and you have yourself
a good product idea.

If your new product doesn’t take off, at least you've built a cool app for yourself.

Make it better

Another common project killer is the concept that your product idea must be
completely unique for it to be good. If you come up with an idea and find-out
someone else, or perhaps multiple people, are also working on the same idea,
you have proof that there is a market for your product. Now the key is to
simply take that idea and implement it better than all your competitors. That
may seem a little daunting, but you can do it.

You can differentiate yourself from your competitors by taking a different
approach. If their app has tons of functionality, but is complicated to use,

try making yours dead simple by including less features. You can also learn
from your competitors by seeing what they’ve done and how their users have
reacted. Find out what their users want and add that to your application.

244 Part II: Ideation — Coming Up with an Idea

A\

<MBER
é‘,*

It’s like publishing a book. There are other books on Twitter application devel-
opment, but you bought this book because it’s best for you (I hope).

You might even want to take a piece of functionality from Twitter itself and
improve upon it. Or you could reinvent the entire Twitter interface and make
it your own. Brizzly (http://brizzly.com) is a good example of this.

Build your brand’s reputation

Building a popular Twitter application can increase your reputation, or

your company’s. Much like how a novelist or director might gain a fan base
of people who follow his or her work, if you build a useful or entertaining
application that people like, they may start to watch what you are up to next.
You may even become known as an expert in your domain. You can use this
reputation to boost the launch of your next project or the next feature set of
your current projects. This is especially true when building a popular Twitter
application, because the people who are interested in your work will sub-
scribe to your Twitter feed.

Put your Twitter username somewhere on your application!

Support a cause

You may want to build a Twitter application to promote a particular cause
or charity. For example, the app TwitCause (http://twitcause.com) was
created for Twitter users to nominate, promote, and raise donations over
Twitter for a new charity every week.

Another example is Tweet Congress (http://tweetcongress.com). Tweet
Congress advocates open and transparent government. To aid in this cause
they keep track of which US senators, congressmen, and other appointed
officials are on Twitter, to make it easy for their constituents to follow and
interact with.

Why Do People Use a Twitter App?

People choose to use an application for a variety of reasons. It could be for
anyone of, or all of, these reasons: it helps solve a problem, it’s entertaining,
it’s easy to use, and/or because they trust it. When you are brainstorming on
what you’re going to build, ask yourself if your application idea can do the
following:

Chapter 9: Selecting an Idea 245

Solves a problem

The main reason anyone uses an application is because it solves a particular
problem for him or her.

A good example of an application that makes life easier for Twitter users

is CoTweet (http://cotweet.com). CoTweet makes it easy for a team of
people to manage their organization’s Twitter account. It allows them to
easily keep track of who on their team has corresponded to which custom-
ers, make notes about those customers for other team members, and more.

It’s entertaining

If your software solves a problem, you can gain a competitive advantage if
you also entertain the user as they work out their problem. However, some
software aims only to entertain.

Video games are the grand daddy of entertaining applications, but users may
also find entertainment in analytical sites like TweetStats (http://tweet
stats.com). TweetStats presents a Twitter user with all kinds of stats about
the tweeting behavior. A user may not have any practical use for this informa-
tion, but the application can be interesting and entertaining.

It’s easy to use

When given the option between an application that is confusing and one that
is dead simple to use, more users usually opt for the easy to use application.
However, there are exceptions to this rule.

If a user has used an application for a long time and learned all its ins and outs,
they may be reluctant to switch to a competing piece of software, even if it’s
easier to use. This problem is common in accounting and office applications,
where users have learned and used the industry standard for years. A new
competing piece of software may be easier to learn and use than the estab-
lished piece of software, but the learning curve may be too steep for a veteran
user to switch to the competing application.

Still, as a new comer to a market, you should make your software easier to use
than your competitor’s to gain an advantage in the marketplace. If your appli-
cation is more productive to use than your competitors, you can eventually
overtake them through the word of mouth of satisfied users.

246 Part Il: Ideation — Coming Up with an Idea

\\J

They trust it

Users want to know that their login credentials, credit card information, and
user data is in trustworthy hands. If your application doesn’t appear trust-
worthy and credible, you may not win over many users.

There are several ways to gain your user’s trust:

v Avoid asking for a user’s Twitter password.

v 1If you must authenticate the user with Twitter, use OAuth.

1 Have a professional design. I cover this in detail in Chapter 13.
v Make support contact information easy to find.

v Include your name in your application about section.

v Use SSL (Secure Sockets Layer) when collect payment information or
login credentials.

v Get user testimonials and display them.

Do Vou Have the Skill and Resources
to Build Your App?

a\\J

It takes more than a good idea and motivation to build a successful application.
You need to have the skill and resources to build your idea. For example, you
may really want your car to tweet when it needs an oil change. Do you have the
technical knowledge to build a device that can do that? If not, do you have the
money to hire someone who does? If you were to design that device, do you
know how to manufacture it?

Start with a small manageable project. If you have several application con-
cepts in your head that you are passionate about, start with the simplest idea
that you believe will have audience appeal.

Chapter 9: Selecting an Idea 24 7

Enough Jibber Jabber! Start Building!

WMBER
s&
&

WMBER
@"&
&

Hopefully the advice in this chapter helps you choose a viable application
idea. However, it is imperative that you not get too hung up on what to build,
and simply start building. Developing software and even creating a business
is an iterative process. You may set out to do one thing and halfway through
realize a great new opportunity. If you never start building, iterating through
product versions, and getting user feedback, you will never build a successful
application. If you still don’t have an idea for an app, you can borrow mine,
and make it better.

In the next section of the book I will walk you through the process of building
a full-fledged Twitter application. The application is called Twooshes.

A twoosh is a tweet that is exactly 140 characters long.

Twooshes is a Twitter game. It will monitor the Twitter streams of the users
that follow the @Twooshes account and look for tweets that are exactly 140
characters. If it finds a twoosh, it will give that user 1 point. To make the
game a little more interesting, if Twooshes finds a tweet that contains a cur-
rent trending topic, it will subtract a point from the user. There is no real
practical use for the Twooshes application. It’s all just good fun. To monetize
Twooshes, I intend to use the Featured Users (http://featuredusers.
com) ad network, and a liberal use of Magpie (http://be-a-magpie.com)
sponsored tweets.

[use the domain name and Twitter account “Twooshes” for the example
application in this book. You will need to create your own application name to
follow along. It can be anything you like, but avoid including the word Twitter
in your name. That’s trademark infringement. Use your imagination, but don’t
spend too much time thinking about it. It’s time to start coding!

248 Part Il: Ideation — Coming Up with an Idea

Part Il

Creation —
Developing Your
Application

The 5t Wave By Rich Tennant

“This program’s really helped me learn a new
language. Tt’s so buggy T'm constantly talking
with overseas service reps.”

In this part . . .

Tle chapters in this part show you how to take control
of your application and detail it. When you look
behind the curtain, this is the stuff you see the great
Wizard reading while he twists knobs and throws
switches.

Chapter 10

Selecting Libraries, Design
Patterns, and Frameworks

In This Chapter

Leveraging existing tools and patterns
Picking out a library and framework for Twooshes
Understanding the MVC design pattern

Wlen you sit down to start coding your Web application, you shouldn’t
start from scratch. Much like how you don’t have to start coding

from 0’s and 1’s, you don’t have to start from a blank PHP file. You can build
on top of the previous generation’s breakthroughs by using free, high-quality
libraries, frameworks, and design patterns. Leveraging these tools saves you
time, increases your code quality, and lets you get straight to the core of
your project.

Twitter APl Libraries Can
Speed Up Development

Earlier in this book, I showed you how to interact with the Twitter APL. You may
have noticed it is pretty straightforward but the code is a little redundant. Every
time you connect to Twitter using cURL, and parse data using DOMDocument,
the code looks the same as the last time you called the API. This is a great oppor-
tunity to create libraries, functions, or classes to reduce the amount of redun-
dant code, and make interacting with the Twitter API easy.

By centralizing your code and removing redundancies, you make it easier to
read, maintain, and consequently decrease the potential for bugs. However,
you don’t need to build your own library from scratch. Other developers have
already created open-source libraries, in numerous programming languages,
that you can use for free. Thanks to their efforts, you can skip all this legwork,
and get to the part of development you're interested in.

252 Part lll: Creation — Developing Your Application

If building libraries is what you’re interested in, then by all means create your
own. Or you can contribute to a pre-existing library and improve it for yourself
and the rest of the Twitter community.

You can view a fairly comprehensive list of open source Twitter libraries,
maintained by Twitter, on the Twitter APl Wiki at http://apiwiki.twitter.
com/Libraries.

For the Twooshes project, I use the Twitter library found in the PHP Zend
Framework. It isn’t the most comprehensive Twitter PHP library available,
but it’s built into the rest of the Zend Framework.

Web Application Frameworks

3

Web application frameworks are code projects that encapsulate common
Web development tasks. They serve as a Web application’s foundation, which
the developer then builds upon. The framework’s purposes are to

v Decrease development time, by relieving the developer from coding
common Web application tasks

v Increase the quality of the project, by abstracting common tasks using
tested code.

Use software frameworks whenever possible:

v They prevent you from reinventing the wheel.
v They usually encourage good design patterns.

Having good design patterns and leveraging a popular framework also
makes it easier for other developers to work on your product, due to
recognizable methods and patterns.

For us PHP developers, there are several PHP frameworks. These are popular:

v Agavi: http://agavi.org

v CakePHP: http://cakephp.org

v Codelgniter: http://codeigniter.com

v Symfony: http://symfony-project.org

v Zend Framework: http://framework. zend.com

[use the Zend Framework (ZF) for the Twooshes project in this book
because it is one of the most popular PHP frameworks. Finding books,

Chapter 10: Selecting Libraries, Design Patterns, and Frameworks 2 53

reference material, and support groups for ZF is fairly easy. ZF also has a
corporate sponsor, Zend Technologies, which is co-founded by two PHP
core developers, Andi Gutmans and Zeev Suraski. There have also been
technical contributions from corporations like IBM, Google, Microsoft,
and Adobe Systems. With heavyweights like this working on ZF, you know
it has to meet a high level of quality.

Another big selling point for ZF is it has a Twitter API library built in. In
addition, ZF supports and encourages the model-view-controller design
pattern.

Model View Control

This chapter is about avoiding reinventing things: design patterns are no
exception. Design patterns are conceptual ideas on how to structure software
that has been observed, reused, and tested in numerous applications.

Model-view-control (MVC) is a popular software design pattern. I use it on the
Twooshes project in this book. It is named after its three conceptual parts:

v Model: This is where data comes from.

v View: This is where the HTML is.

v Controller: This is where the business logic is, and where the view gets

its data.

The strength of the MVC design pattern comes from the isolation of its three
parts. By separating the HTML, data access code, and business logic, you
divide your problem into smaller, more manageable pieces. This makes your
application easier to build, scale, test, and maintain.

The MVC design pattern also requires isolation of its parts. The model and
view aren’t on speaking terms, and they always use the controller to talk to one
another. The basic workflow for the MVC pattern is illustrated in Figure 10-1.

Walking through the MVC workflow goes something like the following:

1. A user requests a Web page.

2. The controller notices the requested Web page requires data from the
database, so the controller asks for the data from the model.

3. The model gathers the data and gives it to the controller.

254 Part lll: Creation — Developing Your Application

MvC

—
[Model } [View }

NS /7

[Controller J

— [Web Server }
Figure 10-1:
MVC pattern

workflow. [Browser]
|

4. The controller hands the data over to the view to integrate it into the
HTML.

3 5. The controller gives the completed HTML to the Web user.
Here are a few tips to help you conform to the MVC pattern:

* You should never have SQL code in your view.

v Your view should never reference anything in the model.

v The controller should be lightweight, with as little code as possible.

v The model can be fat with code, but it should only deal in gathering and

interfacing with data.

Now that you have a grasp on the libraries, frameworks, and design patterns,
and you know which ones are used to build Twooshes, it’s time to set up our
server.

Chapter 11
Hosting In the Clouds

In This Chapter

Hosting solution options
Setting up your servers for the Twooshes project
Uploading project files to your Web server

Before you jump in with the Twooshes project, you need to set up your
servers. This chapter includes a brief overview of the Web hosting solu-
tions available to you. I also select a Web hosting solution for the Twooshes
project and walk you through the setup process. You also learn how to trans-
fer files to your server and how to setup your domain name.

Types of Web Hosting Solutions

There are numerous Web hosting solutions to choose from. Here are the
three most popular solutions for your consideration.

Shared web hosting

Shared Web hosting is usually the most inexpensive way to have your Web

content hosted. In a shared Web hosting environment, everyone shares the

same computing resources. Each user is limited to the amount of resources

they can use.

L) y
This can be a major drawback if your application requires a lot of processing
power, memory, bandwidth, or disk space.

However, shared Web hosting is an excellent solution for many users who
host small Web sites that haven'’t yet gained a large audience.

256 Part lll: Creation — Developing Your Application

\NG/
V?‘“

A\\S

Dedicated web hosting

To get the most Web hosting power possible, you can run your Web site on
a server completely dedicated to your app. This is dedicated Web hosting. It
comes in a few different flavors.

v Leased: You can lease a physical server from an Internet service pro-
vider (ISP) and then manage the server yourself.

v Managed: You can lease a physical server and signup for a support con-
tract from your ISP, where someone manages and keeps an eye on your
server 24/7.

This tends to be the most expensive hosting option.

v Co-location: If you own your own servers, you can host it at an ISP’s data
center by paying a co-location lease. In this lease, you're paying for the
physical space your server takes up, the electricity, the bandwidth, and the
facility features like air conditioning and backup electricity generators.

Dedicated Web hosting is the most expensive hosting option, but if your
site’s audience grows to enormous sizes, you may need this kind of capacity.

Cloud computing

Cloud computing is a fluffy term, but the concept of “cloud computing” or “cloud
hosting” refers to computing resources that are available on demand, over the
Internet, for use by a consumer. Examples of computing resources vary from
Google’s Gmail, to on-demand disk storage space such as Amazon’s S3 (http://
aws.amazon.com/s3).

In the loosest sense of the term, Twitter could be considered a cloud com-
puting resource. For example, you send the Twitter API a request over the
Internet and it performs an action and sends you the results.

With cloud computing, the consumer needs no knowledge of the infrastruc-
ture required to run the computing resources. The consumer simply requests
what resources they need from the “cloud” and the cloud returns the results.

Hosting in the cloud refers to outsourcing your Web server needs to cloud
computing services. This way, you don’t need to consider server infrastructure.
Further, you can increase or decrease your server’s resources on demand.

This is great for a small Web application that needs the ability to scale quickly.

Chapter 11: Hosting In the Clouds 25 7

It’s more expensive than shared Web hosting, but it offers more flexibility,
and is usually much cheaper than starting with a dedicated server.

Choosing a Hosting Provider

NG/
$

\\3

You should always start with the smallest Web hosting solution and grow
into the next largest solution. There is no reason to spend money on
resources you don’t need. I usually recommend individuals start with shared
Web hosting. If you have less than a few hundred visitors per day, shared
Web hosting works fine and is much less expensive than other hosting solu-
tions. If your application starts to peak above approximately 300 visitors per
day, you need to start preparing to migrate to a larger Web host.

If possible, get a Web host with a static IP address. Shared Web hosts usually
assign a dynamic IP address. In the past, Twitter has banned large blocks of IP
addresses belonging to shared Web hosts, due to Twitter API abuse originat-
ing from an IP address owned by the Web host. The consequence to this is
Twitter creates collateral damage banning well behaving Twitter apps running
on the same shared Web host. For this reason if your application begins to
gather an audience you need to get a static [P address.

For Twooshes, I go against my own advice of starting on a shared Web host,
and opt for a cloud hosting solution. This is because I predict Twooshes will
receive more traffic than a shared host can handle, but not enough to war-
rant a dedicated Web server. The service I use is Rackspace Cloud Servers
(http://rackspacecloud.com). With Rackspace Cloud Servers, I can set
up a virtual server with dedicated resources and increase or decrease those
resources on demand. This is great for a modestly popular Web site that may
need to grow quickly.

There is really no reason to start a project with a dedicated Web server.
Dedicated servers are something you grow into, not start with.

For Twooshes, I use two Rackspace Cloud virtual servers to create

v Web server

v Database server

Splitting the application’s workload horizontally, across more servers, scales
to handle more traffic, for less money, than using fewer more powerful serv-
ers. However, you don’t need to split these two servers right away. To save
money, you could run your Web server and database server on the same virtual

258 Part lll: Creation — Developing Your Application

machine until you need more capacity. At that point, you could split the work-
load across two machines. However, because Rackspace Cloud allows me to
increase my server’s resources on demand, it’s easy to grow in capacity verti-
cally (giving the servers more power). However, you can’t split your database
and Web server on demand. It requires a bit of work and server downtime. I
prefer to start my projects with the database and Web server on different
machines, and use the smallest possible virtual machine for both servers. This
is the most obvious horizontal scaling trick you can make for your Web appli-
cation.

Setting Up Vour Servers

To get started, create a Rackspace Cloud Server account at http://rack
spacecloud. com. After you have set up your billing information and created
your account, log in to Rackspace Cloud at http: //manage.rackspace
cloud.com. Once logged in, you are greeted with your Rackspace dashboard.

3

Setting up Apache and PHP

It’s time to create your Apache Web server. Follow these steps:

1.
2.

Click the “Hosting” tab on the left-hand navigation menu.
Click “Cloud Servers” in the drop-down menu.

This is your Cloud Servers dashboard. Figure 11-1 is a screenshot of my
Cloud Servers dashboard. Yours should look similar, but without any
existing servers listed.

. Click the “Add New Server” button at the top of your dashboard.

At the top of the new page, you are presented with a menu of server sizes.

. Select the smallest server size (currently 256 MB).

Below the server sizes menu is a field to enter the name of your server
and a menu of “Default Cloud Server Images.”

. Name your server anything you like.

I prefer to use the name of my project with the server type prefixed to it.
So since this is the Web server I've named mine “TwooshesWeb.”

. For the “Default Cloud Server Images,” select Ubuntu Hardy (currently

listed as: Ubuntu 8.04.2 LTS (hardy)).

|
Figure 11-1:
My Cloud
Servers
dashboard.

@ rackspacecloud

Cinud Binrvern

Cloud Servers
=K et | 10 Serverts) (sboung 12010 [i e sorver el el] O—

Samtum | Sarvnr lamn R Amoum

f2r Home

Cloud Flles

g 512

i, g

|_'|_E Your Acoount

'\:.‘) Support

o W R

.| Legout

L
:]

For holalul parni afcss o 100l Ehack oul [out Fols ortets Pasel Vorson 2073 - F

7. Click “Add Cloud Server.”

After clicking “Add Cloud Server,” you are taken to your new server’s
dashboard, as seen in Figure 11-2. Your server takes a few moments to
build.

8. Jot down the root password displayed at the top of the screen and go
grab a cup of coffee.

Once your server is done building the status on the dashboard says
“Active” and you receive an email from Rackspace with your server’s IP
address and root password.

When your server is built, it’s time to install the Apache Web server on it.

Before you can install Apache, you must open your server’s command
prompt. Follow these steps:

1. Still logged in and looking at your server’s dashboard, click the
“Console” button on the “Overview” tab under “Actions For This
Server,” at the top of the screen.

A dialog box opens to remind you to make sure Javascript is enabled on
your browser.

Chapter 11: Hosting In the Clouds 259

260 Part lll: Creation — Developing Your Application

@Féckspace‘c[oud G % Knowiedos Bess Forums Tkt LvaChat BN 1-STT-9040607 MK 0800-003-0072
427 Home :
| Overview
‘- Hesting
i
Clod Fllrs Cvarview DNS
S . Actions For This Server
L|J.| Your Account
i:) Suppart
. Logout
5 Cloud Borver Details
| r
. Mare & Status
Figure 11-2:
Nume: TwooshosWeb
The
Twooshes o i
Curnt Actor: Build
Web server e
e e
dashboard.
I For bl e upos snd iooks chock oul Gloud Took, Coniral Panol Vorsior 2.0.25 - Beleats Notug)
2. Click the “Open Console” button to dismiss this dialog box and continue.
A new browser window opens, with content similar to Figure 11-3, show-
<P ing your server’s command line.
Sometimes, the console window opens too small. Maximize the window
to be sure you can see everything.
, you i u Vv i ime.
From here, you can log in to your Web server for the first time
. in roo i ,
3. Type in t as the login name, then enter the root password you
<P jotted down when you created your server.

You didn’t write down the root password? You can look it up in the
e-mail Rackspace sent you after the server finished building.

Once logged in, you are presented with a blank command prompt that
looks something like this, except “TwooshesWeb” is replaced with what-
ever you named your server when you created it:

root@TwooshesWeb: ~#

Chapter 11: Hosting In the Clouds 26 ’

§ colors [GEE] [FEEES

Couldnt get a £ile descriptor referring to the console
Couldnt gt a £ila descriptor refarring to the conaole
Couldnt get & file descriptor referring to the console
Couldnt get a file dessriptor refercing to the console

* Betting the systes clock
Cannot aceann tha Hardwara Closk via any known methad.
Uss the --debug cpticn to mee the details of cur search for an sccess method.
¢ Unable to set System Clock tor Fri Wov 6 10:34:49 UTC 2009
* Btarting banie notwerking... I o
* Btarting kernel event mansger. .. [ox
* Loading hardwars drivers... [oK)
* Hetting the system clock
Cannot access the Hardware Clock vis any kaown method.
Use the --debug option to ses thes details of sur sssrch for an access method.
* Unable to set System Clock tor Fri Nov & 10:34:51 UTC 2009

* Losding kernal modules... [O£] * Loading manual driverm...
* Setting kernel variables... arrors "kernel.maps_protest® is an unkno
wn key
[1
¢ Activating swap... [ox]
* Choecking root file syntem... fack 1.40.8 (13-Mar-2008)
Jdev/mdali clean, 14T85/1245184 filea, 127061/2490368 blocks
| [oF

* Chocking #ile myntema... fack 1.40.8 (13-Mar-2008)

1

. _2. [o}
Flgure 11 3' * Mounting local filesystems... [oK)
* Activating swapfila swep. .. [

YOUI’ server * Checking minimm space in ftog... [ox]
* configuring notwork Inearfacen... [o]

* Starting system log dasson... ox |

con30|e * Gtarting kernal log dammon... [oK)

. . * Starting OpenBSD Secure Shall server sshd [or]
inside + Etarting MTA [o]

* Gtarting perindiz cosmand achedular crond [ox]

your Web * Running local boot scripts {/eto/rc.local) [ox]

brOWSer Ubuntu §.04,2 TwooshesWeb ttyl

Twnoshantinh login:

Install Apache and PHP

After your command prompt is open, you can install Apache and PHP on
your new server. Follow these steps:

1. Type the command apt-get update in the command prompt and
press enter to update Ubuntu’s install package libraries.

2. Type the command apt-get install apache2 and press enter to
install the Apache Web server.

The installer stops to ask you if you want to use disk space. Type Y and
press Enter.

3. Type the command apt-get install php5 and press enter to
install PHP.

The installer stops to ask you if you want to use disk space. Type Y and
press Enter.

4. Type the command apt-get install libapache2-mod-php5 and
press enter to integrate Apache and PHP.

The installer stops to ask you if you want to use disk space. Type Y and
press Enter.

262 Part lll: Creation — Developing Your Application

WMBER
@ﬁ
&

5. Type the command apt-get install php5-mysql and press enter

to install MySQL module for PHP.

The installer stops to ask you if you want to use disk space. Type Y and
press Enter.

. Type the command apt-get install curl php5-curl and press

Enter to install cURL for PHP.

. Restart Apache by typing the command /etc/init.d/apache2

restart and pressing Enter.

Once you’ve completed the installation of apache, you can test it by typing
your server’s IP address in your browser’s address bar. You should see a
blank Web page with the words “It works!” in the top left.

Your server’s IP address can be found on your server’s Rackspace Cloud dash-
board and in the e-mail you received after your server finished building.

Install mod_rewrite

Next, you need to setup support for .htaccess files by installing and enabling
mod_rewrite. This is a requirement for the Zend Framework I use for the
Twooses project. Follow these steps:

1.

With the command prompt still open, install mod_rewrite by typing
the command a2enmod rewrite and pressing Enter.

. Type the command /etc/init.d/apache2 force-reload and press

Enter to enable the module.

. Navigate to the Apache install directory by typing cd /etc/apache2/

sites-available.

4. Type nano default and press Enter to open the configuration file.

5. In the configuration file, replace the first two occurrences of

AllowOverride None with AllowOverride All.
Your file should look like Figure 11-4.

. Save the configuration file by pressing Ctrl+X.

When asked to “Save modified buffer?” press Y, then press Enter when
presented with the filename.

. Restart Apache by typing the command /etc/init.d/apache2

restart and pressing Enter.

Now that your Web server is up, it’s time to get your database server going.

Figure 11-4:
The
apache2/
sites-
available
configura-
tion file.
|

3

|§ 'Colers [OEN) [PEEES)

I 680 nano 2.0.7 File: default
NameVirtualHost *

<VirtualHost *>
ServerAdmin webmaster#localhost

DocumentRoot /var/wew/
<Directory />
options FallowSymLinks
AllowDvarrida A1l
</Diractory>
<Diractary /var/www/>
Optione Indaxesn FollowSymLinks MultiViews
AllowDverride A1l
Order allow,deny
allow from all
</Directory>

BoriptAliae fogi-bin/ /uer/lib/egi-bin/
<Directory "/usrx/lib/cgi-bin">
AllowOverride None

| Get Help [V WriteOut | Read File Prev Page i Cut Text Cur Poa
Bxit Juatify | Whera Is Hext Page UnCut Textigy To Epell

Setting up your MySQL server

Return to your “Cloud Servers” dashboard by clicking the “Hosting” tab on
the left-hand navigation menu. Then click “Cloud Servers” in the drop-down
menu. You should see your Cloud Servers dashboard with your newly cre-
ated Web server listed.

If you want to run MySQL on a separate server, follow these steps. If you want
to run Apache and MySQL on one server you can skip this process:

1. Click the “Add New Server” button at the top of your dashboard.

At the top of the new page you are presented with a menu of server
sizes. Select the smallest server size (currently 256 MB).

Below the server sizes menu is a field to enter the name of your server
and a menu of “Default Cloud Server Images.” You can name your server
anything you like. [prefer to use the name of my project with the server
type prefixed to it. This is the database server, so I've named mine
“TwooshesDB.”

2. For the “Default Cloud Server Images,” select Ubuntu Hardy (currently
listed as: Ubuntu 8.04.2 LTS (hardy)).

3. Click “Add Cloud Server.”

After clicking “Add Cloud Server,” you are taken to your new server’s
dashboard, it looks similar to Figure 11-2.

Chapter 11: Hosting In the Clouds 263

264 Part lll: Creation — Developing Your Application

A\

\\3

3

Your server takes a few moments to build, so jot down the root pass-
word displayed at the top, and take a moment to refill your coffee.

Once your server is done building, the status on the dashboard says
“Active” and you receive an email from Rackspace with your server’s IP
address, and root password.

Once your server is built, you can install MySQL by first opening up your
server’s command prompt using the following steps:

1. Still logged in and looking at your server’s dashboard, click the

“Console” button on the “Overview” tab under “Actions For This
Server,” at the top of the screen.

A dialog box opens to remind you to make sure Javascript is enabled on
your browser. Click the “Open Console” button to dismiss this dialog
box and continue.

A new browser window opens, with content similar to Figure 11-3,
showing your server’s command line.

Sometimes the console window opens too small, maximize the window
to be sure you can see everything. From here you can log in to your Web
server for the first time.

. Type root as the login name, then enter the root password you wrote

down earlier when you created your server.

Once logged in, you are presented with a blank command prompt.

Install MySQL on your new server:

1. Type the command apt-get update in the command prompt and

press Enter to update Ubuntu’s install package libraries.

. Type the command apt-get install mysgl-server and press

enter to install MySQL server.

The installer stops to ask you if you want to use disk space. Type Y and
press enter. Next you are prompted to enter a MySQL root password.

This password is case sensitive.

. Type a password you will remember and press Enter. Repeat the pass-

word when prompted.

Remember this password. You need it later.

Now you need to create your project database and a new database user that
your application can use to connect to the database.

Chapter 11: Hosting In the Clouds 265

QNING/ Don’t use the root username and password to connect your application to your
Y database. That is a security vulnerability. By using a different login dedicated to
your Web app you can limit that accounts permissions to only what it requires.
That way if the username and password is compromised, the intruder’s access is
limited.

1. Type the command mysqladmin -p create twooshes in the com-
mand prompt (where twooshes is the name of your database).

When requested, type the password you assigned to the root database
user when you installed MySQL.

2. Type the command mysql -p and press Enter.

This logs you in to MySQL monitor and gives you a new command
prompt: mysgl>

3. Type the command use twooshes and press Enter (where twooshes
is the name of your database).

This focuses your next commands on your project database.

4. Create the new database user by typing GRANT ALL ON twooshes.*
TO 'twooshesUser'@'%' IDENTIFIED BY 'password';and then
press Enter.

Be sure to replace password with an actual password for the User.

5. Type exit and press Enter to return to the server’s normal command
prompt.

To allow connections from other computers, you must update the my . cnf
file. Here, I set up MySQL to allow access from all IP addresses. This allows
your application to access the database from the Web server. It also allows
you to access the database from your desktop.
!

$§‘“\NG' This MySQL server setup isn’t the most secure setup, but it is the easiest to
get started with. To secure your MySQL server, you need to restrict access to
only allow IP addresses from computers you know:

1. Type cd /etc/mysql in the command prompt and press Enter.
The cd command changes your current directory to /etc/mysql.

2. Type nano my.cnf to edit the MySQL configuration file.

This opens the MySQL configuration file with nano, a Linux-based com-
mand line text editor.

266 Part lll: Creation — Developing Your Application

3. With the MySQL configuration file open, find the line with the con-
tents: bind-address = 127.0.0.1. Comment the line out by adding
a # to the front of the line.

Figure 11-5 shows a screenshot of the command line with the my.cnf file
open to this line.

| Colors [GEE [Faaksl
I GnvU nano 2.0.7 File: my.caf

» IMPORTANT

| ¥ Tf you maka changas to thease sattings and your Rystem LSRR AppATEOr, you may
* also need to also adjust fetc/apparmor.d/usr.sbin.mysqgld.

#

usar = mysqgl
pid-file = /var/run/mysqld/mysqgld.pid
socket = /[var/run/mysgld/mysgld.sock
|pcrt = 3306
basedir = fusc
I datadir = /var/lib/mysql
tmpdic = [tmp
- R language = fusr/share/mysgl/english
Flgure 11 5' skip-external-locking
#
MySO'L | # Inataad of skip-natworking the default is now to listen only on
1 # localhost which is more compatibla and iR not lars Recura.
my.Cnf file # bind-address = 127.0.0.1
open with | #
nano | Get Help [WriteQut 2 Read File Prav Page i Cut Text [8 Cur Poe
! Exit Juetify Where Ia Kext Page UnCut Textjly To Spell
I

4. Save the configuration file by pressing Ctrl+X.

When asked to “Save modified buffer?” press Y and then press enter
when presented with the filename.

5. To make the new configuration file take effect, restart your MySQL
server.

Type /etc/init.d/mysql restart in the command line and press
Enter.

Uploading Files to Your Web Server

To upload files to your Rackspace Cloud Web server you can use any secure
file transfer protocol (SFTP) client you like. I prefer to user FileZilla (http://
filezilla-project.org).

1. To log in to your Web server via SFTP:

e Use your Web server’s IP address as the host address.

¢ Use your server’s root username and password as the login
credentials.

Chapter 11: Hosting In the Clouds 26 7

2. After you've logged in, navigate to the /var directory.
Your public files are to be uploaded to the /var/www directory.

By default Apache places a single index.html file in the www directory.
Delete that file so it doesn’t compete with the index . php file you create
in Chapter 12.

The first time you log in, you need to create two new folders in the /var
directory:

» application: Holds the core of your application files.

v library: Holds the Zend Framework library files.

These folders will hold nonpublic files that you create in Chapter 12.

Setting Up Your Domain Name

At this point, you can access your Web server using its IP address. That’s
fine, but you need an easy-to-remember domain name. Here’s how:
1. Identify a domain name that is available, and buy it.

I prefer to buy my domain names from Nearly Free Speech (http://
nearlyfreespeech.net). Many people prefer the GoDaddy service
(http://godaddy.com).

2. Update your domain’s nameserver records so they point to Rackspace
Cloud’s nameservers.

Rackspace Cloud’s nameservers are
¢ dnsl.stabletransit.com
<P ¢ dns2.stabletransit.com

Refer to your domain name host for instructions on how to update your
domain’s name servers. Every host is a little different.

3. Configure your domain name server (DNS) records at RackSpace Cloud:

a. Go to your Web server dashboard and click the “DNS” tab at the
top of the page. Once there, click Add Domain. A popup appears
asking for your domain name, as seen in Figure 11-6.

b. Type your domain name in the box (excluding the “http://” proto-
col) and click OK.

Now your new domain is listed in the “Domain Management” box.

268 Part Ill: Creation — Developing Your Application

O = Add Domain

Domain Name

l!mnn\.m I

Figure 11-6:
Adding a
new domain
name to

my DNS
records.
|

c. Click your domain name to modify the DNS records. Once on the
DNS page, click the “Add” button on the top of the page.

A popup appears.

d. In the “Name” field, type your domain name (without the “http://”
protocol and without any trailing slashes).

e. In the “Content” field, type the IP address to your Web server.
f. In the TTL field, type 60.

Leave the “Type” dropdown set to “A.”
g. Click “Ok.”

TE(,‘/,'?

It may take up to 24 hours before your domain starts working, which makes it
a great time to start programming your application. Read on!

Chapter 12

Coding Your Application

In This Chapter
Setting up the Zend Framework

Building your Data Models

Automating tasks with cron jobs

Creating your game’s scoreboard

A\

Fnally! It’s time to start coding.

If you skipped to this chapter to get to the fun stuff, I recommend taking a
look at Chapter 9 to get an idea of the application you're building here. Also,

[use the Zend Framework and its included Twitter API library heavily in this
chapter. If you aren’t familiar with Web development frameworks like Zend,
please check out Chapter 10. Finally, this Web application is based on a LAMP
(Linux, Apache, MySQL, & PHP) stack. If you don’t have your servers set up
yet, please review Chapter 11.

Still here? Okay, time to get to work.

Setting Up the Zend Framework

In Chapter 10, [discussed how Twitter API libraries could speed up develop-
ment by saving you from reinventing basic functionality, and it can make your
code more robust by encouraging a solid design pattern. I've chosen the Zend
Framework and its included Twitter API library for the Twooshes project. To
get started with the Zend Framework, the first thing you need to do is set up
your directory structure.

2 70 Part lll: Creation — Developing Your Application

Figure 12-1:
Your
directory
structure
looks like
this.
|

Create your project’s initial directories

Stake a place on your hard drive and copy the folder structure illustrated in
Figure 12-1.

v [Twooshes
¥ L website
ol branches
|5 rags
d trunk
¥ Ll application
hontstrap.php
il config
A controllers
L layours
el models
e views
» lihrary
» & seripts
v L weaw

4 vy

FYYTYY

[Fe
» [images
T index.php

Underneath your project folder, titled Twooshes for this example application,
is a directory called website. Underneath the website folder are three fold-
ers titled branches, tags, and trunks. This is a common Subversion folder
structure:

v The trunk folder holds the main working code for your project.

v The branches folder is used for instances when you need to make a copy
of the trunk. For example, if you want to try some experimental code but
you don’t want to break anything in the trunk, you make a copy of the
trunk in the branches directory and try your experimental code there.

v The tags directory is used for storing version snapshots, or copies,
of the trunk that you don’t intend to modify. Copies stored in tags are
used for instances where you want to roll your project back to a specific
point in time.

These common subversion folders prove useful as your project matures, the
code base grows, and more developers begin working together on your code.
It is helpful to be familiar with this pattern because you are likely to run into

it again if you work on anyone else’s Web project.

