

PHP
IN A NUTSHELL

Other resources from O’Reilly

Related titles Essential PHP Security

Learning PHP 5

MySQL in a Nutshell

PHP Cookbook

PHP Hacks

PHPUnit Pocket Guide

Programming PHP

Upgrading to PHP 5

Web Database Application
with PHP and MySQL

oreilly.com oreilly.com is more than a complete catalog of O'Reilly
books. You'll also find links to news, events, articles, we-
blogs, sample chapters, and code examples.

Conferences O’Reilly brings diverse innovators together to nurture the
ideas that spark revolutionary industries. We specialize in
documenting the latest tools and systems, translating the
innovator’s knowledge into useful skills for those in the
trenches. Visit conferences.oreilly.com for our upcoming
events.

Safari Bookshelf (safari.oreilly.com) is the premier online
reference library for programmers and IT professionals.
Conduct searches across more than 1,000 books. Sub-
scribers can zero in on answers to time-critical questions
in a matter of seconds. Read the books on your Book-
shelf from cover to cover or simply flip to the page you
need. Try it today for free.

PHP
IN A NUTSHELL

Paul Hudson

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

PHP in a Nutshell
by Paul Hudson

Copyright © 2006 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact
our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Allison Randal
Tatiana Apandi

Production Editor: Adam Witwer

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Printing History:

October 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. PHP in a Nutshell, the image of a cuckoo, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-10067-1

ISBN-13: 978-0-596-10067-4

[M] [02/07]

v

Table of Contents

Preface . xi

1. Introduction to PHP . 1
PHP History 1

Advantages of PHP 2

Getting Help 4

Getting Certified 7

PHP Resources 7

2. Installing PHP . 11
Installing on Windows 11

Installing on Unix 14

Testing Your Configuration 17

System Configuration 17

3. The PHP Interpreter . 19
Running PHP Scripts 19

Extending PHP 20

PEAR 21

Abnormal Script Termination 22

4. The PHP Language . 23
The Basics of PHP 23

Variables 24

Whitespace 26

Heredoc 26

vi | Table of Contents

Brief Introduction to Variable Types 27

Code Blocks 27

Opening and Closing Code Islands 27

Comments 28

Conditional Statements 28

Case Switching 30

Loops 31

Infinite Loops 34

Special Loop Keywords 34

Loops Within Loops 35

Mixed-Mode Processing 37

Including Other Files 37

Functions 39

5. Variables and Constants . 47
Types of Data 47

True or False 48

Strings 48

Integers 49

Floats 50

Automatic Type Conversion 51

Checking Whether a Variable Is Set: isset() 52

Variable Scope 52

Variable Variables 53

Superglobals 54

Using $_ENV and $_SERVER 55

References 57

Constants 58

Arrays 60

6. Operators . 79
Arithmetic Operators 79

Assignment Operators 80

String Operators 81

Bitwise Operators 81

Comparison Operators 82

Incrementing and Decrementing Operators 83

Logical Operators 84

Some Operator Examples 85

The Ternary Operator 86

The Execution Operator 86

Operator Precedence and Associativity 87

Table of Contents | vii

7. Function Reference . 89
Undocumented Functions 90

Handling Non-English Characters 90

8. Object-Oriented PHP . 128
Conceptual Overview 128

Classes 129

Objects 131

Properties 132

The ‘this’ Variable 133

Objects Within Objects 133

Access Control Modifiers 134

Object Type Information 140

Class Type Hints 141

Constructors and Destructors 142

Copying Objects 145

Comparing Objects with == and === 146

Saving Objects 147

Magic Methods 148

Static Class Methods and Properties 152

Helpful Utility Functions 153

Interfaces 153

Dereferencing Object Return Values 156

9. HTML Forms . 157
What Does It Mean to Be Dynamic? 158

Designing a Form 158

Handling Data 162

Splitting Forms Across Pages 166

Validating Input 166

Form Design 169

Summary 169

10. Cookies and Sessions . 170
Cookies Versus Sessions 170

Using Cookies 171

Using Sessions 173

Storing Complex Data Types 179

11. Output Buffering . 181
Why Use Output Buffering? 181

Getting Started 182

viii | Table of Contents

Reusing Buffers 182

Stacking Buffers 182

Flushing Stacked Buffers 183

Reading Buffers 184

Other OB Functions 185

Flushing Output 185

Compressing Output 187

URL Rewriting 188

12. Security . 190
Security Tips 190

Encryption 192

13. Files . 195
Reading Files 195

Creating and Changing Files 199

Moving, Copying, and Deleting Files 200

Other File Functions 202

Checking Whether a File Exists 203

Retrieving File Time Information 203

Dissecting Filename Information 204

Handling File Uploads 205

Locking Files with flock() 206

Reading File Permissions and Status 208

Changing File Permissions and Ownership 209

Working with Links 210

Working with Directories 210

Remote Files 212

File Checksums 213

Parsing a Configuration File 213

14. Databases . 216
Using MySQL with PHP 216

PEAR::DB 223

SQLite 228

Persistent Connections 232

MySQL Improved 233

15. Regular Expressions . 234
Basic Regexps with preg_match() and preg_match_all() 234

Regexp Character Classes 235

Regexp Special Characters 236

Table of Contents | ix

Words and Whitespace Regexps 239

Storing Matched Strings 240

Regular Expression Replacements 240

Regular Expression Syntax Examples 242

The Regular Expressions Coach 243

16. Manipulating Images . 244
Getting Started 244

Choosing a Format 246

Getting Arty 247

More Shapes 248

Complex Shapes 250

Outputting Text 251

Loading Existing Images 254

Color and Image Fills 255

Adding Transparency 257

Using Brushes 258

Basic Image Copying 260

Scaling and Rotating 262

Points and Lines 265

Special Effects Using imagefilter() 267

Interlacing an Image 269

Getting an Image’s MIME Type 269

17. Creating PDFs . 271
Getting Started 271

Adding More Pages and More Style 273

Adding Images 274

PDF Special Effects 275

Adding Document Data 275

18. Creating Flash . 277
A Simple Movie 277

Flash Text 279

Actions 280

Animation 282

19. XML & XSLT . 284
SimpleXML 284

Transforming XML Using XSLT 290

x | Table of Contents

20. Network Programming . 293
Sockets 293

HTTP 297

Sending Mail 300

Curl 306

21. Distributing Your Code . 313
Cross-Platform Code 1: Loading Extensions 313

Cross-Platform Code 2: Using Extensions 314

Cross-Platform Code 3: Path and Line Separators 314

Cross-Platform Code 4: Coping with php.ini Differences 315

Cross-Platform Code 5: Checking the PHP Version
with phpversion() and version_compare() 316

22. Debugging . 317
The Most Basic Debugging Technique 317

Making Assertions 318

Triggering Your Own Errors 320

Testing with php_check_syntax() 321

Source Highlighting 321

Handling MySQL Errors 322

Exception Handling 323

Backtracing Your Code 325

Custom Error Handlers 327

Custom Exception Handlers 330

Using @ to Disable Errors 330

phpinfo() 331

Output Style 331

23. Performance . 335
Write Your Code Sensibly 335

Use the Zend Optimizer 336

Use a PHP Code Cache 336

Compress Your Output 336

Don’t Use CGI 337

Debug Your Code 337

Use Persistent Connections 337

Compile Right 337

Index . 339

xi

Preface

Now installed on more than 20 million Internet domains around the world, PHP
is the undisputed king of web programming languages. Its users cite many reasons
for deployment, such as database connectivity, powerful extensions, and rich
object-orientation, but nearly everyone would agree that, above all, PHP is just
plain easy to use. This is the feature that continues to drive the language forward,
attracting new users and enabling existing programmers to do more with their
skills.

The release of PHP 5 has introduced many new features to the language, making
this an exciting time for the language. Many people who had not previously
considered PHP are now finding it a good fit for their needs—the new object-
orientation system is a big plus, for example. More importantly, many people who
had a large investment in PHP 4 are trying to migrate their code to the new release
with minimum breakage. Fortunately for all of us, it’s not too hard to retain back-
ward compatibility, and it’s very easy to take advantage of the many new features.

So, welcome to PHP. I think you’ll find it a fun, interesting, and flexible language
that might finally disprove the old saying, “Cheap, good, on time: choose any
two.”

Audience
This book has been designed to be of maximum use for existing PHP developers
looking for a complete, compact, and portable reference guide to the language. If
this is your first time using PHP, but you have experience using similar languages
such as Perl, Python, or C, then you should be able to treat the book as a learning
guide.

As any PHP programmer will tell you, the online PHP manual is of a very high
standard. The aim of this book is not to compete with or replace the online
manual. Although this book is designed to stand alone, you will find the topic
grouping, tips, and examples here complement the online guide.

xii | Preface

Assumptions
This book assumes you are familiar with variables, loops, and other basic
programming concepts. Although this material is explained to a degree, it is
recommended that you at least have some experience using PHP or a similar
programming language.

Contents of This Book
Chapter 1, Introduction to PHP, covers the general characteristics of the PHP
language and its implementations, and discusses where to get help and
information.

Chapter 2, Installing PHP, explains how to obtain and install PHP.

Chapter 3, The PHP Interpreter, covers the PHP interpreter and its use for running
PHP programs on a web server or on the command line.

Chapter 4, The PHP Language, covers PHP syntax, variables, control structures,
includes, and user-defined functions.

Chapter 5, Variables and Constants, examines the different variable types in PHP.

Chapter 6, Operators, outlines the basic operators in PHP.

Chapter 7, Function Reference, is a reference chapter for the most commonly used
built-in functions of PHP.

Chapter 8, Object-Oriented PHP, explains object-oriented programming in PHP.

Chapter 9, HTML Forms, is an introduction to creating HTML forms and
processing them in PHP.

Chapter 10, Cookies and Sessions, explains the tools for using cookies and sessions
in PHP.

Chapter 11, Output Buffering, describes how to buffer your output, and when you
would want to do so.

Chapter 12, Security, covers a few essential security considerations when running
PHP websites.

Chapter 13, Files, is a reference to the functions for interacting with files.

Chapter 14, Databases, gives a brief introduction to accessing MySQL and SQLite
databases in PHP, and to PEAR::DB, which provides a consistent interface to many
different database packages.

Chapter 15, Regular Expressions, covers some powerful ways to process strings,
including matching, extracting substrings, and replacing text.

Chapter 16, Manipulating Images, shows how to create and alter images with the
GD library that ships with PHP.

Chapter 17, Creating PDFs, shows how to create PDFs in PHP using PDFlib.

Preface | xiii

Chapter 18, Creating Flash, shows how to generate Flash movies in PHP using the
Ming library.

Chapter 19, XML & XSLT, covers modules for processing XML with PHP.

Chapter 20, Network Programming, explains socket programming, custom HTTP
headers, HTTP authentication, sending email, and sending data over FTP and
HTTP with Curl.

Chapter 21, Distributing Your Code, describes a few considerations when you
prepare to distribute your code to other users.

Chapter 22, Debugging, is about the tools available to help you track down errors
in your PHP code.

Chapter 23, Performance, offers a few tips on getting the most out of PHP.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelera-
tors (such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters,
values, objects, events, event handlers, XML tags, HTML tags, macros, the
contents of files, or the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code
in this book in your programs and documentation. You do not need to contact us

xiv | Preface

for permission unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “PHP in a Nutshell by Paul
Hudson. Copyright 2006 O’Reilly Media, Inc., 0-596-10067-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Enabled
When you see a Safari® enabled icon on the cover of your favorite
technology book, that means the book is available online through
the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual
library that lets you easily search thousands of top tech books, cut and paste code
samples, download chapters, and find quick answers when you need the most
accurate, current information. Try it for free at http://safari.oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/phpnut

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Preface | xv

Acknowledgments
Like most authors, I have many people to thank for helping with the production
of this book. First and foremost is Josette Garcia—someone who is a familiar face
at UK Free Software events, but otherwise works tirelessly in the back rooms at
O’Reilly to make the magic happen. Without her efforts, this book would still be
on the drawing board—je vous remercie de tout coeur.

To Allison Randal, I owe an overwhelming debt of gratitude. She has devoted an
immense amount of time and energy to the production of this book, and I feel
blessed to have had the chance to work with someone so talented—and patient!

A number of people have contributed corrections, improvements, and comments
to this book, and I want to thank them for taking the time to help. Six people
stand out particularly: Peter MacIntyre, Tom McTighe, Ian Morse, Adam Tracht-
enberg, and Zak Greant all added a lot of extra quality and value to the text, and
Sean Burke was, well, Sean Burke. When Sean was assigned to work on this book,
I thought, “That’s nice, he seems like an interesting guy.” Sean is more than an
interesting guy: he’s a harsh (but fair!) critic, a language pedant just the way I like,
and a maddening perfectionist without whom this book ought to have been enti-
tled PHP in a Coconut Shell. I’m lucky to have had Sean, for without him, this
book would be only a shadow of what it is.

Finally, I want to thank my wife for her love and support during the times I was
locked away with a computer, my parents for the love and support they gave me
while I was learning the trade as a youngster, and God, for His love and support,
period.

1

1
Introduction to PHP

PHP hasn’t always been around, so what came before it? More importantly, why
was PHP created in the first place? In this chapter, we’ll look at the history behind
PHP, where it has advantages over other programming languages, and where you
can get help to further your PHP programming career.

PHP History
Contrary to what some might have you believe, there was a lot of activity on the
web development front before PHP was invented. Prior to its invention, code for
server-side scripting was usually written in C or Perl, both of which are general
programming languages that were adapted to use on the Internet.

The original PHP release was created by Rasmus Lerdorf in June 1995, to make
various common web programming tasks easier and less repetitive. The name
originally stood for “Personal Home Page,” but has since become a recursive
acronym, standing for “PHP: Hypertext Preprocessor.” The goal of that release
was to minimize the amount of code required to achieve results, which led to PHP
being HTML-centric—that is, PHP code was embedded inside HTML.

The second PHP release, known as PHP/FI 2.0, was the first to achieve wide-
spread popularity, and despite the parsing inconsistencies, it managed to attract a
few converts.

The release of PHP 3 was largely driven by Zeev Suraski and Andi Gutmans, who
rewrote PHP from the ground up and removed the parsing problems. PHP 3 also
made it much easier for others to extend the language—particularly keen devel-
opers could now easily write their own modules for the language, adding
functionality at the core level.

With PHP 3, the language had also gained limited object-oriented support, and
this added extra fuel to the fire of PHP’s growth. By the time PHP 3 was replaced
in the middle of 2000, it was installed on over 2.5 million web site domains, as

2 | Chapter 1: Introduction to PHP

compared to 250,000 just 18 months before. Its successor, PHP 4, contained
numerous major changes, including the switch to what is called the Zend Engine.

Zend is a company founded by Zeev Suraski and Andi Gutmans to promote PHP
in the corporate environment, and the engine they produced brought with it
numerous advantages. By taking over the core of PHP, the Zend Engine intro-
duced reference counting to ensure there were no memory leaks; introduced web
server abstraction so that PHP ran on Apache 1.3.x, Apache 2, Microsoft’s IIS,
Zeus, AOLServer, and more; and also changed the way that PHP code was
executed so that code was read once, converted to an internal format, then
executed. This new execution paradigm allowed the use of external code caches,
also known as PHP accelerators, that further boost performance.

Although not as vast as the jump from PHP 3 to PHP 4, the move from PHP 4 to
PHP 5 is still a big one. Along with hugely improved object orientation, the addi-
tion of try/catch error handling, and exceptions, there are two major new
extensions: SimpleXML, a fast and easy-to-learn way to interact with XML docu-
ments, and SQLite, a new flat-file database API that eases the burden of deploying
simple database solutions.

Advantages of PHP
If you ask a group of PHP programmers why they use PHP, you will hear a range
of answers—“it’s fast,” “it’s easy to use,” and more. This section briefly summa-
rizes the main reasons for using PHP as opposed to a competing language.

The HTML Relationship

When used to output text, PHP is embedded inside the text in code islands, in
contrast to languages like Perl, where text is embedded inside the Perl script. The
most common way to open and close PHP code blocks is by <?php and ?>. Here is
an example of a simple page, shown in Perl first and then in PHP—don’t worry
about what the code means for now:

#!/usr/bin/perl
print <<"EOHTML"
<html>
<body>
<p>Welcome, $Name</p>
</body>
</html>
EOHTML

And now in PHP:

<html>
<body>
<p>Welcome, <?php print $Name; ?></p>
</body>
</html>

The PHP version is only three lines shorter but easier to read, because it doesn’t
have the extra complexity around it. Some modules for Perl (particularly CGI.pm)

Advantages of PHP | 3

In
tro

d
u

ctio
n

to
 P

H
P

help, but PHP continues to have a lead in terms of readability. If you wanted to,
you could write your PHP script like the Perl script: switch to PHP mode and
print everything out from there.

Apart from legibility, another advantage to having most of the page in HTML is
that it makes it possible to use integrated development environments (IDEs),
whereas products like Dreamweaver and FrontPage muddle up Perl’s print
statements.

Interpreting Versus Compiling

Behind the scenes, PHP compiles your script down to a series of instructions
(called opcodes), and these instructions are then executed one by one until the
script terminates. This is different from conventional compiled languages such as
C++ (but unlike Java), which compile the code into an executable run time and
then run that executable whenever the code is encountered again. This constant
recompilation may seem a waste of processor time, but it helps because you no
longer need worry about recompiling your scripts when you make any changes.
On the flip side, many scripts take longer to compile than they do to execute;
fortunately, that is nullified by the use of PHP code caches.

One major advantage to having interpreted code is that all memory used by the
script is managed by PHP, and the Zend Engine automatically cleans up allocated
memory after every script has finished. This means that you do not need to worry
about closing database links, freeing memory assigned to images, and so on,
because PHP will do it for you. That isn’t to say you should be lazy and make PHP
do all the work—there are functions available for you to specifically clean up your
memory, and you should use them if you have very tight memory requirements.

Output Control

In general use, PHP is embedded inside HTML in code islands that start with
<?php and end with ?>, but you can reverse this by writing your whole script as
one big PHP code island and printing HTML as necessary. Going back to the
example shown previously, PHP code can look almost identical to the Perl code
by printing the HTML from inside our PHP code:

<?php
 print "<html>\n";
 print "<body>\n";
 print "<p>Welcome, $Name</p>\n";
 print "</body>\n";
 print "</html>\n";
?>

The print() function outputs the text enclosed in quotation marks to the client.
“\n” means “start new line in the output” and it serves as a “pretty printer”—
something that makes the output look more attractive.

PHP also has powerful output buffering that further increases your control over
the output flow. An output buffer can be thought of as a place where you can
queue up content for outputting. Once you start a buffer, any output is automati-
cally put into that buffer and not seen unless the buffer is closed and flushed.

4 | Chapter 1: Introduction to PHP

The advantage to this output buffering is twofold. First, it allows you to clean the
buffer if you decide that the content it holds is no longer needed. When a buffer is
cleaned, all its stored output is deleted as if it were never there, and the output for
that buffer is started from scratch.

Second, output buffering allows you to break the traditional ordering of web
pages—that of headers first and content later. Owing to the fact that you queue
up all your output, you can send content first, then headers, then more content,
then finally flush the buffer. PHP internally rearranges the buffer so that headers
come before content.

Performance

PHP is one of the fastest scripting languages around, rivalling both Perl and ASP.
However, the developers continue to target performance as a key area for
improvement, and in PHP 5.1 (still under development at the time of this writing),
many areas have seen significant optimization.

When combined with a code cache, PHP’s performance usually at least doubles,
although many scripts show much larger increases.

Getting Help
If you have tried debugging and failed, don’t fret—there are still support options
where you might find your solution.

The Documentation

The first place to check should always be the PHP documentation, available
online from http://www.php.net/manual. The manual contains documentation on
all PHP functions, as well as various usage examples, and also user comments.
Very often it’s the user comments that are most helpful, because people recount
problems they’ve experienced in the past and how they got around them. The
PHP manual is an excellent resource that should help you deepen your under-
standing of all aspects of the language.

Mailing Lists

There are several mailing lists that focus specifically on PHP, the most popular of
which are hosted by the PHP web site itself. Visit http://www.php.net/mailing-lists.
php to see a list of possibilities. You will most likely want the general mailing list,
as it includes hundreds of questions and answers being sent each day.

Before you post:

• Read the list for a while to get a flavor of how to ask questions and to make
sure the list covers the right area for your question.

• Make sure you have HTML mail disabled in your email client; only plain-text
emails are accepted.

• Never attach files to your email.

Getting Help | 5

In
tro

d
u

ctio
n

to
 P

H
P

• If you are having a problem, give a code example showing the problem in the
simplest way. It helps people more if you say what you expected to get as out-
put, what you did get, as well as other information such as what version of
PHP you have, etc.

• Do not post to the Internals list unless you really know what you are doing.
This list is not for questions about how to install PHP, how to use a certain
function, or why a script does not work—it is for the actual developers of
PHP to discuss code changes and new releases of PHP. You do not need to
post to this list asking whether you can use or redistribute PHP—the answer
is “yes.”

IRC

One of the fastest ways to get answers about PHP is to use one of the two popular
PHP IRC channels. They both regularly have 200–300 people on there who
program in PHP, of which between 10 and 20 are chatting away about some-
thing. Peak activity times are evenings in U.S. EST (five hours behind GMT).

If you have an IRC client installed (such as the Firefox extension ChatZilla: https://
addons.mozilla.org/extensions/moreinfo.php?id=16), connect to Efnet (see http://
efnet.org) or FreeNode (see http://freenode.net) and go to channel #php. Note that
both channels (EFNet #php and FreeNode #php) have very strict rules: do not
ask to ask (that is, do not say, “Can I ask a question about XYZ?”—just ask), do
not post more than two lines of code into the channel at one time, do not start
evangelistic fights over Perl/Java/etc., and so on. Be sure to check the channel
rules as you enter, or you may find yourself kicked out for breaking them.

A word of warning: don’t believe everything you hear about PHP in IRC chan-
nels, particularly if the person talking isn’t a channel operator. Many people come
and go, and they aren’t necessarily experienced enough to give authoritative
answers.

Furthermore, be prepared to show people your code when on IRC. A popular site
is http://www.pastebin.com, which lets you paste your PHP code online and pass
the URL out to other people on IRC so that they can look at it and discuss poten-
tial fixes with you directly.

Conferences

Going along to one of the PHP events around the world is a great way to meet up
with your peers and share ideas, solutions, and learn new things. These confer-
ences are usually a mix of general discussion between attendees, a sponsor expo
where you can see companies involved in the PHP arena, and tutorials where you
can listen to lectures from luminaries in various fields about new developments in
PHP.

If you’re only going to go to one conference, I’d recommend you make it
O’Reilly’s Open Source Convention: it covers a variety of programming languages
and platforms, but PHP always puts on a good show there. If not that, then
consider either the International PHP Conference (http://www.phpconference.com)

6 | Chapter 1: Introduction to PHP

or the Zend PHP Conference (http://zend.kbconferences.com), which cover more
detailed topics due to their specific focus on PHP.

If you’ve never been to a big conference before, here are some hints: take a spiral-
bound half-page (A5) notepad with you for writing, a selection of cheap pens
(you’ll lose most of them, but should get freebies to replace them while at the
conference), some small snacks to keep you going between meals, business cards,
a USB thumb drive (memory stick), and, of course, a WiFi-compatible laptop.
Apple laptops are becoming increasingly prevalent, but anything that supports
802.11b/g is good.

User Groups

If you’re not into the conference scene, user groups might be more your style.
Most parts of the world already have Linux user groups (LUGs) where you can
ask for help on everything from setting up your Apache server to debugging
scripts—there are usually people there who are skilled in PHP, too. Some cities
also have PHP user groups that are, obviously, more helpful for direct PHP-related
questions.

The best place to look for PHP user group information is directly on the PHP site
itself: the PHP events calendar (http://www.php.net/cal.php) is regularly updated
and should provide you with all the information you need.

Submitting a Bug

If you are convinced you have found a problem with PHP, it is quite possible you
are correct and should notify the developers. Note that many hundreds of “bogus
bugs” have been reported in the past, which are usually the result of people not
reading the manual correctly or otherwise missing a flaw in their code. If you
think you have found a problem, follow these steps before you submit a bug:

1. Go to http://snaps.php.net and download the latest PHP snapshot for your
machine. Take a backup of your existing installation, then install the snap-
shot—this essentially gives you the bleeding-edge version of PHP. If your
problem still exists, go to step 2.

2. Go to IRC and ask people there to reproduce the problem. It is possible that
the problem lies in your PHP configuration, DBMS, operating system, or any
other of a dozen potential culprits. If the problem is reproduced by others on
IRC, then go to step 3.

3. At this point you have almost certainly got a bug. However, before you send
it off to the developers, you must reproduce your problem using the shortest
possible chunk of code. While it is possible that your 3000-line masterpiece
does show up a bug in PHP, it is also very hard for other developers to verify
the problem. Take out every line that does not stop the bug from
appearing—the shorter your script, the faster others can pick it up and repro-
duce the problem.

4. You should now clearly be able to see what sequence of events causes the bug
to show itself. You now need to make sure the bug has not been reported
before, so go to http://bugs.php.net and search for it.

PHP Resources | 7

In
tro

d
u

ctio
n

to
 P

H
P

5. If there is no record of a bug like yours existing, you can file a bug report
from the same URL. Try to be as descriptive as possible, as your bug report
will be mailed off to everyone on the PHP Internals mailing list for analysis.

6. Once your bug has been submitted, you will be notified as to its progress. All
being well, it will be fixed immediately, but you may find that the developers
need to ask you a few questions before they can get to work.

7. Finally, developers will fix your bug and a new version of PHP will be avail-
able on http://snaps.php.net for you to download and try out. If the bug has
been fixed, write back and say it is working fine so that the bug can be signed
off. The most common problem when fixing a bug is no feedback—a possible
fix has been applied, but the original finder hasn’t gotten back to say it’s
fixed. Don’t let this be you!

Getting Certified
Zend and MySQL offer certification for PHP and MySQL respectively, which
means that if you take a few tests and pass with sufficiently high grades you can
add “Qualified PHP and MySQL developer” to your résumé. The exams them-
selves aren’t too hard, and both have study guides to help you brush up on your
skills, but you should have at least six months’ experience using PHP/MySQL
before you try them.

If you want to be sure of high grades, you could try taking a course in the topic of
your choice—there are training partners around the world who can coach you
toward Zend/MySQL certification, and this vastly increases your chances of
success.

PHP Resources
If you’re looking to learn more about PHP and related topics like databases, secu-
rity, and XML, try starting with something from these lists.

Books

A Practical Guide to Curl by Kevin Hanegan (Charles River Media)
Quite a slow read, but you will learn a lot from it despite it being relatively
short.

Advanced PHP Programming by George Schlossnagle (Sams)
Pitched at quite a high level, but it is the only book currently available that
deals exclusively with making PHP work in highly scalable environments.

Beyond Fear by Bruce Schneier (Springer)
If you want a general introduction to the field of security, this is for you.

Disappearing Cryptography by Peter Wayner (Morgan Kaufmann)
Highly recommended as a general introduction to Crypto topics.

Database Systems by Thomas Connolly et al. (Addison-Wesley)
An excellent all-around reference to database theory and SQL.

8 | Chapter 1: Introduction to PHP

Essential PHP Security by Chris Shiflett (O’Reilly)
Soon to be released, but my copy is already on pre-order.

HTML and XHTML by Chuck Musciano and Bill Kennedy (O’Reilly)
A long but worthwhile read that can take you quite far in the topic.

Learning PHP 5 by David Sklar (O’Reilly)
This is the easiest way to learn PHP 5 from scratch.

MySQL by Paul DuBois (Sams) and PostgreSQL by Korry Douglas (Sams)
These are exceptionally comprehensive books and should really be on the
bookshelves of all serious MySQL/PostgreSQL database adminstrators.

PHP Cookbook by David Sklar et al. (O’Reilly)
A bit out of date, but it’s still an excellent, task-based reference.

Practical Cryptography by Niels Ferguson and Bruce Schneier (Wiley)
This is highly technical, but fascinating, if you’re looking to indoctrinate
yourself in the security field.

Practical Unix and Internet Security by Simson Garfinkel et al. (O’Reilly)
Quite long and certainly not an exciting read in places, but fulfills its goal of
being a comprehensive guide to security for Unix system administrators.

SVG Unleashed by Andrew Watt and Chris Lilley (Sams)
This book doesn’t cover SVG. But if you want to know more about XML this
is the first place to look.

The Art of Computer Programming by Donald Knuth (Addison-Wesley)
The second volume is particularly of interest for more insight into
randomization.

The Art of Deception by Kevin Mitnick (Hungry Minds)
Kevin Mitnick is the ultimate bad guy turned good, and he approaches the
topic of social engineering in an original and enlightening way.

The Mythical Man-Month by Frederick Brooks (Addison-Wesley)
Those looking to learn the fundamental principles of team management
should look no further.

Unix Shell Programming by Stephen Kochan and Patrick Wood (Sams)
General Unix and C programming is very similar to PHP, so you can learn a
lot about PHP by learning about the Unix shell.

Upgrading to PHP 5 by Adam Trachtenberg (O’Reilly)
The only book to buy if you want a stress-free guide to migrating from PHP 4
to 5.

Web Database Applications with PHP and MySQL by Hugh Williams and David
Lane (O’Reilly)
A mixed bag of tricks for aspiring web developers.

XML Pocket Reference by Simon St. Laurent and Michael Fitzgerald (O’Reilly)
Short and to the point, this is the quick fix guide to most XML problems.

PHP Resources | 9

In
tro

d
u

ctio
n

to
 P

H
P

Magazines

International PHP Magazine
http://www.phpmag.net

PHP Architect
http://www.phparch.com

PHP Magazin Germany
http://www.php-mag.de

PHP Solutions
http://www.phpsolmag.org

Web Sites

• The PHP manual is available from http://www.php.net/manual, and it is a con-
sistently high-quality read.

• Zend (http://www.zend.com) has a good set of PHP tutorials, and they also
print various other popular editorials about the state of PHP.

• PHP Builder (http://www.phpbuilder.com) publishes a number of high-quality
PHP tutorials each year, and also has very active forums full of people ready
to help.

• DevShed (http://www.devshed.com) isn’t as good as PHP Builder, but serves as
a great backup resource if you have questions that aren’t getting answered
elsewhere.

• Several application vendors try to boost their marketing efforts by offering PHP
content. Oracle is perhaps the most prevalent, as it had several top PHP hack-
ers write the Hitchhiker’s Guide to PHP, available online for free at http://otn.
oracle.com/pub/articles/php_experts. Similarly, IBM developerWorks has pub-
lished a number of PHP tutorials at http://www-130.ibm.com/developerworks,
some of which are actually good.

• PEAR::DB has its own sets of documentation online, available at http://pear.
php.net/manual/en/package.database.php. The database is thorough, if a little
out of date now and then.

• The online documentation for the SQLite library is at http://www.hwaci.com/
sw/sqlite. I have found that it complements the PHP manual well.

• All the content at http://www.cookiecentral.com. is available for free, and
there is also an active messageboard for you to ask questions or see what oth-
ers are saying.

• There’s a gentle (but quick) introduction to XPath at http://www.w3schools.
com/xpath/default.asp.

• To learn more about HTTP and protocols relating to it, the best and most
authoritative source is the World Wide Web Consortium (W3C). You can
view their HTTP information store online at http://www.w3.org/Protocols.

• There are W3C specifications for XML, XPath, and XSLT online at http://
www.w3.org/TR/2004/REC-xml-20040204, http://www.w3.org/TR/xpath, and
http://www.w3.org/TR/xslt. They are quite dull and hard to understand—you
have been warned!

10 | Chapter 1: Introduction to PHP

• Don’t try to remember all the ASCII codes—you can find them online at
http://www.asciitable.com.

• Finally, if all else fails and you’re still hunting around, you can visit my per-
sonal website at http://www.hudzilla.org, where I keep my own brand of PHP
help.

11

2
Installing PHP

Even if you intend to use a remote web server for your site, where PHP is already
installed, it is still beneficial to be able to install PHP on your own machine so that
you can test your pages more easily.

Installing PHP yourself opens up many possibilities: you get to choose exactly
which extensions are available, which options are enabled, and the filesystem
layout that you want. Of course, if you intend to upload your scripts to a different
server at the end of the process, you should be careful to mimic the remote config-
uration on your local machine.

This chapter goes through a full install of PHP on Windows and Unix, installing
extensions, and also configuring settings in the php.ini configuration file.

Installing on Windows
For installation on Windows, you need to download the Windows binary zip
package from http://www.php.net/downloads.php. This contains the main PHP
executables and DLLs, plus many extensions pre-compiled and ready to use.

When you extract the zip file, it should create a folder similar in name to php-5.0.4-
Win32. I suggest you rename it to “php” and move it to the root of your hard drive,
giving c:\php.

Browse to the new c:\php directory, and you’ll see a number of files. Copy the
php5ts.dll file into your c:\windows\system32 directory (note: this may be c:\winnt
on some versions of Windows), then copy the php.ini-recommended file into your
c:\windows directory, renaming it to php.ini. This is the file where you will be
setting all your PHP configuration options.

Your basic Windows PHP installation is now complete. If you want to set up PHP
to use a web server, read the appropriate section below. You may also want to
enable some extensions—that, too, is covered in subsequent pages.

12 | Chapter 2: Installing PHP

Installing Apache

The first step to install Apache is to download the Windows installer from http://
httpd.apache.org. This is packaged using the Microsoft Installer system (MSI), so
you may be prompted to install the MSI software if you have an older release of
Windows.

As Apache is packaged into a friendly installer, you need only answer a few basic
questions and click “Next” until you have completed the installation. The default
installation is placed into c:\program files\apache group\apache2. Inside there is the
conf directory, which contains Apache’s configuration files.

Inside the conf directory, you’ll find the httpd.conf file. This contains most of the
configuration settings for Apache, and you need to edit this in order to enable
PHP. Any line that starts with a # symbol is a comment, and may provide further
documentation to guide you in your edits. First, search for the string “Load-
Module.” There should be a collection of these LoadModule lines in there
already, so scroll to the bottom and add this new one:

LoadModule php5_module c:/php/php5apache2.dll

If your PHP installation is in a place other than c:\php, you will need to enter
something different. Note, though, that all backslashes should be converted to
forward slashes to avoid problems.

The next step is to search for the string AddType, and again you should see one or
two lines of this type already in there. Underneath them, add this line:

AddType application/x-httpd-php .php

That associates scripts with the extension .php with our PHP module. If you want
different script extensions, here is the place to set that up.

That completes the basic configuration. If you click Start, then Run, and run the
command services.msc, you should see the Windows Services list appear. Look
for Apache2, then click the button with the Stop and Play symbols on it to restart
the service—this should enable PHP.

Once Apache has been restarted, open a web browser and go to http://localhost.
You should see the “If you can see this, it means that the installation of the
Apache web server software on this system was successful” default page on
Apache. To test your PHP install, turn to the “Testing Your Configuration”
section, later in this chapter, using c:\program files\apache group\apache2\htdocs as
the HTML directory.

To change the directory from which Apache should serve web pages, search for
the two instances of “C:/Program Files/Apache Group/Apache2/htdocs” in your
httpd.conf and replace them with another directory on your system.

Installing Microsoft IIS

Although Apache is the preferred web server platform irrespective of the OS you
choose, PHP can also be used with Microsoft Internet Information Services (IIS).
This is available on Windows NT, Windows 2000, Windows XP, and Windows
Server 2003; however, the client versions (e.g., XP) are limited in their abilities

Installing on Windows | 13

In
stallin

g
 P

H
P

compared to the server versions. These instructions were written for Windows
XP, but the instructions should be broadly similar for other versions of Windows
and IIS.

To install IIS, go to the Add/Remove Programs dialog in the Control Panel, then
select “Add/Remove Windows Components” from the sidebar. After a moment, a
list of components will appear, and “Internet Information Service (IIS)” will be
one of the options. Check the box next to it, then click Next. You may be asked
for your Windows CD, so have it ready.

After installation has finished, open up Internet Explorer and point it at http://
localhost; all being well, you should see the “Your Web service is now running”
page. Note that you should use Internet Explorer as opposed to other browsers—
IIS doesn’t play well with Firefox or others.

It is highly recommended that you go to the Windows Update site
immediately after installing IIS. The version installed from your CD
will almost certainly be out of date, so you should download and
install the latest patches before proceeding.

To configure IIS to use PHP, you need to bring up the Internet Information
Services Management Console snap-in. This is available from Administrative
Tools options, which may be in your Start menu or in your Control Panel,
depending on your configuration.

The default view shows your computer in the left-hand tree; you need to double-
click that to bring up the “Web Sites” branch, then double-click on “Web Sites”
to reveal the “Default Web Site” branch. The default web site is configured to
serve pages from c:\inetpub\wwwroot, and we’re going to configure that to be able
to serve PHP scripts too.

Right-click on the “Default Web Site” branch in the left-hand pane, and select
Properties. From the dialog that appears, go to the Home Directory tab, and click
the Configuration button at the bottom right. This is where you configure the
programs that handle scripts on the server, and you’ll see things such as ASP
already configured.

Click the Add button in the Application Configuration dialog, then click Browse
to search for the PHP script handle for IIS. By default, the Open File dialog box
that appears is set to “Executable files (*.exe),” but you need to change that to
“Dynamic Link libraries (*.dll).” Now browse to where you installed PHP (e.g., c:\
php), and select the file php5isapi.dll, and click OK.

Back in the “Add/Edit Application Extension Mapping” dialog, enter .php for the
extension, and click OK. Click OK in the Application Configuration dialog, then
OK again in the Default Web Site Properties dialog, and you’ll be back at the IIS
snap-in again.

To test out your configuration, turn to the “Testing Your Configuration” section,
later in this chapter, using c:\inetpub\wwwroot as the HTML directory.

14 | Chapter 2: Installing PHP

To change the directory from which IIS should serve web pages, go back to the
Default Web Site Properties dialog, go to the Home Directory tab, and edit the
Local Path field to something other than c:\inetpub\wwwroot.

Configuring Extensions

The PHP zip file for Windows comes with a number of extensions compiled for
you. To enable them, you need only edit php.ini and remove the comment symbol
(a semicolon) from the start of the line. Once you have finished your edits, restart
your web server to have it reload the modules, and you’ll be ready to go.

For example, to enable the Tidy extension, bring up c:\windows\php.ini in
Notepad, search for “tidy”, and you’ll see a line like “;extension=php_tidy.dll.”
To enable the extension, remove the semicolon from the front (to make the line
“extension=php_tidy.dll”), then restart your web server.

Installing on Unix
Installation on Unix can be done in one of two ways: you can use a package
manager (such as YaST on SUSE Linux, Yum on Red Hat Linux, or URPMI on
Mandriva Linux), or you can compile the programs from source code. If you are
configuring a production web server, it is highly recommended that you use your
package manager so that patching is kept easy. However, if you’re installing PHP
onto a local machine for test and programming purposes, you will probably want
to compile it yourself to get you extra control.

One major advantage to installing from source code is that you can easily get the
latest version of PHP. Many Linux distributions ship only older releases of PHP
and Apache in order to ensure the system is stable enough for enterprise use. If
you compile from source, you can choose to use an older, more mature release, or
the very latest cutting-edge release.

Installing Using Packages

Installing PHP and Apache through your distributions package manager is fast,
easy, and usually also provides some extra extensions. For the purpose of this
guide, Mandriva Linux 2005 was used, but the process is similar for other
distributions.

To get started, open up the Mandriva Control Center and select Add Software.
Type apache2 in the Search box, and click Search to list all packages that relate to
Apache. In that list will be a package similar to apache2-2.0.53-9mdk. Select that,
and you’ll be prompted to include all the dependencies also (these are required). If
you scroll down the list of search results, you should also see apache2-mod_php-
2.0.53-4.3.10-7mdk, which is the package for PHP 4.3. Yes, that’s quite out of
date, but that’s the result of installing through a package manager.

Once you have selected the Apache and PHP packages (and their dependencies),
you might also want to run a search for “php” to look for any other software you
want. For example, php-mysql-4.3.10-7mdk installs the PHP MySQL extension,
and php-cli-4.3.10-7mdk installs the command-line interpreter (CLI) for PHP 4.3.

Installing on Unix | 15

In
stallin

g
 P

H
P

Having selected all the packages you want, insert your install media in your drive
and click Install to continue. Once the installation has completed, open up a
console (such as Konsole, if you’re using KDE), run su, insert your password, then
run /etc/init.d/httpd start to start Apache.

To test your configuration, turn to the “Testing Your Configuration” section, later
in this chapter, using /var/www/html as the HTML directory.

Compiling from Source

Compiling PHP and Apache from source code gives you absolute control over the
version numbers and configuration of the finished system. This gives you more
control, but also more responsibility: it is harder to do, and harder to maintain.

Before you attempt to compile anything from source, please ensure that you have
the following installed on your system: GCC (or another working GCC-
compatible compiler), the standard C development libraries, libxml2-devel, flex,
bison, Perl, and make. These should all be available through your package
manager: make sure you have the “devel” versions of software installed along with
the non-devel, as these are required for compiling your own software.

To get started, go to http://www.php.net/downloads.php and download the
complete source code package in tar.bz2 format. Then go to http://httpd.apache.
org and download the tar.bz2 source code for Apache 2.0, too.

Once the downloads have finished, open up a terminal window (such as Konsole,
if you’re using KDE), and browse to the location where you downloaded your
files. For example, if they downloaded to /home/paul/desktop, then type cd /home/

paul/desktop. Now execute these commands, changing the version numbers to
suit the files you downloaded:

tar xvfj httpd-2.0.54.tar.bz2
tar xvfj php-5.0.4.tar.bz2
cd httpd-2.0.54
./configure --enable-so
make
su
<enter your password here>
make install
exit
cd ../php-5.0.4
./configure --with-apxs2=/usr/local/apache2/bin/apxs
make
su
<enter your password here>
make install
cp php.ini-recommended /usr/local/lib/php.ini
exit

Note: executing the configure and make commands may take some time. This is
quite normal!

16 | Chapter 2: Installing PHP

What those commands will give you is a working installation of Apache (installed
into /usr/local/apache2) and a working installation of PHP in /usr/local/lib/php.
The two are not joined as yet, though.

The next step is to configure Apache to use PHP. As root, open up /usr/local/
apache2/conf/httpd.conf in your favorite text editor. Search for “LoadModule”—
you should hopefully see the line “LoadModule php5_module modules/libphp5.
so,” which the PHP installer might have added for you. If not, add the line
beneath any existing LoadModule lines.

Now search for “AddType,” and you should see some other lines already in there.
Go to the bottom of the other AddType lines, and add this:

AddType application/x-httpd-php .php

That configures Apache to route the processing of all .php files through to PHP.
Save the file, and close your text editor. Still as root, execute this command: /usr/
local/apache2/bin/apachectl start. That will start your Apache web server.

To test your configuration, turn to the “Testing Your Configuration” section, later
in this chapter, using /usr/local/apache2/htdocs as your HTML directory.

Configuring Extensions

Compiling PHP from source gives you a number of extensions by default, such as
CTYPE, SimpleXML, and SQLite. As long as you have the libraries installed, you
can compile and install other PHP extensions by re-running the configure
command from your PHP source code directory.

There are a great number of switches you can use when configuring PHP, but they
follow a very general pattern. For extensions that require an external library to be
installed, you use --with-xxx. For extensions that don’t require an external library—
potentially because PHP comes bundled with that library—you use --enable-xxx.
There are a number of other options you can set that will affect core PHP
functionality.

Table 2-1 shows a list of the most common options for PHP configuration, along
with what they do. For ease of reference, it’s sorted without the --with or --enable
part.

Table 2-1. Configuration options for PHP

--with-apxs Enables support for Apache 1.3

--with-apxs2 Enables support for Apache 2.0

--enable-bcmath Enables support for bcmath arbitrary-precision mathematics

--with-curl Enables support for the Curl library

--enable-debug Compiles in debug information (PHP engine developers only)

--with-gd Enables support for the GD image library

--with-imap Enables support for the IMAP mail library

--with-ldap Enables support for the LPAP directory library

System Configuration | 17

In
stallin

g
 P

H
P

For more information on these and other options, use ./configure --help to see
the full list.

Testing Your Configuration
To test your configuration, create the file info.php in your HTML directory. Enter
this text in there, and save it:

<?php
 phpinfo();
?>

That calls the phpinfo() function, which outputs basic configuration information
about your PHP installation. To access this script, go to http://localhost/info.php in
your web browser. All being well, you should see a lot of information printed out
about your PHP configuration. This is actually a handy script to keep around for
debugging purposes, as it tells you exactly what extensions you have installed and
what their configuration options are. Of course, it also tells any hackers about
your system configuration, so don’t advertise its existence!

System Configuration
Now that you have PHP and your web server up and running, you will probably
want to configure PHP to your liking. All of PHP’s settings are available in its php.ini
file, which, if you followed these installation instructions, is available either in /usr/
local/lib/php (Unix) or c:\windows\php.ini (Windows). Open this in your text editor
of choice (you will need to be root on Unix).

A list of popular options, what they do, and their default values (if you use php.
ini-recommended as the default) is given in Table 2-2. Note that lines starting with
a semicolon (;) are comments, and are ignored by PHP.

--enable-mbstring Enables support for multibyte strings

--with-mcrypt Enables support for the mcrypt encryption library

--with-ming Enables support for the Ming Flash-generation library

--with-mysql Enables the MySQL extension

--with-mysqli Enables the MySQLi extension (for MySQL 4.1 and above)

--with-ncurses Enables support for the Ncurses text-mode graphics library

--with-pgsql Enables support for the PostgreSQL database library

--enable-soap Enables support for SOAP protocol library

--enable-sockets Enables support for Internet sockets

--with-tidy Enables support for the Tidy HTML/XML library

--with-zlib Enables support for zlib; needed for some graphics formats

Table 2-1. Configuration options for PHP (continued)

18 | Chapter 2: Installing PHP

If you intend to use sessions, make sure you set the sessiondir vari-
able to a directory that a) exists, and b) Apache has read and write
access to.

Table 2-2. Configuration options for PHP

Option Meaning Default

assert.active Enables the assert() function On

display_errors Sets whether PHP should output error messages to the screen Off

error_reporting Decides what types of errors PHP should notify you of E_ALL

expose_php Allows PHP to identify itself to clients through the web server On

extension Loads a PHP extension N/A

extension_dir Sets the directory where PHP should look for extensions ./

file_uploads Decides whether PHP should accept users uploading files On

log_errors Determines whether PHP should store error messages in a log
file

On

magic_quotes_gpc Determines whether PHP should automatically run form data
through addslashes() before you get it

Off

max_execution_time Determines how long a script may run for before timing out 30 seconds

mbstring.func_overload Converts non-multibyte string functions to their multibyte
equivalents

0

memory_limit Sets the maximum amount of RAM a PHP script may consume 8M

precision Determines number of decimal places for floating-point
numbers

14

register_globals Decides whether all superglobal arrays should have their
elements exported to the global scope

Off

safe_mode Enables high security mode for shared server environments Off

session.save_path Selects the directory in which session data will be stored /tmp

short_open_tags Enables <? for opening PHP code blocks On

SMTP Sets the mail server address for the mail() function.

variables_order Determines the order in which variables are parsed: G is GET, P
is POST, C is cookie, and S is session

GPCS

19

3
The PHP Interpreter

This chapter discusses how PHP runs, both through the command line and
through a web server, how PHP can be extended through built-in and third-party
modules, and what can cause your scripts to terminate unexpectedly.

Running PHP Scripts
You can execute your scripts in one of two ways: through a web server where the
output is sent to a web browser, or through the command-line interface (CLI)
where the output is sent to standard output. Of the two, the former is more
popular, but the latter is steadily growing in popularity.

The primary difference between outputting text to the command line and to a web
browser is the format of new lines—through the CLI, you need to use \n for a new
line, whereas for web browsers, you need to use the HTML line break,
. If
you want to take a script designed for CLI and make it work through the Web,
swap \n for
, and vice versa for converting web scripts to command line
scripts.

If everything is configured properly, running scripts through your web server is as
simple as putting the PHP script into your web server’s public directory, then
navigating to the appropriate URL with your browser. Running scripts through
the command line is done using the CLI interpreter, which, if you are using
Windows, is php.exe in the directory of your PHP installation. That is, if you have
installed PHP into c:\php, the CLI program will be c:\php\php.exe. If you are using
Unix, the availability of CLI PHP is down to how you installed PHP—make sure
and issue the command make install-cli after the rest of the configure and make

install process in order to install it.

20 | Chapter 3: The PHP Interpreter

The technical term for the command-line interpreter version of PHP
is the CLI SAPI. SAPI stands for Server Application Programming
Interface, and this standard interface allows PHP to work on multi-
ple web servers, or, in the CLI SAPI’s case, the command line.

If you are unsure whether PHP is set up correctly, run the following script:

<?php
 phpinfo();
?>

That calls the function phpinfo(), which outputs information on your PHP
configuration—how it was configured, what server it is running on, what modules
are available, and more. It is handy to keep around when you are developing, as it
will answer most questions you have about configuration.

Once you have PHP working, you can try running some more complex scripts.
For example:

<?php
 $name = "Bob";
 $age = 27;
 $double_age = $age + $age;
 echo "Hello, $name!\n";
 echo "You are $age\n";
 echo "In $age years time you will be $double_age\n";
?>

To run that through your local web server, save the file as first.php and place it in
your public HTML folder. For Windows this is usually c:\inetpub\wwwroot, and
for Unix this is usually /var/www/html, but the location of the Unix public HTML
folder does vary greatly. Once the file is there, load it through your web browser
using the URL http://localhost/first.php.

If you are running your scripts through the command line, you need to find the
location of your PHP executable. On Unix, you can usually just run php and it will
work, e.g., php first.php. On Windows, go to Start, Run, then enter cmd and press
Return. Then type cd \php followed by Return, then php c:\location\of\your\

script\first.php.

Extending PHP
The base of the PHP language is simple, having just enough to set and retrieve
variables, work with loops, and check whether a statement is true or not. The real
power behind PHP comes with its extensions—add-ons to the base language that
give it more flexibility. PHP has hundreds of extensions, which can be broken
down into five types: core, bundled, PECL, third party, and DIY.

