

JavaScript: The Good Parts

Other resources from O’Reilly

Related titles High Performance Web Sites

JavaScript and DHTML
Cookbook™

JavaScript: The Definitive
Guide

Learning JavaScript

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

JavaScript: The Good Parts

Douglas Crockford

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

JavaScript: The Good Parts
by Douglas Crockford

Copyright © 2008 Yahoo! Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent

Production Editor: Sumita Mukherji

Copyeditor: Genevieve d’Entremont

Proofreader: Sumita Mukherji

Indexer: Julie Hawks

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrator: Robert Romano

Printing History:

May 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. JavaScript: The Good Parts, the image of a Plain Tiger butterfly, and related trade
dress are trademarks of O’Reilly Media, Inc.

Java™ is a trademark of Sun Microsystems, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-51774-8

[M] [7/08]

http://safari.oreilly.com
mailto:corporate@oreilly.com

For the Lads: Clement, Philbert, Seymore, Stern,

and, lest we forget, C. Twildo.

vii

Table of Contents

Preface . xi

1. Good Parts . 1
Why JavaScript? 2

Analyzing JavaScript 3

A Simple Testing Ground 4

2. Grammar . 5
Whitespace 5

Names 6

Numbers 7

Strings 8

Statements 10

Expressions 15

Literals 17

Functions 19

3. Objects . 20
Object Literals 20

Retrieval 21

Update 22

Reference 22

Prototype 22

Reflection 23

Enumeration 24

Delete 24

Global Abatement 25

viii | Table of Contents

4. Functions . 26
Function Objects 26

Function Literal 27

Invocation 27

Arguments 31

Return 31

Exceptions 32

Augmenting Types 32

Recursion 34

Scope 36

Closure 37

Callbacks 40

Module 40

Cascade 42

Curry 43

Memoization 44

5. Inheritance . 46
Pseudoclassical 47

Object Specifiers 50

Prototypal 50

Functional 52

Parts 55

6. Arrays . 58
Array Literals 58

Length 59

Delete 60

Enumeration 60

Confusion 61

Methods 62

Dimensions 63

7. Regular Expressions . 65
An Example 66

Construction 70

Elements 72

Table of Contents | ix

8. Methods . 78

9. Style . 94

10. Beautiful Features . 98

Appendix A. Awful Parts . 101

Appendix B. Bad Parts . 109

Appendix C. JSLint . 115

Appendix D. Syntax Diagrams . 125

Appendix E. JSON . 136

Index . 147

xi

Preface1

If we offend, it is with our good will

That you should think, we come not to offend,

But with good will. To show our simple skill,

That is the true beginning of our end.

—William Shakespeare, A Midsummer Night’s Dream

This is a book about the JavaScript programming language. It is intended for pro-
grammers who, by happenstance or curiosity, are venturing into JavaScript for the first
time. It is also intended for programmers who have been working with JavaScript at a
novice level and are now ready for a more sophisticated relationship with the lan-
guage. JavaScript is a surprisingly powerful language. Its unconventionality presents
some challenges, but being a small language, it is easily mastered.

My goal here is to help you to learn to think in JavaScript. I will show you the com-
ponents of the language and start you on the process of discovering the ways those
components can be put together. This is not a reference book. It is not exhaustive
about the language and its quirks. It doesn’t contain everything you’ll ever need to
know. That stuff you can easily find online. Instead, this book just contains the
things that are really important.

This is not a book for beginners. Someday I hope to write a JavaScript: The First
Parts book, but this is not that book. This is not a book about Ajax or web program-
ming. The focus is exclusively on JavaScript, which is just one of the languages the
web developer must master.

This is not a book for dummies. This book is small, but it is dense. There is a lot of
material packed into it. Don’t be discouraged if it takes multiple readings to get it.
Your efforts will be rewarded.

xii | Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, filenames, and file extensions.

Constant width

Indicates computer coding in a broad sense. This includes commands, options,
variables, attributes, keys, requests, functions, methods, types, classes, modules,
properties, parameters, values, objects, events, event handlers, XML and
XHTML tags, macros, and keywords.

Constant width bold

Indicates commands or other text that should be typed literally by the user.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission. For example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-ROM of exam-
ples from O’Reilly books does require permission. Answering a question by citing
this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s documenta-
tion does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “JavaScript: The Good Parts by Dou-
glas Crockford. Copyright 2008 Yahoo! Inc., 978-0-596-51774-8.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

mailto:permissions@oreilly.com
http://safari.oreilly.com

Preface | xiii

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596517748/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com/

Acknowledgments
I want to thank the reviewers who pointed out my many egregious errors. There are
few things better in life than having really smart people point out your blunders. It is
even better when they do it before you go public. Thank you, Steve Souders, Bill
Scott, Julien Lecomte, Stoyan Stefanov, Eric Miraglia, and Elliotte Rusty Harold.

I want to thank the people I worked with at Electric Communities and State Soft-
ware who helped me discover that deep down there was goodness in this language,
especially Chip Morningstar, Randy Farmer, John La, Mark Miller, Scott Shattuck,
and Bill Edney.

I want to thank Yahoo! Inc. for giving me time to work on this project and for being
such a great place to work, and thanks to all members of the Ajax Strike Force, past
and present. I also want to thank O’Reilly Media, Inc., particularly Mary Treseler,
Simon St.Laurent, and Sumita Mukherji for making things go so smoothly.

Special thanks to Professor Lisa Drake for all those things she does. And I want to
thank the guys in ECMA TC39 who are struggling to make ECMAScript a better
language.

Finally, thanks to Brendan Eich, the world’s most misunderstood programming lan-
guage designer, without whom this book would not have been necessary.

http://www.oreilly.com/catalog/9780596517748
/
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

1

Chapter 1 CHAPTER 1

Good Parts1

…setting the attractions of my

good parts aside I have no other charms.

—William Shakespeare, The Merry Wives of Windsor

When I was a young journeyman programmer, I would learn about every feature of
the languages I was using, and I would attempt to use all of those features when I
wrote. I suppose it was a way of showing off, and I suppose it worked because I was
the guy you went to if you wanted to know how to use a particular feature.

Eventually I figured out that some of those features were more trouble than they
were worth. Some of them were poorly specified, and so were more likely to cause
portability problems. Some resulted in code that was difficult to read or modify. Some
induced me to write in a manner that was too tricky and error-prone. And some of
those features were design errors. Sometimes language designers make mistakes.

Most programming languages contain good parts and bad parts. I discovered that I
could be a better programmer by using only the good parts and avoiding the bad
parts. After all, how can you build something good out of bad parts?

It is rarely possible for standards committees to remove imperfections from a lan-
guage because doing so would cause the breakage of all of the bad programs that
depend on those bad parts. They are usually powerless to do anything except heap
more features on top of the existing pile of imperfections. And the new features do
not always interact harmoniously, thus producing more bad parts.

But you have the power to define your own subset. You can write better programs by
relying exclusively on the good parts.

JavaScript is a language with more than its share of bad parts. It went from non-
existence to global adoption in an alarmingly short period of time. It never had an
interval in the lab when it could be tried out and polished. It went straight into
Netscape Navigator 2 just as it was, and it was very rough. When Java™ applets
failed, JavaScript became the “Language of the Web” by default. JavaScript’s popu-
larity is almost completely independent of its qualities as a programming language.

2 | Chapter 1: Good Parts

Fortunately, JavaScript has some extraordinarily good parts. In JavaScript, there is a
beautiful, elegant, highly expressive language that is buried under a steaming pile of
good intentions and blunders. The best nature of JavaScript is so effectively hidden
that for many years the prevailing opinion of JavaScript was that it was an unsightly,
incompetent toy. My intention here is to expose the goodness in JavaScript, an out-
standing, dynamic programming language. JavaScript is a block of marble, and I chip
away the features that are not beautiful until the language’s true nature reveals itself.
I believe that the elegant subset I carved out is vastly superior to the language as a
whole, being more reliable, readable, and maintainable.

This book will not attempt to fully describe the language. Instead, it will focus on the
good parts with occasional warnings to avoid the bad. The subset that will be
described here can be used to construct reliable, readable programs small and large.
By focusing on just the good parts, we can reduce learning time, increase robustness,
and save some trees.

Perhaps the greatest benefit of studying the good parts is that you can avoid the need
to unlearn the bad parts. Unlearning bad patterns is very difficult. It is a painful task
that most of us face with extreme reluctance. Sometimes languages are subsetted to
make them work better for students. But in this case, I am subsetting JavaScript to
make it work better for professionals.

Why JavaScript?
JavaScript is an important language because it is the language of the web browser. Its
association with the browser makes it one of the most popular programming lan-
guages in the world. At the same time, it is one of the most despised programming
languages in the world. The API of the browser, the Document Object Model
(DOM) is quite awful, and JavaScript is unfairly blamed. The DOM would be pain-
ful to work with in any language. The DOM is poorly specified and inconsistently
implemented. This book touches only very lightly on the DOM. I think writing a
Good Parts book about the DOM would be extremely challenging.

JavaScript is most despised because it isn’t some other language. If you are good in
some other language and you have to program in an environment that only supports
JavaScript, then you are forced to use JavaScript, and that is annoying. Most people
in that situation don’t even bother to learn JavaScript first, and then they are sur-
prised when JavaScript turns out to have significant differences from the some other
language they would rather be using, and that those differences matter.

The amazing thing about JavaScript is that it is possible to get work done with it
without knowing much about the language, or even knowing much about program-
ming. It is a language with enormous expressive power. It is even better when you
know what you’re doing. Programming is difficult business. It should never be
undertaken in ignorance.

Analyzing JavaScript | 3

Analyzing JavaScript
JavaScript is built on some very good ideas and a few very bad ones.

The very good ideas include functions, loose typing, dynamic objects, and an expres-
sive object literal notation. The bad ideas include a programming model based on
global variables.

JavaScript’s functions are first class objects with (mostly) lexical scoping. JavaScript
is the first lambda language to go mainstream. Deep down, JavaScript has more in
common with Lisp and Scheme than with Java. It is Lisp in C’s clothing. This makes
JavaScript a remarkably powerful language.

The fashion in most programming languages today demands strong typing. The the-
ory is that strong typing allows a compiler to detect a large class of errors at compile
time. The sooner we can detect and repair errors, the less they cost us. JavaScript is a
loosely typed language, so JavaScript compilers are unable to detect type errors. This
can be alarming to people who are coming to JavaScript from strongly typed lan-
guages. But it turns out that strong typing does not eliminate the need for careful
testing. And I have found in my work that the sorts of errors that strong type check-
ing finds are not the errors I worry about. On the other hand, I find loose typing to
be liberating. I don’t need to form complex class hierarchies. And I never have to cast
or wrestle with the type system to get the behavior that I want.

JavaScript has a very powerful object literal notation. Objects can be created simply
by listing their components. This notation was the inspiration for JSON, the popu-
lar data interchange format. (There will be more about JSON in Appendix E.)

A controversial feature in JavaScript is prototypal inheritance. JavaScript has a class-
free object system in which objects inherit properties directly from other objects. This
is really powerful, but it is unfamiliar to classically trained programmers. If you attempt
to apply classical design patterns directly to JavaScript, you will be frustrated. But if
you learn to work with JavaScript’s prototypal nature, your efforts will be rewarded.

JavaScript is much maligned for its choice of key ideas. For the most part, though,
those choices were good, if unusual. But there was one choice that was particularly
bad: JavaScript depends on global variables for linkage. All of the top-level variables
of all compilation units are tossed together in a common namespace called the global
object. This is a bad thing because global variables are evil, and in JavaScript they are
fundamental. Fortunately, as we will see, JavaScript also gives us the tools to miti-
gate this problem.

In a few cases, we can’t ignore the bad parts. There are some unavoidable awful
parts, which will be called out as they occur. They will also be summarized in
Appendix A. But we will succeed in avoiding most of the bad parts in this book,
summarizing much of what was left out in Appendix B. If you want to learn more
about the bad parts and how to use them badly, consult any other JavaScript book.

4 | Chapter 1: Good Parts

The standard that defines JavaScript (aka JScript) is the third edition of The
ECMAScript Programming Language, which is available from http://www.ecma-
international.org/publications/files/ecma-st/ECMA-262.pdf. The language described in
this book is a proper subset of ECMAScript. This book does not describe the whole
language because it leaves out the bad parts. The treatment here is not exhaustive. It
avoids the edge cases. You should, too. There is danger and misery at the edges.

Appendix C describes a programming tool called JSLint, a JavaScript parser that can
analyze a JavaScript program and report on the bad parts that it contains. JSLint pro-
vides a degree of rigor that is generally lacking in JavaScript development. It can give
you confidence that your programs contain only the good parts.

JavaScript is a language of many contrasts. It contains many errors and sharp edges,
so you might wonder, “Why should I use JavaScript?” There are two answers. The
first is that you don’t have a choice. The Web has become an important platform for
application development, and JavaScript is the only language that is found in all
browsers. It is unfortunate that Java failed in that environment; if it hadn’t, there
could be a choice for people desiring a strongly typed classical language. But Java did
fail and JavaScript is flourishing, so there is evidence that JavaScript did something
right.

The other answer is that, despite its deficiencies, JavaScript is really good. It is light-
weight and expressive. And once you get the hang of it, functional programming is a
lot of fun.

But in order to use the language well, you must be well informed about its limita-
tions. I will pound on those with some brutality. Don’t let that discourage you. The
good parts are good enough to compensate for the bad parts.

A Simple Testing Ground
If you have a web browser and any text editor, you have everything you need to run
JavaScript programs. First, make an HTML file with a name like program.html:

<html><body><pre><script src="program.js">
</script></pre></body></html>

Then, make a file in the same directory with a name like program.js:

document.writeln('Hello, world!');

Next, open your HTML file in your browser to see the result. Throughout the book,
a method method is used to define new methods. This is its definition:

Function.prototype.method = function (name, func) {
 this.prototype[name] = func;
 return this;
};

It will be explained in Chapter 4.

http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf

5

Chapter 2 CHAPTER 2

Grammar2

I know it well:

I read it in the grammar long ago.

—William Shakespeare, The Tragedy of Titus Andronicus

This chapter introduces the grammar of the good parts of JavaScript, presenting a
quick overview of how the language is structured. We will represent the grammar
with railroad diagrams.

The rules for interpreting these diagrams are simple:

• You start on the left edge and follow the tracks to the right edge.

• As you go, you will encounter literals in ovals, and rules or descriptions in
rectangles.

• Any sequence that can be made by following the tracks is legal.

• Any sequence that cannot be made by following the tracks is not legal.

• Railroad diagrams with one bar at each end allow whitespace to be inserted
between any pair of tokens. Railroad diagrams with two bars at each end do not.

The grammar of the good parts presented in this chapter is significantly simpler than
the grammar of the whole language.

Whitespace
Whitespace can take the form of formatting characters or comments. Whitespace is
usually insignificant, but it is occasionally necessary to use whitespace to separate
sequences of characters that would otherwise be combined into a single token. For
example, in:

var that = this;

the space between var and that cannot be removed, but the other spaces can be
removed.

6 | Chapter 2: Grammar

JavaScript offers two forms of comments, block comments formed with /* */ and
line-ending comments starting with //. Comments should be used liberally to
improve the readability of your programs. Take care that the comments always accu-
rately describe the code. Obsolete comments are worse than no comments.

The /* */ form of block comments came from a language called PL/I. PL/I chose
those strange pairs as the symbols for comments because they were unlikely to occur
in that language’s programs, except perhaps in string literals. In JavaScript, those
pairs can also occur in regular expression literals, so block comments are not safe for
commenting out blocks of code. For example:

/*
 var rm_a = /a*/.match(s);
*/

causes a syntax error. So, it is recommended that /* */ comments be avoided and //

comments be used instead. In this book, // will be used exclusively.

Names
A name is a letter optionally followed by one or more letters, digits, or underbars. A
name cannot be one of these reserved words:

abstract
boolean break byte
case catch char class const continue
debugger default delete do double

space

tab

line
end

any character
except line end

any character
except * and /

/ /

*

/
* /

whitespace

Numbers | 7

else enum export extends
false final finally float for function
goto
if implements import in instanceof int interface
long
native new null
package private protected public
return
short static super switch synchronized
this throw throws transient true try typeof
var volatile void
while with

Most of the reserved words in this list are not used in the language. The list does not
include some words that should have been reserved but were not, such as undefined,
NaN, and Infinity. It is not permitted to name a variable or parameter with a reserved
word. Worse, it is not permitted to use a reserved word as the name of an object
property in an object literal or following a dot in a refinement.

Names are used for statements, variables, parameters, property names, operators,
and labels.

Numbers

JavaScript has a single number type. Internally, it is represented as 64-bit floating
point, the same as Java’s double. Unlike most other programming languages, there is
no separate integer type, so 1 and 1.0 are the same value. This is a significant conve-
nience because problems of overflow in short integers are completely avoided, and
all you need to know about a number is that it is a number. A large class of numeric
type errors is avoided.

letter

name

digit

_

integer fraction exponent

number literal

8 | Chapter 2: Grammar

If a number literal has an exponent part, then the value of the literal is computed by
multiplying the part before the e by 10 raised to the power of the part after the e. So
100 and 1e2 are the same number.

Negative numbers can be formed by using the – prefix operator.

The value NaN is a number value that is the result of an operation that cannot pro-
duce a normal result. NaN is not equal to any value, including itself. You can detect
NaN with the isNaN(number) function.

The value Infinity represents all values greater than 1.79769313486231570e+308.

Numbers have methods (see Chapter 8). JavaScript has a Math object that contains a
set of methods that act on numbers. For example, the Math.floor(number) method
can be used to convert a number into an integer.

Strings
A string literal can be wrapped in single quotes or double quotes. It can contain zero
or more characters. The \ (backslash) is the escape character. JavaScript was built at
a time when Unicode was a 16-bit character set, so all characters in JavaScript are 16
bits wide.

JavaScript does not have a character type. To represent a character, make a string
with just one character in it.

any digit
except 0

digit

integer
0

digit

fraction

.

exponent

e digit+

E -

Strings | 9

The escape sequences allow for inserting characters into strings that are not nor-
mally permitted, such as backslashes, quotes, and control characters. The \u conven-
tion allows for specifying character code points numerically.

"A" === "\u0041"

Strings have a length property. For example, "seven".length is 5.

Strings are immutable. Once it is made, a string can never be changed. But it is easy
to make a new string by concatenating other strings together with the + operator.

any Unicode character except
" and \ and control character

string literal

" "

escaped character

' 'any Unicode character except
' and \ and control character

escaped character

escaped character

\ "
double quote

'
single quote

\ backslash

/ slash

b
backspace

f
formfeed

n new line

r carriage return

t tab

u 4 hexadecimal digits

10 | Chapter 2: Grammar

Two strings containing exactly the same characters in the same order are considered
to be the same string. So:

'c' + 'a' + 't' === 'cat'

is true.

Strings have methods (see Chapter 8):

'cat'.toUpperCase() === 'CAT'

Statements

A compilation unit contains a set of executable statements. In web browsers, each
<script> tag delivers a compilation unit that is compiled and immediately executed.
Lacking a linker, JavaScript throws them all together in a common global
namespace. There is more on global variables in Appendix A.

When used inside of a function, the var statement defines the function’s private
variables.

The switch, while, for, and do statements are allowed to have an optional label pre-
fix that interacts with the break statement.

Statements tend to be executed in order from top to bottom. The sequence of execu-
tion can be altered by the conditional statements (if and switch), by the looping
statements (while, for, and do), by the disruptive statements (break, return, and
throw), and by function invocation.

A block is a set of statements wrapped in curly braces. Unlike many other languages,
blocks in JavaScript do not create a new scope, so variables should be defined at the
top of the function, not in blocks.

The if statement changes the flow of the program based on the value of the expres-
sion. The then block is executed if the expression is truthy; otherwise, the optional
else branch is taken.

var statements

name expression ;

,

=var

Statements | 11

Here are the falsy values:

• false

• null

statements

expression statement ;

do statement

for statement

while statement

switch statement

if statement

try statement

disruptive statement

name

label

:

disruptive statement

break statement

return statement

throw statement

block

{ }statements

if statement

if)expression(block
then

blockelse

12 | Chapter 2: Grammar

• undefined

• The empty string ''

• The number 0

• The number NaN

All other values are truthy, including true, the string 'false', and all objects.

The switch statement performs a multiway branch. It compares the expression for
equality with all of the specified cases. The expression can produce a number or a
string. When an exact match is found, the statements of the matching case clause are
executed. If there is no match, the optional default statements are executed.

A case clause contains one or more case expressions. The case expressions need not be
constants. The statement following a clause should be a disruptive statement to prevent
fall through into the next case. The break statement can be used to exit from a switch.

The while statement performs a simple loop. If the expression is falsy, then the loop
will break. While the expression is truthy, the block will be executed.

The for statement is a more complicated looping statement. It comes in two forms.

The conventional form is controlled by three optional clauses: the initialization, the
condition, and the increment. First, the initialization is done, which typically initial-
izes the loop variable. Then, the condition is evaluated. Typically, this tests the loop
variable against a completion criterion. If the condition is omitted, then a condition of
true is assumed. If the condition is falsy, the loop breaks. Otherwise, the block is exe-
cuted, then the increment executes, and then the loop repeats with the condition.

switch statement

switch)expression(

default

{ case clause

disruptive
statement

statements

}

:

case clause

case statements:expression

while statement

while block(expression)

Statements | 13

The other form (called for in) enumerates the property names (or keys) of an object.
On each iteration, another property name string from the object is assigned to the
variable.

It is usually necessary to test object.hasOwnProperty(variable) to determine whether
the property name is truly a member of the object or was found instead on the proto-
type chain.

for (myvar in obj) {
 if (obj.hasOwnProperty(myvar)) {
 ...
 }
}

The do statement is like the while statement except that the expression is tested after
the block is executed instead of before. That means that the block will always be exe-
cuted at least once.

The try statement executes a block and catches any exceptions that were thrown by
the block. The catch clause defines a new variable that will receive the exception
object.

for statement

for (expression statement ;
initialization

expression

condition

;

)

)

blockexpression statement

increment

name

variable

expression

object

in

do statement

do (expressionwhileblock) ;

try statement

try (namecatchblock) block

variable

14 | Chapter 2: Grammar

The throw statement raises an exception. If the throw statement is in a try block, then
control goes to the catch clause. Otherwise, the function invocation is abandoned,
and control goes to the catch clause of the try in the calling function.

The expression is usually an object literal containing a name property and a message

property. The catcher of the exception can use that information to determine what to
do.

The return statement causes the early return from a function. It can also specify the
value to be returned. If a return expression is not specified, then the return value will
be undefined.

JavaScript does not allow a line end between the return and the expression.

The break statement causes the exit from a loop statement or a switch statement. It
can optionally have a label that will cause an exit from the labeled statement.

JavaScript does not allow a line end between the break and the label.

throw statement

throw expression ;

return statement

return expression ;

break statement

break name ;
label

expression statement

delete

name = expression

refinement

invocation

expression refinement

+=

-=

Expressions | 15

An expression statement can either assign values to one or more variables or mem-
bers, invoke a method, delete a property from an object. The = operator is used for
assignment. Do not confuse it with the === equality operator. The += operator can
add or concatenate.

Expressions

The simplest expressions are a literal value (such as a string or number), a variable, a
built-in value (true, false, null, undefined, NaN, or Infinity), an invocation expres-
sion preceded by new, a refinement expression preceded by delete, an expression
wrapped in parentheses, an expression preceded by a prefix operator, or an expres-
sion followed by:

• An infix operator and another expression

• The ? ternary operator followed by another expression, then by :, and then by
yet another expression

• An invocation

• A refinement

The ? ternary operator takes three operands. If the first operand is truthy, it pro-
duces the value of the second operand. But if the first operand is falsy, it produces
the value of the third operand.

expression

literal

delete expression refinement

name

expression()

prefix operator expression

expressionexpression infix operator

expressionexpression? :

invocation

refinement

new expression invocation

16 | Chapter 2: Grammar

The operators at the top of the operator precedence list in Table 2-1 have higher pre-
cedence. They bind the tightest. The operators at the bottom have the lowest prece-
dence. Parentheses can be used to alter the normal precedence, so:

2 + 3 * 5 === 17
(2 + 3) * 5 === 25

The values produced by typeof are 'number', 'string', 'boolean', 'undefined',
'function', and 'object'. If the operand is an array or null, then the result is
'object', which is wrong. There will be more about typeof in Chapter 6 and
Appendix A.

If the operand of ! is truthy, it produces false. Otherwise, it produces true.

The + operator adds or concatenates. If you want it to add, make sure both operands
are numbers.

The / operator can produce a noninteger result even if both operands are integers.

The && operator produces the value of its first operand if the first operand is falsy.
Otherwise, it produces the value of the second operand.

Table 2-1. Operator precedence

. [] () Refinement and invocation

delete new typeof + - ! Unary operators

* / % Multiplication, division, modulo

+ - Addition/concatenation, subtraction

>= <= > < Inequality

=== !== Equality

&& Logical and

|| Logical or

?: Ternary

prefix operator

typeof
type of

+

-

!

to number

negate

logical not

Literals | 17

The || operator produces the value of its first operand if the first operand is truthy.
Otherwise, it produces the value of the second operand.

Invocation causes the execution of a function value. The invocation operator is a pair
of parentheses that follow the function value. The parentheses can contain argu-
ments that will be delivered to the function. There will be much more about func-
tions in Chapter 4.

A refinement is used to specify a property or element of an object or array. This will
be described in detail in the next chapter.

Literals
Object literals are a convenient notation for specifying new objects. The names of the
properties can be specified as names or as strings. The names are treated as literal
names, not as variable names, so the names of the properties of the object must be
known at compile time. The values of the properties are expressions. There will be
more about object literals in the next chapter.

infix operator

||
logical or

*

multiply

/

divide

%

modulo

+
add

-
subtract

greater or equal

>=

less or equal

<=

>
greater

<
less

equal

===
not equal

!==

&&

logical and

invocation

expression)(

,

refinement

name.