Underneath the trunk folder is where your main project code is stored. It
contains four folders: application, library, scripts, and www.

v The application folder is where the majority of your custom written
PHP code resides.

v The library folder is where you store the Zend Framework code.

Chapter 12: Coding Your Application 2 7 ’

\\3

Figure 12-2:
A view of
the top few
folders

of the
library
directory.
|

v The scripts folder is used to store SQL script files.

v The www folder is the only folder that you’ll make public when you upload
your project to your Web server. It contains the publicly accessible files,
such as images, CSS, Javascript, and Zend Framework loader files.

Install the Zend Framework

By “install the Zend Framework” I really mean go to the Zend Framework Web
site, download the framework, and copy it to your 1ibrary folder.

To do that, first go to the Zend Framework Web site (http://framework.
zend.com/download/latest) and download the latest version of the
framework (version 1.9.6 as of this writing). Choose the “Minimal Package.”
You will most likely be asked to login or register a Zend account before you
can download the free framework.

Using a site like BugMeNot (http: //bugmenot . com) can help you skip com-
pulsory registration.

Uncompress your freshly downloaded file. In its contents is a folder labeled
Zend. It can be found as a subdirectory to the 1ibrary folder. Copy the
Zend folder and its contents to your project’s 1ibrary directory. Glimpsing
at your library folder, it should look similar to Figure 12-2.

Ll application
v [library
. Lend
F e Al
& Acl.php
&l Amf
L Application
Application.php
= S Auth
Auth.php

. Caels,

]

Once your directories are set up and your Zend Framework files are in place,
you need to set up and understand the Zend Framework bootstrap process.

2 72 Part lll: Creation — Developing Your Application

Figure 12-3:
Zend Frame-
work’s Front

Controller
Pattern.
|

Bootstrapping your application

The Zend Framework uses a design pattern called the Front Controller
Pattern. This design pattern routes all application requests through one
central script. That script then handles all the common housekeeping tasks
and runs the appropriate request specific scripts. In the case of the Zend
Framework, the central entry script is index.php.

To ensure that your application’s environment variables are set up correctly,
and that all requests are routed through index.php, you will use a process
known as bootstrapping. An .htaccess file in your public root folder will
direct all HTTP traffic to your index. php file, also in your public root folder.
The index.php file will then call the bootstrap.php file that resides in your
publicly inaccessible application folder. Then the bootstrap . php file sets up
all of your environment variables stored in the app . ini file in your config
folder, and it will call the correct request specific controller based on the
user’s requested URL. See Figure 12-3 for an illustration of this workflow.

File Directory: www
He"f’ifey""' Does the index.php
: htaccess requested > Load Zend library
«f file reside > Call Bootstrap file
. on disk?
Give me a

webpage!

Here's your
dynamically
created Controller file dynamically
User webpage. generates the User's hootstrap_php

requested webpage. > Load environment

variables from
/config/app.ini file
> Call Controller file

Call correct Controller
based on the URL
the User originally

Controller Files / requested

b>|Generate web page

Directory: application

Chapter 12: Coding Your Application 2 73

Create your .htaccess file

Create a new file in your www directory titled .htaccess and add the code
shown in Listing 12-1.

In Chapter 11, you set up your Web server to support .htaccess files. If

you skipped Chapter 11, make sure your Apache install is configured to
support .htaccess files. You can do this by verifying that the setting
AllowOverride Allisinyour httpd.conf file and by making certain
you have enabled the mod_rewrite extension. See Chapter 11 for detailed
instructions on this process.

Listing 12-1: www/.htaccess

RewriteEngine On

RewriteOptions MaxRedirects=250
RewriteCond %{REQUEST FILENAME} -s [OR]
RewriteCond ${REQUEST FILENAME} -1 [OR]
RewriteCond ${REQUEST FILENAME} -d
RewriteRule "~.*$ - [NC,L]

RewriteRule "~.*$ /index.php [NC,L]

The code in Listing 12-1 simply says “if a requested file exists, serve that file;
else go to index.php.”

Create your index.php file

Now create a file named index.php in your www directory. This file loads the
Zend library and runs your bootstrap file.

Step 1: Create a constant for your application directory path

The first thing you need to do in your index.php file is open the PHP script
tag and define a named constant to store the folder path of your applica-
tion directory. You can see how this is done if Listing 12-2.

Listing 12-2: The Beginning of Your index.php File
<?php
defined (' APPLICATION_PATH')
| | define('APPLICATION_PATH', realpath(dirname(__
FILE) . '/../application')) ;

2 74 Part lll: Creation — Developing Your Application

A\

You can use the APPLICATION_PATH constant anywhere in your application
when you need to reference the path to your application folder.

Step 2: Define your environment
Next, you need to create another named constant defining your application’s

environment. In most cases, this refers to either:
v development: Used when you’re working locally.
v testing: Used on servers that are dedicated to testing and not customer use.
v production: Used for servers your customers use.
But you can invent as many or as few environments as you want. I define the
environment as “development” in Listing 12-3. When this code is placed on a

live customer facing Web server, the environment should be defined as “pro-
duction.”

Listing 12-3: Defining the Application Environment in
Your index.php File

defined ('APPLICATION_ENV')
| | define('APPLICATION_ENV', (getenv('APPLICATION_ENV') ?
getenv ('APPLICATION_ENV') : 'development'));

Defining your application’s environment allows you to store different settings
for each environment in your configuration (config) file. For example, you may
store connection settings in your config file for a database used for test data
and a database used for live customer data. Defining the environment tells
your application which database connection settings to use.

Step 3: Include the Zend Framework library files

Now, use the APPLICATION_PATH constant to point PHP’s include_path
to the Zend Framework stored in your 1library directory, as seen in Listing
12-4. This tells PHP where to look for Zend Framework files and classes.

Listing 12-4: Set Include Path to the Zend Framework Library

set_include_path (APPLICATION_PATH . '/../library' . PATH_SEPARATOR . get_
include_path());

Step 4: Load the bootstrap file

Finally, create the zend_Application object by passing it the application
environment, and configuration file path as parameter, and run the bootstrap
file. This is done in Listing 12-5.

Chapter 12: Coding Your Application 2 75

Listing 12-5: Create Zend_Application and Run Bootstrap

require_once 'Zend/Application.php';

// Create application, bootstrap, and run
Sapplication = new Zend_Application (
APPLICATION_ENV,
APPLICATION_PATH . '/config/app.ini'
¥

Sapplication->bootstrap()->run();

Your complete index.php file should look like Listing 12-6.

Listing 12-6: The Complete index.php File

<?php

// Define path to application directory
defined ('APPLICATION_PATH')
|| define('APPLICATION_PATH', realpath(dirname(_ FILE) . '/../
application'));

// Define application environment
defined ('APPLICATION_ENV')
|| define ('APPLICATION_ENV', (getenv('APPLICATION_ENV') ?
getenv ('APPLICATION_ENV') : 'testing'));

// Ensure library/ is on include_path
set_include_path (APPLICATION_PATH . '/../library' . PATH_SEPARATOR . get_
include_path()) ;

// Create application, bootstrap, and run
require_once 'Zend/Application.php';

Sapplication = new Zend Application(
APPLICATION_ENV,
APPLICATION_PATH . '/config/app.ini'
)i

Sapplication->bootstrap()->run();

Create your bootstrap file

Your bootstrap file is used to run common generic startup code. In your
application folder, create a new file called bootstrap.php and add the
code in Listing 12-7 into the file.

2 76 Part lll: Creation — Developing Your Application

Listing 12-7: application/bootstrap.php

<?php

class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
protected function _initAutoload()
{
$moduleLoader = new Zend_Application_Module_Autoloader (array (
'namespace' => '',
'basePath' => APPLICATION_PATH)) ;
return $moduleLoader;
}

function _initViewHelpers ()

{
S$this->bootstrap ('layout');
$layout = S$this->getResource('layout');
Sview = $layout->getView();

$view->doctype ('XHTML1_STRICT') ;

Sview->headMeta () ->appendHttpEquiv ('Content-Type', 'text/
html;charset=utf-8"');

S$view->headTitle()->setSeparator(' - ');

Sview->headTitle ('Twooshes');

}

The _initAutoload function automatically loads required Zend Framework
classes. This saves you from needing to constantly write ‘require’ or ‘include’
statements when referencing a Zend Framework class.

The _initviewHelpers function specifies the file used for the default
HTML page layout. It looks for a file named layout.phtml in the applica-
tion/layouts directory. You create this file later in this chapter. It also
sets the global doctype, content type, and generic page title across all pages
in your application.

Create your confiq file

Create a file named app. ini in your config folder. This is your config file
and holds your environment specific variables. Add the contents of the exam-
ple config file, seen in Listing 12-8, to your app.ini.

Chapter 12: Coding Your Application 2 77

Listing 12-8: application/config/app.ini

[production]

phpSettings.display_startup_errors = 0
phpSettings.display_errors = 0

phpSettings.date.timezone = "UTC"

includePaths.library = APPLICATION_PATH "/../library"
bootstrap.path = APPLICATION_PATH "/bootstrap.php"
bootstrap.class = "Bootstrap"

resources. frontController.controllerDirectory = APPLICATION_PATH "/controllers"
resources.db.adapter = PDO_MYSQL
resources.db.params.host = 192.168.1.1
resources.db.params.username = twooshesUser
resources.db.params.password = password
resources.db.params.dbname = twooshes
resources.layout.layoutpath = APPLICATION_PATH "/layouts"

[staging : production]

[testing : production]
phpSettings.display_startup_errors
phpSettings.display_errors = 1

1"
=

[development : production]
phpSettings.display_startup_errors = 1
phpSettings.display_errors = 1

In Chapter 11, you created a MySQL database server and a new MySQL user
for this project. You need to modify Listing 12-8’s database connection set-

tings to match your database’s connection settings. The settings your need
to update are

V¥ resources.db.params.host: The IP address of your database server.

v resources.db.params.username: The username of your database
user. (This shouldn’t be the root user.)

V¥ resources.db.params.password: The password for the database
user.

V¥ resources.db.params .dbname: The name of your project’s database.

Create your layout template

The layout template allows you to build a common site-wide HTML frame-
work that you plug dynamic page specific content into. This is useful for
things like headers and footers, and saves you from having to make edits in
numerous places due to redundant code.

2 78 Part lll: Creation — Developing Your Application

A\

To make your layout template, create a file called 1ayout.phtml in your
application/layouts directory and insert the code in Listing 12-9.

Listing 12-9: application/layouts/layout.phtml

<?php echo $this->doctype(); ?>
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<?php echo $this->HeadMeta(); ?>
<?php echo $this->headTitle(); ?>
<?php echo $this->headLink ()->prependStylesheet (Sthis->baseUrl().'/css/site.
css'); ?>
</head>
<body>
<div id="content">
<?php echo $this->layout ()->content; ?>
</div>
</body>
</html>

In Listing 12-9, the doctype, meta tags, and page title are being populated by
variables set in your bootstrap.php file. This line of code between the div
tags in Listing 12-9 is where your page specific controllers insert their output:

<?php echo sthis->layout()->content; 2>

The next step is to create a skeleton view and controller.

Create your first view and controller

The Zend Framework uses the Model-View-Controller (MVC) design pattern.
For our purposes, consider the model as the data, the view as the HTML, and
the controller as the code you write to generate dynamic content.

Review Chapter 9 for additional details on the MVC pattern.

The first view and controller you need is for the home index page. That is the
page you get when you visit http: //twooshes.com.

View
To make your first view, create a new directory called scripts under your
application/views directory. Under your new scripts directory, create

a subdirectory titled index. In the index directory, create a new file titled
index.phtml.

Chapter 12: Coding Your Application 2 79

This file is the HTML template for the controller. In Listing 12-10, I create a
variable called foobar between the <hl> tags. This variable’s value is set
from the controller. Add the code in Listing 12-10 to your index.phtml file.

Listing 12-10: application/views/scripts/index.phtml

<hl><?=S$this->foobar?></hl>

Controller

Create a new file called IndexContoller.php under your application/
s&,\‘l\BEB controllers directory
&
Q¢

The capitalization of the filename matters.

In Listing 12-11, the value of the view variable foobar is set to “Hello World.”
Insert the code in Listing 12-11 into your IndexController.php file.

Listing 12-11: application/controllers/IndexController.php

<?php

class IndexController extends Zend_Controller_Action
{
public function indexAction/()
{
Sthis->view->foobar = "Hello World";
}
}

Give it a test

Test your Zend Framework install and your new view and controller by
uploading the following folders and their contents to your Web server’s var
directory:

v www
V¥ application

Q‘&N\BER V¥ library
<

< If you need a refresher, Chapter 11 contains details on how to upload files to
your Web server.

Once your files have been uploaded, visit your Web site with your browser of
choice. You should see a white page with “Hello World” written in the top-left
corner.

280 Part lll: Creation — Developing Your Application

Setting Up Your Data Structure

A\\S

For the Twooshes game, you give the Twitter user a point when they tweet
something that is exactly 140 characters long, and you deduct a point when
they post a tweet with any Trending Topics.

To keep up with this, you need two database tables:

V¥ user

V tweet

The first table keeps up with the player’s data and their total score. I title
this table user. The second table keeps a historical record of the tweets that
make up the user’s score. I title this table tweet.

For this tutorial, you use the MySQL database you set up in Chapter 11.

Build the User table

When I access the Twitter API to get data, I prefer to store the majority of
the data that the API returns whether I'm going to use it immediately or not.
[do this because calling the Twitter API is expensive, in that the API calls
are slow, and I can only perform so many API calls per hour due to Twitter’s
APl rate limiting. So, I try to maximize the value I receive from each call.

The alternative to this approach is to store only the data you know you will
need for your app. This is an equally acceptable approach, and it’s beneficial
because it will keep your data structures lean. For the purposes of keeping
this tutorial from being inundated with long lists of variable names, [only
store the most necessary data fields.

Name your data fields exactly the same way they are named in the Twitter API
results. This keeps confusion to a minimum and makes mapping the API data
to the database straightforward. [make one exception in this example with the
twitter_ idfield. This is the ID that Twitter has attached to a user. Twitter
calls this field id. To avoid confusing it with my table’s primary key user1d, |
store Twitter’s id field as twitter_id.

Listing 12-12: ‘User’ Table Creation SQL

CREATE TABLE ' twooshes' . 'user' (
‘userId’ int(10) unsigned NOT NULL auto_increment,
‘created’ timestamp NOT NULL default '0000-00-00 00:00:00"',
‘updated’ timestamp NOT NULL default CURRENT TIMESTAMP on update CURRENT
TIMESTAMP,
‘score’ int(10) NOT NULL,

Chapter 12: Coding Your Application 28 ’

‘trendingTopics® int(10) NOT NULL,
“twooshes® int(10) NOT NULL,
“enabled’ tinyint(l) unsigned default '1',
“twitter_id"® int(10) unsigned NOT NULL,
‘screen_name' varchar (30) NOT NULL,
‘profile_image_url' varchar (400) NOT NULL,
‘url’ varchar (400) default NULL,
‘created_at® timestamp NOT NULL default '0000-00-00 00:00:00"',
PRIMARY KEY (‘userId’),
UNIQUE KEY ‘userId’ (‘userId’),
UNIQUE KEY ‘twitter_id' (twitter_id'),
UNIQUE KEY ‘screen_name (screen_name'),
KEY “score’ ('score'),
KEY "trendingTopics' (trendingTopics'),
KEY "twooshes' (twooshes")
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Have a look at the SQL in Listing 12-12. All the fields in this table will be popu-
lated using the Twitter API, except for the first seven fields listed:

v userId is the primary key of the table and is an auto incremented
integer. This is your own proprietary user ID and isn’t the same as the
ID that Twitter returns for the user. You store the ID that Twitter
returns as twitter_id.

V¥ created is the date and time that the user record was created. It must
be manually set when you insert a new row into the user table.

v updated is the date and time of the last time any field on that row was
updated. That field updates itself automatically so you don’t need to
manage it.

V¥ score is that users total up-to-date game score.

V¥ trendingTopics is the number of tweets for that user that contain a
trending topic.

v twooshes is the number of tweets for that user that contain exactly 140
characters.

»* enabled is by default set to true, but if a user stops following your
game’s Twitter account, this field is be set to false.

You'll eventually need to sort the users by score to display a leader board.
So, the score, trendingTopics, and twooshes fields are set as keys, so
they’ll be indexed. This will speed up the sorting.

282 Part lll: Creation — Developing Your Application

Build the Tweet table

You'll use the tweet table to keep a record of how a user’s score was calcu-
lated. You may also eventually use this table to show the user the tweets that
make up their score.

Listing 12-13: "Tweet' Table Creation SQL

CREATE TABLE ' twooshes'. tweet' (
“tweetId' int(10) unsigned NOT NULL auto_increment,
‘userId’ int(10) unsigned NOT NULL,
‘created’ timestamp NOT NULL default CURRENT_TIMESTAMP,
‘status_id' bigint(20) unsigned NOT NULL,
‘status’ varchar(140) NOT NULL,
‘created_at’ timestamp NOT NULL default '0000-00-00 00:00:00"',
“twoosh' tinyint(1l) unsigned default '0',
“trendingTopic® varchar(60) default NULL,
PRIMARY KEY (tweetId'),
UNIQUE KEY ' tweetId' (tweetId'),
UNIQUE KEY ‘status_id' ('status_id'),
KEY ‘user_ibfk_1' (‘userId'),
CONSTRAINT ‘user_ibfk_1' FOREIGN KEY (‘userId') REFERENCES ‘user (‘userId’)
ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

In Listing 12-13, [have written the SQL to create the tweet table. Notice the
twoosh field and trendingTopic field. If a tweet is exactly 140 characters
long, you will place a 1, signifying a truth Boolean, in the twoosh column.
If a tweet contains a trending topic, you will put the trending phrase in the
trendingTopic field. It is possible that a tweet contains more than one
trending topic. In that case, you’ll simply store the first trending topic you
find in the tweet.

Also notice in Listing 12-13 that the created column is auto populated, so
you don’t need to worry about populating that field when you insert data.
There is also a foreign key constraint on the user1d. This prevents the acci-
dental deletion of a user record that still has tweets associated with it.

Finally, run the create table statements in Listings 12-12 and 12-13 on your
Twooshes database. You can use any MySQL client, such as phpMyAdmin,
the standard MySQL command-line, or MySQL Query Browser.

Chapter 12: Coding Your Application 283

Create Vour Data Models

\\3

Once you have created your MySQL tables, you need to create a Table Data
Gateway. This is a design pattern the Zend Framework uses to manage the
creation of most of your SQL code. You interact with the database tables via
objects. This is the model part of the model-view-controller design pattern.

When you abstract your data in a data model, you can retrieve data from
your controller by making simple calls like this:

Suser = new user ("dustyreagan") ;
Suser->location = "Austin";

That code creates a new user named “dustyreagan” and sets that user’s
location to “Austin.”

See how readable that code is? Data models help keep the code complexity in
your controllers to a minimum.

Define your tables

First, create a new folder under your models folder called DbTable. Under
DbTable create two new files: User .php and Tweet . php. These files repre-
sent your two database tables.

In Listing 12-14, have the code for the User . php file. It defines the name
of the table and the dependent tweet table. Add the code in Listing 12-14 to
your User .php file.

Listing 12-14: application/models/DbTable/User.php

<?php
class Model_DbTable_User extends Zend_Db_Table_Abstract
{

protected $_name = 'user';
protected $_dependentTables = array('Model_DbTable_Tweet') ;
}

For the Tweet . php file, you define the name of the table and create a refer-
ence map to the parent user table. The code for this is in Listing 12-15.

284 Part lll: Creation — Developing Your Application

Listing 12-15: application/models/DbTable/Tweet.php

<?php
class Model_DbTable_Tweet extends Zend_Db_Table_Abstract
{

protected $_name = 'tweet';
protected $_referenceMap = array(
'User' => array(

'columns’ => 'userId',
'refTableClass' => 'Model_DbTable_User',
'refColumns' => 'userId',
'onDelete’ => gelf::CASCADE,
'onUpdate'’ => self::CASCADE

)
) g
}

Once you define your tables for the Zend Framework, you need to further

@ abstract the data model into usable objects.
<

Keep SQL statements delegated to models. Don’t add SQL statements to your
controllers.

Create the Tweet model

The tweet model is very simple. It performs two functions for your game:

v Map status update data to an object.

v Provide a function that returns the status_id of the latest tweet in
your tweet table.

First, create a file called Tweet . php in your application/models directory.
To map tweet data to your Tweet object, define the tweet fields as public vari-

ables, then take the data in as parameters in your constructor and map the
parameters to your public variables. Listing 12-16 shows how to achieve this.

Listing 12-16: application/models/Tweet.php

<?php

class Tweet

{
public $status_id;
public $status;
public Screated_at;
public $twoosh;

Chapter 12: Coding Your Application 285

public $trendingTopic;

public function _ construct($status_id, $status, Screated_at, S$Stwoosh,
$trendingTopic)
{
Sthis->status_id = $status_id;
$this->status = S$Sstatus;
Sthis->created_at = Screated_at;
Sthis->twoosh = S$twoosh;
$this->trendingTopic = StrendingTopic;

}

For Twooshes, you need to poll the Twitter stream of the game’s Twitter
account on a consistent basis, looking for tweets that earn the player a point.
After you have observed and processed a set of tweets for points, you don’t
need to observe them again. To avoid reviewing old tweets, you need the
status_id of the latest tweet you have stored in your tweet table. To do
that, add a static function to your Tweet model that runs a SQL query to
return the max status_id. This function is seen in Listing 12-17.

Listing 12-17: application/models/Tweet.php : getLastStatusld()

public static function getLastStatusId()
{

$db = Zend_Db_Table: :getDefaultAdapter () ;

Sselect = 'select max(status_id) as status_id from tweet';
SlastStatusId = $db->fetchOne ($select);

if (empty ($lastStatusId))
SlastStatusId = 1;

return $lastStatusId;
}

In Listing 12-17, [load the Zend_Db_Table object using the default connec-
tion found in the config/app.ini file. Then I run a SQL statement that
returns the max status_id. If you haven’t stored any status updates yet,
your max status_id will come back NULL. If you use the Twitter API to
request the latest tweets, giving it a variable since_id equal to NULL, the
API returns no results. This isn’t what you want. So if the max status_id
comes back NULL, I set status_id equal to 1.

Your final Tweet . php file looks like Listing 12-18.

286 Part lll: Creation — Developing Your Application

Listing 12-18: Final Tweet.php file

<?php

class Tweet

{
public $status_id;
public S$status;
public $created_at;
public $twoosh;
public StrendingTopic;

public function _ construct ($status_id, $status, Screated_at, Stwoosh,
S$trendingTopic)

Sthis->status_id = S$status_id;
Sthis->status = S$status;
$this->created _at = Screated_at;
Sthis->twoosh = S$twoosh;
$this->trendingTopic = $trendingTopic;

public static function getLastStatusId()

{
Sdb = Zend_Db_Table: :getDefaultAdapter() ;

$select = 'select max(status_id) as status_id from tweet';
SlastStatusId = $db->fetchOne (Sselect);

if (empty($lastStatusId))
SlastStatusId = 1;

return $lastStatusId;

Create the User model

The User model in Twooshes is more complicated than the Tweet model.
But never fear. I tackle it a section at a time.

Your User model needs to provide a variety of functions for your Twitter game:

v Access the fields associated with a user.
v Load a user from the database by their screen name or Twitter Id.
v Load a User object using the data retrieved from the Twitter API.

v Save the current user object to the database.

Chapter 12: Coding Your Application 28 7

1 Store a Tweet associated to the user.

v Add a point to the user’s score.

v Subtract a point from the user’s score.
The first thing you need to do is create a file called User . php in your
application/models directory. Then, in that file define the following pub-
licly accessible variables:

v twitter_id: The ID Twitter assigned to the user.

V¥ screen_name: The user’s Twitter screen name.

v profile_image_url: The URL to the user’s profile image.

V¥ created_at: The date the user created their Twitter account.

V¥ enabled: Set to 0 if the user is no longer playing Twooshes, set to 1 by

default for active players.

You also need a private field for the userId. This is the value of the primary
key field for the user in your user database table. You need this value to save
a tweet to the user. You don’t need the userId value outside of the User
model, so keep that value private.

Listing 12-19 shows how to start the User class and define all the fields.

Listing 12-19: application/models/User.php

<?php

class User

{
public $Stwitter_id;
public $screen_name;
public $profile_image_url;
public $created_at;
public Senabled = 1;

private SuserId;

}

Next, add a class constructor so you can load the user from the database
based on their screen_name or twitter_id. This gives you the ability to
load a user and the user’s properties from a controller like this:

Suser = new user ("dustyreagan") ;
Slocation = Suser->location;

288 Part lll: Creation — Developing Your Application

To do this, your constructor needs to load the user data table object, deter-
mine whether you are searching on screen_name or twitter_id, and then
map the row results to the class’ variables. Listing 12-20 illustrates how this
is done.

Listing 12-20: application/models/User.php : constructor

public function __ construct($Sidentifier = null)
{
if (!empty(Sidentifier))
{
SuserTable = S$this->getUserTable();

if (is_numeric($identifier))

$select = SuserTable->select ()->where('twitter_id = ?', $identifier);
else

S$select = SuserTable->select ()->where('screen_name = ?', S$Sidentifier);

Srow = SuserTable->fetchRow(S$select) ;
$this->mapResponse (Srow) ;

}

private $_userTable;
private function getUserTable()
{
if (null === $this->_userTable)
{
require_once APPLICATION_PATH . '/models/DbTable/User.php';
$this->_userTable = new Model DbTable_User;
}
return Sthis->_userTable;

}

In Listing 12-20, the constructor tests whether a parameter called
$identifier is included when the User object is created. If $identifier
isn’t null, the constructor then loads the user table by calling a private func-
tion named getUserTable, also seen in Listing 12-20.

The getUserTable function checks whether the user table has already
been loaded; if not, it loads the table and stores it in a private variable
$_userTable. If the getUserTable function is called more than once,
instead of reloading the table, it simply returns the set private variable
$_userTable for efficiency.

After the user table is loaded, the constructor then tests whether the
$identifier is a number. If so, it assumes it’s the twitter_id, else it
assumes it’s the screen_name. The SQL select statement is created depend-
ing on whether the $identifier is the twitter_id or the screen_name.
Then the user row is fetched from the user table and passed to the public
function mapResponse.

Chapter 12: Coding Your Application 289

The code for the mapResponse function is shown in Listing 12-21.

Listing 12-21: application/models/User.php : mapResponse()

public function mapResponse (S$response)

{
// basic check that Sresponse is actually user data
if (!empty (Sresponse->screen_name))

{

// if $reponse contains twitter_id you're mapping row data
if (lempty (Sresponse->twitter_id))
{
Sthis->twitter_id = $response->twitter_id;
Sthis->enabled = Sresponse->enabled;
Sthis->userId = Sresponse->userld;
}
// else you're mapping API data
else
Sthis->twitter_id = $response->id;

// these mappings are the same in the API & your database
Sthis->screen_name = $Sresponse->screen_name;
Sthis->profile_image_url = Sresponse->profile_image_url;
Sthis->created_at = Sthis->formatCreatedAt (Sresponse->created_at);

}

private function formatCreatedAt ($Screated_at)
{
return date('Y-m-d H:i:s', strtotime($Screated_at));

}

The mapResponse function seen in Listing 12-21 loads either Twitter data
returned from the API, or from your user table, to the User class variables.

The private function formatCreatedAt, also seen in Listing 12-21, formats
the date and time returned by the Twitter API to conform to MySQL stan-
dards.

You need the ability to save your User object to the database using a com-
mand like this from the controller:

Suser->save () ;

To do that, you need to create a public function in your User model named
save. The save function needs to be smart enough to insert new data if it
doesn’t already exist in your database, and update old data if it does. You can
do this by running a SQL statement to check whether the row already exists,
then by running another SQL statement to do the insert or update as appropri-
ate. However, since you are using MySQL you can use ON DUPLICATE KEY
UPDATE to do all this in one command. Listing 12-22 shows how this is done.

290 Part lll: Creation — Developing Your Application

Listing 12-22: application/models/User.php : save()

public function save()
{
$db = Zend_Db_Table: :getDefaultAdapter () ;

$sgl = 'INSERT INTO user (
created,
twitter_id,
screen_name,
profile_image_url,
created_at,
enabled) VALUES (now(), 2?2, 2, 2, ?, ?)

ON DUPLICATE KEY UPDATE

updated = now(),
twitter_id = ?,
screen_name = ?,
profile_image_url = ?,
created_at = ?,
enabled = ?';

Sdata = array(
'twitter_id'=>$this->twitter_id,
'screen_name'=>$this->screen_name,
'profile_image_url'=>$this->profile_image_url,
'created_at'=>$this->created_at,
'enabled'=>$this->enabled

)i

$db->query ($sql, array merge(array _values($data), array_values($data)));

You need to be able to save a user’s tweets, and add the appropriate points,
from the constructor like this:

Suser->addTweet (Stweet) ;

I do this using a function called addTweet, seen in Listing 12-23.

Listing 12-23: application/models/User.php : addTweet()

public function addTweet (StweetObj)
{
Sdata = array(

'userId' => S$this->userId,
'created_at' => $this->formatCreatedAt (StweetObj->created_at),
'status_id' => StweetObj->status_id,
'status' => StweetObj->status,
"twoosh' => StweetObj->twoosh,
'trendingTopic' => S$StweetObj->trendingTopic

Chapter 12: Coding Your Application 29 ’

¥
Sthis->getTweetTable()->insert ($data) ;

if ($tweetObj->twoosh == 1)
S$this->addPoint () ;

if (!lempty (StweetObj->trendingTopic))
$this->subPoint () ;

private $_tweetTable;
private function getTweetTable ()
{
if (null === $this->_tweetTable)
{
require_once APPLICATION_PATH . '/models/DbTable/Tweet.php';
Sthis->_tweetTable = new Model_DbTable_Tweet;
}

return $this->_tweetTable;

Missing from Listing 12-23 are the addPoint and subPoint functions. These
two functions run an update statement on the score of the user’s record.
These function and their update statements are seen in Listing 12-24.

Listing 12-24: application/models/User.php : addPoint() and subPoint()

private function addPoint ()

{
$db = Zend_Db_Table: :getDefaultAdapter() ;

$sqgl = 'update user set score = score + 1, twooshes = twooshes + 1
where userId = ' . S$this->userId;

$db->query ($sql) ;
private function subPoint ()
{

Sdb = Zend_Db_Table: :getDefaultAdapter() ;

$sqgl = 'update user set score = score - 1, trendingTopics = trendingTopics + 1
where userId = ' . S$this->userId;

$db->query ($sql) ;

292 Part lll: Creation — Developing Your Application

Listing 12-25 is the complete User .php file.

Listing 12-25: The Complete User.php File

<?php

class User

{
public Stwitter_id;
public $screen_name;
public $profile_image_url;
public Screated_at;
public $enabled = 1;

private SuserId;

public function _ construct($identifier = null)
{
if (!empty (Sidentifier))
{
SuserTable = Sthis->getUserTable();

if (is_numeric ($identifier))
$select = SuserTable->select()->where('twitter_id = ?', $identifier);
else
Sselect = SuserTable->select ()->where('screen_name = ?',
Sidentifier);

Srow = SuserTable->fetchRow(S$select);
Sthis->mapResponse (Srow) ;

private $_userTable;
private function getUserTable()
{
if (null === $this->_userTable)
{
require_once APPLICATION_PATH . '/models/DbTable/User.php';
$this->_userTable = new Model DbTable_User;
}

return $this->_userTable;

public function mapResponse (Sresponse)
{
// basic check that $response is actually user data
if (!empty (Sresponse->screen_name))
{
// if Sreponse contains twitter_id you're mapping row data
if (!empty (Sresponse->twitter_id))

{

Chapter 12: Coding Your Application 293

Sthis->twitter_id = Sresponse->twitter_id;
S$this->enabled = Sresponse->enabled;
Sthis->userId = Sresponse->userld;

}

// else you're mapping API data

else
Sthis->twitter_id = Sresponse->id;

// these mappings are the same in the API & your database
Sthis->screen_name = Sresponse->screen_name;
Sthis->profile_image_url = S$response->profile_image_url;
Sthis->created_at = $this->formatCreatedAt ($response->created_at);

private function formatCreatedAt (Screated_at)
{

return date('Y-m-d H:i:s', strtotime($created_at));

public function save()
{
$db = Zend_Db_Table: :getDefaultAdapter () ;

$sgl = 'INSERT INTO user (
created,
twitter_id,
screen_name,
profile_image_url,
created_at,
enabled) VALUES (now(), ?, ?, 2, ?, ?)

ON DUPLICATE KEY UPDATE

updated = now(),
twitter_id = ?,
screen_name = ?,
profile_image_url = ?,
created_at = ?,
enabled = ?';

Sdata = array(
"twitter_id'=>$this->twitter_id,
'screen_name'=>$this->screen_name,
'profile_image_url'=>Sthis->profile_image_url,
'created_at'=>$this->created_at,
'enabled'=>$this->enabled

IF

Sdb->query ($Ssql, array_merge (array_values($data), array_values(Sdata)));

(continued)

294 Part lll: Creation — Developing Your Application

Listing 12-25 (continued)

public function addTweet (StweetObj)
{
$data = array(
'userId' => S$this->userId,
'created_at' => S$this->formatCreatedAt (StweetObj->created_at),
'status_id' => StweetObj->status_id,
'status' => StweetObj->status,
"twoosh' => StweetObj->twoosh,
'trendingTopic' => StweetObj->trendingTopic
)i

$this->getTweetTable () ->insert (Sdata) ;

if ($tweetObj->twoosh == 1)
$this->addPoint () ;

if (lempty (StweetObj->trendingTopic))
$this->subPoint () ;

private $_tweetTable;
private function getTweetTable ()
{
if (null === $this->_tweetTable)
{
require_once APPLICATION_PATH . '/models/DbTable/Tweet.php';
$this->_tweetTable = new Model DbTable_ Tweet;
}

return S$this->_tweetTable;

private function addPoint ()

{
Sdb = Zend_Db_Table: :getDefaultAdapter() ;

$sql = 'update user set score = score + 1, twooshes = twooshes + 1
where userId = ' . Sthis->userId;

$db->query ($sql) ;

private function subPoint ()

{
$db = Zend_Db_Table: :getDefaultAdapter () ;

$Ssgl = 'update user set score = score - 1, trendingTopics = trendingTopics
+ 1
where userId = ' . $this->userId;

$db->query ($sql) ;

Chapter 12: Coding Your Application 295

The Cron Jobs

In order for people to play Twooshes, they must follow your application’s
Twitter account. After they follow the account, you need to follow them back
so you can monitor their Twitter stream for Twooshes and trending topics.
To do that there are two tasks that need to be automated here:

» You need to automatically follow users back who start following your
apps Twitter account.
» You need to continuously monitor your applications Twitter stream to

identify tweets that are 140 characters long or contain a trending topic.

You can solve these problems by writing a script that performs these tasks
and then schedule it to run every few minutes using a cron job.

Cron is a job scheduler found in Unix and Linux based operating systems. You
give the cron a basic command line and tell it when to run.

To tackle this problem start by writing the script that will auto-follow users
back.

1. Creating your auto-follow script

First, you need to create a new controller and view for your auto-

follow script. To create your controller, make a new file titled
FollowcronController.php in your application/controllers direc-
tory and insert the code in Listing 12-26.

Listing 12-26: application/controllers/FollowcronController.php
<?php

class FollowcronController extends Zend_Controller_Action
{
public function indexAction()
{
// Disable layout
$layout = Zend_Layout::getMvcInstance();
$layout->disableLayout () ;

// your auto follow script code goes here

296 Part lll: Creation — Developing Your Application

The cron script doesn’t need to render HTML so I've disabled the rendering
of the Web site layout in Listing 12-19.

To create your view, make a new directory under your application/
views/scripts directory titled followcron. In this directory, create a new
file called index.phtml. Leave this file empty. You have to create this file to
adhere to Zend Frameworks MVC pattern, but you don’t need to use it.