• Core extensions are extensions bundled with PHP itself and enabled by
default. For all intents and purposes they are part of the base language,
because, unless you explicitly disable them (few people do, and sometimes
you cannot), they are available inside PHP. For example, the mechanism to

PEAR | 21

Th
e P

H
P

In
terp

reter

handle reading and saving files in PHP is handled by an extension automati-
cally compiled into PHP.

• Bundled extensions are extensions included with PHP but not enabled by
default. They are commonly used, which is why they are included, but they
are not available unless you specifically enable them. For example, the mech-
anism to handle graphics creation and editing is handled by an extension that
is bundled with PHP but not enabled by default in php.ini.

• PECL (pronounced “pickle”) stands for “PHP Extension Code Library” and
was created as a place where rarely used or dormant extensions could be
moved if they were no longer considered relevant to the core PHP distribu-
tion. PECL has grown since its founding, and is now the home of many inter-
esting and experimental extensions that are not yet important enough for the
mainstream.

• Third-party extensions are written by programmers who wanted to solve a
particular problem that was unsolvable without a new extension. A variety of
third-party extensions are available, with the sole difference between a third-
party extension and a PECL extension being that there are various rules about
submitting code to PECL. Third-party extensions can sometimes be unstable.

• Finally, Do-It-Yourself (DIY) extensions are simply extensions you create
yourself. PHP has a rich extension creation system that makes it simple to
add your own code, as long as you are proficient in C. Note that creating
your own extension requires that you have the ability to compile PHP.

PEAR
The PHP Extension and Application Repository, or PEAR for short, contains re-
usable code written by others that enables you to create powerful scripts using
just a few simple commands.

PEAR contains two types of pre-written code: PECL code and PHP code. PECL
code, as mentioned already, are full extensions written in C that interact with
external libraries. Extensions reside in PECL when they are considered useful, but
not popular or much used. However, most of PEAR is PHP code, which means
you can use it on any PHP server without enabling any extensions or recompiling
PHP.

The most famous package in PEAR is called PEAR::DB, and provides an object-
oriented, database-independent framework for reading from and writing to your
database. PEAR::DB is covered in depth in Chapter 14.

PHP comes with “go-pear,” an easy way to configure PEAR for use on your
computer. To use it, simply run go-pear from the command line and follow the
on-screen instructions. Windows users will need to change to the directory where
PHP is, e.g., c:\php.

The output of go-pear is shown in Figure 3-1.

Once you have PEAR installed on your system, you will see the pear command—
this allows you to search for and download new PEAR modules for your PHP
installation.

22 | Chapter 3: The PHP Interpreter

Abnormal Script Termination
Most scripts will execute from start to finish, but sometimes they might end
prematurely. There is a variety of reasons why this will happen:

1. You’ve screwed up somewhere, and PHP cannot execute your code.

2. PHP has screwed up somewhere due to a bug and cannot continue.

3. Your script has taken too long to execute and gets killed by PHP.

4. Your script has requested more memory than PHP can allocate and gets killed
by PHP.

To be brutally honest, the first situation is unequivocally the most common. This
will change a little as your skill with PHP improves, but the first situation is still
the most common, even among the most veteran programmers.

Common errors include missing semicolons and parentheses, for example:

<?php
 $i = 10
 $j = 5;
 if (($i + 2) - ($j + 5) == 10 {
 print "Success!";
 }
?>

The first line is missing a semicolon, which will cause PHP to flag an error on the
second line. Also, the second line is missing a parenthesis after "== 10", causing
another error.

Figure 3-1. Running go-pear will set up PEAR on your computer

23

4
The PHP Language

This chapter forms a complete introduction to the basics of PHP programming,
covering variables, comments, conditional statements, loops, and more. If you
have little experience with PHP, this is the best place to start. Otherwise, you may
only need to dip into parts of this chapter to refresh your memory.

The Basics of PHP
By default, PHP operates with PHP mode turned off, which means that PHP will
consider the content to be plain text (i.e., not PHP code) unless PHP mode has
been enabled. This method of parsing means that the PHP elements of a script are
“code islands”—standalone chunks of code that can work independently of the
HTML “sea” around them.

PHP scripts are generally saved with the file extension .php to signify their type.
Whenever your web server is asked to send a file ending with .php, it first passes it
to the PHP interpreter, which executes any PHP code in the script before
returning a generated file to the end user. The basic unit of PHP code is called a
statement, and ends with a semicolon to signify it is a complete statement. For
clarity, one line of code usually contains just one statement, but you can have as
many statements on one line as you want. These two examples do the same thing:

<?php
 // option 1
 print "Hello, ";
 print "world!";

 // option 2
 print "Hello, "; print "world!";
?>

PHP purists like to point out that print is technically not a function and, techni-
cally, they are correct. This is why print doesn’t require brackets around the data

24 | Chapter 4: The PHP Language

you pass to it. Other language constructs that masquerade as functions (and are
herein referred to as such for the sake of sanity) include array, echo, include,
require, return, and exit.

You can use parentheses with these constructs, and doing so is harmless:

<?php
 print("Hello!");
?>

Although on the surface, print and echo appear the same, they are not. The print
construct behaves more like a function than echo because it returns a value (1).
However, echo is more useful because you can pass it several parameters, like this:

<?php
 echo "This ", "is ", "a ", "test.";
?>

To do the same using print, you would need to use the concatenation operation
(.) to join the strings together, rather than a comma. If you have several things to
print out, as in that example, then echo is preferred for the sake of clarity.

Variables
Variables in PHP—that is, things that store data—begin with $ followed by a
letter or an underscore, then any combination of letters, numbers, and the under-
score character. This means you may not start a variable with a number. One
notable exception to the general naming scheme for variables are “variable vari-
ables,” which are covered in the next chapter. A list of valid and invalid variable
names is shown in Table 4-1.

Variables are case-sensitive, which means that $Foo is not the same variable as
$foo, $FOO, or $fOO.

Assigning variables is as simple as using the assignment operator (=) on a vari-
able, followed by the value you want to assign. Here is a basic script showing
assigning and outputting data—note the semicolons used to end each statement:

<?php
 $name = "Paul";

Table 4-1. Valid and invalid variable names

$myvar Correct

$Name Correct

$_Age Correct

$___AGE___ Correct

$91 Incorrect ; starts with a number

$1Name Incorrect ; starts with a number

$Name91 Correct; numbers are fine at the end and after the first character

$_Name91 Correct

$Name's Incorrect; no symbols other than “_” are allowed, so apostrophes are bad

Variables | 25

Th
e P

H
P

Lan
g

u
ag

e

 print "Your name is $name\n";
 $name2 = $name;
 $age = 20;
 print "Your name is $name2, and your age is $age\n";
 print 'Goodbye, $name!\n';
?>

There we set the $name variable to be the string Paul, and PHP lets us print out
that variable after Your name is. Therefore, the output of the first print statement
is Your name is Paul, because PHP will substitute $name for its value whenever it
finds it by itself, or inside a double-quoted string (that is, one starting and ending
with").

We then set $name2 to be $name, which effectively copies $name’s value into $name2.
$name2 is now set to Paul. We also set up the $age variable to be the number 20.
Our second print statement outputs both variables at once, as again, PHP will
substitute them inside the string.

However, the last print statement will not replace $name with Paul. Instead, it will
print:

Goodbye, $name!\n

The reason for this is that PHP will not perform variable substitution inside single-
quoted strings, and won’t even replace most escape characters (the exception
being \’). In double-quoted strings, PHP will replace $name with its value; in a
single-quoted string, PHP will consider $name to mean that you actually want it to
output the text $name just like that.

When you want to append something to your variable while inside a string, PHP
may consider the characters to be part of the variable. For example:

<?php
 $food = "grapefruit";
 print "These $foods aren't ripe yet.";
?>

While the desired output was These grapefruits aren’t ripe yet, the actual
output is different: because we have added the “s” to the end of the variable
name, we have changed it from trying to read $food to trying to read $foods. The
variable $foods does not exist, so PHP will leave the space blank and may generate
an error. There are two ways to solve this:

<?php
 $food = "grapefruit";
 print "These ${food}s aren't ripe yet.";
 print "These {$food}s aren't ripe yet.";
?>

The braces, { and }, technically signal a variable variable when used inside a
string, but in the example above, they are used to tell PHP where the variable
ends. You don’t need to use braces where characters being appended to a variable
would make the variable name illegal, like this:

<?php
 $food = "grapefruit";
 print "This $food's flavour is bad.";
?>

26 | Chapter 4: The PHP Language

That will work because you are not allowed to use apostrophes as part of your
variable names.

Whitespace
Spaces, tabs, and blank lines in between statements have no effect on how the
code is executed. To PHP, this next script is treated like any other, regardless of
the fact that some statements are on the same line, and others are separated by
several line breaks:

<?php
 $name = "Paul"; print "Your name is $name\n";
 $name2 = $name; $age = 20;

 print "Your name is $name2, and your age is $age\n";

 print 'Goodbye, $name!\n';
?>

You should use whitespace to separate your code into clear blocks, so that its
meaning can be understood by visually inspecting the layout.

Heredoc
If you have a long string, you ought to consider using heredoc syntax. Put simply,
heredoc allows you to define your own string delimiter so that you can make it
something other than a double or single quote. So, for example, we could use the
string EOT (end of text) for our delimiter, meaning that we can use double quotes
and single quotes freely within the body of the text—the string only ends when
we type EOT.

It is a little more complicated than that in practice, but not much—the string
delimiter needs to be by itself on a line, in the very first column. That is, you
cannot add spacing or tabs around it. Here is a working example:

<?php
$mystring = <<<EOT
 This is some PHP text.
 It is completely free
 I can use "double quotes"
 and 'single quotes',
 plus $variables too, which will
 be properly converted to their values,
 you can even type EOT, as long as it
 is not alone on a line, like this:
EOT;

?>

Opening and Closing Code Islands | 27

Th
e P

H
P

Lan
g

u
ag

e

There are several things to note about heredoc and the example above:

• You can use anything you like; EOT is just an example.

• You need to use <<< before the delimiter to tell PHP you want to enter
heredoc mode.

• Variable substitution is enabled, which means you need to escape dollar sym-
bols if you don’t want PHP to replace variables with their values.

• You can use your delimiter anywhere in the text, but not in the first column
of a new line.

• At the end of the string, type the delimiter with no whitespace around it, fol-
lowed by a semicolon.

Without heredoc syntax, complicated string assignments can become very messy.

Brief Introduction to Variable Types
Variables in PHP can be of type integer (a whole number), floating-point (usually
called “float”; a fractional number), string (a set of characters), array (a group of
data), object (a complex mix of data and functionality), or a resource (any
external information, such as an image). We will be looking at data types in more
depth later on; for now, you only need to know what variables are and how they
work.

Code Blocks
PHP makes extensive use of code blocks—chunks of PHP code that are separate
from the rest of the script. As you read the following sections in this chapter, you
will notice that PHP uses braces, { and }, to open and close code blocks.

Opening and Closing Code Islands
There are many ways to open a PHP code island (to enter PHP parsing mode), and
you are welcome to choose which you prefer. The recommended manner is to use
<?php to enter PHP mode, and ?> to leave PHP mode, but you can also use the
short tags version, <? and ?>.

The short version has one big advantage and two big disadvantages: you can
output information from your script by using a special short tags hack, <?=, like
this:

<?="Hello, world!" ?>

Here is the equivalent, written using the standard open and closing tags:

<?php
 print "Hello, world!";
?>

As you can see, the short tags version is more compact, if a little harder to read.
However, the first downside to the short version is that it clashes with XML (and
therefore XHTML), which also uses <? to open code blocks. This means that if

28 | Chapter 4: The PHP Language

you try to use XML and short-tagged PHP together, you will encounter prob-
lems—this is the primary reason people recommend using the normal open and
close tags. Short tags are always dangerous because they can be disabled in the
PHP configuration file, php.ini, which means your scripts may not be portable.

Two other, lesser-used variants exist: <% %>, which opens and closes code blocks
in the same way as Microsoft’s ASP, and also <script language="php"></script>.
These two often work better with visual editor programs such as Dreamweaver
and FrontPage, but they are not recommended for general use because they need
to be enabled to work.

You can switch into and out of PHP mode by using <?php and ?> whenever and as
often as you want to.

Comments
While in PHP mode, you can mark certain parts of your code as a comment that
should not be executed. There are three ways of doing this: //, /* */, and #. //
and # mean “Ignore the rest of this line,” whereas /* means “Ignore everything
until you see */.” Some complications exist with /* and */ that make them less
desirable to use.

<?php
 print "This is printed\n";
 // print "This is not printed\n";
 # print "This is not printed\n";
 print "This is printed\n";
 /* print "This is not printed\n";
 print "This is not printed\n"; */
?>

That chunk of code shows all three types of comments in action, but does not
demonstrate the problem with the /* */ form of commenting. If you were to start
a /* comment on line one, and end it on the line near the bottom where the other
/* comment is started, you would find that the script would fail to work. The
reason for this is that you cannot stack up, or “nest,” /* */ comments, and
attempting to do so will fail spectacularly.

It is generally best to stick to // for your commenting purposes, simply because it
is easy to spot, easy to read, and easy to control.

Conditional Statements
PHP allows you to choose what action to take based on the result of a condition.
This condition can be anything you choose, and you can combine conditions to
make actions that are more complicated. Here is a working example:

<?php
 $Age = 20;
 if ($Age < 18) {
 print "You're young - enjoy it!\n";
 } else {

Conditional Statements | 29

Th
e P

H
P

Lan
g

u
ag

e

 print "You're not under 18\n";
 }

 if ($Age >= 18 && $Age < 50) {
 print "You're in the prime of your life\n";
 } else {
 print "You're not in the prime of your life\n";
 }

 if ($Age >= 50) {
 print "You can retire soon - hurrah!\n";
 } else {
 print "You cannot retire soon :(";
 }
?>

At the most basic level, PHP evaluates if statements left to right, meaning that it
first checks whether $Age is greater or equal to 18, then checks whether $Age is less
than 50. The double ampersand, &&, means that both statements must be true if
the print "You’re in the prime of your life\n" code is to be executed—if either
one of the statements is not true for some reason, “You’re not in the prime of your
life” is printed out instead. The order in which conditions are checked varies
when operator precedence matters; this is covered in the next chapter.

As well as &&, there is also || (the pipe symbol printed twice) which means OR. In
this situation, the entire statement is evaluated as true if any of the conditions
being checked is true.

There are several ways to compare two numbers. We have just looked at < (less
than), <= (less than or equal to), and >= (greater than or equal to). We will be
looking at the complete list later, but first I want to mention one important check:
= =, or two equals signs put together. That means “is equal to.” Therefore 1 == 1
is true, and 1 == 2 is false.

The code to be executed if the statement is true is in its own block (remember, a
block starts with { and finishes with }), and the code to be executed otherwise is
in an else block. This stops PHP from trying to execute both the true and false
actions.

One key thing to note is that PHP practices “if statement short-circuiting”—this
is where PHP will try to do as little conditional work as possible, so it basically
stops checking conditional statements as long as it is sure it can stop. For
example:

if ($Age > 10 && $Age < 20)

If $Age evaluates to 8, the first check ($Age > 10) will fail, so PHP will not bother
checking it against 20. This means you can, for example, check whether a vari-
able is set and whether it is set to a certain value—if the variable is not set, PHP
will short-circuit the if statement and not check its value. This is good because if
you check the value of an unset variable, PHP will flag an error.

30 | Chapter 4: The PHP Language

A helpful addition to if statements is the elseif statement, which allows you to
chain conditions together in a more intelligent way:

<?php
 if ($Age < 10) {
 print "You're under 10";
 } elseif ($Age < 20) {
 print "You're under 20";
 } elseif ($Age < 30) {
 print "You're under 30";
 } elseif ($Age < 40) {
 print "You're under 40";
 } else {
 print "You're over 40";
 }
?>

Perl users should note that it is spelled elseif and not elsif.

You could achieve the same effect with if statements, but using elseif is easier to
read. The downside of this system is that the $Age variable needs to be checked
repeatedly.

If you only have one statement of code to execute, you can do without the braces
entirely. It’s a readability issue.

So, these two code chunks are the same:

if ($banned) {
 print "You are banned!";
}

if ($banned) print "You are banned!";

Case Switching
Your if...elseif blocks can become unwieldy when you have a series of condi-
tions that all test against the same variable, as here:

<?php
 $Name = "Bob";
 if ($Name = = "Jim") {
 print "Your name is Jim\n";
 } elseif ($Name = = "Linda") {
 print "Your name is Linda\n";
 } elseif ($Name = = "Bob") {
 print "Your name is Bob\n";
 } elseif ($Name = = "Sally") {
 print "Your name is Sally\n";
 } else {
 print "I don't know your name!\n";
 }
?>

Loops | 31

Th
e P

H
P

Lan
g

u
ag

e

PHP has a solution to this: switch/case. In a switch/case block, you specify what
you are checking against, then give a list of possible values you want to handle.
Using switch/case statements, we can rewrite the previous script like this:

<?php
 $Name = 'Bob';
 switch($Name) {
 case "Jim":
 print "Your name is Jim\n";
 break;
 case "Linda":
 print "Your name is Linda\n";
 break;
 case "Bob":
 print "Your name is Bob\n";
 break;
 case "Sally":
 print "Your name is Sally\n";
 break;
 default:
 print "I don't know your name!\n";
 }
?>

Switch/case statements are frequently used to check all sorts of data, and they
take up much less room than equivalent if statements.

There are two important things to note in the PHP switch/case statement code.
First, there is no word "case" before "default"—that is just how the language
works. Second, each of our case actions above end with "break;". This is because
once PHP finds a match in its case list, it will execute the action of that match as
well as the actions of all matches beneath it (further down on your screen). This
way of working is taken directly from C, and is generally counterintuitive to how
we think—it is rare that you will want to exclude a break from the end of your
cases.

The default case is executed if PHP doesn’t find a match in one of the other cases,
or if the case before it was executed and didn’t end with a break statement.

The keyword "break" means “Get out of the switch/case statement,” and has the
effect of stopping PHP from executing the actions of all subsequent cases after its
match. Without the break, our test script would print out this:

Your name is Bob
Your name is Sally
I don't know your name

Loops
PHP has the following loop keywords: foreach, while, for, and do...while.

The foreach loop is designed to work with arrays, and works by iterating through
each element in the array. You can also use it for objects, in which case it iterates
over each public variable of that object.

32 | Chapter 4: The PHP Language

The most basic use of foreach extracts only the values from each array element,
like this:

foreach($array as $val) {
 print $val;
}

Here the array $array is looped through, and its values are extracted into $val. In
this situation, the array keys are ignored completely, which usually makes most
sense when they have been autogenerated (i.e., 0, 1, 2, 3, etc.).

You can also use foreach to extract keys, like this:

foreach ($array as $key => $val) {
 print "$key = $val\n";
}

When working with objects, the syntax is identical:

<?php
 class monitor {
 private $Brand;
 public $Size;
 public $Resolution;
 public $IsFlat;

 public function __construct($Brand, $Size, $Resolution,
$IsFlat) {
 $this->Brand = $Brand;
 $this->Size = $Size;
 $this->Resolution = $Resolution;
 $this->IsFlat = $IsFlat;
 }
 }

 $AppleCinema = new monitor("Apple", "30", "2560x1600", true);

 foreach($AppleCinema as $var => $val) {
 print "$var = $val\n";
 }
?>

PHP while loops are used for executing a block of code only so long as a given
condition is true. For example, this code will loop from 1 to 10, printing out
values as it goes:

<?php
 $i = 1;
 while($i <= 10) {
 print "Number $i\n";
 $i = $i + 1;
 }
?>

Notice that, again, PHP uses code blocks to represent the extent of our loop—
while loops start with an opening brace ({) and finish with a closing brace (}) to
tell PHP clearly which lines of code should be looped through.

Loops | 33

Th
e P

H
P

Lan
g

u
ag

e

Like if statements, you can put whatever conditions you choose into while loops,
but it is crucial that you change the value of the condition with each loop; other-
wise, the loop will execute forever.

While loops are most often used to increment a list where there is no known limit
to the number of iterations of the loop. For example:

while(there are still rows to read from a database) {
 read in a row;
 move to the next row;
}

A more common form of loop is the for loop, which is slightly more complicated.
A for loop is made up of a declaration, a condition, and an action: the declara-
tion is where a loop-counter variable is declared and set to a starting value; the
condition is where the loop-counter variable is checked against a value; and the
action is what should happen at the end of each iteration to change the loop
counter.

Here is how a for loop looks in PHP:

<?php
 for ($i = 1; $i < 10; $i++) {
 print "Number $i\n";
 }
?>

As you can see, the for loop has the three parts separated by semicolons. In the
declaration, we set the variable $i to 1. For the condition, we have the loop
execute if $i is less than 10. Finally, for the action, we add 1 to the value of $i for
every loop iteration—that is, every time the loop code is executed.

When run, this script will count from 1 to 10, outputting text along the way. Note
that it will not actually output Number 10 because we specify that $i must be less
than 10, not less than or equal to it. Here is the output:

Number 1
Number 2
Number 3
Number 4
Number 5
Number 6
Number 7
Number 8
Number 9

The PHP do...while construct is similar to a while loop. The difference is that the
do...while loop is executed at least once. Consider the following piece of code:

<?php
 $i = 11;
 do {
 print "Number $i\n";
 } while ($i < 10);
?>

34 | Chapter 4: The PHP Language

Using that code, "Number 11" will be printed before $i is compared against 10. If $i
is less than 10 when checked, the loop executes again. In comparison, that same
code could be written using a while loop:

<?php
 $i = 11;
 while ($i < 10) {
 print "Number $i\n";
 }
?>

The difference is that the while loop would output nothing, because it checks the
value of $i before entering the loop. Therefore, do...while loops are always
executed a minimum of once.

Infinite Loops
Perhaps surprisingly, infinite loops can often be helpful in your scripts. If you are
writing a program to accept people typing in data for as long as they want, it just
would not work to have the script loop 30,000 times or even 30,000,000 times.
Instead, the code should loop forever, constantly accepting user input until the
user ends the program by pressing Ctrl-C.

Here are the two most common types of infinite loops:

<?php
 while(1) {
 print "In loop!\n";
 }
?>

As “1” also evaluates to true, that loop will continue on forever.

<?php
 for (;;) {
 print "In loop!\n";
 }
?>

In that example, the for loop is missing the declaration, condition, and action
parts, meaning that it will always loop.

Special Loop Keywords
PHP gives you the break and continue keywords to control loop operation. We
already used break previously when we looked at case switching—it was used
there to exit a switch/case block, and it has the same effect with loops. When
used inside loops to manipulate the loop behavior, break causes PHP to exit the
loop and carry on immediately after it, and continue causes PHP to skip the rest of
the current loop iteration and go on to the next.

Loops Within Loops | 35

Th
e P

H
P

Lan
g

u
ag

e

Perl users should note that break and continue are equivalent to
Perl’s last and next statements.

For example:

<?php
 for ($i = 1; $i < 10; $i = $i + 1) {
 if ($i = = 3) continue;
 if ($i = = 7) break;
 print "Number $i\n";
 }
?>

That is a modified version of our original for loop script. This time, the output
looks like this:

Number 1
Number 2
Number 4
Number 5
Number 6

Note that Number 3 is missing, and the script exits after Number 6. When the current
number is 3, continue is used to skip the rest of that iteration and go on to Number
4. Also, if the number is 7, break is used to exit the loop altogether.

Loops Within Loops
You can nest loops as you see fit, like this:

for ($i = 1; $i < 3; $i = $i + 1) {
 for ($j = 1; $j < 3; $j = $j + 1) {
 for ($k = 1; $k < 3; $k = $k + 1) {
 print "I: $i, J: $j, K: $k\n";
 }
 }
}

Here’s the output:

I: 1, J: 1, K: 1
I: 1, J: 1, K: 2
I: 1, J: 2, K: 1
I: 1, J: 2, K: 2
I: 2, J: 1, K: 1
I: 2, J: 1, K: 2
I: 2, J: 2, K: 1
I: 2, J: 2, K: 2

In this situation, using break is a little more complicated, as it only exits the
containing loop. For example:

for ($i = 1; $i < 3; $i = $i + 1) {
 for ($j = 1; $j < 3; $j = $j + 1) {

36 | Chapter 4: The PHP Language

 for ($k = 1; $k < 3; $k = $k + 1) {
 print "I: $i, J: $j, K: $k\n";
 break;
 }
 }
}

This time the script will print out the following:

I: 1, J: 1, K: 1
I: 1, J: 2, K: 1
I: 2, J: 1, K: 1
I: 2, J: 2, K: 1

As you can see, the $k loop only loops once because of the break call. However,
the other loops execute several times. You can exercise even more control by spec-
ifying a number after break, such as break 2, to break out of two loops or switch/
case statements. For example:

for ($i = 1; $i < 3; $i = $i + 1) {
 for ($j = 1; $j < 3; $j = $j + 1) {
 for ($k = 1; $k < 3; $k = $k + 1) {
 print "I: $i, J: $j, K: $k\n";
 break 2;
 }
 }
}

That outputs the following:

I: 1, J: 1, K: 1
I: 2, J: 1, K: 1

This time the loop only executes twice, because the $k loop calls break 2, which
breaks out of the $k loop and out of the $j loop, so only the $i loop will go
around again. This could even be break 3, meaning break out of all three loops
and continue normally.

The break command applies to both loops and switch/case statements. For
example:

for ($i = 1; $i < 3; $i = $i + 1) {
 for ($j = 1; $j < 3; $j = $j + 1) {
 for ($k = 1; $k < 3; $k = $k + 1) {
 switch($k) {
 case 1:
 print "I: $i, J: $j, K: $k\n";
 break 2;
 case 2:
 print "I: $i, J: $j, K: $k\n";
 break 3;
 }
 }
 }
}

Including Other Files | 37

Th
e P

H
P

Lan
g

u
ag

e

The break 2 line will break out of the switch/case block and also out of the $k
loop, whereas the break 3 line will break out of those two and also the $j loop. To
break out of the loops entirely from within the switch/case statement, break 4 is
required.

Mixed-Mode Processing
A key concept in PHP is that you can toggle PHP parsing mode whenever and as
often as you want, even inside a code block. Here is a basic PHP script:

<?php
 if ($logged_in = = true) {
 print "Lots of stuff here";
 print "Lots of stuff here";
 print "Lots of stuff here";
 print "Lots of stuff here";
 print "Lots of stuff here";
 }
?>

As you can see, there are a lot of print statements that will only be executed if the
variable $logged_in is true. All the output is encapsulated into print statements,
but PHP allows you to exit the PHP code island while still keeping the if state-
ment code block open—here’s how that looks:

<?php
 if ($logged_in = = true) {
?>
 Lots of stuff here
 Lots of stuff here
 Lots of stuff here
 Lots of stuff here
 Lots of stuff here
<?php
 }
?>

The Lots of stuff here lines are still only sent to output if $logged_in is true, but
we exit PHP mode to print it out. We then reenter PHP mode to close the if state-
ment and continue—it makes the whole script easier to read.

Including Other Files
One of the most basic operations in PHP is including one script in another,
thereby sharing functionality. This is done by using the include keyword, speci-
fying the filename you want to include.

For example, consider the following file, foo.php:

<?php
 print "Starting foo\n";
 include 'bar.php';
 print "Finishing foo\n";
?>

38 | Chapter 4: The PHP Language

And also the file bar.php:

<?php
 print "In bar\n";
?>

PHP would load the file bar.php, read in its contents, then put it into foo.php in
place of the include 'bar.php' line. Therefore, foo.php would look like this:

<?php
 print "Starting foo\n";
 print "In bar\n";
 print "Finishing foo\n";
?>

If you were wondering why it only writes in the In bar line and not the opening
and closing tags, it is because PHP drops out of PHP mode whenever it includes
another file, then reenters PHP mode as soon as it comes back from the file.
Therefore, foo.php, once merged with bar.php, will actually look like this:

<?php
 print "Starting foo\n";
?>
<?php
 print "In bar\n";
?>
<?php
 print "Finishing foo\n";
?>

PHP includes a file only if the include line is actually executed. Therefore, the
following code would never include bar.php:

<?php
 if (53 > 99) {
 include 'bar.php';
 }
?>

If you attempt to include a file that does not exist, PHP will generate a warning
message. If your script absolutely needs a particular file, PHP also has the require
keyword, which, if called on a file that does not exist, will halt script execution
with a fatal error. Any file you include in your script will most likely be essential,
so it is usually best to use require.

In older versions of PHP, require was the equivalent of an uncondi-
tional include. If require was placed inside a conditional statement,
the file would be included even if the conditional statement evaluated
to false. This is no longer the case in PHP 5: files are included only
when the conditional statement they are in (if any) evaluates to true.

The most common way to use include files is as storage for common functions,
object definitions, and layout code. For example, if your site uses the same header
HTML on every page, you can start each of your pages with this:

include 'header.php';

Functions | 39

Th
e P

H
P

Lan
g

u
ag

e

That way, whenever you want to change the header of your site, you just need to
edit header.php. Two more keywords that are likely to be of use are include_once
and require_once, which operate in the same way as include and require, respec-
tively, with the difference that they will only include a file once, even if you try to
include it several times. Include_once and require_once share the same list of
“already included” files, but it is important to note that operating systems that are
case-sensitive, such as Unix, are able to include_once/require_once a file more
than once if the programmer uses varying cases for their filenames. For example:

<?php
 include_once 'bar.php';
 include_once 'BAR.php';
 include_once 'Bar.php';
?>

On Unix, that will attempt to include three entirely different files, because Unix is
case-sensitive. The solution is simple: use lowercase filenames for everything. On
Windows, filenames for inclusion are case-insensitive in PHP 5, meaning that
including BAR.php and bar.php will include the same file.

When you try to include or require a file, PHP first checks the directory in which
the script is running, and if it doesn’t find it there, it looks in its include path. The
include path is defined in your php.ini file using the include_path directive.

Each time you include a file using include or require, PHP needs to
compile it. If you’re using a code cache, this problem is avoided; if
not, PHP really does compile the same file several times. That is, if
you have various includes for the same file, it will need to be com-
piled and processed each time, so it’s best to use include_once().
Failing that, the get_included_files() and get_required_files()

functions tell you the names of the files you have already
included—they are actually the same function internally, so you
can use either one.

Functions
Despite the fact that PHP comes with such a large selection of functions to
perform all sorts of tasks, you will want to create your own functions when the
need arises. If you find yourself doing the same thing repeatedly, or you want to
share code across projects, user functions are for you.

Writing monolithic programs—code that starts at the beginning and runs straight
through to the end—is considered very bad for program maintainability, as you
are not able to reuse code. By writing functions, you make your code shorter,
easier to control and maintain, and less prone to bugs.

A Simple User Function

You can give your functions whatever name you like; they follow the same guide-
lines (without the $) as PHP’s variables. You may not redefine PHP’s built-in
functions, and care should be taken to ensure that your function names do not

40 | Chapter 4: The PHP Language

collide with existing PHP functions—just because you don’t have the imagepng()
function available, it doesn’t mean others also won’t.

The simplest user function in PHP looks something like this:

function foo() {
 return 1;
}

print foo();

You define your functions with the function keyword, followed by the name of
the function and two parentheses. The actual code your function will execute lies
between braces—in our example function $foo, our sole line of code is return 1;
we will get to that in a moment.

After the function definition, we can treat foo() like any other function, as seen in
line four where we print out the value it returns (known as its return value).

Return Values

You’re allowed to return one (and only one) value back from functions, and you
do this by using the return statement. In our example, we could have used
“return 'foo';” or “return 10 + 10;” to pass other values back, but return 1; is
easiest and usually the most common, as it is the same as return true;.

You can return any variable you want, as long as it is just one variable—it can be
an integer, a string, a database connection, etc. The return keyword sets up the
function return value to be whatever variable you use with it, then exits the func-
tion immediately. You can also just use return;, which means “exit without
sending a value back.” If you try to assign to a variable the return value of a func-
tion that has no return value (e.g., it uses return; rather than return $someval;),
your variable will be set to NULL.

Consider this script:

function foo() {
 print "In function";
 return 1;
 print "Leaving function...";
}

 print foo();
?>

That will output In function, followed by 1, and then the script will terminate.
The reason we never see Leaving function . . . is because the line return 1 passes
one back then immediately exits—the second print statement in foo() is never
reached.

If you want to pass more than one value back, you need to use an array—this is
covered in Chapter 5.

A popular thing to do is to return the value of a conditional statement, for
example:

return $i > 10;

Functions | 41

Th
e P

H
P

Lan
g

u
ag

e

If $i is indeed greater than 10, the > operator will return 1, so it is the same as
having return 1, but if $i is less than or equal to 10, it is the same as being return 0.

Parameters

You can design your functions to accept parameters by modifying the definition to
include as many as you want. You need to give each parameter the name you will
be using to refer to it inside the function—when you later call that function, PHP
will copy the values it receives into these parameters, like this:

function multiply($num1, $num2) {
 $total = $num1 * $num2;
 return $total;
}

 $mynum = multiply(5, 10);
?>

After running that script, $mynum will be set to 50. The multiply() function could
have been rewritten so that it was just one line: return $num1 * $num2, but it is
good to show that you can make your functions as long as you want.

Passing By Reference

When it comes to references, things get more complicated because you need to be
able to accept parameters by reference and also return values by reference. This is
done with the reference operator, &.

Marking a parameter as “passed by reference” is done in the function definition,
not in the function call. That is:

function multiply(&$num1, &$num2) {

is correct, whereas

$mynum = multiply(&5, &10);

is wrong. This means that if you have a function being used multiple times across
your project, you only need edit the function definition to make it take variables
by reference. Passing by reference is often a good way to make your script shorter
and easier to read—the choice is rarely driven by performance considerations.
Consider this code:

function square1($number) {
 return $number * $number;
}

$val = square1($val);

function square2(&$number) {
 $number = $number * $number;
}

square2($val);

42 | Chapter 4: The PHP Language

The first example passes a copy of $val in, multiplies the copy, then returns the
result, which is then copied back into $val. The second example passes $val in by
reference, and it is modified directly inside the function—hence square2($val) is
all that is required, instead of the first example’s copying.

A reference is a reference to a variable. If you define a function as accepting a refer-
ence to a variable, you cannot pass a constant into it. That is, given our definition
of square2(), you cannot call the function using square2(10); 10 is not a variable,
so it cannot be treated as a reference.

Returning by Reference

Unlike passing values by reference, where you specify the referenced nature of the
parameter in the function definition, to return references you need to specify such
in the definition and at call time. To specify that a function should return a refer-
ence, you place the ampersand reference operator before the function name, and
to specify that you wish to reference the result of the function as opposed to
copying it, you use the normal reference assign that you learned earlier.

Here’s how that looks:

function &return_fish() {
 $fish = "Wanda";
 return $fish;
}

$fish_ref =& return_fish();

Default Parameters

When designing your functions, it is often helpful to assign default values for
parameters that aren’t passed. PHP does this for most of its functions, and it saves
you having to pass in parameters most of the time, if they are usually the same.

To define your own default parameters for a function, add the constant value you
would like them to be set to after the variables, like this:

function doHello($Name = "Paul") {
 return "Hello $Name!\n";
}

doHello();
doHello("Paul");
doHello("Andrew");

That script will output the following:

Hello Paul!
Hello Paul!
Hello Andrew!

Now, consider this function:

function doHello($FirstName, $LastName = "Smith") { }

Functions | 43

Th
e P

H
P

Lan
g

u
ag

e

That does not mean that both $FirstName and $LastName should be set to Smith.
Instead, only $LastName gets that value—PHP treats the two variables as function-
ally independent of each other, which means you can use code like this:

function doHello($FirstName = "John", $LastName = "Smith") {
 return "Hello, $FirstName $LastName!\n";
}

So, to greet three people named John Smith, Tom Davies, and Tom Smith, you
would use this code:

doHello();
doHello("Tom", "Davies");
doHello("Tom");

If you wanted to greet someone named John Wilson, ideally you would let PHP
fill in the first parameter for you, as John is the default for the function, and you
would provide the Wilson part. But if you try code like this, you will see it does
not work:

doHello("Wilson");

Instead of John Wilson, you will get Wilson Smith—PHP will assume the param-
eter you provided was for the first name, as it fills its parameters from left to right.
The same logic dictates that you cannot put a default value before a non-default
value, like this:

function doHello($FirstName = "Joe", $LastName) { }

If someone used doHello("Peter"), would they be trying to provide a value for
$FirstName to use instead of the default, or do they want the default value in there
and Peter for $LastName? Hopefully you can see why PHP will flag up an error if
you attempt this!

Variable Parameter Counts

The printf() function (see Chapter 7) is able to take an arbitrary number of
parameters—it could take just one parameter, or five, or fifty, or five hundred. It
can take as many as are passed into it by the user. This is known as a variable-
length parameter list, and it is automatically implemented in user functions. For
example:

function some_func($a, $b) {
 $j = 1;
}

some_func(1,2,3,4,5,6,7,8);

Here the function some_func() is defined to take only two parameters, $a and $b,
but we call it with eight parameters and the script should run without a problem.
This is one aspect in which PHP varies greatly from C: in C, your functions must
be used precisely as declared in their prototypes. In the example above, 1 will be
placed into $a, and 2 will be placed into $b, but what happens to the other
parameters?

44 | Chapter 4: The PHP Language

Coming to your rescue are three functions: func_num_args(), func_get_arg(), and
func_get_args(), of which the first and last take no parameters. To get the
number of arguments that were passed into your function, call func_num_args()
and read its return value. To get the value of an individual parameter, use func_
get_arg() and pass in the parameter number you want to retrieve to have its value
returned back to you. Finally, func_get_args() returns an array of the parameters
that were passed in. Here’s an example:

function some_func($a, $b) {
 for ($i = 0; $i < func_num_args(); ++$i) {
 $param = func_get_arg($i);
 echo "Received parameter $param.\n";
 }
}

function some_other_func($a, $b) {
 $param = func_get_args();
 $param = join(", ", $param);
 echo "Received parameters: $param.\n";
}

some_func(1,2,3,4,5,6,7,8);
some_other_func(1,2,3,4,5,6,7,8);

Using func_num_args(), you can easily implement function error checking. You
can, for example, start off each of your functions by checking to make sure func_
num_args() is what you are expecting, and, if not, exit. Once you add func_get_
arg() into the mix, however, you should be able to easily create your own func-
tions that work with any number of parameters.

Variable Scope in Functions

Variables declared outside of functions and classes are considered global, which
means they are generally available elsewhere in the script. However, as functions
are independent blocks, their variables are self-contained and do not affect vari-
ables in the main script. In the same way, variables from the main script are not
implicitly made available inside functions. Take a look at this example:

function foo() {
 $bar = "wombat";
}

$bar = "baz";
foo();
print $bar;

Execution of the script starts at the $bar = "baz" line, and then calls the foo()
function. Now, as you can see, foo() sets $bar to wombat, then returns control to
the main script where $bar is printed out. Function foo() is called, and, having no
knowledge that a $bar variable exists in the global scope, creates a $bar variable in
its local scope. Once the function ends, all local scopes are tossed away, leaving
the original $bar variable intact.

Functions | 45

Th
e P

H
P

Lan
g

u
ag

e

Overriding Scope with the GLOBALS Array

The $GLOBALS superglobal array allows you to access global variables even from
within functions. All variables declared in the global scope are in the $GLOBALS
array, which you can access anywhere in the script. Here is a demonstration:

function foo() {
 $GLOBALS['bar'] = "wombat";
}

$bar = "baz";
foo();
print $bar;

That would print wombat to the screen because the foo() function literally alters a
variable outside of its scope. Even after it returns control back to the main script,
its effect is still felt. You can read variables in the same way:

$localbar = $GLOBALS['bar'];

However, that is quite hard on the eyes. PHP allows you to use a special keyword,
GLOBAL, to allow a variable to be accessed locally:

function myfunc() {
 GLOBAL $foo, $bar, $baz;
 ++$baz;
}

That would allow a function to read the global variables $foo, $bar, and $baz. The
++$baz line will increment $baz by 1, and this will be reflected in the global scope
also.

Recursive Functions

Sometimes the easiest way to model a problem is to make a function call itself—a
technique known as recursive function calling. Calculating factorials is a
commonly cited example. The factorial of 6 is 6 * 5 * 4 * 3 * 2 * 1, or 720, and is
usually represented as “6!”. So, given that factorial 6 (6!) is 720, and “7!” is “7 *
6!”, you need only calculate “6!” then multiply the result by 7 to get “7!”.

This equation can be represented like this: “n! = n * ((n—1)!)”. That is, the facto-
rial for any given number is equal to that number multiplied by the factorial of the
number one lower—clearly a case for recursive functions. What we need is a func-
tion that will accept an integer and, if that integer is not 0, call the function
again—this time passing in the same number it accepted, minus 1—then multiply
that result by itself. Here is a working script to calculate factorials:

function factorial($number) {
 if ($number = = 0) return 1;
 return $number * factorial($number—1);
}

print factorial(6);

That will output 720, although you can easily edit the factorial() function call to
pass in 20 rather than 6, for example. Factorials increase in value very quickly

46 | Chapter 4: The PHP Language

(“7!” is 5040, “8!” is 40320, etc.), so you will eventually hit a processing limit—
not time, but merely recursive complexity; PHP will only allow you to have a
certain level of recursion (“18!” is about the max you are likely to be able to calcu-
late using the above code).

As you can see, recursive functions make programming certain tasks particularly
easy, and it is not all math, either—consider how easy it is to write a function
showchildren() for a forum, which automatically shows all replies to a message,
and all replies to those replies, and all replies to the replies to the replies, and so
on.

47

5
Variables and Constants

In this chapter, we examine the different variable types used in PHP, which to use
and when, and also how to convert between them. This includes constants, which
can—for the most part—be considered as variables that may be set only once.

You needn’t understand some of the more complicated parts of this chapter, such
as references or variable variables, unless you want full comprehension of the
language. Most people will gain this knowledge through time and experience.

Types of Data
PHP has seven data types, and all but one hold a specific kind of information. The
seven types are: string, integer, float, boolean, array, object, and resource.
You’ll be using them all at different times throughout this book, so it is worth
remembering what they are.

Strings hold characters (literally: a string of characters) such as “a,” “abc,” “Jack
and Jill went up the hill to fetch a pail of water,” etc. Strings can be as short or as
long as you want—there’s no limit to size. PHP considers strings to be case-
sensitive (i.e., Foo and FOO are different), which means that some string func-
tions have case-insensitive equivalents.

Integers hold whole numbers, either positive or negative, such as 1, -20,
55028932, etc. There is a maximum limit to the size of integers—any numbers
lower than -2147483647 and any numbers higher than 2147483647 are automati-
cally converted to floats, which can hold a much larger range of values.

Floats hold fractional numbers as well as very large integer numbers, such as 4.2,
1.00000001, and 2147483647000.

Booleans hold either true or false. Behind the scenes, booleans are, in fact, just
integers—PHP considers the number 0 to be false, and everything else to be true.

48 | Chapter 5: Variables and Constants

Arrays are a special variable type in that they hold multiple values like a container,
and can even hold arrays of arrays (known as multidimensional arrays).

Like arrays, objects are complex variables that have multiple values, but they can
also have their own functions (often called methods) associated with them. We
cover this in Chapter 8.

Resources are anything that is not PHP data—this might be picture data you have
loaded from a file, the result of an SQL query, and so on. Internally, a resource
variable holds a handle to the actual data, because it is created outside of PHP.
This means you should free up your resources when you are finished with them.

True or False
PHP considers some values to be equivalent to true, and others equivalent to
false. Most numbers are true (e.g., 1, 59, 1,203,391,462), but 0, 0.0, 0.00000 are
all false.

Nearly any string with a value in it is considered to be true, so “a,” “193” (an
integer inside a string), and “This is a test” are all true. However, an empty string
“”and “0” are both false. Confusingly, though, “0.0” is true, as is “0.0000.”

Strings
You can use {x} notation with strings to read or write individual characters. For
example:

$mystr = "Jello, world?";
$mystr{0} = "H";
$mystr{12} = "!";
print $mystr;

Starting off with a string that doesn’t make much sense, we change the first char-
acter (position 0) to H, then the twelfth character to an exclamation mark,
forming “Hello, world!”. As you can see, the first character in a string is numbered
0. That is, a string of length 13, as above, will have its last character at position
12.

Escape Sequences

Escape sequences, the combination of the escape character \ and a letter, are used
to signify that the character after the escape character has a special meaning. If
you wanted to have the string “And then he said, “That is amazing!”, which was
true,” you would need escape characters because you have double quotes inside
double quotes. The valid escape sequences in PHP are shown in Table 5-1.

Table 5-1. Escape sequences and their meanings

\” Print the next character as a double quote rather than treating it as a string terminator

\’ Print the next character as a single quote rather than treating it as a string terminator

\n Print a new line character

Integers | 49

V
ariab

les an
d

Co
n

stan
ts

Here is a code example of these escape sequences in action:

<?php
 $MyString = "This is an \"escaped\" string";
 $MySingleString = 'This \'will\' work';
 $MyNonVariable = "I have \$zilch in my pocket";
 $MyNewline = "This ends with a line return\n";
 $MyFile = "c:\\windows\\system32\\myfile.txt";
?>

Many people forget to escape Windows-style filesystem paths properly, but as you
can see, it is simply a matter of adding the appropriate backslashes. If you were to
print $MyFile, you would get this:

c:\windows\system32\myfile.txt

This is because the escape characters are there to ensure PHP reads the string
correctly—PHP reads the \\, understands it to be an escape sequence, so just
stores \.

Along the same lines, most escape sequences only work in double-quoted strings—
if you type Hello!\n\n\n, PHP will actually print out the characters \n\n\n rather
than converting them to new lines. The only escape sequence that works within a
single-quoted string is \', which tells PHP that the single quote is not the termina-
tion of a string but a literal single quote. It is important to note that escape
characters are considered just one character by PHP. They are represented as two
in PHP because they cannot physically be typed using your keyboard.

Since the only escape sequence that works in single quotes is \', it is safe to use
non-escaped Windows-style filenames in your single-quoted strings, like this:

<?php
 $filename = 'c:\windows\me.txt';
 echo $filename;
?>

Integers
Most people specify their numbers using base 10, meaning that the digits 0 to 9
are used. However, you may also specify them in hexadecimal (base 16) or octal
(base 8). The octal number system only uses the digits 0 to 7. For example, the
decimal number 3291 represented in octal is 6333. Represented in hexadecimal,
which uses 0 to 9, then A, B, C, D, E, and F, the same number is CDB.

\t Print a tab character

\r Print a carriage return (used primarily on Windows)

\$ Print the next character as a dollar rather than treating it as part of a variable name

\\ Print the next character as a backslash rather than treating it as an escape character

Table 5-1. Escape sequences and their meanings (continued)

50 | Chapter 5: Variables and Constants

Decimal, octal, and hexadecimal all share the digits 0 to 7, which means that a
number like 6333 would look the same in any of the bases. Unless you are specific
about which base you want, PHP assumes decimal. For example:

$octalnum = 6333;

PHP interprets that as 6333 in decimal, which would evaluate to 14,275 in octal.
To specify that a number is written in octal and not decimal, you must precede it
with a 0 (zero). So, to say that you mean $octalnum to be set to octal 6333 (decimal
3291), you would use this code:

$octalnum = 06333;
print $octalnum;

That script outputs 3291, as PHP always works with decimal internally, and
converts octal 06333 to decimal 3291 when $octalnum is set. Because a leading zero
causes numbers to be interpreted in octal, you should not try to align numbers on
different lines by using leading zeroes unless you specifically want them in octal!

To specify a number in hexadecimal, precede it with 0x. To assign the number 68,
you would use this:

$hexnum = 0x44;
print $hexnum;

Again, the value is printed out in standard decimal. Octal notation is very rarely
used in PHP—if you are on Unix, you may have to use it to specify file access
permissions, but that’s generally the only use. Hexadecimal notation (“hex”) is
more common, mostly because many hashing algorithms return text using hexa-
decimal characters, and also because HTML’s color codes are written in hex.

Floats
Integers are good for whole numbers, but for everything else you will need
floating-point numbers, often called real numbers or just floats. These are
numbers like 1.1, 1.1111112, -12345678.9123, and even 1.0. You may also specify
an exponent with your float, i.e., 3.14159e4 is equal to 31415.9.

You may not specify your floats using anything but decimal, so -0x4.AF will
generate an error. Unlike Perl, there is no thousands separator in PHP, so values
such as 1_221_279 will not work.

Here are some examples of floating-point arithmetic:

$a = 1.132324;
$b = $a + 1;
$b = $a + 1.0;
$c = 1.1e15;
$d = (0.1+0.7) * 10;

Mixing a float with an integer, as in line two, results in another float so that PHP
doesn’t lose any accuracy. Line four specifies a very large exponent; if you print
out the resulting number, you will actually get 1.1E+015 back because the number
is so large.

Automatic Type Conversion | 51

V
ariab

les an
d

Co
n

stan
ts

The last example appears to assign the value 8 to $d, but owing to inherent incon-
sistencies in floating-point numbers, the value will actually be 7.9999999999999991.
Usually this is not a problem, because rounding that value even to 10 decimal
places gives you 8, but it does mean that you should avoid comparing floating-
point numbers if possible.

Automatic Type Conversion
As PHP is loosely typed (which means that a given variable can change its type as
needed), it will automatically convert one type of variable to another whenever
possible. Most data types are freely convertible to most other data types; this code
illustrates that point:

$mystring = "12";
$myinteger = 20;
print $mystring + $myinteger;

That script will output 32, despite the fact that one of the variables is a string and
the other is an integer. PHP will convert the non-integer operand, $mystring, into
an integer, and will find that it is, in fact, an integer inside a string. If PHP
converts a string such as “wombat” to an integer, it becomes 0.

Problems with automatic conversion occur when either no meaningful conver-
sion is possible, or when conversion yields unexpected results. For example,
calling print on an array makes PHP print out Array; it doesn’t automatically
convert the array to a string of all its elements. An exception to this is treating an
object like a string, and this is covered more deeply in Chapter 8.