[]expression

18 | Chapter 2: Grammar

Array literals are a convenient notation for specifying new arrays. There will be more
about array literals in Chapter 6.

There will be more about regular expressions in Chapter 7.

literal

number literal

string literal

object literal

array literal

function

regexp literal

object literal

name expression

string

:{ }

,

array literal

expression[]

,

regexp choice/ / g i m

regexp literal

Functions | 19

Functions

A function literal defines a function value. It can have an optional name that it can
use to call itself recursively. It can specify a list of parameters that will act as vari-
ables initialized by the invocation arguments. The body of the function includes vari-
able definitions and statements. There will be more about functions in Chapter 4.

name

function literal

parameters function bodyfunction

name

parameters

,

)(

var statements

function body

}{ statements

20

Chapter 3CHAPTER 3

Objects 3

Upon a homely object Love can wink.

—William Shakespeare, The Two Gentlemen of Verona

The simple types of JavaScript are numbers, strings, booleans (true and false), null,
and undefined. All other values are objects. Numbers, strings, and booleans are
object-like in that they have methods, but they are immutable. Objects in JavaScript
are mutable keyed collections. In JavaScript, arrays are objects, functions are objects,
regular expressions are objects, and, of course, objects are objects.

An object is a container of properties, where a property has a name and a value. A
property name can be any string, including the empty string. A property value can be
any JavaScript value except for undefined.

Objects in JavaScript are class-free. There is no constraint on the names of new prop-
erties or on the values of properties. Objects are useful for collecting and organizing
data. Objects can contain other objects, so they can easily represent tree or graph
structures.

JavaScript includes a prototype linkage feature that allows one object to inherit the
properties of another. When used well, this can reduce object initialization time and
memory consumption.

Object Literals
Object literals provide a very convenient notation for creating new object values.
An object literal is a pair of curly braces surrounding zero or more name/value
pairs. An object literal can appear anywhere an expression can appear:

var empty_object = {};

var stooge = {
 "first-name": "Jerome",
 "last-name": "Howard"
};

Retrieval | 21

A property’s name can be any string, including the empty string. The quotes around
a property’s name in an object literal are optional if the name would be a legal
JavaScript name and not a reserved word. So quotes are required around "first-

name", but are optional around first_name. Commas are used to separate the pairs.

A property’s value can be obtained from any expression, including another object lit-
eral. Objects can nest:

var flight = {
 airline: "Oceanic",
 number: 815,
 departure: {
 IATA: "SYD",
 time: "2004-09-22 14:55",
 city: "Sydney"
 },
 arrival: {
 IATA: "LAX",
 time: "2004-09-23 10:42",
 city: "Los Angeles"
 }
};

Retrieval
Values can be retrieved from an object by wrapping a string expression in a [] suf-
fix. If the string expression is a constant, and if it is a legal JavaScript name and not a
reserved word, then the . notation can be used instead. The . notation is preferred
because it is more compact and it reads better:

stooge["first-name"] // "Joe"
flight.departure.IATA // "SYD"

The undefined value is produced if an attempt is made to retrieve a nonexistent
member:

stooge["middle-name"] // undefined
flight.status // undefined
stooge["FIRST-NAME"] // undefined

The || operator can be used to fill in default values:

var middle = stooge["middle-name"] || "(none)";
var status = flight.status || "unknown";

Attempting to retrieve values from undefined will throw a TypeError exception. This
can be guarded against with the && operator:

flight.equipment // undefined
flight.equipment.model // throw "TypeError"
flight.equipment && flight.equipment.model // undefined

22 | Chapter 3: Objects

Update
A value in an object can be updated by assignment. If the property name already
exists in the object, the property value is replaced:

stooge['first-name'] = 'Jerome';

If the object does not already have that property name, the object is augmented:

stooge['middle-name'] = 'Lester';
stooge.nickname = 'Curly';
flight.equipment = {
 model: 'Boeing 777'
};
flight.status = 'overdue';

Reference
Objects are passed around by reference. They are never copied:

var x = stooge;
x.nickname = 'Curly';
var nick = stooge.nickname;
 // nick is 'Curly' because x and stooge
 // are references to the same object

var a = {}, b = {}, c = {};
 // a, b, and c each refer to a
 // different empty object
a = b = c = {};
 // a, b, and c all refer to
 // the same empty object

Prototype
Every object is linked to a prototype object from which it can inherit properties. All
objects created from object literals are linked to Object.prototype, an object that
comes standard with JavaScript.

When you make a new object, you can select the object that should be its prototype.
The mechanism that JavaScript provides to do this is messy and complex, but it can
be significantly simplified. We will add a create method to the Object function. The
create method creates a new object that uses an old object as its prototype. There
will be much more about functions in the next chapter.

if (typeof Object.create !== 'function') {
 Object.create = function (o) {
 var F = function () {};
 F.prototype = o;
 return new F();
 };

Reflection | 23

}
var another_stooge = Object.create(stooge);

The prototype link has no effect on updating. When we make changes to an object,
the object’s prototype is not touched:

another_stooge['first-name'] = 'Harry';
another_stooge['middle-name'] = 'Moses';
another_stooge.nickname = 'Moe';

The prototype link is used only in retrieval. If we try to retrieve a property value from
an object, and if the object lacks the property name, then JavaScript attempts to
retrieve the property value from the prototype object. And if that object is lacking the
property, then it goes to its prototype, and so on until the process finally bottoms out
with Object.prototype. If the desired property exists nowhere in the prototype chain,
then the result is the undefined value. This is called delegation.

The prototype relationship is a dynamic relationship. If we add a new property to a
prototype, that property will immediately be visible in all of the objects that are
based on that prototype:

stooge.profession = 'actor';
another_stooge.profession // 'actor'

We will see more about the prototype chain in Chapter 6.

Reflection
It is easy to inspect an object to determine what properties it has by attempting to
retrieve the properties and examining the values obtained. The typeof operator can
be very helpful in determining the type of a property:

typeof flight.number // 'number'
typeof flight.status // 'string'
typeof flight.arrival // 'object'
typeof flight.manifest // 'undefined'

Some care must be taken because any property on the prototype chain can produce a
value:

typeof flight.toString // 'function'
typeof flight.constructor // 'function'

There are two approaches to dealing with these undesired properties. The first is to
have your program look for and reject function values. Generally, when you are
reflecting, you are interested in data, and so you should be aware that some values
could be functions.

The other approach is to use the hasOwnProperty method, which returns true if the
object has a particular property. The hasOwnProperty method does not look at the
prototype chain:

flight.hasOwnProperty('number') // true
flight.hasOwnProperty('constructor') // false

24 | Chapter 3: Objects

Enumeration
The for in statement can loop over all of the property names in an object. The enu-
meration will include all of the properties—including functions and prototype prop-
erties that you might not be interested in—so it is necessary to filter out the values
you don’t want. The most common filters are the hasOwnProperty method and using
typeof to exclude functions:

var name;
for (name in another_stooge) {
 if (typeof another_stooge[name] !== 'function') {
 document.writeln(name + ': ' + another_stooge[name]);
 }
}

There is no guarantee on the order of the names, so be prepared for the names to
appear in any order. If you want to assure that the properties appear in a particular
order, it is best to avoid the for in statement entirely and instead make an array con-
taining the names of the properties in the correct order:

var i;
var properties = [
 'first-name',
 'middle-name',
 'last-name',
 'profession'
];
for (i = 0; i < properties.length; i += 1) {
 document.writeln(properties[i] + ': ' +
 another_stooge[properties[i]]);
}

By using for instead of for in, we were able to get the properties we wanted without
worrying about what might be dredged up from the prototype chain, and we got
them in the correct order.

Delete
The delete operator can be used to remove a property from an object. It will remove
a property from the object if it has one. It will not touch any of the objects in the proto-
type linkage.

Removing a property from an object may allow a property from the prototype link-
age to shine through:

another_stooge.nickname // 'Moe'

// Remove nickname from another_stooge, revealing
// the nickname of the prototype.

Global Abatement | 25

delete another_stooge.nickname;

another_stooge.nickname // 'Curly'

Global Abatement
JavaScript makes it easy to define global variables that can hold all of the assets of
your application. Unfortunately, global variables weaken the resiliency of programs
and should be avoided.

One way to minimize the use of global variables is to create a single global variable
for your application:

var MYAPP = {};

That variable then becomes the container for your application:

MYAPP.stooge = {
 "first-name": "Joe",
 "last-name": "Howard"
};

MYAPP.flight = {
 airline: "Oceanic",
 number: 815,
 departure: {
 IATA: "SYD",
 time: "2004-09-22 14:55",
 city: "Sydney"
 },
 arrival: {
 IATA: "LAX",
 time: "2004-09-23 10:42",
 city: "Los Angeles"
 }
};

By reducing your global footprint to a single name, you significantly reduce the
chance of bad interactions with other applications, widgets, or libraries. Your pro-
gram also becomes easier to read because it is obvious that MYAPP.stooge refers to a
top-level structure. In the next chapter, we will see ways to use closure for informa-
tion hiding, which is another effective global abatement technique.

26

Chapter 4CHAPTER 4

Functions 4

Why, every fault’s condemn’d ere it be done:
Mine were the very cipher of a function...

—William Shakespeare,Measure for Measure

The best thing about JavaScript is its implementation of functions. It got almost every-
thing right. But, as you should expect with JavaScript, it didn’t get everything right.

A function encloses a set of statements. Functions are the fundamental modular unit
of JavaScript. They are used for code reuse, information hiding, and composition.
Functions are used to specify the behavior of objects. Generally, the craft of pro-
gramming is the factoring of a set of requirements into a set of functions and data
structures.

Function Objects
Functions in JavaScript are objects. Objects are collections of name/value pairs hav-
ing a hidden link to a prototype object. Objects produced from object literals are
linked to Object.prototype. Function objects are linked to Function.prototype

(which is itself linked to Object.prototype). Every function is also created with two
additional hidden properties: the function’s context and the code that implements
the function’s behavior.

Every function object is also created with a prototype property. Its value is an object
with a constructor property whose value is the function. This is distinct from the
hidden link to Function.prototype. The meaning of this convoluted construction will
be revealed in the next chapter.

Since functions are objects, they can be used like any other value. Functions can be
stored in variables, objects, and arrays. Functions can be passed as arguments to
functions, and functions can be returned from functions. Also, since functions are
objects, functions can have methods.

The thing that is special about functions is that they can be invoked.

Invocation | 27

Function Literal
Function objects are created with function literals:

// Create a variable called add and store a function
// in it that adds two numbers.

var add = function (a, b) {
 return a + b;
};

A function literal has four parts. The first part is the reserved word function.

The optional second part is the function’s name. The function can use its name to
call itself recursively. The name can also be used by debuggers and development
tools to identify the function. If a function is not given a name, as shown in the previ-
ous example, it is said to be anonymous.

The third part is the set of parameters of the function, wrapped in parentheses.
Within the parentheses is a set of zero or more parameter names, separated by com-
mas. These names will be defined as variables in the function. Unlike ordinary vari-
ables, instead of being initialized to undefined, they will be initialized to the
arguments supplied when the function is invoked.

The fourth part is a set of statements wrapped in curly braces. These statements are
the body of the function. They are executed when the function is invoked.

A function literal can appear anywhere that an expression can appear. Functions can
be defined inside of other functions. An inner function of course has access to its
parameters and variables. An inner function also enjoys access to the parameters and
variables of the functions it is nested within. The function object created by a func-
tion literal contains a link to that outer context. This is called closure. This is the
source of enormous expressive power.

Invocation
Invoking a function suspends the execution of the current function, passing control
and parameters to the new function. In addition to the declared parameters, every
function receives two additional parameters: this and arguments. The this parame-
ter is very important in object oriented programming, and its value is determined by
the invocation pattern. There are four patterns of invocation in JavaScript: the
method invocation pattern, the function invocation pattern, the constructor invoca-
tion pattern, and the apply invocation pattern. The patterns differ in how the bonus
parameter this is initialized.

28 | Chapter 4: Functions

The invocation operator is a pair of parentheses that follow any expression that pro-
duces a function value. The parentheses can contain zero or more expressions, sepa-
rated by commas. Each expression produces one argument value. Each of the
argument values will be assigned to the function’s parameter names. There is no run-
time error when the number of arguments and the number of parameters do not
match. If there are too many argument values, the extra argument values will be
ignored. If there are too few argument values, the undefined value will be substituted
for the missing values. There is no type checking on the argument values: any type of
value can be passed to any parameter.

The Method Invocation Pattern
When a function is stored as a property of an object, we call it a method. When a
method is invoked, this is bound to that object. If an invocation expression con-
tains a refinement (that is, a . dot expression or [subscript] expression), it is
invoked as a method:

// Create myObject. It has a value and an increment
// method. The increment method takes an optional
// parameter. If the argument is not a number, then 1
// is used as the default.

var myObject = {
 value: 0,
 increment: function (inc) {
 this.value += typeof inc === 'number' ? inc : 1;
 }
};

myObject.increment();
document.writeln(myObject.value); // 1

myObject.increment(2);
document.writeln(myObject.value); // 3

A method can use this to access the object so that it can retrieve values from the
object or modify the object. The binding of this to the object happens at invocation
time. This very late binding makes functions that use this highly reusable. Methods
that get their object context from this are called public methods.

The Function Invocation Pattern
When a function is not the property of an object, then it is invoked as a function:

var sum = add(3, 4); // sum is 7

When a function is invoked with this pattern, this is bound to the global object.
This was a mistake in the design of the language. Had the language been designed
correctly, when the inner function is invoked, this would still be bound to the this

Invocation | 29

variable of the outer function. A consequence of this error is that a method cannot
employ an inner function to help it do its work because the inner function does not
share the method’s access to the object as its this is bound to the wrong value. For-
tunately, there is an easy workaround. If the method defines a variable and assigns it
the value of this, the inner function will have access to this through that variable. By
convention, the name of that variable is that:

// Augment myObject with a double method.

myObject.double = function () {
 var that = this; // Workaround.

 var helper = function () {
 that.value = add(that.value, that.value);
 };

 helper(); // Invoke helper as a function.
};

// Invoke double as a method.

myObject.double();
document.writeln(myObject.getValue()); // 6

The Constructor Invocation Pattern
JavaScript is a prototypal inheritance language. That means that objects can inherit
properties directly from other objects. The language is class-free.

This is a radical departure from the current fashion. Most languages today are classi-
cal. Prototypal inheritance is powerfully expressive, but is not widely understood.
JavaScript itself is not confident in its prototypal nature, so it offers an object-making
syntax that is reminiscent of the classical languages. Few classical programmers
found prototypal inheritance to be acceptable, and classically inspired syntax
obscures the language’s true prototypal nature. It is the worst of both worlds.

If a function is invoked with the new prefix, then a new object will be created with a
hidden link to the value of the function’s prototype member, and this will be bound
to that new object.

The new prefix also changes the behavior of the return statement. We will see more
about that next.

// Create a constructor function called Quo.
// It makes an object with a status property.

var Quo = function (string) {
 this.status = string;
};

// Give all instances of Quo a public method

30 | Chapter 4: Functions

// called get_status.

Quo.prototype.get_status = function () {
 return this.status;
};

// Make an instance of Quo.

var myQuo = new Quo("confused");

document.writeln(myQuo.get_status()); // confused

Functions that are intended to be used with the new prefix are called constructors. By
convention, they are kept in variables with a capitalized name. If a constructor is
called without the new prefix, very bad things can happen without a compile-time or
runtime warning, so the capitalization convention is really important.

Use of this style of constructor functions is not recommended. We will see better
alternatives in the next chapter.

The Apply Invocation Pattern
Because JavaScript is a functional object-oriented language, functions can have
methods.

The apply method lets us construct an array of arguments to use to invoke a func-
tion. It also lets us choose the value of this. The apply method takes two parame-
ters. The first is the value that should be bound to this. The second is an array of
parameters.

// Make an array of 2 numbers and add them.

var array = [3, 4];
var sum = add.apply(null, array); // sum is 7

// Make an object with a status member.

var statusObject = {
 status: 'A-OK'
};

// statusObject does not inherit from Quo.prototype,
// but we can invoke the get_status method on
// statusObject even though statusObject does not have
// a get_status method.

var status = Quo.prototype.get_status.apply(statusObject);
 // status is 'A-OK'

Return | 31

Arguments
A bonus parameter that is available to functions when they are invoked is the
arguments array. It gives the function access to all of the arguments that were sup-
plied with the invocation, including excess arguments that were not assigned to
parameters. This makes it possible to write functions that take an unspecified num-
ber of parameters:

// Make a function that adds a lot of stuff.

// Note that defining the variable sum inside of
// the function does not interfere with the sum
// defined outside of the function. The function
// only sees the inner one.

var sum = function () {
 var i, sum = 0;
 for (i = 0; i < arguments.length; i += 1) {
 sum += arguments[i];
 }
 return sum;
};

document.writeln(sum(4, 8, 15, 16, 23, 42)); // 108

This is not a particularly useful pattern. In Chapter 6, we will see how we can add a
similar method to an array.

Because of a design error, arguments is not really an array. It is an array-like object.
arguments has a length property, but it lacks all of the array methods. We will see a
consequence of that design error at the end of this chapter.

Return
When a function is invoked, it begins execution with the first statement, and ends
when it hits the } that closes the function body. That causes the function to return
control to the part of the program that invoked the function.

The return statement can be used to cause the function to return early. When return is
executed, the function returns immediately without executing the remaining statements.

A function always returns a value. If the return value is not specified, then undefined

is returned.

If the function was invoked with the new prefix and the return value is not an object,
then this (the new object) is returned instead.

32 | Chapter 4: Functions

Exceptions
JavaScript provides an exception handling mechanism. Exceptions are unusual (but
not completely unexpected) mishaps that interfere with the normal flow of a pro-
gram. When such a mishap is detected, your program should throw an exception:

var add = function (a, b) {
 if (typeof a !== 'number' || typeof b !== 'number') {
 throw {
 name: 'TypeError',
 message: 'add needs numbers'
 };
 }
 return a + b;
}

The throw statement interrupts execution of the function. It should be given an
exception object containing a name property that identifies the type of the exception,
and a descriptive message property. You can also add other properties.

The exception object will be delivered to the catch clause of a try statement:

// Make a try_it function that calls the new add
// function incorrectly.

var try_it = function () {
 try {
 add("seven");
 } catch (e) {
 document.writeln(e.name + ': ' + e.message);
 }
}

try_it();

If an exception is thrown within a try block, control will go to its catch clause.

A try statement has a single catch block that will catch all exceptions. If your han-
dling depends on the type of the exception, then the exception handler will have to
inspect the name to determine the type of the exception.

Augmenting Types
JavaScript allows the basic types of the language to be augmented. In Chapter 3, we
saw that adding a method to Object.prototype makes that method available to all
objects. This also works for functions, arrays, strings, numbers, regular expressions,
and booleans.

For example, by augmenting Function.prototype, we can make a method available to
all functions:

Augmenting Types | 33

Function.prototype.method = function (name, func) {
 this.prototype[name] = func;
 return this;
};

By augmenting Function.prototype with a method method, we no longer have to type
the name of the prototype property. That bit of ugliness can now be hidden.

JavaScript does not have a separate integer type, so it is sometimes necessary to
extract just the integer part of a number. The method JavaScript provides to do that
is ugly. We can fix it by adding an integermethod to Number.prototype. It uses either
Math.ceiling or Math.floor, depending on the sign of the number:

Number.method('integer', function () {
 return Math[this < 0 ? 'ceiling' : 'floor'](this);
});

document.writeln((-10 / 3).integer()); // -3

JavaScript lacks a method that removes spaces from the ends of a string. That is an
easy oversight to fix:

String.method('trim', function () {
 return this.replace(/^\s+|\s+$/g, '');
});

document.writeln('"' + " neat ".trim() + '"');

Our trim method uses a regular expression. We will see much more about regular
expressions in Chapter 7.

By augmenting the basic types, we can make significant improvements to the expres-
siveness of the language. Because of the dynamic nature of JavaScript’s prototypal
inheritance, all values are immediately endowed with the new methods, even values
that were created before the methods were created.

The prototypes of the basic types are public structures, so care must be taken when
mixing libraries. One defensive technique is to add a method only if the method is
known to be missing:

// Add a method conditionally.

Function.prototype.method = function (name, func) {
 if (!this.prototype[name]) {
 this.prototype[name] = func;
 }
};

Another concern is that the for in statement interacts badly with prototypes. We
saw a couple of ways to mitigate that in Chapter 3: we can use the hasOwnProperty

method to screen out inherited properties, and we can look for specific types.

34 | Chapter 4: Functions

Recursion
A recursive function is a function that calls itself, either directly or indirectly. Recur-
sion is a powerful programming technique in which a problem is divided into a set of
similar subproblems, each solved with a trivial solution. Generally, a recursive func-
tion calls itself to solve its subproblems.

The Towers of Hanoi is a famous puzzle. The equipment includes three posts and a
set of discs of various diameters with holes in their centers. The setup stacks all of
the discs on the source post with smaller discs on top of larger discs. The goal is to
move the stack to the destination post by moving one disc at a time to another post,
never placing a larger disc on a smaller disc. This puzzle has a trivial recursive solution:

var hanoi = function (disc, src, aux, dst) {
 if (disc > 0) {
 hanoi(disc - 1, src, dst, aux);
 document.writeln('Move disc ' + disc +
 ' from ' + src + ' to ' + dst);
 hanoi(disc - 1, aux, src, dst);
 }
};

hanoi(3, 'Src', 'Aux', 'Dst');

It produces this solution for three discs:

Move disc 1 from Src to Dst
Move disc 2 from Src to Aux
Move disc 1 from Dst to Aux
Move disc 3 from Src to Dst
Move disc 1 from Aux to Src
Move disc 2 from Aux to Dst
Move disc 1 from Src to Dst

The hanoi function moves a stack of discs from one post to another, using the auxil-
iary post if necessary. It breaks the problem into three subproblems. First, it uncov-
ers the bottom disc by moving the substack above it to the auxiliary post. It can then
move the bottom disc to the destination post. Finally, it can move the substack from
the auxiliary post to the destination post. The movement of the substack is handled
by calling itself recursively to work out those subproblems.

The hanoi function is passed the number of the disc it is to move and the three posts
it is to use. When it calls itself, it is to deal with the disc that is above the disc it is
currently working on. Eventually, it will be called with a nonexistent disc number. In
that case, it does nothing. That act of nothingness gives us confidence that the func-
tion does not recurse forever.

Recursive functions can be very effective in manipulating tree structures such as the
browser’s Document Object Model (DOM). Each recursive call is given a smaller
piece of the tree to work on:

Recursion | 35

// Define a walk_the_DOM function that visits every
// node of the tree in HTML source order, starting
// from some given node. It invokes a function,
// passing it each node in turn. walk_the_DOM calls
// itself to process each of the child nodes.

var walk_the_DOM = function walk(node, func) {
 func(node);
 node = node.firstChild;
 while (node) {
 walk(node, func);
 node = node.nextSibling;
 }
};

// Define a getElementsByAttribute function. It
// takes an attribute name string and an optional
// matching value. It calls walk_the_DOM, passing it a
// function that looks for an attribute name in the
// node. The matching nodes are accumulated in a
// results array.

var getElementsByAttribute = function (att, value) {
 var results = [];

 walk_the_DOM(document.body, function (node) {
 var actual = node.nodeType === 1 && node.getAttribute(att);
 if (typeof actual === 'string' &&
 (actual === value || typeof value !== 'string')) {
 results.push(node);
 }
 });

 return results;
};

Some languages offer the tail recursion optimization. This means that if a function
returns the result of invoking itself recursively, then the invocation is replaced with a
loop, which can significantly speed things up. Unfortunately, JavaScript does not
currently provide tail recursion optimization. Functions that recurse very deeply can
fail by exhausting the return stack:

// Make a factorial function with tail
// recursion. It is tail recursive because
// it returns the result of calling itself.

// JavaScript does not currently optimize this form.

var factorial = function factorial(i, a) {
 a = a || 1;
 if (i < 2) {
 return a;
 }
 return factorial(i - 1, a * i);

36 | Chapter 4: Functions

};

document.writeln(factorial(4)); // 24

Scope
Scope in a programming language controls the visibility and lifetimes of variables and
parameters. This is an important service to the programmer because it reduces nam-
ing collisions and provides automatic memory management:

var foo = function () {
 var a = 3, b = 5;

 var bar = function () {
 var b = 7, c = 11;

// At this point, a is 3, b is 7, and c is 11

 a += b + c;

// At this point, a is 21, b is 7, and c is 11

 };

// At this point, a is 3, b is 5, and c is not defined

 bar();

// At this point, a is 21, b is 5

};

Most languages with C syntax have block scope. All variables defined in a block (a
list of statements wrapped with curly braces) are not visible from outside of the
block. The variables defined in a block can be released when execution of the block
is finished. This is a good thing.

Unfortunately, JavaScript does not have block scope even though its block syntax
suggests that it does. This confusion can be a source of errors.

JavaScript does have function scope. That means that the parameters and variables
defined in a function are not visible outside of the function, and that a variable
defined anywhere within a function is visible everywhere within the function.

In many modern languages, it is recommended that variables be declared as late as
possible, at the first point of use. That turns out to be bad advice for JavaScript
because it lacks block scope. So instead, it is best to declare all of the variables used
in a function at the top of the function body.

Closure | 37

Closure
The good news about scope is that inner functions get access to the parameters and
variables of the functions they are defined within (with the exception of this and
arguments). This is a very good thing.

Our getElementsByAttribute function worked because it declared a results variable,
and the inner function that it passed to walk_the_DOM also had access to the results

variable.

A more interesting case is when the inner function has a longer lifetime than its outer
function.

Earlier, we made a myObject that had a value and an increment method. Suppose we
wanted to protect the value from unauthorized changes.