\sg,N\BER For your Twitter application account, you want to keep a strict one-to-one
& ratio of following to follower. If someone stops following your account, they
are opting out of the game and you want to stop calculating their score.
Conversely, if someone starts following your account, you must follow them
back in order to calculate their score.

You can figure out who you need to follow and unfollow by using the two
Twitter API social graph methods:

v friends/ids: returns the IDs of everyone the user is following.

v followers/ids: returns the IDs of everyone who is following the user.

These methods return a list of Twitter user IDs and nothing more. There

is one gotcha, however. As of Zend Framework 1.9, these methods aren’t
included in Zend’s Twitter methods library. Indeed this is a bummer, but
you can correct this by simply adding the missing methods to your copy of
Zend’s Twitter library.

Adding the missing methods

You'll find Zend’s Twitter service methods in the Twitter . php file located
in your library/Zend/Service directory. Open this file up and add the
two new methods listed in Listing 12-27 to the bottom of the Twitter.php
file before the last closing bracket.

Listing 12-27: library/zend/service/Twitter.php :
Add Social Graph Methods

public function userFriendsIds(Sscreen_name = null)

{

S_params = "screen_name=$screen_name";

Spath = '/friends/ids.xml';

Susername = $this->_username;

Spassword = $this->_password;

Scredentials = sprintf("$s:%s", Susername, S$password);

Sch = curl_init('http://twitter.com'. $path . '?' . $_params);

curl_setopt(Sch, CURLOPT_USERPWD, $credentials);
curl_setopt ($Sch, CURLOPT_RETURNTRANSFER, true);

Chapter 12: Coding Your Application 29 7

$data = curl_exec($ch);
curl_close($ch);

return new Zend_Rest_Client_Result ($data);

}
public function userFollowersIds ($Sscreen_name = null)
{
$_params = "screen_name=$screen_name";
Spath = '/followers/ids.xml';
Susername = Sthis->_username;
Spassword = $this->_password;
Scredentials = sprintf("$%$s:%s", Susername, S$password);

$ch = curl_init('http://twitter.com'. Spath . '?' . $_params);

curl_setopt (Sch, CURLOPT USERPWD, S$credentials);
curl_setopt(Sch, CURLOPT_RETURNTRANSFER, true);

Sdata = curl_exec($ch);
curl_close($ch);

return new Zend_Rest_Client_Result ($data);

}

The two methods in Listing 12-27 take an optional Twitter screen name as
input. Then, they grab the authentication credentials provided when the
Twitter service object is created. Finally, they call the Twitter API using cURL
and the authentication credentials provided which returns the IDs for the
screen name provide, or if no screen name is provided, it returns the IDs for
the authenticated user.

Back to the mission at hand

Now that you have the Twitter API library methods you need, you can get
back to writing your auto follow script.

Go back to your FollowcronController.php file. The first thing you need
to do is create a new Zend_Service_Twitter object. Listing 12-28 shows
how this is done with the new code lines in bold.

298 Part lll: Creation — Developing Your Application

Listing 12-28: application/controllers/FollowcronController.php

<?php
class FollowcronController extends Zend_Controller_Action

{

private $_twitter = null;

public function indexAction()

{
// Disable layout
$layout = Zend_Layout::getMvcInstance();
$layout->disableLayout () ;

$this->_twitter = new Zend_Service Twitter('Twooshes', 'passwordl23');

}

Next, you need to create a function that collects the IDs of the users that are
following your game’s Twitter account. To do that, add the function in Listing
12-29 to your FollowcronController class.

Listing 12-29: application/controllers/FollowcronController.php

private $_followerIds = null;
private function getFollowerIds ()
{

if ($this->_followerIds == null)
{
Sresponse = S$this->_twitter->user->followersIds();
if (lempty (Sresponse->id))
{
foreach ($response->id as Stwitter_id)
Sthis->_followerIds[] = (string) Stwitter_id;
}
else
Sthis->_followerIds = array();
}
return $this->_followerIds;

}

The function in Listing 12-29 has an associated private variable called
$_followerIds. When the function is called for the first time, it checks
whether $_followerIds has a null value. If so, it calls the userFollower-
sIds method you recently added to Zend’s Twitter library. Then, it takes the
IDs returned from the method call and adds them to an array that you can
easily work with. Once this is done, the function assigns that array to $_fol-
lowerIds. If the function is called again in this HTTP request, it will simply
return the results it has already stored in the $_followerIds variable. This
saves you from unnecessary additional API calls.

You also need a function for collecting the IDs of people our game’s
Twitter account is following. Add the function in Listing 12-23 to your
FollowcronController class.

Chapter 12: Coding Your Application 299

The function in Listing 12-30 works just like the function in Listing 12-29,
except it returns the IDs of the users you are following.

Listing 12-30: application/controllers/FollowcronController.php

private $_followingIds = null;
private function getFollowingIds ()
{

if ($this->_followingIds == null)
{
Sresponse = S$this->_twitter->user->friendsIds();
if (!empty (Sresponse->id))
{
foreach ($response->id as Stwitter_id)
$this->_followingIds[] = (string) S$twitter_id;
}
else
S$this->_followingIds = array();
}
return $this->_followingIds;

}

Now you have a list of the people who are following your account and a list of
the people you're following. Next, you need to figure out who you aren’t fol-
lowing and who isn’t following you. You can do this by evaluating the differ-
ences in your two lists. To find out who you aren’t following, look to see who
is in your followers list but not in your following list, and vice versa to find
out who isn’t following you.

Fortunately, PHP provides an array function that does this work for you
called array_diff. array_diff returns an array containing all the entries
from the first array parameter that aren’t present in the second array param-
eter. Thus, the parameter order is important. To keep things straight, add the
two functions listed in Listing 12-31 to your FollowcronController class.

Listing 12-31: application/controllers/FollowcronController.php

private function getNonFollowersIds ()

{

$following = S$this->getFollowingIds();
Sfollowers = Sthis->getFollowerIds();

return array_diff(Sfollowing, S$followers);

}

private function getNewFollowersIds ()

{
$following = $this->getFollowingIds();
Sfollowers = Sthis->getFollowerIds();

return array_diff (Sfollowers, Sfollowing);

300 Part lll: Creation — Developing Your Application

In Listing 12-31, the functions are nearly identical except for the order of the
parameters in array_di ff function.

Next, take the arrays of people you need to unfollow and follow and loop
through both of them, calling the Zend Twitter library’s destroy and create
friendship methods, respectively, inside the loop. You also need to disable
User accounts you unfollow and create User accounts you follow. You can
do that using the User data model. You may also want to print the amount of
people your script has followed and unfollowed so you can easily see what
it’s doing. Finally, you need to close your Twitter session using Zend’s end-
Session method. After you've done all this your indexAction function
should look similar to Listing 12-32.

QUING/ At this point, you need to be very careful with which Twitter account you're
authenticating with. Use a Twitter account dedicated to this application you're
building, not your personal Twitter account. If you don’t do this, you may
unintentionally drop and follow people by running this script.

Listing 12-32: application/controllers/FollowcronController.php :
indexAction()

public function indexAction|()

{

// Disable layout
Slayout = Zend_Layout::getMvcInstance() ;
Slayout->disableLayout () ;

Sthis-> twitter = new Zend_Service_ Twitter ('Twooshes'
'passwordl23"') ;

~

Sthis->getNonFollowersIds () ;
Sthis->getNewFollowersIds () ;

SnonFollowersIds
SnewFollowersIds

print_r (SnonFollowersIds) ;
echo "<hr/>";
print_r (SnewFollowersIds) ;
echo "<hr/>";

require_once APPLICATION_PATH . '/models/User.php';

foreach ($nonFollowersIds as S$value)

{

Sthis->_ twitter->friendship->destroy (Svalue) ;

Suser = new User (Svalue) ;
Suser->enabled = 0;
Suser->save () ;

Chapter 12: Coding Your Application 30 ’

foreach (S$SnewFollowersIds as S$Svalue)

{

Sresponse = Sthis->_twitter->friendship-

>create (Svalue) ;

Suser = new User () ;

Suser->mapResponse (Sresponse) ;

Suser->save () ;
}
echo "Followed " . count($newFollowersIds) . "
";
echo "UnFollowed " . count ($SnonFollowersIds) ;

Sthis->_twitter->account->endSession() ;

2. Creating your Tweet monitor script

The tweet monitor script uses the Twitter API to get your friends time-
line. Then, it loops through each tweet looking for tweets that are exactly
140 characters long or that contain a trending topic. Finally, it saves any
twooshes or tweets with trending topics to that user’s record.

First, you need to create a new controller and view for your tweet monitor
script. To create your view, make a new directory under your application/
views/scripts directory titled tweetcron and add a new file titled
index.phtml. Leave this file empty, just like you did for followcron.

To create your controller, make a new file titled TweetcronController.
php in your application\controllers directory and insert the code in
Listing 12-33.

Listing 12-33: application/controllers/TweetcronController.php

<?php
class TweetcronController extends Zend_Controller_ Action

{

public function indexAction()

{
// Disable layout
$layout = Zend_Layout::getMvcInstance();
$layout->disableLayout () ;

Stwitter = new Zend_Service_Twitter ('Twooshes', 'passwordl23');

require_once APPLICATION_PATH . '/models/User.php';
require_once APPLICATION_PATH . '/models/Tweet.php';

(continued)

302 Part lll: Creation — Developing Your Application

Listing 12-33 (continued)

// call public static method to get max since_id
SlastStatusId = Tweet::getLastStatusId();

Sdata = array(
'count '=>200,
'since_id'=>$lastStatusId

) g

// Get current tweets
Sresponse = Stwitter->status->friendsTimeline(Sdata);

Stwitter_search = new Zend_Service_Twitter_Search();
Stwitter_trends = S$twitter_search->trends();

// loop through each tweet
foreach(Sresponse as S$value)
{

// if length is 140 mark it a Twoosh

Stwoosh = 0;
if (strlen($value->text) == 140)
Stwoosh = 1;

// loop through each trending topic
StrendingTopic = null;
foreach(Stwitter_trends['trends'] as Strend)
{
// if the tweet contains a trending topic mark it
if (strlen(stristr($value->text, $trend['name'])) > 0)
{
echo $trend['name'];
StrendingTopic = Strend['name'];
break;

// if the tweet is a twoosh or contained a trending topic, process it
if($twoosh == 1 || !empty ($trendingTopic))
{
// create a new tweet object
Stweet = new tweet (Svalue->id, S$value->text, S$value->created_at,
Stwoosh, S$trendingTopic);

// associate the tweet to a user
Suser = new user((int) S$value->user->id);
Suser->addTweet (Stweet) ;

// update the user DB record while you have fresh API data
Suser->mapResponse (Svalue->user) ;
Suser->save;

Chapter 12: Coding Your Application 303

Schedule your Cron jobs

To automate the running of your auto-follow and tweet monitor scripts,

you need to modify your Web server’s crontab file. This file can usually be
found in /etc/crontab. Use a command line terminal to SSH into your Web
server. Once in, enter the command:

sudo nano /etc/crontab

Enter your password when prompted. Then, in the command line text editor
add the bold lines in Listing 12-34. Make sure to replace the domain name
with your own domain name.

Listing 12-34: /etc/crontab

m h dom mon dow user command
*/1 * * * % root /usr/bin/curl http://yourdomain.com/tweetcron
25 @ O 7O /usr/bin/curl http://yourdomain.com/followcron

These two lines will have the cron job call the tweecron script every minute
and call the followcron script every five minutes.

Exit and save the crontab file. Finally, restart the cron with the following
command:

sudo /etc/init.d/cron restart

Creating the Scoreboard

Now that your game’s Twitter account is following players and keeping
score, it’s high time to create a scoreboard that players can page through
to see their score. To do this, you need to revisit the very first view and
controller you created when you set up the Zend Framework. Look at your
IndexController.php file first.

Update your IndexController

Your original IndexController file simply set an example value in the
View. Now, you need it to display a pageable table of players ordered by
score. Sounds complicated, but it isn’t that bad if you enlist the help of the
Zend_Paginator class. This class takes a Zend_DbTable object and a page
number as input. It is clever enough to figure out the most optimal way to
retrieve data from your database, freeing you up to deal with the appearance
of the table. Have a look at how your new IndexController.php file looks
in Listing 12-35.

304 Part lll: Creation — Developing Your Application

Listing 12-35: application/controllers/IndexController.php

<?php

class IndexController extends Zend_Controller_Action
{
public function indexAction/()

{
$pageNumber = Sthis->_getParam('page');

if (empty ($pageNumber))
$pageNumber = 1;

SuserTable = $this->getUserTable();

Sselect = SuserTable->select()
->where ('enabled = ?', 1)
->order ("score desc, screen_name");

Zend_Paginator::setDefaultScrollingStyle('Sliding');
Zend_View_Helper_ PaginationControl::setDefaultViewPartial (
'pagination_control.phtml');

$paginator = new Zend_Paginator (new Zend_Paginator_Adapter_
DbTableSelect ($select)) ;

$paginator->setItemCountPerPage (5) ;

$paginator->setCurrentPageNumber ($pageNumber) ;

S$this->view->paginator = $paginator;

private $_userTable;
private function getUserTable()
{
if (null === $this->_userTable) {
require_once APPLICATION_PATH . '/models/DbTable/User.php';
Sthis->_userTable = new Model_DbTable_User;
}
return $this->_userTable;

In Listing 12-35, I look for a page number value in the query-string using the
_getParam method. If a value isn’t found I set $pageNumber = 1. Next,

I set up the Zend_DbTable select statement. Finally, [set up the Zend_
Paginator class and assign it to the view.

Take a look at this line during the zend_Paginator setup:

Zend_View_Helper_ PaginationControl::setDefaultViewPartial (
'pagination_control.phtml');

Chapter 12: Coding Your Application 305

That line of code points to a new file you need to create in your application/
views/scripts directory called pagination_control.phtml. This file
contains the HTML template for page buttons used to go to a new page.

Add your pagination template

Create the file pagination_control.phtml in your application/views/scripts
directory and add the code in Listing 12-36 to the file.

Listing 12-36 application/views/scripts/pagination_control.phtml

<?php if ($this->pageCount): 2>
<div class="paginationControl">

<!-- First page link -->
<?php if (Sthis->current != $this->first): ?>
<a href="<?php echo $this->url() . '?page=' . S$this->first; ?>">

<< |
<?php else: ?>
<< |
<?php endif; ?>

<!-- Previous page link -->
<?php if (isset($this->previous)): ?>
<a href="<?php echo $this->url() . '?page=' . Sthis->previous; ?>">
< |
<?php else: ?>
< |
<?php endif; ?>

<!-- Numbered page links -->
<?php foreach ($this->pagesInRange as S$page): 2>
<?php if ($page != $this->current): 2>
<a href="<?php echo $this->url() . '?page=' . S$page; ?>">
<?php echo $page; ?> |
<?php else: ?>
<?php echo $page; ?> |
<?php endif; ?>
<?php endforeach; ?>

<!-- Next page link -->

<?php if (isset($this->next)): ?>
<a href="<?php echo $this->url() . '?page=' . S$this->next; ?>">
> |

<?php else: ?>
> |
<?php endif; ?>

continued

306 Part lll: Creation — Developing Your Application

Listing 12-36 (continued)

<!-- First page link -->
<?php if ($this->current != $this->last): ?>
<a href="<?php echo $this->url() . '?page=' . S$this->last; ?>">

> >
<?php else: ?>
>>
<?php endif; ?>

</div>
<?php endif; ?>

You can use pagination_control.phtml to modify the appearance of the
pagination buttons.

Update your Index view

Finally, update the IndexController view, otherwise known as the index.
phtml file found in application/views/scripts/index, with the code
found in Listing 12-37.

Listing 12-37: application/views/scripts/index/index.phtml

<hl>Twooshes</hl>
<p>Twooshes Leader Board</p>

<div class="leader-board">
<?php if (count($this->paginator)): 2>
<table class="niceTableInverse">
<tr>
<th></th>
<th>screen_name</th>
<th>twooshes</th>
<th>trends</th>
<th>score</th>
</tr>
<?php foreach ($this->paginator as S$item): ?>
<tr>
<td><img src="<?php echo $item->profile_image_url; ?>" /></td>
<td><?php echo $item->screen_name; ?></td>
<td><?php echo Sitem->twooshes; ?></td>
<td><?php echo S$item->trendingTopics; ?></td>
<td><?php echo $item->score; ?></td>
</tr>
<?php endforeach; ?>
</table>
<?php endif; ?>
<?php echo $this->paginator; ?>
</div>

Chapter 12: Coding Your Application 30 7

A\\S

Figure 12-4:
Ascore-
board with
pagination,
where play-
ers can see
how they
rank.
|

Notice that the View checks whether any paginator items exist. If they exist,
it loops through the paginator items and adds them as table rows. Finally, it
prints the paginator buttons under the scoreboard results table and before
the final closing div tag.

For more details on the Zend_Paginator class, check Chapter 39 of the Zend
Framework Programmer’s Reference Guide (http: //framework.zend.
com/manual /en/zend.paginator.html).

With all this done after you've uploaded all these files to your production
server, the index of your Web site should look something like Figure 12-4.
(Provided you've got a few followers and some scores.)

Twooshes

Twooshes Leader Board

screen_name twooshes trends score

i o frank_souders 3 0 3
-4

.I ; -‘J
‘ﬁ}"";‘ jdeeringdavis | 0o 1
)

Ee
& | N dacont U 0 0
Lo

Release Early and Often

Okay! You're done! Well, kind of. The basics of your Twitter app are done, but
there are still a lot of enhancements that could be made. Think about all the
cool features you could add. Also, the site is still pretty ugly. You could
definitely spend some time making it more aesthetically pleasing. You are
now at a crossroads. You have two options: show your friends your site now,
or wait until you make some more enhancements.

If you are working solo, with no external pressure from your boss, investors,
or teammates, my advice to you is release your software right now! As soon
as it is somewhat stable and functional, it’s time to show it to your friends.
In fact I've already shown the Twooshes Twitter app to my Twitter followers
and I haven’t even finished writing this chapter.

308 Part lll: Creation — Developing Your Application

[recommend releasing early for two reasons:

» You need user feedback to learn what the next steps are in improving
your application.

v If you wait to release your app until it’s perfect, you may never release
it. Or when you release it, you may find it isn’t what your users needed
or wanted.

After your initial release, you need to frequently make improvements to your
application.

<P Keep your project’s feature roadmap to yourself, or between you and your
teammates. Telling your users about your feature roadmap is as good as
promising them the features. They may begin to make plans based on your
feature roadmap, and if you later decide not to implement a feature, your
users may become upset or consider you flakey. If you keep your roadmap to
yourself you will delight users with new unexpected features, and you’ll retain
your creative freedom.

Chapter 13

Making It Pretty Makes It Credible

In This Chapter

Considering good design

Making your app pretty

Integrating design into your Web app

WMBER
é&
&

0nce you have built a Twitter application, the next step is convincing
people to use it. An app with compelling functionality that fills a need
goes a long way in attracting and retaining users, but there is another issue
besides functionality that you must consider: form. Just how people form
first impressions of others based on looks, people will form a first impres-
sion of your application based on its looks. All things being equal, if two sites
perform the same functionality, a more attractive design may be the deciding
factor for users. To stay competitive, you need your app to look good.

Even more important than first impressions and building a more competi-
tive product, a beautifully designed application gives your app credibility. It
gives the user the impression that your app is here to stay and that you're
serious about supporting your application. A cobbled together design gives
the user the impression that you may have built the app on your lunch break
and aren’t serious about maintaining the application for the long haul. If your
application requires the user’s trust, such as asking for payment, login cre-
dentials, or OAuth authorization, you need your application to appear cred-
ible. This chapter explains how to do that.

Although this chapter’s slant on design is primarily toward Web applications,
the general principles in this chapter are applicable to desktop and mobile
applications as well.

Hire a Designer

If you're a stud Web designer, you can skip this section. However, if you
don’t make your living doing Web design, I strongly recommend hiring a
professional designer to design your application. It may seem like a decadent

3 ’ 0 Part lll: Creation — Developing Your Application

3

\\3

expenditure for an application with little to no upfront capital, but the gain
in credibility is worth the expense. Remember, you aren’t Coca-Cola, so it isn’t
necessary to spend a fortune on a design agency, but hiring a modestly priced
freelance designer will go a long way for the aesthetics of your application.

How much to spend on design is up to you. To get an idea of what it costs to
have your app professionally designed, try comparing several project bids.
You can post your gig to Craigslist (http://craigslist.org), Elance
(http://elance.com), or even to your Twitter stream. You should take
time to review each candidate’s portfolio and select a designer whose aes-
thetics you like.

If hiring a designer is financially not feasible, do your best to make your
application pretty and user-friendly on your own, and release it to the public
anyway. You can revisit the app design later.

If you're creating your own site design, keep it simple and try to focus on
making the functionality the centerpiece:
v For low-form, high-functionality design
e Strive for minimalism.
e Mimic successful sites like Craigslist and Google.
v Consider modifying an open source design.

Sites like Open Source Web Design (http://oswd.org) have a library
of free designs you can tweak to fit your application.

PSD to XHTML

Design is usually done in Adobe Photoshop or a similar creative application.
The files Photoshop creates are PSD files and need to be converted into HTML
to be useable on the Web. There is no good way to do this automatically. You
must mark up the design in HTML yourself.

When marking up the HTML of your design, strive to adhere to W3C stan-
dards; code in XHTML 1.0 Strict, using table-less CSS markup; and arrange
your page as semantically as possible.

Having this type of clean markup will make it easy to integrate the HTML into
your app. It will also help with search engine optimization (SEO), as I cover in
detail in Chapter 18.

Chapter 13: Making It Pretty Makes It Credible

<P If you're looking to contract out your PSD to HTML markup work, there is an
excellent service that [use often called “PSD to HTML” (http://psd2html.
com). It isn’t an automated file conversion system. Human developers pains-
takingly mark up your HTML by hand. They have a fast turnaround time, pro-
duce quality HTML, and are very affordable.

Integrating Your Design

To integrate your design’s HTML into your application, you need to break it
up into multiple files of smaller functional pieces, such as header, navigation,
and footer. Then you include those files in your site’s layout.

In Chapter 12 you created a file named layout .phtml (found in your

/application/layouts/ directory). This file, shown in Listing 13-1, is the
basic HTML layout for the Twooshes Web site.

Listing 13-1: Twooshes layout.phtml

<?php echo $this->doctype(); 2>
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<?php echo $this->HeadMeta();
<?php echo $this->headTitle(); ?>
<?php echo
Sthis->headLink () ->prependStylesheet (Sthis->baseUrl().'/css/site.css'); ?>
</head>
<body>
<div id="content">
<?php echo $this->layout()->content; ?>
</div>
</body>
</html>

?>

The layout contains all the common elements found across all your Web site
pages. This prevents you from having to include the same HTML markup on
every single page in your app, and is a step in reducing markup redundancy.
However, you aren’t limited to one layout. Your application may have numer-
ous layouts. For example, Friend Or Follow (http://friendorfollow.
com) uses two different layouts: a front page and an interior page. Figure 13-1
shows Friend Or Follow’s front page on the left and interior page on the right.

311

3 ’ 2 Part lll: Creation — Developing Your Application

|
Figure 13-1:
Friend Or
Follow lay-
outs.
|

\\j

= 13

Senby Usermame 4]

EIONEHe &M« @2
i G2 w0 FEOOAESE> - 8

mBRU0OS% 1 TW o
et G2 e

Even though there are two separate layouts for Friend Or Follow, both lay-
outs still share common HTML markup elements, such as

v Nonvisible Meta data in the HTML header

v Logo

v Footer

v Nonvisible JavaScript code used for analytics tracking at the bottom of

the HTML

To avoid duplicating similar markup in your projects, you can break up
your HTML into many external files and reference those files in each layout
file. Listing 13-2 adds four external file references to the original Twooshes
layout.phtml file:

¥ htmlHead.phtml

V¥ header.phtml

v footer.phtml

V¥ tracking.phtml

However, you can create as many external file references as you need.

Listing 13-2: Twooshes layout.phtml with References to Other Files

<?php echo $this->doctype(); ?>

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

<head>
<?php echo $this->HeadMeta();
<?php echo $this->headTitle(); ?>
<?php echo

?>

Chapter 13: Making It Pretty Makes It Credible 3 ’3

S$this->headLink () ->prependStylesheet ($this->baseUrl().'/css/site.css'); ?>

<?= $this->render('htmlHead.phtml') ?>
</head>
<body>
<?= $this->render (header.phtml') ?>
<div id="content">

<?php echo $this->layout ()->content; ?>
</div>
<?= $this->render('footer.phtml') ?>
<?= $this->render('tracking.phtml') ?>
</body>
</html>

Now that your HTML is designed into functional sections, you can reuse the
same markup across multiple layouts.

The example in this section shows how to split up and reuse HTML markup
using the Zend Framework. However, this method of breaking up HTML
markup into multiple files and referencing those files is prevalent across
Web development frameworks. Even if you aren’t using a framework, you can
achieve the same effect from inside standard HTML files with

v Server Side Includes (SSI), like this:

<!--#include virtual="filename.html" -->
Your Web server must have SSI enabled for Server Side Includes to work.
v PHP includes, like this:

<?php include("filename.html"); 2>

3 ’ 4 Part lll: Creation — Developing Your Application

Chapter 14
What You Need to Know to Grow

In This Chapter

Battling code complexity

Managing multiple developers

Dealing with performance issues

A s your application grows in features, it become more complicated.
Complexity is the kiss of death in software development. It breeds bugs
and makes your code harder to maintain and enhance. To combat this,
developers

v Use abstraction to hide sub-routines and keep functional code as simple
as possible.

1 Use automated testing to make sure new code doesn’t break old features.

In addition to your application’s growing complexity, your application will
suffer from scaling pains as you gain more users. As your user base increases,
so does your server load, disk space requirements, database hits, and Twitter
API calls. You must address these scaling issues first, or your application is at
risk of crashing.

This chapter is here to warn you of potential growing pains and point you in
the direction of potential solutions.

Automating Acceptance Testing

Acceptance testing is done from the user interface side of your application.
For example, if your app has a login mechanism, to do acceptance testing on
that mechanism means you type a username and password, press the login
button and verify the login page loaded. This is the most common and simple
type of software testing. Acceptance testing can be done manually by a tester
or the developer, but it’s difficult and time consuming to test every feature

of an application, and do it the same way each time. Fortunately, acceptance
testing can be automated.

3 ’ 6 Part lll: Creation — Developing Your Application

A\\S

Figure 14-1:
Selenium
IDE user
interface.
|

NG/

There are open source acceptance testing automation frameworks for nearly
every popular platform, including desktop, mobile, and Web development.
Some test frameworks require you to write your testing scripts in their in
own language, while other test frameworks allow you to write tests in any lan-
guage the framework supports. Once the tests are written you can play them
back as frequently as you need.

This beats manually remembering to test the 100 different features in your
application every time you make a major change in your code.

To get started with acceptance testing for Web applications, give Selenium
(http://seleniumhg.org) a try. Selenium has an optional Firefox extension
called Selenium IDE that gives you a visual user interface, seen in Figure 14-1,
that you can use to record tests for Web application. Using the visual test
recorder and player will help introduce you to automated acceptance testing.

00 Selenium IDE *

Hase LURL http/ fFriendarfaliow cam/ v

Table | Source

Command Target Value

open
username

type dustyreagan

clickAndWai

subsrrril

Command
Find

Target

Value

Reference

sedectFrameriocator)

Having acceptance tests for you application will stave off new bugs and allow
your application to grow larger.

The problem with acceptance tests is they can’t tell you exactly where in your
code the bug is. They can alert you that there is a problem, but you’re left with
only vague guesses as to what that problem might be.

Chapter 14: What You Need to Know to Grow

Unit Testing

W

Unit tests are small tests that cover a functional piece of code. For example, if
you have a method that takes two numbers as input and returns their sum, you
can test that method by writing a unit test. The unit test passes two parameters
to the method and tests whether the method output matches the correct
summation of the number. The amount of methods you test is called code
coverage. If every piece of code in your application is covered with a unit
test, you have 100 percent code coverage.

The beauty of unit testing is the tests run extremely quickly, and if you write
granular tests, when a test fails, you know exactly where the problem is.

Much like automated acceptance testing frameworks, there are open source
unit testing frameworks for nearly every popular language. For PHP the popu-
lar unit-testing framework is PHPUnit. There is even a wrapper class around
PHPUnit in the Zend Framework. You can get more information on writ-

ing unit tests in the Zend Framework at http://framework. zend.com/
manual/en/zend.test.html

Continnous Integration

The larger your project team grows, the more helpful continuous integration
becomes. If you're still a one- or two-person operation, setting up a continuous
integration server is probably overkill, but it could be helpful later in your
project’s lifespan.

When you introduce new developers in to your team, you increase the chance
of bug introductions, and of having developers step on each others’ toes. Using
version control software is a good way to keep programmers from unwittingly
overwriting each others code, but that doesn’t stop the introduction of new
bugs. To do that, you need to use continuous integration. Continuous integra-
tion runs your entire automated unit and acceptance test cases every time a
developer checks in code to version control. If a test case fails, the entire team
is alerted and the bug is identified, along with the programmer who introduced
the bug. Continuous integration is not intended to shame the guilty developer.
It’s intended to indentify bugs before they slip into production and catch them
while the code is still fresh on the introducer’s mind.

To set up continuous integration, your team needs to be using version con-
trol software, such as Subversion (http://subversion.tigris.org) or
Git (http://git-scm.com). Then you need a server running continuous

317

3 ’ 8 Part lll: Creation — Developing Your Application

integration software, such as CruiseControl (http://cruisecontrol.
sourceforge.net). The continuous integration software will poll your
version control system looking for changes or check ins. If it notices a new
check-in, it will kick off all your automated test scripts. If a test fails, the ver-
sion control software will alert your team.

Performance Concerns

Figure 14-2:
Remaining
API dis-
played in
TweetDeck
|

Aside from a growingly complex code base, you must also concern yourself
with your application’s performance and ability to scale as you gain more
users. Scalability is a major problem with Web applications, because all your
users are sharing the same server resources. Desktop applications have to
share computing resources with the operating system, but in general don’t
need to worry about scaling with an increase of users, because new users
come with their own processor, disk space, and RAM. However, due to
Twitter’s API rate limits, even desktop and mobile applications have to watch
the frequency that they access the APIL

One way to desktop and mobile applications manage API limits is by authenti-
cating the user and having them use their own rate limit allowance. The desk-
top application TweetDeck (http: //tweetdeck.com) shows the users their
current rate limit in the top right of the application, as seen in Figure 14-2.
Web applications can use this same trick for Twitter API rate limits.

Along with making the end user aware and responsible for their own API
access, you can cache API data. For example, to show a user’s Twitter profile
you must request it from the Twitter API. Once you have that data, it’s safe
to assume it will not change significantly in the next few hours. You can save
that data to a database and reuse it, instead of requesting it from Twitter
again.

Chapter 14: What You Need to Know to Grow

A big bottleneck in scaling Web applications is data storage. Relational data-
base systems, such as MySQL, are commonly run on one server. The problem
with this is that eventually you will not be able to upgrade a single server’s
performance any further. Your only option at that point is to add additional
servers and split the work. It can be tricky to divide a relational database
across multiple servers. For example, if you’re doing most of your data writ-
ing to one table, you can’t split that table across more than one server with-
out running into data integrity issues. To handle a situation like this, you can
fracture your data stores. Fracturing your data means breaking it up into
smaller, but logical, pieces. So if your application is constantly writing to a
users table, you could split that table up across multiple servers by plac-

ing users A-M on one server and N-Z on the other. Another option is using a
non-relational data storage system such as CouchDB (http://couchdb.
apache.org) or Amazon SimpleDB (http://aws.amazon.com/
simpledb). These non-relational systems have the ability to scale and

sync data horizontally across servers natively.

Your Web server is also susceptible to performance degradation due to
increased traffic. To increase the performance of your Web server you can

v Add additional Web servers to your project and use a load-balancing
server to direct traffic between your Web servers.

v Move your static content, such as images, to Web servers that specialize
in serving static content.

319

320 Part lll: Creation — Developing Your Application

Part IV
Monetization —
Making Money with
Your Application

The 5th Wave By Rich Tennant

“This is getting dovwinright annoying. He tweets
me every time he’s about to go dowin a chimney.”

In this part . . .

Hey, there’s more to life than money. That’s why we
keep the money stuff safely tucked away here.

Chapter 15
How Twitter Makes Money

In This Chapter

Understanding how Twitter runs without making money
Speculating how Twitter might make money
Funding the development of your Twitter app

A fter you build your Twitter app, you may want to start recouping your
server costs or even start making a profit from your app. If you'd like
to try your hand in business, you'll like the next four chapters, which cover
moneymaking and promotion strategies for your application.

Since you are building a product on the back of another business, Twitter,
you should take the time to learn the financial position of your business part-
ner. Are you making a wise decision partnering with Twitter? I think you are,
but Twitter doesn’t yet generate any significant revenue. In fact, instead of
earning money, they spend it. How is this possible? They have investors, and
lots of them. These investors are gambling that Twitter will eventually start
turning a sizable profit. In this chapter, I cover some of the common specula-
tions on how Twitter will make money.

Once you understand Twitter’s financial position, it is time to look at your
own predicament. How will you fund the development of your application?
You may already know the answer to this question, but [recommend reading
on. You may learn about new funding options that you can leverage to build
and grow your app.

Understanding Uenture Capital

Venture capital (VC) is money that groups of private investors put into small,
immature businesses. These businesses are often young and unproven, thus
making them a risky investment, too risky for a bank loan or line of credit.
Venture capital firms employ experts in the fields they invest in and fund
managers to manage the firms’ investments. VC firms invest in risky fledgling
companies with the hope that these companies will become publicly traded
or be purchased by a larger company. At that point, the VC investors will
earn the return on their investments.

324 Part IV: Monetization — Making Money with Your Application

Spreading Rumors

No one knows for sure how Twitter will start
making money. Well, maybe the founders Evan
Williams (@ev), and Biz Stone (@biz) know, but
they aren't telling anyone. The fact that Twitter
has earned so much investment money with-
out a clear path to revenue or profitability has
raised a lot of eyebrows, and caused many
speculations on how Twitter will actually start
generating revenue. Here are some of the most
common Twitter revenue model speculations:

v One idea is that Twitter could establish a
pro version of its popular Web site. The
current version of Twitter would continue
to be free, but the pro version would offer
additional features for a monthly fee. The
feature set would most likely cater to busi-
nesses and power users who want to
manage their brand effectively on Twitter.

In Chapter 4, | mention two Twitter CRM
Web sites: CoTweet, and HootSuite. Both
of the Web sites are an excellent example
of what a Twitter pro version could be like.
Maybe Twitter will acquire one of these
companies and monetize it.

One of the most obvious ways for Twitter to
start making money is by adding advertising
to their Web site. They could build their own
proprietary ad auction marketplace that
would place clearly defined, sponsored ads
on the side of your Twitter stream, or they
could integrate a third-party ad network
such as Google AdSense. The ads could
be removed for any pro versions of Twitter
while advertising would subsidize the free
version of Twitter.

Twitter has been reluctant to integrate
ads into their site, but they have added a
small Twitter application definition box on
the side bar. This box randomly displays

P

the name and a brief description of third-
party Twitter applications. There have been
spottings of paid ads in this box for third-
party Twitter applications. But the amount
of revenue these ads have generated is
speculated to be insignificant compared to
Twitter’s size and expenses.

A more controversial advertising possibility
is for Twitter to occasionally include an ad
in the user’s Twitter stream. The ad would
be matched to users based on the topics
they Tweet about and whom they follow.

A few companies have tried building a
system like this independently of Twitter
by leveraging the Twitter API. In Chapter 4,
| profile a company called Magpie, which
is trying this type of advertising. It has had
harsh user push back, so it's unlikely that
Twitter will adopt a similar model.

An attractive revenue model for Twitter
is SMS (Short Message Service) revenue
sharing from mobile providers. SMS is
commonly known as text messaging. As
you know, Twitter allows you to update
your status via SMS. They also broadcast
your tweets to any of your followers who
follow your updates via SMS. Currently,
Twitter pays mobile providers to send and
receive text messages. However, mobile
providers make money from the sender and
the receiver of a text message. If Twitter
increases SMS messages, the company
may be able to reverse the deal and negoti-
ate for a share of the mobile provider's SMS
revenue. Twitter’s ultimatum might be that
they would take their business to another
provider if they aren’t provided with some
sort of revenue sharing.