Unexpected results occur when PHP converts values and produces unhelpful
results. For example, converting from a boolean to a string will produce a 1 if the
boolean is set to true, or an empty string if false. Consider this script:

$bool = true;
print "Bool is set to $bool\n";
$bool = false;
print "Bool is set to $bool\n";

That will output the following:

Bool is set to 1
Bool is set to

As you can see, it didn’t print a 0 for false. To solve this problem, and others like
it, tell PHP how you want the value converted by typecasting—forcing the result
to be a specific type.

The above script should be rewritten to typecast the boolean to an integer, as this
will force boolean true to be 1 and boolean false to be 0. To do this, we place the
name of the type we’re converting to in parentheses before our variable name, like
this:

$bool = true;
print "Bool is set to $bool\n";
$bool = false;
print "Bool is set to ";
print (int)$bool;

52 | Chapter 5: Variables and Constants

This time the script outputs 1 and 0 as we wanted.

PHP will automatically convert data types as necessary—you need not worry
about it happening. However, you can typecast any type of variable into any other
type, like this:

$mystring = "wombat";
$myinteger = (integer)$mystring

At first, $mystring contains a string. However, we typecast it to be an integer, so
PHP will convert it to an integer and place the result into $myinteger. You can
typecast as boolean using (bool), string using (string), and floating-point using
(float).

Typecasting is most often used to specifically enforce a type to provide extra secu-
rity or to ensure a set type of data is being used. For example, if your script
absolutely requires an integer number, it’s a smart move to typecast your variable
with (integer) so that PHP will convert any other type to integer or do nothing if
the type is already integer. Converting a float to an integer will round the number
down to the nearest whole number, and is actually faster than using the equiva-
lent rounding function.

Checking Whether a Variable Is Set: isset()
Although most functions are covered in Chapter 7, you need to know the isset()
function (literally, “is a variable set?”) to make the most of this chapter. To use
the function, send it a variable as the only parameter, and it will return true or
false depending on whether the variable has a value assigned to it. For example:

$foo = 1;
if (isset($foo)) {
 echo "Foo is set\n";
} else {
 echo "Foo is not set\n";
}

if (isset($bar)) {
 echo "Bar is set\n";
} else {
 echo "Bar is not set\n";
}

That will output "Foo is set" and "Bar is not set". Usually if you try to access a
variable that isn’t set, like $bar above, PHP will issue a warning that you are trying
to use an unknown variable. This does not happen with isset(), which makes it a
safe function to use.

Variable Scope
Each variable has a life span in which it exists, known as its scope. It is technically
possible for a PHP script to have several variables called $a in existence at one
point in time; however, there can only be one active $a at any one time.

Variable Variables | 53

V
ariab

les an
d

Co
n

stan
ts

Any variables not set inside a function or an object are considered global—that is,
they are accessible from anywhere else in the script, except inside another func-
tion or an object. We’ll be looking at function and object scope later on, but for
now, it is necessary only to understand that it is possible to have multiple vari-
ables of the same name.

Variable Variables
Variable variables are somewhat complicated to use, and even more complicated
to explain, so you might need to reread this section a few times before it makes
sense! Variable variables allow you to access the contents of a variable without
knowing its name directly—it is like indirectly referring to a variable. Here is an
example:

$bar = 10;
$foo = "bar"

From that point, there are two ways we can output the value of $bar: we can
either use print $bar, which is quite straightforward, or we can take advantage of
the concept of variable variables and use print $$foo;.

By using $$foo, PHP will look up the contents of $foo, convert it to a string, then
look up the variable of the same name and return its value. In the example above,
$foo contains the string “bar”, so PHP will look up the variable named $bar and
output its value—in this case, 10. It is possible to use as much indirection as you
want, giving variables like $$$foo and $$$$$$$bar. That said, anything beyond one
level of indirection can lead to very subtle bugs, and so is best avoided.

Variable variables are often used to choose between two values dynamically, so
that the output part of a script references $var but another part of the script actu-
ally sets what $var points to. For example, if you have calculated the temperature
in Fahrenheit and Celsius and want to choose only one to print out, you might
use this code:

$temperature_f = 59;
$temperature_c = 15;
$units = "temperature_f";
$t = $$units;

That assigns the value of $temperature_f to $t.

Variable variables can be helpful from time to time, but are clumsy to use.
Furthermore, they only get more clumsy the more indirection you use. For
example, the next script outputs “Variable!” four times, but I hope you agree it is
not very easy to read:

$foo = "Variable!\n";
$bar = "foo";
$wom = "bar";
$bat = "wom";
print $foo;
print $$bar;
print $$$wom;
print $$$$bat;

54 | Chapter 5: Variables and Constants

Superglobals
Variables that come into PHP arrive inside one of several special arrays known
collectively as the superglobals, so named because they are available throughout
your script, even inside objects and other arrays. Superglobals include form data
sent from your visitor, cookie data, session information, local server information,
and more, making them good to keep around. Superglobals were not available in
PHP prior to v4.1, but there were older alternatives that provided much of the
functionality. Superglobals are superior, though, so it is recommended that all
new scripts use them.

There are nine superglobal arrays available for use, categorized by type of vari-
able. These are shown in Table 5-2.

Many programmers still use the old syntax for these variables ($HTTP_SERVER_VARS,
etc.), so you may wonder why they are deprecated. There are two differences
between the old versions and the new versions:

1. The new versions are much shorter to type. Most people would rather type $_
GET than $HTTP_GET_VARS each time they want to access a variable.

2. The new versions are automatically global everywhere in your script, even
inside functions. The older variables were not available inside functions
unless you specifically requested for them to be available.

Table 5-2. The superglobal arrays

Name Functionality

$_GET Contains all variables sent via a HTTP GET request. For example, a URL of myfile.
php?name=Paul would load myfile.php and give you $_GET["name"] with the value “Paul”.
Users of older PHP versions will have used $HTTP_GET_VARS array, which, although deprecated, is
still available for use.

$_POST Contains all variables sent via a HTTP POST request. This is similar to the old $HTTP_POST_VARS
array, which, although deprecated, is still available for use.

$_FILES Contains all variables sent via a HTTP POST file upload. This is similar to the old $HTTP_POST_
FILES array, which is also deprecated.

$_COOKIE Contains all variables sent via HTTP cookies. This is similar to the old $HTTP_COOKIE_VARS array,
which is deprecated like the rest. See Chapter 10 for more information on cookies.

$_REQUEST Contains all variables sent via HTTP GET, HTTP POST, and HTTP cookies. This is basically the equivalent
of combining $_GET, $_POST, and $_COOKIE, and is less dangerous than using $GLOBALS.
However, as it does contain all variables from untrusted sources (that is, your visitors), it is best
avoided. There’s no equivalent to $_REQUEST in versions of PHP before v4.1.

$_SESSION Contains all variables stored in a user’s session (server-side data store). This is similar to the old
$HTTP_SESSION_VARS array, which is deprecated. See Chapter 10 for more information on
sessions.

$_SERVER Contains all variables set by the web server you are using, or other sources that directly relate to the
execution of your script (see examples in the next section). This is similar to the old $HTTP_
SERVER_VARS array, which is deprecated.

$_ENV Contains all environment variables set by your system or shell for the script (see examples in the next
section). This is similar to the old $HTTP_ENV_VARS array, which is deprecated.

$GLOBALS An array containing all global variables in your script, including other superglobals. $GLOBALS has
been available since PHP 3, and its operation has not changed.

Using $_ENV and $_SERVER | 55

V
ariab

les an
d

Co
n

stan
ts

There are two superglobal arrays that you should avoid unless you particularly
need them, namely, $GLOBALS and $_REQUEST. Both of these arrays are combina-
tions of the other arrays and may include untrusted user data. When you use $_
COOKIE['somevar'], you know that the value has come from a cookie on the user’s
machine, and not from someone editing your site’s URL. When using $_
REQUEST['somevar'], you no longer have that guarantee, and you are left wholly
trusting the user. Of course, it is also possible that a user has edited the cookie on
her machine, so place no more trust in $_COOKIE data than you have to.

Scripts written before superglobals were available need to be converted to use
them. If you would rather not convert the script—either because you need the
backward compatibility with very old PHP versions, or you simply don’t have the
time—then you have two options:

1. Enable register_globals in your php.ini file. This will revert PHP back to its
insecure, pre-4.1 functionality—the superglobals will still be there, but all
input will be automatically converted into variables.

2. Use the function import_request_variables() to extract a given super-
global’s contents into normal variables.

One important thing to note is that $GLOBALS always contains itself too, which
means that if you try to cycle through each variable in $GLOBALS in some older
versions of PHP, you will enter into a recursive loop. Modern PHP releases detect
array recursion and print the message "*RECURSION*" when $GLOBALS tries to
print itself.

Using $_ENV and $_SERVER
Before you get control in your script, PHP sets several variables for you containing
information about the server, the environment, and your visitor’s request. These
are stored in the superglobal arrays $_ENV and $_SERVER, but their availability
depends on whether the script is being run through a web server or on the
command line.

The most commonly used $_SERVER variables are shown in Table 5-3. Note: of
these, only PHP_SELF is available on the command line.

Table 5-3. Useful preset variables in the $_SERVER superglobal

Name Value

HTTP_REFERER If the user clicked a link to get the current page, this will contain the URL of the previous
page, or it will be empty if the user entered the URL directly.

HTTP_USER_AGENT The name reported by the visitor’s web browser.

PATH_INFO Any data passed in the URL after the script name.

PHP_SELF The name of the current script.

REQUEST_METHOD Either GET or POST.

QUERY_STRING Includes everything after the question mark in a GET request. Not available on the command
line.

56 | Chapter 5: Variables and Constants

You need to use HTTP_REFERER and not HTTP_REFERRER. This is one of
the few misspellings ever to make it into a web standard, but it’s
now in widespread use and too late to change.

Of those, HTTP_REFERER and HTTP_USER_AGENT are the most important, as you can
use these two to find out a lot about your visitor and then take the appropriate
action. For example:

<?php
 if (isset($_SERVER['HTTP_REFERER'])) {
 print "The page you were on previously was {$_SERVER['HTTP_
REFERER']}
";
 } else {
 print "You didn't click any links to get here
";
 }
?>

Click me!

If you load that page in your browser by typing the URL in by hand, the “You
didn’t click any links to get here” text is shown because HTTP_REFERER has not been
set. However, if once the page is loaded you follow the “Click me!” link, the page
will reload itself; this time, HTTP_REFERER will be set and the other message should
appear. Although it can be easily spoofed, HTTP_REFERER is generally a good way to
make sure a visitor came from a certain page—whether you want to use that to
say, “You can’t download my files because you came from another site” or
“Welcome, Google users!” is up to you.

The PATH_INFO element in $_SERVER is particularly interesting, because it allows
you to grab directory information specified after the script. Consider this script:

if (isset($_SERVER['PATH_INFO'])) {
 print "The page you requested was {$_SERVER['PATH_INFO']}
";
} else {
 print "You didn't request a page
";
}

Save that code as pathinfo.php, then load it in your web browser. You will see You
didn’t request a page. Edit the URL, adding a filename onto the end of pathinfo.php.
For example: www.yoursite.com/pathinfo.php/path/to/some/file.txt. Now when you
load the page, you should see that extra path information printed out. This is
commonly used in online filesystems, as it means that the URL required to get to a
file is just the name of the script followed by the filename wanted.

The referrer value is set by the web browser, which means it can be
faked. One common example of this is to edit the “hosts” file of the
computer (/etc/hosts in Unix; c:\windows\system32\drivers\etc\ hosts
in Windows) so that the current computer is used as www.example.
com. Then, J. Evil Hacker loads a simple page on his computer with
a link to your “secure” script, and his browser will report that he
came from example.com. As a result, you should never rely on HTTP_

REFERER to be set, valid, or truthful, but it is a good start.

References | 57

V
ariab

les an
d

Co
n

stan
ts

The $_ENV variable contains environment variables in your system. On Windows,
this usually includes variables like “OS” (probably set to “Windows_NT”),
“WINDIR” (probably set to “C:\WINDOWS”), and so on. If you are using PHP
on the command line, the $_SERVER superglobal will include all the variables from
$_ENV.

References
When you use the = (assignment) operator, PHP performs a “copy assignment”—
it takes the value from operand two and copies it into operand one. While this is
fine for most purposes, it doesn’t work when you want to be able to change
operand two later on and have operand one also change.

In this situation, references are helpful; they allow you to have two variables
pointing to the same data. Once two variables are pointing to the same data, you
can change either variable and the other one will also update. To assign by refer-
ence, you need to use the reference operator (&) after the equals operator (=),
giving =&.

Perl programmers should not confuse the PHP references with Perl
references. Instead, the equivalent in Perl and some other lan-
guages is called aliasing.

Here’s how it looks in PHP:

$a = 10;
$b =& $a;
print $a;
print $b;
++$a;
print $a;
print $b;
++$b;
print $a;
print $b;

Here we’re using the reference operator to make $b point to the same value as $a,
as can be seen in the first two print statements. After incrementing $a, both vari-
ables are printed out again, and both are 11, as expected. Finally, to prove that the
relationship is two-way, $b is incremented, and again both $a and $b have been
updated with the one call.

58 | Chapter 5: Variables and Constants

As of PHP 5, objects are passed and assigned by reference by
default. Technically, each object has a “handle,” which uniquely
identifies that object. When you copy an object, you are actually
copying its object handle, which means the copy will reference the
same object as the original. This was different before PHP 5—
objects were treated like other types of variables and copied entirely
when assigned. This led to many programmers inadvertently copy-
ing lots of information in their scripts without realizing it, which
was wasteful. Therefore, from PHP 5 onward, objects are always
assigned by reference and passed into functions by reference, avoid-
ing the speed hit. See Chapter 8 for more information.

References are also used to allow a function to work directly on a variable rather
than on a copy.

Constants
If you find yourself setting a variable for convenience and never changing it during
a script, chances are you should be using a constant. Constants are like variables
except that once they are defined, they cannot be undefined or changed—they are
constant, as the name suggests. Unlike many other languages, constants are not
faster than variables in PHP. The primary advantage to using constants is the fact
that they do not have a dollar sign at the front and, therefore, are visibly different
from variables. Furthermore, constants are automatically global across your entire
script, unlike variables.

To set a constant, use the define() function. It takes two parameters: the first
being the name of the constant to set, and the second being the value to set. For
example, the following line of code sets the constant SecondsPerDay, then prints it
out:

define("SecondsPerDay", 86400);
print SecondsPerDay;

Note that it is not $SecondsPerDay or SECONDSPERDAY—the names of constants, like
the names of variables, are case-sensitive—but unlike variables, they do not start
with a dollar sign. You can change this behavior by passing true as a third param-
eter to define(), which makes the constant case-insensitive:

define("SecondsPerDay", 86400, true);
print SecondsPerDay;
print SECONDSperDAY;

There are two helpful functions available for working with constants, and these
are defined() and constant(). The defined() function is basically the constant
equivalent of isset(), as it returns true if the constant string you pass to it has
been defined. For example:

define("SecondsPerDay", 86400, true);
if (defined("Secondsperday")) {
 // etc
}

Constants | 59

V
ariab

les an
d

Co
n

stan
ts

Note that you should pass the constant name into defined() inside quotes.

Finally, constant() is a function that at first seems redundant, but is important
nonetheless: it returns the value of a constant. While you can get the value of a
constant just by using it—e.g., "print MY_CONSTANT;"—how would you accom-
plish that if you didn’t know the constant’s name? If you were using a variable,
you could use a variable variable, but this is not possible with constants—hence
the constant() function.

define("SecondsPerDay", 86400, true);
$somevar = "Secondsperday";
print constant($somevar);

Preset Constants

There are a number of constants automatically set by PHP in order to save you
having to recalculate complicated values each time in your script, but PHP also
provides other helpful information. For example, PHP always sets the __FILE__,
__LINE__, __FUNCTION__, __CLASS__, and __METHOD__ constants for you—note that
there are double underscores on either side to make it unlikely you will use these
names for your own constants.

These five preset constants are shown in Table 5-4.

Using these special constants, it is very easy to output complex error reports or
other debugging information.

PHP defines numerous constants for use in its functions and extensions—a great
many of these are outlined elsewhere in this book, and they help you remember
values. For example, if you want to know the value of the mathematical figure pi,
use M_PI, which is much easier than remembering 3.141592653. To extract (or
“export”) variables from an array using extract() and always using a prefix, use
EXTR_PREFIX_ALL. Again, that’s much easier to remember than a numerical value
such as 3, but does the same thing.

There are some generic coding constants that you might find useful, such as PHP_
EOL to grab the newline character for the current OS, PHP_OS to grab the name of
the OS, PHP_VERSION to get the version number of the engine, and DEFAULT_
INCLUDE_PATH to see where PHP will include files from, if it can’t find them in the
local directory.

Table 5-4. Helpful constants preset for you by PHP

Constant Function

__FILE__ The name of the script that’s running. Note that this reports the file that contains the current line
of code, so this will report the name of an include file if applicable.

__LINE__ The line number PHP is executing. Like __FILE__, this holds the line number of the current
line of code, which may be in an include file if applicable.

__FUNCTION__ The name of the function PHP is currently inside

__CLASS__ The name of the class of the object being used

__METHOD__ The name of the class function PHP is currently inside

60 | Chapter 5: Variables and Constants

There are predefined constants to do all sorts of things inside your code, and there
is not room to cover them all here. For a comprehensive and up-to-date list, check
the PHP manual at http://www.php.net/manual/en/reserved.constants.php.

Mathematical Constants

There are several values in mathematics that are used in math-related scripts but
take some time to calculate, so, to save time, PHP defines them as constants avail-
able to you in every script. For example, if you want to use the value of pi, you
can use the preset constant value M_PI.

So, to calculate the area a of a circle based upon its radius r, the formula is a = pi
* r2. Using PHP, we can write this as:

$area = M_PI * ($radius * $radius);
// or...
$area = M_PI * pow($radius, 2);

The most popular mathematical constants are listed in Table 5-5.

Arrays
To model our surroundings accurately in a programming environment, we need
to recognize that some types of data naturally group together. Colors, for
example, naturally clump together into one group. Rather than having hundreds
of separate variables—one for each color—it makes more sense to have one vari-
able that holds a list, or array, of colors.

First Steps

PHP has built-in support for arrays of data, and you can create them using the
array() function or using a special operator, [].

There are two things you need to understand before continuing:

Table 5-5. Mathematical constants

Constant Value Meaning

M_PI 3.14159265358979323846 pi

M_PI_2 1.57079632679489661923 pi/2

M_PI_4 0.78539816339744830962 pi/4

M_1_PI 0.31830988618379067154 1/pi

M_2_PI 0.63661977236758134308 2/pi

M_SQRTPI 1.77245385090551602729 sqrt(M_PI)

M_2_SQRTPI 1.12837916709551257390 2/sqrt(M_PI)

M_SQRT2 1.41421356237309504880 sqrt(2)

M_SQRT3 1.73205080756887729352 sqrt(3)

M_SQRT1_2 0.70710678118654752440 1/sqrt(2)

Arrays | 61

V
ariab

les an
d

Co
n

stan
ts

• An array is a normal PHP variable, but it works like a container—you can put
other variables inside it.

• Each variable inside an array is called an element. Each element has a key and
a value, which can be any other variable.

Here is a basic example:

$myarray = array("Apples", "Oranges", "Pears");
$size = count($myarray);
print_r($myarray);

On the first line, we see the most basic way to create an array, the array() func-
tion. This takes a series of variables or values as its parameters (you can pass no
parameters to get an empty array, or as many as you want), and returns an array
containing those variables. In that example, $myarray contains three elements.
Line two contains a new function, count(), that returns the number of elements
existing in the array passed to it.

Line three contains another new function, print_r(). This takes just one param-
eter, but it outputs detailed information about a variable, such as its type, length,
and contents. In the case of arrays, print_r() iteratively outputs all elements
inside the array—it’s a good way to see how arrays work.

Here is the output of print_r() from the above code:

Array
(
[0] => Apples
[1] => Oranges
[2] => Pears
)

There are our three values—Apples is at index 0 in the array (signified by [0]=>),
Oranges is at index 1 in the array, and Pears is at index 2 in the array. If you are
running your scripts through a web browser as opposed to from the command
line, you may find it helpful to put a HTML <pre> tag before your print_r() calls,
as this will format them for easier reading.

Using the proper array terminology defined earlier, the 0, 1, and 2 indices are the
keys of each element, the Apples, Oranges, and Pears are the values of each
element. The key and the value together are the elements themselves.

Note that you can provide a second parameter to print_r(), which, if set to true,
will make print_r() pass its output back as its return value, and not print
anything out. To achieve the same output using this method, we would need to
alter the script to this:

$myarray = array("Apples", "Oranges", "Pears");
$size = count($myarray);
$output = print_r($myarray, true);
print $output;

You can store whatever you like as values in an array, and you can also mix
values. For example: array("Foo", 1, 9.995, "bar", $somevar). You can also put
arrays inside arrays, but we will be getting to that later.

62 | Chapter 5: Variables and Constants

There is a similar function to print_r(), which is var_dump(). It does largely the
same thing, but a) prints out sizes of variables, b) does not print out nonpublic
data in objects, and c) does not have the option to pass a second parameter to
return its output. For example, altering the first script to use var_dump() rather
than print_r() would give the following output:

array(3) {
 [0]=>
 string(6) "Apples"
 [1]=>
 string(7) "Oranges"
 [2]=>
 string(5) "Pears"
}

In there, you can see var_dump() has told us that the array has three values, and
also prints out the lengths of each of the strings. For teaching purposes, var_dump()
is better, as it shows the variable sizes; however, you will probably want to use
print_r() in your own work.

Finally, there is the function var_export(), which is similar to both var_dump()
and print_r(). The difference with var_export() is that it prints out variable
information in a style that can be used as PHP code. For example, if we had used
var_export() instead of print_r() in the test script, it would have output the
following:

array (
 0 => 'Apples',
 1 => 'Oranges',
 2 => 'Pears',
)

You can copy and paste that information directly into your own scripts, like this:

$foo = array (
0 => 'Apples',
1 => 'Oranges',
2 => 'Pears',
);

Associative Arrays

As well as choosing individual values, you can also choose your keys. In the fruits
code above, we just specify values, and so we get an integer-indexed array; but we
could have specified keys along with them, like this:

$myarray = array("a"=>"Apples", "b"=>"Oranges", "c"=>"Pears");
var_dump($myarray);

This time, var_dump() will output the following:

array(3) {
 ["a"]=>
 string(6) "Apples"
 ["b"]=>
 string(7) "Oranges"
 ["c"]=>

Arrays | 63

V
ariab

les an
d

Co
n

stan
ts

 string(5) "Pears"
}

As expected, our 0, 1, and 2 element keys have been replaced with a, b, and c, but
we could equally have used Foo, Bar, and Baz, or even variables or other arrays to
act as the keys. Specifying your own keys produces what is called an associative
array (also known as a hash)—you associate a specific key with a specific value.

The one exception here is floating-point numbers, which make poor choices for
array indexes. The problem lies in the fact that PHP converts them to integers
before they are used, which essentially rounds them down. So, the following code
will create an array with just one element:

$myarr = array(1.5=>"foo", 1.6=>"bar");

That will round both 1.5 and 1.6 down to 1, first storing “foo” index 1, then over-
writing it with bar. If you really want to use floating-point numbers as your keys,
pass them in as strings, like this:

$myarr = array("1.5"=>"foo", "1.6"=>"bar");
var_dump($array);

That should output the following:

array(2) {
 ["1.5"]=>
 string(3) "foo"
 ["1.6"]=>
 string(3) "bar"
}

This time the floating-point numbers have not been rounded down or converted
at all, because PHP is using them as strings. The same solution applies to reading
values out from an associative array with floating-point keys—you must always
specify the key as a string.

The Array Operator

You can also create and manage arrays using square brackets [], which means
“add to array” (earning it the name “the array operator”). Using this, you can
both create arrays and add to the end of existing arrays, so this method is gener-
ally more popular—you will generally only find the array() function being used
when several values are being put inside the array, as it will fit on one line. Here
are some examples of the array operator in action:

$array[] = "Foo";
$array[] = "Bar";
$array[] = "Baz";
var_dump($array);

That should work in the same way as using the array() function, except it is more
flexible because we can add to the array whenever we want to. When it comes to
working with non-default indices, we can just place our key inside the square
brackets, like this:

$array["a"] = "Foo";
$array["b"] = "Bar";

64 | Chapter 5: Variables and Constants

$array["c"] = "Baz";
var_dump($array);

Returning Arrays from Functions

You can return one and only one value from your user functions, but you are able
to make that single value an array, thereby allowing you to return many values as
one:

function dofoo() {
 $array["a"] = "Foo";
 $array["b"] = "Bar";
 $array["c"] = "Baz";
 return $array;
}

$foo = dofoo();

Without returning an array, the most common way to pass data back to the
calling script is by accepting parameters by reference and changing them inside
the function. Passing arrays by reference like this is generally preferred, as it is less
of a hack and also frees up your return value for a boolean to check whether the
function was successful. For example:

function load_member_data($ID, &$member) {
 // this would connect to a database and load the data,
 // but for space reasons this is done by hand!
 $member["Name"] = "Bob";
 return true;
}

$ID = 22901221079;

$result = load_member_data($ID, $member);
// pass $member in for data storage, but get a return value too

if ($result) {
 print "Member {$member["Name"]} loaded successfully.\n";
} else {
 print "Failed to load member #$ID.\n";
}

One additional way to write the same thing is just to rely on the fact that an
empty array, if typed as a boolean, is considered to be false, whereas an array
with values is considered to be true. While that works, it is poor technique.

Array-Specific Functions

There are quite a few array functions, and you need not learn them all—your best
bet is to give them all a try so that you at least know how they work. Then when
you need them, you can look up their workings here or online.

array_flip() | 65

V
ariab

les an
d

Co
n

stan
ts

array_diff()
array array_diff (array arr1, array arr2 [, array ...])

The array_diff() function returns a new array containing all the values of array $arr1
that do not exist in array $arr2.

$toppings1 = array("Pepperoni", "Cheese", "Anchovies", "Tomatoes");
$toppings2 = array("Ham", "Cheese", "Peppers");
$diff_toppings = array_diff($toppings1, $toppings2);

var_dump($diff_toppings);
// prints: array(3) { [0]=> string(9) "Pepperoni" [2]=>
// string(9) "Anchovies" [3]=> string(8) "Tomatoes" }

You can diff several arrays simultaneously by providing more parameters to the func-
tion. In this situation, the function will return an array of values in the first array that
do not appear in the second and subsequent arrays. For example:

$arr1_unique = array_merge($arr1, $arr2, $arr3, $arr4);

array_filter()
array array_filter (array arr [, function callback])

The array_filter() allows you to filter elements through a function you specify. If the
function returns true, the item makes it into the array that is returned; otherwise, it
does not. For example:

function endswithy($value) {
 return (substr($value, -1) = = 'y');
}

$people = array("Johnny", "Timmy", "Bobby", "Sam", "Tammy", "Joe");
$withy = array_filter($people, "endswithy");
var_dump($withy);
// contains "Johnny", "Timmy", "Bobby", and "Tammy"

In this script, we have an array of people, most of whom have a name ending with “y”.
However, several do not, and we want to have a list of people whose names ends in
“y”, so array_filter() is used. The function endswithy() will return true if the last
letter of each array value is a “y”; otherwise, it will return false. By passing that as the
second parameter to array_filter(), it will be called once for every array element,
passing in the value of the element as the parameter to endswithy(), where it is
checked for a “y” at the end.

array_flip()
array array_flip (array arr)

The array_flip() function takes an array as its parameter, and exchanges all the keys
in that array with their matching values, returning the new, flipped array. You can see
how it works in this script:

$capitalcities['England'] = 'London';
$capitalcities['Scotland'] = 'Edinburgh';
$capitalcities['Wales'] = 'Cardiff';
$flippedcities = array_flip($capitalcities);
var_dump($flippedcities);

66 | Chapter 5: Variables and Constants

The output is this:

array(3) {
 ["London"]=>
 string(7) "England"
 ["Edinburgh"]=>
 string(8) "Scotland"
 ["Cardiff"]=>
 string(5) "Wales"
}

As you can see, London, Edinburgh, and Cardiff are the keys in the array now, with
England, Scotland, and Wales as the values.

array_intersect()
array array_intersect (array arr1, array arr2 [, array ...])

The array_intersect() function returns a new array containing all the values of array
$arr1 that exist in array $arr2.

$toppings1 = array("Pepperoni", "Cheese", "Anchovies", "Tomatoes");
$toppings2 = array("Ham", "Cheese", "Peppers");
$int_toppings = array_intersect($toppings1, $toppings2);

var_dump($int_toppings);
// prints: array(1) { [1]=> string(6) "Cheese" }

The array_intersect() function will try to retain array keys when possible. For
example, if you are intersecting two arrays that have no duplicate keys, all the keys will
be retained. However, if there are key clashes, array_intersect() will use the first
array to contain it. For example:

$arr1 = array("Paul"=>25, "Ildiko"=>38, "Nick"=>27);
$arr2 = array("Ildiko"=>27, "Paul"=>38);

print "\nIntersect:\n";
var_dump(array_intersect($arr1, $arr2));
// Values 27 and 38 clashes, so their keys from $arr1 are used.
// So, output is Ildiko (38), and Nick (27)

You can intersect several arrays simultaneously by providing more parameters to the
function. For example:

$arr1_shared = array_intersect($arr1, $arr2, $arr3, $arr4);

array_keys()
array array_keys (array arr [, mixed search [, bool strict]])

The array_keys() function takes an array as its only parameter, and returns an array of
all the keys in that array. For example, if you have an array with user IDs as keys and
usernames as values, you could use array_keys() to generate an array where the values
were the user IDs. For example:

$users[923] = 'TelRev';
$users[100] = 'Skellington';
$users[1202] = 'CapnBlack';
$userids = array_keys($users);

array_merge() | 67

V
ariab

les an
d

Co
n

stan
ts

// $userids contains the values 923, 100, and 1202

There are two other parameters that can be passed to array_keys(): the value to match
and a flag indicating whether to perform strict matching. These two allow you to filter
your array keys—if you specify TelRev, then the only keys that array_keys() will
return are the ones that have the value TelRev. By default, this is done by checking
each key’s value with the == operator (is equal to); however, if you specify 1 as the
third parameter, the check will be done with === (is identical to).

$users[923] = 'TelRev';
$users[100] = 'Skellington';
$users[1202] = 'CapnBlack';
$userids = array_keys($users, "TelRev");
// userids contains only 923

array_merge()
array array_merge (array arr1 [, array arr2 [, array ...]])

The array_merge() function combines two or more arrays by renumbering numerical
indexes and overwriting string indexes, if there is a clash.

$toppings1 = array("Pepperoni", "Cheese", "Anchovies", "Tomatoes");
$toppings2 = array("Ham", "Cheese", "Peppers");
$both_toppings = array_merge($toppings1, $toppings2);

var_dump($both_toppings);
// prints: array(7) { [0]=> string(9) "Pepperoni" [1]=>
// string(6) "Cheese" [2]=> string(9) "Anchovies" [3]=>
// string(8) "Tomatoes" [4]=> string(3) "Ham" [5]=>
// string(6) "Cheese" [6]=> string(7) "Peppers" }

The + operator in PHP is overloaded so that you can use it to merge
arrays, e.g., $array3 = $array1 + $array2. But if it finds any keys in
the second array that clash with the keys in the first array, they will
be skipped.

The array_merge() will try to retain array keys when possible. For example, if you are
merging two arrays that have no duplicate keys, all the keys will be retained. However,
if there are key clashes, array_merge() will use the clashing key from the last array that
contains it. For example:

$arr1 = array("Paul"=>25, "Ildiko"=>38, "Nick"=>27);
$arr2 = array("Ildiko"=>27, "Paul"=>38);

print "Merge:\n";
var_dump(array_merge($arr1, $arr2));
// Values 27 and 38 clash, so their keys from $arr2 are used.
// So, output is Paul (38), Ildiko (27), and Nick (27).

You can merge several arrays simultaneously by providing more parameters to the
function. For example:

$sports_teams = array_merge($soccer, $baseball, $basketball, $hockey);

68 | Chapter 5: Variables and Constants

array_pop()
mixed array_pop (array &arr)

The array_pop() function takes an array as its only parameter, and returns the value
from the end of the array while also removing it from the array. For example:

$names = array("Timmy", "Bobby", "Sam", "Tammy", "Joe");
$firstname = array_pop($names);
// first is Timmy; last is Joe again

array_push()
int array_push (array &arr, mixed var [, mixed ...])

The array_push() function takes an array and a new value as its only parameter, and
pushes that value onto the end of the array, after all the other elements. This is the
opposite of the array_pop() function:

$firstname = "Johnny";
$names = array("Timmy", "Bobby", "Sam", "Tammy", "Joe");
array_push($names, $firstname);
// first is Timmy; last is now Johnny

array_rand()
mixed array_rand (array arr [, int amount])

The array_rand() function picks out one or more random values from an array. It
takes an array to read from, then returns either one random key or an array of random
keys from inside there. The advantage to array_rand() is that it leaves the original
array intact, so you can just use that randomly chosen key to grab the related value
from the array.

There is an optional second parameter to array_rand() that allows you to specify the
number of elements you would like returned. These are each chosen randomly from
the array, and are not necessarily returned in any particular order. The function also
has these attributes:

• It returns the keys in your array. If these aren’t specified, the default integer
indexes are used. To get the value out of the array, look up the value at the key.

• If you ask for one random element, or do not specify parameter two, you will get
a single randomly chosen variable back.

• If you ask for more than one random element, you will receive an array of vari-
ables back.

• If you ask for more random elements than there are in the array, you will get an
error.

• If you request more than one random element, it will not return duplicate
elements.

• If you want to read most or all of the elements from your array in a random order,
use a mass randomizer like shuffle(), as it is faster.

With that in mind, here’s an example of array_rand() in action:

$natural_born_killers = array("lions", "tigers", "bears", "kittens");
$two_killers = array_rand($natural_born_killers, 2);

array_values() | 69

V
ariab

les an
d

Co
n

stan
ts

array_shift()
mixed array_shift (array &arr)

The array_shift() function takes an array as its only parameter, and returns the value
from the front of the array while also removing it from the array. For example:

$names = array("Johnny", "Timmy", "Bobby", "Sam", "Tammy", "Joe");
$firstname = array_shift($names); // "Johnny"
var_dump($names);
// Timmy, Bobby, Sam, Tammy, Danny, and Joe

array_unique()
array array_unique (array arr)

The array_unique() filters an array so that a value can only appear once. It takes an
array as its only parameter, and returns the same array with duplicate values removed.
For example:

$toppings2 = array("Peppers", "Ham", "Cheese", "Peppers");
$toppings2 = array_unique($toppings2);
// now contains "Peppers", "Ham", and "Cheese"

array_unshift()
int array_unshift (array &arr, mixed var [, mixed ...])

The array_unshift() function takes an array and a new value as its only parameter,
and pushes that value onto the start of the array, before all the other elements. This is
the opposite of the array_shift() function.

$firstname = "Johnny";
$names = array("Timmy", "Bobby", "Sam", "Tammy", "Joe");
array_unshift($names, $firstname);
// first is Johnny, last is Joe

array_values()
array array_values (array arr)

The array_values() takes an array as its only parameter, and returns an array of all the
values in that array. This might seem pointless, but its usefulness lies in how numer-
ical arrays are indexed. If you use the array operator [] to assign variables to an array,
PHP will use 0, 1, 2, etc. as the keys. If you then sort the array using a function such as
asort(), which keeps the keys intact, the array’s keys will be out of order because
asort() sorts by value, not by key.

Using the array_values() function makes PHP create a new array where the indexes
are recreated and the values are copied from the old array, essentially making it
renumber the array elements. For example:

$words = array("Hello", "World", "Foo", "Bar", "Baz");

var_dump($words);
// prints the array out in its original ordering, so
// array(5) { [0]=> string(5) "Hello" [1]=> string(5)

70 | Chapter 5: Variables and Constants

// "World" [2]=> string(3) "Foo" [3]=> string(3) "Bar"
// [4]=> string(3) "Baz" }

asort($words);

var_dump($words);
// ordered by the values, but the keys will be jumbled up, so
// array(5) { [3]=> string(3) "Bar" [4]=> string(3) "Baz"
// [2]=> string(3) "Foo" [0]=> string(5) "Hello"
// [1]=> string(5) "World" }

var_dump(array_values($words));
// array_values() creates a new array, re-ordering the keys. So:
// array(5) { [0]=> string(3) "Bar" [1]=> string(3) "Baz"
// [2]=> string(3) "Foo" [3]=> string(5) "Hello"
// [4]=> string(5) "World" }

You will find array_values() useful to reorder an array’s indexes either because they
are jumbled up or because they have holes in them, but you can also use it to convert
an associative array with strings as the indexes to a plain numerical array.

arsort()
bool arsort (array &arr [, int options])

The arsort() function takes an array as its only parameter, and reverse sorts it by its
values while preserving the keys. This is the opposite of the asort(). For example:

$capitalcities['England'] = 'London';
$capitalcities['Wales'] = 'Cardiff';
$capitalcities['Scotland'] = 'Edinburgh';
arsort($capitalcities);
// reverse-sorted by value, so London, Edinburgh, Cardiff

Note that arsort() works by reference, directly changing the value you pass in. The
return value is either true or false, depending on whether the sorting was successful.

By default, the sort functions sort so that 2 comes before 10. You can change this using
the second parameter—see the ksort() reference for how to do this.

asort()
bool arsort (array &arr [, int options])

The asort() function takes an array as its only parameter, and sorts it by its values
while preserving the keys. For example:

$capitalcities['England'] = 'London';
$capitalcities['Wales'] = 'Cardiff';
$capitalcities['Scotland'] = 'Edinburgh';
asort($capitalcities);
// sorted by value, so Cardiff, Edinburgh, London

Note that asort() works by reference, directly changing the value you pass in. The
return value is either true or false, depending on whether the sorting was successful.

By default, the sort functions sort so that 2 comes before 10. You can change this using
the second parameter—see the ksort() reference for how to do this.

extract() | 71

V
ariab

les an
d

Co
n

stan
ts

explode()
array explode (string separator, string input [, int limit])

The explode() function converts a string into an array using a separator value. For
example, the string “head, shoulders, knees, toes” could be converted to an array with
the values heads, shoulders, knees, toes by using the separator ",". Note that the sepa-
rator is a comma followed by a space, otherwise the array values would be heads,
shoulders, knees, and toes. For example:

$oz = "Lions and Tigers and Bears";
$oz_array = explode(" and ", $oz);
// array contains "Lions", "Tigers", "Bears"

To reverse this function, converting an array into a string by inserting a separator
between elements, use the implode() function.

extract()
int extract (array arr [, int options [, string prefix]])

The extract() function converts elements in an array into variables in their own right,
an act commonly called “exporting” in other languages. Extract takes a minimum of
one parameter, an array, and returns the number of elements extracted. This is best
explained using code:

$Wales = "Swansea";
$capitalcities = array("England"=>"London",
 "Scotland"=>"Edinburgh", "Wales"=>"Cardiff");
extract($capitalcities);
print $Wales;

After calling extract, the England, Scotland, and Wales keys become variables in their
own right ($England, $Scotland, and $Wales), with their values set to London, Edinburgh,
and Cardiff, respectively. By default, extract() will overwrite any existing variables,
meaning that $Wales’s original value of Swansea will be overwritten with Cardiff. The
new variables are copies of those in the array, and not references.

This behavior can be altered using the second parameter, and averted using the third
parameter. Parameter two takes a special constant value that allows you to decide how
values will be treated if there is an existing variable, and parameter three allows you to
prefix each extract variable with a special string. The possible values of the second
parameter are shown in Table 5-6.

Table 5-6. Possible values for the second parameter to extract()

EXTR_OVERWRITE On collision, overwrite the existing variable

EXTR_SKIP On collision, do not overwrite the existing variable

EXTR_PREFIX_SAME On collision, prefix the variable name with the prefix specified by parameter three

EXTR_PREFIX_ALL Prefix all variables with the prefix specified by parameter three, whether or not there is a
collision

EXTR_PREFIX_INVALID Use the prefix specified by parameter three only when variable names would otherwise be
illegal (e.g. ,“$9”)

EXTR_IF_EXISTS Set variables only if they already exist

EXTR_PREFIX_IF_EXISTS Create prefixed variables only if non-prefixed version already exists

EXTR_REFS Extract variables as references rather than copies

72 | Chapter 5: Variables and Constants

The last option, EXTR_REFS, can be used on its own or in combination with others using
the bitwise OR operator, |.

Here are some examples based upon the $capitalcities array from the previous
example:

$Wales = 'Swansea';
extract($capitalcities, EXTR_SKIP);
// leaves $Wales intact, as it exists already

print $Wales; // "Swansea"
print $Scotland; // "Edinburgh"

extract($capitalcities, EXTR_PREFIX_SAME, "country");
// creates variables $country_Wales, $country_Scotland, etc

print $Wales; // "Swansea"
print $country_England; // "London"
// Note that PHP places an underscore
// after the prefix for easier reading

extract($capitalcities, EXTR_PREFIX_ALL, "country");
// creates variables with prefixes, overwriting $country_England, etc

extract($capitalcities, EXTR_PREFIX_ALL | EXTR_REFS, "country");
// sets $country_ variables to be references to the array elements

$country_Scotland = "Stirling";
print($capitalcities["Scotland"]);
// prints "Stirling", because we changed it by reference

implode()
string implode (string separator, array pieces)

The implode() function converts an array into a string by inserting a separator
between each element. This is the reverse of the explode() function. For example:

$oz = "Lions and Tigers and Bears";
$oz_array = explode(" and ", $oz);
// array contains "Lions", "Tigers", "Bears"

$exclams = implode("! ", $oz_array);
// string contains "Lions! Tigers! Bears!"

in_array()
bool in_array (mixed needle, array haystack [, bool strict])

The in_array() function will return true if an array contains a specific value; other-
wise, it will return false:

$needle = "Sam";
$haystack = array("Johnny", "Timmy", "Bobby", "Sam", "Tammy", "Joe");

ksort() | 73

V
ariab

les an
d

Co
n

stan
ts

if (in_array($needle, $haystack)) {
 print "$needle is in the array!\n";
} else {
 print "$needle is not in the array\n";
}

There is an optional boolean third parameter for in_array() (set to false by default)
that defines whether you want to use strict checking or not. If parameter three is set to
true, PHP will return true only if the value is in the array and of the same type—that
is, if they are identical in the same way as the === operator (three equals signs).

krsort()
bool krsort (array &arr [, int options])

The krsort() function takes an array as its only parameter, and reverse sorts it by its
keys while preserving the values. This is the opposite of the ksort(). For example:

$capitalcities['England'] = 'London';
$capitalcities['Wales'] = 'Cardiff';
$capitalcities['Scotland'] = 'Edinburgh';
krsort($capitalcities);
// reverse-sorted by key, so Wales, Scotland, then England

Note that krsort() works by reference, directly changing the value you pass in. The
return value is either true or false, depending on whether the sorting was successful.

By default, the sort functions sort so that 2 comes before 10. You can change this using
the second parameter—see the ksort() reference for how to do this.

ksort()
bool ksort (array &arr [, int options])

The ksort() function takes an array as its only parameter, and sorts it by its keys while
preserving the values. For example:

$capitalcities['England'] = 'London';
$capitalcities['Wales'] = 'Cardiff';
$capitalcities['Scotland'] = 'Edinburgh';
ksort($capitalcities);
// sorted by key, so England, Scotland, then Wales

Note that ksort() works by reference, directly changing the value you pass in. The
return value is either true or false, depending on whether the sorting was successful.

By default, the sort functions sort so that 2 comes before 10. While this might be
obvious, consider how a string sort would compare 2 and 10—it would work char-
acter by character, which means it would compare 2 against 1 and, therefore, put 10
before 2. Sometimes this is the desired behavior, so you can pass a second parameter
to the sort functions to specify how you want the values sorted, like this:

$array["1"] = "someval1";
$array["2"] = "someval2";
$array["3"] = "someval3";
$array["10"] = "someval4";
$array["100"] = "someval5";
$array["20"] = "someval6";
$array["200"] = "someval7";

74 | Chapter 5: Variables and Constants

$array["30"] = "someval8";
$array["300"] = "someval9";
var_dump($array);
ksort($array, SORT_STRING);
var_dump($array);

If you want to force a strictly numeric sort, you can pass SORT_NUMERIC as the second
parameter.

range()
array range (mixed low, mixed high [, number step])

The range() function creates an array of numbers between a low value (parameter
one) and a high value (parameter two). So, to get an array of the sequential numbers
between 1 and 40 (inclusive), you could use this:

$numbers = range(1,40);

The range() function has a third parameter that allows you specify a step amount in
the range. This can either be an integer or a floating-point number. For example:

$questions = range(1, 10, 2);
// gives 1, 3, 5, 7, 9

$questions = range(1, 10, 3)
// gives 1, 4, 7, 10

$questions = range(10, 100, 10);
// gives 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

$float = range(1, 10, 1.2);
// gives 1, 2.2, 3.4, 4.6, 5.8, 7, 8.2, 9.4

Although the step parameter should always be positive, if your low parameter (param-
eter one) is higher than your high parameter (parameter two), you get an array
counting down, like this:

$questions = range(100, 0, 10);
// gives 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0

Finally, you can also use range() to create arrays of characters, like this:

$questions = range("a", "z", 1);
// gives a, b, c, d, ..., x, y, z

$questions = range("z", "a", 2);
// gives z, x, v, t, ..., f, d, b

shuffle()
bool shuffle (array &arr)

The shuffle() function takes an array as its parameter, and randomizes the position of
the elements in there. It takes its parameter by reference—the return value is either
true or false, depending on whether it successfully randomized the array. For
example:

shuffle() | 75

V
ariab

les an
d

Co
n

stan
ts

$natural_born_killers = array("lions", "tigers", "bears", "kittens");
shuffle($natural_born_killers);

One major drawback to using shuffle() is that it mangles your array keys. This is
unavoidable, sadly.

Multidimensional Arrays

Currently our arrays just hold standard, non-array variables, which makes them
one-dimensional. In constrast, a two-dimensional array is where each element
holds another array as its value, and each element in the child array holds a non-
array variable. This allows us to store arrays within arrays (and arrays within
arrays within arrays, etc.), and therefore lets us store much more information.
Consider this script:

$capitalcities['England'] = array("Capital"=>"London", "Population"=>
40000000, "NationalSport"=>"Cricket");
$capitalcities['Wales'] = array("Capital"=>"Cardiff", "Population"=>5000000,
"NationalSport"=>"Rugby");
$capitalcities['Scotland'] = array("Capital"=>"Edinburgh", "Population"=>
8000000, "NationalSport"=>"Football");
var_dump($capitalcities);

That creates the $capitalcities array elements as before, but uses an array for
each value. Each child array has three elements: Capital, Population, and
NationalSport. At the end, there is a var_dump() call on the parent array, which
gives this output:

array(3) {
 ["England"]=>
 array(3) {
 ["Capital"]=>
 string(6) "London"
 ["Population"]=>
 int(40000000)
 ["NationalSport"]=>
 string(7) "Cricket"
 }
 ["Wales"]=>
 array(3) {
 ["Capital"]=>
 string(7) "Cardiff"
 ["Population"]=>
 int(5000000)
 ["NationalSport"]=>
 string(5) "Rugby"
 }
 ["Scotland"]=>
 array(3) {
 ["Capital"]=>
 string(9) "Edinburgh"
 ["Population"]=>

76 | Chapter 5: Variables and Constants

 int(8000000)
 ["NationalSport"]=>
 string(8) "Football"
 }
}

Not only does var_dump() recurse into child arrays to output their contents too,
but it indents all the output according to the array level.

The count() function has a helpful second parameter that, when
set to 1, makes count() perform a recursive count. The difference is
that if you pass in a multidimensional array, count() will count all
the elements in the first array, then go into the first array element
and count all the elements in there, and go into any elements in
there, etc. For example, the $capitalcities array above has three
elements; if you do not use the second parameter to count(), you
will get 3 back. However, if you pass in 1 for the second parameter,
you will get 12: three for the first-level elements (England, Wales,
Scotland), and three each for the variables inside those elements
(Capital, Population, NationalSport).

The Array Cursor

Each array has a “cursor,” which you can think of as an arrow pointing to the
next array element in line to be operated on. It is the array cursor that allows code
like while (list($var, $val) = each($array)) to work—each() moves forward the
array cursor of its parameter each time it is called, until it eventually finds itself at
the end of the array, and so returns false, ending the loop.

The each() function does not move the array cursor back to the first element
when you first call it; it just picks up from where the cursor was. It is in situations
like this where you need to set the position of the array cursor forcibly, and the
functions reset(), end(), next(), and prev() do just that. They all take just one
parameter—the array to work with—and return a value from that array.

You use the reset() function to rewind its parameter’s cursor to the first element,
then return the value of that element, whereas end() will set the array cursor to
the last element and return that value. The next() and prev() functions both
move the cursor pointer forward or backward one element respectively, returning
the value of the element now pointed to. If any of the four functions cannot return
a value (if there are no elements in the array, or if the array cursor has gone past
the last element), they will return false. As such, you can use them all in loops if
you want.

For example, this iterates over an array in reverse:

$array = array("Foo", "Bar", "Baz", "Wom", "Bat");
print end($array);

while($val = prev($array)) {
 print $val;
}

shuffle() | 77

V
ariab

les an
d

Co
n

stan
ts

Note that we print the output of end(), because it sets the array cursor to point at
“Bat”, and prev() will shift the array cursor back one to “Wom”, meaning that
“Bat” would otherwise not be printed out.

Holes in Arrays

Using prev() and next() is more difficult when using arrays that have holes. For
example:

$array["a"] = "Foo";
$array["b"] = "";
$array["c"] = "Baz";
$array["d"] = "Wom";
print end($array);

while($val = prev($array)) {
 print $val;
}

You may think that will iterate over an array in reverse, printing out values as it
goes; however, the value at key b is empty, which will cause both prev() and
next() to think that the end of the array has been reached. So, when they hit b,
they will return false, prematurely ending the while loop.

In this situation, it would have been better to reverse the array, then use each() to
iterate over it. This will cope fine with empty variables and unknown keys.