Instead of initializing myObject with an object literal, we will initialize myObject by
calling a function that returns an object literal. That function defines a value vari-
able. That variable is always available to the increment and getValue methods, but
the function’s scope keeps it hidden from the rest of the program:

var myObject = function () {
 var value = 0;

 return {
 increment: function (inc) {
 value += typeof inc === 'number' ? inc : 1;
 },
 getValue: function () {
 return value;
 }
 };
}();

We are not assigning a function to myObject. We are assigning the result of invoking
that function. Notice the () on the last line. The function returns an object contain-
ing two methods, and those methods continue to enjoy the privilege of access to the
value variable.

The Quo constructor from earlier in this chapter produced an object with a status

property and a get_status method. But that doesn’t seem very interesting. Why
would you call a getter method on a property you could access directly? It would be
more useful if the status property were private. So, let’s define a different kind of quo
function to do that:

// Create a maker function called quo. It makes an
// object with a get_status method and a private
// status property.

38 | Chapter 4: Functions

var quo = function (status) {
 return {
 get_status: function () {
 return status;
 }
 };
};

// Make an instance of quo.

var myQuo = quo("amazed");

document.writeln(myQuo.get_status());

This quo function is designed to be used without the new prefix, so the name is not
capitalized. When we call quo, it returns a new object containing a get_status

method. A reference to that object is stored in myQuo. The get_status method still
has privileged access to quo’s status property even though quo has already returned.
get_status does not have access to a copy of the parameter; it has access to the
parameter itself. This is possible because the function has access to the context in
which it was created. This is called closure.

Let’s look at a more useful example:

// Define a function that sets a DOM node's color
// to yellow and then fades it to white.

var fade = function (node) {
 var level = 1;
 var step = function () {
 var hex = level.toString(16);
 node.style.backgroundColor = '#FFFF' + hex + hex;
 if (level < 15) {
 level += 1;
 setTimeout(step, 100);
 }
 };
 setTimeout(step, 100);
};

fade(document.body);

We call fade, passing it document.body (the node created by the HTML <body> tag).
fade sets level to 1. It defines a step function. It calls setTimeout, passing it the step

function and a time (100 milliseconds). It then returns—fade has finished.

Suddenly, about a 10th of a second later, the step function gets invoked. It makes a
base 16 character from fade’s level. It then modifies the background color of fade’s
node. It then looks at fade’s level. If it hasn’t gotten to white yet, it then increments
fade’s level and uses setTimeout to schedule itself to run again.

Closure | 39

Suddenly, the step function gets invoked again. But this time, fade’s level is 2. fade
returned a while ago, but its variables continue to live as long as they are needed by
one or more of fade’s inner functions.

It is important to understand that the inner function has access to the actual vari-
ables of the outer functions and not copies in order to avoid the following problem:

// BAD EXAMPLE

// Make a function that assigns event handler functions to an array of nodes the
wrong way.
// When you click on a node, an alert box is supposed to display the ordinal of the
node.
// But it always displays the number of nodes instead.

var add_the_handlers = function (nodes) {
 var i;
 for (i = 0; i < nodes.length; i += 1) {
 nodes[i].onclick = function (e) {
 alert(i);
 };
 }
};

// END BAD EXAMPLE

The add_the_handlers function was intended to give each handler a unique number
(i). It fails because the handler functions are bound to the variable i, not the value of
the variable i at the time the function was made:

// BETTER EXAMPLE

// Make a function that assigns event handler functions to an array of nodes the
right way.
// When you click on a node, an alert box will display the ordinal of the node.

var add_the_handlers = function (nodes) {
 var i;
 for (i = 0; i < nodes.length; i += 1) {
 nodes[i].onclick = function (i) {
 return function (e) {
 alert(e);
 };
 }(i);
 }
};

Now, instead of assigning a function to onclick, we define a function and immedi-
ately invoke it, passing in i. That function will return an event handler function that
is bound to the value of i that was passed in, not to the i defined in add_the_

handlers. That returned function is assigned to onclick.

40 | Chapter 4: Functions

Callbacks
Functions can make it easier to deal with discontinuous events. For example, sup-
pose there is a sequence that begins with a user interaction, making a request of the
server, and finally displaying the server’s response. The naïve way to write that
would be:

request = prepare_the_request();
response = send_request_synchronously(request);
display(response);

The problem with this approach is that a synchronous request over the network will
leave the client in a frozen state. If either the network or the server is slow, the degra-
dation in responsiveness will be unacceptable.

A better approach is to make an asynchronous request, providing a callback func-
tion that will be invoked when the server’s response is received. An asynchronous
function returns immediately, so the client isn’t blocked:

request = prepare_the_request();
send_request_asynchronously(request, function (response) {
 display(response);
 });

We pass a function parameter to the send_request_asynchronously function that will
be called when the response is available.

Module
We can use functions and closure to make modules. A module is a function or object
that presents an interface but that hides its state and implementation. By using func-
tions to produce modules, we can almost completely eliminate our use of global vari-
ables, thereby mitigating one of JavaScript’s worst features.

For example, suppose we want to augment String with a deentityify method. Its
job is to look for HTML entities in a string and replace them with their equivalents.
It makes sense to keep the names of the entities and their equivalents in an object.
But where should we keep the object? We could put it in a global variable, but glo-
bal variables are evil. We could define it in the function itself, but that has a runtime
cost because the literal must be evaluated every time the function is invoked. The
ideal approach is to put it in a closure, and perhaps provide an extra method that can
add additional entities:

String.method('deentityify', function () {

// The entity table. It maps entity names to
// characters.

 var entity = {
 quot: '"',

Module | 41

 lt: '<',
 gt: '>'
 };

// Return the deentityify method.

 return function () {

// This is the deentityify method. It calls the string
// replace method, looking for substrings that start
// with '&' and end with ';'. If the characters in
// between are in the entity table, then replace the
// entity with the character from the table. It uses
// a regular expression (Chapter 7).

 return this.replace(/&([^&;]+);/g,
 function (a, b) {
 var r = entity[b];
 return typeof r === 'string' ? r : a;
 }
);
 };
}());

Notice the last line. We immediately invoke the function we just made with the ()

operator. That invocation creates and returns the function that becomes the
deentityify method.

document.writeln(
 '<">'.deentityify()); // <">

The module pattern takes advantage of function scope and closure to create relation-
ships that are binding and private. In this example, only the deentityify method has
access to the entity data structure.

The general pattern of a module is a function that defines private variables and func-
tions; creates privileged functions which, through closure, will have access to the pri-
vate variables and functions; and that returns the privileged functions or stores them
in an accessible place.

Use of the module pattern can eliminate the use of global variables. It promotes
information hiding and other good design practices. It is very effective in encapsulat-
ing applications and other singletons.

It can also be used to produce objects that are secure. Let’s suppose we want to make
an object that produces a serial number:

var serial_maker = function () {

// Produce an object that produces unique strings. A
// unique string is made up of two parts: a prefix
// and a sequence number. The object comes with
// methods for setting the prefix and sequence

42 | Chapter 4: Functions

// number, and a gensym method that produces unique
// strings.

 var prefix = '';
 var seq = 0;
 return {
 set_prefix: function (p) {
 prefix = String(p);
 },
 set_seq: function (s) {
 seq = s;
 },
 gensym: function () {
 var result = prefix + seq;
 seq += 1;
 return result;
 }
 };
};

var seqer = serial_maker();
seqer.set_prefix = ('Q';)
seqer.set_seq = (1000);
var unique = seqer.gensym(); // unique is "Q1000"

The methods do not make use of this or that. As a result, there is no way to com-
promise the seqer. It isn’t possible to get or change the prefix or seq except as per-
mitted by the methods. The seqer object is mutable, so the methods could be
replaced, but that still does not give access to its secrets. seqer is simply a collection
of functions, and those functions are capabilities that grant specific powers to use or
modify the secret state.

If we passed seqer.gensym to a third party’s function, that function would be able to
generate unique strings, but would be unable to change the prefix or seq.

Cascade
Some methods do not have a return value. For example, it is typical for methods that
set or change the state of an object to return nothing. If we have those methods
return this instead of undefined, we can enable cascades. In a cascade, we can call
many methods on the same object in sequence in a single statement. An Ajax library
that enables cascades would allow us to write in a style like this:

getElement('myBoxDiv').
 move(350, 150).
 width(100).
 height(100).
 color('red').
 border('10px outset').
 padding('4px').
 appendText("Please stand by").

Curry | 43

 on('mousedown', function (m) {
 this.startDrag(m, this.getNinth(m));
 }).
 on('mousemove', 'drag').
 on('mouseup', 'stopDrag').
 later(2000, function () {
 this.
 color('yellow').
 setHTML("What hath God wraught?").
 slide(400, 40, 200, 200);
 }).
 tip('This box is resizeable');

In this example, the getElement function produces an object that gives functionality
to the DOM element with id="myBoxDiv". The methods allow us to move the ele-
ment, change its dimensions and styling, and add behavior. Each of those methods
returns the object, so the result of the invocation can be used for the next invocation.

Cascading can produce interfaces that are very expressive. It can help control the ten-
dency to make interfaces that try to do too much at once.

Curry
Functions are values, and we can manipulate function values in interesting ways.
Currying allows us to produce a new function by combining a function and an
argument:

var add1 = add.curry(1);
document.writeln(add1(6)); // 7

add1 is a function that was created by passing 1 to add’s curry method. The add1

function adds 1 to its argument. JavaScript does not have a curry method, but we
can fix that by augmenting Function.prototype:

Function.method('curry', function () {
 var args = arguments, that = this;
 return function () {
 return that.apply(null, args.concat(arguments));
 };
}); // Something isn't right...

The curry method works by creating a closure that holds that original function and
the arguments to curry. It returns a function that, when invoked, returns the result of
calling that original function, passing it all of the arguments from the invocation of
curry and the current invocation. It uses the Array concat method to concatenate the
two arrays of arguments together.

Unfortunately, as we saw earlier, the arguments array is not an array, so it does not
have the concat method. To work around that, we will apply the array slice method
on both of the arguments arrays. This produces arrays that behave correctly with the
concat method:

44 | Chapter 4: Functions

Function.method('curry', function () {
 var slice = Array.prototype.slice,
 args = slice.apply(arguments),
 that = this;
 return function () {
 return that.apply(null, args.concat(slice.apply(arguments)));
 };
});

Memoization
Functions can use objects to remember the results of previous operations, making it
possible to avoid unnecessary work. This optimization is called memoization.
JavaScript’s objects and arrays are very convenient for this.

Let’s say we want a recursive function to compute Fibonacci numbers. A Fibonacci
number is the sum of the two previous Fibonacci numbers. The first two are 0 and 1:

var fibonacci = function (n) {
 return n < 2 ? n : fibonacci(n - 1) + fibonacci(n - 2);
};

for (var i = 0; i <= 10; i += 1) {
 document.writeln('// ' + i + ': ' + fibonacci(i));
}

// 0: 0
// 1: 1
// 2: 1
// 3: 2
// 4: 3
// 5: 5
// 6: 8
// 7: 13
// 8: 21
// 9: 34
// 10: 55

This works, but it is doing a lot of unnecessary work. The fibonacci function is
called 453 times. We call it 11 times, and it calls itself 442 times in computing values
that were probably already recently computed. If we memoize the function, we can
significantly reduce its workload.

We will keep our memoized results in a memo array that we can hide in a closure.
When our function is called, it first looks to see if it already knows the result. If it
does, it can immediately return it:

var fibonacci = function () {
 var memo = [0, 1];
 var fib = function (n) {
 var result = memo[n];
 if (typeof result !== 'number') {

Memoization | 45

 result = fib(n - 1) + fib(n - 2);
 memo[n] = result;
 }
 return result;
 };
 return fib;
}();

This function returns the same results, but it is called only 29 times. We called it 11
times. It called itself 18 times to obtain the previously memoized results.

We can generalize this by making a function that helps us make memoized func-
tions. The memoizer function will take an initial memo array and the fundamental func-
tion. It returns a shell function that manages the memo store and that calls the
fundamental function as needed. We pass the shell function and the function’s
parameters to the fundamental function:

var memoizer = function (memo, fundamental) {
 var shell = function (n) {
 var result = memo[n];
 if (typeof result !== 'number') {
 result = fundamental(shell, n);
 memo[n] = result;
 }
 return result;
 };
 return shell;
};

We can now define fibonacci with the memoizer, providing the initial memo array and
fundamental function:

var fibonacci = memoizer([0, 1], function (shell, n) {
 return shell(n - 1) + shell(n - 2);
});

By devising functions that produce other functions, we can significantly reduce the
amount of work we have to do. For example, to produce a memoizing factorial func-
tion, we only need to supply the basic factorial formula:

var factorial = memoizer([1, 1], function (shell, n) {
 return n * shell(n - 1);
});

46

Chapter 5CHAPTER 5

Inheritance 5

Divides one thing entire to many objects;
Like perspectives, which rightly gazed upon
Show nothing but confusion...

—William Shakespeare, The Tragedy of King Richard
the Second

Inheritance is an important topic in most programming languages.

In the classical languages (such as Java), inheritance (or extends) provides two useful
services. First, it is a form of code reuse. If a new class is mostly similar to an existing
class, you only have to specify the differences. Patterns of code reuse are extremely
important because they have the potential to significantly reduce the cost of soft-
ware development. The other benefit of classical inheritance is that it includes the
specification of a system of types. This mostly frees the programmer from having to
write explicit casting operations, which is a very good thing because when casting,
the safety benefits of a type system are lost.

JavaScript, being a loosely typed language, never casts. The lineage of an object is
irrelevant. What matters about an object is what it can do, not what it is descended
from.

JavaScript provides a much richer set of code reuse patterns. It can ape the classical
pattern, but it also supports other patterns that are more expressive. The set of possi-
ble inheritance patterns in JavaScript is vast. In this chapter, we’ll look at a few of the
most straightforward patterns. Much more complicated constructions are possible,
but it is usually best to keep it simple.

In classical languages, objects are instances of classes, and a class can inherit from
another class. JavaScript is a prototypal language, which means that objects inherit
directly from other objects.

Pseudoclassical | 47

Pseudoclassical
JavaScript is conflicted about its prototypal nature. Its prototype mechanism is
obscured by some complicated syntactic business that looks vaguely classical.
Instead of having objects inherit directly from other objects, an unnecessary level of
indirection is inserted such that objects are produced by constructor functions.

When a function object is created, the Function constructor that produces the func-
tion object runs some code like this:

this.prototype = {constructor: this};

The new function object is given a prototype property whose value is an object con-
taining a constructor property whose value is the new function object. The
prototype object is the place where inherited traits are to be deposited. Every func-
tion gets a prototype object because the language does not provide a way of deter-
mining which functions are intended to be used as constructors. The constructor

property is not useful. It is the prototype object that is important.

When a function is invoked with the constructor invocation pattern using the new
prefix, this modifies the way in which the function is executed. If the new operator
were a method instead of an operator, it could have been implemented like this:

Function.method('new', function () {

// Create a new object that inherits from the
// constructor's prototype.

 var that = Object.create(this.prototype);

// Invoke the constructor, binding –this- to
// the new object.

 var other = this.apply(that, arguments);

// If its return value isn't an object,
// substitute the new object.

 return (typeof other === 'object' && other) || that;
});

We can define a constructor and augment its prototype:

var Mammal = function (name) {
 this.name = name;
};

Mammal.prototype.get_name = function () {
 return this.name;
};

48 | Chapter 5: Inheritance

Mammal.prototype.says = function () {
 return this.saying || '';
};

Now, we can make an instance:

var myMammal = new Mammal('Herb the Mammal');
var name = myMammal.get_name(); // 'Herb the Mammal'

We can make another pseudoclass that inherits from Mammal by defining its
constructor function and replacing its prototype with an instance of Mammal:

var Cat = function (name) {
 this.name = name;
 this.saying = 'meow';
};

// Replace Cat.prototype with a new instance of Mammal

Cat.prototype = new Mammal();

// Augment the new prototype with
// purr and get_name methods.

Cat.prototype.purr = function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
};
Cat.prototype.get_name = function () {
 return this.says() + ' ' + this.name +
 ' ' + this.says();
};

var myCat = new Cat('Henrietta');
var says = myCat.says(); // 'meow'
var purr = myCat.purr(5); // 'r-r-r-r-r'
var name = myCat.get_name();
// 'meow Henrietta meow'

The pseudoclassical pattern was intended to look sort of object-oriented, but it is
looking quite alien. We can hide some of the ugliness by using the method method
and defining an inherits method:

Function.method('inherits', function (Parent) {
 this.prototype = new Parent();
 return this;
});

Pseudoclassical | 49

Our inherits and method methods return this, allowing us to program in a cascade
style. We can now make our Cat with one statement.

var Cat = function (name) {
 this.name = name;
 this.saying = 'meow';
}.
 inherits(Mammal).
 method('purr', function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
 }).
 method('get_name', function () {
 return this.says() + ' ' + this.name +
 ' ' + this.says();
 });

By hiding the prototype jazz, it now looks a bit less alien. But have we really
improved anything? We now have constructor functions that act like classes, but at
the edges, there may be surprising behavior. There is no privacy; all properties are
public. There is no access to super methods.

Even worse, there is a serious hazard with the use of constructor functions. If you
forget to include the new prefix when calling a constructor function, then this will
not be bound to a new object. Sadly, this will be bound to the global object, so
instead of augmenting your new object, you will be clobbering global variables. That
is really bad. There is no compile warning, and there is no runtime warning.

This is a serious design error in the language. To mitigate this problem, there is a
convention that all constructor functions are named with an initial capital, and that
nothing else is spelled with an initial capital. This gives us a prayer that visual inspec-
tion can find a missing new. A much better alternative is to not use new at all.

The pseudoclassical form can provide comfort to programmers who are unfamiliar
with JavaScript, but it also hides the true nature of the language. The classically
inspired notation can induce programmers to compose hierarchies that are unneces-
sarily deep and complicated. Much of the complexity of class hierarchies is moti-
vated by the constraints of static type checking. JavaScript is completely free of those
constraints. In classical languages, class inheritance is the only form of code reuse.
JavaScript has more and better options.

50 | Chapter 5: Inheritance

Object Specifiers
It sometimes happens that a constructor is given a very large number of parameters.
This can be troublesome because it can be very difficult to remember the order of the
arguments. In such cases, it can be much friendlier if we write the constructor to
accept a single object specifier instead. That object contains the specification of the
object to be constructed. So, instead of:

var myObject = maker(f, l, m, c, s);

we can write:

var myObject = maker({
 first: f,
 last: l,
 state: s,
 city: c
});

The arguments can now be listed in any order, arguments can be left out if the con-
structor is smart about defaults, and the code is much easier to read.

This can have a secondary benefit when working with JSON (see Appendix E). JSON
text can only describe data, but sometimes the data represents an object, and it
would be useful to associate the data with its methods. This can be done trivially if
the constructor takes an object specifier because we can simply pass the JSON object
to the constructor and it will return a fully constituted object.

Prototypal
In a purely prototypal pattern, we dispense with classes. We focus instead on the
objects. Prototypal inheritance is conceptually simpler than classical inheritance: a
new object can inherit the properties of an old object. This is perhaps unfamiliar, but
it is really easy to understand. You start by making a useful object. You can then
make many more objects that are like that one. The classification process of break-
ing an application down into a set of nested abstract classes can be completely
avoided.

Let’s start by using an object literal to make a useful object:

var myMammal = {
 name : 'Herb the Mammal',
 get_name : function () {
 return this.name;
 },
 says : function () {
 return this.saying || '';
 }
};

Prototypal | 51

Once we have an object that we like, we can make more instances with the Object.

create method from Chapter 3. We can then customize the new instances:

var myCat = Object.create(myMammal);
myCat.name = 'Henrietta';
myCat.saying = 'meow';
myCat.purr = function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
};
myCat.get_name = function () {
 return this.says() + ' ' + this.name + ' ' + this.says();
};

This is differential inheritance. By customizing a new object, we specify the differ-
ences from the object on which it is based.

Sometimes is it useful for data structures to inherit from other data structures. Here
is an example: Suppose we are parsing a language such as JavaScript or TEX in which
a pair of curly braces indicates a scope. Items defined in a scope are not visible out-
side of the scope. In a sense, an inner scope inherits from its outer scope. JavaScript
objects are very good at representing this relationship. The block function is called
when a left curly brace is encountered. The parse function will look up symbols from
scope, and augment scope when it defines new symbols:

var block = function () {

// Remember the current scope. Make a new scope that
// includes everything from the current one.

 var oldScope = scope;
 scope = Object.create(scope);

// Advance past the left curly brace.

 advance('{');

// Parse using the new scope.

 parse(scope);

// Advance past the right curly brace and discard the
// new scope, restoring the old one.

 advance('}');
 scope = oldScope;
};

52 | Chapter 5: Inheritance

Functional
One weakness of the inheritance patterns we have seen so far is that we get no pri-
vacy. All properties of an object are visible. We get no private variables and no
private methods. Sometimes that doesn’t matter, but sometimes it matters a lot. In
frustration, some uninformed programmers have adopted a pattern of pretend
privacy. If they have a property that they wish to make private, they give it an odd-
looking name, with the hope that other users of the code will pretend that they can-
not see the odd looking members. Fortunately, we have a much better alternative in
an application of the module pattern.

We start by making a function that will produce objects. We will give it a name that
starts with a lowercase letter because it will not require the use of the new prefix. The
function contains four steps:

1. It creates a new object. There are lots of ways to make an object. It can make an
object literal, or it can call a constructor function with the new prefix, or it can
use the Object.create method to make a new instance from an existing object,
or it can call any function that returns an object.

2. It optionally defines private instance variables and methods. These are just ordi-
nary vars of the function.

3. It augments that new object with methods. Those methods will have privileged
access to the parameters and the vars defined in the second step.

4. It returns that new object.

Here is a pseudocode template for a functional constructor (boldface text added for
emphasis):

var constructor = function (spec, my) {
 var that, other private instance variables;
 my = my || {};

 Add shared variables and functions to my

 that = a new object;

 Add privileged methods to that

 return that;
};

The spec object contains all of the information that the constructor needs to make an
instance. The contents of the spec could be copied into private variables or trans-
formed by other functions. Or the methods can access information from spec as they
need it. (A simplification is to replace spec with a single value. This is useful when
the object being constructed does not need a whole spec object.)

Functional | 53

The my object is a container of secrets that are shared by the constructors in the
inheritance chain. The use of the my object is optional. If a my object is not passed in,
then a my object is made.

Next, declare the private instance variables and private methods for the object. This
is done by simply declaring variables. The variables and inner functions of the
constructor become the private members of the instance. The inner functions have
access to spec and my and that and the private variables.

Next, add the shared secrets to the my object. This is done by assignment:

my.member = value;

Now, we make a new object and assign it to that. There are lots of ways to make a
new object. We can use an object literal. We can call a pseudoclassical constructor
with the new operator. We can use the Object.create method on a prototype object.
Or, we can call another functional constructor, passing it a spec object (possibly the
same spec object that was passed to this constructor) and the my object. The my object
allows the other constructor to share the material that we put into my. The other con-
structor may also put its own shared secrets into my so that our constructor can take
advantage of it.

Next, we augment that, adding the privileged methods that make up the object’s
interface. We can assign new functions to members of that. Or, more securely, we
can define the functions first as private methods, and then assign them to that:

var methodical = function () {
 ...
};
that.methodical = methodical;

The advantage to defining methodical in two steps is that if other methods want to
call methodical, they can call methodical() instead of that.methodical(). If the
instance is damaged or tampered with so that that.methodical is replaced, the meth-
ods that call methodical will continue to work the same because their private
methodical is not affected by modification of the instance.

Finally, we return that.

Let’s apply this pattern to our mammal example. We don’t need my here, so we’ll just
leave it out, but we will use a spec object.

The name and saying properties are now completely private. They are accessible only
via the privileged get_name and says methods:

var mammal = function (spec) {
 var that = {};

 that.get_name = function () {
 return spec.name;
 };

54 | Chapter 5: Inheritance

 that.says = function () {
 return spec.saying || '';
 };

 return that;
};

var myMammal = mammal({name: 'Herb'});

In the pseudoclassical pattern, the Cat constructor function had to duplicate work
that was done by the Mammal constructor. That isn’t necessary in the functional pattern
because the Cat constructor will call the Mammal constructor, letting Mammal do most of
the work of object creation, so Cat only has to concern itself with the differences:

var cat = function (spec) {
 spec.saying = spec.saying || 'meow';
 var that = mammal(spec);
 that.purr = function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
 };
 that.get_name = function () {
 return that.says() + ' ' + spec.name +
 ' ' + that.says();
 return that;
};

var myCat = cat({name: 'Henrietta'});

The functional pattern also gives us a way to deal with super methods. We will make
a superior method that takes a method name and returns a function that invokes
that method. The function will invoke the original method even if the property is
changed:

Object.method('superior', function (name) {
 var that = this,
 method = that[name];
 return function () {
 return method.apply(that, arguments);
 };
});

Let’s try it out on a coolcat that is just like cat except it has a cooler get_name

method that calls the super method. It requires just a little bit of preparation. We
will declare a super_get_name variable and assign it the result of invoking the supe-
rior method:

Parts | 55

var coolcat = function (spec) {
 var that = cat(spec),
 super_get_name = that.superior('get_name');
 that.get_name = function (n) {
 return 'like ' + super_get_name() + ' baby';
 };
 return that;
};

var myCoolCat = coolcat({name: 'Bix'});
var name = myCoolCat.get_name();
// 'like meow Bix meow baby'

The functional pattern has a great deal of flexibility. It requires less effort than the
pseudoclassical pattern, and gives us better encapsulation and information hiding
and access to super methods.

If all of the state of an object is private, then the object is tamper-proof. Properties of
the object can be replaced or deleted, but the integrity of the object is not compro-
mised. If we create an object in the functional style, and if all of the methods of the
object make no use of this or that, then the object is durable. A durable object is
simply a collection of functions that act as capabilities.