Chapter 15: How Twitter Makes Money 325

Along with investing money in a business, VC firms will often take an active
role in the business’ decision-making processes and in advising its managers.

Twitter started as a side project in the podcasting company, Odeo, in 2006.
After the project was well received at South By South West Interactive 2007,
a technology conference in Austin, Twitter was spun off as its own company.
Due to its success, in July 2007 Twitter was able to raise $5 million in venture
capital funding. It raised $15 million more in VC funding in May 2008, an addi-
tional $35 million in funding in February 2009, and a whopping $100 million

in funding in September 2009. These investors see great potential in Twitter,
and are betting that Twitter will eventually become a publicly traded com-
pany or sell to a larger company like Google. However, Twitter will eventually
have to start earning revenue to be a sustainable venture.

How to Fund Vour Application

<P

When you build a Web application you’re essentially building a product.
Whether you choose to turn that product into a business is up to you.
However, if you're interested in creating a business with your Twitter
application, like Twitter, you will need to eventually make money. And, like
Twitter, you will need money to fund your endeavor to get it started. There
are several ways to fund the building of your Twitter application.

Self-funding

Bootstrapping is the easiest way to go about funding your Twitter applica-
tion. Bootstrapping means using your own money to fund your business and
when your business starts making money, reinvesting that money back into
the business until it is profitable.

You can bootstrap by not quitting your day job. Build your application
on the side, after work. If you're a freelancer, work on your application in
between gigs.

It’s feasible to successfully build a supplemental, passive income outside
your full-time job. If you find that your new business is requiring more of
your time, you may want to consider focusing on it full time. To do this, you
will need money to live on and money to continue funding your business. You
can continue to fund your business by bootstrapping, relying on savings, and
growing revenue.

326 Part IV: Monetization — Making Money with Your Application

Outside investors

If your business requires a large amount of money up front before it can start
generating revenue, you may want to seek investors:

v Friends and family are the first sources you may want to consider when
seeking investors.

¢ Friends and family will usually loan money with few strings.
e There are fewer legal consequences if your business fails.

v Angel investors are individuals who invest their own money in your
startup in exchange for equity or some other monetary return.

Angel investors generally seek a return of 20 to 30 times their invest-
ment within five to seven years. There are organizations of angel inves-
tors, called angel networks, who pool their resources when making

3 investments.

If you don’t know any angel investors, seek an angel network in your
area by using Google or Twitter.

v To raise more money than friends, family, and angel investors can pro-
vide, you will need to seek venture capital.

e [t can be difficult to raise venture capital. Though VC firms make
risky investments, they turn down far more businesses than they
fund.

¢ Raising money from a VC firm will decrease the amount of control
you have over your business. The firms take a significant role in
securing the success of their investment.

To get VC funding, you need to find a VC group in your area and pitch
them your business concept. These groups usually have procedures
in place that instruct you how and when to present your idea. You can
seek out VC firms using Google and Twitter and start a conversation
with people in the firm.

<P The best way to fund your business is to start generating revenue as soon as
possible, then bootstrap your growth. If you later choose to seek investors
and your business is already making revenue, investors will give your pitch
more consideration.

Now that you have a good understanding of how to fund your business, you
are ready to explore revenue-generating options. These options are covered
in the rest of Part IV.

Chapter 16
Advertising

In This Chapter

Joining an Ad Network
Twitter as a vertical ad network
Selling your own ads

0ne of the most obvious ways of monetizing any Web site or application
is through advertising. However, just because advertising is obvious
doesn’t mean it can’t earn you excellent revenue.

Many Web site and application owners have built their businesses through
advertising, including the mighty Google. I can’t promise you Google-sized
revenue, but I can show you how to make money through advertising.

Selecting a Traditional Ad Network

Online advertising has been around since the early days of the World Wide
Web. The industry has had time to mature and produce numerous advertising
networks. Ad networks are companies that bring advertisers and Web site
owners together, streamlining the transaction of buying and selling ad space
on the Web.

As a Twitter application owner, you can partner with an ad network as a pub-
lisher. Your partnered ad network will sell ad space on your site, give you a
percentage of the earnings, and keep the rest. This is beneficial because inte-
grating an ad network into your site is usually incredibly easy and instantly
starts generating revenue for you.

However, you need to consider the best ad network for your site. Not all ad
networks are created equal, and many perform well on one type of site but
not another.

328 Part IV: Monetization — Making Money with Your Application

A\\S

Figure 16-1:
An AdMob
ad on the
iPhone for

a Sausage
McMuffin.
|

If your Twitter app is a desktop or mobile client, make sure that the ad network
you choose allows non-Web-based applications in the term of service. If you
own a mobile app, note that there are ad networks like AdMob (http://
admob . com) that cater specifically to mobile advertising. You can see an
example AdMob ad in Figure 16-1.

m \'_P_Li Sc,;;:; G
‘31 roiNTS

and found 15 out of 51 words

m -_,—:'f‘[‘i-?.:-.r?_"-!-'ﬁt' -"||I-_: é‘: -

| el

MEALIE

Chiivie

Ad networks also pay on different criteria. There are four basic flavors of ad
networks: pay per click (PPC), cost per thousand (CPM), pay per action
(CPA), and cost per time (CPT).

Pay Per Click (PPC)

PPC networks pay publishers only when a user clicks on an ad. The amount
an advertiser pays for each click is called the cost per click or CPC.

PPC networks are popular with advertisers because they pay only for traffic
that is sent to their Web site. It also ensures that the publishers’ and adver-
tisers’ interests are aligned in driving ad clicks.

However, this model is open to abuse in the form of illegitimate clicks from
unethical publishers trying to increase their earnings and from the advertis-
er’s competitors trying to waste the advertiser’s marketing budget. This type
of fraud benefits the ad network but is harmful to their reputation. Because of
this, many PPC ad networks try to defend against click fraud.

Chapter 16: Advertising 329

A\\S

Figure 16-2:
Google
AdSense

ad in the
upper-right
corner of
WeFollow.
|

You're probably familiar with the biggest PPC ad network, Google. Google has
made billions through online PPC in its search results and in the form of a net-
work called Google AdSense. (Figure 16-2 shows a sample AdSense ad.) It’s
incredibly easy to sign up for Google AdSense and integrate it into your Web
site. Due to its low barrier to entry, I suggest trying AdSense first in your
attempt to monetize your site. However, Google’s PPC network has some dis-
advantages. When you sign up for AdSense, Google will start crawling your
Web site to determine what type of content is on your site so it can serve
related ads. It may be that your Twitter application is low on textual content
and high on functionality. In this case, Google may not be able to match appro-
priate ads to your content, which will cause your site to have a low click
through rate (CTR) and consequently decrease your earnings. If this happens,
you should investigate alternative ad networks.

wefollew Q peraus. -

Celebrity Music TwitterMoms.com

u 0

s e

g g e Ade by Gzl |
Top Tags Top Cities

Socialmedia Entrepreneur

Cost Per Thousand (CPM)

In CPM networks, advertisers pay simply to have their ad displayed on a Web
site. Each time an ad is displayed is called an impression.

CPM networks generally deal in units of 1,000 impressions, hence the Roman
numeral M for 1,000 in the abbreviation CPM. Publishers are paid for each ad
impression their site generates.

Popular CPM ad networks usually have high qualification for publishers. Tribal
Fusion (http://tribalfusion.com), for example, requires your site to have
a minimum of 5,000 unique visitors per day. However, if your site meets such
qualifications, you can earn excellent payouts for your Web traffic.

330 Part IV: Monetization — Making Money with Your Application

Figure 16-3:
Blip.fm links
to Amazon

and iTunes |

with affiliate
links.
|

Some other examples of CPM networks are

v Casale Media (http://casalemedia.com)
v ValueClick (http://valueclick.com)

v Gorilla Nation (http://gorillanation.com)

Pay Per Action (PPA)

PPA networks pay publishers only when a user performs an action desired by
the advertiser, such as follows:

v Purchasing a product
v Signing up for an e-mail newsletter

The amount the advertiser pays per action is called the cost per action
or CPA.

Some PPA networks include the following:

v Commission Junction (http://cj.com)

v LinkShare (http://linkshare.com)

PPA is a perfect fit for an application in some scenarios. For example, say
you develop a Twitter application that allows users to share the books they
are reading with other users. You could integrate an Amazon affiliate code
in every recommended book link. Then you will be paid each time a user
purchases a book based on your affiliate links. As I mention in Chapter 4, the
music-sharing site Blip.fm makes a portion of its revenue doing iTunes and
Amazon affiliate music sales, as shown in Figure 16-3.

maczter Black Moth Super Rainbow + The Octopus Project — "All The Friands
You Can Eat”

Chapter 16: Advertising 3 3 |

Cost Per Time (CPT)

Advertisers may pay to have their ad displayed for a set amount of time (like
a billboard) regardless of the amount of impressions, clicks, or actions.

The amount the advertiser pays is called the cost per time.

The advertising agreement could span days, weeks, or months. When pur-
chasing CPT ads, advertisers look at the traffic history of a site to estimate
what the cost per thousand impressions might be. This is called the eCPM.
Advertisers can then use the eCPM to compare offers and get the best deal.

Selling ads in blocks of time is a great way to start selling your own ads. It
requires little to no infrastructure to place an ad for a set amount of time on
your site. You can also cut out the ad network position as the middleman and
pocket 100 percent of the ad revenue.

<® However, selling ad space still requires quite a bit of effort. If you aren’t inter-
ested in booking your own ad space, you can use a service like BuySellAds.
com (http://buysellads.com) to automate the process and help sell your
inventory of ad space. Figure 16-4 shows a screenshot of BuySellAds.com.

 FOLLOW UG O TWITTER 5 GRoals THE o5 FEED

BuySellAds...
Homa Buy Ads Sell Ads "¢ Cart: $0.00
Buy Ads
T TofficRank oCPM Price
% TwitterBackgrounds.com 3,935,000 15,203 $0.11 $400.00
ADD
TwitterBackgrounds.com 15 &
providing
A - | Millicone
45 - 51,500,
e AD ZOME B THFE SOLD / AVAILABLE EST JMPRESSIONS 4/30 DAYS
TEG - Middle Nav
125 % 125, Miodle Right 66 3665000 perad 40000 Soro Tl e
I : horbebkgnediniy] e Wltig st
f . TBG - Top Right
Flgure 16-4' 12% x 125, Top Right 2 3,935,000 per ad $500.00 s_nlm_?_'l‘ml A
This ad WILL NOT rotate - e
BuySellAds. Rioht
ig -
com Se“s O Inspired Magazine S109 514900
Banners!
adS by CPT WEMAKE Bymes & TwitterBackground.com s088 $150.00
I o Twitter Gallery 72220 $015 32500

332 Part IV: Monetization — Making Money with Your Application

Going Vertical

\NG/
S

Vertical ad networks are networks that contain sites that target a specific
topic. An example might be an ad network that contains only high-quality
Web sites about cooking. Businesses selling cookware will then have an
excellent place to run an advertising campaign.

The opposite of this is a horizontal ad network that contains sites about all
sorts of topics.

One vertical ad segment that may be obvious to you, given the topic of this
book, is Twitter. There are several companies trying to leverage Twitter for
advertising.

The Magpie Network

The Magpie network (http://be-a-magpie.com) marries advertisers and
Twitterers. Through the help of the Magpie network, advertisers draft a tweet
for their products, then pay Twitter users to post that tweet to their profile.

If you have an application that requires users to follow a particular Twitter
account (like the Twooshes game example that’s built in this book), you can
post occasional ads from the Magpie network to that account.

Don’t post too many ads. You don’t want to annoy and run off your application’s
users. However, users usually accept a small amount of relevant ads.

The Featured Users Network

Featured Users (http://featuredusers.com) is my own creation. It’s a
network of Twitter applications that advertises Twitter profiles. Twitter users
purchase impressions on Featured Users to gain new followers and increase
brand exposure. Ad revenue is split between Featured Users and its publish-
ers. It is much like a typical CPM ad network except that it focuses on a tight
vertical niche, promoting a Twitter account.

Integrating Featured Users into your Twitter application is about as easy as
integrating Google AdSense:

1. Apply for a publisher account.

2. Once approved, simply add the javascript code to your Web site.

Chapter 16: Advertising 333

The ads are the benefit that Featured Users has over other ad networks,
since the profiles of Twitter users are relevant to a Twitter app, and the
payout is very competitive. A Featured Users profile ad is shown in

Figure 16-5.
|
Figure 16-5: T
A Featured i "
You should follow &DailyDivaDish on twitter hera.
Users ad Blo: Fashion, Beauty & Lifestyle blogger. Empawenng wamen 1o find baauty...inse
. > and out. Luxury beauly/fashion giveaways & reviews. Plus favorite inspirations,
promoting I Location: LS.
a Twitter Become & SpONGer at Faaluealisers oo b
account. Eallawina Sort by _Usarname
|

Do It Yourself

It’s possible to sell your own ads. By selling your own ad inventory, you don’t
have to share your revenue with an ad network. You keep 100 percent of the
revenue.

Here are the basic steps for selling your own ads.

1. Determine where you will place your ads.

What are you offering a potential advertiser? A high-profile, large banner
ad above the fold of your Web site, or perhaps a text ad in the sidebar?
You can request more money for high-profile ad locations.

2. Price your ads competitively.

o Check the rates on an ad network that sells ads by CPT (http://

BuySellAds.com, for example). Look up sites like yours and see how
much advertisers are paying to be on those sites.

3. Attract advertisers:

¢ Add placeholder “advertise here” banners where your paid ads
will go.

* Promote your ad spots via your Web site, blog, and Twitter
account.

4. Once you sell some ads, show your advertisers that you appreciate
them.

You may consider offering discounts if they purchase several months in
advance.

334 Part IV: Monetization — Making Money with Your Application

A\\S

If keeping track of ads that you have booked is getting out of hand, consider
using ad management software, such as Google Ad Manager or OpenX. These
software tools will help you manage ad bookings, placement, and performance
tracking.

If you're truly adventurous, you might consider building your own proprietary
ad management system. This is how I created Featured Users.

Chapter 17
Monetizing with Other Models

In This Chapter
Making money with your app

Relying on the generosity of strangers
Making recurring revenue with subscriptions
Merchandising

Earning money indirectly through your app
Selling your business

n this chapter, I cover seven common revenue models, including ways

that customers can pay you for your application’s service, how you can
sell physical and virtual goods, and long range revenue strategies. This cer-
tainly isn’t an exhaustive list, but it should give you some ideas to help you
start making money with your app.

Some software lends itself to certain monetization models better than others.
To find the optimal revenue generator you should experiment with multiple
models and exploit the ones that work the best for you.

Requesting Payment for Service

It is customary to pay someone for the services they provide. If you've ever
worked a day job you are probably familiar with this concept. Your appli-
cation provides a service for your users, so it isn’t much of a stretch to
consider asking for payment in exchange for the services your application
renders. There are numerous ways you can go about asking for payment.
Here I cover three of the most common ways:

v Asking for donations
v Charging a fee in exchange for a copy of your application

v Charging a subscription for access to your application

336 Part IV: Monetization — Making Money with Your Application

\NG/
Vg‘“

Figure 17-1:
Donating to
Wikipedia.

Ask for donations

Asking for donations may be the easiest way to start making money with your
Web site. Possibly even easier than partnering with an ad network.

Donations aren’t the most effective means of generating revenue. They are
unpredictable and rely on the generosity of your users. With a donation-based
system, you will do well to cover your operational costs. Don’t rely on dona-
tions to turn your Web site into a profitable business.

Still, if your goal is to simply keep the servers running, a donation-based
model can work. Wikipedia raised $6 million in donations to cover their oper-
ational cost for the 2009 fiscal year. You can see Wikipedia’s donation page in
Figure 17-1.

¢ Imagine a world in which every single person on the

planet is given free access to the sum of all human
inowledge. ”»

— Jrmmy VWaes, Fancer of Wikiped:

Support Wikimedia

Contribwde with your credd card through PayPal, (Other ways to give, inCluding
check or mall, can be found heme.)

Amount

25100 0575 O30 OOthen wo-3 @)

Public Comment
Have & thought 1o share with e worid? Put up 1o 200 charaotess here:

) Posase st my
1 ngroe fo reces
your rdsemation. Dhe

Your credit card donation will be processed by PayPal. The chamge will appear as
"Wikimedia Foundation, Inc.” on your credit card statemant.

For mote informalion aboul tur ©
T e 0@ ocat Wikenedia cha

status, ur Annial Reperl, of oter quastions, chek har.

For a donation model to really work, your application needs to strike an emo-
tional chord with your users. Wikipedia, for example, provides millions of
users with a vast amount of free up-to-date information on a variety of topics.
Before Wikipedia, encyclopedias were sold in book sets and cost hundreds
of dollars. Not only were printed encyclopedias expensive, the printed infor-
mation quickly went out of date. This meant that if readers wanted the most
up-to-date information, they had to annually replace their encyclopedias.

Chapter 17: Monetizing with Other Models 33 7

Wikipedia solves this problem and benefits humanity by making knowledge
free, not a luxury to those who can afford it. This is a compelling reason for
people to donate money. Your application doesn’t have to solve humanities
problems on the same level as Wikipedia to garner donations. If you can help
one person in a way that they truly appreciate it, such as saving them time,
you can earn their appreciation and, consequently, donations.

<P Make it as easy as possible for your users to give you money. To take dona-
tions, you need to accept online payments. You could have your users mail
you a check, but [suspect you would receive very few checks. The easiest way
to start taking online payments is to sign up for PayPal, Google Checkout, or
Amazon Payments. Each one of these services has a donation button you can
set up and easily integrate into your app. Make sure your donation button is
in an easy-to-find, high profile location on your application. Just like PBS, NPR,
and Wikipedia, you may even want to run a fund drive, where for a period of
time, you actively promote that you're taking donations.

Sell your software

One tried-and-true method to make money is to license your application and
sell it to each user. This is how Microsoft made its fortune, and it’s how a lot
of software is still sold.

A good example of this in the Twitter ecosystem is the iPhone app, Tweetie.
Tweetie is sold for $2.99 in the Apple iPhone App Store (see Figure 17-2). You
pay for the app once, and then you have access to that software pretty much
for life. Or more realistically, until that software is out of date.

Tweatie
= alebits
<smre |
aed
ased on Dusty's iP:
Snaring
|
i3 Fawad 44
Figure 17-2; s
Tweetie is [, _ 24
wil £ 4 =
forsalein [R : e
. ical Music Accotnt atebits =P e
the iPhone s Sl u K
b Rated @ Loren Brichter Jah
App StOI’e ey Addded i One more biog post for the day - HATENEW
i F

ety Played hitpitinyun comidahend - you kaow whio T search gl

338 Part IV: Monetization — Making Money with Your Application

\\3

\\3

As a software merchant, after you've sold to your entire marketplace, you can
reinvent your software and sell it all over again. Consider all the versions of
Microsoft Windows through the years.

Apple has made this sort of online software distribution easy with the iPhone
App Store. But what do you do if you're selling desktop software? For small
teams of developers on a budget, your best option is to sell it online and let
users download your software.

A common way to get started selling your desktop software online is to use
the shareware model. Shareware allows users to download a trial of your soft-
ware and then pay for it if they like it. The trial may

v Expire after a certain amount of time.
v Disable some features.

v Display an annoying pop-up to remind the user to pay for their copy.

When users pay, they receive a key to unlock their shareware copy to the full
version.

Twitterrific for Mac is an example of a shareware Twitter app. You can down-
load an ad-supported version of Twitterrific for free. If you upgrade to the
paid version of Twitterrific, you are given a code to remove the ads.

Sell subscriptions

What if your Twitter app is a Web application? You could sell access to your
Web site once and give the user access for life, but there are other options.
You could sell a subscription to your Web app.

With Web applications, users run the software online, on a remote Web
server. They don’t need to download, install, run, or store data locally on
their computer. They can even store their documents, photos, and other files
online with the Web application. Positioned this way, it’s easy to think of a
Web application as a service.

The term “software as a service,” or SaaS, represents this view.
Because Web applications manage so much for the user and have the ability
to restrict access, it’s natural to charge a subscription fee. In fact, this model

has become very common.

Typically, subscriptions to Web applications are sold in a tiered hierarchy
where each tier contains more features than the one below it.

A\\S

Figure 17-3:
Holy
smokes!
Subscription
models are
a great

way to earn
revenue.
|

Chapter 17: Monetizing with Other Models

Often, the bottom tier is given away for free to gain market share and give
users a sample of the application’s features. This is called the freemium model.
The popular online photo-sharing site Flickr (http://flickr.com) is an
excellent example of the freemium model. Flickr has two product tiers:

v A free version that displays ads and limits uploads.

v A pro version that removes upload restrictions and adds features the
user would appreciate, like the removal of ads. The first page of Fickr’s
pro version sign up form is shown in Figure 17-3.

flickr: <o

Home The Tour SignUp Explore Search

Holy smokes! That's cheap!

Just $24.95 for a 1 year pro account.

Here's what you get... That's about $2 a monthl

+ Unlimited uploads and st

» Unlimited sets and collections

* Access to your orginal files

s Stats on your account

+ Ad-free browsing and sharing You i gl o 2 year acooant for just $47.99 and
that's even s per month?

» HD playback for high-dafinition video e s et

uploads wew

Selling Goods

In contrast to requesting money for the services your application provides,
you can sell physical or virtual goods that compliment your application.
Selling physical goods is a common practice online as ecommerce and offline
in the traditional marketplace. Selling intangible virtual goods for use in your
application is a relatively new and developing revenue generating practice.
You should consider both options.

339

34 0 Part IV: Monetization — Making Money with Your Application

\\3

Figure 17-4:
Put your
friend’s
updates on
a T-shirt
with
140tees.
|

Physical goods

If you're manufacturing a Twitter hardware device, selling the physical hard-
ware is the obvious way to revenue. However, selling physical goods is a less
obvious approach to revenue if you're building software. But that doesn’t
mean it is impossible.

You can monetize your Twitter application by using it to sell physical goods
by either

v~ Joining affiliate programs (as in Chapter 16).
v Selling your own complimentary products.

e Twitterrific sells T-shirts with their logo on it at http: //
twitterrific.com/gear.

¢ 140tees (http://140tees.com) uses the Twitter API to tie into
your account and help you select your favorite tweets that you can
then order on a T-shirt. Their homepage is seen in Figure 17-4.

An easy way to get started selling products via your Twitter app is to use

a site like CafePress (http://cafepress.com). CafePress allows you to
create a virtual storefront with a variety of products you can slap your logo
on. They also provide an API that you can use to create custom-made prod-
ucts for each of your users.

Eﬂ tees Create your own Twittered T-Shirt Follow us o0 'Muum

Put your. '“ - \/ :
Friends Updates ﬁ (
oo A .

on a T-Shirt »

We print your Tweets onto T-Shirts ;-) o S i e
ethore Lo s ietd tatee

Create your own Twitter T-Shirt in 3 easy steps i i Bt o D e et ookl i b

Your Favourites
5iLnc bt s e . s s s of
R e bownathem e o o ot i

oy % bt Bow | St fd mal
B o i e i Ok
pon iy

B ol et s st o v o
(1]} Choose a Tweet (2] Create your design (3] Pay and display
Choose your favourie beects Cheose your Twitter Bahirt & We print it, you wear it ..
o your friemnds’ updates eroats your desigr .. it's as simple as thet

€ Copyright 1a0tees 200% | Heww 1o Order | Delivery & Shiping .| Tevens & Conditiors:

Chapter 17: Monetizing with Other Models

3

Virtual goods

Virtual goods are goods that exist only online and may be purchased, but
have no intrinsic value. The term virtual good is usually applied to concepts
such as digital gifts, items in video games, and avatar accessories. The term
is usually not applied to

v Digital media (such as videos and music files)

v Digital content (such as written news and entertainment)

Games

Virtual goods are found primarily in online video games. A common scenario
in games involves players paying for in-game items that they would otherwise
have to spend time earning. For example, these types of virtual items might
include weapons that help a player’s performance, or they might be purely
aesthetic items such as character clothing, player avatars, or props. Players
can also purchase in-game currency with real-world money. They then use
the virtual currency to purchase in-game items. Sometimes, the creators of
the games participate in the virtual goods marketplace, selling items to play-
ers. Other times, the terms of the game ban the purchase of all in-game items
using real-world money. This usually leads to a black market where players
try to hide their transactions from game administrators.

Social networking

On social networking sites, virtual items are often gifted between members.
The gifts usually take the form of a badge or icon that the recipients can dis-
play on their profile.

Facebook (http://facebook.com) is a popular social networking site with
a virtual gift marketplace (see Figure 17-5). Some gifts are free, while other
gifts must be purchased from Facebook.

Because the price of virtual gifts is public information, a user may opt to pur-
chase an expensive gift in an effort to impress the recipient. This behavior
was observed on the popular dating site HOT or NOT (http://hotornot.
com), where users could gift a virtual rose priced between $2 and $10. Because
suitors wanted to impress their love interest, they often chose the $10 rose to
signal the seriousness of their admiration.

How can you apply virtual gifts to your Twitter app? It will take some creativ-
ity to be sure. Perhaps you could use the Twitter API to publicly announce
bestowing of a gift and host the gift on your site. Or if you create a game

on Twitter, maybe you could sell special items that will help a player’s
performance.

341

34 2 Part IV: Monetization — Making Money with Your Application

Figure 17-5:
Buying my
wife a vir-

tual rose.
|

facebook Home Profile Friends inbox HEF Dusty Reagan Setings Logout | &

You have 0 credits. Leam more.

Choose your gift: .
Create an Ad

All Cafts =| | sea

Tech job after
graduation

Choose your recipient:
Sharier Lalime E E :
= Shaw anty Gifts that St

Add your message:

Muthod of delivery:

B spptications | ML @ & & 4 Bockmark Gifts L= Chaz (Ufene)

Building Your Business

Instead of creating a direct stream of revenue immediately, your application
may generate revenue indirectly by creating opportunities through increased
brand exposure. It is also possible that your application doesn’t generate rev-
enue until another company finally acquires it. Either of these cases means
that your application is building a business.

Brand awareness

Brand building refers to creating name recognition. This can be either

v A company’s brand name

» Your own name

By building name recognition, you can gain renown and social capital that
you can later cash in on. One effective way to leverage brand building is to
become known as an expert in a particular topic or field. Your renown as an
expert can then lead to gigs, speaking engagements, and book deals, which,
in turn, further your brand.

Chapter 17: Monetizing with Other Models 343

There are more ways to leverage brand building than becoming an expert
and landing project gigs. Say you build a popular Twitter app that entertains
thousands of users. Some of those users will recognize the joy you bring
them and in return start following you on Twitter. You are building social
capital with these individuals. The next project you launch now has a built-in
audience of fans from your last project. Success leads to more success.

If you want to leverage brand building, it’s important that your audience
knows who you are. You can’t build an awesome product and expect people
to know innately that you built it. You have to tell them.

You can do this subtly by creating an “about us” page or by putting your
name in the footer of your app. If you’d like to put your name in bold at the
top of your app, that’s fine, too.

The next step is to go beyond listing your name and actually give your users
a call to action. Of course, in your case, you want them to follow you on
Twitter, so ask them. Somewhere on your Twitter app, put “If you like my
app, please follow me on Twitter.” You may be surprised by the results.

Be acquired

An acquisition is when a large company purchases a smaller company.
Acquisitions happen for many reasons. Your business might be seen as a
threat or as an opportunity. Perhaps you have technology that complements
the acquiring company. Or it might be due to all these reasons and more.

Being acquired is a jackpot exit strategy if you're a company founder. It
means a huge payday, your creation gets to live on, and you get to move on
to your next project.

Some companies are built from the start with the goal of eventually being
acquired. Founders and investors attempt to make their company attractive
for acquisition. In these cases, gathering market share may be more impor-
tant than generating revenue. Take the poster child of Web acquisitions,
YouTube (http://youtube.com), for example. In 2006, after YouTube had
not made a dime in revenue, Google acquired the company for $1.65 billion
in cash and stock option. Google saw the advertising potential in YouTube
and decided to purchase the company and crack the revenue-generation nut
themselves.

The most famous acquisition in the Twitter ecosystem is Twitter’s acquisi-
tion of Summize in 2008. Summize is the company behind Twitter’s search
engine (shown in Figure 17-6), but it was once an independent third-party
Twitter application (see Figure 17-7). It is estimated that Summize was pur-
chased for around $15 million in cash and stock options. After the acquisition,

344 Part IV: Monetization — Making Money with Your Application

five of the six Summize employees were hired by Twitter, and the founder of
Summize moved on to a new project.

Maybe Twitter will be interested in purchasing your Twitter app.

See what's happening — right now.

(Search)
I e Safrm - Pohrasidite Bl drosa, Shekes
Figure 17-6: ODST , GoodMight , ATAT , CaliSpark , #ScottGuAnnouncemont , #Gypsy
After
Summize
acquisition.
|
Conversational Search
Search lwitter in realtime — more comvarsations coming soonl
Agvenced Search
Figure 17-7: [searcn |
Before
Summize o topics Plaxo, Comcast. ANTM, |dal
acquisition “hina, Top Chef, Whitney, Al ¥box, Dallas

Chapter 18

Promoting Your Application

In This Chapter

Leveraging online social networks

Using viral marketing to promote your app

How to manage your own PR

Advertise your app

Make your app easy to find via search engines

3

A s a developer, I know how exciting it is to invent and bring to life a
new product. I also know how disheartening it can be to launch your
product to the sound of crickets chirping. This scenario happens all the time
to entrepreneurial software developers. It’s a common pitfall to expect a
barrage of users excited about your product right after you launch. In your
heart, you know you’ve built something wonderfully useful and entertaining,
but if nobody knows your application exists, they can’t fall in love with it like
you have.

If you don’t love your project, how can you expect your users to love it? You
can’t. Consider moving on to another project you're excited about.

When your application has launched, your work has just begun. It’s time to
spread the word about your app. I cover several promotion strategies you
can use in this chapter, but they all focus on driving traffic to your Web site.
If you have a desktop or mobile application, you absolutely must have a
central Web presence. From there you can direct visitors to download or pur-
chase your application.

There are some common promotional strategies you can leverage to build
your user base. The strategies I cover in this chapter include social media,
viral marketing, public relations, advertising, and search engine optimization
(SEO).

34 6 Part IV: Monetization — Making Money with Your Application

Social Networking

If you're promoting anything, take advantage of online social networks.

The idea behind social networking for marketing is gathering an audience.
You need to create lists of people who are interested in what you have to say,
and you need to communicate with those people regularly on their preferred
platform. This may include gaining followers on Twitter, friends and fans in
Facebook, subscribers to your blog RSS feed, or subscribers to your e-mail
newsletter. Building an audience of active listeners allows you to establish
relationships with your customers and potential customers. It’s a bit like
rounding up all your warm leads and keeping in constant contact with them.
When you have an audience you don’t have to market to uninterested people.
Instead you can market to your audience, who has invited you to keep them
informed about your product.

How should you get involved in social networking? At a minimum, your brand
should have a Twitter account and Facebook fan page. With a little extra
effort, you would do well to have a blog and an email list.

Twitter strategy

When your product is complete, announce it on your personal Twitter
account. If possible, ask your good friends to retweet your announcement.
Make sure somewhere on your application you link to your personal Twitter
account and ask your users to follow you. This will help promote your per-
sonal brand, so the next time you launch a project, fans of your last project
will hear about it. It is acceptable to tweet about your application when you
work on it or make updates. However, you may annoy your friends if you deal
with a lot of product support requests from your personal Twitter account.
So, if you don’t have one already, you need to create a Twitter account for
your product or company brand.

From your product’s Twitter account, you can tweet about deals, updates,
and handle support requests. Just like your personal account, you need to
list your product’s Twitter account on your application and ask your users
to follow it. You can push your Twitter strategy further by posting to your
brand’s account regularly. If you don’t have enough product news, you can
tweet about topics your market segment might find valuable. For example, if
you have a Twitter application that helps users share pictures, try tweeting
links to some of your favorite photos or photography tutorials.

gMBER Make sure your tweets are relevant to your audience and provide value. The
goal is to make the tweets from your brand’s Twitter account a welcome addi-
tion to your follower’s Twitter stream. When you accomplish this, you have
built trust with your users and each of your tweets will help keep your brand
on top of your customer’s mind.

Chapter 18: Promoting Your Application 34 7

<P You can also do more than just post updates to your Twitter account. One
strategy we use with Featured Users (http://featuredusers.com) is to
automatically send our customers a direct message via Twitter when they run
out of banner impressions. This gives us an opportunity to ask them to pur-
chase more impressions. We also use Twitter’s favorite feature to star any
tweets that would make a good product testimonial. We then display our
favorite tweets on our Web site, as seen in Figure 18-1.

Figure 18-1:
On the bot-
tom of every
page of
Featured
Users.com
isatweeted |
testimonial. 02008 Floating Head Studios // Home /| Users [/ Publishers /| FAQ // Blog /| Contact

Facebook strategy

Facebook is the largest social networking site online. You would be doing
your brand a disservice not to have some sort of presence on the site. You
want to be sure your brand is marketed where your customers are. It’s a
good bet that when your users aren’t on Twitter, or using your Twitter app,
they’re probably spending time on Facebook.

First, you need a personal Facebook profile page for yourself. In addition, you
can recruit your friends and colleagues to help you promote your project via
Facebook.

34 8 Part IV: Monetization — Making Money with Your Application

a\\J

3

If you're passionate about your project, your friends won’t mind trying to help
you out by spreading the word about your app.

Next, create a Facebook fan page for your application. Fan pages allow people
to confess their satisfaction with your brand. You can use the page to share
links, photos, news, and event dates with your fans. If you plan on doing most
of your product updates from Twitter, it is possible to pipe your Twitter
updates to your Facebook fan page. However, this is unsupported and tricky
to set up. You can also have your blog update your fan page status.

Once you have a fan page created, ask your friends to become a fan. Once
they fan your page, their friends will be alerted to your page, giving you an
extra bit of exposure. It’s also a good idea to have a link to your fan page
somewhere on your application. Facebook even provides a fan page widget
you can add to your site. Having a lot of fans on Facebook is an additional
display of your product’s legitimacy.

Web site blog

A product blog is a great way to post updates to your users. It gives you a
public place to communicate with your customers on your own terms. That
means no 140-character limits. Take all the characters you need! Further,
your customers can communicate back in the form of public comments.

An often-overlooked benefit to keeping a well-groomed blog is their SEO
(search engine optimization) value. Today’s search engines feed on content,
and a frequently updated blog is a content generation machine. This means
a user may find content on your blog through a search and consequently be
introduced to your Web site.

Further, posting good content to your blog will hopefully cause people to
link to your blog posts. These incoming links will drive traffic and signify to
search engines like Google that your Web site has link-worthy content. The
more incoming links you have, the more important your Web site is per-
ceived, which increases how high your Web site appears in search rankings.

There are several platforms you can use to run your blog. Some popular blog
platforms include Wordpress, Blogger, and Movable Type. You want your
blog to share your brand’s URL. In addition, you want your domain to get
credit for all incoming links. To accomplish this, | recommend installing and
running your own copy of Wordpress in a subfolder on your official domain,
so that the URL looks like this: http://yourbrand.com/blog.

If managing your own installation of Wordpress seems too bothersome, use
the hosted version of Wordpress or Blogger, but use their respective domain
masking features to point to a sub domain of your branded URL. You URL
should look something like: http://blog.yourbrand. com.

WING/
&

NNG/
Vg‘

NNG/
Vg‘

Chapter 18: Promoting Your Application 34 9

Don’t use a third-party URL for your blog. Doing so wastes a lot of branding
and SEO opportunity.

Opt-in e-mail list

Managing an e-mail list may seem a little old fashioned in today’s online mar-
keting environment. However, it’s still an effective means to distribute your
message.

It’s very important your e-mail list is an opt-in list. An opt-in list means that
users willingly and knowingly join your list because they’re interested in what
you have to say.