Using Arrays in Strings

If you want to print array data inside a string, you need to use braces, { and },
around the variable to tell PHP that you are passing it an array to read from. This
next code shows how:

$myarray['foo'] = "bar";
print "This is from an array: {$myarray['foo']}\n";

Saving Arrays

The serialize() function converts an array, given as its only parameter, into a
normal string that you can save in a file, a session, and so on. The opposite of
serialize() is unserialize(), which takes a serialized string and converts it
back to an array.

The two functions urlencode() and urldecode() also work in tandem, and
convert their string parameter into a version that is safe to be passed across the
web. All characters that aren’t letters and numbers get converted into web-safe
codes that can be converted back into the original text using urldecode().

Passing arrays across pages is best done using urlencode() and urldecode();
however, you should consider using them both on any data you pass across the
web, just to ensure there are no incompatible characters in there.

78 | Chapter 5: Variables and Constants

Take a look at this next script:

$array["a"] = "Foo";
$array["b"] = "Bar";
$array["c"] = "Baz";

$str = serialize($array);
$strenc = urlencode($str);
print $str . "\n";
print $strenc . "\n";

That will output two lines (the second of which I’ve forced to wrap so that it
appears properly):

a:4:{s:1:"a";s:3:"Foo";s:1:"b";s:3:"Bar";s:1:"c";s:3:"Baz";s:1:"d";}

a%3A4%3A%7Bs%3A1%3A%22a%22%3Bs%3A3%3A%22Foo%22%3Bs%3A1%3A%22b%22
%3Bs%3A0%3A%22%22%3Bs%3A1%3A%22c%22%3Bs%3A3%3A%22Baz%22%3B%7D

The first is the direct, serialized output of our array, and you can see how it
works by looking through the text inside there. The second line contains the
urlencoded serialized array, and is harder to read (and web safe).

Once your array is in text form, you can do with it as you please. To return to the
original array, it needs to be urldecode()d, then unserialize()d, like this:

$arr = unserialize(urldecode($strenc));
var_dump($arr);

79

6
Operators

In this chapter, we look at operators, which are the symbols such as + (adding),
- (subtracting), and * (multiplying).

Operators are like functions in that they do something with values, but they use
symbols rather than function names. In the equation 2 + 3, the 2 and the 3 are
both operands, and the + is the operator. There are three types of operators:
unary, binary, and ternary, which take one, two, and three operands respectively.
As you can see, the + operator (used to add numerical values) is a binary oper-
ator, because it takes two variables as input.

Arithmetic Operators
The arithmetic operators handle basic numerical operations, such as addition and
multiplication. The full list is shown in Table 6-1.

Table 6-1. The arithmetic operators

+ Addition Returns the first value added to the second: $a + $b.

- Subtraction Returned the second value subtracted from the first: $a - $b.

* Multiplication Returns the first value multiplied by the second: $a * $b.

/ Division Returns the first value divided by the second: $a / $b.

% Modulus Divides the first value into the second, then returns the remainder: $a % $b.
This only works on integers, and the result will be negative if $a is negative.

+= Shorthand addition Adds the second value to the first: $a += $b. Equivalent to $a = $a + $b.

-= Shorthand subtraction Subtracts the second value from the first: $a -= $b. Equivalent to $a = $a - $b.

*= Shorthand multiplication Multiplies the first value by the second: $a *= $b. Equivalent to $a = $a * $b.

/= Shorthand division Divides the first value into the second: $a /= $b. Equivalent to $a = $a / $b.

80 | Chapter 6: Operators

If you’re looking for an exponentiation operator—something that
raises a number to the power of an exponent—then you should use
the pow() function discussed in Chapter 7. Like C++ and Java, PHP
has no operator equivalent to the ** operator found in Perl, so you
should use pow().

To calculate $a % $b, you first perform $a / $b and then return the remainder. For
example, if $a were 10 and $b were 3, $b would go into $a 3 whole times (making
nine) with a remainder of 1. Therefore, 10 % 3 is 1. Here are some examples, with
their answers in comments:

$a = 10;
$b = 4;
$c = 3.33;
$d = 3.99999999;
$e = -10;
$f = -4;

print $a % $b; // 2
print $a % $c; // 1
print $a % $d; // 1
print $a % $f; // 2
print $e % $b; // -2
print $e % $f; // -2

Line two returns 1 rather than 0.01 because the floating-point number 3.33 gets
typecasted to an integer, giving 3. The float is not rounded, as can be seen on line
three, where 3.99999999 still goes into 10 with 1 remainder, because everything
after the decimal point is simply chopped off.

On line four ($a % $f), the result is 2 as in line one, because modulus only returns a
negative number when the first value is negative. This is shown in line five with -10
and 4; this yields -2 because 4 goes into 10 twice with a remainder of 2, but the first
value was negative, so the result is negative. The last line gets the same result as line
five even though both numbers are negative; again, only the sign of the first value is
considered.

Assignment Operators
The assignment operators set the values of variables either by copying the value or
copying a reference to a value. They are shown in Table 6-2.

Table 6-2. The assignment operators

= Assignment Copies $b’s value into $a, unless $b is an object, in which case the same object is in
both places: $a = $b

=& Reference Set $a to reference $b: $a =& $b

Bitwise Operators | 81

O
p

erato
rs

String Operators
There are only two string operators in PHP: concatenation and shorthand concat-
enation. Both are shown in Table 6-3.

These operators are used to join strings together, like this:

$first = "Hello, ";
$second = "world!";

// join $first and $second; assign to $third
$third = $first . $second;
// $third is now "Hello, world!"

$first .= " officer!";
// $first is now "Hello, officer!"

Bitwise Operators
Bitwise operators aren’t used very often, and even then only by more advanced
PHP programmers. They manipulate the binary digits of numbers, which is more
control than many programmers need. The bitwise operators are listed in
Table 6-4.

To give an example, the number eight is represented in eight-bit binary as
00001000. In a shift left, <<, all the bits literally get shifted one place to the left,
giving 00010000, which is equal to sixteen. Eight shifted left by four gives
10000000, which is equal to 128—the same number you would have gotten by
multiplying eight by two four times in a row.

The & (bitwise and) operator compares all the bits in operand one against all the
bits on operand two, then returns a result with all the joint bits set. Here’s an
example: given 52 & 28, we have the eight-bit binary numbers 00110100 (52) and

Table 6-3. The string operators

. Concatenation Returns the second value appended to the first: $a . $b

.= Shorthand concatenation Appends the second value to the first: $a .= $b

Table 6-4. The bitwise operators

& And Bits set in $a and $b are set.

| Or Bits set in $a or $b are set.

^ Xor Bits set in $a or $b, but not both, are set.

~ Not Bits set in $a are not set, and vice versa.

<< Shift left Shifts the bits of $a to the left by $b steps. This is equivalent, but faster, to multiplication.
Each step counts as “multiply by two.” If you try this with a float, PHP ignores everything
after the decimal point and treats it as an integer.

>> Shift right Shifts the bits of $a to the right by $b steps.

82 | Chapter 6: Operators

00011100 (28). PHP creates a result of 00000000, then proceeds to compare each
digit in both numbers—whenever it finds a 1 in both values, it puts a 1 into the
result in the same place. Here is how that looks:

00110100 (52)
00011100 (28)
00010100 (20)

Therefore, 52 & 28 gives 20.

Perhaps the most common bitwise operator is |, which compares bits in operand
one against those in operand two, and returns a result with all the bits set in either
of them. For example:

00110100 (52)
11010001 (209)
11110101 (245)

The reason the | (bitwise or) operator is so useful is because it allows you to
combine many options together. For example, the flock() function for locking
files takes a constant as its second parameter that describes how you want to lock
the file. If you pass LOCK_EX, you lock the file exclusively; if you pass LOCK_SH, you
lock the file in shared mode; and if you pass LOCK_NB, you enable “non-blocking”
mode, which stops PHP from waiting if no lock is available. However, what if you
want an exclusive lock and to not have PHP wait if no lock is available? You pass
LOCK_EX | LOCK_NB, and PHP combines the two into one parameter that does both.

Comparison Operators
Comparison operators return either true or false, and thus are suitable for use in
conditions. PHP has several to choose from, and they are listed in Table 6-5.

Comparison operators such as <, >, and = = return true or false depending on
the result of the comparison, and it is this value that PHP uses to decide actions.
For example:

if ($foo < 10) {
 // do stuff
}

Table 6-5. The comparison operators

== Equals True if $a is equal to $b

=== Identical True if $a is equal to $b and of the same type

!= Not equal True if $a is not equal to $b

<> Not equal True if $a is not equal to $b

!= = Not identical True if $a is not equal to $b or if they are not of the same type

< Less than True if $a is less than $b

> Greater than True if $a is greater than $b

<= Less than or equal True if $a is less than or equal to $b

>= Greater than or equal True if $a is greater than or equal to $b

Incrementing and Decrementing Operators | 83

O
p

erato
rs

The less-than operator, <, will compare $foo to 10, and if it is less than (but not
equal to) 10, then < will return true. This will make the line read if (true) {.
Naturally, true is always true, so the true block of the if statement will execute.

PHP programmers prefer != to <>, despite them doing the same thing. This bias is
because PHP’s syntax is based on C, which uses != exclusively, and it is worth
holding on to. For example, 9 <> "walrus" is true, but not because 9 is either
greater or less than “walrus” as the notation <> suggests. In this example, != just
makes more sense.

The === (identical) operator is used very rarely compared to == (equality), but is
useful nonetheless. Two variables are only identical if they hold the same value
and if they are the same type, as demonstrated in this code example:

print 12 == 12;
print 12.0 == 12;
print (0 + 12.0) == 12;
print 12 + === 12;
print "12" == 12;
print "12" === 12;

When you run that script using the CLI SAPI, you will find PHP outputs a 1 for the
first 5 lines, and nothing for the last line. As mentioned already, PHP outputs a 1
for true, which means that the statements 12 equals 12, 12.0 equals 12, 0 + 12.0
equals 12, 12 is identical to 12, and “12” equals 12 are all true. However, nothing is
output for the sixth line, which means that PHP considers the statement to be
false, which is expected. Although “12” and 12 are the same value, they are not the
same type; the former is a string, and the latter is an integer.

The === operator becomes important when you want to ensure PHP’s type
conversion isn’t getting in the way of what you are trying to do. For example, PHP
considers an empty string (""), 0, and false to be equal when used with ==, but
using === allows you to make the distinction. For example:

if (0 === false) {
 // this is true
}

if (0 === false) {
 // this is false
}

The strpos() function returns the index at which it found one string inside
another. If it finds a match at character 0, it returns 0; if it finds no match at all, it
returns false. As a result, you should be careful to use === when checking the
return value of strpos(), so that you don’t get confused between the two
outcomes.

Incrementing and Decrementing Operators
The next two operators do different things, depending on where you place them.
The difference is explained in Table 6-6.

84 | Chapter 6: Operators

The incrementing and decrementing operators can be placed either before or after
a variable, and the effect is different depending on where the operator is placed.
Here’s a code example:

$foo = 5;
$bar = $foo++;
print "Foo is $foo\n";
print "Bar is $bar\n";

That will output the following:

Foo is 6
Bar is 5

The reason behind this is that ++, when placed after a variable, is the post-incre-
ment operator, which immediately returns the original value of the variable before
incrementing it. In line 2 of our script, the value of $foo (5) is returned and stored
in $bar, then $foo is incremented by one. If we had put the ++ before $foo rather
than after it, $foo would have been incremented then returned, which would have
made both $foo and $bar 6.

Logical Operators
When resolving equations using logic, you can choose from one of six operators,
listed in Table 6-7.

There are two operators for logical AND and two for logical OR—this is to facilitate
operator precedence in more complicated expressions. The && and || are more
commonly used than their AND and OR counterparts because they are executed
before the assignment operator, which is usually what you would expect. For
example:

$a = $b && $c;

Table 6-6. The incrementing and decrementing operators

++$a Pre-increment Increments $a by one, then returns $a

$a++ Post-increment Returns $a, then increments $a by one

--$a Pre-decrement Decrements $a by one, then returns $a

$a-- Post-decrement Returns $a, then decrements $a by one

Table 6-7. The logical operators

AND Logical AND True if both $a and $b are true

&& Logical AND True if both $a and $b are true

OR Logical OR True if either $a or $b is true

|| Logical OR True if either $a or $b is true

XOR Logical XOR True if either $a or $b is true, but not both

! Logical NOT Inverts true to false and false to true: !$a

Some Operator Examples | 85

O
p

erato
rs

Most people would read that as “set $a to be true if both $b and $c are true,” and
that is correct. However, if you replace the && with AND, the assignment operator is
executed first, which makes PHP read the expression like this:

($a = $b) AND $c;

This is sometimes the desired behavior. For example, one common use for the OR
operator involves the die() function, which causes PHP to terminate execution
immediately, like this:

do_some_func() OR die("do_some_func() returned false!");

In that situation, do_some_func() will be called, and, if it returns false, die() will
be called to terminate the script. The reason that code works is because the OR
operator tells PHP to execute the second function only if the first function returns
false.

PHP uses conditional statement short-circuiting, which is a fancy way of saying,
“If you write code that says A or B must be true, and PHP finds A to be true, it
will not bother evaluating B because the condition is already satisfied.” You can
use OR very successfully with function calls so that PHP will attempt to run the
first function, and, if that function returns false, PHP will run the second function.

Some Operator Examples
Here are some examples of most of these operators in action:

$somevar = 5 + 5; // 10
$somevar = 5 - 5; // 0
$somevar = 5 + 5 - (5 + 5); // 0
$somevar = 5 * 5; // 25
$somevar = 10 * 5 - 5; // 45
$somevar = $somevar . "appended to end";
$somevar = false;
$somevar = !$somevar; // $somevar is now set to true
$somevar = 5;
$somevar++; // $somevar is now 6
$somevar--; // $somevar is now 5 again
++$somevar; // $somevar is 6

The third line uses parentheses to control the order of operations. This is important,
as the equation 5 + 5 - 5 + 5 can be taken in more than one way, such as 5 + (5 - 5) +
5, which is 10. There are some equations, such as the one on line five, where paren-
theses are not needed. There, 10 * 5 - 5 can only be taken to mean (10 * 5) - 5
because of the mathematical rules of precedence (rules of operations)—
multiplication is considered higher in order (executed first) than subtraction.

Despite each operator having specific precedence, it is still best to use parentheses
in order to make your meaning clear. Expressions inside parentheses are always
evaluated first, and you can use any number of parentheses in order to get the
expression correct.

86 | Chapter 6: Operators

The Ternary Operator
The ternary operator is so named because it is the only operator that takes three
operands: a condition, a result for true, and a result for false. If that sounds like
an if statement to you, you are right on the money—the ternary operator is a
shorthand (albeit very hard to read) way of doing if statements. Here’s an
example:

$agestr = ($age < 16) ? 'child' : 'adult';

First there is a condition ($age < 16), then there is a question mark, and then a
true result, a colon, and a false result. If $age is less than 16, $agestr will be set to
‘child’; otherwise, it will be set to ‘adult’. That one-liner ternary statement can be
expressed in a normal if statement like this:

if ($age < 16) {
 $agestr = 'child';
} else {
 $agestr = 'adult';
}

So, in essence, using the ternary operator allows you to compact five lines of code
into one, at the expense of some readability.

You can nest ternary operators by adding further conditions into either the true or
the false operands. For example:

$population = 400000;

$city_size =
 $population < 30 ? "hamlet"
 : ($population < 1000 ? "village"
 : ($population < 10000 ? "town"
 : "city"))
 ;

print $city_size;

In that example, PHP first checks whether $population is less than 30. If it is, then
$city_size is set to hamlet; if not, then PHP checks whether $population is less
than 1000. Note that an extra parenthesis is placed before the second check, so
that PHP correctly groups the remainder of the statement as part of the
“$population is not less than 30” block. Finally, if $population is not less than
10,000, $city_size is set to “city,” with no further checks. At this point, you
need to close the parentheses you have opened inside the stacked conditions.

The Execution Operator
PHP uses backticks (`) as its execution operator. Backticks are used very rarely in
normal typing, so you might have trouble finding where yours is—it is usually to
the left of the 1 key on your keyboard.

Operator Precedence and Associativity | 87

O
p

erato
rs

Backticks allow you to pass commands directly to the operating system for execu-
tion, then capture the results. PHP replaces the result of the execution with what
you asked to be executed. For example:

print `ls`;

That will run the command ls and output its results to the screen. If you are using
Windows, you will need to use dir instead, as ls is only available on Unix. You
can perform any commands inside backticks that you would normally perform
directly from the command line, including piping output to and from and/or redi-
recting output through other programs.

There are several functions that perform program execution like the execution
operator—you can find a more comprehensive reference to them in Chapter 7.
Either way, you should be very wary about executing external programs from PHP
because of potential security problems.

Operator Precedence and Associativity
Like many languages, PHP has a set of rules (known as operator precedence and
associativity) that decide how complicated expressions are processed. For
example:

$foo = 5 * 10 - 1;

Should $foo be 49 or 45? If you cannot see why there are two possibilities, break
them up using parentheses like this:

$foo = (5 * 10) - 1
$foo = 5 * (10 - 1);

In the first example, five is multiplied by ten, then one is subtracted from the
result. But in the second example, ten has one subtracted from it, making nine,
then that result is multiplied by five. If there is ambiguity in your expressions,
PHP will resolve them according to its internal set of rules about operator
precedence.

However, there’s more to it than that—consider the following statement:

$foo = 5 - 5 - 5;

Like the previous statement, this can have two possible results, 5 and -5. Here is
how those two possibilities would look if we made our intentions explicit with
parentheses:

$foo = 5 - (5 - 5);
$foo = (5 - 5) - 5;

In this example, it is operator associativity that governs which answer is correct.
PHP has been programmed to consider each operator left-associative, right-
associative, or non-associative. For example, given the make-believe operator µ, it
might be right-associative and therefore treated like this:

$foo = $a $b $c;
// would be treated as...
$foo = ($a ($b $c));

88 | Chapter 6: Operators

If PHP is programmed with µ as left-associative, it would start working from the
left:

$foo = $a $b $c;
// would be treated as...
$foo = (($a $b) $c);

The equation 5 - 5 - 5 results in -5 because the subtraction operator is left-
associative, giving (5 - 5) - 5.

These rules are only enforced if you fail to be explicit about your instructions.
Unless you have very specific reason to do otherwise, you should always use
parentheses in your expressions to make your actual meaning very clear—both to
PHP and to others reading your code.

If you must rely on PHP’s built-in rules for precedence and associativity, refer to
Table 6-8 for the complete list of operators, precedence, and their associativity,
ordered by the lowest-precedence operator to the highest-precedence operator:

Table 6-8. Operators, precedence, and their associativity

Operators Associativity

, Left "$x, $y, $z" is "($x, $y), $z"

or Left "$x OR $y OR $z" is "($x OR $y) OR $z"

xor left "x XOR y XOR z" is "($x XOR $y) XOR $z"

and Left "x AND y AND z" is "(x AND y) AND z"

= += -= * = /= .= %= &=
|= ^= <<= >>=

Right "$x /= $y /= $z" is "$x /= ($y /= $z)"

? : Left

|| Left ; "$x || $y || $z" is "($x || $y) || $z"

&& Left "$x && $y && $z" is "($x && $y) && $z"

| Left "$x | $y | $z" is "($x | $y) | $z"

^ Left "$x ^ $y ^ $z" is "($x ^ $y) ^ $z"

& Left "$x & $y & $z" is "($x & $y) & $z"

= = != === !== Non-associative

< < = > >= Non-associative

<< >> Left "$x >> $y >> $z" is "($x >> $y) >> $z"

+ - . Left "$x - $y - $z" is "($x - $y) - $z"

* / % Left "$x / $y / $z" is "($x / $y) / $z"

! ~ ++ -- (int) (float) (string)
(array) (object) @

Right;

[Right

new Non-associative

89

7
Function Reference

This chapter lists many of the most commonly used functions in PHP. Other func-
tions are grouped together according to their topic, throughout this book.

Calling a function in PHP can be as simple as printing the name of a function with
two parentheses, “()”, after it. However, many functions require you to give them
input to work on, called parameters, which you send inside the parentheses. On
top of that, nearly all functions have a return value, which is the result that the
function sends back to your script. These return values can often be ignored, but
most of the time, you will want to store them in a variable for later use:

$string_length = strlen($mystring);

You can also use these return values as parameters to other functions, like this:

func1(func2(func3(), func4()));

Although most parameters are required, some are optional and don’t need to be
supplied. When optional parameters are omitted, PHP will assume a default
value, which is usually good enough.

When you pass a parameter to a function, PHP copies it and uses that copy inside
the function. This process is known as pass by value, because it is the value that is
sent into the function rather than the variable. This means that when you pass
variables to a function, it can change its copies of them however it likes, without
affecting the original variables. To change this behavior, you can opt to pass by
reference, which works in the same way as reference assigning for variables—PHP
passes the actual variable into the function, and any changes you make will affect
the original. This script demonstrates the difference:

somefunc($foo);
somefunc($foo, $bar);
somefunc($foo, &$bar);
somefunc(&$foo, &$bar);

90 | Chapter 7: Function Reference

The first line calls somefunc(), passing in a copy of $foo; the second passes in
copies of $foo and $bar; the third passes in a copy of $foo but the original $bar;
and the last passes in both the original $foo and $bar. Passing by reference, as with
$bar in line three and $foo and $bar in line four, means that these variables can be
changed inside the function, which is often used as a way for functions to return
information.

Variable variables were introduced in Chapter 5, and to complement them, PHP
also has variable functions, allowing you to write code like this:

$func = "sqrt";
print $func(49);

PHP sees that you are calling a function using a variable, looks up the value of the
variable, then calls the matching function. The code above will therefore return 7,
the square root of 49.

Undocumented Functions
Despite the fact that the PHP documentation team works around the clock to
document the language and all its functions, there are still quite a few functions
you will not find in the PHP manual. That is not to say they are unimportant—
just that either very few people know how to use them, or no one has had enough
time to get around to them yet.

Although several of these functions are discussed in this book, there are probably
dozens more still around. A list of all the undocumented functions is available at
http://zend.com/phpfunc/nodoku.php. Sometimes the only way to be certain is to
look up the source code yourself.

Handling Non-English Characters
ASCII only allows a set of 256 characters to be used to describe the alphanumeric
characters available to print. That range, 0 to 255, is used because it is the size of a
byte—8 ones and zeros, in computing terminology. Languages such as Chinese,
Korean, and Japanese have special characters in them, which means you need
more than 256 characters, and therefore need more than one byte of space—you
need a multibyte character. The multibyte character implementation in PHP is
capable of working with Unicode-based encodings, such as UTF-8; however, at
this time, Unicode support in PHP is very weak. Full Unicode support is currently
one of the key goals for future releases of PHP.

Dealing with these complex characters is slightly different from working with
normal characters, because functions like substr() and strtoupper() expect
precisely one byte per character and will corrupt a multibyte string. Instead, you
should use the multibyte equivalents of these functions, such as mb_strtoupper()
instead of strtoupper(), mb_ereg_match() rather than ereg_match(), and mb_
strlen() rather than strlen(). The parameters required for these functions are
the same as their originals, except that most accept an optional extra parameter to
force specific encoding.

addslashes() | 91

Fu
n

ctio
n

R
eferen

ce

If there is an existing script that you’d like to multibyte-enable, there’s a special
php.ini setting you can change: mbstring.func_overload. By default, this is set to 0,
which means functions behave as you would expect them to. If you set it to 1,
calling the mail() function gets silently rerouted to the mb_send_mail() function.
If you set it to 2, all the functions starting with “str” get rerouted to their multi-
byte partners. If you set it to 4, all the “ereg” functions get rerouted. You can
combine these together as you please by simply adding them—for example, for
“mail” and “str” rerouting, you add 1 and 2, giving 3, so you set mbstring.func_
overload to 3 to overload these two. To overload everything, set it to 7, which is 1
(“mail”) + 2 (“str”) + 4 (“ereg”).

abs()
number abs (number num)

The abs() function returns the absolute value of the parameter you pass to it. By abso-
lute, I mean that it leaves positive values untouched, and converts negative values into
positive values. Thus:

abs(50); // 50
abs(-12); // 12

You can either send a floating-point number or an integer to abs(), and it will return
the same type:

abs(50.1); // 50.1
abs(-12.5); // 12.5

The abs() function is helpful for handling user input, such as “How many t-shirts
would you like to buy?” While you could write code to check for values equal to or
under 0, and issue warnings if appropriate, it is easier to put all quantity input through
abs() to ensure it is positive.

acos()
float acos (float num)

The acos() function calculates the arc cosine value of the number provided as its only
parameter, essentially reversing the operation of cos(). The return value is in
radians—you should use the rad2deg() to convert radians to degrees.

$acos1 = acos(0.4346);
$acos2 = acos(cos(80));

addslashes()
string addslashes (string str)

There are many situations where single quotes ('), double quotes ("), and backslashes
(\) can cause problems—databases, files, and some protocols require that you escape
them with \, making \', \", and \\ respectively. In these circumstances, you should use
the addslashes() function, which takes a string as its only parameter and returns the
same string with these offending characters escaped so that they are safe for use.

In php.ini, there is a magic_quotes_gpc option that you can set to enable “magic
quotes” functionality. If enabled, PHP will automatically call addslashes() on every

92 | Chapter 7: Function Reference

piece of data sent in from users, which can sometimes be a good thing. However, in
reality it is often annoying—particularly when you plan to use your variables in other
ways.

Note that calling addslashes() repeatedly will add more and more slashes, like this:

$string = "I'm a lumberjack and I'm okay!";
$a = addslashes($string);
$b = addslashes($a);
$c = addslashes($b);

After running that code, you will have the following:

$a: I\'m a lumberjack and I\'m okay!
$b: I\\\'m a lumberjack and I\\\'m okay!
$c: I\\\\\\\'m a lumberjack and I\\\\\\\'m okay!

The reason the number of slashes increases so quickly is because PHP will add a slash
before each single and double quote, as well as slashes before every existing slash.

The addslashes() function has a counterpart, stripslashes(), that removes one
set of slashes.

If you can, use a database-specific escaping function instead of
addslashes(). For example, if you’re using MySQL, use mysql_

escape_string().

asin()
float asin (float num)

The asin() function calculates the arc sine value of the number provided as its only
parameter, essentially reversing the operation of sine(). The return value is in
radians—you should use the rad2deg() to convert radians to degrees.

$asin1 = asin(0.4346);
$asin2 = asin(sin(80));

atan()
float asin (float num)

The atan() function calculates the arc tangent value of the number provided as its
only parameter, essentially reversing the operation of tan(). The return value is in
radians—you should use the rad2deg() to convert radians to degrees.

$atan1 = atan(0.4346);
$atan2 = atan(tan(80));

base_convert()
string base_convert (string num, int from_base, int to_base)

It is impractical for PHP to include separate functions to convert every base to every
other base, so they are grouped into one function: base_convert(). This takes three
parameters: a number to convert, the base to convert from, and the base to convert to.
For example, the following two lines are identical:

call_user_func_array() | 93

Fu
n

ctio
n

R
eferen

ce

print decbin(16);
print base_convert("16", 10, 2);

The latter is just a more verbose way of saying “convert the number 16 from base 10 to
base 2.” The advantage of using base_convert() is that we can now convert binary
directly to hexadecimal, or even crazier combinations, such as octal to duodecimal
(base 12) or hexadecimal to vigesimal (base 20).

The highest base that base_convert() supports is base 36, which uses 0–9 and then
A–Z. If you try to use a base larger than 36, you will get an error.

bindec()
number bindec (string binary_num)

The bindec() function converts a binary number into a decimal number. It takes just
one parameter, which is the number to convert. For example:

print decbin("10000"); // 16

call_user_func()
mixed call_user_func (function callback [, mixed param1 [, mixed ...]])

The call_user_func() function is a special way to call an existing PHP function. It
takes the function to call as its first parameter, with the parameters to pass into the
variable function as multiple parameters to itself. For example:

$func = "str_replace";
$output_single = call_user_func($func, "monkeys", "giraffes", "Hundreds and
thousands of monkeys\n");

In that example, "monkeys", "giraffes", and "Hundreds of thousands of monkeys" are the
second, third, and fourth parameters to call_user_func(), but get passed into str_
replace() (the function in $func) as the first, second, and third parameters.

An alternative to this function is call_user_func_array(), where the parameters to be
passed are grouped in an array.

call_user_func_array()
mixed call_user_func_array (function callback, array params)

The call_user_func_array() function is a special way to call an existing PHP func-
tion. It takes a function to call as its first parameter, then takes an array of parameters
as its second parameter.

$func = "str_replace";
$params = array("monkeys", "giraffes", "Hundreds and thousands of monkeys\
n");
$output_array = call_user_func_array($func, $params);
echo $output_array;

94 | Chapter 7: Function Reference

ceil()
float ceil (float num)

The ceil() function takes a floating-point number as its only parameter and rounds it
to the nearest integer above its current value. If you provide an integer, nothing will
happen. For example:

$number = ceil(11.9); // 12
$number = ceil(11.1); // 12
$number = ceil(11); // 11

chr()
string chr (int ascii_val)

To convert an ASCII number to its character equivalent, use the chr() function. This
takes an ASCII value as its parameter and returns the character equivalent, if there is
one.

$letter = chr(109);
print "ASCII number 109 is equivalent to $letter\n";

That would output "ASCII number 109 is equivalent to m". The ord() function does the
opposite of chr(): it takes a string and returns the equivalent ASCII value.

connection_status()
int connection_status (void)

The connection_status() function takes no parameters and returns 0 if the connec-
tion is live and execution is still taking place; 1 if the connection is aborted; 2 if the
connection has been aborted; and 3 if the connection has been aborted and subse-
quently timed out.

The last situation is only possible if ignore_user_abort(true) has been used, and the
script subsequently timed out. The values 0, 1, 2, and 3 evaluate to the constants
CONNECTION_NORMAL, CONNECTION_ABORTED, CONNECTION_TIMEOUT, and CONNECTION_ABORTED
| CONNECTION_TIMEOUT (a bitwise OR of the previous two).

This script can tell the difference between shutdown occurring because the script
finished or because script timeout was reached:

function say_goodbye() {
 if (connection_status() = = CONNECTION_TIMEOUT) {
 print "Script timeout!\n";
 } else {
 print "Goodbye!\n";
 }
}

register_shutdown_function("say_goodbye");
set_time_limit(1);
print "Sleeping...\n";
sleep(2);
print "Done!\n";

date() | 95

Fu
n

ctio
n

R
eferen

ce

cos()
float cos (float num)

The cos() function calculates the cosine value of the number provided as its only
parameter. The parameter should be passed as radians—you should use deg2rad() to
convert degrees to radians.

$cos1 = cos(10);
$cos2 = cos(deg2rad(80));

count_chars()
mixed count_chars (string str [, int mode])

The count_chars() function takes a string parameter and returns an array containing
the letters used in that string and how many times each letter was used.

Using count_chars() is complicated by the fact that it actually returns an array of
exactly 255 elements by default, with each number in there evaluating to an ASCII
code. You can work around this by passing a second parameter to the function. If you
pass 1, only letters with a frequency greater than 0 are listed; if you pass 2, only letters
with a frequency equal to 0 are listed. For example:

$str = "This is a test, only a test, and nothing but a test.";
$a = count_chars($str, 1);
print_r($a);

That will output the following:

Array ([32] => 11 [44] => 2 [46] => 1 [84] => 1 [97] => 4 [98] => 1 [100]
=> 1 [101] => 3 [103] => 1 [104] => 2 [105] => 3 [108] => 1 [110] => 4 [111]
=> 2 [115] => 5 [116] => 8 [117] => 1 [121] => 1)

In that output, ASCII codes are used for the array keys, and the frequencies of each
letter are used as the array values.

date()
string date (string date_format [, int timestamp])

Users like to have their dates in a variety of formats, so PHP lets you convert
timestamps into different types of strings using the date() function.

You can send two parameters to date(), with the second one being optional, as with
strtotime(). Parameter one is a special string containing formatting codes for how
you want the timestamp converted, and parameter two is the timestamp you want to
convert. If you do not supply the second parameter, PHP assumes you want to convert
the current time.

Parameter one is tricky: it is a string of letters from a predefined list of 31 possibles.
You can use other characters in the string, and these are copied directly into the
formatted date. If you are trying to put words into the date format that you do not
want to be converted into their date equivalent, you need to escape them with a back-
slash, \. To make things even more confusing, if your escaped letter is an existing
escape sequence, then you need to escape it again!

96 | Chapter 7: Function Reference

The complete list of date format characters is shown in Table 7-1. Be careful, as they
are case-sensitive!

This first example of date() is very basic and prints out the current time in 24-hour
clock format:

print date("H:i");

Table 7-1. Format characters for use in date()

Format character Description Example

a Lowercase am/pm am or pm

A Uppercase am/pm AM or PM

B Swatch Internet Time 000 to 999

c ISO 8601 date, time, and time zone 2004-06-18T09:26:55+01:00

d 2-digit day of month, leading zeros 01 to 31

D Day string, three letters Mon, Thu, Sat

F Month string, full January, August

g 12-hour clock hour, no leading zeros 1 to 12

G 24-hour clock hour, no leading zeros 0 to 23

h 12-hour clock hour, leading zeros 01 to 12

H 24-hour clock hour, leading zeros 00 to 23

i Minutes with leading zeros 00 to 59

I Is daylight savings time active? 1 if yes, 0 if no

j Day of month, no leading zeros 1 to 31

l Day string, full Monday, Saturday

L Is it a leap year? 1 if yes, 0 if no

m Numeric month, leading zeros 01 to 12

M Short month string Jan, Aug

n Numeric month, no leading zeros 1 to 12

O Difference from GMT 200

r RFC-822 formatted date Sat, 22 Dec 1979 17:30 +0000

s Seconds, with leading zeros 00 to 59

S English ordinal suffix for day number st, nd, rd, or th

t Number of days in month 28 to 31

T Time zone for server GMT, CET, EST

U Unix Timestamp 1056150334

w Numeric day of week 0 (Sunday), 6 (Saturday)

W ISO-8601 week number of year 30 (30th week of the year)

y Two-digit representation of year 97, 02

Y Four-digit representation of year 1997, 2002

z Day of year 0 to 366

Z Time zone offset in seconds -43200 to 43200

deg2rad() | 97

Fu
n

ctio
n

R
eferen

ce

It’s possible to mix the output of date() with a text string to get a natural-looking
statement, like this:

print "The day yesterday was " . date("l", time() - 86400);

Note that on very specific occasions (particularly when daylight savings time kicks in),
the above script will be incorrect. If you need absolute precision, either check for DST
or subtract a whole day using mktime().

This next example outputs the date in the format of 31st of August 2005. Notice that
we have the word of in the date format, and it has been passed through to the output
instead of being converted. The reason for this is that lowercase O and lowercase F do
not have any formatting purpose in the date function (although this may be changed in
the future), so they are just copied straight into output:

print date("jS of F Y");

In the next example, our date() function is embedded between two other strings,
which makes for particularly neat output:

print "My birthday is on a " . date("l", strtotime("22 Dec 2004")) . " this
year.";

decbin()
string decbin (int num)

The decbin() function converts a decimal number into a binary number. It takes just
one parameter, which is the number to convert. For example:

print decbin(16); // "10000"

dechex()
string dechex (int num)

The dechex() function converts a decimal number into a binary number. It takes just
one parameter, which is the number to convert. For example:

print dechex(232); // "e8"

decoct()
string decoct (int num)

The decoct() function converts a decimal number into an octal number. It takes just
one parameter, which is the number to convert. For example:

print decoct(19); // "23"

deg2rad()
float deg2rad (float num)

The deg2rad() function converts degrees to radians. Radians are calculated as being
$degrees multiplied by the mathematical constant pi, then divided by 180.

$sin1 = sin(deg2rad(80));

98 | Chapter 7: Function Reference

die()
void exit ([mixed status])

The die() function terminates execution of a script, and is an alias of the exit()
function.

$db = open_database() OR die("Couldn't open database!");

dl()
int dl (string extension_name)

Use the dl() function to load an extension at runtime, passing the name of the exten-
sion to load as its only parameter. Note that there are cross-platform considerations to
using dl() that are discussed later. The downside to using dl() is that it needs to
dynamically load and unload the extension each time your scripts run—this ends up
being a great deal slower than running PHP as a web server module, where the exten-
sions are loaded just once and kept in memory.

One last warning: using dl() with multithreaded web servers (such as Apache 2) will
simply not work; you will need to use the static method of editing your php.ini file and
restarting the server.

Here is an example of dl() on both Windows and Unix:

dl('php_imap.dll'); // Windows
dl('imap.so'); // Unix

empty()
bool empty (mixed var)

The empty() function returns true if its parameter has a false value. This is not the
same as the isset(): if a variable was set and had a false value (such as 0 or an empty
string), empty() would return false, and isset() would return true.

$var1 = "0";
$var2 = "1";
$var3 = "";

if (empty($var1)) print "Var1 empty\n";
if (empty($var2)) print "Var2 empty\n";
if (empty($var3)) print "Var3 empty\n";
if (empty($var4)) print "Var4 empty\n";

That would print “Var1 empty”, “Var3 empty”, then “Var4 empty”.

escapeshellcmd()
string escapeshellcmd (string command)

The escapeshellcmd() function is used to escape special characters in shell commands
that may otherwise trick your script into running malicious code. If you ever plan to
allow users to execute a program on your server—in itself a major security risk—you
should always pass their variables through this function first. For example:

$_GET["search"] = escapeshellcmd($_GET["search"]);
passthru("grep {$_GET["search"] /var/www/meetinglogs/*");

exec() | 99

Fu
n

ctio
n

R
eferen

ce

eval()
mixed eval (string code)

You can execute the contents of a string as if it were PHP code using the eval() func-
tion. This takes just one string parameter and executes that string as PHP. For
example:

$str = '$i = 1; print $i;';
eval($str);

That script assigns two PHP statements to $str, then passes $str into eval() for
execution.

The eval() function allows you to store your PHP code in a database, or to build it at
runtime, which gives you a lot more flexibility.

If you are considering using eval(), bear in mind these words from
the creator of PHP, Rasmus Lerdorf: “If eval() is the answer,
you’re almost certainly asking the wrong question.” That is, you
should be able to achieve your goals without resorting to eval().

exec()
string exec (string command [, array &output [, int &return_val]])

The exec() function runs an external program, specified in the first parameter. It
sends back the last line outputted from that program as its return value, unlike
passthru(), which prints out all the output the program generates.

print exec("uptime");

The uptime command is available on most Unix systems and prints out just one line of
output—perfect for exec().

Calling exec() is usually preferred when the output of your program is irrelevant,
whereas passthru() automatically prints your output.

If you pass a second and third parameter to exec(), the output of the command will be
put into parameter two as an array with one line per element, and the numeric exit
status of the command will be put into parameter three. Similarly, if you pass a second
parameter to passthru(), it will be filled with the return value of the command.

For example:

exec("dir", $output, $return);
echo "Dir returned $return, and output:\n";
var_dump($output);

That example should work fine on Windows, as well as on many versions of Unix.

PHP’s exec() is more like the Perl execution operator (`...`) than
the Perl exec() function.

100 | Chapter 7: Function Reference

exit()
void exit ([mixed status])

The exit() function takes just one optional parameter and immediately terminates
execution of the script. If you pass it a parameter, this is used as the script exit code. If
it is a string, it is printed out. The function die() is an alias of exit() and works the
same way.

Use exit() wherever you need to end a script with no further work. For example:

if ($password != "frosties") {
 print "Access denied.";
 exit(); // note: () is optional
}

The exit() function takes a maximum of one parameter, which can either be a
program return number or a string. Many programs return numbers so that they can
be chained to other programs and their output properly judged. In this case, 0 usually
means “Everything went OK,” and everything else means “Something went wrong.”
Using exit() with a string causes PHP to output the string and then terminate the
script—a behavior commonly used by programmers with exit()’s alias, die(), like
this:

do_some_func() OR die("do_some_func() returned false!");

In that situation, do_some_func() will be called and, if it returns false, die() will be
called to terminate the script.

floor()
float floor (float num)

The floor() function takes a floating-point number as its only parameter and rounds
it to the nearest integer below its current value. If you provide an integer, nothing will
happen. For example:

$number = floor(11.1); // 11
$number = floor(11.9); // 11
$number = floor(11); // 11

The floor() function converts a positive floating-point number to
an integer in the same way as typecasting, except typecasting is
faster. This is not true for negative numbers, where the two will
produce different results because floor() rounds down (e.g., -3.5
becomes -4) and typecasting knocks off the non-integer data (e.g.,
-3.5 becomes -3).

function_exists()
bool function_exists (string function_name)

If you’re working with functions that are not part of the PHP core (i.e., that need to be
enabled by users), it’s a smart move to use the function_exists() function. This takes
a function name as its only parameter and returns true if that function (either built-in
or one you’ve defined yourself) is available for use. It only checks whether the function

get_loaded_extensions() | 101

Fu
n

ctio
n

R
eferen

ce

is available, not whether it will work—your system may not be configured properly for
some functions. Here is how it looks in code:

if (function_exists("imagepng")) {
 echo "You have the GD extension loaded.";
} else {
 echo "Can't find imagepng() - do you have GD loaded?";
}

If you ever want to know whether you have a function available to
you, use the function_exists() function. This takes one string
parameter that is the name of a function and returns true if the
function exists or false if it does not. Many people use function_

exists() to find out whether they have an extension available, by
calling function_exists() on a function of that extension. How-
ever, this is accomplished more easily with the extension_loaded()

function, covered in the next section.

get_extension_funcs()
array get_extension_funcs (string extension_name)

The get_extension_funcs() function takes the name of an extension and returns an
array of the functions available inside that extension. This is often combined with a
call to get_loaded_extensions(), like this:

$extensions = get_loaded_extensions();

foreach($extensions as $extension) {
 echo $extension;
 echo ' (', implode(', ', get_extension_funcs($extension)), ')
';
}

Breaking that down, it retrieves the names of all extensions currently loaded and cycles
through them using a foreach loop. For each extension, it calls get_extension_funcs()
to get the functions made available by that extension, then implodes that array into a
string separated neatly by commas, then surrounds the whole thing in parentheses. For
example, if you have the wddx extension installed, you should see the following line
somewhere in your output:

wddx (wddx_serialize_value, wddx_serialize_vars, wddx_packet_start, wddx_
packet_end, wddx_add_vars, wddx_deserialize)

get_loaded_extensions()
array get_loaded_extensions (void)

The get_loaded_extensions() function takes no parameters and returns an array of the
names of all extensions you have loaded.

$extensions = get_loaded_extensions();
echo "Extensions loaded:\n";
foreach($extensions as $extension) {
 echo " $extension\n";
}

102 | Chapter 7: Function Reference

If you just want to check whether a specific extension is loaded or not, without having
to go through the fuss of sifting through the return value of get_loaded_extensions(),
you can use the simple shortcut function extension_loaded(), which takes an exten-
sion name as its only parameter and returns true if it has loaded or false if not.

hexdec()
number hexdec (string hex_string)

The hexdec() function converts a hexadecimal number into a decimal number. It takes
just one parameter, which is the number to convert. For example:

print hexdec(e8); // 232

html_entities()
string html_entities (string html [, int options [, string charset]])

The html_entities() function converts characters that are illegal in HTML, such as &,
<, and ", into their safe equivalents: &, <, and ", respectively.

$flowerpot_men = "Bill & Ben";
$safe_flowerpots = htmlentities($flowerpot_men);
// it's now "Bill & Ben"

This method of encoding is often referred to as &-escaping. You can reverse this
conversion using the html_entity_decode() function.

html_entity_decode()
string html_entity_decode (string html [, int options [, string charset]])

The html_entity_decode() function converts an &-escaped string into its original
format, reversing the operation of html_entities().

$flowerpot_men = "Bill & Ben";
$safe_flowerpots = htmlentities($flowerpot_men);
// it's now "Bill & Ben"
$unsafe_flowerpots = html_entity_decode($safe_flowerpots);
// back to "Bill & Ben"

ignore_user_abort()
int ignore_user_abort ([bool enable])

The ignore_user_abort() function allows your script to carry on working after the
user has cancelled her request. Passing true as its only parameter will instruct PHP
that the script is not to be terminated, even if your end user closes her browser, has
navigated away to another site, or has clicked Stop. This is useful if you have some
important processing to do and you do not want to stop it even if your users click
cancel, such as running a payment through on a credit card. You can also pass false to
ignore_user_abort(), thereby making PHP exit when the user closes the connection.

ignore_user_abort(true);
// carry on if user clicks Stop in their browser

is_callable() | 103

Fu
n

ctio
n

R
eferen

ce

ini_get()
string ini_get (string varname)

The ini_get() function allows you to read a value from the php.ini file without
altering it. It takes the name of the value to read as its only parameter and returns the
value. Boolean values returned by ini_get() should be typecasted as integer; other-
wise, false values will be returned as an empty string. For example:

print "Display_errors is turned on: ";
print (int) ini_get("display_errors");

Many numerical values in php.ini are represented using M for megabyte and other
shortcuts. These are preserved in the return value of ini_get(), which means you
should not rely on these values to be plain numbers.

ini_set()
string ini_set (string varname, string value)

The ini_set() function allows you to change system attributes that affect the way
your script is executed. Changes only affect the current script, and will revert back
when the script ends.

To use ini_set(), pass it the value you want to change as its first parameter, and the
new value to use as its second parameter. If it is successful, it will return the previous
value. For example:

print ini_set("max_execution_time", "300") . "
";
print ini_set("display_errors", "0") . "
";
print ini_set("include_path", "/home/paul/include") . "
";

Many variables cannot be changed using ini_set(), because they have already been
used. For example, magic_quotes_gpc decides whether PHP should automatically send
all HTTP input through the addslashes() function before giving it to you. Although
you can change this using ini_set(), it is pointless to do so: it will be changed after
PHP has already modified the variables.

is_callable()
bool is_callable (mixed var [, bool check_syntax_only [, string &proper_
name]])

The is_callable() function takes a string as its only parameter and returns true if that
string contains a function name that can be called using a variable function. For
example:

$func = "sqrt";
if (is_callable($func)) {
 print $func(49);
}

104 | Chapter 7: Function Reference

isset()
bool isset (mixed var [, mixed var [, ...]])

The isset() function returns true if its parameter has already been set in your script.
This is not the same as the empty(): if a variable was set and had no value, isset()
would return true, and empty() would return false.

To check for “variable not set,” use the not operator !, as in if (!isset($foo)).

ltrim()
string ltrim (string str [, string trim_chars])

The ltrim() function works like the normal trim(), except it only trims whitespace
from the lefthand side of a string.

$string = ltrim(" testing ");
// $string is "testing "

md5()
string md5 (string str [, bool raw_output])

Although the sha1() function is recommended for checksumming data securely,
another popular algorithm is MD5, where the “MD” stands for Message Digest. The
md5() function produces a data checksum in exactly the same way as sha1(); the
difference is that it is only 32-bytes long. Because sha1() is longer, it is less likely to
have a “collision”—a situation where two different strings share the same checksum.
However, md5() has a slight speed advantage. Unless you’re trying to serve your
website from a 386 or have been asked to use a particular algorithm, stick with sha1().

Using md5() is the same as using sha1():

$md5hash = md5("My string");
print $md5hash;

Note that if you are thinking that having fewer bits in MD5 makes it less secure, you
are correct—but only just. An MD5 checksum is 32 bytes long, which is equal to 128
bits. That is, an MD5 checksum can be made up of 3.402823669209384634-
6337460743177e+38 different possibilities, more commonly referred to as 2 to the
power of 128. This an enormous number of varieties, and it is quite secure for most
purposes.

microtime()
mixed microtime ([bool float_output])

The microtime() function returns a highly accurate reading of the current time. When
called without any parameters, this returns the current system time in seconds and
microseconds, ordered microseconds first. For example: 0.82112000 1174676574. If
you pass true to microtime(), PHP will return the time in the more useful format of
seconds.microseconds, like this: 1174676587.5996

When using microtime(), keep in mind that the return value is a floating-point
number. There is a setting in your php.ini file called precision that sets the number of
significant digits to show in floating-point numbers, which means your return value

mt_rand() | 105

Fu
n

ctio
n

R
eferen

ce

from microtime() may not be as precise as you want. Above, for example, you can see
we only have four decimal places returned—this is because php.ini defaults precision
to 14 significant digits, and there are 10 digits before the decimal place.

If you increase the value of precision to 18 and run microtime() again, you will get
results that are more accurate: 1174677004.8997819.

mktime()
int mktime ([int hour [, int minute [, int second [, int month
[, int day [, int year [, int is_dst]]]]]]])

It’s common practice to store year, month, and day in separate variables in order to
make comparison easier, and the mktime() function is used to reassemble the compo-
nents into one Unix timestamp.

Of all the functions in PHP, this one has the most unusual parameter order: hour,
minute, second, month, day, year, Is_Daylight_Savings_Time. Note that the hour
should be in 24-hour clock time.

So, to pass in 10:30 p.m. on the 20th of June 2005, you would use mktime() like this:

$unixtime = mktime(22, 30, 0, 6, 20, 2005, -1);

The only parameter that might not make sense is the last one, which is where you tell
PHP whether daylight savings time (DST) should be in effect. If this seems odd to
you—surely PHP should know whether DST was in effect?—consider the difficulties
there are in calculating it. Each country enters DST at its own time, with some coun-
tries even having various times inside itself. Other countries, such as Germany, have
only been using the DST system since 1980, which further complicates the matter. So,
PHP gives you the option: pass 1 as the last parameter to have DST on, pass 0 to have
it off, and pass -1 to let PHP take its best guess.

Using mktime() is a great way to do date arithmetic, as it will correct crazy dates quite
well. For example, if we wanted to add 13 months to the function call above without
having to figure out the new settings, we could just add 13 to the month parameter
(currently 6), like this:

$unixtime = mktime(10, 30, 0, 19, 20, 2005, -1);

Clearly there are not 19 months in the year, so PHP will add one to the year value,
subtract 12 from the months value, and calculate the date from there. Similarly
you could add 9990 to the hours value and PHP will jump ahead by 416 days.

All the parameters to mktime(), if less than 10, should not be
expressed with a leading zero. The reason for this is that numbers
with a leading zero are interpreted by PHP as being octal numbers,
and this is likely to cause unforeseen results.

mt_rand()
int mt_rand ([int min, int max])

The mt_rand() function returns random numbers, similar to the rand(). However, it
uses the Mersenne Twister algorithm to generate “better” random numbers (i.e., more
random), and is often preferred.