A durable object cannot be compromised. Access to a durable object does not give
an attacker the ability to access the internal state of the object except as permitted by
the methods.

Parts
We can compose objects out of sets of parts. For example, we can make a function
that can add simple event processing features to any object. It adds an on method, a
fire method, and a private event registry:

var eventuality = function (that) {
 var registry = {};

 that.fire = function (event) {

// Fire an event on an object. The event can be either
// a string containing the name of the event or an
// object containing a type property containing the
// name of the event. Handlers registered by the 'on'
// method that match the event name will be invoked.

 var array,
 func,
 handler,
 i,
 type = typeof event === 'string' ?
 event : event.type;

56 | Chapter 5: Inheritance

// If an array of handlers exist for this event, then
// loop through it and execute the handlers in order.

 if (registry.hasOwnProperty(type)) {
 array = registry[type];
 for (i = 0; i < array.length; i += 1) {
 handler = array[i];

// A handler record contains a method and an optional
// array of parameters. If the method is a name, look
// up the function.

 func = handler.method;
 if (typeof func === 'string') {
 func = this[func];
 }

// Invoke a handler. If the record contained
// parameters, then pass them. Otherwise, pass the
// event object.

 func.apply(this,
 handler.parameters || [event]);
 }
 }
 return this;
 };

 that.on = function (type, method, parameters) {

// Register an event. Make a handler record. Put it
// in a handler array, making one if it doesn't yet
// exist for this type.

 var handler = {
 method: method,
 parameters: parameters
 };
 if (registry.hasOwnProperty(type)) {
 registry[type].push(handler);
 } else {
 registry[type] = [handler];
 }
 return this;
 };
 return that;
};

We could call eventuality on any individual object, bestowing it with event handling
methods. We could also call it in a constructor function before that is returned:

eventuality(that);

Parts | 57

In this way, a constructor could assemble objects from a set of parts. JavaScript’s
loose typing is a big benefit here because we are not burdened with a type system
that is concerned about the lineage of classes. Instead, we can focus on the character
of their contents.

If we wanted eventuality to have access to the object’s private state, we could pass it
the my bundle.

58

Chapter 6CHAPTER 6

Arrays 6

Thee I’ll chase hence, thou wolf in sheep’s array.

—William Shakespeare, The First Part of Henry the Sixth

An array is a linear allocation of memory in which elements are accessed by inte-
gers that are used to compute offsets. Arrays can be very fast data structures. Unfor-
tunately, JavaScript does not have anything like this kind of array.

Instead, JavaScript provides an object that has some array-like characteristics. It con-
verts array subscripts into strings that are used to make properties. It is significantly
slower than a real array, but it can be more convenient to use. Retrieval and updat-
ing of properties work the same as with objects, except that there is a special trick
with integer property names. Arrays have their own literal format. Arrays also have a
much more useful set of built-in methods, described in Chapter 8.

Array Literals
Array literals provide a very convenient notation for creating new array values. An
array literal is a pair of square brackets surrounding zero or more values separated by
commas. An array literal can appear anywhere an expression can appear. The first
value will get the property name '0', the second value will get the property name
'1', and so on:

var empty = [];
var numbers = [
 'zero', 'one', 'two', 'three', 'four',
 'five', 'six', 'seven', 'eight', 'nine'
];

empty[1] // undefined
numbers[1] // 'one'

empty.length // 0
numbers.length // 10

Length | 59

The object literal:

var numbers_object = {
 '0': 'zero', '1': 'one', '2': 'two',
 '3': 'three', '4': 'four', '5': 'five',
 '6': 'six', '7': 'seven', '8': 'eight',
 '9': 'nine'
};

produces a similar result. Both numbers and number_object are objects containing 10
properties, and those properties have exactly the same names and values. But there
are also significant differences. numbers inherits from Array.prototype, whereas
number_object inherits from Object.prototype, so numbers inherits a larger set of use-
ful methods. Also, numbers gets the mysterious length property, while number_object

does not.

In most languages, the elements of an array are all required to be of the same type.
JavaScript allows an array to contain any mixture of values:

var misc = [
 'string', 98.6, true, false, null, undefined,
 ['nested', 'array'], {object: true}, NaN,
 Infinity
];
misc.length // 10

Length
Every array has a length property. Unlike most other languages, JavaScript’s array
length is not an upper bound. If you store an element with a subscript that is greater
than or equal to the current length, the length will increase to contain the new ele-
ment. There is no array bounds error.

The length property is the largest integer property name in the array plus one. This is
not necessarily the number of properties in the array:

var myArray = [];
myArray.length // 0

myArray[1000000] = true;
myArray.length // 1000001
// myArray contains one property.

The [] postfix subscript operator converts its expression to a string using the expres-
sion’s toString method if it has one. That string will be used as the property name. If
the string looks like a positive integer that is greater than or equal to the array’s cur-
rent length and is less than 4,294,967,295, then the length of the array is set to the
new subscript plus one.

60 | Chapter 6: Arrays

The length can be set explicitly. Making the length larger does not allocate more
space for the array. Making the length smaller will cause all properties with a sub-
script that is greater than or equal to the new length to be deleted:

numbers.length = 3;
// numbers is ['zero', 'one', 'two']

A new element can be appended to the end of an array by assigning to the array’s
current length:

numbers[numbers.length] = 'shi';
// numbers is ['zero', 'one', 'two', 'shi']

It is sometimes more convenient to use the push method to accomplish the same
thing:

numbers.push('go');
// numbers is ['zero', 'one', 'two', 'shi', 'go']

Delete
Since JavaScript’s arrays are really objects, the delete operator can be used to remove
elements from an array:

delete numbers[2];
// numbers is ['zero', 'one', undefined, 'shi', 'go']

Unfortunately, that leaves a hole in the array. This is because the elements to the
right of the deleted element retain their original names. What you usually want is to
decrement the names of each of the elements to the right.

Fortunately, JavaScript arrays have a splice method. It can do surgery on an array,
deleting some number of elements and replacing them with other elements. The first
argument is an ordinal in the array. The second argument is the number of elements
to delete. Any additional arguments get inserted into the array at that point:

numbers.splice(2, 1);
// numbers is ['zero', 'one', 'shi', 'go']

The property whose value is 'shi' has its key changed from '4' to '3'. Because every
property after the deleted property must be removed and reinserted with a new key,
this might not go quickly for large arrays.

Enumeration
Since JavaScript’s arrays are really objects, the for in statement can be used to iter-
ate over all of the properties of an array. Unfortunately, for in makes no guarantee
about the order of the properties, and most array applications expect the elements to
be produced in numerical order. Also, there is still the problem with unexpected
properties being dredged up from the prototype chain.

Confusion | 61

Fortunately, the conventional for statement avoids these problems. JavaScript’s for

statement is similar to that in most C-like languages. It is controlled by three
clauses—the first initializes the loop, the second is the while condition, and the third
does the increment:

var i;
for (i = 0; i < myArray.length; i += 1) {
 document.writeln(myArray[i]);
}

Confusion
A common error in JavaScript programs is to use an object when an array is required
or an array when an object is required. The rule is simple: when the property names
are small sequential integers, you should use an array. Otherwise, use an object.

JavaScript itself is confused about the difference between arrays and objects. The
typeof operator reports that the type of an array is 'object', which isn’t very helpful.

JavaScript does not have a good mechanism for distinguishing between arrays and
objects. We can work around that deficiency by defining our own is_array function:

var is_array = function (value) {
 return value &&
 typeof value === 'object' &&
 value.constructor === Array;
};

Unfortunately, it fails to identify arrays that were constructed in a different window
or frame. If we want to accurately detect those foreign arrays, we have to work a lit-
tle harder:

var is_array = function (value) {
 return value &&
 typeof value === 'object' &&
 typeof value.length === 'number' &&
 typeof value.splice === 'function' &&
 !(value.propertyIsEnumerable('length'));
};

First, we ask if the value is truthy. We do this to reject null and other falsy values.
Second, we ask if the typeof value is 'object'. This will be true for objects, arrays,
and (weirdly) null. Third, we ask if the value has a length property that is a number.
This will always be true for arrays, but usually not for objects. Fourth, we ask if the
value contains a splice method. This again will be true for all arrays. Finally, we ask
if the length property is enumerable (will length be produced by a for in loop?).
That will be false for all arrays. This is the most reliable test for arrayness that I have
found. It is unfortunate that it is so complicated.

Having such a test, it is possible to write functions that do one thing when passed a
single value and lots of things when passed an array of values.

62 | Chapter 6: Arrays

Methods
JavaScript provides a set of methods for acting on arrays. The methods are functions
stored in Array.prototype. In Chapter 3, we saw that Object.prototype can be aug-
mented. Array.prototype can be augmented as well.

For example, suppose we want to add an array method that will allow us to do com-
putation on an array:

Array.method('reduce', function (f, value) {
 var i;
 for (i = 0; i < this.length; i += 1) {
 value = f(this[i], value);
 }
 return value;
});

By adding a function to Array.prototype, every array inherits the method. In this
case, we defined a reduce method that takes a function and a starting value. For each
element of the array, it calls the function with an element and the value, and com-
putes a new value. When it is finished, it returns the value. If we pass in a function
that adds two numbers, it computes the sum. If we pass in a function that multiplies
two numbers, it computes the product:

// Create an array of numbers.

var data = [4, 8, 15, 16, 23, 42];

// Define two simple functions. One will add two
// numbers. The other will multiply two numbers.

var add = function (a, b) {
 return a + b;
};

var mult = function (a, b) {
 return a * b;
};

// Invoke the data's reduce method, passing in the
// add function.

var sum = data.reduce(add, 0); // sum is 108

// Invoke the reduce method again, this time passing
// in the multiply function.

var product = data.reduce(mult, 1);
 // product is 7418880

Because an array is really an object, we can add methods directly to an individual
array:

Dimensions | 63

// Give the data array a total function.

data.total = function () {
 return this.reduce(add, 0);
};

total = data.total(); // total is 108

Since the string 'total' is not an integer, adding a total property to an array does
not change its length. Arrays are most useful when the property names are integers,
but they are still objects, and objects can accept any string as a property name.

It is not useful to use the Object.create method from Chapter 3 on arrays because it
produces an object, not an array. The object produced will inherit the array’s values
and methods, but it will not have the special length property.

Dimensions
JavaScript arrays usually are not initialized. If you ask for a new array with [], it will
be empty. If you access a missing element, you will get the undefined value. If you are
aware of that, or if you will naturally set every element before you attempt to retrieve
it, then all is well. But if you are implementing algorithms that assume that every ele-
ment starts with a known value (such as 0), then you must prep the array yourself.
JavaScript should have provided some form of an Array.dim method to do this, but
we can easily correct this oversight:

Array.dim = function (dimension, initial) {
 var a = [], i;
 for (i = 0; i < dimension; i += 1) {
 a[i] = initial;
 }
 return a;
};

// Make an array containing 10 zeros.

var myArray = Array.dim(10, 0);

JavaScript does not have arrays of more than one dimension, but like most C lan-
guages, it can have arrays of arrays:

var matrix = [
 [0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]
];
matrix[2][1] // 7

To make a two-dimensional array or an array of arrays, you must build the arrays
yourself:

64 | Chapter 6: Arrays

for (i = 0; i < n; i += 1) {
 my_array[i] = [];
}

// Note: Array.dim(n, []) will not work here.
// Each element would get a reference to the same
// array, which would be very bad.

The cells of an empty matrix will initially have the value undefined. If you want them
to have a different initial value, you must explicitly set them. Again, JavaScript
should have provided better support for matrixes. We can correct that, too:

Array.matrix = function (m, n, initial) {
 var a, i, j, mat = [];
 for (i = 0; i < m; i += 1) {
 a = [];
 for (j = 0; j < n; j += 1) {
 a[j] = initial;
 }
 mat[i] = a;
 }
 return mat;
};

// Make a 4 * 4 matrix filled with zeros.

var myMatrix = Array.matrix(4, 4, 0);

document.writeln(myMatrix[3][3]); // 0

// Method to make an identity matrix.

Array.identity = function (n) {
 var i, mat = Array.matrix(n, n, 0);
 for (i = 0; i < n; i += 1) {
 mat[i][i] = 1;
 }
 return mat;
};

myMatrix = Array.identity(4);

document.writeln(myMatrix[3][3]); // 1

65

Chapter 7 CHAPTER 7

Regular Expressions7

Whereas the contrary bringeth bliss,

And is a pattern of celestial peace.

Whom should we match with Henry, being a king...

—William Shakespeare, The First Part of Henry the Sixth

Many of JavaScript’s features were borrowed from other languages. The syntax came
from Java, functions came from Scheme, and prototypal inheritance came from Self.
JavaScript’s Regular Expression feature was borrowed from Perl.

A regular expression is the specification of the syntax of a simple language. Regular
expressions are used with methods to search, replace, and extract information from
strings. The methods that work with regular expressions are regexp.exec, regexp.test,
string.match, string.replace, string.search, and string.split. These will all be
described in Chapter 8. Regular expressions usually have a significant performance
advantage over equivalent string operations in JavaScript.

Regular expressions came from the mathematical study of formal languages. Ken
Thompson adapted Stephen Kleene’s theoretical work on type-3 languages into a
practical pattern matcher that could be embedded in tools such as text editors and
programming languages.

The syntax of regular expressions in JavaScript conforms closely to the original for-
mulations from Bell Labs, with some reinterpretation and extension adopted from
Perl. The rules for writing regular expressions can be surprisingly complex because
they interpret characters in some positions as operators, and in slightly different
positions as literals. Worse than being hard to write, this makes regular expressions
hard to read and dangerous to modify. It is necessary to have a fairly complete
understanding of the full complexity of regular expressions to correctly read them.
To mitigate this, I have simplified the rules a little. As presented here, regular expres-
sions will be slightly less terse, but they will also be slightly easier to use correctly.
And that is a good thing because regular expressions can be very difficult to main-
tain and debug.

66 | Chapter 7: Regular Expressions

Today’s regular expressions are not strictly regular, but they can be very useful. Reg-
ular expressions tend to be extremely terse, even cryptic. They are easy to use in their
simplest form, but they can quickly become bewildering. JavaScript’s regular expres-
sions are difficult to read in part because they do not allow comments or whitespace.
All of the parts of a regular expression are pushed tightly together, making them
almost indecipherable. This is a particular concern when they are used in security
applications for scanning and validation. If you cannot read and understand a regu-
lar expression, how can you have confidence that it will work correctly for all inputs?
Yet, despite their obvious drawbacks, regular expressions are widely used.

An Example
Here is an example. It is a regular expression that matches URLs. The pages of this
book are not infinitely wide, so I broke it into two lines. In a JavaScript program, the
regular expression must be on a single line. Whitespace is significant:

var parse_url = /^(?:([A-Za-z]+):)?(\/{0,3})([0-9.\-A-Za-z]+)
(?::(\d+))?(?:\/([^?#]*))?(?:\?([^#]*))?(?:#(.*))?$/;

var url = “http://www.ora.com:80/goodparts?q#fragment”;

Let’s call parse_url’s exec method. If it successfully matches the string that we pass
it, it will return an array containing pieces extracted from the url:

var url = "http://www.ora.com:80/goodparts?q#fragment";

var result = parse_url.exec(url);

var names = ['url', 'scheme', 'slash', 'host', 'port',
 'path', 'query', 'hash'];

var blanks = ' ';
var i;

for (i = 0; i < names.length; i += 1) {
 document.writeln(names[i] + ':' +
 blanks.substring(names[i].length), result[i]);
}

This produces:

url: http://www.ora.com:80/goodparts?q#fragment
scheme: http
slash: //
host: www.ora.com
port: 80
path: goodparts
query: q
hash: fragment

An Example | 67

In Chapter 2, we used railroad diagrams to describe the JavaScript language. We can
also use them to describe the languages defined by regular expressions. That may
make it easier to see what a regular expression does. This is a railroad diagram for
parse_url.

Regular expressions cannot be broken into smaller pieces the way that functions can,
so the track representing parse_url is a long one.

Let’s factor parse_url into its parts to see how it works:

^

The ^ character indicates the beginning of the string. It is an anchor that prevents
exec from skipping over a non-URL-like prefix:

(?:([A-Za-z]+):)?

This factor matches a scheme name, but only if it is followed by a : (colon). The (?:...)
indicates a noncapturing group. The suffix ? indicates that the group is optional.

begin string

parse_url

:letter

scheme

slash

letter or digit
or . or -

host

digit

port

/ / /

:

/

?

#

any character
except ? or #

path

any character
except #

query

any character
except line end

hash

end string

68 | Chapter 7: Regular Expressions

It means repeat zero or one time. The (...) indicates a capturing group. A capturing
group copies the text it matches and places it in the result array. Each capturing
group is given a number. This first capturing group is 1, so a copy of the text
matched by this capturing group will appear in result[1]. The [...] indicates a char-
acter class. This character class, A-Za-z, contains 26 uppercase letters and 26 lower-
case letters. The hyphens indicate ranges, from A to Z. The suffix + indicates that the
character class will be matched one or more times. The group is followed by the :

character, which will be matched literally:

(\/{0,3})

The next factor is capturing group 2. \/ indicates that a / (slash) character should be
matched. It is escaped with \ (backslash) so that it is not misinterpreted as the end of
the regular expression literal. The suffix {0,3} indicates that the / will be matched 0
or 1 or 2 or 3 times:

([0-9.\-A-Za-z]+)

The next factor is capturing group 3. It will match a host name, which is made up of
one or more digits, letters, or . or –. The – was escaped as \- to prevent it from being
confused with a range hyphen:

(?::(\d+))?

The next factor optionally matches a port number, which is a sequence of one or
more digits preceded by a :. \d represents a digit character. The series of one or more
digits will be capturing group 4:

(?:\/([^?#]*))?

We have another optional group. This one begins with a /. The character class [^?#]
begins with a ^, which indicates that the class includes all characters except ? and #.
The * indicates that the character class is matched zero or more times.

Note that I am being sloppy here. The class of all characters except ? and # includes
line-ending characters, control characters, and lots of other characters that really
shouldn’t be matched here. Most of the time this will do want we want, but there is a
risk that some bad text could slip through. Sloppy regular expressions are a popular
source of security exploits. It is a lot easier to write sloppy regular expressions than
rigorous regular expressions:

(?:\?([^#]*))?

Next, we have an optional group that begins with a ?. It contains capturing group 6,
which contains zero or more characters that are not #:

(?:#(.*))?

We have a final optional group that begins with #. The . will match any character
except a line-ending character:

$

An Example | 69

The $ represents the end of the string. It assures us that there was no extra material
after the end of the URL.

Those are the factors of the regular expression parse_url.*

It is possible to make regular expressions that are more complex than parse_url, but
I wouldn’t recommend it. Regular expressions are best when they are short and sim-
ple. Only then can we have confidence that they are working correctly and that they
could be successfully modified if necessary.

There is a very high degree of compatibility between JavaScript language processors.
The part of the language that is least portable is the implementation of regular
expressions. Regular expressions that are very complicated or convoluted are more
likely to have portability problems. Nested regular expressions can also suffer horri-
ble performance problems in some implementations. Simplicity is the best strategy.

Let’s look at another example: a regular expression that matches numbers. Numbers
can have an integer part with an optional minus sign, an optional fractional part, and
an optional exponent part:

var parse_number = /^-?\d+(?:\.\d*)?(?:e[+\-]?\d+)?$/i;

var test = function (num) {
 document.writeln(parse_number.test(num));
};

test('1'); // true
test('number'); // false
test('98.6'); // true
test('132.21.86.100'); // false
test('123.45E-67'); // true
test('123.45D-67'); // false

parse_number successfully identified the strings that conformed to our specification
and those that did not, but for those that did not, it gives us no information on why
or where they failed the number test.

Let’s break down parse_number:

/^ $/i

We again use ^ and $ to anchor the regular expression. This causes all of the charac-
ters in the text to be matched against the regular expression. If we had omitted the
anchors, the regular expression would tell us if a string contains a number. With the
anchors, it tells us if the string contains only a number. If we included just the ^, it
would match strings starting with a number. If we included just the $, it would
match strings ending with a number.

* When you press them all together again, it is visually quite confusing:

/^(?:([A-Za-z]+):)?(\/{0,3})([0-9.\-A-Za-z]+)(?::(\d+))?(?:\/([^?#]*))?(?:\?([^#]*))?(?:#(.*))?$/

70 | Chapter 7: Regular Expressions

The i flag causes case to be ignored when matching letters. The only letter in our
pattern is e. We want that e to also match E. We could have written the e factor as
[Ee] or (?:E|e), but we didn’t have to because we used the i flag:

-?

The ? suffix on the minus sign indicates that the minus sign is optional:

\d+

\d means the same as [0-9]. It matches a digit. The + suffix causes it to match one or
more digits:

(?:\.\d*)?

The (?:...)? indicates an optional noncapturing group. It is usually better to use non-
capturing groups instead of the less ugly capturing groups because capturing has a
performance penalty. The group will match a decimal point followed by zero or
more digits:

(?:e[+\-]?\d+)?

This is another optional noncapturing group. It matches e (or E), an optional sign,
and one or more digits.

Construction
There are two ways to make a RegExp object. The preferred way, as we saw in the
examples, is to use a regular expression literal.

parse_number

- end stringbegin string digit

.

e +

-

digit

digit

regexp choice/ / g i m

regexp literal

Construction | 71

Regular expression literals are enclosed in slashes. This can be a little tricky because
slash is also used as the division operator and in comments.

There are three flags that can be set on a RegExp. They are indicated by the letters g,
i, and m, as listed in Table 7-1. The flags are appended directly to the end of the
RegExp literal:

// Make a regular expression object that matches
// a JavaScript string.

var my_regexp = /"(?:\\.|[^\\\"])*"/g;

The other way to make a regular expression is to use the RegExp constructor. The
constructor takes a string and compiles it into a RegExp object. Some care must be
taken in building the string because backslashes have a somewhat different meaning
in regular expressions than in string literals. It is usually necessary to double the
backslashes and escape the quotes:

// Make a regular expression object that matches
// a JavaScript string.

var my_regexp =
 new RegExp("\"(?:\\.|[^\\\\\\\"])*\"", 'g');

The second parameter is a string specifying the flags. The RegExp constructor is use-
ful when a regular expression must be generated at runtime using material that is not
available to the programmer.

RegExp objects contain the properties listed in Table 7-2.

Table 7-1. Flags for regular expressions

Flag Meaning

g Global (match multiple times; the precise meaning of this varies with the method)

i Insensitive (ignore character case)

m Multiline (^ and $ can match line-ending characters)

Table 7-2. Properties of RegExp objects

Property Use

global true if the g flag was used.

ignoreCase true if the i flag was used.

lastIndex The index at which to start the next exec match. Initially it is zero.

multiline true if the m flag was used.

source The source text of the regular expression.

72 | Chapter 7: Regular Expressions

RegExp objects made by regular expression literals share a single instance:

function make_a_matcher() {
 return /a/gi;
}

var x = make_a_matcher();
var y = make_a_matcher();

// Beware: x and y are the same object!

x.lastIndex = 10;

document.writeln(y.lastIndex); // 10

Elements
Let’s look more closely at the elements that make up regular expressions.

Regexp Choice

A regexp choice contains one or more regexp sequences. The sequences are separated
by the | (vertical bar) character. The choice matches if any of the sequences match. It
attempts to match each of the sequences in order. So:

"into".match(/in|int/)

matches the in in into. It wouldn’t match int because the match of in was successful.

Regexp Sequence

A regexp sequence contains one or more regexp factors. Each factor can optionally be
followed by a quantifier that determines how many times the factor is allowed to
appear. If there is no quantifier, then the factor will be matched one time.

regexp choice

regexp sequence

|

regexp sequence

regexp factor regexp quantifier

Elements | 73

Regexp Factor

A regexp factor can be a character, a parenthesized group, a character class, or an
escape sequence. All characters are treated literally except for the control characters
and the special characters:

\ / [] () { } ? + * | . ^ $

which must be escaped with a \ prefix if they are to be matched literally. When in
doubt, any special character can be given a \ prefix to make it literal. The \ prefix
does not make letters or digits literal.

An unescaped . matches any character except a line-ending character.

An unescaped ^ matches the beginning of the text when the lastIndex property is
zero. It can also match line-ending characters when the m flag is specified.

An unescaped $ matches the end of the text. It can also match line-ending characters
when the m flag is specified.

Regexp Escape
The backslash character indicates escapement in regexp factors as well as in strings,
but in regexp factors, it works a little differently.

As in strings, \f is the formfeed character, \n is the newline character, \r is the car-
riage return character, \t is the tab character, and \u allows for specifying a Unicode
character as a 16-bit hex constant. In regexp factors, \b is not the backspace character.

\d is the same as [0-9]. It matches a digit. \D is the opposite: [^0-9].

\s is the same as [\f\n\r\t\u000B\u0020\u00A0\u2028\u2029]. This is a partial set of Uni-
code whitespace characters. \S is the opposite: [^\f\n\r\t\u000B\u0020\u00A0\u2028\
u2029].

\w is the same as [0-9A-Z_a-z]. \W is the opposite: [^0-9A-Z_a-z]. This is supposed to
represent the characters that appear in words. Unfortunately, the class it defines is
useless for working with virtually any real language. If you need to match a class of
letters, you must specify your own class.

regexp factor
any Unicode character except / and \ and
[and] and (and) and { and } and ? and

+ and * and | and control character

regexp escape

regexp class

regexp group

74 | Chapter 7: Regular Expressions

A simple letter class is [A-Za-z\u00C0-\u1FFF\u2800-\uFFFD]. It includes all of Uni-
code’s letters, but it also includes thousands of characters that are not letters. Uni-
code is large and complex. An exact letter class of the Basic Multilingual Plane is
possible, but would be huge and inefficient. JavaScript’s regular expressions provide
extremely poor support for internationalization.