Don’t send e-mails to people who didn’t opt-in to your mailing list. Spam dam-
ages your brand'’s reputation.

To manage an effective e-mail newsletter, you need an e-mail list manager
and a means to recruit subscribers. An e-mail list manager is a Web service
that helps you maintain your list, create your e-mails, deliver them, and pro-
vides click and opening statistics. These services usually charge based on
the amount of e-mails you send. Two services [recommend are MailChimp
(http://mailchimp.com)and Emma (http://myemma.com).

To start building your e-mail list, first ask your Twitter followers and
Facebook friends to join. Then you should consider putting a newsletter
signup form on your Web site. Both MailChimp and Emma provide code to
easily integrate a form on your site. Beyond these steps, consider asking your
customers to subscribe when you send them a receipt, or when they sign up
for your service. Once you have a system in place to build your list, use it to
make product announcements.

Try not to wear out your welcome. Two or three e-mails per month are plenty.

Go UViral

One of the most effective ways to spread the word about your application
is to use viral marketing. Viral marketing is the term used for the strategy of
building a marketing campaign that spreads organically as one person tells
another person about your offer. Social media sites like Twitter, Facebook,
and MySpace are the perfect vehicles for this type of marketing.

The key to viral marketing is to make something people will want to share
with their friends. Then you need to make it easy to share. Tweetmeme’s
(http://tweetmeme.com) “tweet this” button that makes it easy for blog

350 Part IV: Monetization — Making Money with Your Application

|
Figure 18-2:
Tweetmeme
makes it
easyto
tweet about
a blog post.
|

A\

|
Figure 18-3:
Atweet

to join the
WeFollow
user
directory.
|

readers to tweet about a post is a good example. You can see the Tweetmeme
button in Figure 18-2.

Viral marketing needs to link with your product, somehow. A viral video of
your cat is funny, but to gain any value from it your brand needs to be associ-
ated with video.

One way to jump start a viral marketing effort is to provide an incentive for
your users to tell their friends. An excellent example of viral marketing in a
Twitter app is WeFollow (http://wefollow.com). WeFollow is a Twitter
user directory where every user gets to pick five categories to describe them-
selves. People want to be listed in the directory so other users with similar
interests can find them. However, to get listed in WeFollow you must first
publicly tweet your chosen categories and include a link back to WeFollow,
as seen in Figure 18-3. When a user joins, their friends are alerted. Now those
users have a social incentive to join. When they join the cycle repeats, and
you have a wonderful example of viral marketing.

It takes some creativity to come up with a good viral marketing campaign,
but it is well worth the effort.

Added self to http://wefollow.com
twitter directory #austin_ tx
#digitalmedia #businessdevelopment
#socialmedia #musicindustry
#filmindustry

Y frank souders

24

Chapter 18: Promoting Your Application

Public Relations Strategies

A
gg‘

3

NG/

Public relations, or PR, is the art of dealing with the public and the press.
Many large companies employ the services of a PR firm to manage the com-
pany’s brand image. They do this by pitching news stories to media outlets,
hosting events, and crafting marketing campaigns that portray the company’s
brand in a positive light.

PR firms can be very expensive. If you aim to turn your Twitter app into a busi-
ness, hiring a PR firm early may not be the best use of your funds. However,
you can try do-it-yourself PR. You may consider writing press releases and
pitching them to individuals that cover news in your industry, such as

writers at TechCrunch (http://techcrunch.com) and Mashable (http://
mashable.com).

As a new developer, your time is better spent focusing on the following three
areas: network in your industry, toot your own horn, and be authentic.

Network in your industry

Networking in your industry is really networking in your customer’s industry.
Wherever your customers are, you need to be there. This means attending
tradeshows, conferences, happy hours, and meetups. You should spend time
mingling with your customers, making connections, building trust, and build-
ing friendships.

Don’t try to make hard sells at these types of events. Become a member of
your customer’s community. You need to earn your seat at the table. People
prefer to do business with people they know and trust. You may also make
connections that will help you sell or market your product. The important
thing is to get out there and make sure your customers know you exist.

Toot your own horn

When it comes to promoting your own product, don’t be modest.

For example, if a Twitter celebrity sends you a note that they like your app,
seize the opportunity and ask them for a testimonial that you can publish on
your Web site. If your app is mentioned on a popular technology blog, tell
everyone you know and proudly link to the article from your Web site. All
these little victories add credibility to your work. It’s similar to the saying if a
tree falls in the forest and no one hears it, did it actually fall? The same goes
for PR. If McHammer tells you he likes your Twitter app (see Figure 18-4), but
nobody knows he endorses it, then it didn’t really benefit your brand at all.

351

352

Part IV: Monetization — Making Money with Your Application

Figure 18-4: |

@
MCHammer
digs Friend
Or Follow.
|

NBER
‘x&
&

— —

check out friendorfollow.com ... it's real
cool...

|
g L':ﬁ Hammer

s DU SOEINIETE EEECMET A / al L) T

Be authentic

When you hire a PR firm, they spend time coaching you on how to talk to the
media. If you can’t afford a PR firm, my advice to you is to just act like your-
self. Don’t try to be someone you aren’t. You aren’t the CEO of ExxonMobil,
so don’t act like it. People find authenticity refreshing, and it’s a lot easier to
pull off being yourself, than to sling out stunted corporate marketing talk.

Be passionate, be respectful, be yourself.

Advertise

There are many outlets for paid advertising: billboards, Web banners, radio
spots, TV commercials, and printed ads just to name a few.

If you're early in your brand’s life, start with Web banners and text ads.
These types of ads cost little to nothing to produce and are an ideal way to
drive Web traffic. Other forms of advertising like billboards or TV commer-
cials require a lot of upfront production cost, such as printing the billboard
screen, or hiring a film crew. You have to pay these production costs before
you can even begin to pay for the advertising spot. You can also directly
measure your return on investment (ROI) with Web advertising by tracking
the click through rate (CTR) and conversions. Most online ad networks have
tools to help you track this.

The first place you should start your online ad campaign is Google AdWords.
AdWords is the grand daddy of online text ads. Google provides plenty of
metrics and tools, and you don’t need any banner images. AdWords allows
you to target keywords you think are relative to your Twitter app and it
allows you to set a daily budget. You can even track sales conversions and
measure your ROI.

Chapter 18: Promoting Your Application 353

SEO

3

When you decide to branch out from text ads to graphical banner ads,

your first hurtle will be obtaining the banner images. If you or a friend is

a designer, problem solved. Otherwise, you might be interested in Right
Banners (http://rightbanners.com). Right Banners is a Web service that
specializes in making banner ads. Now that you have a resource for creating
your banner images you can use ad networks like BuySellAds.com (http://
buysellads.com) and Project Wonderful (http://projectwonderful.
com) to find relative sites to advertise on.

SEO stands for search engine optimization. It is the craft of optimizing your
Web site’s content so that users can easily find it via search engines. If you
host a desktop or mobile application, SEO doesn’t apply directly to your
application. However, it does apply to the Web site you use to promote your
application.

You'll score big by following two rules:

v Use semantically correct HTML markup

v Provide unique content that people will want to link to

Using semantically correct HTML markup means using each HTML element
as it is intended to be used. For example, the <p> tag stands for paragraph,
so you should only use it to denote a paragraph. The <h1> tag means “header
1,” so you should only use it for a section header. Search engines try to use
the semantic meanings of HTML tags to determine what is most important on
your page. They also use the position of the text on the page as an indicator.
For example, the text in an <h1> tag at the top of the page will be considered
more important than a <p> tag at the bottom of the page.

Keep all style elements separate from your content by using external CSS files.
Ultimately, you should be able to remove the reference to your CSS file and
still have a site that is clearly readable. If you can’t read your site without the
CSS, search engines like Google probably can’t read your site. Removing style
elements and complex code also makes your Web site easier to index and load
faster for users.

To help enforce semantically correct HTML, validate your Web site as XHTML
1.0 Strict. XHTML 1.0 Strict is a set of rules that ensures your markup meets

a minimum level of quality. You can use the W3C Markup Validation Service
found at http://validator.w3.org to validate your code. Figure 18-5
shows the W3C Validation Web site.

354 Part IV: Monetization — Making Money with Your Application

Figure 18-5:
Validate
your code
using

the W3C
Markup
Validation
Service.
|

A\

Markup Validation Service
' Check the markup (HTML, XHTML, ...} of Web documants

Valldate by URI Validate by File Upload Validate by Direct Input

Validate by URI

Vaikiate a document anline:
Acdrass:

» More Options

Chack

This validator chacks the markup validity of Wab documents in HTML, XHTML, SMIL, MathML, ate. If you wish to validate specific
content such as ASS/Alom feeds or CSS sivieshests, MobileOX content, or to find broken links, there are oiher validaters and fools

available,
e Tha WAC validators raly on community support for hosting and devalopment.
YALIDATOR Donate and help us build better tools for a better web.
Home Aboul.. News Docs Heip & FAQ Feedback Coniribute
D e s E] : MRAA ; s E L

The next thing you need to do for SEO is have a lot of quality incoming links.
Search engines see links that point to your Web site as an indicator that your
site is important. Google uses a 10-point scale called page rank to measure
your site’s perceived importance. However, search engines don’t just look at
the quantity of incoming links. They also look at the quality of the links. This
means if a well-established blog with a page rank of eight links to your site,
that is much more influential to Google than a link from a site with a page
rank of two.

The best way to get incoming Web links is to have good unique content that
people will want to link to. Hosting your own blog with thoughtful posts will
often do the trick. Of course, if you have an awesome Web app that people
want to tell their friends about, that will also create quality incoming links.

There are many Twitter application lists and review sites that you to your
application for free. Some examples are oneforty (http://oneforty.com),
Twtbase (http://twtbase.com), and Twitdom (http://twitdom.com).

PartV
The Part of Tens

The Sth Wave By Rich Tennant

O RicHTENNANT

And me without a
Twitter account.

In this part . . .

' wo great chapters. Two great lists. Too much!

Chapter 19

Ten Traits of a Respectable
Twitter Developer

In This Chapter
Gaining the respect of your peers
Gaining the respect of your users

Tmitter’s APl is open, which means anybody can start developing a Twitter
app. This has led to a multitude of applications and a flourishing com-
munity of Twitter developers. Just like any other community, there are highly
respected members, and there are those who are considered a burden on

the rest of the community. You should strive to be a respected, contributing
Twitter developer.

In this chapter, I list ten traits of a respectable Twitter developer. Follow
these traits and your peers and customers will hold you in high regard.

Ask Permission

Don’t perform any action on users’ behalf without first getting their consent.

v Don’t send a tweet on users’ behalf without first getting their permission.
Just because they authenticated with your application doesn’t mean
they gave gratis to post whatever you want to their Twitter stream.

v Don’t make users follow your application’s Twitter account without first
asking for their permission.

358 Partv: The Part of Tens

Read the Documentation First

gMBER

Before you ask a question in the Twitter API Google Group (http://groups.
google.com/group/twitter-development-talk), make sure you first

v Look for an answer in the Twitter API wiki.

v Search previous posts in the Google Group.
The developer community is a great resource, but they frown upon unnec-
essary queries. Nothing is more agitating to community contributors than

answering the same questions over and over again. Be a good community
member and do your homework before you recruit help.

Stay within Your Rate Limit

\\J

Twitter limits the amount of API requests an authenticated user and an IP
address can make per hour. This limit is in place to help with Twitter’s server
load and prevent rogue applications from degrading API access for everyone.
You need to monitor your API use using the account/rate_limit_status
method, and avoid going over your limit.

If you need more API requests per hour, you can apply for whitelisting at
http://twitter.com/help/request_whitelisting.

Don’t Promote Mass Following

The Twitter community at large frowns on the practice of mass following to
gain reciprocal followers. There are several tactics for accomplishing this,
but they all involve following a large number of people and dropping those
who don’t follow back.

You're better than this. Don’t do it.

Even shadier is dropping all but a few people to give the appearance of false
popularity. Using the API to automate this practice is highly frowned upon
and may be against Twitter’s terms of service. If you create an app of this
nature, you will not receive much love from either the developer community
or the support staff at Twitter.

Chapter 19: Ten Traits of a Respectable Twitter Developer

Be Cautious of Trademarks

WMBER
@ﬁ
&

Twitter legally must protect its trademarks. This includes the word “twitter.”
Avoid using the word “twitter” anywhere in your product or domain name.

To be extra safe, strive to deviate from Twitter’s branding as much as pos-

sible. Numerous apps have adopted prefixing “tw” to their brand. Break out
of the pack. Avoid “twitter,” “tweet,” “twit,” for sure, and I'll give you bonus
points for avoiding “tw” altogether.

Give Back

The Twitter developer community is strong, and it’s a great resource when
you're seeking API help. Whenever possible, you should try to give back to
the community with such contributions as these:

v Answering questions on the developer Google Group
v Contributing to open source Twitter libraries that make it easy for other
developers to get involved in Twitter development

Doing these sorts of things will garner goodwill in the community, and the
next time you need assistance, people will go the extra mile to help you.

Cache Vour Data

You should strive to access the API as little as possible. One key to doing this
is to cache the data you retrieve from the API. Reuse the data you've already
retrieved as much as possible. This takes load off of Twitter’s servers and
speeds up your application. It also saves your rate limit.

Use OAuth

If you must authenticate a user with Twitter, you should use OAuth instead of
basic authentication. Basic authentication requires that you, the developer,
manage users’ passwords. This is a risk for the user and a liability for the
developer. Further, users have become skeptical of applications that ask for
their passwords, for fear that their account might be compromised.

359

360 Partv: The Part of Tens

With OAuth, you never have to deal with users’ passwords. Users give your

application permission to access their private data from Twitter’s side of the
fence.

Don’t Be Evil

Take a tip from Google’s company motto and don’t be evil. This includes hon-
oring the wishes of private account holders. Private users may give your appli-
Q‘&N\BER cation permission to access their tweets. Keep these users’ data confidential.
Y
&

When users give you their trust, you should work hard not to break that trust.

Communicate with Your Users

Users will want to give you feedback, report bugs, and ask you questions
about your application. You should make yourself available by either

v Providing contact information
1~ Integrating a reporting tool into your application, such as
¢ UserVoice (http://uservoice.com)

e GetSatisfaction (http://getsatisfaction.com)

Identifying yourself to your users gives your application credibility and
shows you aren’t a fly-by-night operation.

Chapter 20
Ten Twitter APl Tips

In This Chapter

Gleaning advice from other Twitter developers

0ne of the best ways to learn is to do. However, the next best way to
learn is to glean advice from other people’s experience. You've heard a
lot from me in this book about my experience with the Twitter API, now here

are some tips from other Twitter developers.

Develop Defensively

“Develop defensively. For instance, when passing in scoping parameters like
since_id, assume that the Twitter API will break one day and disregard

since_id when building the result set.”

—Barry Hess (@bjhess), co-creator of Follow Cost (http://followcost.com)

Degrade Gracefully

“The Twitter API can and will go down. Applications should have some sort
of monitoring, graceful degradation, and informative error messages for users
in the event that this happens. Because if you don’t, your app gets blamed,

not Twitter.”

—Damon Cortesi (@dacort), creator of TweetStats (http://tweetstats.com)
and TweepSearch (http://tweepsearch.com)

362 rartv: The Part of Tens

Don’t Rely on screen_name

“Always use user_id to reference accounts instead of screen_name.
screen_name could change at anytime.”

-Abraham Williams (@abraham)

Use 64-Bit Integers

“Be sure to use long integers (Int64 in the .NET world) for storing ID values.
32-bit integers aren’t large enough for the ID values that Twitter is producing.”

—Duane Roelands (@DWRoelands), creator of Quitter (http://getquitter.
com)

Subscribe to the Google Group

“Expect things to change. Twitter is a rapidly developing service, and
what is true now may not be true in 12 months. Subscribe to the developer
announcement list (http://groups.google.com/group/twitter-
development-talk) and read it religiously.”

—-David Fisher (@tibbon), Web Ecology Project (http://webecology
project.org)

Access the APl in the Background

“If you’re building a Web app, do as much of your Twitter communication
outside the request-response cycle as you can. API calls to Twitter will often
have errors or take unpredictable amounts of time. When possible, move
API calls to background processes or cron jobs, batch them and cache the
results. This gives users a more consistent experience, allows you to more
easily handle errors and helps with staying under rate limits since your API
calls are less of a function of the number of requests your app gets.”

—Hayes Davis (@hayesdavis), creator of CheapTweet (http://cheaptweet.
com) and TweetReach (http://tweetreach.com)

Chapter 20: Ten Twitter API Tips 363

Use JSON

“Get to know JSON. Even if you aren’t writing javascript, there are JSON pars-
ers in most every language. JSON is leaner and meaner than XML and super
easy to understand once you take 5 minutes to learn it. Every Twitter API
method can return JSON data, so use it!”

—Chad Etzel (@JazzyChad), creator of TweetGrid (http://tweetgrid.com)
and TweetHook (http://tweethook.com)

Optimize Caching

“Learn everything you can about efficient caching and database queries. If
your app gets popular, these two things will make or break your success.”

—Noah Coffey (@noahwesley), creator of TweetFX (http://tweetfx.com)

Support International Characters

“Make sure your app supports more than just English characters, especially
when updating a user’s status. For OAuth, this can mean extra legwork, since
the content of the status update is part of what is used to authenticate the
request — so it’s crucial it gets encoded properly. It seems some developers
don’t test international characters — but Twitter is part of an international
community, and this detail shouldn’t be overlooked.”

—Andrew Perrin (@mageuzi), creator of Trowl (http://mageuzi.com/
trowl/)

Do It Client Side

“Twibes uses the powerful (and under-hyped) JASONP support in the
Twitter API to get around usage quotas. By using Javascript to perform
searches, a Web page can become more like a desktop app — connecting
directly to Twitter and only sending the relevant new results up to a Web
server. Distributing your application logic to many clients takes load off
your server and distributes the Twitter API calls (thus using none of your
app’s API quota).”

—Adam Loving (@adamloving), creator of Twibes (http://twibes.com)

364 Partv: The Part of Tens

Appendix A
Twitter APl Reference

' his appendix includes a break down of all the Twitter API methods avail-
able as of this writing. It is to serve as a quick reference guide. The meth-

“&N\BEB ods are in alphabetical order by their path name.
Q
&

All methods referenced in this appendix refer to version 1 of the API. As such,
the root of all method paths is

http://api.twitter.com/1/

Account Methods

v account/verify_credentials

v account/rate_limit_status

¥ account/end_session

v account/update_delivery_device

v account/update_profile_colors

v account/update_profile_image

v account/update_profile_background_image

v account/update_profile

account/verify_credentials

Use to verify that the supplied credentials are valid.

Path Output HTTP Authentication Rate

Formats Methods Limited
/account/ XML, JSON GET TRUE FALSE
verify_

credentials

366 Twitter Application Development For Dummies

account/rate limit status

Returns the amount of remaining API requests available for the hour for the

authenticated user. If you aren’t authenticated, the rate limit for the current
IP address is returned.

Path Output HTTP Authentication Rate
Formats Methods Limited

/account/rate_ XML, JSON GET FALSE FALSE
limit_status

account/end_session

Ends the session for the current logged in user.

Path Output HTTP Authentication Rate

Formats Methods Limited

/account/ XML, JSON GET TRUE FALSE

end_

session

account/update_delivery_device

NNG/ Updates the device that Twitter forwards tweets to.

YQ\

As of this writing, IM is not supported.

Path Output HTTP Authentication Rate
Formats Methods Limited
/account/update_ XML, JSON POST TRUE FALSE
delivery_device
Parameter Description Examples
device Values include: sms, none device=sms

account/update_profile_colors

Sets user defined colors for the elements on the user’s Twitter page for the
authenticated user.

Path

Appendix A: Twitter APl Reference 36 7

Output HTTP Authentication Rate
Formats Methods Limited
/account/update_ XML, JSON POST TRUE FALSE
profile_colors
Parameter Description Examples
profile_background_ Hexadecimal color code profile_background_

color

profile_text_color
profile_link_color

profile_sidebar_fill_
color

profile_sidebar_
border_color

for the background, if
no background image is
present.

Hexadecimal color code
for text.

Hexadecimal color code
for links.

Hexadecimal color code
for the background of
the sidebar.

Hexadecimal color code
for the border around
the sidebar.

color=333

profile_text_
color=000000
profile_link_
color=00C2FC
profile_sidebar_fill_
color=fff

profile_sidebar_border_
color=000

account/update_profile_image

Sets the profile image for the authenticated user.

Path

Output HTTP Authentication Rate
Formats Methods Limited
/account/ XML, JSON POST TRUE FALSE
update_pro-
file_image
Parameter Description Examples
image A GIF, JPG, or PNG image less image=@ mypic.

than 700 kilobytes. Widths
greater than 500 pixels are
scaled down.

png;type=image/png’

account/update_profile_
background_image

Sets the profile background image for the authenticated user.

368 Twitter Application Development For Dummies

Path Output HTTP
Formats Methods

/account/ XML, JSON POST

update_profile_

background_

image

Parameter Description

image A GIF, JPG, or PNG image less

than 800 kilobytes. Widths
greater than 2048 pixels are
scaled down.

Authentication Rate
Limited
TRUE FALSE
Examples

image=@'mypic.
png;type=image/png’

tile Tile the background image by title=true
setting a value of true.
account/update_profile
Sets the authenticated user’s profile text fields.
Path Output HTTP Authentication Rate
Formats Methods Limited
/account/ XML, JSON POST TRUE FALSE
update_
profile
Parameter Description Examples
name A string under 20 characters name=Dusty Reagan
intended for the full name of
the user.
url A string under 100 characters url=http://google.com

intended for the personal URL
of the user. “http://” is added if
not already included.

location A string under 30 characters
intended for the geographical
location of the user.

description A string under 160 characters
intended to describe the user.

Block Methods

v blocks/blocking
v blocks/blocking/ids

location=Texas

description=
awesome dude

Appendix A: Twitter APl Reference 36 9

v blocks/create
v blocks/destroy
v blocks/exists

blocks/blocking

Returns the user details object for the 20 most recently blocked users by the
authenticating user.

Path Output HTTP Authentication Rate
Formats Methods Limited

/blocks/blocking XML, JSON GET TRUE TRUE

Parameter Description Examples

page Page to retrieve older /blocks/blocking.xml?page=5

blocked users.

blocks/blockingl/ids

Get the numeric user ids of users the authenticating user has blocked.

Path Output HTTP Authentication Rate
Formats Methods Limited
/blocks/ XML, JSON GET TRUE TRUE
blocking/id
blocks/create
Block the specified user for the authenticated user.
Path Output HTTP Authentication Rate
Formats Methods Limited
/blocks/ XML, JSON POST TRUE FALSE
create
Parameter Description Examples
id The numeric user ID or screen /blocks/create/12345.xml

name of the desired user. /blocks/create/bob.xml

3 70 Twitter Application Development For Dummies

Parameter Description Example

user_id The numeric ID of the user. /blocks/create.xml?user_
id=12345

screen_name The screen name of the user. /blocks/create.
xml?screen_

name=101010

blocks/destroy

Removes the block of a specified user for the authenticated user.

Path Output HTTP Authentication Rate
Formats Methods Limited
/blocks/destroy XML, JSON POST, TRUE FALSE
DELETE
Parameter Description Examples
id The numeric user ID or screen /blocks/destroy/12345.
name of the desired user. xml/blocks/destroy/
bob.xml
user_id The numeric ID of the user. /blocks/destroy.
xml?user_id=12345
screen_name The screen name of the user. /blocks/destory.
xml?screen_
name=101010
blocks/exists
Check if the authenticating user has blocked a specified user.
Path Output HTTP Authentication Rate
Formats Methods Limited
/blocks/exists XML, JSON GET TRUE FALSE
Parameter Description Examples
id The numeric user ID or screen /blocks/exists/12345.
name of the desired user. xml
/blocks/exists/bob.
xml
user_id The numeric ID of the user. /blocks/exists.

xml?user_id=12345

Appendix A: Twitter APl Reference 3 7 ’

Parameter Description Example
screen_ The screen name of the user. /blocks/exists.
name xml?screen_

name=101010

Direct Message Methods

v direct_messages
v direct_messages/destroy
v direct_messages/new

v direct_messages/sent

direct_messages

Get the authenticated user’s 20 most recently received direct messages.

Path Output HTTP Authentication Rate
Formats Methods Limited

/direct_messages XML, JSON, GET TRUE TRUE
RSS, ATOM

Parameter Description Examples

since_id The numerical id of a direct /direct_messages.xml?

message. Use to return direct since_id=12345
messages that are more
recent than the id specified.

max_id The numerical id of a direct /direct_messages.xml?
message. Use to return direct max_id=54321
messages that are older than
the id specified.

count Limits the results per page to /direct_messages.xml?
an amount specified that is count=100
less than 200.

page Page backwards to retrieve /direct_messages.xml?

older direct messages. page=5

3 72 Twitter Application Development For Dummies

direct_messages/sent

Get the authenticated user’s 20 most recently sent direct messages.

Path

Output HTTP Authentication Rate
Formats Methods Limited
/direct_messages/ XML, GET TRUE TRUE
sent JSON, RSS,
ATOM
Parameter Description Examples
since_id Returns direct messages /direct_messages/sent.xml?
that are more recent since_id=12345
than the id specified.
max_id Returns direct messages /direct_messages/sent.xml?
that older than the id max_id=54321
specified.
count Limits the results to an /direct_messages/sent.xml?
amount specified that is count=100
less than 200.
page Page backwards to /direct_messages/sent.xml?

retrieve older direct
messages.

direct_messages/new

Send a new direct message to a user.

page=5

While the 1d parameter can take either a screen name or numeric user id as
a parameter, there are cases when a screen name and numeric user id may
conflict. For example, a user’s screen name might be 101010. There might
also be a numeric user id 101010. For this reason you should use either the

user_id or screen_name parameter.

Path Output HTTP
Formats Methods
/direct_ XML, JSON POST
messages/new
Parameter Description
user The numeric user ID

or screen name of the
desired user.

Authentication Rate
Limited
TRUE FALSE
Examples

/direct_messages/new/12345.
xml/direct_messages/new/
bob.xml

Appendix A: Twitter APl Reference 3 73

Parameter Description Example

user_id The numeric ID of the /direct_messages/new.
user. xml?user_id=12345

screen_name The screen name of the /direct_messages/new.
user. xml?screen_name=101010

text The content of the direct /direct_messages/new.

message. Must be URL xml?user_id=123&text=hi
encoded and less than
140 characters.

direct_messages/destroy

Deletes a specified received direct message of the authenticating user.

Path Output HTTP Authentication Rate
Formats Methods Limited

/direct_ XML, JSON POST, DELETE TRUE FALSE

messages/

destroy/

Parameter Description Examples

id The numeric id of the direct /direct_messages/

message you want to delete. destroy/12345.xml

/direct_messages/
destroy/12345.json

Favorite Methods

v favorites
v favorites/create

v favorites/destroy

favorites

Returns the 20 most recently favorited tweets for the authenticated user or
the user you request.

Path Output HTTP Authentication Rate
Formats Methods Limited

/favorites XML, JSON GET FALSE TRUE

3 74 Twitter Application Development For Dummies

Parameter Description Examples
id The numeric user ID or /favorites/12345.xml
screen name of the desired /favorites/bob.xml
user.
user_id The numeric ID of the user. /favorites.xml?user_
id=12345
screen_name The screen name of the user. /favorites.xml?screen_
name=101010
page Page backwards to retrieve /favorites.xml?page=5

older favorited tweets.

favorites/create

Mark a tweet as a favorite for the authenticated user.

Path Output HTTP Authentication Rate

Formats Methods Limited

/favorites/ XML, JSON POST TRUE FALSE

create/

Parameter Description Examples

id The numeric id of the tweet /favorites/create/12345.xml
you want to favorite. /favorites/create/12345.json

favorites/destroy

Remove a marked favorite tweet for the authenticated user.

Path Output HTTP Authentication Rate
Formats Methods Limited
/favorites/destroy/ XML, JSON POST, TRUE FALSE
DELETE
Parameter Description Examples
id The numeric id of the tweet /favorites/destroy/12345.xml
you want to un-favorite. /favorites/destroy/12345.json

Social Graph Methods

v followers/ids

v friends/ids

followers/ids

Get to numeric user ids of the entire user’s following a target user.

Path Output HTTP Authentication Rate
Formats Methods Limited
/followers/ids XML, JSON GET FALSE TRUE
Parameter Description Examples
id The numeric user ID or /followers/ids/12345.xml
screen name of a user. /followers/ids/bob.xml
user_id The numeric ID of a user. /followers/ids.xml?user_
id=12345
screen_name The screen name of a user. /followers/ids.xml?screen_
name=101010
cursor Splits results into pages of a /followers/ids/bob.xml?
maximum of 5000 ids. Pass a cursor=-1/followers/ids/
value of -1 to begin paging. bob.xml?cursor=-
1300794057949944903

friends/ids

Get to numeric user ids of all the users a person is following.

Path Output HTTP Authentication Rate
Formats Methods Limited
/friends/ids XML, JSON GET FALSE TRUE
Parameter Description Examples
id The numeric user ID or screen /friends/ids/12345.xml
name of a user. /friends/ids/bob.xml
user_id The numeric ID of a user. /friends/ids.xml?user_
id=12345
screen_name The screen name of a user. /friends/ids.xml?screen_
name=101010
cursor Splits results into pages of a max- /friends/ids/bob.
imum of 5000 ids. Pass a value of xml?cursor=-1
-1 to begin paging. /friends/ids/bob.
xml?cursor=-

1300794057949944903

Appendix A: Twitter APl Reference

375

3 76 Twitter Application Development For Dummies

Friendship Methods

v friendships/create
v friendships/destory
v friendships/exists
v friendships/show

friendships/create

Have the authenticated user follow the specified Twitter user.

Path Output HTTP Authentication Rate
Formats Methods Limited

/friendships/ XML, JSON POST TRUE FALSE

create

Parameter Description Examples

id The numeric user ID or screen /friendships/create/
name of the desired user. 12345.xml/friendships/

create/bob.xml
user_id The numeric ID of the user. /friendships/create.

xml?user_id=12345
/friendships/create.
xml?screen_
name=101010

Enabled following via SMS in addi- /friendships/create/bob.
tion to become a Twitter follower. xml?follow=true

screen_name The screen name of the user.

follow

friendships/destroy

Have the authenticated user unfollow a specified user.

Path Output HTTP Authentication Rate
Formats Methods Limited
/friendships/ XML, JSON POST, TRUE FALSE

destroy/ DELETE

Appendix A: Twitter APl Reference 3 7 7

Parameter Description Examples
id The numeric user ID or screen /friendships/
name of the desired user. destroy/12345.xml

/friendships/destroy /
bob.xml

user_id The numeric ID of the user. /friendships/destroy.
xml?user_id=12345

screen_name The screen name of the user. /friendships/
destroy.xml?screen_

name=101010

friendships/exists

Discover if one user follows another user. Returns true or false. If either of

the users is protected, you must be authenticated as a user with permission
to view that user’s tweets.

Path Output HTTP Authentication Rate
Formats Methods Limited

/friendships/exists XML, JSON GET FALSE TRUE
Parameter Description Examples
user_a The id or screen_name /friendships/exists.xml?user_

of a user. a=dougwé&user_b=al3x
user_b The id or screen_name /friendships/exists.xml?user_

of a user whom you a=dougw&user_b=al3x

want to know if user_a
is following.

friendships/show

Returns the bi-directional following status of two users.

Path Output HTTP Authentication Rate
Formats Methods Limited
/friendships/show XML, JSON GET FALSE TRUE

If you want to compare the following status between the authenticated user
and another user, you are only required to supply either the target_id or

target_screen_name parameters. Otherwise, you must supply both a source
user and a target user.

3 78 Twitter Application Development For Dummies

Parameter Description Examples

source_id The numeric id of /friendships/show.xml?source_
a user. id=123&target_id=456

source_screen_name The screen_name /friendships/show.xml?source_
of a user. screen_name=bob

&target_id=456
The numeric id of /friendships/show.xml?target_
another user. id=456

target_screen_name The screen_ /friendships/show.xml?target_
name of another screen_name=bob
user.

target_id

Help Methods

v help/test

help/test

Used to test your connection to Twitter’s APL

Path Output HTTP Authentication Rate
Formats Methods Limited
/help/test XML, JSON GET FALSE FALSE

Notification Methods

v notifications/follow

v notifications/leave

notifications/follow

Have Twitter send the tweets of a specified user the authenticated user’s

device.

Path Output HTTP Authentication Rate
Formats Methods Limited

/notifications/ XML, JSON POST TRUE FALSE

follow

Parameter Description

id The numeric user ID or

Appendix A: Twitter APl Reference 3 79

Examples
/notifications/follow/12345.

screen name of the desired xml

user.

user_id The numeric ID of the user.

screen_name The screen name of the
user.

notifications/leave

/notifications/follow/bob.xml

/notifications/follow.
xml?user_id=12345

/notifications/follow.
xml?screen_name=101010

Have Twitter stop sending the tweets of a specified user to the authenticated

user’s device.

Path Output HTTP
Formats Methods

/notifications/ XML, JSON POST

leave

Parameter Description

id

The numeric user ID
or screen name of the
desired user.

user_id The numeric ID of the
user.

screen_name The screen name of the
user.

OAuth Methods

v oauth/access_token
v oauth/authenticate
v oauth/authorize

v oauth/request_token

Authentication Rate
Limited
TRUE FALSE

Examples

/notifications/leave/12345.xml
/notifications/leave/bob.xml

/notifications/leave.xml?user_
id=12345

/notifications/leave.
xml?screen_name=101010

380 Twitter Application Development For Dummies

oauth/access token

Path Output HTTP Authentication Rate
Formats Methods Limited
/oauth/access_ TEXT POST FALSE FALSE
token
oath/authenticate
Path Output HTTP Authentication Rate
Formats Methods Limited
/oauth/ NONE GET FALSE FALSE
authenticate
oauth/authorize
Path Output HTTP Authentication Rate
Formats Methods Limited
/oauth/authorize =~ NONE GET FALSE FALSE

oauth/request_token

Path Output HTTP Authentication Rate

Formats Methods Limited
/oauth/request_ TEXT GET FALSE FALSE
token

Saved Searches Methods

v saved_searches
v saved_searches/create
v saved_searches/destroy

v saved_searches/show

Appendix A: Twitter APl Reference 38’

saved searches

Get the authenticated user’s saved searches.

Path

Output HTTP Authentication Rate
Formats Methods Limited
/saved_searches XML, JSON GET TRUE TRUE

saved searches/create

Add a search query to the authenticated user’s saved searches

Path

Output HTTP Authentication Rate
Formats Methods Limited
/saved_ XML, JSON POST TRUE TRUE
searches/create
Parameter Description Examples
query The search query you want to query=test

save.

saved_searches/destroy

Remove a search query from the authenticated user’s saved searches.

Path

Output HTTP Authentication Rate
Formats Methods Limited
/savedsearches/; XML, JSON POST, TRUE TRUE
destroy DELETE
Parameter Description Examples
id The numeric id of the /saved_searches/
search to be removed. destroy/12345.xml

saved_searches/show

Remove a search query from the authenticated user’s saved searches.

Path

Output HTTP Authentication Rate
Formats Methods Limited
/saved_searches/; XML, JSON GET TRUE TRUE
show

382 Twitter Application Development For Dummies

Parameter
id

Description

Search Methods

WMBER
@ﬁ
&

The numeric id of a saved search.

Examples

/saved_searches/
show/12345.xml

As of this writing search methods have a different domain than the rest of the

Twitter API. Twitter plans to eventually merge the search API with the rest of

the API system.

v search

V¥ trends

v trends/daily
v trends/current

v trends/weekly

search
Path Output HTTP Authentication Rate
Formats Methods Limited
search.twitter. JSON, GET FALSE TRUE
com/search ATOM
Parameter Description Examples
q The URL encoded search search.twitter.com/search.
query to be performed. atom?q=test
callback The callback function for search.twitter.com/search.
JSON requests. json?callback=foo&q=tadd
lang The ISO 639-1 code used search.twitter.com/search.
to filter tweets by lan- atom?lang=en&q=tadd
guage.
locale Used to declare the lan- search.twitter.com/search.
guage of the search query. atom?q=&locale=ja
“ja” is currently the only
available value.
rpp The desired amount of search.twitter.com/search.

search results per page
less than 100.

atom?q-= tadd&rpp=15

Parameter
page

Description

Page to retrieve older
search results.