106 | Chapter 7: Function Reference

If you supply no parameters, mt_rand() will return a number between 0 and mt_
getrandmax(). If you supply it with two parameters, mt_getrandmax() will use those as
the upper and lower limits for the random number it generates. The limits are inclu-
sive: if you specify 1 and 3, your random number could be 1, 2, or 3.

$mtrand = mt_rand();
$mtrandrange = mt_rand(1,100);

The maximum value that can be generated by mt_rand() varies depending on the
system you use, but on both Windows and Unix, the default is 2,147,483,647.

nl2br()
string nl2br (string str)

The nl2br function inserts a HTML line break (
) before all new line characters.
You should note that it does not replace the line breaks—the \n breaks are left intact.
For example:

$mystr = "This is a test\nYes it is.";
$brstr = nl2br($mystr);
// set to "This is a test
\nYes it is."

number_format()
string number_format (float num [, int decimals
[, string decimal_point, string thousands_sep]])

The number_format() function rounds numbers and adds commas as a thousands
separator. You can pass it either one, two, or four parameters:

• number_format($n) rounds $n to the nearest whole number and adds commas in
between thousands. For example:

$total = 12345.6789;
echo "Total charge is \$", number_format($total), "\n";

That will output Total charge is $12,346, because it rounds up to the nearest
decimal place.

• number_format($n,$p) rounds $n to $p decimal places, adding commas between
thousands. For example:

echo "Total charge is \$", number_format($total, 2), "\n";

This time the output is 12,345.68, as it has been rounded to two decimal places.

• number_format($n, $p, $t, $d) rounds $n to $p decimal places, using $t as the
thousands separator and $d as the decimal separator. For example:

echo "Total charge is ", number_format($total, 2, ".", ","), " Euros";

The output is now 12.345,68, which swaps the period and comma, as is the norm
in many European countries.

octdec()
number octdec (string octal_string)

The octdec() function converts an octal number into a decimal number. It takes just
one parameter, which is the number to convert. For example:

print decoct("23"); // 19

parse_str() | 107

Fu
n

ctio
n

R
eferen

ce

ord()
int ord (string str)

The ord() function takes a string and returns the equivalent ASCII value. For example:

$mystr = "ASCII is an easy way for computers to work with strings\n";
if (ord($mystr{1}) = = 83) {
 print "The second letter in the string is S\n";
} else {
 print "The second letter is not S\n";
}

That code should output The second letter in the string is S. The chr() function
does the opposite of ord(): it takes an ASCII value and returns the equivalent
character.

parse_str()
void parse_str (string str [, array &arr])

QUERY_STRING is the literal text sent after the question mark in a HTTP GET request,
which means that if the page requested was mypage.php?foo=bar&bar=baz, QUERY_STRING
is set to foo=bar&bar=baz. The parse_str() function is designed to take a query string like
that one and convert it to variables in the same way that PHP does when variables come
in. The difference is that variables parsed using parse_str() are converted to global vari-
ables, as opposed to elements inside $_GET. So:

if (isset($foo)) {
 print "Foo is $foo
";
} else {
 print "Foo is unset
";
}

parse_str("foo=bar&bar=baz");

if (isset($foo)) {
 print "Foo is $foo
";
} else {
 print "Foo is unset
";
}

That will print out Foo is unset followed by Foo is bar, because the call to parse_str()
will set $foo to bar and $bar to baz. Optionally, you can pass an array as the second
parameter to parse_str(), and it will put the variables into there. That would make
the script look like this:

$array = array();

if (isset($array['foo'])) {
 print "Foo is {$array['foo']}
";
} else {
 print "Foo is unset
";
}

parse_str("foo=bar&bar=baz", $array);

108 | Chapter 7: Function Reference

if (isset($array['foo'])) {
 print "Foo is {$array['foo']}
";
} else {
 print "Foo is unset
";
}

That script has the same output as before, except that the variables in the query string
are placed into $array. As you can see, the variable names are used as keys in the array,
and their values are used as the array values.

passthru()
void passthru (string command [, int &return_var])

The passthru() function runs an external program, specified in the first parameter. It
prints everything output by that program to the screen, unlike the exec(), which
prints out only the final line of output that the program generates.

passthru("who");

This function is helpful if you don’t want to worry about how many lines the program
returned. For example, many sites use the Unix command fortune with
passthru("fortune") to get a quick and easy random quote for the bottom of their
pages.

Taking user input and passing it into passthru() functions (or any
other program execution function) is very dangerous. If you really
must use user data as input to your program calls, pass it through
the special function escapeshellcmd() first—it takes your input,
and returns it in a safe format that can be used.

For example, you might have a script that allows people to search
files in a directory for a word they enter into a web form, with the
crux of the script looking something like this:

passthru("grep {$_GET["search"] /var/www/meetinglogs/*");

That works fine as long as you can trust the people calling the
script, but it’s very easy for them to send “nonexistent; cat /etc/
passwd; #” as the search field, which causes your grep command to
run on an existing file and then print out the contents of your sys-
tem password file. The # symbol is a shell comment, causing the
rest of your original command to be ignored. To solve this prob-
lem, stop people from running multiple commands by escaping
their input:

$_GET["search"] = escapeshellcmd($_GET["search"]);

passthru("grep {$_GET["search"] /var/www/meetinglogs/*");

That said, no matter how many precautions you take, it’s really not
worth running the risk of people executing arbitrary commands, so
you should try to avoid using user input for command execution.

printf() | 109

Fu
n

ctio
n

R
eferen

ce

pow()
number pow (number base, number exponent)

The pow() function takes two parameters: a base and a power to raise it by. That is,
supplying 2 as parameter two will multiply parameter one by itself, and supplying 3
will multiply parameter one by itself twice, like this:

print pow(10,2); // 100
print pow(10,3); // 1000
print pow(10,4); // 10000
print pow(-10, 4); // 10000

The first three lines show the result of 10 * 10, 10 * 10 * 10, then 10 * 10 * 10 * 10. On
line four, we have -10 as the first parameter, and it is converted to a positive number in
the result. This is basic mathematical theory: “a negative multiplied by negative makes
a positive.”

You can also send negative powers for the second parameter to pow() to generate
roots. For example, pow(10, -1) is 0.1, pow(10, -2) is 0.01, pow(10, -3) is 0.001, etc.
The values used as parameters one and two need not be integers: pow(10.1,2.3) works
fine.

printf()
int printf (string format [, mixed argument [, mixed ...]])

The printf() function may not be a function you will use often, but many people do,
so it is good for you to be aware of it. This function is the standard C way to format
text, and it has been copied wholesale into PHP for those who want to make use of it.
It is not easy to use, but if you are doing a lot of code formatting, it will produce
shorter code.

This function takes a variable number of parameters: a format string is always the first
parameter, followed by zero or other parameters of various types. Here is a basic
example:

$animals = "lions, tigers, and bears";
printf("There were %s - oh my!", $animals);

That will put together the string “There were lions, tigers, and bears—oh my!” and
send it to output. The %s is a special format string that means “string parameter to
follow,” which means that $animals will be treated as text inside the string that
printf() creates.

Here is another example, slightly more complicated this time:

$foo = "you";
$bar = "the";
$baz = "string";

printf("Once %s've read and understood %s previous section, %s should be
able to use %s bare minimum %s control functions to help %s make useful
scripts.", $foo, $bar, $foo, $bar, $baz, $foo);

This time we have several %s formatters in there, and the corresponding number of
variables after parameter one. PHP replaces the first %s with parameter two, the
second %s with parameter three, the third %s with parameter four, and so on. We

110 | Chapter 7: Function Reference

have both $foo and $bar appearing more than once in the format list, which is perfectly
acceptable.

There is a variety of other format strings for printf() as well as %s; a complete list is
shown in Table 7-2.

If you specify one type but use another in its place, PHP will treat it as the type you
specified, not as the type it actually is. For example, if you specify %d but provide a
float, PHP will ignore the decimal part of the number; if you specify a number inside a
string, PHP will treat it as a number. This works well, because you can’t always be sure
what type a variable is, yet you can always be sure what kind of variable you would
like it to be.

$number = 123;
printf("123 in binary is: %b", $number);
printf("123 in hex is: %h", $number);
printf("123 as a string is: %s", $number);
printf("%% allows you to print percent characters");

Putting strings for parameter one separate from the printf() call means that you can
change languages at the drop of a hat. Furthermore, it means you don’t need to add
new variables to your script to perform conversions—printf() will do them all for
you, thanks in particular to an extra piece of functionality it has, revolving around the
use of . (a period). For example:

$number = 123.456;
$formatted = number_format($number, 2) . "\n";
print "Formatted number is $formatted\n";
printf("Formatted number is %.2f\n", $number);

In that code, lines two and three round a float to two decimal places and then print
out the result. The same thing is accomplished in line three: %f is the format term
meaning float, but by preceding the F with .2 printf(), it rounds the float to two
decimal places. We could have used %.1f for one decimal place, %.8f for eight decimal
places, etc.

Table 7-2. Format strings for use in printf()

Format Meaning

%% A literal percent character; no matching parameter is required

%b Parameter is an integer; express it as binary

%c Parameter is an integer; express it as a character with that ASCII value

%d Parameter is a positive integer; express it as decimal

%f Parameter is a float; express it as a float

%o Parameter is an integer; express it as octal

%s Parameter is a string; express it as a string

%x Parameter is an integer; express it as hexadecimal with lowercase letters

%X Parameter is an integer; express it as hexadecimal with uppercase letters

rawurlencode() | 111

Fu
n

ctio
n

R
eferen

ce

rad2deg()
float rad2deg (float num)

The rad2deg() function converts radians to degrees. Radians are calculated as being
$degrees multiplied by the mathematical constant pi, then divided by 180.

$atan_deg = rad2deg(atan(0.4346));

rand()
int rand ([int min, int max])

The rand() function returns random numbers. If you call it with no parameters, it will
return a number between 0 and the value returned by getrandmax().

If you supply it with two parameters, rand() will use those numbers as the upper and
lower limits of the random number, inclusive of those values. That is, if you specify 1
and 3, the value could be 1, 2, or 3.

$random = rand();
$randrange = rand(1,10);

Using rand() is very quick but not very “random”—the numbers it generates are more
predictable than using the mt_rand() function.

The maximum value that can be generated by rand() varies depending on the system
you use: on Windows, the highest default value is usually 32,767; on Unix, the value is
2,147,483,647. That said, your system may be different, which is why the getrandmax()
is available.

rawurldecode()
string rawurldecode (string str)

The rawurldecode() function converts a %-escaped string into its original format,
reversing the operation of rawurlencode().

$name = 'Paul "Hudzilla" Hudson';
$safe_name = rawurlencode($name);
// it's now Paul%20%22Hudzilla%22%20Hudson

$unsafe_name = rawurldecode($name);
// back to 'Paul "Hudzilla" Hudson'

rawurlencode()
string rawurlencode (string str)

The rawurlencode() function converts non-alphabetic symbols into numerical equiva-
lents preceded by a percent sign, such as %28 for “(”, %29 for “)”, and %27 for double
quotes. This is most commonly used for passing data over URLs.

$name = 'Paul "Hudzilla" Hudson';
$safe_name = rawurlencode($name);
// it's now Paul%20%22Hudzilla%22%20Hudson

This method of encoding is often referred to as %-escaping. You can reverse this
conversion using the rawurldecode() function.

112 | Chapter 7: Function Reference

register_shutdown_function()
void register_shutdown_function (function callback
[, mixed param [, mixed ...]])

The register_shutdown_function() function allows you to register with PHP a func-
tion to be run when script execution ends. Take a look at this example:

function say_goodbye() {
 echo "Goodbye!\n";
}

register_shutdown_function("say_goodbye");
echo "Hello!\n";
That would print out the following:
Hello!
Goodbye!

You can call register_shutdown_function() several times passing in different func-
tions, and PHP will call all of the functions in the order you registered them when the
script ends. If any of your shutdown functions call exit, the script will terminate
without running the rest of the functions.

One very helpful use for shutdown functions is to handle unexpected script termina-
tion, such as script timeout, or if you have multiple exit() calls scattered throughout
your script and want to ensure that you clean up no matter what. If your script times
out, you have just lost control over whatever you were doing, so you either need to
back up and undo whatever you have just done, or you need to clean up and termi-
nate cleanly. Either way, shutdown functions are perfect: register a clean-up function
near the start of the script and, when script timeout happens, the clean-up function
will automatically run.

For example, the following script will print out “Sleeping...Goodbye!”:

function say_goodbye() {
 print "Goodbye!\n";
}

register_shutdown_function("say_goodbye");
set_time_limit(1);
print "Sleeping...\n";
sleep(2);
print "Done!\n";

The “Done!” print line will never be executed, because the time limit is set to 1 and the
sleep() function is called with 2 as its parameter, so the script will sleep for 2 seconds.
As a result, “Sleeping...” gets printed, probably followed by a warning about the script
going over its time limit, and then the shutdown function gets called.

round()
float round (float num [, int precision])

The round() function takes a floating-point number as its parameter and rounds it to
the nearest integer to its current value. If a number is exactly halfway between two
integers, round() will always round up. If you provide an integer, nothing will happen.
For example:

set_time_limit() | 113

Fu
n

ctio
n

R
eferen

ce

$number = round(11.1); // 11
$number = round(11.9); // 12
$number = round(11.5); // 12
$number = round(11); // 11

You can also provide the number of decimal places to round to:

$a = round(4.4999); // 4
$b = round(4.123456, 3); // 4.123
$c = round(4.12345, 4); // 4.1235
$d = round(1000 / 160); // 6

The last example is a common situation encountered by people using round().
Imagine you were organizing a big trip to the countryside, and 1000 people signed up.
You need to figure out how many buses you need to hire, so you take the number of
people, 1000, and divide it by the capacity of your buses, 160, then round it to get a
whole number. You find the result is 6.

Where is the problem? Well, the actual result of 1000/160 is 6.25—you need 6.25
buses to transport 1000 people, and you will only have ordered 6 because round()
rounded toward 6 rather than 7, since it was closer. As you cannot order 6.5 buses,
what do you do? The solution is simple: in situations like this, you use ceil().

rtrim()
string rtrim (string str [, string trim_chars])

The rtrim() function works like the normal trim(), except it only trims whitespace
from the righthand side of a string.

$string = rtrim(" testing ");
// $string is " testing"

set_time_limit()
void set_time_limit (int seconds)

The set_time_limit() function lets you set how long a script should be allowed to
execute. This value is usually set inside php.ini under the max_execution_time setting;
however, you can override that here. The function takes one parameter, which is the
number of seconds you want the script to have. Or you can pass 0, which means “Let
the script run as long as it needs.” This example sets the script execution time to 30
seconds:

set_time_limit(30);

When you use this function, the script timer is reset to 0; if you set 50 as the time
limit, then after 40 seconds set the time limit to 30, the script will run for 70 seconds in
total. That said, most web servers have their own time limit over and above PHP’s. In
Apache, this is set under Timeout in httpd.conf, and defaults to 300 seconds. If you use
set_time_limit() to a value greater than Apache’s timeout value, Apache will stop
PHP before PHP stops itself. PHP may let some scripts go over the time limit if control
is outside the script. For example, if you run an external program that takes 100
seconds and you have set the time limit to 30 seconds, PHP will let the script carry on
for the full 100 seconds and terminate immediately afterwards. This also happens if
you use the sleep() function with a value larger than the amount of time the script has
left to execute.

114 | Chapter 7: Function Reference

The script time limit specified in php.ini or using set_time_limit()

is also used to specify the number of seconds shutdown functions
have to run. For example, if you have a time limit set to 30 seconds
and have used register_shutdown_function() to set up functions to
be called on script end, you will get an additional 30 seconds for all
your shutdown functions to run (as opposed to 30 seconds for each
of your shutdown functions).

sha1()
string sha1 (string str [, bool raw_output])

SHA stands for the “Secure Hash Algorithm,” and it is a way of converting a string of
any size into a 40-bit hexadecimal number that can be used for verification. Check-
sums are like unidirectional (one-way) encryption designed to check the accuracy of
input. By unidirectional, I mean that you cannot run $hash = sha1($somestring), then
somehow decrypt $hash to get $somestring—it is just not possible, because a
checksum does not contain its original text.

Checksums are a helpful way of storing private data. For example, how do you check
whether a password is correct?

if ($password = = "Frosties") {
 //
}

While that solution works, it means that whoever reads your source code gets your
password. Similarly, if you store all your users’ passwords in your database and
someone cracks it, you will look bad. If you have the passwords of people on your
database, or in your files, then malicious users will not be able to retrieve the original
password.

The downside of that is that authorized users will not be able to get at the passwords
either—whether or not that is a good thing varies from case to case, but usually having
checksummed passwords is worthwhile. People who forget their password must
simply reset it to a new password as opposed to retrieving it.

Checksumming is also commonly used to check whether files have downloaded prop-
erly—if your checksum is equal to the correct checksum value, then you have
downloaded the file without problem.

The process of checksumming involves taking a value and converting it into a semi-
meaningless string of letters and numbers of a fixed length. There is no way—no way
whatsoever—to “decrypt” a checksumming to obtain the original value. The only way
to hack a checksum is to try all possible combinations of input, which, given that the
input for the checksum can be as long as you want, can take millions of years.

Consider this script:

print sha1("hello") . "\n";
print sha1("Hello") . "\n";
print sha1("hello") . "\n";
print sha1("This is a very, very, very, very, very, very, very long test");

Here is the output I get:

aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d
f7ff9e8b7bb2e09b70935a5d785e0cc5d9d0abf0

sqrt() | 115

Fu
n

ctio
n

R
eferen

ce

aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d
66f52c9f1a93eac0630566c9b82b26f91d727001

There are three key things to notice there: first, all the output is exactly 40 characters
in length, and always will be. Second, the difference between the checksum of “hello”
and the checksum of “Hello” is gigantic, despite the only difference being a small caps
change. Finally, notice that there is no way to distinguish between long strings and
short strings—because the checksum is not reversible (that is, you cannot extract the
original input from the checksum), you can create a checksum of strings of millions of
characters in just 40 bytes.

If you had stored your users’ passwords checksummed in your database, then you
need to checksum the passwords they provide before you compare them to the values
in your database. One thing that is key to remember is that sha1() will always give the
same output for a given input.

If you set the optional second parameter to true, the SHA1 check-
sum is returned in raw binary format and will have a length of 20.

sin()
float sin (float num)

The sin() function calculates the sine value of the number provided as its only param-
eter. The parameter should be passed as radians—you should use deg2rad() to
convert degrees to radians.

$sin1 = sin(10);
$sin2 = sin(deg2rad(80));

sleep()
int sleep (int seconds)

The sleep() function pauses execution for a set number of seconds, determined by the
parameter you provide it. For example:

sleep(4);
echo "Done\n";

The maximum script execution time is 30 seconds by default (although you may have
changed this by altering the max_execution_time setting inside php.ini), but you can use
sleep() to make your scripts go on for longer than that because PHP does not have
control during the sleep operation.

sqrt()
float sqrt (float num)
To obtain the square root of a number, use the sqrt() function, which takes
as its parameter the value you wish to calculate the square root of:
print sqrt(25);
print sqrt(26);

That will output 5 as the result of line one, then 5.0990195135928 for line two.

116 | Chapter 7: Function Reference

str_pad()
string str_pad (string input, int length [, string padding [, int type]])

The str_pad() function makes a given string (parameter one) larger by X number of
characters (parameter two) by adding on spaces. For example:

$string = "Goodbye, Perl!";
$newstring = str_pad($string, 2);

That code would leave “ Goodbye, Perl! ” in $newstring, which is the same string from
$string, except with a space on either side, equalling the two we passed in as param-
eter two.

There is an optional third parameter to str_pad() that lets you set the padding char-
acter to use, so:

$string = "Goodbye, Perl!";
$newstring = str_pad($string, 10, 'a');

That would put “aaaaaGoodbye, Perl!aaaaa” into $newstring.

We can extend the function even more by using its optional fourth parameter, which
allows us to specify which side we want the padding added to. The fourth parameter is
specified as a constant, and you either use STR_PAD_LEFT, STR_PAD_RIGHT, or STR_PAD_BOTH:

$string = "Goodbye, Perl!";
$a = str_pad($string, 10, '-', STR_PAD_LEFT);
// $a is "----------Goodbye, Perl!"

$b = str_pad($string, 10, '-', STR_PAD_RIGHT);
// $b is "Goodbye, Perl!----------",

$c = str_pad($string, 10, '-', STR_PAD_BOTH);
// $c is "-----Goodbye, Perl!-----"

Note that HTML only allows a maximum of one space at any time. If you want to pad
more, you will need to use the HTML code for a non-breaking space.

str_replace()
mixed str_replace (mixed needle, mixed replace, mixed haystack [, int
&count])

The str_replace() function replaces parts of a string with new parts you specify and
takes a minimum of three parameters: what to look for, what to replace it with, and
the string to work with. It also has an optional fourth parameter, which will be filled
with the number of replacements made, if you provide it. Here are examples:

$string = "An infinite number of monkeys";
$newstring = str_replace("monkeys", "giraffes", $string);
print $newstring;

With that code, $newstring will be printed out as "An infinite number of giraffes".
Now consider this piece of code:

$string = "An infinite number of monkeys";
$newstring = str_replace("Monkeys", "giraffes", $string);
print $newstring;

This time, $newstring will not be "An infinite number of giraffes", as you might have
expected. Instead, it will remain "An infinite number of monkeys", because the first

str_word_count() | 117

Fu
n

ctio
n

R
eferen

ce

parameter to str_replace() is Monkeys rather than "monkeys", and the function is case-
sensitive.

There are two ways to fix the problem: either change the first letter of “Monkeys” to a
lowercase M, or, if you’re not sure which case you will find, you can switch to the
case-insensitive version of str_replace(): str_ireplace().

$string = "An infinite number of monkeys";
$newstring = str_ireplace("Monkeys", "giraffes", $string);
print $newstring;

When used, the fourth parameter is passed by reference, and PHP will set it to be the
number of times your string was found and replaced:

$string = "He had had to have had it.";
$newstring = str_replace("had", "foo", $string, $count);
print "$count changes were made.\n";

The above code should output 3 in $count, as PHP will replace had with foo three
times.

str_word_count()
mixed str_word_count (string str [, int count_type [, string char_list]])

The str_word_count() function returns the number of words in a string. You can pass
a second parameter to str_word_count() to make it do other things, but if you only
pass the string parameter by itself, then it returns the number of unique words that
were found in the string. If you pass 1 as the second parameter, it will return an array
of the words found; passing 2 does the same, except the key of each word will be set to
the position where that word was found inside the string.

Here are examples of the three options:

$str = "This is a test, only a test, and nothing but a test.";
$a = str_word_count($str, 1);
$b = str_word_count($str, 2);
$c = str_word_count($str);
print_r($a);
print_r($b);
echo "There are $c words in the string\n";

That should output the following:

Array ([0] => This [1] => is [2] => a [3] => test [4]
=> only [5] => a [6] => test [7] => and [8] =>
nothing [9] => but [10] => a [11] => test)

Array ([0] => This [5] => is [8] => a [10] => test [16]
=> only [21] => a [23] => test [29] => and [33] =>
nothing [41] => but [45] => a [47] => test)

There are 12 words in the string

In the first line, the array keys are irrelevant, but the array values are the list of the
words found—note that the comma and period are not in there, as they are not
considered words. In the second line, the array keys mark where the first letter of the
word in the value was found, thus “0” means “This” was found at the beginning of the
string. The last line shows the default word-counting behavior of str_word_count().

118 | Chapter 7: Function Reference

strcasecmp()
int strcasecmp (string str1, string str2)

This is a case-insensitive version of the strcmp().

$result = strcasecmp("Hello", "hello");

That will return 0, because PHP will ignore the case difference. Using strcmp() instead
would have returned -1: "Hello" would come before "hello".

strcmp()
int strcmp (string str1, string str2)

The strcmp() function, and its case-insensitive sibling, strcasecmp(), is a quick way of
comparing two words and telling whether they are equal, or whether one comes before
the other. It takes two words for its two parameters, and returns -1 if word one comes
alphabetically before word two, 1 if word one comes alphabetically after word two, or
0 if word one and word two are the same.

$string1 = "foo";
$string2 = "bar";
$result = strcmp($string1, $string2);

switch ($result) {
 case -1: print "Foo comes before bar"; break;
 case 0: print "Foo and bar are the same"; break;
 case 1: print "Foo comes after bar"; break;
}

It is not necessary for us to see that “foo” comes after “bar” in the alphabet, because
we already know it does; however, you would not bother running strcmp() if you
already knew the contents of the strings—it is most useful when you get unknown
input and you want to sort it.

If the only difference between your strings is the capitalization of letters, you should
know that capital letters come before their lowercase equivalents. For example, “PHP”
will come before “php.”

strip_tags()
string strip_tags (string html_text [, string allowed_tags])

You can strip HTML and PHP tags from a string using strip_tags(). Parameter one is
the string you want stripped, and parameter two lets you specify a list of HTML tags
you want to keep.

This function can be very helpful if you display user input on your site. For example, if
you create your own message board forum on your site, a user could post a title along
the lines of: <H1>THIS SITE SUCKS!</H1>, which, because you would display the titles of
each post on your board, would display their unwanted message in huge letters on
your visitors’ screens.

Here are two examples of stripping out tags:

$input = "<blink>Hello!</blink>";
$a = strip_tags($input);
$b = strip_tags($input, "");

stripslashes() | 119

Fu
n

ctio
n

R
eferen

ce

After running that script, $a will be set to "Hello!", whereas $b will be set to
Hello! because we had in the list of acceptable tags. Using this
method, you can eliminate most users from adversely changing the style of your site;
however, it is still possible for users to cause trouble if you allow a list of certain
HTML tags. For example, we could abuse the allow tag using CSS: <strong
style="font: 72pt Times New Roman">THIS SITE SUCKS!, a situation shown in
Figure 7-1.

If you allow tags, you allow all tags, regardless of whether they have
any extra unwanted information in there, so it is best not to allow any tags at all—not
, not , etc.

This sort of attack is commonly referred to as Cross-Site Scripting (XSS), as it allows
people to submit specially crafted input to your site to load their own content. For
example, it’s fairly easy for malicious users to make their username a piece of
JavaScript that redirects visitors to a different site, passing along all their cookies from
your site. Be careful: make sure to put strip_tags() to good use.

stripslashes()
string stripslashes (string str)

The stripslashes() function is the opposite of addslashes(): it removes one set of
\-escapes from a string. For example:

$string = "I'm a lumberjack and I'm okay!";
$a = addslashes($string);
// string is now "I\'m a lumberjack and I\'m okay!"

$b = stripslashes($a);
// string is now "I'm a lumberjack and I'm okay!"

Figure 7-1. Not what you want to see—strip_tags() gone wrong

120 | Chapter 7: Function Reference

strlen()
int strlen (string str)

The strlen() function takes just one parameter (the string), and returns the number of
characters in it:

print strlen("Foo") . "\n"; // 3
print strlen("Goodbye, Perl!") . "\n"; // 14

Behind the scenes, strlen() actually counts the number of bytes in your string, as
opposed to the number of characters. It is for this reason that multibyte strings should
be measured with mb_strlen().

strpos()
int strpos (string haystack, mixed needle [, int offset])

The strpos() function, and its case-insensitive sibling, stripos(), returns the index of
the beginning of a substring’s first occurrence within a string. This is easiest to under-
stand in code:

$string = "This is a strpos() test";
print strpos($string, "s") . "\n";

That will return 3, because the first lowercase S character in "This is a strpos() test"
is at index 3. Remember that PHP considers the first letter of a string to be index 0,
which means that the S strpos() found is actually the fourth character.

You can specify whole words in parameter two, which will make strpos() return the
first position of that word within the string. For example, strpos($string, "test")
would return 19—the index of the first letter in the matched word.

You should be aware that if the substring sent in parameter two is not found in param-
eter one, strpos() will return false (as opposed to -1). This is very important, as
shown in this script:

$string = "This is a strpos() test";
$pos = strpos($string, "This");
if ($pos = = false) {
 print "Not found\n";
} else {
 print "Found!\n";
}

That will output "Not found", despite "This" quite clearly being in $string. This time,
the problem is that "This" is the first thing in $string, which means that strpos() will
return 0. However, PHP considers 0 to be the same value as false, which means that
our if statement cannot tell the difference between “Substring not found” and
“Substring found at index 0.”

If we change our if statement to use === rather than ==, PHP will check the value of 0
and false and find they match (both false), then check the types of 0 and false, and
find that they do not match—the former is an integer, and the latter is a boolean. So,
the corrected version of the script is this:

$string = "This is a strpos() test";
$pos = strpos($string, "This");
if ($pos = == false) {
 print "Not found\n";

strtotime() | 121

Fu
n

ctio
n

R
eferen

ce

} else {
 print "Found!\n";
}

There is a third parameter to strpos() that allows us to specify where to start
searching from. For example:

$string = "This is a strpos() test";
$pos = strpos($string, "i", 3);
if ($pos = == false) {
 print "Not found\n";
} else {
 print "Found at $pos!\n";
}

Using 3 as the third parameter forces strpos() to start its search after the "i" of "This",
meaning that the first match is the "i" of "is". Therefore, it returns the value 5.

strstr()
string strstr (string haystack, string needle)

The strstr() function and its case-insensitive cousin, stristr(), is a nice and easy
function that finds the first occurrence of a substring (parameter two) inside another
string (parameter one), and returns all characters from the first occurrence to the end
of the string. This next example will match the “www” part of the URL http://www.
example.com/mypage.php, then return everything from the “www” until the end of the
string:

$string = "http://www.example.com/mypage.php";
$newstring = strstr($string, "www");

strtolower()
string strtolower (string str)

The strtolower() function takes one string parameter and returns that string entirely
in lowercase characters.

$string = "I like to program in PHP";
$a = strtolower($string);

In that example, $a will be set to “i like to program in php”.

strtotime()
int strtotime (string time [, int now])

The strtotime() function converts strings to a timestamp and takes two parameters:
the string time to convert, and a second optional parameter that can be a relative
timestamp. Parameter one is important; we will come back to parameter two shortly.
Consider this script:

print strtotime("22nd December 1979");
print strtotime("22 Dec. 1979 17:30");
print strtotime("1979/12/22");

Here, there are three ways of representing the same date with the second also
including a time. If you run that script, you will see PHP output an integer for each

122 | Chapter 7: Function Reference

one, with the first and third being the same, and the second one being slightly higher.
These numbers are the Unix timestamps for the dates we passed into strtotime(), so
it successfully managed to convert them.

You must use American-style dates (i.e., month, day, year) with strtotime(); if it finds
a date like 10/11/2003, it will consider it to be October 11th as opposed to November
10th.

If PHP is unable to convert your string into a timestamp, it will return -1. This next
example tests whether date conversion worked or not:

$mydate = strtotime("Christmas 1979");
if ($mydate == -1) {
 print "Date conversion failed!";
} else {
 print "Date conversion succeeded!";
}

The strtotime() function has an optional second parameter, which is a timestamp to
use for relative dates. This is because the date string in the first parameter to
strtotime() can include relative dates such as “Next Sunday,” “2 days,” or “1 year
ago.” In this situation, PHP needs to know what these relative times are based on, and
this is where the second parameter comes in—you can provide any timestamp you
want, and PHP will calculate “Next Sunday” from that timestamp. If no parameter is
provided, PHP assumes you are referring to the current time.

For example, this next line of code will print the timestamp for the next Sunday (that
is, not the upcoming Sunday, but the one after):

print strtotime("Next Sunday");

You can pass in custom timestamps with your relative dates. For instance, this next
line uses time() minus two days as its second parameter, and "2 days" for its first
parameter, which means it returns the current timestamp:

print strtotime("2 days", time() - (86400 * 2));

This final example subtracts a year from a given timestamp, and works as expected:

print strtotime("1 year ago", 123456789);

Converting textual dates to usable dates is not always easy, and you should experi-
ment with various dates to see what you can get to work and what you cannot.

Be wary of dates such as this one: August 25, 2003, 10:26 a.m.
Although this may look well formed, strtotime() is not able to
handle it because it has commas. If you have dates with commas in
them, be sure to strip them out using the str_replace() function,
covered earlier in this chapter.

strtoupper()
string strtoupper (string str)

The strtoupper() function takes one string parameter and returns that string entirely
in uppercase characters.

$string = "I like to program in PHP";
$a = strtoupper($string);

In that example, $a will be set to “I LIKE TO PROGRAM IN PHP”.

substr() | 123

Fu
n

ctio
n

R
eferen

ce

substr()
string substr (string str, int start_pos [, int length])

The substr() function allows you to read just part of a string and takes a minimum of
two parameters: the string to work with, and where you want to start reading from.
There is an optional third parameter to specify how many characters you want to read.
Here are some examples of basic usage:

$message = "Goodbye, Perl!";
$a = substr($message, 1);
// $a contains "oodbye, Perl!" - strings and arrays start at 0
// rather than 1, so it copied from the second character onwards.

$b = substr($message, 0);
// $b contains the full string because we started at index 0

$c = substr($message, 5);
// $c copies from index 5 (the sixth character),
// and so will be set to "ye, Perl!"

$d = substr($message, 50);
// $d starts from index 50, which clearly does not exist.
// PHP will return an empty string rather than an error.

$e = substr($message, 5, 4);
// $e uses the third parameter, starting from index five
// and copying four characters. $e will be set to "ye, ",
// a four-letter word with a space at the end.

$f = substr($message, 10, 1);
// $f has 1 character being copied from index 10, which gives "e"

You can specify a negative number as parameter three for the length, and PHP will
consider that number the amount of characters you wish to omit from the end of the
string, as opposed to the number of characters you wish to copy:

$string = "Goodbye, Perl!";
$a = substr($string, 5, 5);
// copies five characters from index five onwards, giving "ye, P"

$b = substr($string, 5, -1);
// copies five characters from the end, except the last character,
// so $b is set to "ye, Perl",

$c = substr($string, 0, -7);
// $c is set to "Goodbye"

Using negative lengths allows you to say “copy everything but the last three charac-
ters,” for example.

You can also use a negative start index, in which case, you start copying start charac-
ters from the end. You can even use a negative length with your negative start index,
like this:

$string = "Goodbye, Perl!"
$a = substr($string, 5);
// copy from character five until the end

124 | Chapter 7: Function Reference

$b = substr($string, 5, 5);
// copy five characters from character five

$c = substr($string, 0, -1);
// copy all but the last character

$d = substr($string, -5);
// $d is "Perl!", because PHP starts 5 characters from the end, then copies
from there to the end

$e = substr($string, -5, 4);
// this uses a negative start and a positive length; PHP starts five
characters from the end of the string ("P"), then copies four characters, so
$e will be set to "Perl"

$f = substr($string, -5, -4);
// start five characters from the end, and copy everything but the last four
characters, so $f is "P"

tan()
float tan (float num)

Calculates the tangent value of the number provided as its only parameter. The param-
eter should be passed as radians—you should use deg2rad() to convert degrees to
radians.

$tan1 = tan(10);
$tan2 = tan(deg2rad(80));

time()
int time (void)

PHP represents time as the number of seconds that have passed since January 1st 1970
00:00:00 GMT, a date known as the start of the Unix epoch; hence, this date format is
known as epoch time or a Unix timestamp. This might be a peculiar way to store dates,
but it works well—internally, you can store any date since 1970 as an integer, and
convert to a human-readable string wherever necessary.

The basic function to get the current time in epoch format is time(). This takes no
parameters and returns the current timestamp representing the current time on the
server. Here is an example script:

print time();
$CurrentTime = time();
print $CurrentTime;

As you can see, we can either print the return value of time() directly, or we can store
it away in a variable and then print the contents of the variable—the result is identical.

Working in Unix time means you are not tied down to any specific formatting, which
means you need not worry about whether your date has months before days (or vice
versa), whether long months are used, whether day numbers or day words (Saturday,
Tuesday, etc.) are used, and so on. Furthermore, to add one to a day (to get

ucwords() | 125

Fu
n

ctio
n

R
eferen

ce

tomorrow’s date), you can just add one day’s worth of seconds to your current times-
tamp: 60 × 60 × 24 = 86400.

For more precise time values, use the microtime() function.

trim()
string trim (string str [, string trim_chars])

You can use the trim() function to strip spaces, new lines, and tabs (collectively called
whitespace) from either side of a string variable. That is, if you have the string “ This is
a test ” and pass it to trim() as its first parameter, it will return the string “This is a
test”—the same thing, but with the surrounding spaces removed.

You can pass an optional second parameter to trim() if you want, which should be a
string specifying the individual characters you want it to trim(). For example, if we
were to pass to trim the second parameter “ tes” (that starts with a space), it would
output “This is a”—the test would be trimmed, as well as the spaces. As you can see,
trim() is again case-sensitive—the T in “This” is left untouched.

There are two minor variants to trim()—ltrim() and rtrim()—which do the same
thing, but only trim from the left and right respectively.

Here are examples:

$a = trim(" testing ");
// $a is "testing"

$b = trim(" testing ", " teng");
// $b is is "sti"

ucfirst()
string ucfirst (string str)

The ucfirst() function takes one string parameter and converts the first letter of the
string to an uppercase character, leaving the others untouched.

$string = "i like to program in PHP";
$a = strtoupper($string);

In that example, $a will be set to “I like to program in PHP”.

ucwords()
string ucwords (string str)

The ucwords() function takes one string parameter and converts the first letter of each
word in the string to an uppercase character, leaving the others untouched.

$string = "i like to program in PHP";
$a = strtoupper($string);

In that example, $a will be set to “I Like To Program In PHP”.

126 | Chapter 7: Function Reference

unset()
void unset (mixed var [, mixed var [, mixed ...]])

The unset() function deletes a variable so that isset() will return false. Once deleted,
you can recreate a variable later on in a script.

$name = "Paul";
if (isset($name)) print "Name is set\n";
unset($name);
if (isset($name)) print "Name is still set\n";

That would print out “Name is set”, but not “Name is still set”, because calling unset()
has deleted the $name variable.

usleep()
void usleep (int microseconds)

The usleep() is similar to the sleep(), which pauses script execution, except that it
uses microseconds (millionths of a second) for its sleep time rather than seconds. It is
so named because “u” is similar in style to the Greek character Mu that is associated
with “micro.” It takes the amount of time to pause execution as its only parameter.

usleep(4000000);
echo "Done\n";

The maximum script execution time is 30 seconds by default (although you may have
changed this by altering the max_execution_time setting inside php.ini), but you can use
usleep() to make your scripts go on for longer than that because PHP does not have
control during the sleep operation.

The use of usleep() is not advised if you want backward compati-
bility, because it wasn’t available on Windows prior to PHP 5.

virtual()
bool virtual (string filename)

The virtual() function performs a virtual request to the local Apache web server for a
file, almost as if your script were a client itself. This request is processed and its output
is sent back to your script. Note that you must be running Apache as the web server—
this function does not work on other servers.

Using this method you can, for example, execute a Perl script from your PHP script or,
for real weirdness, execute another PHP script from your PHP script. Although, for
that purpose, you should probably use include() or require().

// run a page counter Perl script
virtual("counter.pl");

wordwrap() | 127

Fu
n

ctio
n

R
eferen

ce

wordwrap()
string wordwrap (string str [, int line_length
[, string break_char [, bool cut]]])

Although web pages wrap text automatically, there are two situations when you might
want to wrap text yourself:

• When printing to a console as opposed to a web page, text does not wrap auto-
matically. Therefore, unless you want your users to scroll around, it is best to
wrap text for them.

• When printing to a web page that has been designed to exactly accommodate a
certain width of text, allowing browsers to wrap text whenever they want will
lead to the design getting warped.

In either of these situations, the wordwrap() function comes to your aid. If you pass a
sentence of text into wordwrap() with no other parameters, it will return that same
string wrapped at the 75-character mark using “\n” for new lines. However, you can
pass both the size and new line marker as parameters two and three if you want to, like
this:

$text = "Word wrap will split this text up into smaller lines, which makes
for easier reading and neater layout.";
$text = wordwrap($text, 20, "
");
print $text;

Running that script will give you the following output:

Word wrap will split
this text up into
smaller lines, which

makes for easier
reading and neater
layout.

As you can see, wordwrap() has used
, a HTML new line marker, and split up
words at the 20-character mark. Note that wordwrap() always pessimistically wraps
words—that is, if you set the second parameter to 20, wordwrap() will always wrap
when it hits 20 characters or under—not 21, 22, etc. The only exception to this is if
you have words that are individually longer than 20 characters—wordwrap() will not
break up a word, so it may return larger chunks than the limit you set.

If you really want your limit to be a hard maximum, you can supply 1 as a fourth
parameter, which enables “cut” mode—words over the limit will be cut up if this is
enabled. Here is an example of cut mode in action:

$text = "Micro-organism is a very long word.";
$text = wordwrap($text, 6, "\n", 1);
print $text;

That will output the following:

Micro-
organi
sm is
a very
long
word.

128

8
Object-Oriented PHP

Before PHP 5 came along, object-oriented programming (OOP) support in PHP
was more of a hack than a serious attempt. As a result, the few who used it often
regretted the choice, and it is not surprising that the whole system got a full
rewrite in PHP 5. It is now much more advanced and flexible and should please
just about everyone.

If you have used OOP in PHP 4, I strongly recommend you read
this entire chapter from start to finish—OOP has been massively
redesigned in PHP 5 and is much more functional and feature-rich
now.

Conceptual Overview
OOP was designed to allow programmers to more elegantly model their programs
upon real-world scenarios. It allows programmers to define things (objects) in
their world (program), set a few basic properties, then ask them to do things.
Consider an object of type Dog—there are many dogs in the world, but only one
animal “dog.” As such, we could have a blueprint for dogs, from which all dogs
are made. While dogs have different breeds that vary a great deal, at the end of the
day they all have four legs, a wet nose, and a dislike of cats and squirrels.

So, we have our dog blueprint, from which we might create a Poodle breed, a
Chihuahua breed, and an Alsatian breed. Each of these is also a blueprint, but
they are all based upon the Dog blueprint. From our Poodle breed, we can then
create a Poodle, which we will call Poppy. Poppy is an actual dog, based upon the
Poodle breed, and therefore also based upon the Dog blueprint. We can create
other Poodles (or Chihuahuas or Alsatians) simply by creating an instance of that
breed.

Classes | 129

O
b

ject-
O

rien
ted

 P
H

P

As all dogs are able to bark, we can add a bark() function (known as a “method,”
as it is inside a class) to our dog blueprint, which, in turn, means that the Poodle
breed has a bark() method. Therefore, Poppy can bark() too. We can also define
variables (known as “properties” inside objects) inside the dog blueprint, such as
$Name, $Age, and $Friendliness. These also become available in the Poodle breed,
which stems from the dog animal, and therefore into Poppy. Each object of type
Poodle would have its own set of properties—its own $Name, its own $Age, etc.

Because the breeds stem from the Dog blueprint, we can also add methods and
properties to breeds individually without having them in the Dog blueprint. For
example, Poodles come in three general sizes: standard, miniature, and toy. Last
time I checked, you don’t get toy Alsatians, so putting a $Size property into the
Dog blueprint would just create a property that is not used in a third of the dogs.

If you are still with me, then you are on the way to fully understanding how
object-oriented code works.

Classes
The blueprints of dog breeds and animals are known as classes—they define the
basic architecture of the objects available in our programs. Each class is defined as
having a set of methods and properties, and you can inherit one class from
another—our Breed classes, for example, inherited from the Dog class, thereby
getting all the Dog methods and properties available. Inheriting is often referred to
as subclassing—Poodle would be a subclass of Dog.

Some languages, such as C++, allow you to inherit from more than one class,
which is known as multiple inheritance. This technique allows you to have a class
Bird and a class Horse, then create a new class called FlyingHorse—which inherits
from both Bird and Horse—to give you animals like the mythical Pegasus. PHP
does not allow you to do this because it generally makes for very confusing
programs, and is quite rare, even in C++.

PHP allows you to inherit from precisely one parent class, and you can inherit as
many times as you want. For example, the Dog class could inherit from the class
Carnivora, which would contain Cat, Dog, Bear, etc. Carnivora could inherit from
Mammalia, holding all mammals, which could in turn inherit from Vertebrata,
holding all animals with a backbone, etc.—the higher up you go, the more vague
the classes become. This is because each class inherits methods and properties
from its parent class, as well as adding its own.

People often use the terms parent, child, grandparent, etc., to define
their class structure. A child class is one that inherits from
another—Poodle is a child of Dog, and would be a grandchild of
Carnivora. Carnivora would be the parent of Dog and grandparent
of Poodle—this will make more sense later, when you are creating
your own classes and sub-classing freely.

130 | Chapter 8: Object-Oriented PHP

Defining a Class

Given the class structure of dogs and breeds discussed above, it is time to take a
look at how that translates into PHP code. Here is the PHP code necessary to
define a very basic Dog class:

class dog {
 public function bark() {
 print "Woof!\n";
 }
}

Here the Dog class has just one method, bark(), which outputs “Woof!”. Don’t
worry about the public part for now—that just means “can be called by anyone”
and we’ll be looking at that later. If we create an object of type Dog, we could call
its bark() method to have it output the message.

Class naming conventions follow the same rules as variable nam-
ing, excluding the dollar sign at the beginning. You can use any
name for your methods, except stdClass and __PHP_Incomplete_

Class—both of these are reserved by PHP.

How to Design Your Class

When designing your classes, there is one golden rule: keep to real-world
thinking. However, although that one rule sounds simple, it’s nebulous—what
exactly is real-world thinking? Fortunately there are a number of more simple
rules you can follow that will help keep your code particularly readable:

• Start or end local properties with a special character, so that you are always
clear about what variable is being set. The most common method is to start
local properties with an underscore, e.g., _Name, _Age, etc.

• To follow OOP guidelines strictly, nearly all of your properties should be
either private or protected—they should not be accessible from outside of an
object. More on this later.

• Write accessor methods to set and get private properties. These methods
should be how you interface with the object. To get a property called _Age,
write a method Age(). To set a property called _Age, write a method SetAge().

• Always put properties and methods as low in your inheritance as they can go
without repetition. If you find one object has properties and methods it is not
supposed to have, you have gone wrong somewhere. For example, while dol-
phins can swim, gorillas cannot, so do not put a swim() method into a Mammal
class just to save time.

If you are wondering why it is that accessor methods should be used to read and
write properties, it is because OOP practice dictates that objects should be self-
contained. That is, other parts of your program should be able to work with them
using simple method calls, so that they do not need implicit knowledge of an
object’s internal structures and operations.

Objects | 131

O
b

ject-
O

rien
ted

 P
H

P

Basic Inheritance

To extend the Dog class to breeds, the extends keyword is needed, like this:

class Dog {
 public function bark() {
 print "Woof!\n";
 }
}

class Poodle extends Dog {
 // nothing new yet
}

Overriding Methods

PHP allows us to redefine methods in subclasses, which means we can make the
Poodle class have its own version of bark(). This is done by redefining the method
inside the child class, making the Poodle class look like this:

class Poodle extends Dog {
 public function bark() {
 print "Yip!\n";
 }
}

We’ll come back to inheritance after we look at objects—actual instances of our
classes.

The Scope Resolution Operator

The scope resolution operator is ::—two colons next to each other. It is used in
object-oriented programming when you want to access static or overridden
methods of a class. For example, if you have a method sayhello() as well as a
sayhello() method of a Person object, you would use Person::sayhello()—you
resolve which sayhello() you mean by using the class name and the scope resolu-
tion operator.

The most common use for scope resolution is with the pseudo-class parent. For
example, if you want a child object to call its parent’s __construct() method, you
would use parent::__construct(). This is shown later in this chapter, in the
section “Parent Constructors.”

Internally to PHP, the scope resolution operator is called
“paamayim nekudotayim,” which is Hebrew for “double colon.”

Objects
Classes are mere definitions. You cannot play fetch with the definition of a dog;
you need a real, live, slobbering dog. Naturally, we cannot create live animals in

132 | Chapter 8: Object-Oriented PHP

our PHP scripts, but we can do the next best thing: creating an instance of our
class.

In our earlier example, “Poppy” was a dog of type Poodle. We can create Poppy by
using the following syntax:

$poppy = new Poodle;

That creates an instance of the class Poodle, and places it into the property $poppy.
Poppy, being a Dog, can bark by using the bark() method, and to do this, you
need to use the special -> operator. Here is a complete script demonstrating
creating objects—note that the method override for bark() is commented out.

class Dog {
 public function bark() {
 print "Woof!\n";
 }
}

class Poodle extends Dog {
 /* public function bark() {
 print "Yip!\n";
 } */
}

$poppy = new Poodle;
$poppy->bark();

Execute that script, and you should get “Woof!”. Now try taking out the
comments around the bark() method in the Poodle class; running it again, you
should see “Yip!” instead.

Properties
In the next code block, the line public $Name; defines a public property called
$Name that all objects of class Dog will have. PHP allows you to specify how each
property can be accessed, and we will be covering that in depth soon—for now,
we will just be using public.

class Dog {
 public $Name;

 public function bark() {
 print "Woof!\n";
 }
}

We can now set Poppy’s name by using this code:

$poppy->Name = "Poppy";

Notice that -> is used again to work with the object $poppy, and also that there is
no dollar sign before Name. The following would be incorrect:

$poppy->$Name = "Poppy";
// danger!

Objects Within Objects | 133

O
b

ject-
O

rien
ted

 P
H

P

While that will work, it won’t access the Name property of $poppy. Instead, it will
look for the $Name variable in the current scope, and use the contents of that vari-
able as the name of the property to read from $poppy. That might be what you
want, but otherwise, this will cause silent bugs in your code.

Each object has its own set of properties that are independent of other objects of
the same type. Consider the following code:

$poppy = new Poodle;
$penny = new Poodle;
$poppy->Name = "Poppy";
$penny->Name = "Penny";
print $poppy->Name;

That will still output “Poppy”, because Penny’s properties are separate from
Poppy’s.

PHP allows you to dynamically declare new properties for objects. For example,
saying "$poppy->YippingFrequency = 52820;" would create a new public property
for $poppy called $YippingFrequency, and assign it the value 52820. It would create
the property only for $poppy, and not for any other instances of the same class.