\b was intended to be a word-boundary anchor that would make it easier to match
text on word boundaries. Unfortunately, it uses \w to find word boundaries, so it is
completely useless for multilingual applications. This is not a good part.

\1 is a reference to the text that was captured by group 1 so that it can be matched
again. For example, you could search text for duplicated words with:

var doubled_words =
 /[A-Za-z\u00C0-\u1FFF\u2800-\uFFFD'\-]+\s+\1/gi;

doubled_words looks for occurrences of words (strings containing 1 or more letters)
followed by whitespace followed by the same word.

\2 is a reference to group 2, \3 is a reference to group 3, and so on.

Regexp Group
There are four kinds of groups:

Capturing
A capturing group is a regexp choice wrapped in parentheses. The characters
that match the group will be captured. Every capture group is given a number.
The first capturing (in the regular expression is group 1. The second capturing (

in the regular expression is group 2.

regexp escape

any special character

f

\

formfeed

n
newline

r

carriage
return

t
tab

u 4
hexadecimal

digits

B
not

D

S

W

b
word boundary

d
digit

s
whitespace

w
word character

literal

back reference

integer

Elements | 75

Noncapturing
A noncapturing group has a (?: prefix. A noncapturing group simply matches; it
does not capture the matched text. This has the advantage of slight faster perfor-
mance. Noncapturing groups do not interfere with the numbering of capturing
groups.

Positive lookahead
A positive lookahead group has a (?= prefix. It is like a noncapturing group
except that after the group matches, the text is rewound to where the group
started, effectively matching nothing. This is not a good part.

Negative lookahead
A negative lookahead group has a (?! prefix. It is like a positive lookahead
group, except that it matches only if it fails to match. This is not a good part.

Regexp Class

A regexp class is a convenient way of specifying one of a set of characters. For exam-
ple, if we wanted to match a vowel, we could write (?:a|e|i|o|u), but it is more con-
veniently written as the class [aeiou].

Classes provide two other conveniences. The first is that ranges of characters can be
specified. So, the set of 32 ASCII special characters:

! " # $ % & ' () * + , - . / :
; < = > ? @ [\] ^ _ ` { | } ~

regexp choice

regexp group

(
capturing

? :
noncapturing

=
positive lookahead

!
negative lookahead

)

regexp class

[]any Unicode character except / and \
and [and] and ^ and - and

control character

^

-

regexp class escape

76 | Chapter 7: Regular Expressions

could be written as:

(?:!|"|#|\$|%|&|'|\(|\)|*|\+|,|-|\.|\/|:|;|<|=|>|@|\[|\\|]|\^|_|` |\{|\||\}|~)

but is slightly more nicely written as:

[!-\/:-@\[-`{-~]

which includes the characters from ! through / and : through @ and [through ` and
{ through ~. It is still pretty nasty looking.

The other convenience is the complementing of a class. If the first character after the
[is ^, then the class excludes the specified characters.

So [^!-\/:-@\[-`{-~] matches any character that is not one of the ASCII special
characters.

Regexp Class Escape

The rules of escapement within a character class are slightly different than those for a
regexp factor. [\b] is the backspace character. Here are the special characters that
should be escaped in a character class:

- / [\] ^

Regexp Quantifier
A regexp factor may have a regexp quantifier suffix that determines how many times
the factor should match. A number wrapped in curly braces means that the factor
should match that many times. So, /www/ matches the same as /w{3}/. {3,6} will
match 3, 4, 5, or 6 times. {3,} will match 3 or more times.

regexp class escape

any special character

f

\

formfeed

n
newline

r

carriage
return

t
tab

u 4
hexadecimal

digits

not

D

S

W

d
digit

s
whitespace

w
word character

literal

b
backspace

Elements | 77

? is the same as {0,1}. * is the same as {0,}. + is the same as {1,}.

Matching tends to be greedy, matching as many repetitions as possible up to the
limit, if there is one. If the quantifier has an extra ? suffix, then matching tends to be
lazy, attempting to match as few repetitions as possible. It is usually best to stick
with the greedy matching.

regexp quantifier

?

*

+

{ , }

?

integer integer

78

Chapter 8CHAPTER 8

Methods 8

Though this be madness, yet there is method in ’t.

—William Shakespeare, The Tragedy of Hamlet,
Prince of Denmark

JavaScript includes a small set of standard methods that are available on the stan-
dard types.

Array

array.concat(item…)

The concat method produces a new array containing a shallow copy of this array with the
items appended to it. If an item is an array, then each of its elements is appended individu-
ally. Also see array.push(item...) later in this chapter.

var a = ['a', 'b', 'c'];
var b = ['x', 'y', 'z'];
var c = a.concat(b, true);
// c is ['a', 'b', 'c', 'x', 'y', 'z', true]

array.join(separator)

The join method makes a string from an array. It does this by making a string of each of
the array’s elements, and then concatenating them all together with a separator between
them. The default separator is ','. To join without separation, use an empty string as the
separator.

If you are assembling a string from a large number of pieces, it is usually faster to put the
pieces into an array and join them than it is to concatenate the pieces with the + operator:

var a = ['a', 'b', 'c'];
a.push('d');
var c = a.join(''); // c is 'abcd';

Array | 79

array.pop()

The pop and push methods make an array work like a stack. The pop method removes and
returns the last element in this array. If the array is empty, it returns undefined.

var a = ['a', 'b', 'c'];
var c = a.pop(); // a is ['a', 'b'] & c is 'c'

pop can be implemented like this:

Array.method('pop', function () {
 return this.splice(this.length - 1, 1)[0];
});

array.push(item…)

The push method appends items to the end of an array. Unlike the concat method, it modi-
fies the array and appends array items whole. It returns the new length of the array:

var a = ['a', 'b', 'c'];
var b = ['x', 'y', 'z'];
var c = a.push(b, true);
// a is ['a', 'b', 'c', ['x', 'y', 'z'], true]
// c is 5;

push can be implemented like this:

Array.method('push', function () {
 this.splice.apply(
 this,
 [this.length, 0].
 concat(Array.prototype.slice.apply(arguments)));
 return this.length;
});

array.reverse()

The reverse method modifies the array by reversing the order of the elements. It returns
the array:

var a = ['a', 'b', 'c'];
var b = a.reverse();
// both a and b are ['c', 'b', 'a']

array.shift()

The shift method removes the first element from an array and returns it. If the array is
empty, it returns undefined. shift is usually much slower than pop:

var a = ['a', 'b', 'c'];
var c = a.shift(); // a is ['b', 'c'] & c is 'a'

shift can be implemented like this:

Array.method('shift', function () {
 return this.splice(0, 1)[0];
});

80 | Chapter 8: Methods

array.slice(start, end)

The slice method makes a shallow copy of a portion of an array. The first element copied
will be array[start]. It will stop before copying array[end]. The end parameter is optional,
and the default is array.length. If either parameter is negative, array.length will be added
to them in an attempt to make them nonnegative. If start is greater than or equal to array.

length, the result will be a new empty array. Do not confuse slice with splice. Also see
string.slice later in this chapter.

var a = ['a', 'b', 'c'];
var b = a.slice(0, 1); // b is ['a']
var c = a.slice(1); // c is ['b', 'c']
var d = a.slice(1, 2); // d is ['b']

array.sort(comparefn)

The sort method sorts the contents of an array in place. It sorts arrays of numbers
incorrectly:

var n = [4, 8, 15, 16, 23, 42];
n.sort();
// n is [15, 16, 23, 4, 42, 8]

JavaScript’s default comparison function assumes that the elements to be sorted are strings.
It isn’t clever enough to test the type of the elements before comparing them, so it converts
the numbers to strings as it compares them, ensuring a shockingly incorrect result.

Fortunately, you may replace the comparison function with your own. Your comparison
function should take two parameters and return 0 if the two parameters are equal, a nega-
tive number if the first parameter should come first, and a positive number if the second
parameter should come first. (Old-timers might be reminded of the FORTRAN II arithmetic
IF statement.)

n.sort(function (a, b) {
 return a - b;
});
// n is [4, 8, 15, 16, 23, 42];

That function will sort numbers, but it doesn’t sort strings. If we want to be able to sort
any array of simple values, we must work harder:

var m = ['aa', 'bb', 'a', 4, 8, 15, 16, 23, 42];
m.sort(function (a, b) {
 if (a === b) {
 return 0;
 }
 if (typeof a === typeof b) {
 return a < b ? -1 : 1;
 }
 return typeof a < typeof b ? -1 : 1;
});
// m is [4, 8, 15, 16, 23, 42, 'a', 'aa', 'bb']

If case is not significant, your comparison function should convert the operands to lower-
case before comparing them. Also see string.localeCompare later in this chapter.

With a smarter comparison function, we can sort an array of objects. To make things easier
for the general case, we will write a function that will make comparison functions:

Array | 81

// Function by takes a member name string and returns
// a comparison function that can be used to sort an
// array of objects that contain that member.

var by = function (name) {
 return function (o, p) {
 var a, b;
 if (typeof o === 'object' && typeof p === 'object' && o && p) {
 a = o[name];
 b = p[name];
 if (a === b) {
 return 0;
 }
 if (typeof a === typeof b) {
 return a < b ? -1 : 1;
 }
 return typeof a < typeof b ? -1 : 1;
 } else {
 throw {
 name: 'Error',
 message: 'Expected an object when sorting by ' + name;
 };
 }
 };
};

var s = [
 {first: 'Joe', last: 'Besser'},
 {first: 'Moe', last: 'Howard'},
 {first: 'Joe', last: 'DeRita'},
 {first: 'Shemp', last: 'Howard'},
 {first: 'Larry', last: 'Fine'},
 {first: 'Curly', last: 'Howard'}
];
s.sort(by('first')); // s is [
// {first: 'Curly', last: 'Howard'},
// {first: 'Joe', last: 'DeRita'},
// {first: 'Joe', last: 'Besser'},
// {first: 'Larry', last: 'Fine'},
// {first: 'Moe', last: 'Howard'},
// {first: 'Shemp', last: 'Howard'}
//]

The sort method is not stable, so:

s.sort(by('first')).sort(by('last'));

is not guaranteed to produce the correct sequence. If you want to sort on multiple keys,
you again need to do more work. We can modify by to take a second parameter, another
compare method that will be called to break ties when the major key produces a match:

// Function by takes a member name string and an
// optional minor comparison function and returns
// a comparison function that can be used to sort an
// array of objects that contain that member. The
// minor comparison function is used to break ties

82 | Chapter 8: Methods

// when the o[name] and p[name] are equal.

var by = function (name, minor) {
 return function (o, p) {
 var a, b;
 if (o && p && typeof o === 'object' && typeof p === 'object') {
 a = o[name];
 b = p[name];
 if (a === b) {
 return typeof minor === 'function' ? minor(o, p) : 0;
 }
 if (typeof a === typeof b) {
 return a < b ? -1 : 1;
 }
 return typeof a < typeof b ? -1 : 1;
 } else {
 throw {
 name: 'Error',
 message: 'Expected an object when sorting by ' + name;
 };
 }
 };
};

s.sort(by('last', by('first'))); // s is [
// {first: 'Joe', last: 'Besser'},
// {first: 'Joe', last: 'DeRita'},
// {first: 'Larry', last: 'Fine'},
// {first: 'Curly', last: 'Howard'},
// {first: 'Moe', last: 'Howard'},
// {first: 'Shemp', last: 'Howard'}
//]

array.splice(start, deleteCount, item…)

The splice method removes elements from an array, replacing them with new items. The
start parameter is the number of a position within the array. The deleteCount parameter is
the number of elements to delete starting from that position. If there are additional parame-
ters, those items will be inserted at the position. It returns an array containing the deleted
elements.

The most popular use of splice is to delete elements from an array. Do not confuse splice

with slice:

var a = ['a', 'b', 'c'];
var r = a.splice(1, 1, 'ache', 'bug');
// a is ['a', 'ache', 'bug', 'c']
// r is ['b']

splice can be implemented like this:

Array.method('splice', function (start, deleteCount) {
 var max = Math.max,
 min = Math.min,
 delta,
 element,

Array | 83

 insertCount = max(arguments.length - 2, 0),
 k = 0,
 len = this.length,
 new_len,
 result = [],
 shift_count;

 start = start || 0;
 if (start < 0) {
 start += len;
 }
 start = max(min(start, len), 0);
 deleteCount = max(min(typeof deleteCount === 'number' ?
 deleteCount : len, len - start), 0);
 delta = insertCount - deleteCount;
 new_len = len + delta;
 while (k < deleteCount) {
 element = this[start + k];
 if (element !== undefined) {
 result[k] = element;
 }
 k += 1;
 }
 shift_count = len - start - deleteCount;
 if (delta < 0) {
 k = start + insertCount;
 while (shift_count) {
 this[k] = this[k - delta];
 k += 1;
 shift_count -= 1;
 }
 this.length = new_len;
 } else if (delta > 0) {
 k = 1;
 while (shift_count) {
 this[new_len - k] = this[len - k];
 k += 1;
 shift_count -= 1;
 }
 }
 for (k = 0; k < insertCount; k += 1) {
 this[start + k] = arguments[k + 2];
 }
 return result;
});

array.unshift(item…)

The unshift method is like the push method except that it shoves the items onto the front
of this array instead of at the end. It returns the array’s new length:

var a = ['a', 'b', 'c'];
var r = a.unshift('?', '@');
// a is ['?', '@', 'a', 'b', 'c']
// r is 5

84 | Chapter 8: Methods

unshift can be implemented like this:

Array.method('unshift', function () {
 this.splice.apply(this,
 [0, 0].concat(Array.prototype.slice.apply(arguments)));
 return this.length;
});

Function

function.apply(thisArg, argArray)

The apply method invokes a function, passing in the object that will be bound to this and
an optional array of arguments. The apply method is used in the apply invocation pattern
(Chapter 4):

Function.method('bind', function (that) {

// Return a function that will call this function as
// though it is a method of that object.

 var method = this,
 slice = Array.prototype.slice,
 args = slice.apply(arguments, [1]);
 return function () {
 return method.apply(that,
 args.concat(slice.apply(arguments, [0])));
 };
});

var x = function () {
 return this.value;
}.bind({value: 666});
alert(x()); // 666

Number

number.toExponential(fractionDigits)

The toExponential method converts this number to a string in the exponential form. The
optional fractionDigits parameter controls the number of decimal places. It should be
between 0 and 20:

document.writeln(Math.PI.toExponential(0));
document.writeln(Math.PI.toExponential(2));
document.writeln(Math.PI.toExponential(7));
document.writeln(Math.PI.toExponential(16));
document.writeln(Math.PI.toExponential());

// Produces

Number | 85

3e+0
3.14e+0
3.1415927e+0
3.1415926535897930e+0
3.141592653589793e+0

number.toFixed(fractionDigits)

The toFixed method converts this number to a string in the decimal form. The optional
fractionDigits parameter controls the number of decimal places. It should be between 0
and 20. The default is 0:

document.writeln(Math.PI.toFixed(0));
document.writeln(Math.PI.toFixed(2));
document.writeln(Math.PI.toFixed(7));
document.writeln(Math.PI.toFixed(16));
document.writeln(Math.PI.toFixed());

// Produces

3
3.14
3.1415927
3.1415926535897930
3

number.toPrecision(precision)

The toPrecision method converts this number to a string in the decimal form. The optional
precision parameter controls the number of digits of precision. It should be between 1 and
21:

document.writeln(Math.PI.toPrecision(2));
document.writeln(Math.PI.toPrecision(7));
document.writeln(Math.PI.toPrecision(16));
document.writeln(Math.PI.toPrecision());

// Produces

3.1
3.141593
3.141592653589793
3.141592653589793

number.toString(radix)

The toString method converts this number to a string. The optional radix parameter
controls radix, or base. It should be between 2 and 36. The default radix is base 10. The
radix parameter is most commonly used with integers, but it can be used on any number.

The most common case, number.toString(), can be written more simply as String(number):

document.writeln(Math.PI.toString(2));
document.writeln(Math.PI.toString(8));
document.writeln(Math.PI.toString(16));
document.writeln(Math.PI.toString());

86 | Chapter 8: Methods

// Produces

11.001001000011111101101010100010001000010110100011
3.1103755242102643
3.243f6a8885a3
3.141592653589793

Object

object.hasOwnProperty(name)

The hasOwnProperty method returns true if the object contains a property having the name.
The prototype chain is not examined. This method is useless if the name is hasOwnProperty:

var a = {member: true};
var b = Object.create(a); // from Chapter 3
var t = a.hasOwnProperty('member'); // t is true
var u = b.hasOwnProperty('member'); // u is false
var v = b.member; // v is true

RegExp

regexp.exec(string)

The exec method is the most powerful (and slowest) of the methods that use regular
expressions. If it successfully matches the regexp and the string, it returns an array. The 0
element of the array will contain the substring that matched the regexp. The 1 element is
the text captured by group 1, the 2 element is the text captured by group 2, and so on. If
the match fails, it returns null.

If the regexp has a g flag, things are a little more complicated. The searching begins not at
position 0 of the string, but at position regexp.lastIndex (which is initially zero). If the
match is successful, then regexp.lastIndex will be set to the position of the first character
after the match. An unsuccessful match resets regexp.lastIndex to 0.

This allows you to search for several occurrences of a pattern in a string by calling exec in a
loop. There are a couple things to watch out for. If you exit the loop early, you must reset
regexp.lastIndex to 0 yourself before entering the loop again. Also, the ^ factor matches
only when regexp.lastIndex is 0:

// Break a simple html text into tags and texts.
// (See string.replace for the entityify method.)

// For each tag or text, produce an array containing
// [0] The full matched tag or text
// [1] The tag name
// [2] The /, if there is one
// [3] The attributes, if any

var text = '<html><body bgcolor=linen><p>' +
 'This is bold<\/b>!<\/p><\/body><\/html>';

RegExp | 87

var tags = /[^<>]+|<(\/?)([A-Za-z]+)([^<>]*)>/g;
var a, i;

while ((a = tags.exec(text))) {
 for (i = 0; i < a.length; i += 1) {
 document.writeln(('// [' + i + '] ' + a[i]).entityify());
 }
 document.writeln();
}

// Result:

// [0] <html>
// [1]
// [2] html
// [3]

// [0] <body bgcolor=linen>
// [1]
// [2] body
// [3] bgcolor=linen

// [0] <p>
// [1]
// [2] p
// [3]

// [0] This is
// [1] undefined
// [2] undefined
// [3] undefined

// [0]
// [1]
// [2] b
// [3]

// [0] bold
// [1] undefined
// [2] undefined
// [3] undefined

// [0]
// [1] /
// [2] b
// [3]

// [0] !
// [1] undefined
// [2] undefined
// [3] undefined

// [0] </p>
// [1] /

88 | Chapter 8: Methods

// [2] p
// [3]

regexp.test(string)

The test method is the simplest (and fastest) of the methods that use regular expressions.
If the regexp matches the string, it returns true; otherwise, it returns false. Do not use the
g flag with this method:

var b = /&.+;/.test('frank & beans');
// b is true

test could be implemented as:

RegExp.method('test', function (string) {
 return this.exec(string) !== null;
});

String

string.charAt(pos)

The charAt method returns the character at position pos in this string. If pos is less than
zero or greater than or equal to string.length, it returns the empty string. JavaScript does
not have a character type. The result of this method is a string:

var name = 'Curly';
var initial = name.charAt(0); // initial is 'C'

charAt could be implemented as:

String.method('charAt', function (pos) {
 return this.slice(pos, pos + 1);
});

string.charCodeAt(pos)

The charCodeAt method is the same as charAt except that instead of returning a string, it
returns an integer representation of the code point value of the character at position pos in
that string. If pos is less than zero or greater than or equal to string.length, it returns NaN:

var name = 'Curly';
var initial = name.charCodeAt(0); // initial is 67

string.concat(string…)

The concat method makes a new string by concatenating other strings together. It is rarely
used because the + operator is more convenient:

var s = 'C'.concat('a', 't'); // s is 'Cat'

string.indexOf(searchString, position)

The indexOf method searches for a searchString within a string. If it is found, it returns
the position of the first matched character; otherwise, it returns –1. The optional position
parameter causes the search to begin at some specified position in the string:

String | 89

var text = 'Mississippi';
var p = text.indexOf('ss'); // p is 2
p = text.indexOf('ss', 3); // p is 5
p = text.indexOf('ss', 6); // p is -1

string.lastIndexOf(searchString, position)

The lastIndexOf method is like the indexOf method, except that it searches from the end of
the string instead of the front:

var text = 'Mississippi';
var p = text.lastIndexOf('ss'); // p is 5
p = text.lastIndexOf('ss', 3); // p is 2
p = text.lastIndexOf('ss', 6); // p is 5

string.localeCompare(that)

The localCompare method compares two strings. The rules for how the strings are
compared are not specified. If this string is less than that string, the result is negative. If
they are equal, the result is zero. This is similar to the convention for the array.sort

comparison function:

var m = ['AAA', 'A', 'aa', 'a', 'Aa', 'aaa'];
m.sort(function (a, b) {
 return a.localeCompare(b);
});
// m (in some locale) is
// ['a', 'A', 'aa', 'Aa', 'aaa', 'AAA']

string.match(regexp)

The match method matches a string and a regular expression. How it does this depends on
the g flag. If there is no g flag, then the result of calling string.match(regexp) is the same as
calling regexp.exec(string). However, if the regexp has the g flag, then it produces an array
of all the matches but excludes the capturing groups:

var text = '<html><body bgcolor=linen><p>' +
 'This is bold<\/b>!<\/p><\/body><\/html>';
var tags = /[^<>]+|<(\/?)([A-Za-z]+)([^<>]*)>/g;
var a, i;

a = text.match(tags);
for (i = 0; i < a.length; i += 1) {
 document.writeln(('// [' + i + '] ' + a[i]).entityify());
}

// The result is

// [0] <html>
// [1] <body bgcolor=linen>
// [2] <p>
// [3] This is
// [4]
// [5] bold
// [6]
// [7] !

90 | Chapter 8: Methods

// [8] </p>
// [9] </body>
// [10] </html>

string.replace(searchValue, replaceValue)

The replace method does a search and replace operation on this string, producing a new
string. The searchValue argument can be a string or a regular expression object. If it is a
string, only the first occurrence of the searchValue is replaced, so:

var result = "mother_in_law".replace('_', '-');

will produce "mother-in_law", which might be a disappointment.

If searchValue is a regular expression and if it has the g flag, then it will replace all occur-
rences. If it does not have the g flag, then it will replace only the first occurrence.

The replaceValue can be a string or a function. If replaceValue is a string, the character $
has special meaning:

// Capture 3 digits within parens

var oldareacode = /\((\d{3})\)/g;
var p = '(555)666-1212'.replace(oldareacode, '$1-');
// p is '555-555-1212'

If the replaceValue is a function, it will be called for each match, and the string returned by
the function will be used as the replacement text. The first parameter passed to the func-
tion is the matched text. The second parameter is the text of capture group 1, the next
parameter is the text of capture group 2, and so on:

String.method('entityify', function () {

 var character = {
 '<' : '<',
 '>' : '>',
 '&' : '&',
 '"' : '"'
 };

// Return the string.entityify method, which
// returns the result of calling the replace method.
// Its replaceValue function returns the result of
// looking a character up in an object. This use of
// an object usually outperforms switch statements.

Dollar sequence Replacement

$$ $

$& The matched text

$number Capture group text

$` The text preceding the match

$' The text following the match

String | 91

 return function () {
 return this.replace(/[<>&"]/g, function (c) {
 return character[c];
 });
 };
}());
alert("<&>".entityify()); // <&>

string.search(regexp)

The search method is like the indexOf method, except that it takes a regular expression
object instead of a string. It returns the position of the first character of the first match, if
there is one, or –1 if the search fails. The g flag is ignored. There is no position parameter:

var text = 'and in it he says "Any damn fool could';
var pos = text.search(/["']/); // pos is 18

string.slice(start, end)

The slice method makes a new string by copying a portion of another string. If the start

parameter is negative, it adds string.length to it. The end parameter is optional, and its
default value is string.length. If the end parameter is negative, then string.length is added
to it. The end parameter is one greater than the position of the last character. To get n char-
acters starting at position p, use string.slice(p, p + n). Also see string.substring and
array.slice, later and earlier in this chapter, respectively.

var text = 'and in it he says "Any damn fool could';
var a = text.slice(18);
// a is '"Any damn fool could'
var b = text.slice(0, 3);
// b is 'and'
var c = text.slice(-5);
// c is 'could'
var d = text.slice(19, 32);
// d is 'Any damn fool'

string.split(separator, limit)

The split method creates an array of strings by splitting this string into pieces. The
optional limit parameter can limit the number of pieces that will be split. The separator

parameter can be a string or a regular expression.

If the separator is the empty string, an array of single characters is produced:

var digits = '0123456789';
var a = digits.split('', 5);
// a is ['0', '1', '2', '3', '456789']

Otherwise, the string is searched for all occurrences of the separator. Each unit of text
between the separators is copied into the array. The g flag is ignored:

var ip = '192.168.1.0';
var b = ip.split('.');
// b is ['192', '168', '1', '0']

var c = '|a|b|c|'.split('|');
// c is ['', 'a', 'b', 'c', '']

92 | Chapter 8: Methods

var text = 'last, first ,middle';
var d = text.split(/\s*,\s*/);
// d is [
// 'last',
// 'first',
// 'middle'
//]

There are some special cases to watch out for. Text from capturing groups will be included
in the split:

var e = text.split(/\s*(,)\s*/);
// e is [
// 'last',
// ',',
// 'first',
// ',',
// 'middle'
//]

Some implementations suppress empty strings in the output array when the separator is a
regular expression:

var f = '|a|b|c|'.split(/\|/);
// f is ['a', 'b', 'c'] on some systems, and
// f is ['', 'a', 'b', 'c', ''] on others

string.substring(start, end)

The substring method is the same as the slice method except that it doesn’t handle the
adjustment for negative parameters. There is no reason to use the substring method. Use
slice instead.

string.toLocaleLowerCase()

The toLocaleLowerCase method produces a new string that is made by converting this
string to lowercase using the rules for the locale. This is primarily for the benefit of
Turkish because in that language ‘I’ converts to ı, not ‘i’.

string.toLocaleUpperCase()

The toLocaleUpperCase method produces a new string that is made by converting this
string to uppercase using the rules for the locale. This is primarily for the benefit of
Turkish, because in that language ‘i’ converts to ‘ ’, not ‘I’.

string.toLowerCase()

The toLowerCase method produces a new string that is made by converting this string to
lowercase.