Returns tweets that are

more recent than the id
specified.

since_id

Return results in a radius
around a latitude and
longitude based on the
user’s geocode loca-

tion in their profile. The
string must be in the form
“latitude,longitude,radius”
where radius is declared
as “mi” (miles) or “km”
(kilometers).

geocode

show_user

trends

Appendix A: Twitter APl Reference 383

Examples

search.twitter.com/search.
atom?q=tadd&rpp=15&page=6

search.twitter.com/search.
atom?q=tadd&since_id=12345

search.twitter.com/search.
atom?geocode=41.353129%2C-
62.155203%2C60mi

search.twitter.com/search.
atom?q=twitterapi&show_
user=true

Get the top ten currently trending search topics.

Path Output HTTP
Formats Methods
search.twitter. JSON GET

com/trends

trends/daily

Get the top 20 hourly trending search topics for a given day.

Path Output HTTP
Formats Methods
search.twitter. JSON GET

com/trends/daily

Authentication Rate
Limited
FALSE TRUE
Authentication Rate
Limited
FALSE TRUE

384 Twitter Application Development For Dummies

Parameter Description

Examples
date Start date in YYYY-MM-DD search.twitter.com/trends/
format. daily.json?date=2009-01-10
exclude

Exclude hashtags from the

results by setting the value
to “hashtags.”

search.twitter.com/trends/
daily.json?exclude=hashtags

trends/current

Get the top ten current trending search topics.

Path Output HTTP Authentication Rate
Formats Methods Limited

search.twitter. JSON GET FALSE TRUE

com/trends/

current

Parameter Description Examples

exclude Exclude hashtags from

search.twitter.com/trends/current.

the results by setting the json?exclude=hashtags

value to “hashtags.”

trends/weekly

Get the top 30 daily trending search topics for a given week.

Path

Output HTTP Authentication Rate
Formats Methods Limited
search.twitter.com/ JSON GET FALSE TRUE
trends/weekly
Parameter Description Examples
date Start date in YYYY-MM-DD search.twitter.com/trends/
format. weekly.json?date=2009-01-10

exclude Exclude hashtags from

search.twitter.com/trends/

the results by setting the = weekly.json?exclude=hashtags

value to “hashtags.”

Spam Reporting Methods

V¥ report_spam

Appendix A: Twitter APl Reference 385

report_spam

Block the specified user for the authenticated user and reports them as spam.

Path Output HTTP Authentication Rate
Formats Methods Limited

/report_spam XML, JSON POST TRUE FALSE

Parameter Description Examples

id The numeric user ID or /report_spam/12345.xml
screen name of the desired /report_spam/bob.xml
user.

user_id The numeric ID of the user. /report_spam.xml?user_

id=12345

screen_name The screen name of the /report_spam.xml?screen_

user. name=101010

Status Methods

V” statuses/destroy

v statuses/followers

1 statuses/friends

1 statuses/friends_timeline
1 statuses/home_timeline
»” statuses/mentions

1 statuses/public_timeline
1 statuses/retweet

v~ statuses/retweeted_by_me
V¥ statuses/retweeted_of_me
1 statuses/retweeted_to_me
” statuses/retweets

»” statuses/show

»” statuses/update

1 statuses/user_timeline

386 Twitter Application Development For Dummies

statuses/destroy

Deletes a specific status update.

You can only delete a status update that belongs to the user you're authenti-

cating with.
Path Output HTTP Authentication Rate
Formats Methods Limited
/statuses/destroy/ XML, JSON POST, TRUE FALSE
DELETE

Parameter Description Examples

id The numeric id of the tweet /statuses/destroy/12345.xml
you want to delete. /statuses/destroy/12345.json

statuses/followers

Retrieves a list of a user’s followers and includes their profile details and last
tweet. Only retrieves 100 users at a time.

If you request follower data for a protected user, you must authenticate and
be allowed to view the protected user.

If you provide no parameters the method will return the follower details for
the user you have authenticated with. If you have not authenticated, you must
provide a parameter to identify the user whose follower details you want to

retrieve.
Path Output HTTP Authentication Rate
Formats Methods Limited

/statuses/ XML, JSON GET FALSE FALSE

followers

Parameter Description Examples

id The numeric user ID or screen /statuses/followers/

name of the desired user. 12345.xml/statuses/

followers/bob.xml

user_id The numeric ID of the user. /statuses/followers.
xml?user_id=12345

screen_name The screen name of the user. /statuses/followers.

xml?screen_names=
101010

Parameter

Appendix A: Twitter APl Reference 38 7

Description Examples
cursor Splits results into pages of a /statuses/followers/bob.
maximum of 100 users. Pass a xml?cursor=-1/statuses/
value of -1 to begin paging. followers/bob.
ml?cursor=-
1300794057949944903
statuses/friends

Retrieves a list of who the user is following and includes their profile details
and last tweet. Only retrieves 100 users at a time.

If you request following data for a protected user, you must authenticate and

be allowed to view the protected user.

If you provide no parameters, the method will return the following details
for the user you have authenticated with. If you have not authenticated, you
must provide a parameter to identify the user whose following details you

want to retrieve.

Path Output HTTP
Formats Methods
/statuses/friends XML, JSON GET
Parameter Description
id The numeric user ID
or screen name of the
desired user.
Parameter Description
user_id The numeric ID of the

user.

screen_name The screen name of the

user.

cursor Splits results into pages
of a maximum of 100
users. Pass a value of -1

to begin paging.

Authentication Rate
Limited
FALSE FALSE
Examples

/statuses/friends/12345.xml
/statuses/friends/bob.xml

Examples

/statuses/friends.xml?user_
id=12345

/statuses/friends.xml?screen_
name=101010

/statuses/friends/bob.
xml?cursor=-1
/statuses/friends/bob.
xml?cursor=
1300794057949944903

388 Twitter Application Development For Dummies

statuses/friends_timeline

Returns the most recent 20 tweets from people the authenticating user is fol-

N lowing and includes tweets from the authenticating user.
o G/
s This method is planned to be deprecated and replaced with /statuses/home_
timeline.
Path Output HTTP Authentication Rate
Formats Methods Limited
/statuses/ XML, JSON, GET TRUE TRUE
friends_timeline RSS, ATOM
Parameter Description Examples
since_id Returns tweets that are more /statuses/friends_
recent than the id specified. timeline.xml?since_
id=12345
max_id Returns tweets that are older /statuses/friends_
than the id specified. timeline.xml?max_
id=54321
count Limits the results to an amount /statuses/friends_
specified that is less than 200. timeline.xml?count=100
page Page backwards to retrieve older /statuses/friends_

tweets.

statuses/home_timeline

Returns the most recent 20 tweets from people the authenticating user is
following, including retweets, and tweets from the authenticating user.

timeline?page=5

This method is the same as /statuses/friends_timeline, except that it includes

retweets.

Path Output HTTP Authentication Rate
Formats Methods Limited

/statuses/home_ XML, JSON, GET TRUE TRUE

timeline ATOM

Parameter Description Examples

since_id Returns tweets that are more /statuses/home_timeline.

recent than the id specified.

xml?since_id=12345

Appendix A: Twitter APl Reference 389

Parameters Description Examples
max_id Returns tweets that are older /statuses/home_timeline.
than the id specified. xml?max_id=54321
count Limits the results to an amount /statuses/home_timeline.
specified that is less than 200. xml?count=100
page Page backwards to retrieve /statuses/home_
older tweets. timeline?page=5
statuses/mentions
Returns the most recent 20 tweets that contain the username of the authenti-
cated user.
Path Output HTTP Authentication Rate
Formats Methods Limited
/statuses/ XML, JSON, GET TRUE TRUE
mentions RSS, ATOM
Parameter Description Examples
since_id Returns tweets that are more /statuses/mentions.
recent than the id specified. xml?since_id=12345
max_id Returns tweets that are older than /statuses/mentions.
the id specified. xml?max_id=54321
count Limits the results to an amount /statuses/mentions.
specified that is less than 200. xml?count=100
page Page backwards to retrieve older /statuses/

tweets.

statuses/public_timeline

mentions?page=5

Returns the most recent 20 public tweets of users who have a custom profile
image. The public timeline is cached and only returns new results every 60

seconds.

Path

Output HTTP Authentication Rate
Formats Methods Limited
/statuses/public_ XML, JSON, GET FALSE TRUE
timeline RSS, ATOM

390 Twitter Application Development For Dummies

statuses/retweet
Retweets a tweet. You must be authenticated as the user who wants to
retweet.
Path Output HTTP Authentication Rate
Formats Methods Limited
/statuses/retweet XML, JSON POST, PUT TRUE FALSE
Parameter Description Examples
id The numerical id of a tweet /statuses/retweet/1234.xml
you want to retweet.
statuses/retweeted by me
Get the authenticated user’s most recent 20 retweets.
Path Output HTTP Authentication Rate
Formats Methods Limited
/statuses XML, JSON, GET TRUE TRUE
/retweeted_by_me ATOM
Parameter Description Examples
since_id Returns tweets that are more /statuses/retweeted_by_
recent than the id specified. me.xml?since_id=12345
max_id Returns tweets that are older /statuses/retweeted_by_
than the id specified. me.xml?max_id=54321
count Limits the results to an /statuses/retweeted_by_
amount specified that is less ~ me.xml?count=100
than 200.
page Page backwards to retrieve /statuses/retweeted_by_

older tweets. me?page=5

statuses/retweeted_of me

Get the authenticated user’s most recent 20 retweets that have been
retweeted.

Appendix A: Twitter APl Reference

Path Output HTTP Authentication Rate
Formats Methods Limited

/statuses/ XML, JSON, GET TRUE TRUE

retweeted_of_ ATOM

me

Parameter Description Examples

since_id Returns tweets that are more /statuses/retweeted_of_
recent than the id specified. me.xml?since_id=12345

max_id Returns tweets that are older than /statuses/retweeted_of_
the id specified. me.xml?max_id=54321

count Limits the results to an amount /statuses/retweeted_of_
specified that is less than 200. me.xml?count=100

page Page backwards to retrieve older /statuses/retweeted_of_

tweets.

statuses/retweeted to me

me?page=5

Get the authenticated user’s friends most recent 20 retweets.

Path

Output HTTP Authentication Rate
Formats Methods Limited
/statuses/ XML, JSON, GET TRUE TRUE
retweeted_to_me ATOM
Parameter Description Examples
since_id Returns tweets that are more /statuses/retweeted_to_
recent than the id specified. me.xml?since_id=12345
max_id Returns tweets that are older /statuses/retweeted_to_
than the id specified. me.xml?max_id=54321
Parameter Description Examples
count Limits the results to an amount /statuses/retweeted_
specified that is less than 200. to_me.xml?count=100
page Page backwards to retrieve older /statuses/retweeted_

tweets.

to_me?page=5

392 Twitter Application Development For Dummies

statuses/retweets
Get a tweet’s most recent 100 retweets.
Path Output HTTP Authentication Rate
Formats Methods Limited
/statuses/retweets XML, JSON GET TRUE TRUE
Parameter Description Examples
id The numerical id of a tweet you /statuses/retweets/1234.
want to retweet. xml
count Limits the results to an amount /statuses/retweets/1234.
specified that is less than 100. xml?count=4
statuses/show

Get the details of a tweet and its author. If an author is protected, the
authenticated user must have permission to view that user’s tweets.

Path Output HTTP Authentication Rate

Formats Methods Limited
/statuses/ XML, JSON GET TRUE TRUE
show

Parameter Description

Examples
id The numerical id of a tweet /statuses/show/1234.xml
you want details on.
statuses/update

Create a new tweet of 140 characters or less for the authenticated user. Duplicate
tweets are not allowed. There is an unspecified limit to the amount of status
updates a user may tweet per day. If the limit is reached, a 403 HTTP error is

returned.

Path Output HTTP Authentication Rate
Formats Methods Limited

/statuses/ XML, JSON POST TRUE FALSE

update

Parameter Description Examples

status

The contents of the tweet. Anything over

status=Hello
140 characters is truncated.

Parameter Description Examples
in_reply_to_ The id of a tweet that is being replied to. in_reply_to_
status_id The new tweet reply must contain the status_id=1234

username of the author of the original
tweet, or this parameter is ignored.

lat The geographical latitude of the tweet. lat=30.4
Must be a valid latitude value between
-90.0 and +90.0, the long parameter must
be valid, and the user must not have
geo_enabled disabled, otherwise this
parameter is ignored.

long The geographical longitude of the tweet. long=35.6
Must be a valid longitude value between
-180.0 and +180.0, the lat parameter must
be valid, and the user must not have
geo_enabled disabled, otherwise this
parameter is ignored.

statuses/user timeline

Returns the authenticated user’s most recent 20 tweets, unless you include
an id or screen_name for another user. If you request data for a protected
user, the authenticated user must be allowed to view the protected user.

While the 1d parameter can take either a screen name or numeric user id as
a parameter, there are cases when a screen name and numeric user id may
conflict. For example, a user’s screen name might be 101010. There might
also be a numeric user id 101010. For this reason you should use either the
user_id or screen_name parameter.

Path Output HTTP Authentication Rate
Formats Methods Limited

/statuses/user_ XML, JSON, GET FALSE TRUE

timeline RSS, ATOM

Parameter Description Examples

id The numeric user ID or screen /statuses/user_timeline/

name of the desired user. 12345.xml/statuses/
user_timeline/bob.xml
user_id The numeric ID of the user. /statuses/user_timeline.

xml?user_id=12345

Appendix A: Twitter APl Reference

393

394 Twitter Application Development For Dummies

Parameter Description Examples
screen_name The screen name of the user. /statuses/user_timeline.
xml?screen_name=101010
since_id Returns tweets that are more /statuses/user_timeline.
recent than the id specified. xml?since_id=12345
max_id Returns tweets that are older /statuses/user_timeline.
than the id specified. xml?max_id=54321
count Limits the results to an amount /statuses/user_timeline.
specified that is less than 200. xml?count=100
page Page backwards to retrieve /statuses/user_
older tweets. timeline?page=5

User Method's

v Get User’s Profile Information: /users/show

users/show

Returns the profile information for a requested user.

While the 1d parameter can take either a screen name or numeric user id as
a parameter, there are cases when a screen name and numeric user id may
conflict. For example, a user’s screen name might be 101010. There might

also be a numeric user id 101010. For this reason you should use either the
user_id or screen_name parameter.

If you request data for a protected user, you must authenticate and be
allowed to view the protected user.

Path Output HTTP Authentication Rate
Formats Methods Limited

/users/show XML, JSON GET FALSE TRUE

Parameter Description Examples

id The numeric user ID or screen /users/show/12345.xml

name of the desired user. /users/show/bob.xml
user_id The numeric ID of the user. /users/show.xml?user_
id=12345
screen_name The screen name of the user. /users/show.xml?screen_

name=101010

Appendix B
Gallery of Twitter Applications

In This Appendix

Pictures for inspiration

' witter applications and products can take shapes wild or practical. I've
selected some of my favorite examples of fun or functional products for
you. These pages show the unique looks that you can create for a Twitter

product.

Many of these products are described in detail in Chapter 4.

y

Nk i TWEET WHAT'S FRESH

S
= LR Haker Signin

J

|
Figure B-1:
BakerTweet
announces
fresh
products to
customers.
|

11 wmeo

3 96 Twitter Application Development For Dummies

& blPm

Biog | FAQ § Fesdback Search s | Invile Frends

maczter Black Moth Super Rainbow + The Octopus
Project — "All The Friends You Can Eat"
Bleck \;.e-,n .s—u.oe.- Rainbow + The Oetopus Progect - All Tha Friands You Can Est

4 | AMAZON | ITUNES
props

maczter Johnny Cash — "l Walk the Line" [63
daheny Cash - | Walk the Ling | - 4 atanan
ORT | AMAZON | TTUNES | GET RINGTONE

ADDTO FAVORITES

maczter 311 — "All Mixed Up”
an-al Qi-xaa U | ol

AMAZGN | (TUNES | GET RNGTONE Broadcast your blips
maczter | hope my leg don't break... | . to your friends, Cl\c"!:'ﬂ
Policls : The Pale - Wall The Moon | pls if they're not on Blip.fm

L) TUNES

Figure B-2:
Blip.fm

maczter What a greal movie.
shares your
y . Chint Enstwond -~ Gran Torno (foat. C3 rstwood Az Wall Kowstaki) | ploy
favorite St gy
music with maczter #hookem
your friends.
|
- |
#botanicalls)
About Classic Kits Duy Press Contact Forums
“Homegrown Terra-rists” Ignite Video Buy the Kit:
Ignite: Kati London on Botanicalls: Homegrown T.
* K dkey " I 1
K ; i i Maker SHED
| =
Search for:
{ Searen)
Categories
Announcements (4)
Press (z)
Pothos Plant Tweets
| =
Figure B-3: m
. The 1gnite Show just poated episade 2, Kat's Botanicalls Ignite NYC talk from back in 2] -l
Botanicalls Scptember 2008 during Vel 2.0 Eapo, You may want to skip past the imtro.and start at Wesitin Mt
plant moni- M days as
ina ki The. Bétmaicalls systims, nnd spplicitions. e nateworkel - opin. soumss. hardvars wid You over watered me.
torlng it. software to allow plants to communicate with people on people's terms - using the Gadaysago

telephone, text messages or twitter. You didi't wabts mé
enough. b davs aes

Appendix B: Gallery of Twitter Applications 39 7

T e

CheapTweet
Securing Twittar for deals 10 you don't have to.
All | Fashion & Beauty | Tech | Entertelnment & Travel | Home & Family | Food |

Shop CheapTweet Stores for great deals from Perpatual Kid

Cheapest Twoots JRITEUE@ITETS
Cheapest Tweets are gur best deals based on your voles and Twitter conversations.
Click [PTETETT) to vote for good deals. Join CheapTwes! o save your voles and more.

7 E DaddyoDeals: Back to School Sales and Coupons 2009 Click Heral
Chups.

In Back 10 Scnoo « | Snarg | Detsbs -

9 b

2! tochstartups: jetblue offors all-you-can fly deal for $599. unlimited flights for a Biayer be hoppr @
month, greal deal hitp:fhit.hv/17pLowW

Creapa
Cheap St
m g Lamal = | in Uncategorized = | Shars = | Dasals « Bgrg_g;;ng s
E:Im am Dedl, HP and
H - . - 1 g at
5 De_a,SeakIé\gMnm. Nsv:' blog Pasr. Bath & Body Warks: FREE Trial Sizae ltam Al AP
Cheaps b Printable Coupon W, Chaagstingyasgain.
] BT 1 Lame: - 110 Uncatenerizng <1 Shass =1 Dy - E Eollom 00 Tuee |
Figure B-4: 6 travelswitheman: Fly all you want on JetBlue for a month, Only $800+. Is this mackepw
is & good deal? | have no idea... htp:/Minyurd comAdiTid Amedica's Pramier Waterlow!
CheapTweet Caes Ouitter
. aLame! « | in Uncategorizac « | Share «| Diaspis = W mackspw com
finds great :
deals and 5 2 homemakerbarbi: Amazon has 50% off High Siera backpacks for back to .
| Chioscn é; M8 1 #schoal, including pink wheelad backpacks with #res shipping: hitp:/twurlnl Adverrise Here
discounts. i chesc) SR L
_ i Lame! + 1 in Back 1o Schock « | Sharg « | Datils «

Settogy Support Sigri Dut

Eatv_veet' i ’ “ }J @ Saarch Twitier J—

[coris Andarsan + bt ug
Dusty, ks Conjunctunad curnently accepting nisw mambers?

e 153 Puna Johnson Visterek
Scnaduisd ™ n Winlcome back 10 the mothadand,

A1 Boston irpee about 1o boand our plane 1 [AH. Locking twd 10 sesing
Flnslas dog & sisaping in our own bed. (via @ 0OustyReagan) <-—dittall

| [Westey Fautcnar Praa
| have a twitter wab app | would Exa i talk to you about

] [§ O xatia Rose Pipiin

Just Pt U Some artwork at & conju

ed [cownrking space on aast

- . | sevanth). i you'ne ver thine, waich the walls
Figure B-5:
CoTweet : [bon sallars [i
4 @DustyReagan hope its more than a toa party’ in Boston! Enjoy ;)
manages
10 Cwvid Gioaterg £ dene ag L t
COnta CtS fOr ﬂ @DustyReagan Yeah, | hoat the guy thal mace FoF is pretty alnght too
business0
. Pt I3 Chria Marsden e g i
tweetin g. @DustyReagan - | love Friand or Follow, delinitaly great for & litle
Faatace housekeapng now and than.

398 Twitter Application Development For Dummies

|
Figure B-6:
ExecTweets
aggregates
messages
fromprominent
executives.
|

|
Figure B-7:
Featured
Users ad
network.
|

All Execs Ao ExocTwrets
Take our-suney Bnd our
sponsorwill donsta $26 10,6 Festured Most Popuiar Al Twaets Hest of ExecTweets arevicur b _next
charlty of your cholcal
Tahe Our Survey
zappos “Tho soerat of happinass s
B v Thers aro hasizally two typos of resn
I z':’_g?i’ m—-‘:‘:u:.“n‘r“ of trendon |8 ‘ - S . e - |
- sy | the ands and {hosa who sae money an the
—_—)Bmhylnﬁllﬁ'!_’l Wit 12 A 213 * 4 Ovoms maans T
b |
d T 257l pa47 415 voten
|+ mm.: umaorsdily Nice squote, Sean in Farbes: A =]
| £ Executive Twooto - whip In tha harhar b safe, bt that s not
B what ships are buit for.” John Shedd s
o ‘& Fellaw ExacTwosts GartagE 4 Ovoms Jain the Conversation |

FThuri ey, e ey whaaon P ot a8)

A

Timberiand_Jefl KT @TwiltghtEarth: Kids:
An Uintapped Power Source For Teckiing

Twesee Lnarmama:

B Tier Password
= Energy Use hop-ibit iy 1X5tpH -
T Most Popular Tun 11 fug 1700 O+ Ovotes =R M
E DKMatal TachCrunch - Oh, By the way: The Palm Pro [= |
O Matal TC ftonan home with your loaatian)]
F = 1 g Nem.cEEQT by @UregRumparnak L
SteveCase |
e et weerimg s F Ovows
. o Accoul? Sign Up for Twitber -
P g : StevonRothbern Pls AT Wha's Hiring at What's iy Twsor 101
Marisa Thalbeng CR The Fastast Growing Companies - Val VI = A= 7

Home Users Publishers Contact

-

FAQ Blog

-

o ' g
@amuse's Dashboard Crplp—

impressions remaining.
BUY MORE
2,000 for §20
| Buy.Now. |

=P

This is- how your banner will appear on the Fealured Users network. If you'd like to
change it you must update your Twitter profile.

IF ol Brought to you by @amuse
| Entrepranaur, Consarvative and Co-founder of ShopSawwy and Big in |
Japan.

L — — 4,200 for $40°

Wiant your Twlitsr profis here? Tannimeglisers com |
= T

* fuet 4 mddtianal mpmssion

o bol purchases of ST Mot

11,500 for §100*
- BuyNew.

v = Dy

Follow @FeaturedUsers and we'll DM you when you run out of impressions,

Earn Free Impressions!

If somaane usas your rafarral link idad balow] to purch an Featunad
Usars, you will recaive 10% of their total order in free impressions! Detaits hore.

Your refermal link: http./ 4

* Chen 184 masttiansd imperasines

Why not tweat about It now? Tof Bl purchased of 3100 mote

{7072 BANNER DIST. | CLICK DETAILS

Appendix B: Gallery of Twitter Applications 399

follow cost

": 2 users
Put your
Twitter profile
here.
Boost your Twitter
popularity by
I promoting your
pquule on dqzcl:!s of
Figure B-8: PER DAY PER DAY :;%mﬂ%’fﬁ’::
tur
Follow Cost : me a Feal
- « Tweet this follow cost - fe Get our bookmarklet - fe Find another follow cost
finds how
frequently Become s sponsor at
other users
tweet.
follow cost created by Luke Franci and Bary Hess - How it warks - Gacgets - AP) - Iollow d¥fllowcost on Twiftgr
I

dustyreagan ©
Dusly Reagan, Austin, T
Sarted Jedy in Austin. Co-Founses Conjunctures. Made
FriencOrFaliow.com and Faaturedlisars com. Writing Twimar
App Bivelopment For Dumimieon.

A T ="
u i
- You should follow @z_bill on twitter here.
N Bio: Comit Baoks by Day - Night: Patral
. I a Location: Austin

Become & sponsor & Fenkrdlipens oom

Sort by Last Tweet &)

fyraagan's followsng them back, [twent

Friends
These 432 people are following dust
Expaort as CEW.

Twitter User

rowth Chart | Top 100 Most Followed Users | Top 100 Most Following Users

|
Figure B-9: !
Friend Or
Follow
shows users
who aren't
following
their friends.
|

00 Twitter Application Development For Dummies

Figure B-10:
Hashtags.
org tracks

and
searches
Twitter
hashtags.
|

Figure B-11:
HootSuite
manages
multiple
Twitter
accounts

for multiple
users.
|

#hashtags

Most popular hashtags on twitter

tidday irm nol doing It and donl de @ 1o mes

mm.da! Iur‘.hlnll.li'u
447,70 wither

#s3i55Gad's mission to iranians 1o expose istam ft inok 30
yrs.Islam will be known as Satanic Gult in human history
329,974 giranelection ato.t

327,318 |

7, Mol about o

#fy ©more days.. #fb
302,560

'r'w‘lw' Hotjobs: SPOATS AND ENTERTAIN MENT W’\HKE
ﬂ?bﬂ s N -t bt yad o e/ MOBTE

hm at

ST waf ba #if Sswaoperiicrel b
202,772

Mmoot o
118,BET

#hiring: full time retall sales consuftamt. wast myack, .
obs
mm’x]a g TAT-WEST NVAGK, NY hrigu/oi yrs0x Wrwestmyiots

#anuaresnara Shvck oul bllofeww hogreenehallengus, cony s bui on

L] Shrink It () Sand Later | Submit Tweet |
FoeturedUsers @ Feawred [

o ! Rl - |

ﬂ(wu-mmrm @ » E3 B mentions

it Cp s

WhIER youl 584 DINAPS STHR, yoUe SHirts e

Vineage reggas from Gragary isaacs, Foyd Lioys
3 wpualwlyamumd by l'!llrum llwt:'wljm.l

aend iy oifwrs, check it oul.

Select Profilefs) a1 | nane

search

Trends
Tags
People
About
Feedback

Yo should fullow
@DrEldunTaylor on
twitler her.

Bio: | a student of the
most untapped buman
resouiree in the world - the
mind, arnd €5 beitg
programmed by evervone,
Fallow me and I'm Hlely i
fallow you.
Locution: Washingtis

Halio, Duaty Sipn Out

@~ E3 [KN Oirect Message (inbox)

state’ AT @
willconley77T -
" Nor Bt kvt Taemis El‘wmtsﬂirsct
Gallea was WRONG about the earih maving —e
aenard the siun Bur than he was RIGHT Ho was Ttan from mase Ehemns

| frana groat
hi

crazy and defuced, they sakd i

. WhiteSamrmy

Todtier list bulder, AMAZING. |
@rwstes] T

RT e .
By Supgestiony
when it grows,

ﬁ MsMariaG . @

1 am going 10 tay mysell a pat
U3t bUy B DB BT StRYS Cute

- ‘ | roberto_pacman

Hnoaisulte

@ o searh

Y x|

4 % whbarbesa H
Cbrigatn por ACASRAT, I8A 03 AAIES ANMANAMRS

Critigut: a1, Divukjuefigs mais
ntrp:/iw 5.t 1501 o b, Washington

D A

Harbosa

&« ManeyDazed

Folaw our Twesls lor our Swesh,_snd_updshes Tor
Pexl wesks rading opponunites!

a rockatitsupport

Appendix B: Gallery of Twitter Applications 4 0 ’

beamagpie

\ >" join the conversation

Magpie is a Twitter Advertising Network

Wrt infrmsartien you an e mwry wih yoo? Cark hers!

candy tsed e

"Crder Angelo’s

beweneam now onlime'

2 o
> \‘a'"_—)q ﬁiﬂﬁ

Twitler #2

4
'3 ,‘ (ciry, succer)
! »
- P A -
s =i . *Order Angelo's
Y fescrenm now online!
| -
v

Figure B-12: ADVERTISERS JeRE. W o s
Magpie ad & g_gﬂgg.a.:
network.

I
HOME PROFILE RECOMMEND OTHERS Hi, DUSTYREAGAN! LOGOUT
Help to Improve MrTweet By Telling Us Who Is Awesome
Cive meaningful recommendations to peaple you respect, Here's why
I\
Featured Users Conjunctured Sarah Vela Zach Taylor Sharles
Updated Daily: People You Might Be Interested In
B0 YOU KNOW_
drafthouse rafthouse 4 friends, 3157 foliowers, 789 rate
Fram [0 Y I You were sugoested to 433 peope In the
s 5 . past 56 days ; including
: smeiaughiinehris,
Hayes Davis, Crsas Tarres, and D ks mentione Whirw mnrw
‘ ey os T acis Mt OV H M e INCREASE YOUR REPUTATION
T get suggested 10 mare great people

Say bl | | Show reeam Bemovs fram il

(et Recommended By Your Fams

Figure B-13:
2 frabndls. 4717 Followers, 2359 raticy RECOMMEND AWESOME TWITTERERS

Mr TWeet 7 :n::"rs?.n::re ! @foursquare 2
C ollowed by theie freads Heip awesome people get discoverad

navenn

re c om- . I = { : Recommend Sameane Awesome
mends B oo s e s v show o ¥
users for o e S

you to
follow. :
I Your Activities People discovered 3o far 0

Eraoks Rennett [@lrookeBennstl 119 fraends. 341 fnfiowers, 2.9 rana
Frum Round Rock, T

4 02 Twitter Application Development For Dummies

Home Profile Find Prople Semings Melp Sign out

Name femember The Milk
Location The Interwebs

T rtm web hrtp:/ frmilk.eom/ ..
P Bio Manage your tasks via
4 Twitter. Loaking for updates

frum the Remember The
Milk team? Follow

Foton Erememberthemilk
. 45410 41,281
I'm alive! Add tasks and send Folfoaing. faliomers
commands to me by direct et s
message. | can send reminders e
too. Setup and info:
http://rmilk.com/twitter i
Faoliowing

wlls M

MIE AL

EEOEeD

¢ Lol bl il

— EE azp
Figure B-14: AEEEAR

Remember e
The Ml|k® 3 R55 feed af rim's tweets
to-do list.
© 2009 Twitter AboutUs Uontact Blog Status Goodies AP Business Help lobs Terms Privaty
I
o
decretlweet eyt oy
post vour seerels to bwitter anonymously
You should follow @&Maryam Rajavi on twitter here.
Bie: President-elect of National Council of Resistance of Iran
Location: Auvers sur Oise, France
Becume a spunsoe at FealudUson.oom
Top Tweets for 9/14/09 i
'F 1°P “I wish | never 'recavered’ from my eating dis.. -‘Jfﬂm your decret
“me and my friends went home on "study 1ea\re =
A “I'm absolutely terrified of the idea that | wi. Btart typing herw . . .
. s “Every single day | regret the day | met you. | .
E— . i know the diffarence batween our world and the..
*| love jackie | hope she doesn't mind when | t..
. # 7"l am SO0 afraid to love, simply because | am ai
Flglll'e B-1 5: | want to ask my friends to recommend a divor:
Secret
Tweet s by Gaogle SaftEstparn
pOStS your Secret is powered by a single person. It takes a lot of >
secrets time, worlt and cold, hard cash to keep the site online, the twitter
! stream - t.edﬂ;\dt#d ndelw content, and ut: an"werir.he maﬁivle it 5 he
_ amount of emails a rect messages that come in seemingly nonstop. If you enjoy t!
but anony site, spare a few bucks and buy me lunch ;)
mously. Spill
yourg uts I slept with my wife's two sisters, multiple times, each thinking it was
| Jjust them. My wife doesn't know.
safely!

|
Figure B-16:
Seesmic
Desktopis a
Twitter Web
client.

Figure B-17:
SnapTweet
links your
photos from
Flickr to
Twitter.
|

A

Appendix B: Gallery of Twitter Applications 4 03

[
SusmAsagan ou shoukd iy
Pitew York Fires & Bar in
Ruiinghse acatizm soom!

Iy edlard A Tean ot Boston,
wha hisd lmarra) tha [ewunge. T
By In Hareed Faed

* USCALISTS

& Friends

| » seaRcHEs

KallarHoimes BlusyAmgan
il

Kot Vimay (Tt Diewielangod) 0
o

i e

e
aens it vl thinie?

Adextaliman N Bindyhud
gt n_mn By rad
mae!

E Mighael Cumminis
ol J

Swanwaybrigh s miasog (B
wefang he woubd get
e il wham s

Katis Fedtman Ox s sma 1l @
Pt ABon s pemiular tope
but T st i e of somesme
e

tha furatias af tha sy on
Eridary /18 during my mom'n

anmyune? Gailegn o iaking
o man 4 it exen §55 and
A o wiNvTen Sog S

ayaariavin FT Goseriss _geent
arsctafrom Fasnen SigeSnan

Sharlen At Boston sirport sbodt 5
£oAN cer Fana1d K, Loakng s
i

o ek fria a.:um wagari)
<=t

e g

1] Nevilbe Madnora Enjoying the &
¢/ new lW'\:'nhu:wFu

@dustyreagan ioves thil mowe,
mapecialy tha msing

15 the muséc 107 the crodits. what dd
il thinac

flterss e

biukshorange This new Dodos
lhum.a_l\;ndeull‘a s T G0t R Pl
ot dor out SXSW pans T

.nm

‘ Sharies Sknpmoiovesnny

ing Katler 1
e GRS 1 Tharia

i
heur mianing 1o frd the e 1o Eh T, il gt 4 s i
e kion vy ik » Lot — !

Bghrp wikild havet boo fikces if B
rampanced 1S your iilier e, §

L hatcr [T, Dusnti,

ey

)} connrtt nase o, LOL
Tomws (Tt Drasyfinagas)

Kamen Hartline Wendeing @
0 EOMEATTY e AT

§ makieg 1 difficult forkics

o i apell. ATGSD

Sy e Faapeies, Fastosetd Tn

|
3

Easily Share Flickr Pictures on Twitter

Lagin

Signup
Send your Flickr photos to Twitter with
SnapTweet

4, our socooed iforrmion for SrapTeeat
Is the same s Twitter.