The ‘this’ Variable
Once inside an object’s method, you have complete access to its properties, but to
set them you need to be more specific than just using the property name you want
to work with. To specify you want to work with a local property, you need to use
the special $this variable, which always points to the object you are currently
working with. For example:

function bark() {
 print "{$this->Name} says Woof!\n";
}

When calling an object method, PHP automatically sets the $this variable that
contains that object—you do not need to do anything to have access to it.

Objects Within Objects
You can use objects inside other objects in the same way as other variable types.
For example, we could define a DogTag class and give each Dog a DogTag object like
this:

class DogTag {
 public $Words;
}

class Dog {
 public $Name;
 public $DogTag;

 public function bark() {
 print "Woof!\n";
 }

134 | Chapter 8: Object-Oriented PHP

}

// definition of Poodle...

Accessing objects within objects is as simple as using -> again:

$poppy = new Poodle;
$poppy->Name = "Poppy";
$poppy->DogTag = new DogTag;
$poppy->DogTag->Words = "My name is Poppy. If you find me, please call 555-
1234";

The $DogTag property is declared like any other, but needs to be created with new
once $poppy has been created.

Access Control Modifiers
There are a number of keywords you can place before a class, a method defini-
tion, or a property to alter the way PHP treats them. Here’s the full list, along with
what each of them does:

• Public: This property or method can be used from anywhere in the script

• Private: This property or method can be used only by the class or object it is
part of; it cannot be accessed elsewhere

• Protected: This property or method can be used only by code in the class it is
part of, or by descendants of that class

• Final: This property, method, or class cannot be overridden in subclasses

• Abstract: This method or class cannot be used directly—you have to sub-
class this

The problem with public properties is that they allow methods to be called and
properties to be set from anywhere within your script, which is generally not a
smart thing. One of the benefits of properly programmed OOP code is encapsula-
tion, which can be thought of as similar to data hiding. That is, if your object
exposes all its properties to the world, programmers using those objects need to
understand how your classes work. In an encapsulated word, other programmers
would only need to know the specification for your class, such as “call function X,
and you’ll get Y” back. They wouldn’t—and shouldn’t—have to know how it all
works internally.

To give an example of this, we had a DogTag object $DogTag inside each dog object,
as well as a $Name property, but they contained repeated information. If someone
had changed the $Name property, the $DogTag information would have remained
the same. The programmer can’t really be blamed for changing $Name: it was
publicly accessible, after all. The solution is to make all the variables private to the
object using either private or protected, and to provide accessor methods like
setName() to stop unknowing programmers from changing variables directly.
These accessors are written by us, so we can have them do all the necessary work,
such as changing the name on the dog tag when a dog’s name changes.

Access Control Modifiers | 135

O
b

ject-
O

rien
ted

 P
H

P

Generally speaking, most of the variables in a class should be marked as either
protected or private. Sometimes you will need to use public, but those times are
few and far between.

Public

Public properties and methods are accessible from anywhere in your script, which
makes this modifier the easiest to use. In PHP 4, all object properties were
declared with var and were essentially public, but using this terminology is depre-
cated and may generate compiler warnings. Take a look at the following code:

class Dog {
 public $Name;

 public function bark() {
 print "Woof!\n";
 }
}

class Poodle extends Dog {
 public function bark() {
 print "Yip!\n";
 }
}

$poppy = new Poodle;
$poppy->Name = "Poppy";
print $poppy->Name;

That code works in precisely the same way as before; the public keyword has not
made any difference. This is because, by default, all class methods are public;
before PHP 5, there was no way to make them anything else.

While the public keyword is not needed, I recommend you use it anyway—it is a
good way to remind people who read your code that a given method is indeed
public. It is also possible that class methods without an access modifier may be
deprecated in the distant future.

You always need to specify an access modifier for properties. Previous versions of
PHP used the var keyword to declare properties, again because it had no concept
of access modifiers. You should avoid this, and be more specific with public or
one of the other keywords.

Private

Private properties are accessible only inside the methods of the class that defined
them. If a new class inherits from it, the properties will not be available in the
methods of that new class; they remain accessible only in the functions from the
original class. For example:

class Dog {
 private $Name;
 private $DogTag;

136 | Chapter 8: Object-Oriented PHP

 public function setName($NewName) {
 // etc
 }
}

Both $Name and $DogTag are private, which means no one can access them unless
they are doing so in a method that is part of the class, such as setName(). This
remains public because we want this to be accessible by anyone.

Now if our nosey programmer comes along and tries to set $Name directly, using
code like $poppy->Name, he will not get what he was expecting: PHP will give him
the error message: "Cannot access private property Dog::$Name". However, if
that private property were inherited from another class, PHP will try to accommo-
date his request by having a private property and a public property. Yes, this is
confusing; however, the following code should clear things up:

class Dog {
 private $Name;
}

class Poodle extends Dog { }

$poppy = new Poodle;
$poppy->Name = "Poppy";
print_r($poppy);

Running that script will output the following:

poodle Object
(
[Name:private] =>
[Name] => Poppy
)

Notice that there are two Name properties—one that is private and cannot be
touched, and another that PHP creates for local use as requested. Clearly this is
confusing, and you should try to avoid this situation, if possible.

Keep in mind that private methods and properties can only be accessed by the
exact class that owns them; child classes cannot access private parent methods
and properties. If you want to do this, you need the protected keyword instead.

Protected

Properties and methods marked as protected are accessible only through the
object that owns them, whether or not they are declared in that object’s class or
have descended from a parent class. Consider the following code:

class Dog {
 public $Name;
 private function getName() {
 return $this->Name;
 }
}

class Poodle extends Dog {

Access Control Modifiers | 137

O
b

ject-
O

rien
ted

 P
H

P

 public function bark() {
 print "'Woof', says " . $this->getName();
 }
}

$poppy = new Poodle;
$poppy->Name = "Poppy";
$poppy->bark();

In that code, the class Poodle extends from class Dog, class Dog has a public prop-
erty $Name and a private method getName(), and class Poodle has a public method
called bark(). So, we create a Poodle, give it a $Name value of “Poppy” (the $Name
property comes from the Dog class), then ask it to bark(). The bark() method is
public, which means we can call it as shown above, so this is all well and good.

However, the bark() method calls the getName() method, which is part of the Dog
class and was marked private—this will stop the script from working, because
private properties and methods cannot be accessed from inherited classes. That is,
we cannot access private Dog methods and properties from inside the Poodle class.

Now try changing getName() to protected, and all should become clear—the
property is still not available to the world as a whole, but handles inheritance as
you would expect, meaning that we can access getName() from inside Poodle.

Final

The final keyword is used to declare that a method or class cannot be overridden
by a subclass. For example:

class Dog {
 private $Name;
 private $DogTag;
 final public function bark() {
 print "Woof!\n";
 }
 // etc

The Dog bark() method is now declared final, which means it cannot be over-
ridden in a child class. If we have bark() redefined in the Poodle class, PHP
outputs a fatal error message: "Cannot override final method dog::bark()".
Using the final keyword is optional, but it makes your life easier by acting as a
safeguard against people overriding a method you believe should be permanent.

For stronger protection, the final keyword can also be used to declare a class
uninheritable—that is, that programmers cannot extend another class from it. For
example:

final class Dog {
 private $Name;
 public function getName() {
 return $this->Name;
 }
}

class Poodle extends Dog {

138 | Chapter 8: Object-Oriented PHP

 public function bark() {
 print "'Woof', says " . $this->getName();
 }
}

Attempting to run that script will result in a fatal error, with the message: "Class
Poodle may not inherit from final class (Dog)".

Abstract

The abstract keyword is used to say that a method or class cannot be created in
your program as it stands. This does not stop people inheriting from that abstract
class to create a new, non-abstract (concrete) class.

Consider this code:

$poppy = new Dog;

The code is perfectly legal—we have a class Dog, and we’re creating one instance
of that and assigning it to $poppy. However, given that we have actual breeds of
dog to choose from, what this code actually means is “create a dog with no partic-
ular breed.” Even mongrels have breed classifications, which means that a dog
without a breed is impossible and should not be allowed. We can use the abstract
keyword to enforce this in code:

abstract class Dog {
 private $Name;
// etc

$poppy = new Dog;

The Dog class is now abstract, and $poppy is now being created as an abstract dog
object. PHP now halts execution with a fatal error message: "Cannot instantiate
abstract class Dog".

As mentioned already, you can also use the abstract keyword with methods, but
if a class has at least one abstract method, the class itself must be declared
abstract. Also, you will get errors if you try to provide any code inside an abstract
method, which makes this illegal:

abstract class Dog {
 abstract function bark() {
 print "Woof!";
 }
}

It even makes this illegal:

abstract class Dog {
 abstract function bark() { }
}

Instead, a proper abstract method should look like this:

abstract class Dog {
 abstract function bark();
}

Access Control Modifiers | 139

O
b

ject-
O

rien
ted

 P
H

P

If it helps you understand things better, you can think of abstract
classes as being similar to interfaces, which are discussed later in
this chapter.

Iterating Through Object Properties

We can treat an object as an array with the foreach loop, and it will iterate over
each of the properties inside that object that are accessible. That is, private and
protected properties will not be accessible in the general scope. Take a look at this
script:

class Person {
 public $FirstName = "Bill";
 public $MiddleName = "Terence";
 public $LastName = "Murphy";
 private $Password = "Poppy";
 public $Age = 29;
 public $HomeTown = "Edinburgh";
 public $FavouriteColor = "Purple";
}

$bill = new Person();

foreach($bill as $var => $value) {
 echo "$var is $value\n";
}

That will output this:

FirstName is Bill
MiddleName is Terence
LastName is Murphy
Age is 29
HomeTown is Edinburgh
FavouriteColor is Purple

Note that the $Password property is nowhere in sight, because it is marked Private
and we’re trying to access it from the global scope. If we re-fiddle the script a little
so that the foreach loop is called inside a method, we should be able to see the
property:

class Person {
 public $FirstName = "Bill";
 public $MiddleName = "Terence";
 public $LastName = "Murphy";
 private $Password = "Poppy";
 public $Age = 29;
 public $HomeTown = "Edinburgh";
 public $FavouriteColor = "Purple";

 public function outputVars() {
 foreach($this as $var => $value) {

140 | Chapter 8: Object-Oriented PHP

 echo "$var is $value\n";
 }
 }
}

$bill = new Person();
$bill->outputVars();

Now the output is this:

FirstName is Bill
MiddleName is Terence
LastName is Murphy
Password is Poppy
Age is 29
HomeTown is Edinburgh
FavouriteColor is Purple

Now that it’s the object itself looping through its properties, we can see private
properties just fine. Looping through objects this way is a great way to handwrite
serialization methods—just remember to put the code inside a method; other-
wise, private and protected data will get ignored.

Object Type Information
Inheriting from class to class is a powerful way to build up functionality in your
scripts. However, very often it is easy to get lost with your inheritance—how can
you tell what class a given object is?

PHP comes to the rescue with a special keyword, instanceof, which is an oper-
ator. Instanceof will return true if the object on the lefthand side is of the same
class, or a descendant of, the class given on the righthand side. You can also use
the instanceof keyword to see whether an object implements an interface. For
example, given the code $poppy = new Poodle;:

if ($poppy instanceof poodle) { }
if ($poppy instanceof dog) { }

Both of those if statements would evaluate to be true, because $poppy is an object
of the Poodle class and also a descendant of the Dog class.

Java programmers will be happy to know that instanceof is the
same old friend they’ve grown used to over the years.

If you only want to know whether an object is a descendant of a class, and not of
that class itself, you can use the is_subclass_of() method. This takes an object as
its first parameter, a class name string as its second parameter, and returns either
true or false depending on whether the first parameter is descended from the
class specified in the second parameter.

Understanding the difference between instanceof and is_subclass_of() is
crucial—this script should make it clear:

Class Type Hints | 141

O
b

ject-
O

rien
ted

 P
H

P

class Dog { }
class Poodle extends Dog { }
$poppy = new Poodle();
print (int)($poppy instanceof Poodle);
print "\n";
print (int)is_subclass_of($poppy, "Poodle");

That should output a 1, then a 0. Typecasting to int is used because boolean false
is printed out as “” (blank). But by typecasting to an integer, this becomes 0.
Using instanceof reports true that $poppy is either a Poodle or a Dog, whereas is_
subclass_of() reports false because $poppy is not descended from the class
Poodle—it is a Poodle.

New versions of PHP 5 (after 5.0.2) will allow you to specify a
string as parameter one of is_subclass_of(), and check whether
the class named in that string is a subclass of parameter two.

Class Type Hints
Although PHP remains a loosely typed language—which means that properties
are not explicitly either string, integer, or boolean—PHP 5 introduces class type
hints, which allow you to specify what class of object should be passed into a
method. These are not required, and are also not checked until the script is actu-
ally run; they aren’t strict, by any means. Furthermore, they only work for classes
right now—you can’t specify, for example, that a parameter should be an integer
or a string. Having said that, future versions will likely introduce the ability to
request that arrays be passed in.

Here is an example of a type hint in action:

class Dog {
 public function do_drool() {
 echo "Sluuuuurp\n";
 }
}

class Cat { }

function drool(Dog $some_dog) {
 $some_dog->do_drool();
}

$poppy = new Cat();
drool($poppy);

The drool() method will accept one parameter, $some_dog, but that parameter
name is preceded by the class hint—I have specified that it should only accept a
parameter of type Dog. In the example, I have made $poppy a Cat object, and that
will give the following output:

Fatal error: Argument 1 must be an instance of dog in C:\home\classhint.php
on line 12

142 | Chapter 8: Object-Oriented PHP

Providing a class hint for a class type that does not exist will cause a fatal error.
Class hints are essentially a way for you to skip having to use the instanceof
keyword again and again to verify that your methods have received the right kind
of objects. Using a class hint is essentially an implicit call to instanceof, without
the extra code.

As with the instanceof keyword, you can specify an interface as the
class hint, and only classes that interface will be allowed through.

Constructors and Destructors
If you think back to the example where each dog had a DogTag object in it, this led
to code like the following:

$poppy = new Poodle;
$poppy->Name = "Poppy";
$poppy->DogTag = new DogTag;
$poppy->DogTag->Words = "If you find me, call 555-1234";

Using that method, if we had other objects inside each Poodle object, we would
need to create the Poodle plus all its other associated objects by hand.

Another way to do this is to use constructors. A constructor is a special method
you add to classes that is called by PHP whenever you create an instance of the
class. For example:

class DogTag {
 public $Words;
}

class Dog {
 public $Name;
 public $DogTag;

 public function bark() {
 print "Woof!\n";
 }

 public function __construct($DogName) {
 print "Creating a Dog: $DogName\n";
 $this->Name = $DogName;
 $this->DogTag = new DogTag;

$this->DogTag->Words = "My name is $DogName. If you find me,
 please call 555-1234";
 }
}

class Poodle extends Dog {
 public function bark() {
 print "Yip!\n";
 }
}

Constructors and Destructors | 143

O
b

ject-
O

rien
ted

 P
H

P

$poppy = new Poodle("Poppy");
print $poppy->DogTag->Words . "\n";

Note the __construct() method in the Dog class, which takes one variable—that is
our constructor. Whenever we instantiate a Poodle object, PHP calls the relevant
constructor.

There are three other important things to note:

• The constructor is not in the Poodle class, it’s in the Dog class. When PHP
looks for a constructor in Poodle, and fails to find one there, it goes to its par-
ent class (where Poodle inherited from). If it fails to find one there, it goes up
again, and up again, ad infinitum, until it reaches the top of the class struc-
ture. As the Dog class is the top of our class structure, PHP does not have far
to go.

• PHP only ever calls one constructor for you. If you have several constructors
in a class structure, PHP will only call the first one it finds.

• The __construct() method is marked public, which is not by accident. If you
don’t mark the constructor as public, you can instantiate objects of a class
only from within the class itself, which is almost an oxymoron. If you make
this private, you need to use a static method call, which is discussed later in
this chapter.

Parent Constructors

Take a look at this code:

class Poodle extends Dog {
 public function bark() {
 print "Yip!\n";
 }

 public function __construct($DogName) {
 print "Creating a poodle\n";
 }
}

If you replace the original Poodle definition with this new one and try running the
script again, you will get the error message: "Trying to get property of non-
object" on the line where we have print $poppy->DogTag->Words. This is because
DogTag is defined as being an instance of our DogTag class only in the Dog class
constructor, and, as PHP will only ever call one constructor for us, the Dog class
constructor is not called because PHP finds the Poodle constructor first.

The fact that PHP always calls the “nearest” constructor—that is, if there is no
child constructor, it will call the parent constructor and not the grandparent
constructor—means that we need to call the parent constructor ourselves. We can
do this by using the special method call parent::__construct(). The “parent”
part means “get the parent of this object, and use it,” and the __construct() part
means “Call the construct method.” So the whole line means “Get the parent of
this object and then call its constructor.”

144 | Chapter 8: Object-Oriented PHP

The call to the parent’s __construct() is just a normal method call, and the dog
constructor needs a dog name as its parameter. So, to make the poodle Class
work properly, we would need the following:

class Poodle extends Dog {
 public function bark() {
 print "Yip!\n";
 }

 public function __construct($DogName) {
 parent::__construct($DogName);
 print "Creating a poodle\n";
 }
}

The output should be this:

Creating Poppy
Creating a poodle
My name is Poppy. If you find me, please call 555-1234

Note that "Creating Poppy" is output before "Creating a poodle", which might
seem backward, but it makes sense given that we call the Dog constructor before
we do any Poodle code. It is always best to call parent::__construct() first from
the constructor of a child class, in order to make sure all the parent’s properties
are set up correctly before you try and set up the new stuff.

Destructors

Constructors are very useful, as I am sure you will agree, but there is more: PHP
also allows you to define class destructors—a method to be called when an object
is deleted. PHP calls destructors as soon as objects are no longer available, and the
destructor method, __destruct(), takes no parameters. For example:

public function __destruct() {
 print "{$this->Name} is no more...\n";
}

If you add that method into the Poodle class, all Poodles created will have that
method called before being destroyed. Add that into the same script as the
constructor we just defined for poodles, and run it again—here’s what it outputs:

Creating Poppy
Creating a poodle
My name is Poppy. If you find me, please call 555-1234
Poppy is no more...

Like constructors, destructors are only called once—you need to use parent::__
destruct(). The key difference is that you should call parent::__destruct() after
the local code for the destruction, so that you are not destroying properties before
using it. For example:

public function __destruct() {
 print "{$this->Name} is no more...\n";
 parent::__destruct();
}

Copying Objects | 145

O
b

ject-
O

rien
ted

 P
H

P

Deleting Objects

So far, our objects have been automatically destroyed at the end of the script they
were created in, thanks to PHP’s automatic garbage collection. However, you will
almost certainly want to arbitrarily delete objects at some point in time, and this is
accomplished using unset() in the same way as you would delete an ordinary
property.

It is important to note that calling unset() on an object will call its destructor
before deleting the object, as you would expect.

Copying Objects
From PHP 5 onward, objects are always handled as references. This means that
when you pass an object into a function, any changes you make to it in there are
reflected outside the function. For example:

function namechange($dog) {
 $dog->Name = 'Dozer';
}

namechange($poppy);
print $poppy->Name . "\n";

Here we define a function that accepts one variable, $dog, then changes its name
to Dozer. We then pass our $poppy dog into the function, and output its name—
unsurprisingly, it outputs "Dozer" rather than "Poppy". Sometimes it is important
to only work on copies of objects, particularly if you don’t want to affect the state
of the original. To do this, we use the built-in keyword clone, which performs a
complete copy of the object. For example, we could use the namechange() func-
tion above like this:

namechange(clone $poppy);

That would create a copy of $poppy and pass it into namechange(), leaving the orig-
inal $poppy untouched. Here is the output of the code now:

Creating Poppy
Creating a poodle
My name is Poppy. If you find me, please call 555-1234
Dozer is no more...
Poppy
Poppy is no more...

Note that Dozer is still mentioned—that is because the copied object passed into
namechange() gets its name changed to Dozer; then, when the function ends, the
copied object is automatically destroyed by PHP, and its destructor is called.
However, $poppy lives on untouched, as you can see from the last two lines.

Internally, the clone keyword copies all the properties from the first object to a
new object, then calls a magic method __clone() for the class it is copying. You
can override __clone() if you want, thereby giving you the flexibility to perform

146 | Chapter 8: Object-Oriented PHP

extra actions when a property is copied—you can think of it as a constructor for a
copied object. For example:

public function __clone() {
 $this->Name .= '++';
}

That method will be called on the copied object, and will set the copied object to
have the same name as the original, with ++ tacked onto the end. So, rather than
the clone being called Poppy, it will be called Poppy++. If we clone the clone, it
will be called Poppy++++, and so on.

For really advanced functionality, you can also call parent::__clone() to work
your way up the inheritance chain and call the __clone() method of the parent
class. Again, all the copying of data is already done, so all the __clone() method
would be required to do is make any last-minute tweaks to the copy. Here’s how
that looks:

abstract class Dog {
 public function __clone() {
 echo "In dog clone\n";
 }
}

class Poodle extends Dog {
 public $Name;
 public function __clone() {
 echo "In poodle clone\n";
 parent::__clone();
 }
}

$poppy = new Poodle();
$poppy->Name = "Poppy";

$rover = clone $poppy;

Comparing Objects with == and ===
When comparing objects, == and === may not work quite as you expect them to.
If you were comparing two integers of the same value (e.g., 5), then == and ===
would both return true; however, with objects, == compares the objects’ contents
and === compares the objects’ handles.

There is a difference there, and it’s crucial: if you create an object and clone it, its
clone will have exactly the same values. It will, therefore, return true for == as the
two objects are the same in terms of their values. However, if you use == , you
will get false back, because it compares the handles of the objects and finds them
to be different. This code example demonstrates this:

class Employee { }

$Bob = new Employee();
$Joe = clone $Bob;

Saving Objects | 147

O
b

ject-
O

rien
ted

 P
H

P

print (int)($Bob == $Joe) . "\n";
print (int)($Joe === $Joe) . "\n";

That will output a 1, then a 0. Apart from basic comparison differences, this also
matters because versions of PHP at 5.0.2 and earlier can encounter problems
when doing a == comparison in very specific objects, like this:

class Employee {
 public function __construct() {
 $this->myself = $this;
 }
}

$Bob = new Employee();
$Joe = clone $Bob;

print (int)($Bob == $Joe) . "\n";
print (int)($Bob === $Joe) . "\n";

There is a class that puts a reference to itself in the $myself property on construction.
Naturally, this is a silly thing to do, but the example is simplified—in a real scenario,
it might store a reference to another object that has a reference back to itself, which
would cause the same problem. If you execute that script, you won’t get 1 and 0.
Instead, you’ll get "PHP Fatal error: Nesting level too deep - recursive dependency?"
because with ==, PHP compares each individual value of the object. So it looks at the
value of $myself, finds it to be an object, looks inside it, finds $myself, looks inside it,
finds $myself, etc., and carries on looping.

The solution to this is to use === in the comparison, which will allow PHP to
compare object handles and, therefore, immediately tell that the two objects are
identical. This has been fixed in newer versions of PHP.

Saving Objects
Previously, we covered how to save arrays in PHP using serialize(),
unserialize(), urlencode(), and urldecode(). Saving objects works in the same
way—you serialize() them into a string to make a format that can be saved,
then urlencode() them to get a format that can be passed across the web without
problem.

For example:

$poppy = new Poodle('Poppy');
$safepoppy = urlencode(serialize($poppy));

There is one special feature with saving objects: when serialize() and
unserialize() are called, they will look for a __sleep() and __wakeup() method
on the object they are working with, respectively. These methods, which you have
to provide yourself if you want them to do anything, allow you to keep an object
intact during its hibernation period (when it is just a string of data).

For example, when __sleep() is called, a logging object should save and close the
file it was writing to, and when __wakeup() is called, the object should reopen the
file and carry on writing. Although __wakeup() need not return any value, __sleep()

148 | Chapter 8: Object-Oriented PHP

must return an array of the values you wish to have saved. If no __sleep() method
is present, PHP will automatically save all properties, but you can mimic this
behavior in code by using the get_object_vars() method—more on that soon.

In code, our logger example would look like this:

class Logger {
 private function __sleep() {
 $this->saveAndExit();
 // return an empty array
 return array();
 }

 private function __wakeup() {
 $this->openAndStart();
 }

 private function saveAndExit() {
 // ...[snip]...
 }

Any objects of this class that are serialized would have __sleep() called on them,
which would in turn call saveAndExit()—a mythical clean-up method that saves
the file and such. When objects of this class are unserialized, they would have
their __wakeup() method called, which would in turn call openAndStart().

To have PHP save all properties inside a __sleep() method, you need to use the
get_object_vars() function. This takes an object as its only parameter and
returns an array of all the properties and their values in the object. You need to
pass the properties to save back as the values in the array, so you should use the
array_keys() function on the return value of get_object_vars(), like this:

private function __sleep() {
 // do stuff here
 return array_keys(get_object_vars($this));
}

Magic Methods
Whenever you see a method name start with a double underscore, it is a “magic”
method—one that PHP has provided that you have not declared yourself. PHP
reserves all methods starting with __ as magic, which means although you can use
them yourself, you may find that a later version of PHP uses them as a magic
method and causes conflict.

So far, we’ve seen the following: __sleep(), __wakeup(), __clone(), __construct(),
and __destruct()—methods that give you special control over your objects that
you would not otherwise be able to have. In order to have a full understanding of
OOP in PHP there several more you should know: __autoload(), __get(), __set(),
__call(), and __toString().

Magic Methods | 149

O
b

ject-
O

rien
ted

 P
H

P

_ _autoload()

This global function is called whenever you try to create an object of a class that
hasn’t been defined. It takes just one parameter, which is the name of the class
you have not defined. If you try to construct an object of a class that PHP does not
recognize, PHP will run this function, then try to re-create the object and give you
a second chance to load the right class.

As a result, you can write scripts like this:

function __autoload($Class) {
 print "Bar class name: $Class!\n";
 include "barclass.php";
}

$foo = new Bar;
$foo->wombat();

Here we try and create a new object of type Bar, but it doesn’t exist. Therefore,
the __autoload() function is called, with “Bar” being passed in as its first param-
eter. This then include()s the file barclass.php, which contains the class definition
of Bar. PHP will again try and create a new Bar, and this time it will succeed,
which means we can work with $foo as normal.

When creating more advanced scripts, you might try include()ing the parameter
passed into __autoload()—that way you just need to define each class in a file of
its own, with the file named after the class. This has been optimized so that calls
to __autoload() are cached—don’t be afraid to make good use of this technique.
At O’Reilly’s Open Source Conference in 2004, one of the lead developers of PHP,
Andi Gutmans, said, “After having written many examples and worked with it for
some time, I’d only ever code this way”—as firm an endorsement as anyone could
ask for!

_ _get()

This is the first of three unusual magic methods, and allows you to specify what to
do if an unknown property is read from within your script. For example:

class Dog {
 public $Name;
 public $DogTag;
 // public $Age;

 public function __get($var) {
 print "Attempted to retrieve $var and failed...\n";
 }
}

$poppy = new Dog;
print $poppy->Age;

Our Dog class has $Age commented out, and we attempt to print out the Age value
of $poppy. When this script is called, $poppy is found to not to have an $Age prop-
erty, so __get() is called for the Dog class, which prints out the name of the

150 | Chapter 8: Object-Oriented PHP

property that was requested—it gets passed in as the first parameter to __get(). If
you try uncommenting the public $Age; line, you will see __get() is no longer
called, as it is only called when the script attempts to read a property that does
not exist.

From a practical point of view, this means values can be calculated on the fly
without the need to create and use accessor methods—not quite as elegant,
perhaps, but easier to read and write.

_ _set()

The __set() magic method complements __get(), in that it is called whenever an
undefined property is set in your scripts. Here is one example of how you could
use __set() to create a very simple database table class and perform ad hoc
queries as if they were members of the class:

class MyTable {
 public $Name;

 public function __construct($Name) {
 $this->Name = $Name;
 }

 public function __set($var, $val) {
 mysql_query("UPDATE {$this->Name} SET $var = '$val';");
 }

 // public $AdminEmail = 'foo@bar.com';
}

$systemvars = new MyTable("systemvars");
$systemvars->AdminEmail = 'telrev@somesite.net';

In that script, $AdminEmail is commented out, and therefore does not exist in the
MyTable class. As a result, when $AdminEmail is set on the last line, __set() is
called, with the name of the property being set and the value it is being set to
passed in as parameters one and two, respectively. This is used to construct an
SQL query in conjunction with the table name passed in through the constructor.
While this might seem like an odd way to solve the problem of setting key data-
base values, it is pretty hard to deny that the last line of code ($systemvars->
AdminEmail...) is actually very easy to read.

This system could be extended to more complicated objects as long as each object
knows its own ID number.

PHP lets you set arbitrary values in objects, even if their classes
don’t have that value defined. If this annoys you (if you used OPTION

EXPLICIT in your old Visual Basic scripts, for example) you can sim-
ulate the behavior by using __get() and __set() to print errors.

Magic Methods | 151

O
b

ject-
O

rien
ted

 P
H

P

_ _call()

The __call() magic method is to methods what __get() is to properties—if you
call meow() on an object of class Dog, PHP will fail to find the method and check
whether you have defined a __call() method. If so, your __call() is used, with
the name of the method you tried to call and the parameters you passed being
passed in as parameters one and two, respectively.

Here’s an example of __call() in action:

class Dog {
 public $Name;
 public function bark() {
 print "Woof!\n";
 }

 // public function meow() {
 // print "Dogs don't meow!\n";
 // }

 public function __call($function, $args) {
 $args = implode(', ', $args);
 print "Call to $function() with args '$args' failed!\n";
 }
}

$poppy = new Dog;
$poppy->meow("foo", "bar", "baz");

Again, note that the meow() method is commented out—if you want to be sure
that __call() is not used if the method already exists, remove the comments from
meow().

_ _toString()

The last magic method you need to know about is __toString(), which allows
you to set a string value for the object that will be used if the object is ever used as
a string. This is a fairly simple magic method, and works like this:

class Cat {
 public function __toString() {
 return "This is a cat\n";
 }
}

$toby = new Cat;
print $toby;

Making this work in PHP 5 caused quite a lot of headaches for the PHP devel-
opers—getting the balance right, as to when objects should be converted and
when they should not, took a lot of debating. This feature is quite likely to change
in future releases, and if it were not for the fact that it is perfect for use with the
SimpleXML extension, I doubt it would have made it into PHP 5 at all. However,
for now (2005), this is how it works.

152 | Chapter 8: Object-Oriented PHP

Static Class Methods and Properties
You can declare methods and properties from a class as static, meaning that they
are available to the class as well as to individual objects. For example, if we
wanted to define a function, nextID(), that returned the next available employee
ID, we could declare it static. That way, we could call nextID() directly from the
script without the need for any Employee objects. This allows you to use a helpful
class method without needing to instantiate an object first.

You can also make properties static, which results in there being only one of that
property for the entire class—all objects share that one property. So, rather than
using the nextID(), we could just have a static property $NextID that holds the
next available employee ID number. When we create a new employee, it takes
$NextID for its own $ID, then increments it by one.

To declare your properties and methods as being static, use the static keyword.
Here is an example:

class Employee {
 static public $NextID = 1;
 public $ID;

 public function __construct() {
 $this->ID = self::$NextID++;
 }

 public function NextID() {
 return self::$NextID;
 }
}

$bob = new Employee;
$jan = new Employee;
$simon = new Employee;

print $bob->ID . "\n";
print $jan->ID . "\n";
print $simon->ID . "\n";
print Employee::$NextID . "\n";
print Employee::NextID() . "\n";

That will output 1 2 3 4, which are the employee IDs of Bob, Jan, and Simon,
respectively, as well as the next available ID number, 4. Note that the scope reso-
lution operator, ::, is used to read the static property from the Employee class.

The use of self inside the constructor refers to the class of the current object, just
as earlier on we used parent to refer to the parent class of the current object.

There are some additional special rules to using static methods and properties.
First, because static method calls are actually resolved at compile time, you may
not use the contents of a variable as the class name, like this:

$foo = "Employee";
print $foo::$NextID;
// will not work

Interfaces | 153

O
b

ject-
O

rien
ted

 P
H

P

You cannot access static class variables from objects of that class outside of their
methods, which means "$bob->NextID" will not work. You may, however, access
static class methods as you would access any other method.

Helpful Utility Functions
There are three particular OOP-related functions that will make your life easier, and
these are class_exists(), get_class(), and get_declared_classes(). In order,
class_exists() returns true if the specified class has been declared, get_class()
returns the class name of the object you pass to it, and get_declared_classes()
returns an array of all classes of which you can currently create an object.

Here are some examples:

if ($foo = = $bar) {
 $sam = new Employee;
} else {
 $sam = new Dog;
}

print "Sam is a " . get_class($sam) . "\n";
print "Class animal exists: " . class_exists("animal") . "\n\n\n\n";
print "All declared classes are: " . get_declared_classes() . "\n";

The most common use for get_class() is when one object can be of several
possible types, as in the code above. C++ users will be familiar with the concept
of Runtime Type Information (RTTI), and this is pretty much the same thing.

Interfaces
If you had a Boat class and a Plane class, how would you implement a Boatplane
class? The methods found in Boat would be helpful to give you code such as sink(),
scuttle(), dock(), etc., and the methods found in Plane would be helpful to give
you code such as takeoff(), land(), and bailout(). What is really needed here is
the ability to inherit from both the Boat class and the Plane class, a technique known
as multiple inheritance.

Sadly, PHP has no support for multiple inheritance, which means it is a struggle
to implement this particular scenario. The solution is to use interfaces, which can
be thought of as abstract classes where you can define sets of abstract methods
that will be used elsewhere. If we were to use interfaces in the above example,
both boat and plane would be interfaces, and class Boatplane would implement
both of these interfaces. A class that implements an interface has to have concrete
methods for each of the abstract methods defined in the interface, so by making a
class implement an interface, you are in fact saying, “This class is able to do every-
thing the interface says it should.” In essence, using interfaces is a way to form
contracts with your classes—they must implement methods A, B, and C; other-
wise, they will not work.

154 | Chapter 8: Object-Oriented PHP

The above example could be written using interfaces like this:

interface Boat {
 function sink();
 function scuttle();
 function dock();
}

interface Plane {
 function takeoff();
 function land();
 function bailout();
}

class Boatplane implements Boat, Plane {
 public function sink() { }
 public function scuttle() { }
 public function dock() { }
 public function takeoff() { }
 public function land() { }
 public function bailout() { }
}

$obj = new Boatplane();

There are no access modifiers for the methods in the interface: they are all public
by default, because it doesn’t make sense to have them as anything else. Similarly,
you shouldn’t try to use abstract or static modifiers on your interfaces—if you get
an error like "PHP Fatal error: Access type for interface method boat::sink()
must be omitted", you know you’ve gone wrong somewhere.

Try commenting out the bailout() method in the Boatplane class, so that it only
has five methods as opposed to six. Now run the script again. PHP should quit
with the fatal error, "Fatal error: Class Boatplane contains 1 abstract methods
and must therefore be declared abstract (plane::bailout)".

Our Boatplane class, by implementing both the boat and plane interfaces, has
essentially promised PHP it will have a method bailout(). Therefore, PHP gives it
one by default—the bailout() method from the plane interface. However, as
interfaces and their methods are entirely abstract, and by commenting out that
one line, we have not re-implemented bailout() in the Boatplane class. The
abstract method will be used and will thereby make the entire Boatplane class
abstract—hence the error. What this has proved is that when a class implements
an interface, it makes an unbreakable contract with PHP that it will implement
each method specified in that interface.

Uncomment the bailout() method in the Boatplane class, and try commenting
out both the Boat and Plane interfaces, as well as rewriting the Boatplane class so
that you remove the “implements” part. This time the script should run fine, just
as it did the first time around. Essentially, there is nothing different—the
Boatplane class has all the same methods as it did before, so why bother with
interfaces at all? The key is the “unbreakable contract” aspect, because by having
a class implement an interface, you know for a fact that it must implement all the
methods specified in the interface and not just one or two.

Interfaces | 155

O
b

ject-
O

rien
ted

 P
H

P

The use of interfaces should be considered in the same light as the use of access
modifiers—declaring a property private changes nothing, really, except that it
forces other programmers (and perhaps yourself) to live up to various expecta-
tions about the object of that class. The same applies to interfaces and, although
they are perhaps likely to remain one of the more niche aspects of PHP, they are
certainly here to stay.

There is one situation in which interfaces actually make a concrete
difference to your code, and that’s with the Standard PHP Library
(SPL), which is a set of reusable interfaces and classes that solve
basic programming problems. When trying to use functionality
from the SPL, you must always implement the appropriate inter-
faces—just implementing the methods isn’t good enough.

The function get_declared_interfaces() will return an array of all the interfaces
currently available to you, and it takes no parameters.

If you really want to delve deep into the world of interfaces, you can also have one
interface inheriting from another using the same syntax you would use to inherit
classes. As a result, this next script is the same as the previous one, as the plane
interface inherits from the boat interface, and the Boatplane class implements the
Plane interface:

interface Boat {
 function sink();
 function scuttle();
 function dock();
}

interface Plane extends Boat {
 function takeoff();
 function land();
 function bailout();
}

class Boatplane implements Plane {
 public function sink() { }
 public function scuttle() { }
 public function dock() { }
 public function takeoff() { }
 public function land() { }
 public function bailout() { }
}

$obj = new Boatplane();

It’s important to note that although interfaces can extend other
interfaces, and classes can implement interfaces, interfaces cannot
extend classes. If you try this, you’ll get an error along the lines of
"Fatal error: boat cannot implement dog - it is not an

interface".

156 | Chapter 8: Object-Oriented PHP

Dereferencing Object Return Values
If you call a function that returns an object, you can treat the return value of that
function as an object from the calling line and access it directly. For example:

$lassie = new Dog();
$collar = $lassie->getCollar();
echo $collar->Name;

$poppy = new Dog();
echo $poppy->getCollar()->Name;

In the first example, we need to call getCollar() and save the returned value into
$collar, before echoing out the Name property of $collar. In the second example,
we use the return value from getCollar() immediately from within the same line
of code, and echo out Name without an intermediate property like $collar.

For now at least, return value dereferencing only applies to objects.
If you have a function someFunc() that returns an array, for exam-
ple, using $obj->someFunc()[3] to access an element in the return
value will cause a parse error—you need to store the return value in
another property, then access it.

157

9
HTML Forms

PHP was originally designed for use on the Internet, and although you can now
use it for command-line applications and GUIs, its main purpose remains working
on the Web. When it comes to the Web, HTML has ruled unchallenged for some
years as the de facto standard for displaying information, even more so now that
WAP usage has evaporated. This means that if you want to write a frontend for
your PHP web applications, you need to understand HTML.

HTML is a very simple markup language that offers its users a great deal of flexi-
bility. While this might make it easy to learn and write in, it makes the job of web
browsers such as Internet Explorer and Mozilla much harder, because they need
to be able to cope with thousands of exceptions.

The problem with HTML is that it became used to express style instead of just
information. For example, designers would use HTML to specify the font of a
piece of text, as opposed to what that the text was. With content and style so irre-
trievably mixed inside HTML, computers were not able to extract information
about a document simply by reading through the HTML tags used.

A movement was started to redefine how web pages are designed so that HTML
would contain only content information, with a new language, CSS (cascading
style sheets) storing the style information. There were also some recommending
that XML was the way forward for data, and that HTML could be eliminated alto-
gether. While the XML argument made sense, many realized that there were
simply too many HTML-based web sites in existence to be able to just drop
HTML, so the standard “XHTML” was born—a modification of HTML that
makes it XML-compliant.

The code you see in this book is all XHTML-compliant, and I recommend you keep
to this in your own work. You may notice that all HTML attributes are surrounded
by quotes, and all HTML tags used in this book are closed either by using </tag> or
<tag/>—these are two of the rules enforced in XHTML. While teaching HTML
and/or XHTML is outside the scope of this book, we are at least going to look at
creating HTML forms, which are the primary means of sending data to PHP.

158 | Chapter 9: HTML Forms

What Does It Mean to Be Dynamic?
Before Perl and PHP became widespread on the web site scene, the vast majority
of sites were classed as “static”—they would only change when the original
author(s) uploaded new content to them. This was fine for the time, because the
Internet’s primary aim was for many years to be a tool to allow universities and
research institutes to share information and learning.

When the Web first started to be used by the masses in the mid-90s, the number
of uses it could be put to grew very quickly, and people wanted to do everything
online—reserving tickets for a gig, shopping, and downloading music. In order to
be able to properly communicate with users, dynamic sites became popular
because they could get feedback from users, allow users to influence content on
sites by adding their own information and views, and form communities of people
who all share the same goal.

Designing a Form
A “form” on the Web is considered to be zero or more form elements, plus a
submit button. These forms are designed to electronically replicate the forms
we’ve all filled in hundreds of times before in real life—signing up for a bank
account, a passport, etc. You start your form using the <form> HTML tag, and you
end with </form>. By separating forms like this, you can have multiple forms on
one page.

Given the above definition, here is the most basic form in HTML:

<form>
<input type="submit" />
</form>

That will simply show a button with “Submit” written on it, which will not
submit any data when clicked. Figure 9-1 shows how it looks in Konqueror
running on Linux:

There are two attributes to the <form> tag that you should be aware of and use:
action and method. Action sets the location of the page that will handle the results
of the form—the place where the variables should be sent. Method describes how
the data should be submitted, and you have two options: GET and POST.

Figure 9-1. The most basic form is just a Submit button by itself

Designing a Form | 159

H
TM

L Fo
rm

s

GET and POST

When defining the method a web browser should use to send variables to the
page specified by your action, you either use GET or POST. Both send variables
across to a page, but they do so in different ways.

GET sends its variables in the URL of your visitors’ web browsers (shown in
Figure 9-2), which makes it easy to see what was sent. However, it also makes it
very easy for visitors to change what was sent, and, moreover, there is usually a
low limit on the number of characters that can be sent in a URL—often fewer
than 250. As a result, if you send long variables using GET, you are likely to lose
large amounts of them.

POST sends its variables behind the scenes, which means it is much harder to
mimic, cannot be changed without some effort on your visitors’ behalf, and has a
much higher limit (usually several megabytes) on the amount of data that can be
sent. The downside to using POST is that browsers will not automatically resend
post data if your user clicks her Back button, leading to messages like "The data
on this page needs to be resent", which often confuse users. This does not
happen with GET, because browsers consider GET URLs the same as any other
URL, and happily resend data as needed.

You can set how much data PHP should accept by editing the post_max_size entry
in your php.ini file—it is usually set to 8M by default, allowing your users to
transfer up to 8 megabytes.

Given this newfound knowledge, here’s the same form again, this time using
action and method. It will still look the same as our previous effort, but this time
it will use POST to send data to someform.php:

<form action="someform.php" method="post">
<input type="submit" />
</form>

Available Elements

There are many types of elements you can place into your forms. The most impor-
tant of these are shown in Table 9-1.

Figure 9-2. HTTP GET sends data in the URL in a very obvious manner

Table 9-1. HTML elements for use in forms

Element Description

input type="checkbox" A checkbox that lets users select multiple options.

input type="file" A text box plus a button that opens a file selection dialog.

input type="hidden" A hidden form element where you set the value.

input type="password" A text box where the text is replaced by a password character (usually asterisk *).

160 | Chapter 9: HTML Forms

There are four elements worthy of particular note: file elements actually upload
files to the server, and can take quite a long time to transfer if the connection
speed is slow—handling file uploads is covered later. Hidden elements don’t
appear on your user’s screen; they are useful when keeping information across
forms and pages, or simply just to force input for certain fields.

Password elements hide the password on the client side by using *s or something
similar, but it is important to note that the password is still sent in plain text—no
encryption is done. Finally, textarea elements need a closing tag, with the text in
between forming their content, i.e., <textarea>Some text</textarea>.

A Working Form

We now have enough information to construct a working form, so here goes:

<form action="someform.php" method="post">
Name: <input type="text" name="Name" value="Jim" />

Password: <input type="password" name="Password" />

Age: <input type="text" name="Age" />

<input type="submit" />
</form>

That will submit three variables to someform.php: Name, Password, and Age. Form
variables are given names using the name attribute—the names you use here will be
used in the PHP script that receives the variables. The default value of a field can
be set using the value attribute, which means that the Name text box will be set to
Jim by default.

This new form is shown in Figure 9-3.

The Age field, which will presumably contain numbers like 18, 34, etc., is the
same type as the Name field, which is likely to contain strings like “Bob,” “Sarah,”
etc. HTML does not have any way to say “restrict this field to numbers only,”
which means users can enter their age as “Elephant,” if they wish. Never trust
input from users!

And now a more complicated form, using various other types:

<form action="someform.php" method="get">
Name: <input type="text" name="Name" value="Jim" />

input type="radio" A radio button. Radio buttons are like grouped checkboxes—you can only select one at a
time.

input type="reset" A button to clear the form. It’s one of the weird oddities of the Web that this still exists—
do you know anyone who uses it?

input type="submit" A button to submit the form.

input type="text" A text box.

option An option in a SELECT element.

select A listbox; can also be a drop-down list box.

textarea Multiline text box.

Table 9-1. HTML elements for use in forms (continued)

Element Description

Designing a Form | 161

H
TM

L Fo
rm

s

Password: <input type="password" name="Password" maxlength="10" />

Age range: <select name="Age">
<option value="Under 16">Under 16</option>
<option value="16-30" selected="selected">16-30</option>
<option value="31-50">31-50</option>
<option value="51-80">51-80</option>
</select>

Life story:
 <textarea name="Story" rows="10" cols="80">
Enter your life story here</textarea>

<input type="radio" name="FaveSport" value="Tennis" /> Tennis
<input type="radio" name="FaveSport" value="Cricket" /> Cricket
<input type="radio" name="FaveSport" value="Baseball" /> Baseball
<input type="radio" name="FaveSport" value="Polo" /> Polo

<input type="checkbox" name="Languages[]" value="PHP" checked="checked" />
PHP
<input type="checkbox" name="Languages[]" value="CPP" /> C++
<input type="checkbox" name="Languages[]" value="Delphi" /> Delphi
<input type="checkbox" name="Languages[]" value="Java" /> Java

<input type="submit" />
</form>

There are several pieces of particular importance in there, so you should read
through carefully:

• maxlength="10" is one of the attributes for the Password element—this can be
used in normal text boxes too, and acts to restrict the number of characters
that can be typed in to the value of maxlength (10, in the example).

• Age is now a drop down list box—note how the name attribute is placed
inside the select element, but each individual option element has its own
value. The text inside the value attribute is what is submitted to the form
handler specified in the form’s action attribute. The text after each option
and before the next option is the text the user will see.

• selected is specified as an attribute of one of the option elements, which
means that that option will be the default selection of the parent select list.

• Life story is a textarea element. Note that it has attributes rows and cols to
specify the size of the text area in characters.

Figure 9-3. This time the form is more advanced—note the default value for the Name field

162 | Chapter 9: HTML Forms

• All members of a radio element group need to have the same name attribute.
The name attribute is used to inform the browser which group each radio ele-
ment is part of so that users can select only one at a time.

• All members of a checkbox group need to have the same name attribute, and
that name attribute needs square brackets [] at the end. The reason for the
square brackets is that it informs PHP that the value may be an array of infor-
mation—users can select multiple values, and PHP will place them all into an
array of the value of the name attribute.

• checked is specified as an attribute of one of the checkboxes, which means it
will be checked by default.

• GET is the method attribute for the form, meaning that the information sent
through to the handler page (someform.php) will be sent in the location bar of
the browser as a normal URL. This will allow you to see how easy it is to
change variables in the location bar and, by entering lots of text into the Story
textarea element, how easy it is to have too much data for GET to handle.

Figure 9-4 shows how the form should look.

Hundreds of books have been published on HTML programming, and if you want
to carry on learning more about HTML, you will do best to pick up one of them.
If you’re not sure where to start, try HTML & XHTML: The Definitive Guide by
Musciano and Kennedy (O’Reilly).

Handling Data
Handling data coming in from HTML pages is by far the most common task in
PHP, and many might say it deserves a whole chapter to itself! In this section, we
will be looking at how variables get into your scripts, and also at how you can
distinguish between where those variables come from.

Figure 9-4. Some of the form elements on offer

Handling Data | 163

H
TM

L Fo
rm

s

register_globals

Prior to PHP 4.1, variables submitted from external sources—such as session vari-
ables, cookies, form fields, etc.—were automatically converted to variables inside
PHP, as long as register_globals was enabled in the php.ini file, which it was by
default. These variables were also accessible through the arrays $HTTP_POST_VARS,
$HTTP_COOKIE_VARS, $HTTP_SESSION_VARS, etc.

Imagine the following situation: you have a secure site, where members are identi-
fied by logon names, such as “Administrator,” “Joe,” and “Peter.” The pages on
this site track the username by way of the variable UserID, which is stored in a
cookie on the computer when the user authenticates to the site. With register_
globals enabled, $UserID is available as a variable to all scripts on your site,
which, while helpful, is a security hole.

Here is a URL that demonstrates the problem: http://www.yoursite.com/secure.
php?UserID=root. When register_globals is enabled, all variables sent by GET and
POST are also converted to variables, and are indistinguishable from variables from
other sources. The result of this is that a hacker could, by using the URL above,
impersonate someone else—like root!

This was clearly a critical situation, and it was worryingly common. As such, the
decision was made to recommend that all users disable register_globals. In PHP
4.2, this was pushed further by having the default value of register_globals
changed to off, and this is how it has remained in PHP 5. Register_globals is not
likely to be changed back to on for its default value, which means that it is best to
learn the proper way of doing things: using the superglobals.

Working Around register_globals

In order to provide a middle ground for users who did not want to use the super-
globals but also did not want to enable register_globals, the function import_
request_variables() was introduced. This copies variables from the superglobal
arrays into variables in their own right, and takes two parameters: a special string
of which types of variables to convert, and the prefix that should be added to
them.

The special string can contain “g” for GET variables, “p” for POST, “c” for cookies,
or any combination of them. The prefix works in almost the same way as the
prefix to extract() does, except that it does not add an underscore, which means
that scripts relying on older functionality can use import_request_variables() to
get back to the old manner of working. As with the prefix used in extract(), the
string is appended to the beginning of the names of each variable created to
ensure there is no naming clash with existing data.