String | 93

string.toUpperCase()

The toUpperCase method produces a new string that is made by converting this string to
uppercase.

String.fromCharCode(char…)

The String.fromCharCode function produces a string from a series of numbers.

var a = String.fromCharCode(67, 97, 116);
// a is 'Cat'

94

Chapter 9CHAPTER 9

Style 9

Here is a silly stately style indeed!

—William Shakespeare, The First Part of Henry the Sixth

Computer programs are the most complex things that humans make. Programs are
made up of a huge number of parts, expressed as functions, statements, and expres-
sions that are arranged in sequences that must be virtually free of error. The runtime
behavior has little resemblance to the program that implements it. Software is usually
expected to be modified over the course of its productive life. The process of convert-
ing one correct program into a different correct program is extremely challenging.

Good programs have a structure that anticipates—but is not overly burdened by—
the possible modifications that will be required in the future. Good programs also
have a clear presentation. If a program is expressed well, then we have the best
chance of being able to understand it so that it can be successfully modified or
repaired.

These concerns are true for all programming languages, and are especially true for
JavaScript. JavaScript’s loose typing and excessive error tolerance provide little
compile-time assurance of our programs’ quality, so to compensate, we should code
with strict discipline.

JavaScript contains a large set of weak or problematic features that can undermine
our attempts to write good programs. We should obviously avoid JavaScript’s worst
features. Surprisingly, perhaps, we should also avoid the features that are often use-
ful but occasionally hazardous. Such features are attractive nuisances, and by avoid-
ing them, a large class of potential errors is avoided.

The long-term value of software to an organization is in direct proportion to the
quality of the codebase. Over its lifetime, a program will be handled by many pairs of
hands and eyes. If a program is able to clearly communicate its structure and charac-
teristics, it is less likely to break when it is modified in the never-too-distant future.

Style | 95

JavaScript code is often sent directly to the public. It should always be of publication
quality. Neatness counts. By writing in a clear and consistent style, your programs
become easier to read.

Programmers can debate endlessly on what constitutes good style. Most program-
mers are firmly rooted in what they’re used to, such as the prevailing style where they
went to school, or at their first job. Some have had profitable careers with no sense of
style at all. Isn’t that proof that style doesn’t matter? And even if style doesn’t mat-
ter, isn’t one style as good as any other?

It turns out that style matters in programming for the same reason that it matters in
writing. It makes for better reading.

Computer programs are sometimes thought of as a write-only medium, so it matters
little how it is written as long as it works. But it turns out that the likelihood a pro-
gram will work is significantly enhanced by our ability to read it, which also
increases the likelihood that it actually works as intended. It is also the nature of
software to be extensively modified over its productive life. If we can read and under-
stand it, then we can hope to modify and improve it.

Throughout this book I have used a consistent style. My intention was to make the
code examples as easy to read as possible. I used whitespace consistently to give you
more cues about the meaning of my programs.

I indented the contents of blocks and object literals four spaces. I placed a space
between if and (so that the if didn’t look like a function invocation. Only in invo-
cations do I make (adjacent with the preceding symbol. I put spaces around all infix
operators except for . and [, which do not get spaces because they have higher prece-
dence. I use a space after every comma and colon.

I put at most one statement on a line. Multiple statements on a line can be misread.
If a statement doesn’t fit on a line, I will break it after a comma or a binary operator.
That gives more protection against copy/paste errors that are masked by semicolon
insertion. (The tragedy of semicolon insertion will be revealed in Appendix A.) I
indent the remainder of the statement an extra four spaces, or eight spaces if four
would be ambiguous (such as a line break in the condition part of an if statement).

I always use blocks with structured statements such as if and while because it is less
error prone. I have seen:

if (a)
 b();

become:

if (a)
 b();
 c();

96 | Chapter 9: Style

which is an error that is very difficult to spot. It looks like:

if (a) {
 b();
 c();
}

but it means:

if (a) {
 b();
}
c();

Code that appears to mean one thing but actually means another is likely to cause
bugs. A pair of braces is really cheap protection against bugs that can be expensive to
find.

I always use the K&R style, putting the { at the end of a line instead of the front,
because it avoids a horrible design blunder in JavaScript’s return statement.

I included some comments. I like to put comments in my programs to leave informa-
tion that will be read at a later time by people (possibly myself) who will need to
understand what I was thinking. Sometimes I think about comments as a time
machine that I use to send important messages to future me.

I struggle to keep comments up-to-date. Erroneous comments can make programs
even harder to read and understand. I can’t afford that.

I tried to not waste your time with useless comments like this:

i = 0; // Set i to zero.

In JavaScript, I prefer to use line comments. I reserve block comments for formal
documentation and for commenting out.

I prefer to make the structure of my programs self-illuminating, eliminating the need
for comments. I am not always successful, so while my programs are awaiting perfec-
tion, I am writing comments.

JavaScript has C syntax, but its blocks don’t have scope. So, the convention that vari-
ables should be declared at their first use is really bad advice in JavaScript. JavaScript
has function scope, but not block scope, so I declare all of my variables at the begin-
ning of each function. JavaScript allows variables to be declared after they are used.
That feels like a mistake to me, and I don’t want to write programs that look like
mistakes. I want my mistakes to stand out. Similarly, I never use an assignment
expression in the condition part of an if because:

if (a = b) { ... }

is probably intended to be:

if (a === b) { ... }

Style | 97

I want to avoid idioms that look like mistakes.

I never allow switch cases to fall through to the next case. I once found a bug in my
code caused by an unintended fall through immediately after having made a vigor-
ous speech about why fall through was sometimes useful. I was fortunate in that I
was able to learn from the experience. When reviewing the features of a language, I
now pay special attention to features that are sometimes useful but occasionally dan-
gerous. Those are the worst parts because it is difficult to tell whether they are being
used correctly. That is a place where bugs hide.

Quality was not a motivating concern in the design, implementation, or standardiza-
tion of JavaScript. That puts a greater burden on the users of the language to resist
the language’s weaknesses.

JavaScript provides support for large programs, but it also provides forms and idi-
oms that work against large programs. For example, JavaScript provides conve-
niences for the use of global variables, but global variables become increasingly
problematic as programs scale in complexity.

I use a single global variable to contain an application or library. Every object has its
own namespace, so it is easy to use objects to organize my code. Use of closure pro-
vides further information hiding, increasing the strength of my modules.

98

Chapter 10CHAPTER 10

Beautiful Features 10

Thus, expecting thy reply, I profane my lips on thy
foot, my eyes on thy picture, and my heart on thy
every part. Thine, in the dearest design of industry...

—William Shakespeare, Love’s Labor’s Lost

I was invited last year to contribute a chapter to Andy Oram’s and Greg Wilson’s
Beautiful Code (O’Reilly), an anthology on the theme of beauty as expressed in com-
puter programs. I wanted to write my chapter in JavaScript. I wanted to use it to
present something abstract, powerful, and useful to show that the language was up
to it. And I wanted to avoid the browser and other venues in which JavaScript is
typecast. I wanted to show something respectable with some heft to it.

I immediately thought of Vaughn Pratt’s Top Down Operator Precedence parser,
which I use in JSLint (see Appendix C). Parsing is an important topic in computing.
The ability to write a compiler for a language in itself is still a test for the complete-
ness of a language.

I wanted to include all of the code for a parser in JavaScript that parses JavaScript.
But my chapter was just one of 30 or 40, so I felt constrained in the number of pages
I could consume. A further complication was that most of my readers would have no
experience with JavaScript, so I also would have to introduce the language and its
peculiarities.

So, I decided to subset the language. That way, I wouldn’t have to parse the whole
language, and I wouldn’t have to describe the whole language. I called the subset
Simplified JavaScript. Selecting the subset was easy: it included just the features that
I needed to write a parser. This is how I described it in Beautiful Code:

Simplified JavaScript is just the good stuff, including:

Functions as first class objects
Functions in Simplified JavaScript are lambdas with lexical scoping.

Beautiful Features | 99

Dynamic objects with prototypal inheritance
Objects are class-free. We can add a new member to any object by ordinary assign-
ment. An object can inherit members from another object.

Object literals and array literals
This is a very convenient notation for creating new objects and arrays. JavaScript literals
were the inspiration for the JSON data interchange format.

The subset contained the best of the Good Parts. Even though it was a small lan-
guage, it was very expressive and powerful. JavaScript has lots of additional features
that really don’t add very much, and as you’ll find in the appendixes that follow, it
has a lot of features with negative value. There was nothing ugly or bad in the sub-
set. All of that fell away.

Simplified JavaScript isn’t strictly a subset. I added a few new features. The simplest
was adding pi as a simple constant. I did that to demonstrate a feature of the parser.
I also demonstrated a better reserved word policy and showed that reserved words
are unnecessary. In a function, a word cannot be used as both a variable or parame-
ter name and a language feature. You can use a word for one or the other, and the
programmer gets to choose. That makes a language easier to learn because you don’t
need to be aware of features you don’t use. And it makes the language easier to
extend because it isn’t necessary to reserve more words to add new features.

I also added block scope. Block scope is not a necessary feature, but not having it
confuses experienced programmers. I included block scope because I anticipated that
my parser would be used to parse languages that are not JavaScript, and those lan-
guages would do scoping correctly. The code I wrote for the parser is written in a
style that doesn’t care if block scope is available or not. I recommend that you write
that way, too.

When I started thinking about this book, I wanted to take the subset idea further, to
show how to take an existing programming language and make significant improve-
ments to it by making no changes except to exclude the low-value features.

We see a lot of feature-driven product design in which the cost of features is not
properly accounted. Features can have a negative value to consumers because they
make the products more difficult to understand and use. We are finding that people
like products that just work. It turns out that designs that just work are much harder
to produce than designs that assemble long lists of features.

Features have a specification cost, a design cost, and a development cost. There is a
testing cost and a reliability cost. The more features there are, the more likely one
will develop problems or will interact badly with another. In software systems, there
is a storage cost, which was becoming negligible, but in mobile applications is
becoming significant again. There are ascending performance costs because Moore’s
Law doesn’t apply to batteries.

100 | Chapter 10: Beautiful Features

Features have a documentation cost. Every feature adds pages to the manual,
increasing training costs. Features that offer value to a minority of users impose a
cost on all users. So, in designing products and programming languages, we want to
get the core features—the good parts—right because that is where we create most of
the value.

We all find the good parts in the products that we use. We value simplicity, and
when simplicity isn’t offered to us, we make it ourselves. My microwave oven has
tons of features, but the only ones I use are cook and the clock. And setting the clock
is a struggle. We cope with the complexity of feature-driven design by finding and
sticking with the good parts.

It would be nice if products and programming languages were designed to have only
good parts.

101

Appendix A APPENDIX A

Awful Parts1

That will prove awful both in deed and word.

—William Shakespeare, Pericles, Prince of Tyre

In this chapter, I present the problematic features of JavaScript that are not easily
avoided. You must be aware of these things and be prepared to cope.

Global Variables
The worst of all of JavaScript’s bad features is its dependence on global variables. A
global variable is a variable that is visible in every scope. Global variables can be a
convenience in very small programs, but they quickly become unwieldy as programs
get larger. Because a global variable can be changed by any part of the program at
any time, they can significantly complicate the behavior of the program. Use of glo-
bal variables degrades the reliability of the programs that use them.

Global variables make it harder to run independent subprograms in the same pro-
gram. If the subprograms happen to have global variables that share the same names,
then they will interfere with each other and likely fail, usually in difficult to diagnose
ways.

Lots of languages have global variables. For example, Java’s public static members
are global variables. The problem with JavaScript isn’t just that it allows them, it
requires them. JavaScript does not have a linker. All compilation units are loaded
into a common global object.

There are three ways to define global variables. The first is to place a var statement
outside of any function:

var foo = value;

The second is to add a property directly to the global object. The global object is the
container of all global variables. In web browsers, the global object goes by the name
window:

window.foo = value;

102 | Appendix A: Awful Parts

The third is to use a variable without declaring it. This is called implied global:

foo = value;

This was intended as a convenience to beginners by making it unnecessary to declare
variables before using them. Unfortunately, forgetting to declare a variable is a very
common mistake. JavaScript’s policy of making forgotten variables global creates
bugs that can be very difficult to find.

Scope
JavaScript’s syntax comes from C. In all other C-like languages, a block (a set of
statements wrapped in curly braces) creates a scope. Variables declared in a block are
not visible outside of the block. JavaScript uses the block syntax, but does not pro-
vide block scope: a variable declared in a block is visible everywhere in the function
containing the block. This can be surprising to programmers with experience in
other languages.

In most languages, it is generally best to declare variables at the site of first use. That
turns out to be a bad practice in JavaScript because it does not have block scope. It is
better to declare all variables at the top of each function.

Semicolon Insertion
JavaScript has a mechanism that tries to correct faulty programs by automatically
inserting semicolons. Do not depend on this. It can mask more serious errors.

It sometimes inserts semicolons in places where they are not welcome. Consider the
consequences of semicolon insertion on the return statement. If a return statement
returns a value, that value expression must begin on the same line as the return:

return
{
 status: true
};

This appears to return an object containing a status member. Unfortunately, semi-
colon insertion turns it into a statement that returns undefined. There is no warning
that semicolon insertion caused the misinterpretation of the program. The problem
can be avoided if the { is placed at the end of the previous line and not at the begin-
ning of the next line:

return {
 status: true
};

typeof | 103

Reserved Words
The following words are reserved in JavaScript:

abstract boolean break byte case catch char class const continue debugger default
delete do double else enum export extends false final finally float for function goto
if implements import in instanceof int interface long native new null package private
protected public return short static super switch synchronized this throw throws
transient true try typeof var volatile void while with

Most of these words are not used in the language.

They cannot be used to name variables or parameters. When reserved words are
used as keys in object literals, they must be quoted. They cannot be used with the
dot notation, so it is sometimes necessary to use the bracket notation instead:

var method; // ok
var class; // illegal
object = {box: value}; // ok
object = {case: value}; // illegal
object = {'case': value}; // ok
object.box = value; // ok
object.case = value; // illegal
object['case'] = value; // ok

Unicode
JavaScript was designed at a time when Unicode was expected to have at most 65,536
characters. It has since grown to have a capacity of more than 1 million characters.

JavaScript’s characters are 16 bits. That is enough to cover the original 65,536
(which is now known as the Basic Multilingual Plane). Each of the remaining million
characters can be represented as a pair of characters. Unicode considers the pair to
be a single character. JavaScript thinks the pair is two distinct characters.

typeof
The typeof operator returns a string that identifies the type of its operand. So:

typeof 98.6

produces 'number'. Unfortunately:

typeof null

returns 'object' instead of 'null'. Oops. A better test for null is simply:

my_value === null

104 | Appendix A: Awful Parts

A bigger problem is testing a value for objectness. typeof cannot distinguish between
null and objects, but you can because null is falsy and all objects are truthy:

if (my_value && typeof my_value === 'object') {
 // my_value is an object or an array!
}

Also see the later sections “NaN” and “Phony Arrays.”

Implementations disagree on the type of regular expression objects. Some implemen-
tations report that:

typeof /a/

is 'object', and others say that it is 'function'. It might have been more useful to
report 'regexp', but the standard does not allow that.

parseInt
parseInt is a function that converts a string into an integer. It stops when it sees a
nondigit, so parseInt("16") and parseInt("16 tons") produce the same result. It
would be nice if the function somehow informed us about the extra text, but it
doesn’t.

If the first character of the string is 0, then the string is evaluated in base 8 instead of
base 10. In base 8, 8 and 9 are not digits, so parseInt("08") and parseInt("09") pro-
duce 0 as their result. This error causes problems in programs that parse dates and
times. Fortunately, parseInt can take a radix parameter, so that parseInt("08", 10)

produces 8. I recommend that you always provide the radix parameter.

+
The + operator can add or concatenate. Which one it does depends on the types of
the parameters. If either operand is an empty string, it produces the other operand
converted to a string. If both operands are numbers, it produces the sum. Other-
wise, it converts both operands to strings and concatenates them. This complicated
behavior is a common source of bugs. If you intend + to add, make sure that both
operands are numbers.

Floating Point
Binary floating-point numbers are inept at handling decimal fractions, so 0.1 + 0.2 is
not equal to 0.3. This is the most frequently reported bug in JavaScript, and it is an
intentional consequence of having adopted the IEEE Standard for Binary Floating-
Point Arithmetic (IEEE 754). This standard is well-suited for many applications,
but it violates most of the things you learned about numbers in middle school.

Phony Arrays | 105

Fortunately, integer arithmetic in floating point is exact, so decimal representation
errors can be avoided by scaling.

For example, dollar values can be converted to whole cents values by multiplying
them by 100. The cents then can be accurately added. The sum can be divided by
100 to convert back into dollars. People have a reasonable expectation when they
count money that the results will be exact.

NaN
The value NaN is a special quantity defined by IEEE 754. It stands for not a number,
even though:

typeof NaN === 'number' // true

The value can be produced by attempting to convert a string to a number when the
string is not in the form of a number. For example:

+ '0' // 0
+ 'oops' // NaN

If NaN is an operand in an arithmetic operation, then NaN will be the result. So, if you
have a chain of formulas that produce NaN as a result, at least one of the inputs was
NaN, or NaN was generated somewhere.

You can test for NaN. As we have seen, typeof does not distinguish between numbers
and NaN, and it turns out that NaN is not equal to itself. So, surprisingly:

NaN === NaN // false
NaN !== NaN // true

JavaScript provides an isNaN function that can distinguish between numbers and NaN:

isNaN(NaN) // true
isNaN(0) // false
isNaN('oops') // true
isNaN('0') // false

The isFinite function is the best way of determining whether a value can be used as
a number because it rejects NaN and Infinity. Unfortunately, isFinite will attempt to
convert its operand to a number, so it is not a good test if a value is not actually a
number. You may want to define your own isNumber function:

var isNumber = function isNumber(value) { return typeof value === 'number' &&
 isFinite(value);
}

Phony Arrays
JavaScript does not have real arrays. That isn’t all bad. JavaScript’s arrays are really
easy to use. There is no need to give them a dimension, and they never generate out-
of-bounds errors. But their performance can be considerably worse than real arrays.

106 | Appendix A: Awful Parts

The typeof operator does not distinguish between arrays and objects. To determine
that a value is an array, you also need to consult its constructor property:

if (my_value && typeof my_value === 'object' &&
 my_value.constructor === Array) {
 // my_value is an array!
}

That test will give a false negative if an array was created in a different frame or win-
dow. This test is more reliable when the value might have been created in another
frame:

if (my_value && typeof my_value === 'object' &&
 typeof my_value.length === 'number' &&
 !(my_value.propertyIsEnumerable('length')) {
 // my_value is truly an array!
}

The arguments array is not an array; it is an object with a length member. That test
will identify the arguments array as an array, which is sometimes what you want, even
though arguments does not have any of the array methods. In any case, the test can
still fail if the propertyIsEnumerable method is overridden.

Falsy Values
JavaScript has a surprisingly large set of falsy values, shown in Table A-1.

These values are all falsy, but they are not interchangeable. For example, this is the
wrong way to determine if an object is missing a member:

value = myObject[name];
if (value == null) {
 alert(name + ' not found.');
}

undefined is the value of missing members, but the snippet is testing for null. It is
using the == operator (see Appendix B), which does type coercion, instead of the
more reliable === operator. Sometimes those two errors cancel each other out. Some-
times they don’t.

Table A-1. The many falsy values of JavaScript

Value Type

0 Number

NaN (not a number) Number

'' (empty string) String

false Boolean

null Object

undefined Undefined

Object | 107

undefined and NaN are not constants. They are global variables, and you can change
their values. That should not be possible, and yet it is. Don’t do it.

hasOwnProperty
In Chapter 3, the hasOwnProperty method was offered as a filter to work around a
problem with the for in statement. Unfortunately, hasOwnProperty is a method, not
an operator, so in any object it could be replaced with a different function or even a
value that is not a function:

var name;
another_stooge.hasOwnProperty = null; // trouble
for (name in another_stooge) {
 if (another_stooge.hasOwnProperty(name)) { // boom
 document.writeln(name + ': ' + another_stooge[name]);
 }
}

Object
JavaScript’s objects are never truly empty because they can pick up members from
the prototype chain. Sometimes that matters. For example, suppose you are writing a
program that counts the number of occurrences of each word in a text. We can use
the toLowerCase method to normalize the text to lowercase, and then use the split

method with a regular expression to produce an array of words. We can then loop
through the words and count the number of times we see each one:

var i;
var word;
var text =
 "This oracle of comfort has so pleased me, " +
 "That when I am in heaven I shall desire " +
 "To see what this child does, " +
 "and praise my Constructor.";

var words = text.toLowerCase().split(/[\s,.]+/);
var count = {};
for (i = 0; i < words.length; i += 1) {
 word = words[i];
 if (count[word]) {
 count[word] += 1;
 } else {
 count[word] = 1;
 }
}

If we look at the results, count['this'] is 2 and count.heaven is 1, but count.

constructor contains a crazy looking string. The reason is that the count object inher-
its from Object.prototype, and Object.prototype contains a member named

108 | Appendix A: Awful Parts

constructor whose value is Object. The += operator, like the + operator, does concat-
enation rather than addition when its operands are not numbers. Object is a func-
tion, so += converts it to a string somehow and concatenates a 1 to its butt.

We can avoid problems like this the same way we avoid problems with for in: by
testing for membership with the hasOwnProperty method or by looking for specific
types. In this case, our test for the truthiness of count[word] was not specific enough.
We could have written instead:

 if (typeof count[word] === 'number') {

109

Appendix B APPENDIX B

Bad Parts2

And, I pray thee now, tell me for

which of my bad parts didst thou first fall in love
with me?

—William Shakespeare,Much Ado About Nothing

In this appendix, I present some of the problematic features of JavaScript that are
easily avoided. By simply avoiding these features, you make JavaScript a better lan-
guage, and yourself a better programmer.

==
JavaScript has two sets of equality operators: === and !==, and their evil twins == and
!=. The good ones work the way you would expect. If the two operands are of the
same type and have the same value, then === produces true and !== produces false.
The evil twins do the right thing when the operands are of the same type, but if they
are of different types, they attempt to coerce the values. The rules by which they do
that are complicated and unmemorable. These are some of the interesting cases:

'' == '0' // false
0 == '' // true
0 == '0' // true

false == 'false' // false
false == '0' // true

false == undefined // false
false == null // false
null == undefined // true

' \t\r\n ' == 0 // true

The lack of transitivity is alarming. My advice is to never use the evil twins. Instead,
always use === and !==. All of the comparisons just shown produce false with the
=== operator.

110 | Appendix B: Bad Parts

with Statement
JavaScript has a with statement that was intended to provide a shorthand when
accessing the properties of an object. Unfortunately, its results can sometimes be
unpredictable, so it should be avoided.

The statement:

with (obj) {
 a = b;
}

does the same thing as:

if (obj.a === undefined) {
 a = obj.b === undefined ? b : obj.b;
} else {
 obj.a = obj.b === undefined ? b : obj.b;
}

So, it is the same as one of these statements:

a = b;
a = obj.b;
obj.a = b;
obj.a = obj.b;

It is not possible to tell from reading the program which of those statements you will
get. It can vary from one running of the program to the next. It can even vary while
the program is running. If you can’t read a program and understand what it is going
to do, it is impossible to have confidence that it will correctly do what you want.

Simply by being in the language, the with statement significantly slows down JavaScript
processors because it frustrates the lexical binding of variable names. It was well inten-
tioned, but the language would be better if it didn’t have it.

eval
The eval function passes a string to the JavaScript compiler and executes the result.
It is the single most misused feature of JavaScript. It is most commonly used by peo-
ple who have an incomplete understanding of the language. For example, if you
know about the dot notation, but are ignorant of the subscript notation, you might
write:

 eval("myValue = myObject." + myKey + ";");

instead of:

myvalue = myObject[myKey];

The eval form is much harder to read. This form will be significantly slower because
it needs to run the compiler just to execute a trivial assignment statement. It also

Block-less Statements | 111

frustrates JSLint (see Appendix C), so the tool’s ability to detect problems is signifi-
cantly reduced.

The eval function also compromises the security of your application because it
grants too much authority to the eval’d text. And it compromises the performance of
the language as a whole in the same way that the with statement does.

The Function constructor is another form of eval, and should similarly be avoided.

The browser provides setTimeout and setInterval functions that can take string
arguments or function arguments. When given string arguments, setTimeout and
setInterval act as eval. The string argument form also should be avoided.

continue Statement
The continue statement jumps to the top of the loop. I have never seen a piece of
code that was not improved by refactoring it to remove the continue statement.

switch Fall Through
The switch statement was modeled after the FORTRAN IV computed go to statement.
Each case falls through into the next case unless you explicitly disrupt the flow.

Someone wrote to me once suggesting that JSLint should give a warning when a case
falls through into another case. He pointed out that this is a very common source of
errors, and it is a difficult error to see in the code. I answered that that was all true,
but that the benefit of compactness obtained by falling through more than compen-
sated for the chance of error.

The next day, he reported that there was an error in JSLint. It was misidentifying an
error. I investigated, and it turned out that I had a case that was falling through. In
that moment, I achieved enlightenment. I no longer use intentional fall throughs.
That discipline makes it much easier to find the unintentional fall throughs.

The worst features of a language aren’t the features that are obviously dangerous or
useless. Those are easily avoided. The worst features are the attractive nuisances, the
features that are both useful and dangerous.