2. Enter your Flickr URL so we can look up
your iatest phatn

Flickr UAL

nevp) flleke cam /phaes fameal

3. You can tweet your latest photo by
nonding a DIRECT MESBAGE in
SrygiTwent on Twitlor with your
massage, If you sand a biank messane,
we'll use the phota's title,

Fully n.ﬂommd and 1ag-based posting

4 04 Twitter Application Development For Dummies

o
;23.'1\“,*'*.,..

e the queations™
Lim, . A

— i ¢ e

Figure B-18:
Tiny Twitter
is a Twitter
client for
any Java-
enabled
phone.
|

ocarch soee. IR

PRODUCTS MOME - Tweet-a-Watt

Manufactured by: Acarut Industries
$90.00

Please choose the options:

e

23 M ETOCK

Figure B-19:
Tweet-a-
Watt power
consump-
tion meter.
|

Appendix B: Gallery of Twitter Applications 4 05

oERDOENRDERE

CustyReagan B Mentions esgen B Global Search: friendorfollo.. Dustyfeagan [

A Texan In Besto
langiage.
55 Yard. However we're nol parking the caa,

Bdustygagan Please reply to my st email
ladded Featured Users to
bty frnp BPgOG but Mrn nat sure i
ding. Just generic ad.
9 S | T - An

nned on Chck) not following me bad

ngrats! AT @DustyReagan: [‘] tm following these 397 people, but theyre
mi

pccess bs not final, faflure s not fatal | Cuer saber quem ve seque mas nio te
the courage to o | seque e darunfollow?

| ; A Y, 6:30 L @wallysond pra ve ver quem sio o5 twittes
) % 0.0 q te dao unfoflow entra ak
Flgure B-20: Wbt iiersborfolliow
TweetDeck 1254 et s ——" T—
5 . E egtolovestory Sdustyreagan love Tl FriendOiFollow pemite gesti
manages § ol T e I e G
. 5 ingy ks the music for the credit o il et siquiendosh espandida)
TWItter’ :‘l;{"':;“fr music for the credits. £570 SKUISNCO SIN-S8F COMeSpos 0
Facebook, (S et g
Im a nimendo fan =) KT @0ustyReagan: At
Llnkedln, " Nintendo Woedd, The dhood's
and = : =
MySpace.
Last Updatedt 14:26 with O tweets / next update |
|
-
['weetin —y
Where self-important tweets get it LA
t 00 I I ar d the recognition they deserve.
Submit a Tweet!
What's Hot Newly Added Random All-Time Top
OMG | was saying how | couldn't afford the gas
to fly daddy's jet to the riviera this summer, and Back Pats
this barista totally rolled her eyes at me
Back Pals
|
Figure B-21:
Tweeting
Back Pats
Too Hard
finds blow-
hards, so
you don't ek Pl
have to.

4 06 Twitter Application Development For Dummies

. Home Profile Find Peaple Semings Help Skgn nur
WiCEe

Name Tweemame
Location San Francisco, CA
m tweetname Wb hrep:/ i rweetname. com

Bio Use Twitter to register
domain namas. To start, go
to Tweetname.com and dick

Faliow the big green bumon.

1,728 1817
fallwing fellmers

To get started with Tweetname
for the first time, just go to il
http://tweetname.com and click Favarites
the big green button.

Actinne
¢ hinck oweetname:

Fallowing
?,’;;:'2? :f:,'éj E‘EEZFEH{ ﬁf??éfﬁfﬁ Yhanks everyons EEACAEG
A Dt wiEERE
Mast af our communication is sent via Twitter direct Eqﬂ E;i -
Figure B-ZZ: ﬂm;':ﬁ'?;:r;i‘:uv?fmt;;;?ep&l::c tweets here. Register “. E) .
Tweetname 42 0 A ' L™ .
EERRmIL W™

looks for o
ava”able gkss fead of tweetname's
. el
domain
names.
© 2009 Twitter AbOULUS Contart Blog Status Goodies AP Business Help Jobs Terms Privacy
L]
Tweet These Results
TweetReach for conjunctured
Reached 34,835 people via 50 tweets
S 7 & maimun of 80 fwents | Gof The Full Repart
Tweet Types Exg 62,962 Improssi
13 Rt Twoeta
77} Retwnot \ ’c 1hroydiems 24827 1 Twami
Impressions Contributed by
¥ johnarik: @memurrak you should, i'm sura conjuncturad would love to sea you 36 Twitterars
guys, juansequeda is in the EU for summer. Aronadao 8,778
DustyReagan 7.9M
orchids 7.005
| kally: RT {flkim _hollenshead: RT {@conjunctured:in honor of our Tyr oonlunctiarsd 4.521
. Anniv...free trials to try out coworking! info: http:itinyur comigdxbxb ‘
Flgure B-23: : khartline 3,670
T tR h casart 3,538
weetheac kim_hollenshead: RT @@eonjunciured:in honor of our 1yr Anniv we're hasting DonnaSpeaks 3,355
re ports how free trials for folks to try cut coworkingl info: hitp./ibit.lyfconjunctured-trial zaneology 3118
ki tinwicrd 2,265
frequently doviwalier | 2252
gl mydifferentfest: RT @conjunctured: GREAT to see interest for the 1wk free Panda 2199
a phras.e m tial. Stil have open spots! hitp.//bltly/conjunctured-irial SRCRIER]
or URLis " RCSAustin 1,878
zachflavaus 1813
tweeted. canjuncturad: Happy binthday @abdonnacif! *dr marianne m 1,617
EEE— HollyHefiman 1,494

Appendix B: Gallery of Twitter Applications 4 0 7

Makin' Your Grafl

S e G

TweetStats for DustyReagan (Taret Thisl)
Last updated 4 5ep 2009 at 19:41

Viousr Tt Timaling - 4.8 Fuonatn poc day {tpd)

Figure B-24:

TweetStats
reports your
own tweets.
|

Figure B-25:
Twistori
finds
tweets by
emotional
phrases,
such as

“I think.”
|

4 08 Twitter Application Development For Dummies

bWibPiC Tuer e[svssanneessee

© Rotmiophoto (41 View full size Posted on July 3, 2009
g by dustyreagan

More photos by dustyreagan

3 Put this pheto on your website

Views 100
Tags
|
Figure B-26:
TwitPic is
the most
popular
photo-
sharing site
on Twitter.
|
Home: Learn Mare | In the Mews. | Stidecasts Blog | Partners Cantact
Twittad is a Social Media Affinity Network that connects Advertisers and Twitter users. = J*fw o
By using Twittad, Twitter users can monetize their profiles & Advertisers can reach ALL b oty
of Twitter; the Website, 3rd Party Applications and Mobile Devices!
£3 Twittad Sign In
Twitter.com 3rd Party Applications Moblle B dudvertiser’s Sl
@...w.-:.h.'.r_l. e
Home Twitter Users Advertisers Current Recently Affiliate \ ‘@'
Listings Sold Program -
Figure B-27: fi&i’
Twittad 11
- Cct]
background
advertising.) o o) @
Harne: | How Twittad Waorks | FAQ | Contact Us | Affiliate's Signup | Twittad Liser Privacy Policy | Twittad Advertiser Privacy Policy

In

Figure B-28:
Twittercal
bot for
Google
Calendars.
|

Figure B-29:
Twitter
Counter tells
the world
how many
followers
you have.
|

o
\) gcal

Follow

Hi! Add events in a snap to your
calendar by sending me a direct
message. Follow instructions at
http:/ /twittercal.com/ and get
started.

Home Profile Fled People Semmings Help Sign oor

Name mr. geal
Location in a computer
memaory

Web hitp://twittercal..,

11,245 11,593

follgwing followers
Tweets 1
Favorites

Actions
« geal

Foliowing

el o] 7
HaiTalE
E-EORE
BanaEE

E3 RSS fred of gral's tweets

02009 Twitter AbsutUs Contact Blen Sttus Goodiés AM Business Help Jobs Terma Provacy

2633

2000

2563

UE-00 07-08 0E-0¥ 008 10-0M 1108 1208

ary Tovitier uier) Bustyllragan

s | Linst week
13-08 temamw
Shire

Compare

If you are interested in @DustyReagan you might also like these people:

Appendix B: Gallery of Twitter Applications 4 09

e you & PHP developer?

W ¥ you. Bu yau ¥ ua?

4 , 0 Twitter Application Development For Dummies

twitter (&) feed

524838
G?I‘Ilng S?a."t.ec.!
o Crea u dd My Feed u E
.l'_ - Es
. Lo -S4
Figure B-30: — e \ \\,i‘t ‘
Twitterfeed ot hevs & oot yo? :
pushes RSS
feeds.
|

Twitterrific

Figure B-31:
Twitterrific
is a Twitter

client for
Mac 0S X
and iPhone.
|

Appendix B: Gallery of Twitter Applications 4 ’ ’

wefollaw Qo L) }
Celebrity Tv Popular Twitter Tags

% TheEllenShow ﬁr TheENanShow Al

A no! E F Celnbrity

LE
g
9

Byanfeacrest

' THE_REAL SHAQ

Figure B-32:
WeFollow
helps
Twitter uses
link to each
other based

Entreprenaur

lamaiddy
on your n KING COIMES
tags. i: NI
|

§3 Socialtext

RECEM RARDOM

More Celebrity Twitter Users =

Oprah (1,908, 7%
Liv Your Beat Life
(3 RyanSeacrest
=
et wee
KimKardashian
Armenian Princess
m e

alately

More Tv Twitter Users =

lain your company's collaboration
network now!

Entrepreneur
Newn

Socialmedia

Ador
Comedy
so0rs

Tech

Medla
mingger
Entertainment
Fadio

Hibsa

Writer
Shepping
Misgkcian

More Twitter Taga =
Top Twitter Users

B T e

g TheEllenShow

r‘! britrmeyspears
o= 2.5% Tallewers

4 ’ 2 Twitter Application Development For Dummies

Index

Symbols & Numerics

@replies, 8,9
@AusTraffic, 8
@big_ben_clock, 8

64-bit integers, using, 362
140tees Web site, 340

o/ o

acceptance testing, automating, 315-316
access tokens, getting, 99-103
accessing APl in background, 362
account management
checking rate limits, 81-83, 358
description of, 79-80
ending user sessions, 83-84
overview of, 365-368
updating user notification devices, 85-86
updating user profile background images,
93-95
updating user profile colors, 89-91
updating user profile pictures, 91-93
updating user profiles, 86-89
verifying user credentials, 80-81
account methods
account/end_session, 83-84, 366
account/rate_limit_status, 68,
81-83, 358, 366
account/update_delivery device,
85-86, 366
account/update_profile, 86-89, 368
account/update_profile_
background_image, 93-95, 367-368
account/update_profile_colors,
89-91, 366-367
account/update_profile_image,
91-92, 367
account/verify credentials,

80-81, 365

account/end_session method,
83-84, 366
account/rate_limit_status method
description of, 81-83, 366
to retrieve current rate limit status,
68, 358
accounts. See also personal accounts;
protected accounts; public accounts
developer, creating, 39-40
granting permission to applications to
access, 74
private, keeping data in confidential, 360
for products, 346
reporting as spam, 176-178
Twooshes game app and, 300
user, and @ sign, 8
account/update_delivery device
method, 85-86, 366
account/update_profile method,
86-89, 368
account/update_profile_
background_image method, 93-95,
367-368
account/update_profile_colors
method, 89-91, 366-367
account/update_profile_image
method, 91-92, 367
account/verify_ credentials method,
80-81, 365
acquisition of businesses, 343-344
ad management software, 334
ad networks
cost per thousand, 329-330
cost per time, 331
description of, 327-328
pay per action, 330
pay per click, 328-329
vertical, 332-333
addPoint function, 291
addTweet function, 290-291
AdMob ads, 328
advertising. See also promotion strategies
adding to Twitter, 324

414

Twitter Application Development For Dummies

advertising (continued)
apps for, 58-59
paid, to promote applications, 352-353
selling, 333-334
traditional ad networks, 327-331
vertical ad networks, 332-333
Agavi framework, 252
alt attribute, 18
Amazon
Payments service, 337
SimpleDB data storage system, 319
S3 on-demand disk storage space, 256
anchor tags, 17
angel investors, 326
Apache servers, setting up, 258-263

API (Application Programming Interface).

See also methods; rate limits; Search
API; Search API methods

accessing in background, 362

authentication, 73-78

components of, 65-66

defining payload, 71-73

description of, 63

Google Group for, 358, 362

HTTP response status codes and errors,

69-70

libraries, 251-252

REST, 66, 67-68

Streaming, 66

terms of service, 63-65

tips for, 361-363

versioning, 66-67
app . ini file, creating, 276-277
application definition box, 324
application design

converting into HTML, 310-311

first impressions and, 309

hiring professional for, 309-310

integrating, 311-313
application ecosystem

categories in, 47

desktop clients, 47-49

hardware integration, 60-61

mobile clients, 49-50

Twitter bots, 59-60

Web applications, 50-59
application folder, 270
Application Programming Interface.

See API

APPLICATION_PATH constant, 274
applications. See also application design;
application ecosystem; developing
applications; growing pains for
applications
feature roadmap, 308
growth in complexity of, 315
licensing and selling, 337-338
reasons to develop, 11-12, 242-244
reasons to use, 244-246
registering with Twitter, 76-77
releasing, 308
writing first, 41-43
array_diff function, 31, 299
array_intersect function, 31
array_merge function, 31
arrays, 30-31
array_values function, 31
asymmetrical relationship model, 9
@ replies, 8, 9
Austin American Statesmen (newspaper), 8
@AusTraffic, 8
authentication, 73-78
authenticity in public relations
activities, 352
auto-follow script, creating, 295-301
automating acceptance testing, 315-316
avoiding timeouts, 113

ol e

background, accessing API in, 362
background color, getting from user data,
107-108
background style, 23
Bailey, Cody Marx (developer), 57
BakerTweet wireless device, 61, 395
banner ads, 352, 353
basic HTTP authentication, 74
Beanstalk Web site, 40
bids, getting for designers, 310
@big_ben_clock, 8
blacklisting, 69
Blip.fm app, 55, 330, 396
block methods
blocks/blocking, 172-174, 369
blocks/blocking/ids, 174-176, 369

blocks/create, 166-167, 369-370
blocks/destroy, 168-169, 370
blocks/exists, 170-172, 370-371
overview of, 165-166, 368-369
blocking
checking for, 170-172
getting user details list of blocked users,
172-174
retrieving lists of blocked user IDs,
174-176
unblocking users, 168-169
users, 166-167
block-level elements, 16-17
blocks/blocking method, 172-174, 369
blocks/blocking/ids method,
174-176, 369
blocks/create method, 166-167,
369-370
blocks/destroy method, 168-169, 370
blocks/exists method, 170-172,
370-371
Blogger blog platform, 348
blogs for product, 348-349
body of HTML documents, 16-18
bootstrap.php file, creating, 275-276
bootstrapping process
for applications, 272
for self-funding, 325
borders, specifying for boxes, 22
Botanicalls Kit plant monitoring kit, 61, 396
box model, 21
branches folder, 270
brand name. See also product
building awareness of, 342-343
building reputation of, 244
monitoring mentions of, 11
promoting, 12
break tags, closed, 15
breaking design HTML into smaller files,
311-313
Britcher, Loren (developer), 49
Brizzly, 244
browsers
opening apps in, 42
server console inside, 261
Brunel, Fred (developer), 59
BugMeNot Web site, 271

building applications. See developing
applications
Burkert, Ben (developer), 57
business issues
acquisitions, 343-344
building on top of Twitter, 11, 342-344
partnering with Twitter, 323
venture capital, 323, 325
BuySellAds Web site, 331, 353

oo

caching, optimizing, 359, 363
CafePress Web site, 340
CakePHP framework, 252
Casale Media ad network, 330
Cascading Style Sheets (CSS)

basic styles, 21-23

description of, 13-14

selectors, 20-21

SEO and, 353

styling HTML with, 18-21
case sensitivity of XHTML tags, 15
causes, supporting, 12, 244
Cawley, Kevin (developer), 50
CheapTweet app, 55-56, 397
checking. See testing
class selectors, 20
clauses (MySQL), 36
click fraud, 328
click through rate (CTR), 329
Clinkscales, Damon (developer), 54
closed break tags, 15
cloud computing, 256-257
code coverage, 317
Codelgniter framework, 252
Coffey, Noah (developer), 363
co-location of servers, 256
colons in method paths, 116
commands (MySQL), 36
comments syntax, 25-26
Commission Junction ad network, 330
communication with users, 360
comparing differences between files, 40
comparison operators, 27
competition, differentiation from, 243-244
complexity of software, 315

Index 4 ’5

416

Twitter Application Development For Dummies

conditional statements, 26-28
configuration file
creating, 276-277
defining application environment
and, 274
constant for directory path, creating,
273-274
constants (cURL), 32-33
contact management apps, 52-53
content, separating from style, 14
content tags, 16
continuous integration, 317-318
controller
for auto-follow script, 295-296
creating, 279
in model-view-control design pattern,
253-254
for tweet monitor script, 301-302
converting files from PSD to HTML,
310-311
Cortesi, Damon (developer), 54, 361
cost per thousand (CPM) networks,
329-330
cost per time (CPT) networks, 331
CoTweet app
description of 51
as pro version example, 324
screenshot, 397
as solving problem, 245
CouchDB data storage system, 319
count function, 31
CPM (cost per thousand) networks,
329-330
CPT (cost per time) networks, 331
Craigslist for design bids, 310
create statement, 37
created field, 281
created_at variable, 287
credibility and application design, 309
CRM (customer relationship management)
apps, 51, 324
cron jobs
auto-follow script, 295-301
description of, 295
scheduling, 303
tweet monitor script, 301-302

CruiseControl continuous integration
software, 317-318
CSS (Cascading Style Sheets)
basic styles, 21-23
description of, 13-14
selectors, 20-21
SEO and, 353
styling HTML with, 18-21
CTR (click through rate), 329
Cummings, Michael (developer), 56
cURL
description of, 31-33
reading HTTP status codes with, 69-70
cursor parameter
paging through user ids using, 113
printing profile pictures using, 109-111
customer relationship management (CRM)
apps, 51, 324

o) e

daily trending topics, retrieving, 237-239
data fields, naming, 280
data models, creating

defining tables, 283-284

Tweet model, 284-286

User model, 286-294
data storage, 319
data structure, setting up, 280-282
Davis, Hayes (developer), 53, 54, 362
Davis, Jenn Deering (developer), 54
dedicated Web hosting, 256, 257
defining application environment, 274
degrade gracefully tip, 361
delete statement, 38
deleting

direct messages, 196-198

lists, 124-126

members from lists, 138-140

saved searches, 231-233

tweets, 184-186

tweets from favorites, 222-224
descendant selectors, 20
design of application

converting into HTML, 310-311

first impressions and, 309

Index 4 ’ 7

hiring professional for, 309-310
integrating, 311-313
desktop client applications
ad networks and, 328
examples of, 47-49
selling online, 338
details, getting
on protected accounts, 109-111
on public users, 106-108
on specific lists, 122-124
develop defensively tip, 361
developer accounts, creating, 39-40
developer announcement list, 358, 362
developer etiquette, 65, 357-360
developing applications
feature roadmap for, 308
ideas for, 241
as iterative process, 247
libraries and, 251-252
model-view-control design pattern and,
253-254
motivations for, 11-12, 242-244
releasing applications, 308
skills for, 246
success, defining, 241-242
Web application frameworks and,
252-253
differentiating product from competition,
243-244
direct message methods
direct_messages, 191-194, 371
direct_messages/destroy,
196-198, 373
direct_messages/new, 194-196,
372-373
direct_messages/sent, 191-194, 372
overview of, 190, 371
direct messages (DMs)
deleting, 196-198
description of, 9
retrieving, 191-194
sending, 194-196
direct_messages method, 191-194, 371
direct_messages/destroy method,
196-198, 373
direct_messages/new method, 194-196,
372-373

direct_messages/sent method,
191-194, 372
directory path, creating constant for,
273-274
directory structure, creating, 270-271
display style, 23
displaying
blocked users, 173-174
maximum amount of tweets in lists,
127-129
rate limits, 318
div tags, 17
DMs. See direct messages
doctypes (HTML), 14-15
documentation, reading, 358
Dodsworth, lain (developer), 48, 50
domain names, setting up, 267-268
DOMDocument class, 33-35
DOMNodelList object, 34-35
donations, asking for, 336-337
do-while loops, 20
download size, decreasing with external
CSS files, 19
downloading Zend Framework, 271

oF o

ease-of-use of applications, 245

echo command, 25

Elance for design bids, 310

Eliason, James (developer), 59

elseif parts, 27-28

e-mail lists for promoting applications, 349
embedding CSS, 19

Emma e-mail list manager, 349
enabled field, 281

enabled variable, 287

encoding and OAuth, 78, 97

ending user sessions, 83-84

enjoyment in building applications, 242
entertaining with applications, 245
environment, defining, 274
/etc/crontab file, 303

Etzel, Chad (developer), 363

Everett, Noah (developer), 54

evil, avoiding, tip about, 360

4 , 8 Twitter Application Development For Dummies

ExecTweets app, 56, 398 Flickr
Extensible Hypertext Markup Language product tiers, 339
(XHTML) SnapTweet and, 403
document example, 15 floating style, 23
1.0 Strict, 310, 353 Follow Cost app, 54, 399
Extensible Markup Language (XML) FollowcronController.php file, 295
formatting in, 24 $_followerIds variable, 298
PHP DOMDocument class and, 33 followers. See also following
Web browsers and, 42 churning, 64
external CSS files, creating, 19 description of, 7

getting lists of, 143-145
getting user details on, 109-111

° F P getting user IDs of, 112-115
followers/ids method
Facebook adding to Zend Framework library,
promoting applications on, 347-348 296-297
virtual goods sold on, 341, 342 description of, 112-115, 375
FailWhale image, 9 following. See also followers
family members, as investors, 326 mass, promotion of, 358
Farnham, Aaron (developer), 57 users, stopping, 154-155
favorite methods users programmatically, 152-153
favorites, 217-220, 373-374 users to phones, 161-163
favorites/create, 220-222, 374 following lists
favorites/destroy, 222-224, 374 starting, 145-147
overview of, 217, 373 stopping, 147-149
favorites method, 217-220, 373-374 testing users for, 149-151
favorites/create method, 220-222, 374 font styles, specifying, 22-23
favorites/destroy method, foreach loops, 28-29
222-224, 374 form tags, 17
feature roadmap, 308 formatCreatedat function, 289
Featured Users app fracturing data stores, 319
description of, 58 frameset doctype of HTML, 15
integrating into applications, 332-333 Francl, Luke (developer), 54
screenshot, 398 freemium model, 339
tweeted testimonials for, 347 frequency of interaction with system,
Twooshes app and, 247 limits on, 67
files Friend Or Follow app
breaking design HTML into smaller, description of, 11, 52
311-313 layouts of, 311-312
converting from PSD to HTML, 310-311 screenshot, 399
external CSS, creating, 19 friends
rolling back to previous versions, 40 getting user details on, 109-111
uploading to Web servers, 266-267 getting user IDs of, 112-115
filling needs as reason to build as investors, 326
applications, 243 retweets of, getting, 212-214
Firefox browser and XML, 42 friends timeline, getting, 201-203
Firehose method, 66 friendship methods
Fisher, David (developer), 362 friendship/create, 152-153, 376

friendship/destroy, 154-155, 376-377

friendships/exists, 156-158, 377
friendships/show, 158-161, 377-378
overview of, 151, 376
friendship/create method,
152-153, 376
friendship/destroy method, 154-155,
376-377
friendships/exists method,
156-158, 377
friendships/show method, 158-161,
377-378
friends/ids method
adding to Zend Framework library,
296-297
description of, 112-115, 375
Front Controller design pattern, 272
Fuchs, Thomas (developer), 56
functions
addPoint, 291
addTweet, 290-291
array_diff, 31,299
array_intersect, 31
array_merge, 31
array_values, 31
count, 31
cURL, 32
formatCreatedAt, 289
getFollowerIds, 298
getFollowingIds, 298-299
getUserTable, 288
indexAction, 300-301
_initAutoload, 276
_initViewHelpers, 276
json_decode, 35

ksort, 31
mapResponse, 288-289
PHP, 29-30, 31
rawurlencode, 97
save, 289

subPoint, 291

fund drives, 337

funding applications
with investors, 326
self-funding, 325

Fung, Yu-Shan (developer), 52

oG o

games, selling, 341
geolocation, parameters to facilitate, 182
GET requests and REST API rate limit,
67-68
getElementsByTagName method, 34, 35
getFollowerIds function, 298
getFollowingIds function, 298-299
getting
access tokens, 99-103
background colors from user data,
107-108
current top 10 trending topics, 235-237
details on protected accounts, 109-111
details on public users, 106-108
details on specific lists, 122-124
details on tweets, 180-181
direct messages, 191-194
favorite tweets of users, 217-220
friends timeline, 201-203
information about relationships between
users, 158-161
lists of followers, 143-145
members of lists, 134-136
protected account details, 109-111
public account details, 106-108
request tokens, 96-99
retweeted status updates, 210-212
retweets of friends, 212-214
retweets of specific tweets, 188-190,
215-217
subscribers to lists, 143-145
timelines for lists, 126-129
top 20 trending topics per hour, 237-239
top 30 trending topics per week, 239-240
tweets from public timeline, 199-200
tweets that mention screen names,
207-209
user details list of blocked users, 172-174
user details on followers, 109-111
user details on friends, 109-111
user IDs of followers, 112-115
user IDs of friends, 112-115
user timeline, 203-207
getUserTable function, 288
GitHub Web site, 40

Index 4 ’9

420

Twitter Application Development For Dummies

giving back to developer community, 359

GoDaddy service, 267
Google
Ad Manager, 334
AdSense, 329
AdWords, 352
Calendar, updating, 8
Checkout service, 337
Chrome browser and XML, 42
developer announcement list, 358, 362
Gmail, 256
Group for Twitter API, 358, 362
page rank, 354
YouTube acquisition, 343
Gorilla Nation ad network, 330
graphical banner ads, 352, 353
growing pains for applications
automating acceptance testing and,
315-316
continuous integration and, 317-318
performance concerns and, 318-319
unit testing and, 317

o o

Hanson, Keith (developer), 56
hardware devices, 60-61
hashtags, 8, 9

Hashtags.org Web site, 57, 400
head of HTML documents, 16
heading tags, 16

height attribute, 18

height of element, specifying, 22
help methods, 378

help/test method, 378

Hess, Barry (developer), 54, 361
hiring designers, 310

HootSuite app, 51, 324, 400
horizontal ad networks, 332
horizontal scaling, 257-258
hosted version control repositories, 40
HOT or NOT dating site, 341
Hoy, Amy (developer), 56
.htaccess file, creating, 273

HTML (Hypertext Markup Language)
breaking design file into smaller files,
311-313
converting files from PSD to, 310-311
CSS and, 13-14, 18-21
description of, 13
elements of, 16-18
making valid XHTML, 15
SEO and, 353
specification documents, 14-15
HTTP response status codes and errors,
69-70
Hypertext Markup Language. See HTML

o]e

id parameter, 106, 107
ID selectors, 20
ideas

going with, 241, 247

monetizing, 243

motivation and, 242
if-then-else statements, 26
image tags, 18
improving applications, 308
include_path (PHP), 274
indexAction function, 300-301
IndexController.php file

creating, 279

updating, 303-305
index.php file, creating, 273-275
index.php script, 272
index.phtml file

creating, 279

updating, 306-307
industry, networking in, 351
information aggregation apps, 55-57
information publishing apps, 57-58

_initAutoload function, 276
_initViewHelpers function, 276

inline elements, 17-18

insert statement, 38

installing
Apache and PHP on servers, 261-263
MySQL on servers, 264-266
Zend Framework, 271

Index 4 2 ’

integrating
design HTML into applications, 311-313
Featured Users into applications, 332-333
international characters, supporting, 363
Internet Explorer browser and XML, 42
investors
seeking, 326
venture capital and, 323, 325
IP addresses
static, 257
white listing and, 68
iPhone App Store, 337, 338
iterative process, development as, 247

°] °
JASONP support, 363

JSON (JavaScript Object Notation), 24, 363
json_decode function, 35

o o

Kaplan, Philip (developer), 59
ksort function, 31

o/ o

LAMP (Linux, Apache, MySQL, and PHP)
stack as development platform, 13
layout template, creating, 277-278
layout.phtml file
creating, 278
HTML layout for, 311
with references to other files, 312-313
Le Meur, Loic (developer), 48
leased servers, 256
libcurl, 32
libraries
OAuth authentication methods, 78
Twitter API, 251-252
library folder, 270, 271
licensing and selling applications, 337-338
limits. See rate limits
line break tags, 18
link tags, 16
links and SEO, 354

LinkShare ad network, 330
list members methods
overview of, 134
:user/:1list_id/members, 134-140
:user/:list_id/members/:id, 140-142
list methods
behavior of, 115
colons and, 116
:user/lists, 116-118, 120-122
:user/lists/:id, 118-120, 122-126
:user/lists/:1list_id/statuses
126-129
:user/lists/memberships, 129-131
:user/lists/subscriptions, 132-134
list subscribers methods
overview of, 142-143
:user/:list_id/subscribers, 143-149
:user/:1ist_id/subscribers/:id
149-151
listings
application/bootstrap.php File, 276
application/config/app.ini
File, 277
application/controllers/
FollowcronController.php
File, 295
application/controllers/
IndexController.php File, 279
application/controllers/
IndexController.php File,
Updated, 304
application/controllers/
TweetcronController.php File,
301-302
application/layouts/layout.
phtml File, 278
application/models/DbTable/
Tweet .php File, 284
application/models/DbTable/
User .php File, 283
application/models/Tweet .php File,
284-285
application/models/Tweet.
php:getLastStatusId() File, 285
application/models/User.php
File, 287
application/models/User.
php:addPoint () and subPoint ()
File, 291

4 22 Twitter Application Development For Dummies

Favorites, Adding Tweet to, 221-222
Favorites, Removing Tweet from, 223-224

listings (continued)
application/models/User.

php:addTweet () File, 290-291

application/models/User.
php:constructor File, 288

application/models/User.
php :mapResponse () File, 289

application/models/User.
php:save () File, 290

applications/views/scripts/
index/index.phtml File, 306

application/views/scripts/
index.phtml File, 279

application/views/scripts/
pagination_control.phtml File,
305-306

array_dif Function, 299

Authentication Login URL, 96

Background Styles, 23

Blocking Users, 167

Border Styles, 22

Check if Two Users Follow Each Other,
160-161

Check if User Is Blocked, 171-172

Check Length of DOMNodelList, 35

Concatenated oauth_signature String
Before Encrypting and Parameter
Encoding, 97, 101

Count and List of Blocked User IDs,
Getting, 175-176

Create Statement, 37

Creating Array, 30

Creating DOMDocument Object, 34

Current Trends, Retrieving, 236-237

Cursor, Using to Print Profile Pictures,
110-111

Daily Trending Topics, Retrieving,
238-239

Delete Statement, 38

Deleting Direct Message, 197-198

Deleting Tweet, 185-186

Display Style, 23

Displaying Blocked Users, 173-174

do-while Loop that Counts to 10, 20

Elself Part, 27-28

Ending Persistent Basic HTTP Auth
Session, 84

Error Message in XML, 70

/etc/crontab File, 303

Floating Style, 23

Following New Users, 153

Font Decorations, 23

foreach Loop, 28, 29

Function example, 30

Generating Access Token, 101-103
Generating Request Token, 98-99
getElementsByTagName, 34, 35
getFollowerIds Function, 298
getFollowingIds Function, 299

Go Straight to First Node in DOMNodeList

Object, 34

Height and Width, 22

HelloTwitter.html, 41

If-Then-Else, 26

indexAction Function, 300-301

index.php File, Beginning of, 273

index.php File, Complete, 275

index.php File, Defining Application
Environment in, 274

Insert Statement, 38

JSON Object example, 24

Last 100 Retweets of Friends, Getting,
213-214

library/Zend/Service/Twitter.
php Directory, Adding Social Graph
Methods, 296-297

List, Creating, 117-118

List, Deleting, 125-126

List, Updating, 119-120

List Details, Getting, 123-124

List Followers, Getting, 144-145

List Members, Adding, 137-138

List Members, Removing, 139-140

List Membership, Checking, 141-142

List Subscribers, Adding, 146-147

List Tweets, Getting, 128-129

Lists User Belongs To, Getting, 130-131

Lists User Subscribes To, Getting,
132-134

Loop through DOMNodeList Object, 34

Margin and Padding, 21

Margin and Padding Shorthand, 22

Marking Users as Spam, 177-178

Most Recent 100 Retweets, Getting,
211-212

Index 423

Most Recent 100 Retweets of Tweets,
Getting, 216-217

oauth/access_token Response
Body, 100

oauth/request_token Response
Body, 96

Paging Through Friends Timeline,
202-203

Paging Through Tweets that Mention
Screen Name, 208-209

Paging Through User Timeline, 205-207

PHP Comments Syntax, 26

Post Tweet (curl command line client), 32

Post Tweet (libcurl), 33

Post Tweet (statuses/update
method), 183-184

Previous Tweets, Retrieving and
Displaying, 219-220

Print String to Screen, 25

Profile Colors, Updating, 90-91

Profile Pictures of Most Recent 20 Public
Tweets, Printing, 200

Pull Up Public Timeline, 32

Rate Limit Status, Looking Up, 82-83

Reading HTTP Status Code with PHP and
cURL, 69

Received Direct Messages, Getting Using
Paging, 192-194

Receiving Notifications from Users,
162-163

Retweeting Tweets, 187-188

Retweets of Specific Tweets, Retrieving,
189-190

Saved Search Details, Getting, 228-229

Saved Searches, Creating, 230-231

Saved Searches, Removing, 232-233

Saved Searches, Retrieving All, 226-227

Searching For Tweets Using API, 235

Select Query Using Group By and Having
Clause, 37

Select Query Using Where, Order By, and
Limit Clause, 37

Sending Direct Message, 195-196

SQL Select Query, 36

SQL Select Query Using Join, 37

status Object in XML, 72-73

Subscription Status, Checking, 150-151

Testing if One User Follows Another,
157-158

Turning Off SMS Notifications, 164-165

Tweet Details, Getting, 180-181

Tweet Table, Creating, 282

Tweet .php File, 286

Twitter Status Update XML Response,
42-43

Twooshes layout .phtml File, 311

Twooshes 1layout .phtml File With
References to Other Files, 312-313

Unblocking Users, 168-169

Unfollowing Lists, 148-149

Unfollowing Users, 154-155

Update Statement, 38

Updating Device Settings, 85-86

Updating Twitter Background, 93-95

Updating Twitter Picture, 92-93

Updating Twitter Profile, 87-89

User Agent String to Increase Search API
Rate Limit, 68

User Data, Getting with users/show
Method, 107-108

User IDs of Mutual Followers, Getting,
114-115

User Is Not Blocked Message, 170

user Object in XML example, 71-72

User Table, Creating, 280-281

Username and Password, Checking, 81

User .php File, 292-294

Users List Follows, Getting, 135-136

Users List of Lists, Getting, 121-122

Weekly Trending Topics, Retrieving, 240

www/ .htaccess File, Creating, 273

XML Object, 24

XML Response from friendships/show
Method, 158-159

Zend_Application Object, Creating
and Running Bootstrap, 275

Zend_Service_Twitter Object,
Creating, 298

lists

adding members to, 136-138

of blocked user IDs, getting, 174-176

of blocked users, getting, 172-174

creating new, 116-118

deleting, 124-126

deleting members from, 138-140

description of, 115

details on specific lists, getting, 122-124

following, 145-147

4 24 Twitter Application Development For Dummies

lists (continued)
members of, getting, 134-136
stop following, 147-149
subscribers to, getting, 143-145
testing if users are members of, 140-142
timelines for, getting, 126-129
updating existing, 118-120
user belongs to, getting, 129-131
user follows, getting, 132-134
user list of lists, getting, 120-122

favorite, 217-224, 373-374

friendship, 151-161, 376-378

help, 378

list, 115-134

list members, 134-142

list subscribers, 142-151

notification, 161-165, 378-379

OAuth authentication, 78, 95-103,
379-380

saved searches, 224-233, 380-382

Search API, 233-240, 382-384
social graph, 112-115, 296-297, 374-375
spam reporting, 176-178, 384-385
status, 179-190, 385-394
timeline, 198-217
user, 105-111, 394
version numbers of, 67
for working with OAuth, 75
mobile client applications
ad networks and, 328
examples of, 49-50
mobile providers, SMS revenue sharing
from, 324
model-view-control design pattern,
253-254. See also controller; view
mod_rewrite, installing, 262-263
money, making. See also advertising
asking for donations, 336-337
building businesses, 342-344
developing apps, 12
as reason to build applications, 242-243
requesting payment for service, 335-339
revenue model speculations regarding
Twitter, 324
revenue models, 337-338
selling goods, 339-342
selling subscriptions, 338-339
monitoring
bakeries for fresh items, 61, 395
mentions of brand name or product, 11
plants for water needs, 61, 396
trending words, 10, 236-240
Morse, Jacob (developer), 56
motivations for building applications,
11-12, 242-244
Movable Type blog platform, 348
Mr. Tweet app, 52, 401

local cache of detailed user data, 114
logging in
authentication, 73-78
users with OAuth, 95-96
logical operators, 27
loops, 28-29
Loving, Adam (developer), 363

o/l o

Magpie ad network

description of, 58, 324, 332

screenshot, 401

Twooshes app and, 247
MailChump e-mail list manager, 349
managed servers, 256
mapResponse function, 288-289
margins, specifying for boxes, 21-22
Mashable Web site, 351
mass following, promotion of, 358
max_id parameter, 192
media sharing apps, 54-55
members

adding to lists, 136-138

deleting from lists, 138-140

of lists, getting, 134-136

testing if users are list members, 140-142
Menti, Mario (developer), 58
mentions

of brand name, monitoring, 11

description of, 9

of screen name, getting, 207-209
meta tags, 16
methods

account management, 79-91, 365-368

block, 165-176, 368-371

colons in method paths, 116

direct messages, 190-198, 371-373

Index 425

MVC (model-view-control) design pattern,
253-254. See also controller; view
My Cloud Servers dashboard, 259
my . cnf file (MySQL), 265, 266
MySQL
description of, 35
my . cnf file, 265, 266
servers, setting up, 263-266

o\ o

name recognition, building, 342-343. See
also brand name
name squatting, 64
naming data fields, 280
Nearly Free Speech Web hosting
company, 267
networking in industry, 351
news organizations, updates from, 10
next_cursor node, 109-110
non-relational data storage systems, 319
notification methods
notifications/follow, 161-163,
378-379
notifications/leave, 163-165, 379
overview of, 161, 378
notifications/follow method,
161-163, 378-379
notifications/leave method,
163-165, 379
numeric userlDs, 107

o () o

OAuth
access tokens, getting, 99-103
description of, 74-78
methods, 379
parameter encoding with, 78, 97
request tokens, getting, 96-99
using, 359-360
oauth/access_token method,
99-103, 380
oauth/authenticate method, 75,
95-96, 380
oauth/authorize method, 75, 95-96, 380

oauth/request_token method,
96-99, 380

Odeo podcasting company, 325

ON DUPLICATE KEY UPDATE command,
289-290

oneforty Web site, 354

140tees Web site, 340

online payments, accepting, 337

open API, 11

Open Source Web Design Web site, 310

OpenX ad management software, 334

opt-in e-mail lists, 349

output, 71-73

oo

padding, specifying for boxes, 21-22
pagination_control.phtml file,
305-306
paragraph tags, 16
parameter encoding with OAuth, 78, 97
parameters to facilitate geolocation, 182
parsing standard DOM markup, 33
partnering with Twitter, 323
passwords
root, using to connect applications to
databases, 265
of users, checking, 80-81
of users, handling, 74
pay per action (PPA) networks, 330
pay per click (PPC) networks, 328-329
payload, defining, 71-73
payment for services, requesting, 335-339
PayPal service, 337
performance concerns, 318-319
permission
asking before acting on user’s behalf, 357
granting to applications to access
accounts, 74
Perrin, Andrew (developer), 363
personal accounts
allowing access to, 41
for development, creating, 39-40
experience with, 39
Philips, Trey (developer), 56
phones, following users to, 161-163
photo-sharing sites, 408