Here are some examples:

import_request_variable("p", "post");
import_request_variable("gp", "gp");
import_request_variable("cg", "cg");

Note that the order of the letters in the first parameter matters—in gp, for
example, any POST variables that have the same names as GET variables will

164 | Chapter 9: HTML Forms

overwrite the GET variables. In other words, the GET variables are imported first,
then the POST variables. If we had used pg, it would have been POST and then GET,
so the ordering is crucial.

Once import_request_variables() is used, you can use the new variables immedi-
ately, like this:

print $_GET['Name'];
import_request_variables("g", "var");
print $varName;

If you don’t specify a prefix, or if the prefix is empty, you will get a notice to warn
you of the security issue.

It is strongly recommended that you avoid using import_request_

variables() unless you cannot live without it. Importing external
data into the global variable namespace is dangerous; the superglo-
bal arrays are much safer.

Magic Quotes

PHP has a special php.ini setting called magic_quotes_gpc, which means that PHP
will automatically place backslashes (\) before all quotes and other backslashes for
GET, POST, and COOKIE data (GPC)—the equivalent of running the addslashes()
function. These slashes are required to make user input safe for database entry.
Without them, strings are likely to be interpreted incorrectly.

This functionality is usually turned on by default, which means that all GPC
data coming into your script is safe for database entry. But it also means that if
your data is not destined for a database, you need to disable magic quotes in
your php.ini file.

I prefer to turn off magic quotes and handle the slashes myself, as
this leads to much more predictable and easily understood behav-
ior. Changing your execution environment at runtime to enable
magic quotes will have no effect on the script, as the variables are
already parsed and ready for use by the time your code is executed.
So, the only way to do this is to set magic_quotes_gpc to off in your
php.ini file.

Handling Our Form

You now know enough to be able to program a script to handle the advanced
form presented previously. Our variables will be coming in using the GET method.
In the real world, you would use POST because it is possible that users will submit
large quantities of data in the “Life story” field; however, using GET here lets you
see how it all works. Because we’re using the GET method, we should be reading
our variables from $_GET.

The first two fields sent are Name and Password, which will both contain string
data. Remember that the password HTML form element transmits its data as
plain text, which means that both Name and Password can be handled the same

Handling Data | 165

H
TM

L Fo
rm

s

way. As they are coming in via GET, the values entered by our visitors will be in $_
GET['Name'] and $_GET['Password']—note that the cases have been preserved
from the form exactly and that, as per usual, PHP considers $_GET['name'] to be
different from $_GET['Name'].

The next input is the select list box Age, which will return a string value—either
“Under 16”, “16-30”, “31-50”, or “51-80”. From the PHP point of view, this is no
different from handling input from a text box other than that we can, to a certain
extent, have an idea about what the values will be. That is, under normal circum-
stances, we will always know what the values will be, as our users have to pick
one option from a list we present. However, it takes only a little knowledge to
“hack” the page so that users can input what they like—just remember the golden
rule: “Never trust user input.”

The Story text area element submits data in the same way as a normal text box
does, with the difference that it can contain new line characters \n. The chances
are that you want to HTML line breaks (the
 tag) as well as the \n line
breaks, so you should use nl2br(), like this:

$_GET['Story'] = nl2br($_GET['Story']);

Next we get to our radio buttons, FaveSport. As radio buttons can only submit
one value, this one value will be available as a normal variable in $_
GET['FaveSport']. This is in contrast to the checkbox form elements that follow—
they have the name Languages[], which will make PHP convert them into a single
array of values, available in $_GET['Languages'].

We can put the whole script together using the above information, plus the other
techniques we’ve covered in previous chapters. This script parses the form
properly:

$_GET['Languages'] = implode(', ', $_GET['Languages']);
$_GET['Story'] = str_replace("\n", "
", $_GET['Story']);

print "Your name: {$_GET['Name']}
";
print "Your password: {$_GET['Password']}
";
print "Your age: {$_GET['Age']}

";
print "Your life story:
{$_GET['Story']}

";
print "Your favorite sport: {$_GET['FaveSport']}
";
print "Languages you chose: {$_GET['Languages']}
";

The entire script to handle the HTML form we created is just eight lines long, of
which six are just print statements reading from the $_GET array. The first two
lines aren’t anything special either: line one converts the Languages array created
from the checkboxes into one string using implode(), and line two converts the
new line characters in the Story text area into HTML line breaks.

However, the script above contains a bug. What happens if our users don’t check
any boxes for languages? The answer is that browsers will not send any languages
information, which means that $_GET['Languages'] will not be set, which in turn
means that the first line in the script will cause an error. The solution is simple:
use if (isset($_GET['Languages'])) to check whether there is a value set. If there
is, use implode() to make it a string, and if not, put a dummy text string in there
like, “You didn’t select any languages!” The final output of this form is shown in
Figure 9-5.

166 | Chapter 9: HTML Forms

Splitting Forms Across Pages
Very often it is necessary to split up one long form into several smaller forms,
placed across several pages. When this is the case, you can pass data from page to
page by using hidden form elements, storing answers in session values, or storing
answers in a database.

Of the three, you are most likely to find using hidden form elements the easiest to
program and the easiest to debug. As long as you are using POST, data size will not
be a problem, and the advantage is that you can view the HTML source code at
any time to see if things are working as planned. Of course, that also means that
hackers can view the source code (and make changes to it), so you should really
only resort to hidden fields if you can’t use sessions for some reason.

If our existing form was part one of a larger set of forms, we would need to
append the following HTML to the bottom of part two of the forms so that the
values are carried over to part three:

<input type="hidden" name="Name" value="<?php print $_GET['Name']; ?>" />
<input type="hidden" name="Password" value="<?php print $_GET['Password'];
?>" />

You’d need to have all the others there also, but it works in the same way, so there
is no point repeating them all here.

Validating Input
Any sensible site should include server-side validation of variables, because they
are much harder to hack, and they will work no matter what browsers your visi-
tors are using.

Basic input validation in PHP is done using the functions is_string(), is_
numeric(), is_float(), is_array(), and is_object(). Each of these functions take
just one parameter, a variable of their namesake, and return true if that variable is

Figure 9-5. The finished form handler—note the variables being passed in the URL bar
because we used GET

Validating Input | 167

H
TM

L Fo
rm

s

of the appropriate type. For example, is_numeric() will return true if the variable
passed to it is a number, and is_object() will return true if its variable is an
object. There is one other function of this type that works the same way but is
useless for validation, and that is is_resource()—it’s mentioned here for the sake
of completeness.

The three basic validation checks you should conduct on input are whether you
have each of your required variables, whether they have a value assigned, and
whether they are of the type you were expecting. From there, you can conduct
more complicated checks, such as whether the integer values are in the range you
would expect, whether the string values have enough characters, whether the
arrays have enough elements, etc.

Here are some examples:

// is the $Age variable set with a numeric value between 18 and 30?
if (isset($Age)) {
 if (is_numeric($Age)) {
 if (($Age > 18) && ($Age < 30)) {
 // input is valid
 } else {
 print "Sorry, you're not the right age!";
 }
 } else {
 // empty or non-numeric
 print "Age is incorrect!"
 }
} else {
 print "Please provide a value for Age.";
}

// is $SpouseAge either unset, blank, or between 18 and 120?
if (isset($SpouseAge) && $SpouseAge != "") {
 if (is_numeric($SpouseAge)) {
 if (($SpouseAge >= 18) && ($SpouseAge < 120)) {
 // input is valid
 } else {
 print "Spouse is not the right age!";
 }
 } else {
 print "Spouse Age is incorrect!";
 }
} else {
 // input is valid; no spouse
 print "You have no spouse.";
}

// is $Income non-negative?
if (isset($Income)) {
 if (is_numeric($Income)) {
 if ($Income >= 0) {
 // input is valid

168 | Chapter 9: HTML Forms

 } else {
 print "Your income is negative!";
 }
 } else {
 print "Please provide a numeric value for Income.";
 }
} else {
 print "Please valid a value for Income.";
}

There is a function confusingly similar to is_numeric(), called is_

int(). This returns true if the variable passed in is an integer,
which may sound similar to is_numeric(). However, data passed in
through a form, even if numeric in content, is of type string, which
means that is_int() will fail. On the other hand, is_numeric()

returns true if the variable is a number or a string containing a
number. This same problem applies to is_float(), as floating-
point values set from user input are typed as strings.

For more specific parsing of character types in a variable, the CTYPE library is
available. There are eleven CTYPE functions in total, all of which work in the
same way as is_numeric(): you pass a variable in, and get either true or false
back.

Table 9-2 categorizes what each function matches.

The matches are absolute, which means that ctype_digit() will return false for
the value "123456789a" because of the "a" at the end, as this script shows:

$var = "123456789a";
print (int)ctype_digit($var);

Similarly, "123 " will fail the ctype_digit() test because it has a space after the
number. There is no match for floating-point numbers available, as ctype_digit()
matches 0–9 without also matching the decimal point. As a result, it will return
false for 123.456. For this purpose you need to use is_float().

Table 9-2. The CTYPE functions and what they match

ctype_alnum() Matches A–Z, a–z, 0–9

ctype_alpha() Matches A–Z, a–z

ctype_cntrl() Matches ASCII control characters

ctype_digit() Matches 0–9

ctype_graph() Matches values that can be represented graphically

ctype_lower() Matches a–z

ctype_print() Matches visible characters (not whitespace)

ctype_punct() Matches all non-alphanumeric characters (not whitespace)

ctype_space() Matches whitespace (space, tab, new line, etc.)

ctype_upper() Matches A–Z

ctype_xdigit() Matches digits in hexadecimal format

Summary | 169

H
TM

L Fo
rm

s

Form Design
As mentioned already, forms are the primary way for users to send data to your
scripts, so it’s essential that you get them right. Above and beyond the coding
aspect of forms, there are a number of basic usability guidelines you should follow
in your design:

• Use stylesheets or tables to lay your elements out neatly. This makes the form
easier to read, and it is also easier to report individual errors on fields.

• If there is an error within a field, put a notice next to it and a message at the
top of the page; otherwise, people may not realize there’s a problem. You
should also consider changing the color of the problem field to make it obvi-
ous which one is bad.

• Mark required fields either with bold text or, more commonly, an asterisk *.

• If your database has a field length limit, put a size limit on a text box to stop
people from entering too much text and later finding out their data has been
trimmed by your database.

• Don’t make your forms too long—they confuse people and make them feel
threatened.

• If you split your form across pages, let your visitors know how far they are in
the process of form submission, e.g., “Page 2 of 5.” This lets people know
where they stand at all times, without leaving them wondering, “Will this
next button take money out of my account, or are there more pages to
come?”

Summary
• If you are using PHP to handle form input data—and let’s face it, you proba-

bly will do so some day, if you are not already—make sure you do not make
any assumptions about the reliability of the data. Remember, it came from
users, and we don’t trust users, do we?

• If you are inserting form data into your database, try turning magic quotes
on. Then turn it back off again once you realize it’s evil, and switch to some-
thing like mysql_escape_string().

• Users already have a hard enough time before they get in contact with your
forms, so do not make them more complicated than they need to be. Split
forms across pages if possible, keep selections to a minimum, lay options out
neatly using HTML tables, and mark required fields clearly.

170

10
Cookies and Sessions

HTTP is a stateless protocol, which means that any data you have stored is
forgotten when the page has been sent to the client and the connection is closed.
Eventually, Netscape invented the cookie—a tiny bit of information that a web
site could store on the client’s machine that was sent back to the web site each
time the page was requested. Each cookie could only be read by the web site that
had written it, meaning that it was a secure way to store information across pages.

Cookies earned a bad name at first, because they allowed people to track how
often a visitor came to their site and what they did while there, and many people
believed that cookies signalled the end of privacy on the Web. Urban myths
popped up saying that cookies could read any information from your hard drive,
and people were encouraged to disable cookies across the board. The reality is
that cookies are harmless, and fortunately for us, are now commonly accepted.

Sessions grew up from cookies as a way of storing data on the server side, because
the inherent problem of storing anything sensitive on clients’ machines is that
they are able to tamper with it if they wish. In order to set up a unique identifier
on the client, sessions still use a small cookie that holds a value that identifies the
client to the server, and corresponds to a datafile on the server.

Cookies Versus Sessions
Both cookies and sessions are available to you as a PHP developer, and both
accomplish the same task of storing data across pages on your site. However,
there are differences between the two.

Cookies can be set to a long lifespan, which means that data stored in a cookie
can be stored for months, if not years. Cookies, having their data stored on the
client, work smoothly when you have a cluster of web servers, whereas sessions
are stored on the server, meaning if one of your web servers handles the first

Using Cookies | 171

Co
o

kies an
d

Sessio
n

s

request, the other web servers in your cluster will not have the stored informa-
tion. Cookies can also be manipulated on the client side, using JavaScript,
whereas sessions cannot.

Sessions are stored on the server, which means clients do not have access to the
information you store about them. This is particularly important if you store
shopping baskets or other information you do not want your visitors to be able to
edit by hacking their cookies. Session data, being stored on your server, does not
need to be transmitted with each page; clients just need to send an ID, and the
data is loaded from the local file. Finally, sessions can be any size you want
because they are held on your server, whereas many web browsers have a limit on
how big cookies can be to stop rogue web sites chewing up gigabytes of data with
meaningless cookie information. Sessions rely upon a client-side cookie to store
the session identifier—without this, PHP must resort to placing the identifier in
the URL, which is insecure. If a cookie is used, it is set to expire as soon as the
user closes his browser.

Cookies versus sessions usually comes down to one choice: do you want your
data to work when your visitor comes back the next day? If so, then your only
choice is cookies. If you are storing sensitive information, store it in a database
and use the cookie to store an ID number to reference the data. If you do not need
semi-permanent data, then sessions are generally preferred—they are a little easier
to use, do not require their data to be sent in entirety with each page, and are also
cleaned up as soon as your visitor closes his web browser.

Because cookies are stored on your visitor’s computer, they can eas-
ily be changed by the visitor. This presents a serious security prob-
lem: if you store a user ID in a cookie to allow people to
automatically log in when they visit your site, that user could edit
the cookie to a different ID number and thus impersonate anyone.
It’s problems like this that make sesssions preferable for secure
data; cookies are hard to secure without resorting to security
through obscurity.

Using Cookies
The setcookie() call needs to be before the HTML form because of the way the
web works. HTTP operates by sending all “header” information before it sends
“body” information. In the header, it sends things like server type (e.g.,
“Apache”), page size (e.g., “29019 bytes”), and other important data. In the body,
it sends the actual HTML you see on the screen. HTTP works in such a way that
header data cannot come after body data—you must send all your header data
before you send any body data at all.

Cookies come into the category of header data. When you place a cookie using
setcookie(), your web server adds a line in your header data for that cookie. If
you try and send a cookie after you have started sending HTML, PHP will flag
serious errors and the cookie will not get placed.

172 | Chapter 10: Cookies and Sessions

There are two ways to correct this:

• Put your cookies at the top of your page. By sending them before you send
anybody data, you avoid the problem entirely.

• Enable output buffering in PHP. This allows you to send header information
such as cookies wherever you like—even after (or in the middle of) body
data. Output buffering is covered in depth in the following chapter.

The setcookie() function itself takes three main parameters: the name of the
cookie, the value of the cookie, and the date the cookie should expire. For
example:

setcookie("Name", $_POST['Name'], time() + 31536000);

Cookies are sent to the server each time a user visits a page. So, if
you set a cookie in a script, it does not become available until your
user visits the next page (or hits refresh)—this often confuses peo-
ple who are desperately hunting for a bug.

In the example code, setcookie() sets a cookie called Name to the value set in a
form element called Name. It uses time() + 31536000 as its third parameter, which
is equal to the current time in seconds plus the number of seconds in a year, so
that the cookie is set to expire one year from the time it was set.

Once set, the Name cookie will be sent with every subsequent page request, and
PHP will make it available in $_COOKIE. Users can clear their cookies manually,
either by using a special option in their web browser or just by deleting files.

The last three parameters of the setcookie() function allow you to restrict when
it’s sent, which gives you a little more control:

• Parameter four (path) allows you to set a directory in which the cookie is
active. By default, this is / (active for the entire site), but you could set it to
/messageboards/ to have the cookie only available in that directory and its
subdirectories.

• Parameter five (domain) allows you to set a subdomain in which the cookie is
active. For example, specifying “mail.yoursite.com” will make the cookie
available there but not on www.yoursite.com. Use “.yoursite.com” to make
the cookie available everywhere.

• Parameter six (secure) lets you specify whether the cookie must only be sent
through a HTTPS connection or not. The default, 0, has the cookie sent
across both HTTPS and HTTP, but you can set it to 1 to force HTTPS only.

Once a cookie has been set, it becomes available to use on subsequent page loads
through the $_COOKIE superglobal array variable. Using the previous call to
setcookie(), subsequent page loads can have their Name value read like this:

print $_COOKIE["Name"];

Using Sessions | 173

Co
o

kies an
d

Sessio
n

s

Using Sessions
Sessions store temporary data about your visitors and are particularly good when
you don’t want that data to be accessible from outside of your server. They are an
alternative to cookies if the client has disabled cookie access on her machine,
because PHP can automatically rewrite URLs to pass a session ID around for you.

Starting a Session

A session is a combination of a server-side file containing all the data you wish to
store, and a client-side cookie containing a reference to the server data. The file
and the client-side cookie are created using the function session_start()—it has
no parameters but informs the server that sessions are going to be used.

When you call session_start(), PHP will check to see whether the visitor sent a
session cookie. If it did, PHP will load the session data. Otherwise, PHP will
create a new session file on the server, and send an ID back to the visitor to asso-
ciate the visitor with the new file. Because each visitor has his own data locked
away in his unique session file, you need to call session_start() before you try to
read session variables—failing to do so will mean that you simply will not have
access to his data. Furthermore, as session_start() needs to send the reference
cookie to the user’s computer, you need to have it before the body of your web
page—even before any spaces.

Adding Session Data

All your session data is stored in the session superglobal array, $_SESSION, which
means that each session variable is one element in that array, combined with its
value. Adding variables to this array is done in the same way as adding variables
to any array, with the added bonus that session variables will still be there when
your user browses to another page.

To set a session variable, use syntax like this:

$_SESSION['var'] = $val;
$_SESSION['FirstName'] = "Jim";

Older versions of PHP used the function session_register(); however, use of this
function is strongly discouraged, as it will not work properly in default installa-
tions of PHP 5. If you have scripts that use session_register(), you should
switch them over to using the $_SESSION superglobal, as it is more portable and
easier to read.

Before you can add any variables to a session, you need to have already called the
session_start() function—don’t forget!

You cannot store resources such as database connections in ses-
sions, because these resources are unique to each PHP script and
are usually cleaned when that script terminates.

174 | Chapter 10: Cookies and Sessions

Reading Session Data

Once you have put your data away, it becomes available in the $_SESSION super-
global array with the key of the variable name you gave it. Here is an example of
setting data and reading it back out again:

$_SESSION['foo'] = 'bar';
print $_SESSION['foo'];

Unlike cookies, session data is available as soon as it is set.

Removing Session Data

Removing a specific value from a session is as simple as using the function unset(),
just as you would for any other variable. It is important that you unset only specific
elements of the $_SESSION array, not the $_SESSION array itself, because that would
leave you unable to manipulate the session data at all.

To extend the previous script to remove data, use this:

$_SESSION['foo'] = 'bar';
print $_SESSION['foo'];
unset($_SESSION['foo']);

Ending a Session

A session lasts until your visitor closes her browser—if she navigates away to
another page, then returns to your site without having closed her browser, her
session will still exist. Your visitor’s session data might potentially last for days, as
long as she keeps browsing around your site, whereas cookies usually have a fixed
lifespan.

If you want to explicitly end a user’s session and delete his data without him
having to close his browser, you need to clear the $_SESSION array, then use the
session_destroy() function. The session_destroy() function removes all session
data stored on your hard disk, leaving you with a clean slate.

To end a session and clear its data, use this code:

session_start();
$_SESSION = array();
session_destroy();

There are two important things to note there. First, session_start() is called so
that PHP loads the user’s session, and second, we use an empty call to the array()
function to make $_SESSION an empty array—effectively wiping it. If session_
start() is not called, neither of the following two lines will work properly, so
always call session_start().

Checking Session Data

You can check whether a variable has been set in a user’s session using isset(),
as you would a normal variable. Because the $_SESSION superglobal is only initial-
ized once session_start() has been called, you need to call session_start()
before using isset() on a session variable. For example:

Using Sessions | 175

Co
o

kies an
d

Sessio
n

s

session_start();

if (isset($_SESSION['FirstName'])) {
 /// your code here
}

You can also use empty() with session data, or indeed any other function—the $_
SESSION array and its data can be used like any other array.

Files Versus Databases

The session-handling system in PHP is actually quite basic at its core, simply
storing and retrieving values from flat files based upon unique session IDs handed
out when a session is started. While this system works very well for small-scale
solutions, it does not work too well when multiple servers come into play. The
problem is down to location: where should session data be stored?

If session data is stored in files, the files would need to be in a shared location
somewhere—not ideal for performance or locking reasons. However, if the data is
stored in a database, that database could then be accessed from all machines in
the web server cluster, thereby eliminating the problem. PHP’s session storage
system was designed to be flexible enough to cope with this situation.

PHP saves its session data to your /tmp directory by default, which
is usually readable by everyone who has access to your server. As a
result, be careful what you store in your sessions or, better yet,
either change the save location or use a database with finer-grained
security controls!

To use your own solution in place of the standard session handlers, you need to
call the function session_set_save_handler(), which takes several parameters. In
order to handle sessions, you need to have your own callback functions that
handle a set of events, which are:

• Session open (called by session_start())

• Session close (called at page end)

• Session read (called after session_start())

• Session write (called when session data is to be written)

• Session destroy (called by session_destroy())

• Session garbage collect (called randomly)

To handle these six events, you need to create six functions with very specific
numbers of functions and return types. Then you pass these six functions into
session_set_save_handler() in that order, and you are all set. This sets up all the
basic functions, and prints out what gets passed to the function so you can see
how the session operations work:

function sess_open($sess_path, $sess_name) {
 print "Session opened.\n";
 print "Sess_path: $sess_path\n";
 print "Sess_name: $sess_name\n\n";
 return true;

176 | Chapter 10: Cookies and Sessions

}

function sess_close() {
 print "Session closed.\n";
 return true;
}

function sess_read($sess_id) {
 print "Session read.\n";
 print "Sess_ID: $sess_id\n";
 return '';
}

function sess_write($sess_id, $data) {
 print "Session value written.\n";
 print "Sess_ID: $sess_id\n";
 print "Data: $data\n\n";
 return true;
}

function sess_destroy($sess_id) {
 print "Session destroy called.\n";
 return true;
}

function sess_gc($sess_maxlifetime) {
 print "Session garbage collection called.\n";
 print "Sess_maxlifetime: $sess_maxlifetime\n";
 return true;
}

session_set_save_handler("sess_open", "sess_close", "sess_read",
 "sess_write", "sess_destroy", "sess_gc");
session_start();

$_SESSION['foo'] = "bar";
print "Some text\n";
$_SESSION['baz'] = "wombat";

That will give the following output:

Session opened.
Sess_path: /tmp
Sess_name: PHPSESSID
Session read.
Sess_ID: m4v94bsp45snd6llbvi1rvv2n5
Some text
Session value written.
Sess_ID: m4v94bsp45snd6llbvi1rvv2n5
Data: foo|s:3:"bar";baz|s:6:"wombat";
Session closed.

Using Sessions | 177

Co
o

kies an
d

Sessio
n

s

There are four important things to note in that example:

1. You can, if you want, ignore the parameters passed into sess_open(). We’re
going to be using a database to store our session data, so we do not need the
values at all.

2. Writing data comes just once, even though our two writes to the session are
nonsequential—there is a print statement between them.

3. Reading data is done just once, and passes in the session ID.

4. All the functions return true except sess_read().

Item 1 is not true if you actually care about where the user asks you to save files. If
you are using your own session filesystem, you might want to actually use $sess_
path when it gets passed in—this is your call.

Items 2 and 3 are important, as they show that PHP only does its session reading
and writing once. When it writes, it gives you the session ID to write and the
whole contents of that session; when it reads, it just gives you the session ID to
read and expects you to return the whole session data value.

The last item shows that sess_read() is the one function that needs to return a
meaningful value to PHP. All the others just need to return true, but reading data
from a session needs to either return the data or return an empty string: ‘’.

If you return true or false from your session read function, it is
likely that PHP will crash—always return either the session string
or an empty string.

What we’re going to do is use MySQL as our database system for session data
using the same functions as those above—in essence, we’re going to modify the
script so that it actually works.

We need to create a table to handle the session data, and here’s how it will look:

CREATE TABLE sessions (ID INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
SessionID CHAR(26), Data TEXT DEFAULT '', DateTouched INT);

The ID field is not required, as it is not likely we will ever need to manipulate the
database by hand.

Now, before you try this next code, you need to tweak two values in your php.ini
file: session.gc_probability and session.gc_maxlifetime. The first one, in
tandem with session.gc_divisor, sets how likely it is for PHP to trigger session
clean up with each page request. By default, session.gc_probability is 1 and
session.gc_divisor is 1000, which means it will execute session clean up once in
every 1000 scripts. As we’re going to be testing our script out, you will need to
change session.gc_probability to 1000, giving us a 1000/1000 chance of
executing the garbage collection routine. In other words, it will always run.

The second change to make is to lower session.gc_maxlifetime. By default, it is
1440 seconds (24 minutes), which is far too long to wait to see if our garbage
collection routine works. Set this value to 20, meaning that when running our
garbage collection script, we should consider everything older than 20 seconds to

178 | Chapter 10: Cookies and Sessions

be unused and deletable. Of course, in production scripts, this value needs to be
set back to 1440 so that people do not get their sessions timing out before they
can even read a simple web page!

With that in mind, here’s the new script:

mysql_connect("localhost", "phpuser", "alm65z");
mysql_select_db("phpdb");

function sess_open($sess_path, $sess_name) {
 return true;
}

function sess_close() {
 return true;
}

function sess_read($sess_id) {
 $result = mysql_query("SELECT Data FROM sessions WHERE SessionID
 = '$sess_id';");
 $CurrentTime = time();
 if (!mysql_num_rows($result)) {
 mysql_query("INSERT INTO sessions (SessionID, DateTouched)
VALUES
 ('$sess_id', $CurrentTime);");
 return '';
 } else {
 extract(mysql_fetch_array($result), EXTR_PREFIX_ALL,
'sess');
 mysql_query("UPDATE sessions SET DateTouched = $CurrentTime
WHERE
 SessionID = '$sess_id';");
 return $sess_Data;
 }
}

function sess_write($sess_id, $data) {
 $CurrentTime = time();
 mysql_query("UPDATE sessions SET Data = '$data', DateTouched =
 $CurrentTime WHERE SessionID = '$sess_id';");
 return true;
}

function sess_destroy($sess_id) {
 mysql_query("DELETE FROM sessions WHERE SessionID = '$sess_id';");
 return true;
}

function sess_gc($sess_maxlifetime) {
 $CurrentTime = time();
 mysql_query("DELETE FROM sessions WHERE DateTouched + $sess_
maxlifetime
 < $CurrentTime;");
 return true;
}

Storing Complex Data Types | 179

Co
o

kies an
d

Sessio
n

s

session_set_save_handler("sess_open", "sess_close", "sess_read",
 "sess_write", "sess_destroy", "sess_gc");
session_start();

$_SESSION['foo'] = "bar";
$_SESSION['baz'] = "wombat";

As that script starts, it forms a connection to the local SQL server, which is used
through the script for the session-handling functions. When a session is read,
sess_read() is called and given the session ID to read. This is used to query our
sessions table—if the ID exists, its value is returned. If not, an empty session row
is created with that session ID and an empty string is returned. The empty row is
put in there so that we can later say UPDATE while writing and will not need to
bother with whether the row exists already; we’ll know we created it when
reading. The sess_write() function updates the session with ID $sess_id so that
it holds the data passed in with $data.

The last function of interest is sess_gc(), which is called randomly to handle dele-
tion of old session information. We edited php.ini so that randomly means “every
time” right now, and this function receives the lifespan in seconds of session data,
and deletes all rows that have not been read or updated in that time. We can tell
how long it has been since a row was last read/written because both sess_read()
and sess_write() update the DateTouched field to the current time. Therefore, to
tell whether or not a record was touched after the garbage collection time limit,
we simply take DateTouched and add the time limit $sess_maxlifetime to it—if
that value is under the current time, the session data is no longer valid.

It is interesting to note that you need not use databases or files to store your
sessions. As we’ve seen, you get to define the storage and retrieval method for
your system, so if you really wanted, you could write your own extension called
PigeonStore that sends and retrieves session data through pigeons. It really
doesn’t matter, because PHP just calls the functions you tell it to; what you do in
there is up to you, so use it wisely.

Storing Complex Data Types
You can use sessions to store complex data types such as objects and arrays
simply by treating them as standard variables, as this code shows:

$myarr["0"] = "Sunday";
$myarr["1"] = "Monday";
$myarr["2"] = "Tuesday";
$myarr["3"] = "Wednesday";
$myarr["4"] = "Thursday";
$myarr["5"] = "Friday";
$myarr["6"] = "Saturday";

$_SESSION["myarr"] = $myarr;

You can also use the serialize() and unserialize() functions to explicitly
convert to and from a string. If you do not call serialize() yourself, PHP will do

180 | Chapter 10: Cookies and Sessions

it for you when the session data is written to disk—many do rely on this, but I
would say it’s best to be explicit and serialize() data yourself.

If you are trying to store objects in your session and you find it is not restoring the
class name properly, it is probably because you started the session before you had
the class defined. This problem is often encountered by people who use the
session.auto_start directive in php.ini.

181

11
Output Buffering

Without output buffering, PHP sends data to your web server as soon as it is
ready. Not only is this slow because of the need to send lots of little bits of data,
but it also means you are restricted in the order you can send data. Output buff-
ering cures these ills by enabling you to store up your output and send it when
you are ready to—or to not send it at all, if you so decide.

Why Use Output Buffering?
Output buffering lets you “send” cookies at any point in your script, ignoring the
“headers first” HTTP rule. Internally, it causes PHP to store the cookies separate
from the HTML data and then send them together at the end, in the correct order.

Once you are using output buffering, you can compress content before you send
it. HTML is made up of lots of simple, repeating tags, and normal text on a site is
easy to compress, which means that compressing your pages can drastically cut
the amount of bandwidth your site (and your visitor!) uses, as well as how long it
takes to transfer a page.

One final advantage is that output buffers are stackable, meaning that you can
have several buffers working on top of each other, sending whichever ones you
want to output.

Output buffering generally will not affect the speed of your web server by any
great amount, unless you choose to compress your content. Compression takes
up extra CPU time; however, the amount of page bandwidth you use will be cut
by about 40%, which means your server will spend less time sending data across
the network. Your compression mileage may vary—if you have lots of pictures,
this will matter less; if you are sending lots of XML, your savings will be higher.

182 | Chapter 11: Output Buffering

Getting Started
There are two ways to start buffering output: through a php.ini setting to enable
output buffering for all scripts, or by using a function call on a script-by-script
basis. The latter is preferred, as it makes your code more portable and also gives
you greater flexibility in how you use output buffering.

To create a new output buffer and start writing to it, call ob_start(). There are
two ways to end a buffer: ob_end_flush() and ob_end_clean(). The former ends
the buffer and sends all data to output, and the latter ends the buffer without
sending it to output. Every piece of text written while an output buffer is open is
placed into that buffer, as opposed to being sent to output. For example:

ob_start();
print "Hello First!\n";
ob_end_flush();

ob_start();
print "Hello Second!\n";
ob_end_clean();

ob_start();
print "Hello Third!\n";

That script will output "Hello First" because the first text is placed into a buffer
and then flushed with ob_end_flush(). The "Hello Second" will not be printed
out, though, because it is placed into a buffer that is cleaned using ob_end_clean()
and not sent to output. Finally, the script will print out "Hello Third" because
PHP automatically flushes open output buffers when it reaches the end of a script.

Reusing Buffers
The functions ob_end_flush() and ob_end_clean() are complemented by ob_
flush() and ob_clean(), which do the same jobs but don’t end the output buffer.
We could rewrite the previous script like this:

ob_start();
print "Hello First!\n";
ob_flush();
print "Hello Second!\n";
ob_clean();
print "Hello Third!\n";

This time the buffer is flushed but left open, then cleaned and still left open, and
finally, automatically closed and flushed by PHP as the script ends. This saves
creating and destroying output buffers, which is about 60% faster than opening
and closing buffers all the time.

Stacking Buffers
Multiple output buffers can be open simultaneously, in which case, PHP writes to
the most recently opened buffer. For example:

Flushing Stacked Buffers | 183

O
u

tp
u

t
B

u
fferin

g

ob_start();
print "Hello first!\n";

ob_start();
print "Hello second!\n";

ob_clean();

That script will print out "Hello first!". The first buffer is started and filled with
"Hello first", then a second buffer is started on top of the previous buffer, leaving
the original still intact (though just out of reach for the time being). The new
buffer is filled with "Hello second", but ob_clean() is called, clearing the most
recent buffer and leaving the first untouched. The original buffer is then automati-
cally sent by PHP when the script terminates.

Stacking output buffers becomes more important when you remember that it’s
generally smart to make your whole page buffered in a master buffer. Without
stackable buffers, you would be unable to use any other buffers inside the main
page.

Flushing Stacked Buffers
When you have no output buffers open, any text you print out goes straight to
your user. When you have an output buffer, that text is stored away until you
choose to flush it. When you have stacked output buffers, your buffers flush data
up one level as opposed to going directly to output. For example:

ob_start();
print "In first buffer\n";

ob_start();
print "In second buffer\n";
ob_end_flush();

print "In first buffer\n";
ob_end_flush();

That will output the following:

In first buffer
In second buffer
In first buffer

As you can see, the second buffer gets flushed into the first buffer where it was left
off, as opposed to directly to output—it literally gets copied into the parent
buffer. Take a look at the following script:

ob_start();
print "In first buffer\n";

ob_start();
print "In second buffer\n";
ob_end_flush();

print "In first buffer\n";
ob_end_clean();

184 | Chapter 11: Output Buffering

It is the same as the previous script, with the only difference being the last line—
ob_end_clean() is used rather than ob_end_flush(). That script outputs nothing at
all, because the second buffer gets flushed into the first buffer and then the first
buffer gets cleaned, which means the clients receives none of the text.

As long as you keep in mind that output buffers are stacked, not parallel, this
functionality will work in your favor—you can progressively build up your
content by opening up new buffers and flushing in content to a parent buffer as
you go.

Reading Buffers
Output buffers are two-way affairs, which means you can read from them as well
as write to them. So far we have only covered writing data; reading that data back
is done by using the ob_get_contents() function.

The ob_get_contents() function takes no parameters and returns the full contents
of the most recently opened buffer. For example:

$result = mysql_query("SELECT * FROM EmployeeTable WHERE ID = 55;");

while ($row = mysql_fetch_assoc($result)) {
 extract($row);
 print "Some info A: $SomeInfoA\n";
 print "Some info B: $SomeInfoB\n";
 print "Some info C: $SomeInfoC\n";
 // ...[snip]...
 print "Some info Z: $SomeInfoZ\n";
}

That script sends its data (presumably lots of employee data) to the screen. With
output buffering, we can change it to save to a file, like this:

ob_start()
$result = mysql_query("SELECT * FROM EmployeeTable WHERE ID = 55;");

while ($row = mysql_fetch_assoc($result)) {
 extract($row);
 print "Some info A: $SomeInfoA\n";
 print "Some info B: $SomeInfoB\n";
 print "Some info C: $SomeInfoC\n";
 //...[snip]...
 print "Some info Z: $SomeInfoZ\n";
}

$output = ob_get_contents();
ob_end_clean();
file_put_contents("employee.txt", $output);

That scripts treats output like a scratch pad, saving it to a file rather than sending
it to output.

Flushing Output | 185

O
u

tp
u

t
B

u
fferin

g

Other OB Functions
The ob_get_length() and ob_get_level() functions both take no parameters and
return a number. For ob_get_length(), the return value is the number of bytes
held in the buffer, and for ob_get_level(), it is the nest count. This returns 0 if
you are not within an output buffer, 1 if you have one open, 2 if you have two,
etc.

Using ob_get_level(), it is possible to recursively close and flush/clean all open
buffers if you have an error. The ob_get_length() function is helpful if you want
to send a custom HTTP Content-Length header—although that is for advanced
users only!

Finally, the ob_list_handlers() function takes no parameters and returns an array
of any output handlers currently in effect. If output buffering is turned on, you
should get back an array containing the default output handler; if you’re using
gzip to compress your buffer, you should get “ob_gzhandler”; and if you’ve used
URL rewriting, you should get “URL-Rewriter”.

Flushing Output
If you aren’t using output buffer, you can still use the flush() to send all output
immediately, without waiting for the end of the script. You can call flush() as
often as you want, and it makes your visitor’s browser update with new content.
For example:

<html>
<body>
This page is loading...

<?php sleep(2); ?>
Almost there...

<?php sleep(2); ?>
Done.

</body>
</html>

Internet Explorer has an “optimization” that makes it render a page
only after it has received the first 256 bytes, whether or not you use
flush()—you might find these example scripts do not work in IE
as described. To make the scripts work, make them output at least
256 characters before the first call flush().

If you try that, you will see that the page appears all at once, having taken a little
over four seconds to load—not a very helpful progress monitor! Now consider the
following script, making use of flush():

<html>
<body>
This page is loading.

<?php flush(); sleep(2); ?>
Almost there...

<?php flush(); sleep(2); ?>

186 | Chapter 11: Output Buffering

Done.

</body>
</body>

This time, you will literally see the page loading—each line will appear one by
one, as seen in Figures 11-1, 11-2, and 11-3.

You can use JavaScript to alter what has been output already, like this:

<html>
<body>
<div id="flushme">
Hello, world!
</div>
<?php flush(); sleep(2); ?>
<script>
d = document.getElementById("flushme");
d.innerHTML = "Goodbye, Perl!";

Figure 11-1. Loading...

Figure 11-2. ...loading...

Figure 11-3. Done!

Compressing Output | 187

O
u

tp
u

t
B

u
fferin

g

</script>
<?php flush(); sleep(2); ?>
<script>
d.innerHTML = "Goodnight, New York!";
</script>
</body>
</html>

The JavaScript locates the DIV HTML element on the page, then sets its innerHTML
property to different messages as the script loads—a simple yet effective way to
handle keeping users up-to-date while a script loads.

Using flush() is good for all sorts of things, but as you have seen, it is particu-
larly good when you are executing a long script and want to keep users informed.
It takes very little work to print out “Please wait - generating your file” and call
flush() before creating a 500MB file—you can even follow up with printing out
“File created - click here to download,” so that your scripts feel much more
interactive.

Compressing Output
Output buffering allows you to compress the HTML you send to your visitors,
which makes your site load faster for your users and also allows you to make more
use of the bandwidth allocated to your server.

Whenever a visitor connects to your site, she sends along information such as the
last page she visited, the name of the web browser she is using, and what content
and encoding she accepts. The encoding part is what we’re interested in—if a
browser supports compressed HTML, it sends word of this to the web server each
time it requests a page. The web server can then send back compressed HTML if
told to do so—this is important, because browsers that do not support
compressed HTML will always get plain HTML back, so this works for everyone.

Compressed HTML is literally the zipped version of the normal HTML a browser
would otherwise have received; the client unzips it, then reads it as normal. As
zipping information requires that you must know all the information before you
compress it, output buffering is perfect—you send all your data to a buffer, zip
the buffer, and send it off to your users.

As the tie between output buffering and output compression is so close, the code
to make it work is equally close. To enable it, just pass the ob_gzhandler param-
eter to ob_start(); that will automatically check whether content compression is
supported, and enable it, if it is. For example:

ob_start("ob_gzhandler")
// output content for compression here
ob_end_flush();

From the client’s point of view, nothing will have changed, except the fact that the
site might load a little quicker. If he clicks “View Source” from his web browser,
he’ll see normal HTML because the process is entirely transparent.

Content compression works only on the contents of the output buffer—it does
not compress pictures, CSS files, or other attachments to your HTML.

188 | Chapter 11: Output Buffering

You’re only allowed one compressed buffer with PHP because of
the need to compress content all at once; be careful when stacking
more than one buffer at a time.

URL Rewriting
The two functions output_add_rewrite_var() and output_reset_rewrite_vars()
cause your URLs, forms, and frames to be rewritten so that they will pass in vari-
ables and values of your choosing. They do this by using output buffering and
parsing any HTML A elements (links) plus any FORM elements and FRAMES
elements and appending fields to URLs contained therein. For example:

<?php
 output_add_rewrite_var('foo', 'baz');
 echo 'Click here!
';
 output_add_rewrite_var('bar', 'baz');
 echo 'Click here!
';

 echo '<form action="mypage.php" method="post">';
 echo '<input type="button" value=" Click here! " />';
 echo '</form>';
?>

Click here!

When you run that, you should find that the URLs have been rewritten to point to
http://localhost/mypage.php?foo=baz&bar=baz. What’s more, both links are the
same: the fact that you printed out one link before adding the second variable is
irrelevant, thanks to output buffering. The form will have extra hidden fields in
there for your values, effectively giving the same result. The best part is that PHP
always leaves the forms and URLs working as they did before: any fields in your
forms or variables in your URLs will remain there, untouched.

The output_reset_rewrite_vars() function undoes the effects of your calls to
output_add_rewrite_var(). One call to output_reset_rewrite_vars() wipes out
any variables you’ve added to URLs and FORMs—it goes back and changes them
all to be without the added variables.

Here’s the same script again, except this time with output_reset_rewrite_vars()
tacked on the end:

<?php
 echo 'Click here!
';
 output_add_rewrite_var('foo', 'baz');
 echo 'Click here!
';
 output_add_rewrite_var('bar', 'baz');
 echo 'Click here!
';

 echo '<form action="mypage.php" METHOD="POST">';
 echo '<input type="button" value=" Click here! " />';
 echo '</form>';
?>

Click here!

URL Rewriting | 189

O
u

tp
u

t
B

u
fferin

g

<?php
 output_reset_rewrite_vars();
?>

That will print out all URLs and the form as written, without the foo and bar
variables.

190

12
Security

The Internet is not a safe place, thanks to a small percentage of its users who feel
the need to attack other users electronically. The reasons for the attacks vary—
sometimes it is for monetary gain, where attackers find holes in your code that
they can exploit to their advantage, and other times it is just for fun.

If your PHP scripts run on an Internet-facing server, they are accessible to hackers
and you need to take extra care. Many PHP projects—particularly the larger ones,
such as PostNuke—have had major exploits published that allow hackers to take
control of a web server remotely. This chapter contains tips and advice to help
you avoid falling victim to the next hacker that comes your way.

Security Tips
The easiest way for hackers to find holes in your web site is to scan for strings that
give away a known vulnerability. This can be done with a client-side tool that
simply hits IP addresses again and again until it finds something it recognizes, but
many modern hackers utilize Google to search for data.

As a result, it has never been more important to keep a tight control over what
files are on your web site and what information you give to visitors.

Put Key Files Outside Your Document Root

Your document root is the root directory of your web server. That is, if your site is
example.com, the root directory would be the directory that http://www.example.
com/ points to. For example, on Linux this is often /var/www/html, and on
Windows this is often c:\inetpub\wwwroot.

As long as you have the permissions set up correctly, PHP can read from any file
you want inside scripts. However, unless you configure Apache to do otherwise,
users will not be able to load files from outside of the document root directly

Security Tips | 191

Secu
rity

through their web browsers. That is, if you place your files in /var/www, and the
“highest” directory your visitors can get to is /var/www/html, then the files are
safe.

Remember That Most Files Are Public

When you have files in your public HTML directory, people can get at them—it is
that simple. There was a silly craze a while ago to use the file extension .inc for
PHP include files—scripts that only served to be included into other scripts.
While this might make sense, and allows you to see how a script works simply by
looking at its name, it is actually a major security hole.

For example, if you save your database connection info in a file and then include()
that file into every script you write, that file would probably be called something like
dbconnect.inc. Now, what happens if someone were to type www.example.com/
dbconnect.inc directly into his web browser? Your web server would load the .inc
file, and send it as plain text because it does not end in a PHP-handled file exten-
sion, which means that someone accessing the .inc file directly would see your
source code.

A much better solution, if you particularly want to mark your files as include files,
is to use the extension .inc.php—this way, they will be parsed by PHP before being
sent to people directly, and therefore will not reveal your source code.

Hide Your Identity

Most web servers, by default, send out information about themselves with each
request served. For example, a default installation of Mandrake Linux 9.1 returns
the following information with each file served:

Server: Apache/2.0.48 (Win32) PHP/5.0.2-dev

From that, we can ascertain that the machine is running Apache 2.0.48 on
Windows, a CVS version of PHP 5.0.2.

Now, all an attacker has to do is check for known bugs in Apache 2.0.49, PHP 5.0.2
or, worse, Windows, and exploit them—we have, in effect, given him a head start.

Editing your httpd.conf file, look for the two directives ServerSignature and
ServerTokens—both of these control what information Apache gives out about
itself. ServerSignature is used to define what Apache prints at the bottom of
server-generated pages, such as 404 error pages. Similarly, with ServerTokens set
to full (the default), the same information is sent along with every request. To
change this, set ServerSignature to Off and ServerTokens to Prod—this will stop it
printing anything out for error messages, and restrict the information sent with
each request to just Apache. A big step forward—at least now your site will not
appear if people are scanning for certain Apache versions.

Here is how that same Windows Apache server describes itself with these changes
in place:

Server: Apache

Much better!

192 | Chapter 12: Security

Hiding PHP

By default, PHP is set to announce its presence whenever anyone asks—this is
usually through the web server. You can turn this functionality off by editing your
php.ini file and changing expose_php to Off.

If you do this, as well as using a different file extension, your use of PHP is mostly
hidden. However, if your code generates any error messages, your use of PHP will
become immediately obvious. To get around this, and thereby truly hide PHP,
you should force PHP not to display error messages—edit your php.ini file and set
display_errors to Off.

This will make debugging a little harder, but be sure to set log_errors to On—this
will make sure that whenever your script generates an error, it will be stored away
in the error log file so that you can analyze the problem.

As an alternative to changing the file extension, why not just drop it altogether?
Tim Berners-Lee wrote a famous article called “Cool URIs Don’t Change” (avail-
able from http://www.w3.org/Provider/Style/URI.html) that says, among other
things, that you should consider stripping off file extensions just in case you
decide to change technology later—good advice.

Encryption
Practicing the art of encryption, both for data you store locally and for data you
send to and from your clients and other data consumers, is not only recom-
mended, but it is a staple requirement for anything done in conjunction with the
Internet.

Encryption is undoubtedly the most complicated topic PHP programmers have to
face, partially because encryption is inherently complex, and partially because the
PHP extension designed to handle encryption seems to have been designed for
encryption experts to use, as opposed to normal people!

Encrypting Data

To encrypt data, you need to use seven different functions, which are: mcrypt_
module_open(), mcrypt_create_iv(), mcrypt_enc_get_iv_size(), mcrypt_enc_get_
key_size(), mcrypt_generic_init(), mcrypt_generic(), mcrypt_generic_deinit(),
and finally, mcrypt_module_close().

The easiest way to learn these functions is just to use them, because they accept
limited input and give limited output. This script is a good place to start:

srand((double)microtime()*1000000);
$td = mcrypt_module_open(MCRYPT_RIJNDAEL_256, '', MCRYPT_MODE_CFB, '');
$iv = mcrypt_create_iv(mcrypt_enc_get_iv_size($td), MCRYPT_RAND);
$ks = mcrypt_enc_get_key_size($td);
$key = substr(sha1('Your Secret Key Here'), 0, $ks);
mcrypt_generic_init($td, $key, $iv);
$ciphertext = mcrypt_generic($td, 'This is very important data');
mcrypt_generic_deinit($td);
mcrypt_module_close($td);

Encryption | 193

Secu
rity

print $iv . "\n";
print trim($ciphertext) . "\n";

The script starts with the random number generator seeded with a random value,
which is important because our initialization vector (or IV, a seed for random
encryption and decryption) will be created by calling the random number gener-
ator. The first function called is mcrypt_module_open(), which opens an
encryption algorithm for use. It takes four parameters; however, most people will
want to leave them as the same values seen in the script because they are more
than enough, even in very secure environments.

Moving on, the next function called is mcrypt_create_iv(), which creates an IV
for our encryption. IVs aren’t used to make the key any more difficult to guess.
Instead, their purpose is to make the plaintext more innocuous—a process
referred to as whitening, because the goal of the IV is to make your plaintext look
more like white noise by randomizing it a little before encryption.

The mcrypt_create_iv() function takes two parameters: the size of IV to create
and the method to use to create the IV. The first parameter is filled with the return
value from mcrypt_enc_get_iv_size(), which returns the length the IV should be
for the encryption algorithm passed in as its only parameter. The second param-
eter can be one of MCRYPT_RAND, MCRYPT_DEV_RANDOM, or MCRYPT_DEV_URANDOM. The
first generates the IV using a software randomizer; the second uses the Unix
device /dev/random; and the third uses the Unix device /dev/urandom. For
maximum portability, use MCRYPT_RAND—it is not as random as the other
two, but it will work wherever you put it. If you use MCRYPT_RAND, remember
to seed the random number generated with srand()!

The function returns an IV for the algorithm we selected with mcrypt_module_
open(). Next we call mcrypt_enc_get_key_size() to get the maximum key size our
algorithm (parameter one) will take, then we create a key for that algorithm using
substr() and sha1(). The return value of mcrypt_enc_get_key_size() is the
largest key this algorithm accepts, so we pass a plaintext key into sha1() to get a
hashed value, then copy as many characters from it as the algorithm method will
accept.

The next two functions, mcrypt_generic_init(), and mcrypt_generic(), initialize
the encryption engine with the algorithm, IV, and key we selected, then perform
the encryption. The first takes three parameters, which are the algorithm resource
to use, the IV we created with mcrypt_create_iv(), and the key we created using
sha1() and substr(). Mcrypt_generic takes two parameters, which are the algo-
rithm resource and the data we actually want to encrypt—it returns the encrypted
value, our ciphertext, which we store in $ciphertext.