Block-less Statements
An if or while or do or for statement can take a block or a single statement. The sin-
gle statement form is another attractive nuisance. It offers the advantage of saving
two characters, a dubious advantage. It obscures the program’s structure so that sub-
sequent manipulators of the code can easily insert bugs. For example:

112 | Appendix B: Bad Parts

if (ok)
 t = true;

can become:

if (ok)
 t = true;
 advance();

which looks like:

if (ok) {
 t = true;
 advance();
}

but which actually means:

if (ok) {
 t = true;
}
advance();

Programs that appear to do one thing but actually do another are much harder to get
right. A disciplined and consistent use of blocks makes it easier to get it right.

++ --
The increment and decrement operators make it possible to write in an extremely
terse style. In languages such as C, they made it possible to write one-liners that
could do string copies:

for (p = src, q = dest; !*p; p++, q++) *q = *p;

They also encourage a programming style that, as it turns out, is reckless. Most of
the buffer overrun bugs that created terrible security vulnerabilities were due to code
like this.

In my own practice, I observed that when I used ++ and --, my code tended to be too
tight, too tricky, too cryptic. So, as a matter of discipline, I don’t use them any more.
I think that as a result, my coding style has become cleaner.

Bitwise Operators
JavaScript has the same set of bitwise operators as Java:

& and
| or
^ xor
~ not
>> signed right shift
>>> unsigned right shift
<< left shift

The function Statement Versus the function Expression | 113

In Java, the bitwise operators work with integers. JavaScript doesn’t have integers. It
only has double precision floating-point numbers. So, the bitwise operators convert
their number operands into integers, do their business, and then convert them back.
In most languages, these operators are very close to the hardware and very fast. In
JavaScript, they are very far from the hardware and very slow. JavaScript is rarely
used for doing bit manipulation.

As a result, in JavaScript programs, it is more likely that & is a mistyped && operator.
The presence of the bitwise operators reduces some of the language’s redundancy,
making it easier for bugs to hide.

The function Statement Versus the function Expression
JavaScript has a function statement as well as a function expression. This is confus-
ing because they can look exactly the same. A function statement is shorthand for a
var statement with a function value.

The statement:

function foo() {}

means about the same thing as:

var foo = function foo() {};

Throughout this book, I have been using the second form because it makes it clear
that foo is a variable containing a function value. To use the language well, it is
important to understand that functions are values.

function statements are subject to hoisting. This means that regardless of where a
function is placed, it is moved to the top of the scope in which it is defined. This
relaxes the requirement that functions should be declared before used, which I think
leads to sloppiness. It also prohibits the use of function statements in if statements.
It turns out that most browsers allow function statements in if statements, but they
vary in how that should be interpreted. That creates portability problems.

The first thing in a statement cannot be a function expression because the official
grammar assumes that a statement that starts with the word function is a function

statement. The workaround is to wrap the function expression in parentheses:

(function () {
 var hidden_variable;

 // This function can have some impact on
 // the environment, but introduces no new
 // global variables.
})();

114 | Appendix B: Bad Parts

Typed Wrappers
JavaScript has a set of typed wrappers. For example:

new Boolean(false)

produces an object that has a valueOf method that returns the wrapped value. This
turns out to be completely unnecessary and occasionally confusing. Don’t use new

Boolean or new Number or new String.

Also avoid new Object and new Array. Use {} and [] instead.

new
JavaScript’s new operator creates a new object that inherits from the operand’s proto-
type member, and then calls the operand, binding the new object to this. This gives
the operand (which had better be a constructor function) a chance to customize the
new object before it is returned to the requestor.

If you forget to use the new operator, you instead get an ordinary function call, and
this is bound to the global object instead of to a new object. That means that your
function will be clobbering global variables when it attempts to initialize the new
members. That is a very bad thing. There is no compile-time warning. There is no
runtime warning.

By convention, functions that are intended to be used with new should be given
names with initial capital letters, and names with initial capital letters should be used
only with constructor functions that take the new prefix. This convention gives us a
visual cue that can help spot expensive mistakes that the language itself is keen to
overlook.

An even better coping strategy is to not use new at all.

void
In many languages, void is a type that has no values. In JavaScript, void is an opera-
tor that takes an operand and returns undefined. This is not useful, and it is very con-
fusing. Avoid void.

115

Appendix C APPENDIX C

JSLint3

What error drives our eyes and ears amiss?

—William Shakespeare, The Comedy of Errors

When C was a young programming language, there were several common program-
ming errors that were not caught by the primitive compilers, so an accessory pro-
gram called lint was developed that would scan a source file, looking for problems.

As C matured, the definition of the language was strengthened to eliminate some
insecurities, and compilers got better at issuing warnings. lint is no longer needed.

JavaScript is a young-for-its-age language. It was originally intended to do small tasks
in web pages, tasks for which Java was too heavy and clumsy. But JavaScript is a very
capable language, and it is now being used in larger projects. Many of the features that
were intended to make the language easy to use are troublesome for larger projects. A
lint for JavaScript is needed: JSLint, a JavaScript syntax checker and verifier.

JSLint is a code quality tool for JavaScript. It takes a source text and scans it. If it
finds a problem, it returns a message describing the problem and an approximate
location within the source. The problem is not necessarily a syntax error, although it
often is. JSLint looks at some style conventions as well as structural problems. It
does not prove that your program is correct. It just provides another set of eyes to
help spot problems.

JSLint defines a professional subset of JavaScript, a stricter language than that
defined by the third edition of the ECMAScript Language Specification. The subset is
closely related to the style recommendations from Chapter 9.

JavaScript is a sloppy language, but inside it there is an elegant, better language.
JSLint helps you to program in that better language and to avoid most of the slop.

JSLint can be found at http://www.JSLint.com/.

http://www.JSLint.com/

116 | Appendix C: JSLint

Undefined Variables and Functions
JavaScript’s biggest problem is its dependence on global variables, particularly
implied global variables. If a variable is not explicitly declared (usually with the var

statement), then JavaScript assumes that the variable was global. This can mask mis-
spelled names and other problems.

JSLint expects that all variables and functions will be declared before they are used
or invoked. This allows it to detect implied global variables. It is also good practice
because it makes programs easier to read.

Sometimes a file is dependent on global variables and functions that are defined else-
where. You can identify these to JSLint by including a comment in your file that lists
the global functions and objects that your program depends on, but that are not
defined in your program or script file.

A global declaration comment can be used to list all of the names that you are inten-
tionally using as global variables. JSLint can use this information to identify misspell-
ings and forgotten var declarations. A global declaration can look like this:

/*global getElementByAttribute, breakCycles, hanoi */

A global declaration starts with /*global. Notice that there is no space before the g.
You can have as many /*global comments as you like. They must appear before the
use of the variables they specify.

Some globals can be predefined for you (see the later section “Options”). Select the
“Assume a browser” (browser) option to predefine the standard global properties
that are supplied by web browsers, such as window and document and alert. Select the
“Assume Rhino” (rhino) option to predefine the global properties provided by the
Rhino environment. Select the “Assume a Yahoo Widget” (widget) option to pre-
define the global properties provided by the Yahoo! Widgets environment.

Members
Since JavaScript is a loosely typed dynamic-object language, it is not possible to
determine at compile time if property names are spelled correctly. JSLint provides
some assistance with this.

At the bottom of its report, JSLint displays a /*members*/ comment. It contains all of
the names and string literals that were used with dot notation, subscript notation,
and object literals to name the members of objects. You can look through the list for
misspellings. Member names that were used only once are shown in italics. This is to
make misspellings easier to spot.

You can copy the /*members*/ comment into your script file. JSLint will check the
spelling of all property names against the list. That way, you can have JSLint look for
misspellings for you:

Options | 117

/*members doTell, iDoDeclare, mercySakes,
 myGoodness, ohGoOn, wellShutMyMouth */

Options
The implementation of JSLint accepts an option object that allows you to determine
the subset of JavaScript that is acceptable to you. It is also possible to set those
options within the source of a script.

An option specification can look like this:

/*jslint nomen: true, evil: false */

An option specification starts with /*jslint. Notice that there is no space before the
j. The specification contains a sequence of name/value pairs, where the names are
JSLint options and the values are true or false. An option specification takes prece-
dence over the option object. All of the options default to false. Table C-1 lists the
options available in using JSLint.

Table C-1. JSLint options

Option Meaning

adsafe true if ADsafe.org rules should be enforced

bitwise true if bitwise operators should not be allowed

browser true if the standard browser globals should be predefined

cap true if uppercase HTML should be allowed

debug true if debugger statements should be allowed

eqeqeq true if === should be required

evil true if eval should be allowed

forin true if unfiltered for in statements should be allowed

fragment true if HTML fragments should be allowed

glovar true if var should not be allowed to declare global variables

laxbreak true if statement breaks should not be checked

nomen true if names should be checked

on true if HTML event handlers should be allowed

passfail true if the scan should stop on first error

plusplus true if ++ and -- should not be allowed

rhino true if the Rhino environment globals should be predefined

undef true if undefined global variables are errors

white true if strict whitespace rules apply

widget true if the Yahoo! Widgets globals should be predefined

118 | Appendix C: JSLint

Semicolon
JavaScript uses a C-like syntax, which requires the use of semicolons to delimit state-
ments. JavaScript attempts to make semicolons optional with a semicolon insertion
mechanism. This is dangerous.

Like C, JavaScript has ++ and -- and (operators, which can be prefixes or suffixes.
The disambiguation is done by the semicolon.

In JavaScript, a linefeed can be whitespace, or it can act as a semicolon. This replaces
one ambiguity with another.

JSLint expects that every statement be followed by ; except for for, function, if,
switch, try, and while. JSLint does not expect to see unnecessary semicolons or the
empty statement.

Line Breaking
As a further defense against the masking of errors by the semicolon insertion mecha-
nism, JSLint expects long statements to be broken only after one of these punctua-
tion characters or operators:

, . ; : { } ([= < > ? ! + - * / % ~ ^ | &
== != <= >= += -= *= /= %= ^= |= &= << >> || &&
=== !== <<= >>= >>> >>>=

JSLint does not expect to see a long statement broken after an identifier, a string, a
number, a closer, or a suffix operator:

)] ++ --

JSLint comment

name

string

JSLint
option

true */

,

:

false

option

/*global

/*jslint

/*members

Forbidden Blocks | 119

JSLint allows you to turn on the “Tolerate sloppy line breaking” (laxbreak) option.

Semicolon insertion can mask copy/paste errors. If you always break lines after oper-
ators, then JSLint can do a better job of finding those errors.

Comma
The comma operator can lead to excessively tricky expressions. It can also mask
some programming errors.

JSLint expects to see the comma used as a separator, but not as an operator (except
in the initialization and incrementation parts of the for statement). It does not expect
to see elided elements in array literals. Extra commas should not be used. A comma
should not appear after the last element of an array literal or object literal because it
can be misinterpreted by some browsers.

Required Blocks
JSLint expects that if and for statements will be made with blocks—that is, with
statements enclosed in braces ({}).

JavaScript allows an if to be written like this:

if (condition)
 statement;

That form is known to contribute to mistakes in projects where many programmers
are working on the same code. That is why JSLint expects the use of a block:

if (condition) {
 statements;
}

Experience shows that this form is more resilient.

Forbidden Blocks
In many languages, a block introduces a scope. Variables introduced in a block are
not visible outside of the block.

In JavaScript, blocks do not introduce a scope. There is only function-scope. A vari-
able introduced anywhere in a function is visible everywhere in the function. Java-
Script’s blocks confuse experienced programmers and lead to errors because the
familiar syntax makes a false promise.

JSLint expects blocks with function, if, switch, while, for, do, and try statements
and nowhere else. An exception is made for an unblocked if statement on an else or
for in.

120 | Appendix C: JSLint

Expression Statements
An expression statement is expected to be an assignment, a function/method call, or
delete. All other expression statements are considered errors.

for in Statement
The for in statement allows for looping through the names of all of the properties of
an object. Unfortunately, it also loops through all of the members that were inher-
ited through the prototype chain. This has the bad side effect of serving up method
functions when the interest is in the data members.

The body of every for in statement should be wrapped in an if statement that does
filtering. if can select for a particular type or range of values, it can exclude func-
tions, or it can exclude properties from the prototype. For example:

for (name in object) {
 if (object.hasOwnProperty(name)) {

 }
}

switch Statement
A common error in switch statements is to forget to place a break statement after
each case, resulting in unintended fall-through. JSLint expects that the statement
before the next case or default is one of these: break, return, or throw.

var Statement
JavaScript allows var definitions to occur anywhere within a function. JSLint is
stricter.

JSLint expects that:

• A var will be declared only once, and that it will be declared before it is used.

• A function will be declared before it is used.

• Parameters will not also be declared as vars.

JSLint does not expect:

• The arguments array to be declared as a var.

• That a variable will be declared in a block. This is because JavaScript blocks do
not have block scope. This can have unexpected consequences, so define all vari-
ables at the top of the function body.

== and != | 121

with Statement
The with statement was intended to provide a shorthand in accessing members in
deeply nested objects. Unfortunately, it behaves very badly when setting new mem-
bers. Never use the with statement. Use a var instead.

JSLint does not expect to see a with statement.

=
JSLint does not expect to see an assignment statement in the condition part of an if

or while statement. This is because it is more likely that:

if (a = b) {
 ...
}

was intended to be:

if (a == b) {
 ...
}

If you really intend an assignment, wrap it in another set of parentheses:

if ((a = b)) {
 ...
}

== and !=
The == and != operators do type coercion before comparing. This is bad because it
causes ' \f\r \n\t ' == 0 to be true. This can mask type errors.

When comparing to any of the following values, always use the === or !== operators,
which do not do type coercion:

0 '' undefined null false true

If you want the type coercion, then use the short form. Instead of:

(foo != 0)

just say:

(foo)

And instead of:

(foo == 0)

say:

(!foo)

122 | Appendix C: JSLint

Use of the === and !== operators is always preferred. There is a “Disallow == and !=”
(eqeqeq) option, which requires the use of === and !== in all cases.

Labels
JavaScript allows any statement to have a label, and labels have a separate namespace.
JSLint is stricter.

JSLint expects labels only on statements that interact with break: switch, while, do,
and for. JSLint expects that labels will be distinct from variables and parameters.

Unreachable Code
JSLint expects that a return, break, continue, or throw statement will be followed by
a } or case or default.

Confusing Pluses and Minuses
JSLint expects that + will not be followed by + or ++, and that - will not be followed
by - or --. A misplaced space can turn + + into ++, an error that is difficult to see. Use
parentheses to avoid confusion.

++ and --
The ++ (increment) and -- (decrement) operators have been known to contribute to
bad code by encouraging excessive trickiness. They are second only to faulty archi-
tecture in enabling viruses and other security menaces. The JSLint option plusplus

prohibits the use of these operators.

Bitwise Operators
JavaScript does not have an integer type, but it does have bitwise operators. The bit-
wise operators convert their operands from floating-point to integers and back, so
they are not nearly as efficient as they are in C or other languages. They are rarely
useful in browser applications. The similarity to the logical operators can mask some
programming errors. The bitwise option prohibits the use of these operators.

eval Is Evil
The eval function and its relatives (Function, setTimeout, and setInterval) provide
access to the JavaScript compiler. This is sometimes useful, but in most cases it indi-
cates the presence of extremely bad coding. The eval function is the most misused
feature of JavaScript.

Not Looked For | 123

void
In most C-like languages, void is a type. In JavaScript, void is a prefix operator that
always returns undefined. JSLint does not expect to see void because it is confusing
and not very useful.

Regular Expressions
Regular expressions are written in a terse and cryptic notation. JSLint looks for prob-
lems that may cause portability problems. It also attempts to resolve visual ambigu-
ities by recommending explicit escapement.

JavaScript’s syntax for regular expression literals overloads the / character. To avoid
ambiguity, JSLint expects that the character preceding a regular expression literal is a
(or = or : or , character.

Constructors and new
Constructors are functions that are designed to be used with the new prefix. The new

prefix creates a new object based on the function’s prototype, and binds that object
to the function’s implied this parameter. If you neglect to use the new prefix, no new
object will be made, and this will be bound to the global object. This is a serious
mistake.

JSLint enforces the convention that constructor functions be given names with ini-
tial uppercase letters. JSLint does not expect to see a function invocation with an ini-
tial uppercase name unless it has the new prefix. JSLint does not expect to see the new

prefix used with functions whose names do not start with initial uppercase.

JSLint does not expect to see the wrapper forms new Number, new String, or new

Boolean.

JSLint does not expect to see new Object (use {} instead).

JSLint does not expect to see new Array (use [] instead).

Not Looked For
JSLint does not do flow analysis to determine that variables are assigned values
before they are used. This is because variables are given a value (undefined) that is a
reasonable default for many applications.

JSLint does not do any kind of global analysis. It does not attempt to determine that
functions used with new are really constructors (except by enforcing capitalization
conventions), or that method names are spelled correctly.

124 | Appendix C: JSLint

HTML
JSLint is able to handle HTML text. It can inspect the JavaScript content contained
within <script>...</script> tags and event handlers. It also inspects the HTML
content, looking for problems that are known to interfere with JavaScript:

• All tag names must be in lowercase.

• All tags that can take a close tag (such as </p>) must have a close tag.

• All tags are correctly nested.

• The entity < must be used for literal <.

JSLint is less anal than the sycophantic conformity demanded by XHTML, but more
strict than the popular browsers.

JSLint also checks for the occurrence of </ in string literals. You should always write
<\/ instead. The extra backslash is ignored by the JavaScript compiler, but not by the
HTML parser. Tricks like this should not be necessary, and yet they are.

There is an option that allows use of uppercase tag names. There is also an option
that allows the use of inline HTML event handlers.

JSON
JSLint can also check that JSON data structures are well formed. If the first charac-
ter JSLint sees is { or [, then it strictly enforces the JSON rules. See Appendix E.

Report
If JSLint is able to complete its scan, it generates a function report. It lists the follow-
ing for each function:

• The line number on which it starts.

• Its name. In the case of anonymous functions, JSLint will “guess” the name.

• The parameters.

• Closure: the variables and parameters that are declared in the function that are
used by its inner functions.

• Variables: the variables declared in the function that are used only by the function.

• Unused: the variables that are declared in the function that are not used. This
may be an indication of an error.

• Outer: variables used by this function that are declared in another function.

• Global: global variables that are used by this function.

• Label: statement labels that are used by this function.

The report will also include a list of all of the member names that were used.

125

Appendix D APPENDIX D

Syntax Diagrams4

Thou map of woe, that thus dost talk in signs!

—William Shakespeare, The Tragedy of Titus Andronicus

array literal

expression[]

,

block

{ }statements

break statement

break name ;
label

case clause

case statements:expression

126 | Appendix D: Syntax Diagrams

disruptive statement

break statement

return statement

throw statement

do statement

do (expressionwhileblock) ;

escaped character

\ "
double quote

'
single quote

\ backslash

/ slash

b
backspace

f
formfeed

n new line

r carriage return

t tab

u 4 hexadecimal digits

exponent

e digit+

E -

Syntax Diagrams | 127

expression

literal

delete expression refinement

name

expression()

prefix operator expression

expressionexpression infix operator

expressionexpression? :

invocation

refinement

new expression invocation

expression statement

delete

name = expression

refinement

invocation

expression refinement

+=

-=

128 | Appendix D: Syntax Diagrams

for statement

for (expression statement ;
initialization

expression

condition

;

)

)

blockexpression statement

increment

name

variable

expression

object

in

digit

fraction

.

var statements

function body

}{ statements

name

function literal

parameters function bodyfunction

if statement

if)expression(block
then

blockelse

Syntax Diagrams | 129

infix operator

||
logical or

*

multiply

/

divide

%

modulo

+
add

-
subtract

greater or equal

>=

less or equal

<=

>
greater

<
less

equal

===
not equal

!==

&&

logical and

any digit
except 0

digit

integer
0

invocation

expression)(

,

literal

number literal

string literal

object literal

array literal

function

regexp literal

130 | Appendix D: Syntax Diagrams

letter

name

digit

_

integer fraction exponent

number literal

object literal

name expression

string

:{ }

,

name

parameters

,

)(

prefix operator

typeof
type of

+

-

!

to number

negate

logical not

Syntax Diagrams | 131

refinement

name.

[]expression

regexp choice

regexp sequence

|

regexp class

[]any Unicode character except / and \
and [and] and ^ and - and

control character

^

-

regexp class escape

regexp class escape

any special character

f

\

formfeed

n
newline

r

carriage
return

t
tab

u 4
hexadecimal

digits

not

D

S

W

d
digit

s
whitespace

w
word character

literal

b
backspace

132 | Appendix D: Syntax Diagrams

regexp escape

any special character

f

\

formfeed

n
newline

r

carriage
return

t
tab

u 4
hexadecimal

digits

B
not

D

S

W

b
word boundary

d
digit

s
whitespace

w
word character

literal

back reference

integer

regexp factor
any Unicode character except / and \ and
[and] and (and) and { and } and ? and

+ and * and | and control character

regexp escape

regexp class

regexp group

regexp choice

regexp group

(
capturing

? :
non-capturing

=
positive lookahead

!
negative lookahead

)

Syntax Diagrams | 133

regexp choice/ / g i m

regexp literal

regexp quantifier

?

*

+

{ , }

?

integer integer

regexp sequence

regexp factor regexp quantifier

return statement

return expression ;

statements

expression statement ;

do statement

for statement

while statement

switch statement

if statement

try statement

disruptive statement

name

label

:

134 | Appendix D: Syntax Diagrams

any Unicode character except
" and \ and control character

string literal

" "

escaped character

' 'any Unicode character except
' and \ and control character

escaped character

switch statement

switch)expression(

default

{ case clause

disruptive
statement

statements

}

:

throw statement

throw expression ;

var statements

name expression ;

,

=var

while statement

while block(expression)

Syntax Diagrams | 135

space

tab

line
end

any character
except line end

any character
except * and /

/ /

*

/
* /

whitespace

136

Appendix EAPPENDIX E

JSON 5

Farewell: the leisure and the fearful time
Cuts off the ceremonious vows of love
And ample interchange of sweet discourse,
Which so long sunder’d friends shoulddwell upon:
God give us leisure for these rites of love!
Once more, adieu: be valiant, and speed well!

—William Shakespeare, The Tragedy of Richard the Third

JavaScript Object Notation (JSON) is a lightweight data interchange format. It is
based on JavaScript’s object literal notation, one of JavaScript’s best parts. Even
though it is a subset of JavaScript, it is language independent. It can be used to
exchange data between programs written in all modern programming languages. It is
a text format, so it is readable by humans and machines. It is easy to implement and
easy to use. There is a lot of material about JSON at http://www.JSON.org/.

JSON Syntax
JSON has six kinds of values: objects, arrays, strings, numbers, booleans (true and
false), and the special value null. Whitespace (spaces, tabs, carriage returns, and
newline characters) may be inserted before or after any value. This can make JSON
texts easier for humans to read. Whitespace may be omitted to reduce transmission
or storage costs.

A JSON object is an unordered container of name/value pairs. A name can be any
string. A value can be any JSON value, including arrays and objects. JSON objects
can be nested to any depth, but generally it is most effective to keep them relatively
flat. Most languages have a feature that maps easily to JSON objects, such as an
object, struct, record, dictionary, hash table, property list, or associative array.

The JSON array is an ordered sequence of values. A value can be any JSON value,
including arrays and objects. Most languages have a feature that maps easily onto
JSON arrays, such as an array, vector, list, or sequence.

http://www.JSON.org/

JSON Syntax | 137

A JSON string is wrapped in double quotes. The \ character is used for escapement.
JSON allows the / character to be escaped so that JSON can be embedded in HTML
<script> tags. HTML does not allow the sequence </ except to start the </script>

tag. JSON allows <\/, which produces the same result but does not confuse HTML.

JSON numbers are like JavaScript numbers. A leading zero is not allowed on inte-
gers because some languages use that to indicate the octal. That kind of radix confu-
sion is not desirable in a data interchange format. A number can be an integer, real,
or scientific.

That’s it. That is all of JSON. JSON’s design goals were to be minimal, portable, tex-
tual, and a subset of JavaScript. The less we need to agree on in order to interoperate,
the more easily we can interoperate.

JSON value

true

false

null

JSON object

JSON array

JSON string

JSON number

JSON object

JSON string JSON value{ }:

,

JSON array

JSON value[]

,

138 | Appendix E: JSON

[
 {
 "first": "Jerome",
 "middle": "Lester",
 "last": "Howard",
 "nick-name": "Curly",
 "born": 1903,
 "died": 1952,
 "quote": "nyuk-nyuk-nyuk!"

JSON string

" "

\

"
quotation mark

\
reverse solidus

/
solidus

b
backspace

f
formfeed

n
newline

r
carriage return

t
horizontal tab

u 4 hexadecimal digits

any Unicode character except
" or \ or control character

JSON number

integer fraction exponent

digit 1-9

digit digit digit

-

0

. E e

+ -

Using JSON Securely | 139

 },
 {
 "first": "Harry",
 "middle": "Moses",
 "last": "Howard",
 "nick-name": "Moe",
 "born": 1897,
 "died": 1975,
 "quote": "Why, you!"
 },
 {
 "first": "Louis",
 "last": "Feinberg",
 "nick-name": "Larry",
 "born": 1902,
 "died": 1975,
 "quote": "I'm sorry. Moe, it was an accident!"
 }
]

Using JSON Securely
JSON is particularly easy to use in web applications because JSON is JavaScript. A
JSON text can be turned into a useful data structure with the eval function:

var myData = eval('(' + myJSONText + ')');

(The concatenation of the parentheses around the JSON text is a workaround for an
ambiguity in JavaScript’s grammar.)

The eval function has horrendous security problems, however. Is it safe to use eval

to parse a JSON text? Currently, the best technique for obtaining data from a server
in a web browser is through XMLHttpRequest. XMLHttpRequest can obtain data only
from the same server that produced the HTML. evaling text from that server is no
less secure than the original HTML. But, that assumes the server is malicious. What
if the server is simply incompetent?