4 26 Twitter Application Development For Dummies

PHP
arrays, 30-31
comments syntax, 25-26
conditional statements, 26-28
cURL, 31-33
description of, 25
DOMDocument class, 33-35
echo command, 25
frameworks, 252
functions, 29-30
includes, 313
json_decode function, 35
loops, 28-29
online manual, 31
rawurlencode function, 97
reading HTTP status codes with, 69-70
servers, setting up, 258-263
PHP Zend Framework
adding methods to library, 296-297
bootstrap process, 272
bootstrap.php file, creating, 275-276
configuration file, creating, 276-277
description of, 252-253
directory structure, creating, 270-271
include_path, setting to library, 274
installing, 271
layout template, creating, 277-278
mod_rewrite, installing, 262-263
scoreboard, creating, 303-307
setting up, 269-279
Table Data Gateway design pattern, 283
testing, 279
unit tests and, 317
view and controller, creating, 278-279
PHPUnit unit-testing framework, 317
physical goods, selling, 339-340
plant monitoring kits, 61, 396
platforms for blogs, 348
popular applications, imagining and
building, 241-242
power consumption, tracking, 61, 404
PPA (pay per action) networks, 330
PPC (pay per click) networks, 328-329
previous_cursor node, 109-110
printing profile pictures
of most recent 20 public tweets, 200
of people followed, 110-111

private accounts, keeping data in
confidential, 360
problem solving with applications, 245
product. See also brand name
blogs for, 348-349
differentiating from competition, 243-244
Facebook fan pages for, 348
monitoring mentions of, 11
Twitter accounts for, 346
profile_image_url variable, 287
profiles
background images, updating, 93-95
colors, updating, 89-91
data in, 79
pictures, updating, 91-93
updating, 86-89
Project Wonderful Web site, 353
promotion strategies. See also advertising
blogs, 348-349
on Facebook, 347-348
opt-in e-mail lists, 349
overview of, 345
public relations, 351-352
search engine optimization, 353-354
social networking, 346-349
on Twitter, 346-347
viral marketing, 349-350
protected accounts
following, 152-153
getting details of, 109-111
PSD to HTML file conversion service, 311
public accounts
asymmetrical relationship model and, 9
getting details of, 106-108
public relations strategies, 351-352
public timeline
getting tweets from, 199-200
Search API and, 233

o () o

-

quotation marks and XHTML
tag attributes, 15

Index 42 7

o R e

Rackspace Cloud Servers

Apache and PHP, setting up, 258-263

description of, 257

domain names, setting up, 267-268

MySQL, setting up, 263-266

uploading files to, 266-267
rate limits

blacklisting and, 69

checking, 81-83

displaying, 318

getting around, 363

REST API, 67-68

Search API, 68-69, 233

staying within, 358

storing API results locally and, 107
rawurlencode function, 97
reading documentation, 358
Reagan, Dusty (developer), 52, 58
receiving notifications from users, 162-163
registering applications, 76-77
registration page, 76, 77
relational databases, 36, 319
relationship between users, getting

information about, 158-161

relationship structure, 9
releasing applications, 308
Remember The Milk app, 60, 402
removing

direct messages, 196-198

lists, 124-126

members from lists, 138-140

saved searches, 231-233

tweets, 184-186

tweets from favorites, 222-224
reporting tools, 360
report_spam method, 176-178, 384-385
Representational State Transfer (REST), 63
reputation, building by developing

applications, 12, 244

request tokens, getting, 96-99
resources

for building applications, 246

online, 65
REST (Representational State Transfer), 63

REST API
description of, 66
rate limit, 67-68
result set, 71-73
retrieving
access tokens, 99-103
background colors from user data,
107-108
current top 10 trending topics, 235-237
details on protected accounts, 109-111
details on public users, 106-108
details on specific lists, 122-124
details on tweets, 180-181
direct messages, 191-194
favorite tweets of users, 217-220
friends timeline, 201-203
information about relationships between
users, 158-161
lists of followers, 143-145
members of lists, 134-136
protected account details, 109-111
public account details, 106-108
request tokens, 96-99
retweeted status updates, 210-212
retweets of friends, 212-214
retweets of specific tweets, 188-190,
215-217
subscribers to lists, 143-145
timelines for lists, 126-129
top 20 trending topics per hour, 237-239
top 30 trending topics per week, 239-240
tweets from public timeline, 199-200
tweets that mention screen names,
207-209
user details list of blocked users, 172-174
user details on followers, 109-111
user details on friends, 109-111
user IDs of followers, 112-115
user IDs of friends, 112-115
user timeline, 203-207
retweeting tweets, 186-188
retweets (RTs)
description of, 8, 9
of specific tweets, retrieving, 188-190,
215-217
reusing markup across multiple
layouts, 313

428

Twitter Application Development For Dummies

revenue model speculations about
Twitter, 324
revenue models
asking for donations, 336-337
building businesses, 342-344
licensing and selling software, 337-338
requesting payment for services, 335-339
selling goods, 339-342
selling subscriptions, 338-339
Right Banners service, 353
Roelands, Duane (developer), 362
rolling back files to previous versions, 40
root usernames and passwords, using to
connect applications to databases, 265
Rose, Kevin (developer), 52
RTs. See retweets
rules
for developers, 65
general, 64

oS e

SaaS (software as a service) view, 338
Safari browser and XML, 42
save function, 289
saved searches
creating, 229-231
details, getting, 227-229
removing, 231-233
retrieving all, 225-227
saved searches methods
overview of, 224-225, 380
saved_searches, 225-227, 381
saved_searches/create, 229-231, 381
saved_searches/destroy,
231-233, 381
saved_searches/show, 227-229,
381-382
saved_searches method, 225-227, 381
saved_searches/create method,
229-231, 381
saved_searches/destroy method,
231-233, 381
saved_searches/show method, 227-229,
381-382
saving User object to database, 289
scalability of Web applications, 318-319

scheduling cron jobs, 303
score field, 281
scoreboard for Twooshes game, creating,
303-307
screen names
@ replies and, 8
tweets that mention, getting, 207-209
screen_name parameter, 107, 362
screen_name variable, 287
script tags, 16
scripts folder, 271
Search API
description of, 66
rate limit, 68-69
Search API methods
overview of, 233, 382
search.tweet.com/search, 233-235,
382-383
search.twitter.com/trends,
235-237, 383
search.twitter.com/trends/
current, 235-237, 384
search.twitter.com/trends/daily,
237-239, 383-384
search.twitter.com/trends/
weekly, 239-240, 384
search engine optimization (SEO), 348,
353-354
search functionality, 11
searching for tweets, 233-235
search. twitter.com/search method,
233-235, 382-383
search.twitter.com/trends method,
235-237, 383
search.twitter.com/trends/
current method, 235-237, 384
search.twitter.com/trends/daily
method, 237-239, 383-384
search.twitter.com/trends/weekly
method, 239-240, 384
SecretTweet app, 57, 402
Secure Sockets Layer (SSL), 246
securing MySQL server, 265-266
Seesmic Desktop app, 48, 403
select query, 36
selectors (CSS), 20
Selenium, acceptance testing with, 316
self-funding applications, 325

Index 4 29

selling
advertising, 333-334
applications, 337-338
goods, 339-342
subscriptions, 338-339
sending
direct messages, 194-196
status updates, 183-184
SEO (search engine optimization), 348,
353-354
server console inside Web browsers, 261
Server Side Includes (SSI), 313
servers
Apache and PHP, setting up, 258-263
domain names, setting up, 267-268
hosting providers, selecting, 257-258
increasing performance of, 319
MySQL, setting up, 263-266
splitting workload across, 257-258
uploading files to, 266-267
Web hosting solutions, 255-257
shared Web hosting, 255, 257
shareware model, 338
Short Message Service (SMS) revenue
sharing from mobile providers, 324
64-bit integers, using, 362
Smith, Brian (developer), 57
Smith, Kevin (developer), 57
SMS (Short Message Service) revenue
sharing from mobile providers, 324
SMS updates
turning off, 164-165
usefulness of, 10
SnapTweet app, 55, 403
social capital, building, 342-343
social graph methods
adding to Zend Framework library,
296-297
overview of, 374-375
user IDs of friends and followers, getting,
112-115
social networking sites
promotion strategies using, 346-349
virtual goods sold on, 341-342
software. See applications

software as a service (SaaS) view, 338
software frameworks, 252-253
solving problems with applications, 245
source code, viewing, 42
spam reporting method, 176-178, 384-385
splitting workload across servers, 257-258
SSI (Server Side Includes), 313
SSL (Secure Sockets Layer), 246
static IP addresses, 257
statistical analysis apps, 53
status methods
overview of, 179, 385
statuses/destroy, 184-186, 386
statuses/retweet, 186-188, 390
statuses/retweets, 188-190, 392
statuses/show, 180-181, 392
statuses/update, 182-184, 392-393
status objects, 71, 72-73
status updates, retweeted, getting, 210-212
statuses/destroy method, 184-186, 386
statuses/followers method, 109-111,
386-387
statuses/friends method, 109-111, 387
statuses/friends_timeline method,
201-203, 388
statuses/home_timeline method,
388-389
statuses/mentions method,
207-209, 389
statuses/public_timeline method,
199-200, 389
statuses/retweet method, 186-188, 390
statuses/retweeted_by me method,
210-212, 390
statuses/retweeted_to_me method,
212-214, 391
statuses/retweets method,
188-190, 392
statuses/retweets_of_me method,
215-217, 390-391
statuses/show method, 180-181, 392
statuses/update method, 182-184,
392-393
statuses/user_timeline method,

203-207, 393-394

430

Twitter Application Development For Dummies

Stone, Biz (founder), 324
stop following

lists, 147-149

users, 154-155
stop receiving notifications from users,

163-165

storing API results locally, 107, 280
Streaming API, 66
“strict” doctype of HTML, 15, 310, 353
strong tags, 18
style, separating from content, 14
style attribute, 18
style tags, 16, 19
subPoint function, 291
subscribers to lists

adding, 146-147

getting, 143-145

testing for, 149-151
subscribing to Google developer

announcement list, 358, 362

subscriptions, selling, 338-339
Subversion version control system, 40, 317
success, definition of, 241
Summize acquisition, 343-344
Symfony framework, 252

o o

Table Data Gateway design pattern, 283
table tags, 17
tables, creating in MySQL, 37
tags directory, 270
TechCrunch Web site, 351
terminology, 9
terms of service
developer etiquette, 65
general, 64
testing
automating acceptance testing, 315-316
if users are list members, 140-142
if users follow lists, 149-151
if users follow users, 156-158
unit, 317
users for blocking, 170-172
Zend Framework, 279

text ads, 352
text parameter, 195
textual data formatting, 24
timeline methods
overview of, 198-199
statuses/friends_timeline,
201-203, 388
statuses/mentions, 207-209, 389
statuses/public_timeline,
199-200, 389
statuses/retweeted_by_me,
210-212, 390
statuses/retweeted_to_me,
212-214, 392
statuses/retweets_of_me, 215-217,
390-391
statuses/user_timeline, 203-207,
393-394
timelines
for lists, getting, 126-129
public, 199-200, 233
timeouts, avoiding, 113
Tiny Twitter app, 50, 404
title attribute, 18
title tags, 16
tooting own horn, 351
Torrone, Phil (developer), 61
tracking
ads sold, 334
file changes over time, 40
power consumption, 61, 404
trademarks, 359
traffic reports, accessing, 8
traits of respectable developers, 357-360
transitional doctype of HTML, 15
trending topics
current top 10, getting, 235-237
monitoring, 10
top 20 per hour, getting, 237-239
top 30 per week, retrieving, 239-240
trendingTopics field, 281
Tribal Fusion ad network, 329
trunk folder, 270
trust, building with users, 246, 346
turning off SMS updates, 164-165
Tweet Congress application, 244

Index 43 ’

tweet database table, building, 282
Tweet model, creating, 284-286
Tweet-a-Watt device, 61, 404
TweetcronController.php file, 301-302
TweetDeck app
for desktops, 48
managing API limits with, 318
for mobile phones, 50
screenshot, 405
Tweetie app, 49-50, 337
Tweeting Too Hard app, 56, 405
Tweetmeme app, 349-350
Tweetname bot, 60, 406
Tweet .php file, 284-286
TweetReach app, 53, 406
tweets. See also timeline methods
adding to favorites, 220-222
creating, 182-184
deleting, 184-186
description of, 7, 9
details of, getting, 180-181
favorite, retrieving, 217-220
in lists, displaying maximum
amount of, 127-129
mentioning screen name, getting, 207-209
from public timeline, getting, 199-200
purposes of, 7-8
removing from favorites, 222-224
retrieving retweets of, 188-190, 215-217
retweeting, 186-188
searching for, 233-235
TweetStats app, 54, 245, 407
Twibes, 363
Twistori app, 56-57, 407
TwitCause application, 244
Twitdom Web site, 354
TwitPic app, 54-55, 408
Twittad app, 59, 408
Twitter
application definition box, 324
bots, 59-60
building businesses on top of, 11, 342-344
description of, 7
features of, 8, 9-11
open API, 11
partnering with, 323
promoting applications on, 346-347

relationship structure of, 9
revenue model speculations, 324
SMS updates, 10
Summize acquisition, 343-344
terminology of, 9
trends and searches, 10-11
wiki, 78, 252
Twitter-async library, 78
Twittercal bot, 59, 409
TwitterCounter app, 53, 409
Twitterfeed app, 57-58, 410
twitter_id field, 280
twitter_id variable, 287
Twitterrific for Mac app
description of, 49, 338
logo T-shirts, 340
screenshot, 410
twooshes field, 281
Twooshes game app
auto-follow script, creating, 295-301
bootstrap.php file, creating, 275-276
bootstrapping, 272
cloud hosting solution for, 257
configuration file, creating, 276-277
cron jobs, creating, 295-303
data models, creating, 283-294
data structure, setting up, 280-282
description of, 9, 247
directory structure, creating, 270-271
.htaccess file, creating, 273
index.php file, creating, 273-275
layout template, creating, 277-278
scoreboard, creating, 303-307
view and controller, creating, 278-279
Web server dashboard, 260
Zend Framework, installing, 271
Twtbase Web site, 354
type selectors, 20

olf o

unblocking users, 168-169
unfollowing

lists, 147-149

users, 154-155

432

Twitter Application Development For Dummies

Unfuddle Web site, 40
unit testing, 317
unordered list tags, 16
update statement, 38
updated field, 281
updates, following and posting, 10
updating
existing lists, 118-120
Google Calendar, 8
user notification devices, 85-86
user profile background images, 93-95
user profile colors, 89-91
user profile pictures, 91-93
user profiles, 86—-89
uploading files to Web servers, 266-267
usage quotas, getting around, 363
user accounts and @ sign, 8
User Agent string to increase Search API
rate limit, 68-69
user credentials, verifying, 80-81
user database table, building, 280-281
user details list
of blocked users, getting, 172-174
of friends and followers, getting, 109-111
user IDs
of friends and followers, getting, 112-115
list of blocked, getting, 174-176
user methods
details of friends and followers, getting,
109-111
details of users, getting, 106-108
overview of, 105, 394
User model, creating, 286-294
user notification devices, updating, 85-86
user objects, 71-72
user passwords, handling, 74
user profiles
background images, updating, 93-95
colors, updating, 89-91
data in, 79
pictures, updating, 91-93
updating, 86-89
user sessions, ending, 83-84
user timeline, getting, 203-207
useriId field, 281
user_id parameter, 107, 362

:user/:1list_id/members method
adding members to lists, 136-138
getting lists of members, 134-136
removing members from lists, 138-140

:user/:1list_id/members/:id method,

140-142

:user/:1list_id/subscribers method
following lists, 145-147
getting list of followers, 143-145
stop following lists, 147-149

:user/:1list_id/subscribers/:id

method, 149-151
:user/lists method, 116-118, 120-122
:user/lists/:id method, 118-120,
122-126
:user/lists/:1list_id/statuses
method, 126-129
:user/lists/memberships method,
129-131
:user/lists/subscriptions method,
132-134

usernames
checking, 80-81
root, using to connect applications to

databases, 265

User .php file
complete syntax, 292-294
creating, 283
starting class and defining fields, 287

users
blocking, 166-167
building trust with, 246, 346
checking for blocking, 170-172
communication with, 360
favorite tweets of, retrieving, 217-220
following, 152-153
getting information about relationship

between, 158-161
list of lists, getting, 120-122
receiving notifications from, 161-163
stop following, 154-155
stopping notifications from, 163-165
unblocking, 168-169
users/show method, 106-108, 394

Index

oo

validating Web sites as XHTML 1.0 Strict,
353-354
ValueClick ad network, 330
van Zanten, Boris Veldhuijzen
(developer), 53
Venneman, Brian (developer), 54
venture capital
description of, 323, 325
seeking, 326
verifying user credentials, 80-81
version control, 40, 317
versioning of API, 66-67
vertical ad networks, 332-333
view
for auto-follow script, 296
creating, 278-279
in model-view-control design pattern,
253-254
viewing source code, 42
viral marketing, 349-350
virtual goods, selling, 339, 341-342

o/ o

Web application frameworks
breaking up HTML markup and, 313
description of, 252-253

Web applications
advertising, 58-59
contact management, 52-53
customer relationship management, 51
description of, 50-51
information aggregation, 55-57
information publishing, 57-58
media sharing, 54-55
selling subscriptions for, 338-339
statistical analysis, 53

Web banners, 352, 353

Web browsers
opening apps in, 42
server console inside, 261

Web development. See also CSS; HTML;

MySQL; PHP

LAMP (Linux, Apache, MySQL, and PHP)
stack and, 13
separating content from style in, 14
standards for, 14
Web hosting companies, 257-258
Web hosting solutions
cloud computing, 256-257
dedicated, 256
shared, 255
Web servers
Apache and PHP, setting up, 258-263
domain names, setting up, 267-268
hosting providers, selecting, 257-258
increasing performance of, 319
MySQL, setting up, 263-266
splitting workload across, 257-258
uploading files to, 266-267
Web hosting solutions, 255-257
Web sites
ad networks, 329-330, 331, 332, 353
AdMob, 328
advertising apps, 58-59
Brizzly, 244
BugMeNot, 271
BuySellAds, 331
CafePress, 340
cloud computing examples, 256
contact management apps, 52-53
CoTweet, 245
CRM apps, 51
CruiseControl, 318
for design bids, 310
desktop clients, 48-49
developer announcement list, 362
for domain names, 267
e-mail list managers, 349
Facebook, 341, 342
Featured Users, 247, 332-333
hardware devices, 61
hosted version control repositories, 40
HOT or NOT, 341
information aggregation apps, 55-57
information publishing apps, 57-58
lists and reviews, 354
Magpie ad network, 247, 332
media sharing applications, 54-55
mobile clients, 50

433

434 Twitter Application Development For Dummies

Web sites (continued)
non-relational data storage systems, 319
140tees, 340
Open Source Web Design, 310
PHP frameworks, 252
PHP manual, 31
PSD to HTML file conversion service, 311
Rackspace Cloud Servers, 257
reporting tools, 360
resources, 65
Right Banners, 353
statistical analysis apps, 53
Streaming API, 66
Subversion, 317
tech writers, 351
Tribal Fusion ad network, 329
Tweet Congress, 244
TweetDeck, 318
TweetStats, 245
TwitCause, 244
Twitter bots, 59-60
Twitter wiki, 78, 252
validating as XHTML 1.0 Strict, 353-354
white listing application, 68, 107
Zend_Paginator class, 307
WebFollow app, 52-53
website directory, 270
weekly trending topics, retrieving, 239-240
WeFollow app, 350, 411
weight attribute, 18
white listing, 68, 107
width of element, specifying, 22
Wikipedia donation page, 336-337
Williams, Abraham (developer), 362
Williams, Evan (founder), 324
Wilson, Mike (@2drinksbehind), 10
Wordpress blog platform, 348
workflow of model-view-control design
pattern, 253-254
workload, splitting across servers, 257-258
World Wide Web Consortium (W3C), 14
writing first app, 41-43
W3C (World Wide Web Consortium), 14
W3C Markup Validation Service, 353-354
www folder, 271

o X o
XHTML (Extensible Hypertext Markup
Language)

document example, 15
1.0 Strict, 310, 353

XML (Extensible Markup Language)
formatting in, 24
PHP DOMDocument class and, 33
Web browsers and, 42

xmlns attribute, 15

° y °
Yasuda, Jeff (developer), 54
YouTube, acquisition of, 343

o/ o

Zend Framework
adding methods to library, 296-297
bootstrap process, 272
bootstrap.php file, creating, 275-276
configuration file, creating, 276-277
description of, 252-253
directory structure, creating, 270-271
include_path, setting to library, 274
installing, 271
layout template, creating, 277-278
mod_rewrite, installing, 262-263
scoreboard, creating, 303-307
setting up, 269-279
Table Data Gateway design pattern, 283
testing, 279
unit tests and, 317
view and controller, creating, 278-279
Zend_Application object, creating,
274-275
zend_Paginator class, 303, 304, 307
Zend_Service_Twitter object,
creating, 297-298

Business/Accounting

& Bookkeeping
Bookkeeping For Dummies
978-0-7645-9848-7

eBay Business
All-in-One For Dummies,
2nd Edition
978-0-470-38536-4

Job Interviews

For Dummies,

3rd Edition
978-0-470-17748-8

Resumes For Dummies,
5th Edition
978-0-470-08037-5

Stock Investing
For Dummies,

3rd Edition
978-0-470-40114-9

Successful Time
Management

For Dummies
978-0-470-29034-7

Computer Hardware
BlackBerry For Dummies,
3rd Edition
978-0-470-45762-7

Computers For Seniors
For Dummies
978-0-470-24055-7

iPhone For Dummies,
2nd Edition
978-0-470-42342-4

Laptops For Dummies,
3rd Edition
978-0-470-27759-1

Macs For Dummies,
10th Edition
978-0-470-27817-8

Cooking & Entertaining
Cooking Basics

For Dummies,

3rd Edition
978-0-7645-7206-7

Wine For Dummies,
4th Edition
978-0-470-04579-4

Diet & Nutrition
Dieting For Dummies,
2nd Edition
978-0-7645-4149-0

Nutrition For Dummies,
4th Edition
978-0-471-79868-2

Weight Training
For Dummies,

3rd Edition
978-0-471-76845-6

Digital Photography
Digital Photography
For Dummies,

6th Edition
978-0-470-25074-7

Photoshop Elements 7
For Dummies
978-0-470-39700-8

Gardening
Gardening Basics
For Dummies
978-0-470-03749-2

Organic Gardening
For Dummies,

2nd Edition
978-0-470-43067-5

Green/Sustainable
Green Building

& Remodeling

For Dummies
978-0-470-17559-0

Green Cleaning
For Dummies
978-0-470-39106-8

Green IT For Dummies
978-0-470-38688-0

Health

Diabetes For Dummies,
3rd Edition
978-0-470-27086-8

Food Allergies
For Dummies
978-0-470-09584-3

Living Gluten-Free
For Dummies
978-0-471-77383-2

Hobbies/General
Chess For Dummies,
2nd Edition
978-0-7645-8404-6

Drawing For Dummies
978-0-7645-5476-6

Knitting For Dummies,
2nd Edition
978-0-470-28747-7

Organizing For Dummies
978-0-7645-5300-4

SuDoku For Dummies
978-0-470-01892-7

Home Improvement
Energy Efficient Homes
For Dummies
978-0-470-37602-7

Home Theater

For Dummies,

3rd Edition
978-0-470-41189-6

Living the Country Lifestyle
All-in-One For Dummies
978-0-470-43061-3

Solar Power Your Home
For Dummies
978-0-470-17569-9

Making Everything Eacier ™

Green Business
Practices

FOR

DUMMIES

Job Interviews

e ———————T

A Reference for the Rest of Usl' /2200

Making Everyehing Essler!”

Pam Allen
Tracy L. Barr
Shannen Okey

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Internet

Blogging For Dummies,
2nd Edition
978-0-470-23017-6

eBay For Dummies,
6th Edition
978-0-470-49741-8

Facebook For Dummies
978-0-470-26273-3

Google Blogger
For Dummies
978-0-470-40742-4

Web Marketing
For Dummies,

2nd Edition
978-0-470-37181-7

WordPress For Dummies,
2nd Edition
978-0-470-40296-2

Language & Foreign
Language

French For Dummies
978-0-7645-5193-2

Italian Phrases
For Dummies
978-0-7645-7203-6

Spanish For Dummies
978-0-7645-5194-9

Spanish For Dummies,
Audio Set
978-0-470-09585-0

Macintosh

Mac 0S X Snow Leopard
For Dummies
978-0-470-43543-4

Math & Science
Algebra | For Dummies
978-0-7645-5325-7

Biology For Dummies
978-0-7645-5326-4

Calculus For Dummies
978-0-7645-2498-1

Chemistry For Dummies
978-0-7645-5430-8

Microsoft Office
Excel 2007 For Dummies
978-0-470-03737-9

Office 2007 All-in-One
Desk Reference

For Dummies
978-0-471-78279-7

Music

Guitar For Dummies,
2nd Edition
978-0-7645-9904-0

iPod & iTunes

For Dummies,

6th Edition
978-0-470-39062-7

Piano Exercises
For Dummies
978-0-470-38765-8

Parenting & Education
Parenting For Dummies,
2nd Edition
978-0-7645-5418-6

Type 1 Diabetes
For Dummies
978-0-470-17811-9

Pets

Cats For Dummies,
2nd Edition
978-0-7645-5275-5

Dog Training For Dummies,
2nd Edition
978-0-7645-8418-3

Puppies For Dummies,
2nd Edition
978-0-470-03717-1

Religion & Inspiration
The Bible For Dummies
978-0-7645-5296-0

Catholicism For Dummies
978-0-7645-5391-2

Women in the Bible
For Dummies
978-0-7645-8475-6

Self-Help & Relationship
Anger Management

For Dummies
978-0-470-03715-7

Overcoming Anxiety
For Dummies
978-0-7645-5447-6

Sports

Baseball For Dummies,
3rd Edition
978-0-7645-7537-2

Basketball For Dummies,
2nd Edition
978-0-7645-5248-9

Golf For Dummies,
3rd Edition
978-0-471-76871-5

Web Development
Web Design All-in-One
For Dummies
978-0-470-41796-6

Windows Vista
Windows Vista

For Dummies
978-0-471-75421-3

Mghking Everything faverl”

Web Marketing

Jan Zimmerman

sasking Everything Lavier”

IN FULL COLOR!

Julie Adair King
Sergo Timacheff

king Everythien Easier™

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

S !

From hooking up a modem to cooking up a
3 = » casserole, knitting a scarf to navigating an iPod,
- you can trust Dummies.com to show you how
to get things done the easy way.

Visit us at Dummies.com

DVDs e Music ® Games e

DIY ¢ Consumer Electronics e
Software ¢ Crafts ¢ Hobbies e
Cookware ¢ and more!

For more information, go to
Dummies.com® and search
the store by category.

Refractor’
DUMMIES

" Online Backup
?ﬂ}fﬂi‘lm Electric Guitar
s Starter Pack

Bath, Sink, & Tile /'
Refinishing Kit _

: _un)i}x{IES

Doervcas, banten y cnulef refinishing

Discover the fun of
building a Twitter app,
and earn some cash too!

Love Twitter? Know a little (or a lot) about developing
applications? Learn how to build a Twitter app, some great
ways to make it stand out from the crowd, how to get it
discovered, and how to turn your Twitter app-building
into a productive little business — all from the creator

of FriendOrFollow.com, one of the coolest Twitter apps
around!

e If your skills are rusty — check Chapter 2 for a quickie refresher
course in Web application development

* Exploring the ecosystem — explore the types of Twitter apps
already available and the five categories of the Twitter
ecosystem

* The money thing — learn about Twitter’s unusual financial
environment and ways you can earn money from your apps

* Build a Twitter Web app from the ground up — work with Twitter
APl libraries, choose a Web hosting provider, and set up a Web
framework

* Get the word out — discover ways to promote your apps and
how to make your app business grow

Dusty Reagan launched a Web development company called
Floating Head Studios in 2007. He developed the hugely popular

Twitter app FriendOrFollow.com in 2008, and a few months later
launched FeaturedUsers.com, a niche ad network centered around
the Twitter ecosystem. Follow him on Twitter at @DustyReagan.

Programming/Application Development

Open the book and find:

* Basics on using HTML, CSS, PHP,
and MySQL

* How to create and manage your
developer account

* Advice on choosing an idea for
your app

* An overview of Web apps, Twitter
bots, mobile clients,and more

* Twitter’s two APls

* Different ways to monetize
your app

* Example code for every API
method

* Code for a complete app

Go to Dummies.come®
for videos, step-by-step examples,
how-to articles, or to shop!

For Dummies®
A Branded Imprint of

WILEY
$29.99 US /$35.99 CN / £21.99 UK

ISBN 97&-0-470-5k8L2-0

“ 52999

9780470568620

	Twitter Application Development For Dummies
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	What You Don’t Need to Read
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Catching Up to Twitter and App Development
	Chapter 1: Catching Twitter’s Coat Tails
	Why Do People Tweet?
	What Makes Twitter So Special?
	Why Should You Develop a Twitter App?
	Turning Motivation into Action

	Chapter 2: Web Development Refresher Course
	Writing HTML & CSS
	Styling Your HTML
	Formatting in XML & JSON
	The Basics of PHP
	Understanding MySQL

	Chapter 3: Setting Up to Create Twitter Apps
	Create Your Developer Account
	The Importance of Version Control
	Hello Twitter!

	Part II: Ideation — Coming Up with an Idea
	Chapter 4: Getting to Know the Twitter Application Ecosystem
	Desktop Client
	Mobile Clients
	Web Applications
	Twitter Bots
	Hardware

	Chapter 5: Introducing the Twitter API
	Play Nice and Follow the Terms of Service
	There Are Actually Two APIs
	Twitter API Versioning
	Rate Limits and How to Get White Listed
	HTTP Response Status Codes and Errors
	Defining the Payload
	Authentication

	Chapter 6: Logging In and Managing Your Account
	Account Methods
	OAuth Methods

	Chapter 7: Managing Users and Their Relationships
	User Methods
	Social Graph Methods
	List Methods
	List Members Methods
	List Subscribers Methods
	Friendship Methods
	Notification Methods
	Block Methods
	Spam Reporting Method

	Chapter 8: Communication Through Tweets
	Status Methods
	Direct Messages Methods
	Timeline Methods
	Favorite Methods
	Saved Searches Methods
	Search API Methods

	Chapter 9: Selecting an Idea
	Imagining a Successful Twitter App
	What Is Your Motivation?
	Why Do People Use a Twitter App?
	Do You Have the Skill and Resources to Build Your App?
	Enough Jibber Jabber! Start Building!

	Part III: Creation — Developing Your Application
	Chapter 10: Selecting Libraries, Design Patterns, and Frameworks
	Twitter API Libraries Can Speed Up Development
	Web Application Frameworks
	Model View Control

	Chapter 11: Hosting In the Clouds
	Types of Web Hosting Solutions
	Choosing a Hosting Provider
	Setting Up Your Servers
	Uploading Files to Your Web Server
	Setting Up Your Domain Name

	Chapter 12: Coding Your Application
	Setting Up the Zend Framework
	Setting Up Your Data Structure
	Create Your Data Models
	The Cron Jobs
	Creating the Scoreboard
	Release Early and Often

	Chapter 13: Making It Pretty Makes It Credible
	Hire a Designer
	PSD to XHTML
	Integrating Your Design

	Chapter 14: What You Need to Know to Grow
	Automating Acceptance Testing
	Unit Testing
	Continuous Integration
	Performance Concerns

	Part IV: Monetization — Making Money with Your Application
	Chapter 15: How Twitter Makes Money
	Understanding Venture Capital
	How to Fund Your Application

	Chapter 16: Advertising
	Selecting a Traditional Ad Network
	Going Vertical
	Do It Yourself

	Chapter 17: Monetizing with Other Models
	Requesting Payment for Service
	Selling Goods
	Building Your Business

	Chapter 18: Promoting Your Application
	Social Networking
	Go Viral
	Public Relations Strategies
	Advertise
	SEO

	Part V: The Part of Tens
	Chapter 19: Ten Traits of a Respectable Twitter Developer
	Ask Permission
	Read the Documentation First
	Stay within Your Rate Limit
	Don’t Promote Mass Following
	Be Cautious of Trademarks
	Give Back
	Cache Your Data
	Use OAuth
	Don’t Be Evil
	Communicate with Your Users

	Chapter 20: Ten Twitter API Tips
	Develop Defensively
	Degrade Gracefully
	Don’t Rely on screen_name
	Use 64-Bit Integers
	Subscribe to the Google Group
	Access the API in the Background
	Use JSON
	Optimize Caching
	Support International Characters
	Do It Client Side

	Appendix A: Twitter API Reference
	Account Methods
	Block Methods
	Direct Message Methods
	Favorite Methods
	Social Graph Methods
	Friendship Methods
	Help Methods
	Notification Methods
	OAuth Methods
	Saved Searches Methods
	Search Methods
	Spam Reporting Methods
	Status Methods
	User Methods

	Appendix B: Gallery of Twitter Applications
	Index