An incompetent server might not do the JSON encoding correctly. If it builds JSON
texts by slapping together some strings rather than using a proper JSON encoder,
then it could unintentionally send dangerous material. If it acts as a proxy and sim-
ply passes JSON text through without determining whether it is well formed, then it
could send dangerous material again.

The danger can be avoided by using the JSON.parsemethod instead of eval (see http://
www.JSON.org/json2.js). JSON.parse will throw an exception if the text contains any-
thing dangerous. It is recommended that you always use JSON.parse instead of eval to
defend against server incompetence. It is also good practice for the day when the
browser provides safe data access to other servers.

http://www.JSON.org/json2.js
http://www.JSON.org/json2.js

140 | Appendix E: JSON

There is another danger in the interaction between external data and innerHTML. A
common Ajax pattern is for the server to send an HTML text fragment that gets
assigned to the innerHTML property of an HTML element. This is a very bad practice.
If the HTML text contains a <script> tag or its equivalent, then an evil script will
run. This again could be due to server incompetence.

What specifically is the danger? If an evil script gets to run on your page, it gets
access to all of the state and capabilities of the page. It can interact with your server,
and your server will not be able to distinguish the evil requests from legitimate
requests. The evil script has access to the global object, which gives it access to all of
the data in the application except for variables hidden in closures. It has access to the
document object, which gives it access to everything that the user sees. It also gives
the evil script the capability to dialog with the user. The browser’s location bar and
all of the anti-phishing chrome will tell the user that the dialog should be trusted.
The document object also gives the evil script access to the network, allowing it to
load more evil scripts, or to probe for sites within your firewall, or to send the secrets
it has learned to any server in the world.

This danger is a direct consequence of JavaScript’s global object, which is far and away
the worst part of JavaScript’s many bad parts. These dangers are not caused by Ajax or
JSON or XMLHttpRequest or Web 2.0 (whatever that is). These dangers have been in the
browser since the introduction of JavaScript, and will remain until JavaScript is
replaced. Be careful.

A JSON Parser
This is an implementation of a JSON parser in JavaScript:

var json_parse = function () {

// This is a function that can parse a JSON text, producing a JavaScript
// data structure. It is a simple, recursive descent parser.

// We are defining the function inside of another function to avoid creating
// global variables.

 var at, // The index of the current character
 ch, // The current character
 escapee = {
 '"': '"'
 '\\': '\\',
 '/': '/',
 b: 'b',
 f: '\f',
 n: '\n',
 r: '\r'
 t: '\t'
 },

A JSON Parser | 141

 text,

 error = function (m) {

// Call error when something is wrong.

 throw {
 name: 'SyntaxError',
 message: m,
 at: at,
 text: text
 };
 },

 next = function (c) {

// If a c parameter is provided, verify that it matches the current character.

 if (c && c !== ch) {
 error("Expected '" + c + "’ instead of '" + ch + "'");
 }

// Get the next character. When there are no more characters,
// return the empty string.

 ch = text.charAt(at);
 at += 1;
 return ch;
 },

 number = function () {

// Parse a number value.

 var number,
 string = '';

 if (ch === '-') {
 string = '-';
 next('-');
 }
 while (ch >= '0' && ch <= '9') {
 string += ch;
 next();
 }
 if (ch === '.') {
 string += '.';
 while (next() && ch >= '0' && ch <= '9') {
 string += ch;
 }
 }
 if (ch === 'e' || ch === 'E') {
 string += ch;
 next();

142 | Appendix E: JSON

 if (ch === '-' || ch === '+') {
 string += ch;
 next();
 }
 while (ch >= '0' && ch <= '9') {
 string += ch;
 next();
 }
 }
 number = +string;
 if (isNaN(number)) {
 error("Bad number");
 } else {
 return number;
 }
 },

 string = function () {

// Parse a string value.

 var hex,
 i,
 string = '',
 uffff;

// When parsing for string values, we must look for " and \ characters.

 if (ch === '"') {
 while (next()) {
 if (ch === '"') {
 next();
 return string;
 } else if (ch === '\\') {
 next();
 if (ch === 'u') {
 uffff = 0;
 for (i = 0; i < 4; i += 1) {
 hex = parseInt(next(), 16);
 if (!isFinite(hex)) {
 break;
 }
 uffff = uffff * 16 + hex;
 }
 string += String.fromCharCode(uffff);
 } else if (typeof escapee[ch] === ’string’) {
 string += escapee[ch];
 } else {
 break;
 }
 } else {
 string += ch;
 }
 }

A JSON Parser | 143

 }
 error("Bad string");
 },

 white = function () {

// Skip whitespace.

 while (ch && ch <= ' ') {
 next();
 }
 },

 word = function () {

// true, false, or null.

 switch (ch) {
 case ’t’:
 next('t');
 next('r');
 next('u');
 next('e');
 return true;
 case 'f':
 next('f');
 next('a');
 next('l');
 next('s');
 next('e');
 return false;
 case 'n':
 next('n');
 next('u');
 next('l');
 next('l');
 return null;
 }
 error("Unexpected '" + ch + "'");
 },

 value, // Place holder for the value function.

 array = function () {

// Parse an array value.

 var array = [];

 if (ch === '[') {
 next('[');
 white();
 if (ch === ']') {
 next(']');
 return array; // empty array

144 | Appendix E: JSON

 }
 while (ch) {
 array.push(value());
 white();
 if (ch === ']') {
 next(']');
 return array;
 }
 next(',');
 white();
 }
 }
 error("Bad array");
 },

 object = function () {

// Parse an object value.

 var key,
 object = {};

 if (ch === '{') {
 next('{');
 white();
 if (ch === '}') {
 next('}');
 return object; // empty object
 }
 while (ch) {
 key = string();
 white();
 next(':');
 object[key] = value();
 white();
 if (ch === '}') {
 next('}');
 return object;
 }
 next(',');
 white();
 }
 }
 error("Bad object");
 };

 value = function () {

// Parse a JSON value. It could be an object, an array, a string, a number,
// or a word.

 white();
 switch (ch) {
 case '{':
 return object();

A JSON Parser | 145

 case '[':
 return array();
 case '"':
 return string();
 case '-':
 return number();
 default:
 return ch >= '0' && ch <= '9' ? number() : word();
 }
 };

// Return the json_parse function. It will have access to all of the above
// functions and variables.

 return function (source, reviver) {
 var result;

 text = source;
 at = 0;
 ch = ' ';
 result = value();
 white();
 if (ch) {
 error("Syntax error");
 }

// If there is a reviver function, we recursively walk the new structure,
// passing each name/value pair to the reviver function for possible
// transformation, starting with a temporary boot object that holds the result
// in an empty key. If there is not a reviver function, we simply return the
// result.

 return typeof reviver === 'function' ?
 function walk(holder, key) {
 var k, v, value = holder[key];
 if (value && typeof value === 'object') {
 for (k in value) {
 if (Object.hasOwnProperty.call(value, k)) {
 v = walk(value, k);
 if (v !== undefined) {
 value[k] = v;
 } else {
 delete value[k];
 }
 }
 }
 }
 return reviver.call(holder, key, value);
 }({'': result}, '') : result;

 };
}();

147

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
-- decrement operator, 112, 118, 122
- negation operator, 122
-- operator, confusing pluses and

minuses, 122
- subtraction operator, 122
!= operator, 109, 121
!== operator, 109
& and, 112
&& operator, 16
+ operator, 16, 104

confusing pluses and minuses, 122
++ increment operator, 112, 118, 122

confusing pluses and minuses, 122
+= operator, 15
<< left shift, 112
= operator, 15, 121
== operator, 106, 109, 121
=== operator, 15, 106, 109
>> signed right shift, 112
>>> unsigned right shift, 112
? ternary operator, 15
[] postfix subscript operator, 59
\ escape character, 8
^ xor, 112
| or, 112
|| operator, 17, 21
~ not, 112
⁄ operator, 16
⁄* *⁄ form of block comments, 6
⁄⁄ comments, 6

A
adsafe option (JSLint), 117
Apply Invocation Pattern, 30
arguments, 31
arguments array, 106
array literals, 18
array.concat() method, 78
array.join() method, 78
array.pop() method, 79
Array.prototype, 62
array.push() method, 79
array.reverse() method, 79
array.shift() method, 79
array.slice() method, 80
array.sort() method, 80–82
array.splice() method, 82–83
array.unshift() method, 83
arrays, 58–64, 105

appending new elements, 60
arrays of arrays, 63
cells of an empty matrix, 64
confusion, 61
delete operator, 60
dimensions, 63
elements of, 59
enumeration, 60
length property, 59
literals, 58
methods, 62
Object.create method, 63
splice method, 60
typeof operator, 61
undefined value, 63

assignment, 121

148 | Index

assignment statement, 121
augmenting types, 32

B
beautiful features, 98–100
bitwise operators, 112, 122
bitwise option (JSLint), 117
block comments, 6, 96
block scope, 36, 99
blockless statements, 111
blocks, 10, 119
booleans, 20
braces, 96
break statement, 12, 14, 122
browser option (JSLint), 117
built-in value, 15

C
callbacks, 40
cap option (JSLint), 117
cascades, 42
case clause, 12
casting, 46
catch clause, 13
character type, 8
closure, 37–39
code quality tool (see JSLint)
comma operator, 119
comments, 6, 96
concatenation, 104
constructor functions, 123

hazards, 49
new prefix, forgetting to include, 49

Constructor Invocation Pattern, 29
constructor property, 47
constructors, 30

defining, 47
continue statement, 111, 122
curly braces, 10
curry method, 43

D
debug option (JSLint), 117
deentityify method, 40
delegation, 23
delete operator, 24, 60
differential inheritance, 51
do statement, 10, 13
Document Object Model (DOM), 34
durable object, 55

E
ECMAScript Language Specification, 115
empty string, 12
enumeration, 24
eqeqeq option (JSLint), 117
equality operators, 109
escape character, 8
escape sequences, 9
eval function, 110, 122

security problems, 139
evil option (JSLint), 117
exceptions, 32
executable statements, 10
expression statements, 120
expressions, 15–17

? ternary operator, 15
built-in value, 15
infix operator, 15
invocation, 15
literal value, 15
operator precedence, 16
preceded by prefix operator, 15
refinement, 15
refinement expression preceded by

delete, 15
variables, 15
wrapped in parentheses, 15

F
factorial, 35, 45
Fibonacci numbers, 44
floating-point numbers, 104
for in statement, 13, 120

objects, 24
for statements, 10, 12, 119
forin option (JSLint), 117
fragment option (JSLint), 117
Function constructor, 47, 111
function invocation, 95
Function Invocation Pattern, 28
function object, when object is created, 47
function statement versus function

expression, 113
function.apply() method, 84
functional pattern (inheritance), 52–55
functions, 19, 26–45, 116

arguments, 31
augmenting types, 32
callbacks, 40

Index | 149

cascades, 42
closure, 37–39
curry method, 43
exceptions, 32
general pattern of a module, 41
invocation, 27–30

Apply Invocation Pattern, 30
Constructor Invocation Pattern, 29
Function Invocation Pattern, 28
Method Invocation Pattern, 28
new prefix, 29

invocation operator, 28
invoked with constructor invocation, 47
literals, 27
memoization, 44
modules, 40–42
objects, 26
recursive, 34–36

Document Object Model (DOM), 34
Fibonacci numbers, 44
tail recursion optimization, 35
Towers of Hanoi puzzle, 34

return statement, 31
scope, 36
that produce objects, 52
var statements, 10

G
global declarations, 116
global object, 140
global variables, 25, 97, 101, 116
glovar option (JSLint), 117
good style, 95
grammar, 5–19

expressions (see expressions)
functions, 19
literals, 17
names, 6
numbers, 7

methods, 8
negative, 8

object literals, 17
rules for interpreting diagrams, 5
statements (see statements)
strings, 8

immutability, 9
length property, 9

whitespace, 5

H
hasOwnProperty method, 23, 107, 108
HTML

<script> tags (JSON), 137
innerHTML property, 140
JSLint, 124

I
if statements, 10, 119
implied global, 102
Infinity, 7, 8, 15
inheritance, 3, 46–57

differential, 51
functional pattern, 52–55
object specifiers, 50
parts, 55–57
prototypal pattern (inheritance), 50
pseudoclassical pattern, 47–49, 54

inherits method, 49
innerHTML property, 140
instances, creating, 48
invocation operator, 17, 28
invocations, 95

J
JavaScript

analyzing, 3–4
standard, 4
why use, 2

JavaScript Object Notation (see JSON)
JSLint, 4, 115–124

-- decrement operator, 122
confusing pluses and minuses, 122

- operator, confusing pluses and
minuses, 122

!= operator, 121
+ operator, confusing pluses and

minuses, 122
++ increment operator, 122

confusing pluses and minuses, 122
= operator, 121
== operator, 121
assignment statement, 121
bitwise operators, 122
blocks, 119
break statement, 122
comma operator, 119
constructor functions, 123

150 | Index

JSLint (continued)
continue statement, 122
eval function, 122
expression statements, 120
for in statement, 120
for statements, 119
function report, 124
functions, 116
global declarations, 116
global variables, 116
HTML, 124
if statements, 119
JSON, 124
labels, 122
line breaking, 118
members, 116
new prefix, 123
options, 117
regular expressions, 123
return statement, 122
semicolons, 118
switch statements, 120
throw statement, 122
var statements, 120
variables, 116
void, 123
where to find, 115
with statement, 121

JSON, 124
JSON (JavaScript Object Notation), 3,

136–140
⁄ character, 137
array, 136
eval function, 139
HTML <script> tags, 137
innerHTML property, 140
JSLint, 124
numbers, 137
object, 136
string, 137
syntax, 136–139
text example, 138
using securely, 139

JSON.parse method, 139

K
K&R style, 96
Kleene, Stephen, 65

L
labeled statement, 14
labels, 122
language, structure (see grammar)
laxbreak option (JSLint), 117
length property (arrays), 59
line breaking, 118
line comments, 96
line-ending comments, 6
looping statement, 12, 14
loosely typed language, 46

M
Math object, 8
memoization, 44
message property, 14
Method Invocation Pattern, 28
method method, 49
methods, 78–93

array.concat(), 78
array.join(), 78
array.pop(), 79
array.push(), 79
array.reverse(), 79
array.shift(), 79
array.slice(), 80
array.sort(), 80–82
array.splice(), 82–83
array.unshift (), 83
arrays, 62
function.apply(), 84
number.toExponential(), 84
number.toFixed(), 85
number.toPrecision(), 85
number.toString(), 85
object.hasOwnProperty(), 86
regexp.exec(), 65, 86
regexp.test(), 65, 88
string.charAt(), 88
string.charCodeAt(), 88
string.concat(), 88
String.fromCharCode(), 93
string.indexOf(), 88
string.lastIndexOf(), 89
string.localeCompare(), 89
string.match(), 65, 89
string.replace(), 65, 90
string.search(), 65, 91
string.slice(), 91
string.split(), 65, 91

Index | 151

string.substring(), 92
string.toLocaleLowerCase(), 92
string.toLocaleUpperCase(), 92
string.toLowerCase(), 92
string.toUpperCase(), 93
that work with regular expressions, 65

modules, 40–42
general pattern, 41

multiple statements, 95
my object, 53

N
name property, 14
names, 6
NaN (not a number), 7, 8, 12, 15, 105
negative numbers, 8
new operator, 15, 47, 114, 123

forgetting to include, 49
functions, 29

newline, 73
nomen option (JSLint), 117
null, 11, 15, 20, 106
number literal, 8
number.toExponential() method, 84
number.toFixed() method, 85
number.toPrecision() method, 85
number.toString() method, 85
numbers, 7, 20

methods, 8
negative, 8

numbers object, 59

O
object literals, 17, 59
object specifiers, 50
Object.create method, 53, 63
object.hasOwnProperty() method, 86
Object.prototype, 62
objects, 20–25, 107

|| operator, 21
creating new, 22
defined, 20
delegation, 23
delete operator, 24
durable, 55
enumeration, 24
for in statement, 24
functions, 26
global variables, 25
hasOwnProperty method, 23

literals, 20
properties, 21
property on prototype chain, 23
prototype, 22

link, 23
reference, 22
reflection, 23
retrieving values, 21
undefined, 21, 23
updating values, 22

on option (JSLint), 117
operator precedence, 16

P
parseInt function, 104
passfail option (JSLint), 117
pi as simple constant, 99
plusplus option (JSLint), 117
Pratt, Vaughn, 98
private methods, 53
privileged methods, 53
problematic features of JavaScript, 101–114

+ operator, 104
arrays, 105
bitwise operators, 112
blockless statements, 111
continue statement, 111
equality operators, 109
eval function, 110
falsy values, 106
floating-point numbers, 104
function statement versus function

expression, 113
global variables, 101
hasOwnProperty method, 107
increment and decrement operators, 112
NaN (not a number), 105
new operator, 114
objects, 107
parseInt function, 104
reserved words, 103
scope, 102
semicolons, 102
single statement form, 111
string argument form, 111
switch statement, 111
typed wrappers, 114
typeof operator, 103
Unicode, 103
void, 114
with statement, 110

152 | Index

prototypal inheritance, 3
prototypal inheritance language, 29
prototypal pattern, 50
prototype property, 47
prototypes of basic types, 33
pseudoclass, creating, 48
pseudoclassical pattern (inheritance), 47–49,

54
punctuation characters or operators, 118

R
railroad diagrams, 67
recursion, 34–36

Document Object Model (DOM), 34
Fibonacci numbers, 44
tail recursion optimization, 35
Towers of Hanoi puzzle, 34

reflection, 23
RegExp objects, properties, 72
regexp.exec() method, 65, 86
regexp.test() method, 65, 88
regular expressions, 65–77, 123

$ character, 69
(...), 68
(?! prefix, 75
(?: prefix, 75
(?:...)?, 70
(?= prefix, 75
? character, 67
\1 character, 74
\b character, 73, 74
\d, 70
\D character, 73
\d character, 73
\f character, 73
\n character, 73
\r character, 73
\S character, 73
\s character, 73
\t character, 73
\u character, 73
\W character, 73
\w character, 73
^ character, 67, 69
⁄ character, 68
backslash character, 73–74
capturing group, 68, 74
carriage return character, 73
construction, 70–72

elements, 72–77
regexp choice, 72
regexp class, 75
regexp class escape, 76
regexp escape, 73–74
regexp factor, 73, 76
regexp group, 74
regexp quantifier, 76
regexp sequence, 72

flags, 71
formfeed character, 73
matching digits, 70
matching URLs, 66–70
methods that work with, 65
negative lookahead group, 75
newline character, 73
noncapturing group, 67, 75
optional group, 68
optional noncapturing group, 70
positive lookahead group, 75
railroad diagrams, 67
repeat zero or one time, 68
simple letter class, 74
sloppy, 68
tab character, 73
Unicode characters, 73

reserved words, 7, 103
return statement, 14, 31, 122
rhino option (JSLint), 117

S
says method, 53
scope, 10, 36, 102
semicolons, 102, 118
seqer object, 42
setInterval function, 111
setTimeout function, 111
Simplified JavaScript, 98
single statement form, 111
spec object, 52, 53
splice method (arrays), 60
statements, 10–15

blocks, 10
break, 12, 14
case clause, 12
catch clause, 13
do, 10, 13
executable, 10
execution order, 10

Index | 153

for, 10, 12
for in, 13
if, 10
labeled, 14
loop, 14
looping, 12
return, 14
switch, 10, 12, 14
then block, 10
throw, 14
try, 13
var, functions, 10
while, 10, 12

string argument form, 111
string literal, 8
String, augmenting with deentityify

method, 40
string.charAt() method, 88
string.charCodeAt() method, 88
string.concat() method, 88
String.fromCharCode() method, 93
string.indexOf() method, 88
string.lastIndexOf() method, 89
string.localeCompare() method, 89
string.match() method, 65, 89
string.replace() method, 65, 90
string.search() method, 65, 91
string.slice() method, 91
string.split() method, 65, 91
string.substring() method, 92
string.toLocaleLowerCase() method, 92
string.toLocaleUpperCase() method, 92
string.toLowerCase() method, 92
string.toUpperCase() method, 93
strings, 8, 20

empty, 12
immutability, 9
length property, 9

structure of language (see grammar)
structured statements, 95
style, 94–97

block comments, 96
braces, 96
comments, 96
global variables, 97
good, 95
invocations, 95
K&R, 96
line comments, 96

multiple statements, 95
structured statements, 95
switch cases, 97

super methods, 49
superior method, 54
switch statement, 10, 12, 14, 97, 111, 120
syntax checker (see JSLint)
syntax diagrams, 125–135

T
tail recursion optimization, 35
testing environment, 4
then block, 10
this keyword, 49
Thompson, Ken, 65
throw statement, 14, 122
Top Down Operator Precedence parser, 98
Towers of Hanoi puzzle, 34
trim method, 33
try statement, 13
typed wrappers, 114
TypeError exception, 21
typeof operator, 16, 61, 103, 106
types, 20

prototypes of, 33

U
undef option (JSLint), 117
undefined, 7, 12, 15, 20, 21, 23, 28, 31, 63,

106
Unicode, 103

V
var statements, 120

functions, 10
variables, 15, 116
verifier (see JSLint)
void operator, 114, 123

W
while statement, 10, 12
white option (JSLint), 117
whitespace, 5
widget option (JSLint), 117
Wilson, Greg, 98
with statement, 110, 121
wrappers, typed, 114

About the Author

Douglas Crockford is a senior JavaScript architect at Yahoo! who is well known for
discovering and popularizing the JSON (JavaScript Object Notation) format. He is
the world’s foremost living authority on JavaScript. He speaks regularly at confer-
ences about advanced web technology, and he also serves on the ECMAScript
committee.

Colophon

The animal on the cover of JavaScript: The Good Parts is a Plain Tiger butterfly
(Danaus chrysippus). Outside of Asia, the insect is also known as the African
Monarch. It is a medium-size butterfly characterized by bright orange wings with six
black spots and alternating black-and-white stripes.

Its striking looks have been noted for millennia by scientists and artists. The writer
Vladimir Nabokov—who was also a noted lepidopterist—had admiring words for
the butterfly in an otherwise scathing New York Times book review of Alice Ford’s
Audubon’s Butterflies, Moths, and Other Studies (The Studio Publications). In the
book, Ford labels drawings made previous to and during Audubon’s time in the 19th
century as “scientifi-cally [sic] unsophisticated.”

In response to Ford, Nabokov writes, “The unsophistication is all her own. She
might have looked up John Abbot’s prodigious representations of North American
lepidoptera, 1797, or the splendid plates of 18th- and early-19th-century German
lepidopterists. She might have traveled back some 33 centuries to the times of Tuth-
mosis IV or Amenophis III and, instead of the obvious scarab, found there frescoes
with a marvelous Egyptian butterfly (subtly combining the pattern of our Painted
Lady and the body of an African ally of the Monarch).”

While the Plain Tiger’s beauty is part of its charm, its looks can also be deadly.
During its larval stages, the butterfly ingests alkaloids that are poisonous to birds—
its main predator—which are often attracted to the insect’s markings. After ingesting
the Plain Tiger, a bird will vomit repeatedly—occasionally fatally. If the bird lives, it
will let other birds know to avoid the insect, which can also be recognized by its
leisurely, meandering pattern of flying low to the earth.

The cover image is from Dover’s Animals. The cover font is Adobe ITC Garamond.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and
the code font is LucasFont’s TheSans Mono Condensed.

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Good Parts
	Why JavaScript?
	Analyzing JavaScript
	A Simple Testing Ground

	Grammar
	Whitespace
	Names
	Numbers
	Strings
	Statements
	Expressions
	Literals
	Functions

	Objects
	Object Literals
	Retrieval
	Update
	Reference
	Prototype
	Reflection
	Enumeration
	Delete
	Global Abatement

	Functions
	Function Objects
	Function Literal
	Invocation
	The Method Invocation Pattern
	The Function Invocation Pattern
	The Constructor Invocation Pattern
	The Apply Invocation Pattern

	Arguments
	Return
	Exceptions
	Augmenting Types
	Recursion
	Scope
	Closure
	Callbacks
	Module
	Cascade
	Curry
	Memoization

	Inheritance
	Pseudoclassical
	Object Specifiers
	Prototypal
	Functional
	Parts

	Arrays
	Array Literals
	Length
	Delete
	Enumeration
	Confusion
	Methods
	Dimensions

	Regular Expressions
	An Example
	Construction
	Elements
	Regexp Choice
	Regexp Sequence
	Regexp Factor
	Regexp Escape
	Regexp Group
	Regexp Class
	Regexp Class Escape
	Regexp Quantifier

	Methods
	Array
	Function
	Number
	Object
	RegExp
	String

	Style
	Beautiful Features
	Awful Parts
	Global Variables
	Scope
	Semicolon Insertion
	Reserved Words
	Unicode
	typeof
	parseInt
	+
	Floating Point
	NaN
	Phony Arrays
	Falsy Values
	hasOwnProperty
	Object

	Bad Parts
	==
	with Statement
	eval
	continue Statement
	switch Fall Through
	Block-less Statements
	++ --
	Bitwise Operators
	The function Statement Versus the function Expression
	Typed Wrappers
	new
	void

	JSLint
	Undefined Variables and Functions
	Members
	Options
	Semicolon
	Line Breaking
	Comma
	Required Blocks
	Forbidden Blocks
	Expression Statements
	for in Statement
	switch Statement
	var Statement
	with Statement
	=
	== and !=
	Labels
	Unreachable Code
	Confusing Pluses and Minuses
	++ and --
	Bitwise Operators
	eval Is Evil
	void
	Regular Expressions
	Constructors and new
	Not Looked For
	HTML
	JSON
	Report

	Syntax Diagrams
	JSON
	JSON Syntax
	Using JSON Securely
	A JSON Parser

	Index