So, after lots of function calls, we have finally performed encryption with the func-
tion mcrypt_generic(). To end the script, we need to do some clean up, which is
where mcrypt_generic_deinit() and mcrypt_module_close() come in—both take
the algorithm resource as their only parameter and clean up the module.

194 | Chapter 12: Security

It’s possible to perform encryption using the mcrypt library with
fewer functions. Generally speaking, this is not recommended:
using an IV and doing things properly ensures the data is secured
properly. Please remember that the only thing worse than not being
secured is not being secured and thinking you are secured!

To recap, we select an encryption algorithm and block cipher, create an IV to
whiten our plaintext a little, create a secret key that encrypts our data, initialize
the algorithm to use our IV and key, run the encryption itself to get our cipher-
text, then clean up.

Symmetric Decryption

Once you have mastered encryption, decryption is fairly easy, as it shares most of
the same concepts. Here is the same script again; this time, it encrypts and then
decrypts the information:

srand((double)microtime()*1000000);
$td = mcrypt_module_open(MCRYPT_RIJNDAEL_256, '', MCRYPT_MODE_CFB, '');
$iv = mcrypt_create_iv(mcrypt_enc_get_iv_size($td), MCRYPT_RAND);
$ks = mcrypt_enc_get_key_size($td);
$key = substr(sha1('Your Secret Key Here'), 0, $ks);

mcrypt_generic_init($td, $key, $iv);
$ciphertext = mcrypt_generic($td, 'This is very important data');
mcrypt_generic_deinit($td);

mcrypt_generic_init($td, $key, $iv);
$plaintext = mdecrypt_generic($td, $ciphertext);
mcrypt_generic_deinit($td);
mcrypt_module_close($td);

print $iv . "\n";
print trim($ciphertext) . "\n";
print trim($plaintext) . "\n";

Note that we actually call mcrypt_generic_deinit() and then mcrypt_generic_
init() immediately afterwards—this is important for the encryption to work
properly, and you must not forget to do this.

It is crucial that you do not forget to deinit() after you encrypt,
then call init() again when you want to decrypt.

The above scripts use a very strong form of encryption; however, even they can be
broken in seconds if someone cracks your key—keep it secret at all costs. Your IV
need not be kept secure, but there’s no harm in doing so.

195

13
Files

Files can store all sorts of information. However, most file formats (e.g., picture
formats such as PNG and JPEG) are binary, and very difficult and/or impossible
to write using normal text techniques—in these situations, you should use the
library designed to cope with each format.

One reminder: if you are using an operating system that uses backslash (\) as the
path separator (e.g., Windows), you need to escape the backslash with another
backslash, making (\\). Owing to this, handling files can be quite different for
Windows and Unix users. Both operating systems are covered here.

Reading Files
There are several ways to open and display files, and each has its uses. You don’t
need to know all the ways to read files—it is probably best to learn one and stick
with it for your own code. However, you will almost certainly come across each of
these methods in other people’s code, because everyone has her own method of
getting things done.

readfile()

If you want to output a file to the screen without doing any form of text
processing on it whatsoever, readfile() is the easiest function to use. When
passed a filename as its only parameter, readfile() will attempt to open it, read it
all into memory, then output it without further question. If successful, readfile()
will return an integer equal to the number of bytes read from the file.

If unsuccessful, readfile() will return false, and there are quite a few reasons
why it may fail. For example, the file might not exist, or it might exist with the
wrong permissions.

196 | Chapter 13: Files

Here is an example script:

$testfile = @readfile("/home/paul/test.txt");
// OR "@readfile("c:\\boot.ini");" if you are using Windows
if (!$testfile) {
 print "Could not open file.\n";
}

If readfile() fails to open the file, it will print an error message to the screen. You
can suppress this by placing an @ symbol before the function call.

The advantages to using readfile() are clear: there is no fuss, and there is little
way for it to go wrong. However, the disadvantage is equally clear: you have no
control over the text that comes out.

From here on, I will use the variable $filename to signify a filename
you have chosen. This is to avoid having to keep printing separate
examples for Windows and Unix.

file_get_contents() and file()

The next evolutionary step up from readfile() is called file_get_contents(),
and it also takes one parameter for the filename to open. This time, however, it
does not output any data. Instead, it will return the contents of the file as a string,
complete with new line characters \n where appropriate. For example:

$filestring = file_get_contents($filename);
if ($filestring) {
 print $filestring;
} else {
 print "Could not open $filename.\n";
}

The file_get_contents() function opens $varname and places its contents into
$filestring. Effectively, that piece of code is the same as our call to readfile(),
but only because we’re not doing anything with $filestring once we have it.

If you want your file to be converted into an array, with each line an element
inside that array, you should use the file() function:

$filearray = file($filename);

if ($filearray) {
 while (list($var, $val) = each($filearray)) {
 ++$var;
 $val = trim($val);
 print "Line $var: $val
";
 }
} else {
 print "Could not open $filename.\n";
}

That script iterates over the file array, outputting one line at a time with line
numbers. Array indexes start at 0, so we need ++$var to make sure that it starts at

Reading Files | 197

Files

line 1 rather than line 0. We call trim() on $val because each element in the array
still has its new line character \n at the end, and trim() will take that off.

fopen() and fread()

For many people, fopen() is a fiendishly complex function. This is because it is
another one of those functions lifted straight from C, and is not as user-friendly as
most PHP functions. On the flip side, fopen() is an incredibly versatile function
that you are likely to come to love for its ability to manipulate files just as you
want it to.

It has two key parameters: the file to open, and how you would like it opened.
The first parameter is $filename, as with the other examples. Parameter two is
what makes fopen() so special: you specify letters in a string that define whether
you want to read from (r), write to (w), or append to (a) the file specified in
parameter one.

There is also a fourth option, b or t, which opens the file in binary mode or text
mode—the latter of which is designed to allow Windows to translate Unix-style
line returns (\n) into Windows-style line returns (\r\n). PHP will enable binary
mode by default on Windows in newer versions of PHP, but not on Unix, and not
on older versions of PHP. This naturally causes great confusion, but the solution
is simple: if you want binary mode, specify it. If you don’t want binary mode,
specify text mode with a t. Do not leave it to the default.

Take a look at the following usages:

$fh_flowers = fopen("kinds_of_flowers.txt", "r")
 OR die ("Can't open flowers file!\n");

$fh_logfile = fopen("$appname-log.log", "w")
 OR die ("Log file not writeable!\n");

The fopen() function returns a file handle resource, which is a pointer to the loca-
tion of the contents of the file. You cannot output it directly, e.g., print
fopen($filename), but all fopen()-related functions accept file handles as the file
to work with. You should store the return value of fopen() in a variable for later
use:

$handle = fopen($filename, "a");
if (!$handle) {
 print "Failed to open $filename for appending.\n";
}

If the file cannot be opened, fopen() returns false. If the file is successfully
opened, a file handle is returned and you can proceed. Once the file handle is
ready, we can call other functions on the opened file, depending on how the file
was opened (the second parameter to fopen()). To read from a file, the function
fread() is used; to write to a file, fwrite() is used. For now we’re interested in
reading, so you should use rb for the second parameter to fopen().

The fread() function takes two parameters: a file handle to read from (this is the
return value from fopen()) and the number of bytes to read. When combined
with the feof(), which takes a file handle as its only parameter and returns true if

198 | Chapter 13: Files

you are at the end of the file or false otherwise, it becomes easier to work with
files of several megabytes or, indeed, hundreds of megabytes. For example:

$huge_file = fopen("VERY_BIG_FILE.txt", "r");
while (!feof($huge_file)) {
 print fread($huge_file, 1024);
}
fclose($huge_file);

This use of fread() is also good for when you only care about a small part of the
file. For example, Zip files all start with the letters “PK”, so we can do a quick
check to ensure a given file is a Zip file with this code:

$zipfile = fopen("data.zip", "r");
if (fread($zipfile, 2) != "PK") {
 print "Data.zip is not a valid Zip file!";

}
fclose($zipfile);

To instruct PHP to use fread() to read in the entire contents of a file, you need to
specify the exact file size in bytes as the second parameter to fread(). PHP comes
to the rescue again with the filesize() function, which takes the name of a file to
check and returns its filesize in bytes—precisely what we’re looking for.

Don’t worry about specifying a number in the second parameter
that is larger than the file—PHP will stop reading when it hits the
end of the file or the number of bytes in the second parameter,
whichever comes first.

When reading a file, PHP uses a file pointer to determine which byte it is currently
up to—like the array cursor. Each time you read in a byte, PHP advances the file
pointer by one place. Reading in the entire file at once advances the pointer to the
end of the file.

So, to use fread() to read in an entire file, we can use the following line:

$contents = fread($handle, filesize($filename));

Notice that fread()’s return value is the text it read in, and in the above situa-
tion, that is the entire file. To finish off using fread(), it is necessary to close the
file as soon as you are done with it.

Using fclose() immediately closes a file handle (although PHP will
automatically close any file handles when your script finishes).

To close a file you have opened with fopen(), use fclose(). This takes the file
handle we got from fopen() and returns true if it was able to close the file
successfully. We have now got enough to use fopen() to fully open and read in a
file, then close it:

$handle = fopen($filename, "rb");
$contents = fread($handle, filesize($filename));

Creating and Changing Files | 199

Files

fclose($handle);
print $contents;

You will need to set $filename to be the location of a file on your system that you
have access to. In that example, fopen() is called with rb as the second param-
eter, for “read-only, binary-safe”. Also, filesize() is being used to fread() in all
of $filename’s contents. The call to fclose() is made before $contents is printed,
so that it is closed as soon as $handle is no longer needed.

Reading by line using fgets()

In the same way that fread() is good for reading large files piece by piece, fgets()
is good for reading large files line by line. Accessing by line means that you don’t
need to load the entire file into RAM at once, and it also lets you process each line
as it arrives. To use fgets(), pass it a file handle as its only parameter, and it will
send back the next line as its return value.

For example, the next code block reads a large log line by line, only printing the
lines that start with the word “Error”:

$access_log = fopen("access_log", "r");
while (!feof($access_log)) {
 $line = fgets($access_log);
 if (preg_match("/^Error:/", $line)) {
 print $line;
 }
}
fclose($access_log);

You can find more information about the preg_match() in
Chapter 15.

Creating and Changing Files
Like reading files, creating and changing files can also be done in more than one
way. There are just two options this time: file_put_contents() and fwrite().
Both of these functions complement functions we just looked at, which are file_
get_contents() and fread(), respectively, and they mostly work in the same way.

file_put_contents()

This function writes to a file with the equivalent of fopen(), fwrite() (the oppo-
site of fread()), and fclose()—all in one function, just like file_get_contents().
It takes two parameters: the filename to write to and the content to write, respec-
tively, with a third optional parameter specifying extra flags that we will get to in a
moment. If file_put_contents() is successful, it will return the number of bytes
written to the file; otherwise, it will return false.

Here is an example:

$myarray[] = "This is line one";
$myarray[] = "This is line two";

200 | Chapter 13: Files

$myarray[] = "This is line three";
$mystring = implode("\n", $myarray);
$numbytes = file_put_contents($filename, $mystring);
print "$numbytes bytes written\n";

That should output "52 bytes written", which is the sum total of the three lines
of text plus the two new line characters used to implode() the array. Remember
that the new line character is, in fact, just one character inside files, whereas PHP
represents it using two: \ and n.

You can pass in a third parameter to file_put_contents() which, if set to FILE_
APPEND, will append the text in your second parameter to the existing text in the
file. If you do not use FILE_APPEND, the existing text will be wiped and replaced.

fwrite()

The opposite of fread() is fwrite(), which also works with the file handle
returned by fopen(). This takes a string to write as a second parameter, and an
optional third parameter where you can specify how many bytes to write. If you
do not specify the third parameter, all of the second parameter is written out to
the file.

As with fread(), PHP will stop writing when it reaches the end of
the string or when it has reached the number of bytes specified in
this length parameter, whichever comes first—you don’t need to
worry about specifying more bytes than you have in the string.

Here is an example using the variable $mystring from the previous example to
save space:

$handle = fopen($filename, "wb");
$numbytes = fwrite($handle, $mystring);
fclose($handle);
print "$numbytes bytes written\n";

If I had added 10 as the third parameter to the fwrite() call, only the first 10
bytes of $mystring would have been written out. Note again that fclose() is
called immediately after the file handle is finished with, which is always the best
practice.

The fwrite() function uses a file pointer in the same way as fread(). As you write
out data, PHP moves the file pointer forward so that you always write to the end
of a file (unless you move the file pointer yourself).

Moving, Copying, and Deleting Files
PHP has simple functions to handle all moving, copying, and deleting of files.
Unix users will know there is no command for “rename,” because renaming a file
is essentially the same as moving it. Thus, you use the move (mv) command—it is
the same in PHP.

Moving, Copying, and Deleting Files | 201

Files

Files are moved using rename(), copied using copy(), and deleted using unlink().
This is so named because Unix systems consider filenames to be “hard links” to
the actual files themselves—to unlink a file is to delete it.

All three functions will operate without further input from you. If
you choose to pass an existing file to the second parameter of
rename(), it will rename the file in parameter one to the file in
parameter two, overwriting the original file. The same applies to
copy()—you will overwrite all files without question, as long as
you have the correct permissions.

Moving Files with rename()

Used for both renaming and moving files, rename() takes two parameters: the
original filename and the new filename you wish to use. The function can rename/
move files across directories and drives, and will return true on success or false
otherwise.

Here is an example:

$filename2 = $filename . '.old';
$result = rename($filename, $filename2);
if ($result) {
 print "$filename has been renamed to $filename2.\n";
} else {
 print "Error: couldn't rename $filename to $filename2!\n";
}

If you had $filename set to c:\\windows\\myfile.txt, the above script would move
that file to c:\\windows\\myfile.txt.old.

The rename() function should be used to move ordinary files, and
not files uploaded through a form. This is because there is a special
function, called move_uploaded_file(), which checks to make sure
the file has indeed been uploaded before moving it. This stops peo-
ple trying to hack into your server by making private files visible.
You can perform this check yourself, if you like, by calling the is_

uploaded_file() function.

Copying Files with copy()

Like rename(), copy() also takes two parameters: the filename you wish to copy
from and the filename you wish to copy to. The difference between rename() and
copy() is that calling rename() results in the file being in only one place, the desti-
nation, whereas copy() leaves the file in the source location and places a new
copy of the file into the destination.

$filename2 = $filename . '.old';
$result = copy($filename, $filename2);
if ($result) {
 print "$filename has been copied to $filename2.\n";
} else {

202 | Chapter 13: Files

 print "Error: couldn't copy $filename to $filename2!\n";
}

The result of that script is that there will be a file $filename and also a $filename.
old, e.g., c:\\windows\\myfile.txt and c:\\windows\\myfile.txt.old.

This function will not copy empty (zero-length) files—to do that,
you need to use the function touch().

Deleting Files with unlink()

To delete files, pass a filename string as the only parameter to unlink(). This
function only deals only with files—to delete directories, you need rmdir().

if (unlink($filename)) {
 print "Deleted $filename!\n";
} else {
 print "Delete of $filename failed!\n";
}

If you have a file opened with fopen(), you need to fclose() it
before you call unlink().

Other File Functions
There are three functions that allow you to work more intimately with the contents
of a file: rewind(), fseek(), and fwrite(). We already looked at fwrite(), but the
other two functions are new. The first, rewind(), is a helpful function that moves
the file pointer for a specified file handle (parameter one) back to the beginning.
That is, if you call rewind($handle), the file pointer of $handle gets reset to the
beginning. This allows you to reread a file or write over whatever you have already
written.

The second, fseek(), allows you to move a file handle’s pointer to an arbitrary
position, specified by parameter two, with parameter one being the file handle to
work with. If you do not specify a third parameter, fseek() sets the file pointer to
the start of the file, meaning that passing 23 will move to the 24th byte of the file
(files start from byte 0, remember). For the third parameter, you can either pass
SEEK_SET, the default, which means “from the beginning of the file,” SEEK_CUR,
which means “relative to the current location,” or SEEK_END, which means “from
the end of the file.” For example:

$handle = fopen($filename, "w+");
fwrite($handle, "Mnnkyys\n");
rewind($handle);
fseek($handle, 1);
fwrite($handle, "o");
fseek($handle, 2, SEEK_CUR);
fwrite($handle, "e");
fclose($handle);

Retrieving File Time Information | 203

Files

The first byte of a file is byte 0, and you count upward from there—
the second byte is at index 1, the third at index 2, etc.

To begin with, the string “Mnnkyys” is written to $handle, but rewind() is then
called to move the file pointer back to the beginning of the file (the letter “M”).
The fseek() function is then called, with 1 as the second parameter, to move the
file pointer to offset 1 in the file, which is currently the first of two letter “n”s. The
fwrite() function is called again, writing an “o”—this will replace the current
letter “n” at that offset with an “o”. Next, fseek() is called once more, passing in
2 and SEEK_CUR, which means “Move to the byte 2 ahead of the current byte,”
which happens to be the first of two letter “y”s. Then fwrite() is called for the
last time, replacing that “y” with an “e”, and finally the file is closed.

Checking Whether a File Exists
The act of checking whether a file exists is one of the most basic file-related tasks
you’ll want to do, and file_exists() makes it as easy as it should be. Specify the
filename to check as the only parameter, and it returns true if the file exists and
false otherwise. For example:

if (file_exists("snapshot1.png")) {
 print "Snapshot1.png exists!\n";
} else {
 print "Snapshot1.png does not exist!\n";
}

The result of file_exists() is cached, which means you first need
to call the clearstatcache() function if you want to be absolutely
sure a file exists.

Retrieving File Time Information
Most filesystems store the time that each file was last accessed and last modified,
often referred to as “atime” for the last access time and “mtime” for the last modi-
fication time. These are accessible through the PHP functions fileatime() and
filemtime(). These return a Unix timestamp for the time, which you then need to
convert using a call to date(), like this:

$contacts = "contacts.txt";
$atime = fileatime($contacts);
$mtime = filemtime($contacts);

$atime_str = date("F jS Y H:i:s", $atime);
$mtime_str = date("F jS Y H:i:s", $mtime);
// eg June 8th 2005 16:04:15

print "File last accessed: $atime_str\n";
print "File last modified: $mtime_str\n";

204 | Chapter 13: Files

Note that some people disable “atime” on their filesystem as a performance opti-
mization, making this data potentially unreliable. In this situation, you will still
get a date and time returned for the “atime”; it is just likely to be out of date.

Dissecting Filename Information
The pathinfo() function takes a filename and returns the same filename broken
into various components. It takes a filename as its only parameter and returns an
array with three elements: dirname, basename, and extension. Dirname contains
the name of the directory the file is in (e.g., c:\windows or /var/www/public_html),
basename contains the base filename (e.g., index.html or somefile.txt), and exten-
sion contains the file extension, if any (e.g., html or txt).

You can see this information yourself by running this script:

$fileinfo = pathinfo($filename);
var_dump($fileinfo);

If $filename were set to /home/paul/sandbox/php/foo.txt, this would be the output:

array(3) {
 ["dirname"]=>
 string(22) "/home/paul/sandbox/php"
 ["basename"]=>
 string(7) "foo.txt"
 ["extension"]=>
 string(3) "txt"
}

In earlier versions of PHP, pathinfo() had problems handling
directories that had a period (.) in the name, e.g., /home/paul/foo.
bar/baz.txt. This is no longer the case in PHP 5, so pathinfo() is
safe to use again.

If all you want to do is get the filename part of a path, you can use the basename()
function. This takes a path as its first parameter and, optionally, an extension as
its second parameter. The return value from the function is the name of the file
without the directory information. If the filename has the same extension as the
one you specified in parameter two, the extension is taken off also.

For example:

$filename = basename("/home/paul/somefile.txt");
$filename = basename("/home/paul/somefile.txt", ".php");
$filename = basename("/home/paul/somefile.txt", ".txt");

The first line sets $filename to somefile.txt, the second also sets it to somefile.txt
because the filename does not have the extension .php, and the last line sets it to
somefile.

Handling File Uploads | 205

Files

Handling File Uploads
The basis for file uploads lies in a special variety of HTML input element, file,
which brings up a file selection dialog in most browsers that allows your visitor to
select a file for uploading. You can include this element in a HTML form just like
you would any other element—web browsers render it as a text box and a “select”
(or “browse”) button. When your form is submitted, it will automatically send
with it the file.

Here is an example HTML form that allows users to select a file for uploading to
your server. Note that we specify enctype in our form in order that our file be
transmitted properly, and that the action property of the form is set to point to
upload2.php, which we will look at in a moment.

<form enctype="multipart/form-data" method="post" action="upload2.php">
 Send this file: <input name="userfile" type="file" />

 <input type="submit" value="Send File" />
</form>

We give the new file element the name userfile. Now, here is the accompanying
PHP script, upload2.php, which prints out a little information about the file just
uploaded from upload1.php:

$filename = $_FILES['userfile']['name'];
$filesize = $_FILES['userfile']['size'];
print "Received $filename - its size is $filesize";

If there are file uploads, PHP puts information in the superglobal $_FILES for each
one in the form of an array. If you run var_dump() on $_FILES, here is how it will
look:

array(1) {
 ["fileone"]=> array(5) {
 ["name"]=> string(14) "Greenstone.bmp"
 ["type"]=> string(9) "image/bmp"
 ["tmp_name"]=> string(24) "C:\WINDOWS\TEMP\php6.tmp"
 ["error"]=> int(0)
 ["size"]=> int(26582)
 }
}

The name element contains the original filename given by the user, type is the
MIME file type (if known), tmp_name is the name the file has on your server (this
might be something like /tmp/tmp000)—whether there were any errors or not—
and size is the size of the file sent in bytes.

If you find files over a certain size aren’t being uploaded properly, you may need
to increase the upload_max_filesize setting in your php.ini file.

You can move uploaded files using the aptly named move_uploaded_file() func-
tion. This takes two filenames as its parameters, and returns false if the file you
tried to move was either not sent by HTTP upload (perhaps your user was trying
to fool your script into touching /etc/passwd?) or if it couldn’t be moved (perhaps
owing to permissions problems). In the event that the desination file exists
already, it will be overwritten.

206 | Chapter 13: Files

The first parameter should be the name of the uploaded file you wish to work
with. This corresponds to $_FILES['userfile']['tmp_name'] if you are using
userfile as the form element in your upload HTML page. The second parameter
is the name of the filename you want the uploaded file to be moved to. If all goes
well, PHP returns true, and the file will be where you expect it. Here is the whole
operation in action:

if (move_uploaded_file($_FILES['userfile']['tmp_name'], "/place/for/file"))
{
 print "Received {$_FILES['userfile']['name']} -
 its size is {$_FILES['userfile']['size']}";
} else {
 print "Upload failed!";
}

Note that you will need to edit /place/for/file to somewhere PHP has permission to
copy files. As you can see, a call to move_uploaded_file() checks security and does
all the copying work for you.

Checking Uploaded Files

The move_uploaded_file() function is the same as the rename() function, with the
difference that it only succeeds if the file was just uploaded by the PHP script.
This adds extra security to your script by stopping people trying to move secure
data, such as password files, into a public directory.

If you want to perform this check yourself, use the is_uploaded_file() function.
This takes a filename as its sole parameter, and returns true if the file was
uploaded by the script and false if not. Here is a simple example:

if (is_uploaded_file($somefile)) {
 copy($somefile, "/var/www/userfiles/$somefile");
}

If you just want to check whether a file was uploaded before you move it, move_
uploaded_file() is better.

Locking Files with flock()
The fopen() function, when called on a file, does not stop that same file from
being opened by another script. This means you might find one script reading
from a file as another is writing or worse, two scripts writing to the same file
simultaneously.

The solution to this problem is to use file locking, which is implemented in PHP
using the flock() function. When you lock a file, you have the option of marking
it a read-only lock, thereby sharing access to the file with other processes, or an
exclusive lock, allowing you to make changes to the file. On Unix, flock() is
advisory, meaning that the OS is free to ignore it. Windows forces the use of
flock(), whether or not you ask for it.

The flock() function takes a file handle as its first parameter and a lock opera-
tion as its second parameter. File handles you know already, and the operations

Locking Files with flock() | 207

Files

are simple: LOCK_SH requests a shared lock, LOCK_EX requests an exclusive lock, and
LOCK_UN releases a lock. Calling flock() will return true if the file lock was
retrieved successfully, or false if it failed. So, for example, flock() could be used
like this:

$fp = fopen($filename,"w"); // open it for WRITING ("w")
if (flock($fp, LOCK_EX)) {
 // do your file writes here
 flock($fp, LOCK_UN); // unlock the file
} else {
 // flock() returned false, no lock obtained
 print "Could not lock $filename!\n";
}

File locking requires a fairly modern file system, which does not include the orig-
inal version of Microsoft’s FAT file system, commonly used on Windows 95 and
98. NTFS, as well as FAT32, are both fine. Furthermore, the Network File System
(NFS), commonly used to provide file sharing across Unix boxes, is not suitable
for use with flock().

The file locking mechanism in PHP automatically makes processes queue up for
their locks by default. For example, save this next script as flock.php:

$fp = fopen("foo.txt", "w");
if (flock($fp, LOCK_EX)) {
 print "Got lock!\n";
 sleep(10);
 flock($fp, LOCK_UN);
}

That script attempts to lock the file foo.txt, so you must create that file before
running the script. The script locks it with LOCK_EX, which means no other
program can lock that file. Once the lock is obtained, the script sleeps for 10
seconds, then unlocks the file and quits. If a lock cannot be obtained because
another application has a lock, the script waits at the flock() call for the lock to
be released, then locks it itself and continues.

To test this out, open up two command prompts and run the script twice. The
first script run will get a lock immediately and print "Got lock!", then sleep for 10
seconds. If while the first script is sleeping you launch the second script, it will
wait (“block”) on the flock() call and wait for the first script to finish. When the
first script finishes, the second script will succeed in getting its lock, print out "Got
lock!", then sleep for 10 more seconds until it finally terminates.

Sometimes it is not desirable to have your scripts wait for a file to become
unlocked; in this situation, you can add an extra option to the second parameter
using the bitwise OR operator, |. If you pass in LOCK_NB ORed with your normal
second parameter, PHP will not block when it requests a file lock. This means
that if the file lock is not available, flock() will return immediately with false
rather than wait for a lock to become available.

Here is how that looks in code:

$fp = fopen("foo.txt", "w");
if (flock($fp, LOCK_EX | LOCK_NB)) {

208 | Chapter 13: Files

 echo "Got lock!\n";
 sleep(10);
 flock($fp, LOCK_UN);
} else {
 print "Could not get lock!\n";
}

This time, the first script will get the lock and print "Got lock!", whereas the
second will fail to get the lock, return immediately, and print "Could not get
lock!".

If you intend to have several users accessing the same file frequently, locking as
shown above is not sufficient to guarantee data consistency. The problem is that
between the call to fopen() and flock(), there is a race condition: it is possible
that another user may get in and change our file before we have locked it. Of
course, we can’t lock a file without opening it first, so the solution is to use a lock
file—often called a semaphore file. To write to our real file, we must first success-
fully lock the matching semaphore file; without that lock, we ought not to write
to the real file. A semaphore file is just a normal file like any other—if you want to
get permission to lock myfile.txt, create an empty semaphore file called myfile.txt.
sem and have people lock that first.

Reading File Permissions and Status
If you’re sick of getting errors when you try to work with a file for which you
have no permissions, there is a solution: is_readable() and its cousin functions,
is_writeable(), is_executable(), is_file(), and is_dir(). Each takes a string
as its only parameter and returns true or false. The functions work as you might
expect: is_readable() will return true if the string parameter is readable, is_
dir() will return false if the parameter is not a directory, etc.

For example, to check whether a file is readable:

$filename = 'c:\boot.ini'; // Windows
$filename = '/etc/passwd'; // Unix

if (is_readable($filename)) {
 print file_get_contents($filename);
} else {
 print 'File not readable!';
}

Or to check whether a file is writable:

if (is_file($filename) && is_writeable($filename)) {
 $handle = fopen($filename, "w+");
 // ...[snip]...
}

The is_readable() function and friends have their results cached for speed
purposes. If you call is_file() on a filename several times in a row, PHP will
calculate it the first time around then use the same value again and again in the
future. If you want to clear this cached data so that PHP will have to check is_
file() properly, you need to use the clearstatcache() function.

Changing File Permissions and Ownership | 209

Files

Calling clearstatcache() wipes PHP’s file information cache, forcing it to recal-
culate is_file(), is_readable(), and such afresh. This function is, therefore,
particularly useful if you are checking a file several times in a script and are aware
that that file might change status during execution. It takes no parameters and
returns no value.

The is_readable(), is_writeable(), is_executable(), is_file(),
and is_dir() functions will all fail to work for remote files, as the
file/directory to be examined must be local to the web server so that
it can check it properly.

To read the owner of a file, use the fileowner() function, which takes a filename
as its only parameter and returns the ID of the file’s owner, like this:

$owner = fileowner("/etc/passwd");
if ($owner != 0) {
 print "Warning: /etc/passwd isn't owned by root!";
}

Changing File Permissions and Ownership
PHP’s chmod() function is vaguely similar to the Unix chmod command, but you
must always specify the permissions using octal values; you can specify just one
filename; and you specify that filename before the permission setting. As you are
using octal values, you need to precede the security level with a 0. This function
takes two parameters: the file to set and the value to set it to.

The chmod() function is available only to those using PHP on a Unix-like oper-
ating system. This is because Windows has a vastly different security system than
Unix, where privileges are handed out by user and user group. Whereas Unix
users can say “Read only for user, read-write for group,” Windows users on
Windows 95, 98, and ME can only say “Read only” or “Not read only.” PHP does
not support the fine-grained Windows NT/2000/XP/2003 access model.

Here are two examples:

chmod("/var/www/myfile.txt", 0777);
chmod("/var/www/myfile.txt", 0755);

Line one sets the file to readable, writable, and executable by all users, whereas
line two sets the file to readable, writable, and executable by owner, and just read-
able and writable by everyone else.

The chown() function is quite rarely used in PHP, as you must have administrator
privileges to change the ownership of a file. However, on the command line
chown() is sometimes helpful, and it attempts to change the file passed in param-
eter one so that it is owned by the user specified in parameter two. On success,
true is returned; otherwise, false. The second parameter can either be a user-
name or a user ID number. For example:

if (chown("myfile.txt", "sally")) {
 print "File owner changed.\n";
} else {

210 | Chapter 13: Files

 print "File ownership change failed!\n";
}

Note that both chmod() and chown() only work on local filesystems.

Working with Links
Unix links come in two types: hard links, which are files, and symlinks (also
known as soft links), which are pointers to other files. The difference is crucial: if
you delete a hard link, you delete the file (unless there are other hard links
pointing to the same file), whereas if you delete a symlink, the original file remains
untouched.

You can create hard links and symlinks in PHP using the link() and symlink()
functions, both of which take a target and a link name as their only two parame-
ters and return true if they were successful or false otherwise. For example:

$result = link("/home/paul/myfile.txt", "/home/andrew/myfile.txt");
if (!$result) {
 echo "Hard link could not be created!\n";
} else {
 $result = symlink("/home/paul/myfile.txt", "/home/andrew/myfile.
txt");
 if (!$result) {
 echo "Symlink could not be created either!\n";
 }
}

PHP also gives you the readlink() function that takes a link name as its only
parameter and returns the target that the link points to. For example:

$target = readlink("/home/andrew/myfile.txt");
print $target;
// prints /home/paul/myfile.txt

Working with Directories
Now that you have mastered working with individual files, it is time to take a look
at the larger file system—specifically, how PHP handles directories. Let’s start
with something simple—listing the contents of a directory. There are three func-
tions we need to perform this task: opendir(), readdir(), and closedir(). The
first of the three takes one parameter, which is the directory you wish to access. If
it opens the directory successfully, it returns a handle to the directory, which you
should store away somewhere for later use.

The readdir() function takes one parameter, which is the handle that opendir()
returned. Each time you call readdir() on a directory handle, it returns the file-
name of the next file in the directory in the order in which it is stored by the file
system. Once it reaches the end of the directory, it will return false. Here is a
complete example of how to list the contents of a directory:

$handle = opendir('/path/to/directory')

if ($handle) {

Working with Directories | 211

Files

 while (false != = ($file = readdir($handle))) {
 print "$file
\n";
 }
 closedir($handle);
}

At first glance, the while statement might look complicated—!== is the PHP oper-
ator for “not equal and not the same type as.” The reason we do it this way as
opposed to just while ($file = readdir($handle)) is because it is sometimes
possible for the name of a directory entry to evaluate to false, which would end
our loop prematurely. In that example, closedir() takes our directory handle as
its sole parameter, and it just cleans up after opendir().

Creating Directories

Making a new directory in PHP is done using the mkdir() function, which takes a
directory name as its first parameter, a permission mode as its second, and true or
false as its third, depending on whether you also want to create parent directo-
ries (defaults to false). The function returns true if the directory was created
successfully or false otherwise. For example:

mkdir("/path/to/my/directory", 0777);
// if /path/to/my exists, this should return true if PHP has the right
permissions

mkdir("/path/to/my/directory", 0777, true);
// will create /path, /path/to, and /path/to/my if needed and allowed

Deleting Directories

PHP has the function rmdir() that takes a directory name as its only parameter
and will delete the specified directory. However, there is a minor catch—the
directory must be empty; otherwise, the call will fail. There is no functionality in
PHP to allow you to delete non-empty directories, which means you need to
resort to more cunning methods—many people use complex scripts to go through
each directory, deleting files as they go. When it is empty, they use rmdir().

I would not recommend that—a far easier method is simply to execute the local
directory-deleting program, e.g., deltree on Windows, or rm -rf on Unix.
However, blindly deleting whole directories using scripts is not recommended—if
you are sure you want a directory and all its subdirectories gone, check over it one
last time and then delete it by hand.

Reading and Changing the Working Directory

When working from the command line, it is a common requirement to be able to
change the current working directory—the directory that your PHP script is oper-
ating in. To find the current working directory, use getcwd(). You can then
change the working directory using chdir(), like this:

$original_dir = getcwd();
// something like /home/paul
chdir("/etc");

212 | Chapter 13: Files

// now we're in /etc
$passwd = fopen("passwd", "r");
// open the /etc/passwd file
fclose($passwd);
chdir($original_dir);

Both getcwd() and chdir() return true on success or false on failure.

One Last Directory Function

The scandir() function is a neat function that takes a minimum of one parameter
with an optional second. Parameter one is the path of a directory you want to
work with—scandir() returns an array of all files and directories in the directory
you specify here. Parameter two, if included and set to 1, will sort the array
returned reverse-alphabetically—if it is not set, the array is returned sorted
alphabetically.

This next script prints out a list of all the files and directories in the current direc-
tory, with reverse sorting:

$files = scandir(".", 1);
var_dump($files);

Using scandir() is a quick alternative to calling readdir() repeatedly, and is
particularly helpful when you use the second parameter.

Remote Files
The fopen() function allows you to manipulate any files for which you have
permission. However, its usefulness is only just beginning, because you can
specify remote files as well as local files—even files stored on HTTP and FTP
servers. PHP automatically opens a HTTP/FTP connection for you, returning the
file handle as usual. For all intents and purposes, a file handle returned from a
remote file is good for all the same uses as a local file handle.

This example displays the Slashdot web site through your browser:

$slash = fopen("http://www.slashdot.org", "r");
$site = fread($slash, 200000);
fclose($slash);
print $site;

The r mode is specified because web servers do not allow writing through HTTP
(without WebDAV), and some will even deny access for reading if you are an
anonymous visitor, as PHP normally is.

If you are looking to find a quick way to execute an external script,
try using fopen(). For example, to call foo.php on example.com, use
fopen("www.example.com/foo.php", "r"). You need not bother read-
ing in the results—simply opening the connection is enough to
make the server on example.com process the contents of foo.php.

Parsing a Configuration File | 213

Files

File Checksums
PHP’s sha1_file() function creates a checksum hash value using the SHA1 algo-
rithm. To use it, pass the filename and capture the return value, like this:

$sha1 = sha1_file($filename);

For MD5 hashing, you can use the function md5_file(). It works in exactly the
same way as sha1_file(), except that it returns the MD5 hash as opposed to the
SHA1 hash.

Parsing a Configuration File
If you have created a complex application in PHP, you will want to save your data
so that you have a persistent store for application configuration options. The
Windows .ini file format is a very simple way to store data in a structured manner,
and looks like this:

; this is a comment

[Main]
LastRun = 1076968318
User = "Paul"

[Save]
SavePath = /home/paul
AutoSave = yes
SaveType = BINARY

Lines that start with a semicolon (;) and blank lines are ignored. Lines that
contain a string surrounded by square brackets, such as [Main] above, are section
titles. Sections are just there for organizational reasons, as you will see shortly—
above, you can see that the LastRun and User keys are under the Main section, and
the SavePath, AutoSave, and SaveType keys are under the Save section.

Each key in the .ini file has a value that follows the equals sign, and the value can
either be a string (such as the value for User), a constant (such as the value for
AutoSave and SaveType), or a number (such as the value for LastRun). You can use
strings without quotes if you want to, as shown in the SavePath value—the quotes
are just syntactic sugar that helps differentiate between a string and a constant.
However, if your string contains nonalphanumeric characters such as—, the
quotes are mandatory to avoid confusion.

Because you can specify strings without quotes, if they are fairly simple strings,
the value for SaveType is actually interpreted as a string and sent back as such to
PHP. However, PHP’s .ini file reader, parse_ini_file(), will compare the value of
each key against the list of constants in the system and replace any constants it
finds with the value of the constant. You can override this by putting quotes
around the string—this is helpful if you don’t want "yes" to be converted to 1 by
PHP. While this might seem irrelevant, consider that the country code for Norway
is “NO” which, if not surrounded by quotes, will be interpreted by PHP as the
constant “no” and set to false.

214 | Chapter 13: Files

By default, parse_ini_file() ignores section headers and returns each .ini key and
its value as an associative array. However, if you pass true as the second param-
eter, it makes each section header an element in the return value, and the values in
that section as subelements in that array.

We can use parse_ini_file() to parse the previous .ini file like this:

define("BINARY", "Save was binary");
$inifile = parse_ini_file("my.ini");
var_dump($inifile);
$inifile = parse_ini_file("my.ini", true);
var_dump($inifile);

As you can see, it parses the file twice: once ignoring section headers, and once
not. Here is the output:

array(5) {
 ["LastRun"]=>
 string(10) "1076968318"
 ["User"]=>
 string(4) "Paul"
 ["SavePath"]=>
 string(10) "/home/paul"
 ["AutoSave"]=>
 string(1) "1"
 ["SaveType"]=>
 string(15) "Save was binary"
}

array(2) {
 ["Main"]=>
 array(2) {
 ["LastRun"]=>
 string(10) "1076968318"
 ["User"]=>
 string(4) "Paul"
 }

 ["Save"]=>
 array(3) {
 ["SavePath"]=>
 string(10) "/home/paul"
 ["AutoSave"]=>
 string(1) "1"
 ["SaveType"]=>
 string(15) "Save was binary"
 }
}

In both calls to var_dump(), BINARY gets recognized as a constant and replaced by
its value, “Save was binary”. Also notice that /home/paul was recognized as a
string, despite it not being enclosed in quotation marks.

Parsing a Configuration File | 215

Files

As you can see, the first printout has all the .ini values in one array, whereas the
second has a top-level array containing the section headers, and each section
header element is itself an array containing the section values.

There are several reserved words for .ini file keys that you cannot
use, such as “yes,” “no,” and “null.”

Using .ini files for configuration data is easy, but remember that storing sensitive
data in there may cause security headaches. Many people name .ini files with the
.php extension so that their web server parses it as PHP. They then add a line to
the top, like this:

; <?php exit; ?>

This is because the semicolon is an .ini file comment, so parse_ini_file() will
ignore it. However, it is not a comment in PHP, so PHP will call the exit() func-
tion and terminate the script. As a result, it is not possible to call the script
directly through a browser—only through parse_ini_file().

While this idea has merit, it is simply asking for trouble. What if a new version of
Apache or PHP is installed and, temporarily, stops the .php extension from
working? Yes, it is an ulikely scenario, but why bother taking the risk? Your best
bet is just to place the .ini file outside of your public HTML folder so that only
local users can access it.

216

14
Databases

This chapter covers how to interact with your database manager using PHP, and
how to format that data for output. The database systems used are MySQL 4,
PEAR::DB, and SQLite.

Using MySQL with PHP
Working with MySQL through PHP is easy, as long as you have a working knowl-
edge of SQL. This book does not attempt to teach SQL; if you are new to it, you
should stop reading now, purchase a book on SQL, and then return after having
read it.

Connecting to a MySQL Database

The mysql_connect() and mysql_select_db() functions connect to a database,
then select a working database for use in the connection. The former usually takes
three arguments, which are the IP address of a MySQL server to connect to, the
username you wish to log on as, and the password for that username, like this:

mysql_connect("db.hudzilla.org", "username", "password");

Future examples in this book will always use the username “phpuser” and the
password “alm65z”; choose something more secure in your own scripts.

By default, the MySQL queries you run in PHP will be executed on the most
recent connection you open in your script. Each script needs to open its own data-
base connection through which to execute its database queries; although, by using
a persistent connection, they can be made to share connections. This is discussed
later in this chapter.

The first parameter in mysql_connect() can either be an IP address or a hostname.
Most operating systems also allow you to use “localhost” as the local computer
and have MySQL connect directly through a local socket. Alternatively, you can
specify 127.0.0.1, which is also the local computer, and have MySQL connect

Using MySQL with PHP | 217

D
atab

ases

through TCP/IP, which is a little slower. To connect to a remote server, just enter
either the hostname (e.g., www.microsoft.com) or the IP address (e.g., 212.113.
192.101) as the first parameter, and your data will be sent transparently over the
Internet.

Once you have a connection open, call mysql_select_db()—it takes just one argu-
ment, which is the name of the database you wish to use. Once you select a
database, all queries you run are on tables in that database until you select
another database, so it is like the USE statement in MySQL. Examples in this
book will always use the database “phpdb”—again, you should change this for
your own purposes, for security reasons.

Like mysql_connect(), you generally use this function only once per script. Once
both are done, you have a connection to your database with a database selected—
you are all set to perform queries.

$connection = mysql_connect("localhost", "phpuser", "alm65z");
if ($connection) {
 $db = mysql_select_db("phpdb");
 if (!$db) print "Failed to select 'phpdb'.\n";
} else {
 print "Failed to connect to database.\n";
}

Once you are connected, you can use the function mysql_ping() to
check whether the server is alive. It automatically uses the most
recently opened database connection—so you need not pass it any
parameters—and returns true if the server was contacted or false if
the connection appears to be lost.

The last two parameters aren’t used all that often, but are worth knowing about.
Calling mysql_connect() for the first time will open a new connection to the
MySQL server, but calling it again in the same script, with the same arguments as
the first call, will just return the previous connection. If you specify parameter
four as true (or 1, as is most common), PHP will always open a new connection
each time you call mysql_connect().

The last parameter allows you to specify additional connection options, of which
the only really useful one is MYSQL_CLIENT_COMPRESS, which tells the server that it
may use data compression to save network transfer time. This is a smart move if
your web server and database server are on different machines.

Querying and Formatting

The majority of your interaction with MySQL in PHP will be done using the
mysql_query() function, which takes the SQL query you want to perform as its
parameter. It will then perform that query and return a special resource known as
a MySQL result index, which contains a pointer to all the rows that matched your
query. “Result index” is nothing more than a fancy term for a MySQL resource
type, but you will see it used in MySQL error messages.

This result index is the return value of mysql_query(), and you should save it in a
variable for later use. Whenever you want to extract rows from the results, count

218 | Chapter 14: Databases

the number of rows, or perform other operations on the results from the query,
you need to use this value.

One other helpful function is mysql_num_rows(), which takes a result index as its
parameter and returns the number of rows inside that result—this is the number
of rows that matched the query you sent in mysql_query(). With the two together,
we can write a basic database-enabled script:

mysql_connect("localhost", "phpuser", "alm65z");
mysql_select_db("phpdb");
$result = mysql_query("SELECT * FROM usertable");
$numrows = mysql_num_rows($result);
print "There are $numrows people in usertable\n";

That captures the return value of mysql_query() inside $result, then uses it on the
very next line. This MySQL result index is used often, so it is important to keep
track of it. The exception to this is when you are executing a write query in
MySQL, where you don’t want to know the result.

The mysql_query() function will return false if the query is syntactically invalid
(if you have used a bad query). This means that very often, it is helpful to check
the return value even if you are writing data: if the data was not written success-
fully, mysql_query() will tell you so with the return value. Similarly, an empty
result will return true, which may mean you executed a dumb query by acci-
dent—something like SELECT * FROM people WHERE Age > 500 will return no rows
(and hence, true) unless you’re programming a fantasy adventure!

Disconnecting from a MySQL Database

It is not necessary to explicitly disconnect from your MySQL server or to free the
space allocated to your SQL results by hand. However, if you have a popular
script that takes more than five seconds to execute, you should do all you can to
conserve resources. Therefore, it is smart to explicitly free up your MySQL
resources rather than wait to let PHP do it on your behalf.

There are two functions for this purpose: mysql_free_result() and mysql_close().
The first is used to deallocate memory that was used to store the query results
returned by mysql_query(). If you have big queries being returned, you should be
calling mysql_free_result() if there is much time between you finishing with the
data and your script finishing execution. Here is how it works:

$result = mysql_query("SELECT * FROM really_big_table;");
// ...[snip]...
mysql_free_result($result);

The purpose of mysql_close() is to save computer resources, but another impor-
tant reason for using it is that there is a limited number of connections that a
MySQL server can accept. If you have several clients holding connections open for
no reason, then the server may well need to turn away other clients who are
waiting to connect to the database. The actual number of connections a database
server can accept is set by the database administrator, but if you plan to have no
more than 100, you should be OK. As with mysql_free_result(), it is good to call
mysql_close() if you think there will be some time between your last database use
and your script ending.

Using MySQL with PHP | 219

D
atab

ases

Using mysql_close() is simple: you do not need to supply any parameters to it, as
it will automatically close the last-opened MySQL connection. Of course, if you
captured the return value from mysql_connect(), you can supply that to mysql_
close() and it will close a specific connection—handy if you have multiple
MySQL connections open for some reason.

Here’s a simple example of mysql_close() in action:

mysql_connect("localhost", "phpuser", "alm65z");
mysql_select_db("phpdb");
// ...[snip]...
mysql_close();

In the example above, the call to mysql_close() is not needed—the script ends
immediately after, and any open MySQL connections that aren’t permanent
connections will be closed automatically.

Reading in Data

To read data from a MySQL result index, use the mysql_fetch_assoc() function.
This takes one row from a MySQL result and converts it to an associative array,
with each field name as a key and the matching field value as the value. The func-
tion increments its position each time it is called, so calling it for the first time
reads the first row, the second time the second row, etc., until you run out of
rows—in which case, it returns false. In this respect, it works like the each()
array function we looked at previously.

To extend our previous script to output nicely formatted data, we would need to
make it use mysql_fetch_assoc() to go through each row returned by the query,
printing out all fields in there:

mysql_connect("localhost", "phpuser", "alm65z");
mysql_select_db("phpdb");
$result = mysql_query("SELECT * FROM usertable");

if ($result && mysql_num_rows($result)) {
 $numrows = mysql_num_rows($result);
 $rowcount = 1;
 print "There are $numrows people in usertable:

";

 while ($row = mysql_fetch_assoc($result)) {
 print "Row $rowcount
";

 foreach($row as $var => $val) {
 print "$var: $val
";
 }

 print "
";
 ++$rowcount;
 }
}

Figure 14-1 shows how that script looks when viewed through a web browser.

220 | Chapter 14: Databases

That script connects to the local MySQL database server and selects the phpdb
database for use. It then runs a basic query on our usertable table and stores the
result index in $result. The next line checks that $result is true and that there is
at least one row in there—if so, it stores the number of rows in $numrows, sets the
$rowcount variable to 1, then outputs the number of rows it found.

The next section is the new part: $row is set to the return value of mysql_fetch_
assoc(), which means it will be set to an array containing the data from the next
row in the result. If mysql_fetch_assoc() has no more rows to return, it sends
back false and ends the while loop. Each time we have a row to read, $rowcount is
outputted and then the script goes through the array stored in $row (sent back
from mysql_fetch_assoc()), outputting each key and its value.

Finally, $rowcount is incremented, and the while loop goes around again.

As an alternative to mysql_fetch_assoc(), many programmers use
mysql_fetch_array(). The difference between the two is that, by
default, mysql_fetch_array() returns an array of the row data with
numerical field indexes (i.e., 0, 1, 2, 3) as well as string field indexes
(i.e., Name, Age, etc.). Unless you need both indexes, stick with
mysql_fetch_assoc().

Mixing in PHP Variables

Because the parameter for mysql_query() is a string, you can use variables as you
would in any other string. For example:

$result = mysql_query("SELECT ID FROM webpages WHERE Title =
'$SearchCriteria';");
$numhits = mysql_num_rows($result);
print "Your search for $SearchCriteria yielded $numhits results";

Figure 14-1. The contents of our table printed out through PHP

Using MySQL with PHP | 221

D
atab

ases

You can use PHP variables wherever you want inside SQL queries, as long as you
end up with a valid SQL query; otherwise, mysql_query() will return false. For
example:

function simplequery($table, $field, $needle, $haystack) {
 $result = mysql_query("SELECT $field FROM $table WHERE
 $haystack = $needle LIMIT 1;");

 if ($result) {
 if (mysql_num_rows($result)) {
 $row = mysql_fetch_assoc($result);
 return $row[$field];
 }
 } else {
 print "Error in query
";
 }
}

That function allows you to pass in the name of the table you want to read, the
field you are interested in, and the criteria it should match. Then it executes the
appropriate query and sends the requested value back as its return value. This
function can, therefore, be used like this:

$firstname = simplequery("usertable", "firstname", "ID", $UserID);

The advantage to this is that you can program all sorts of error checking into
simplequery() without making your scripts any more cluttered to read.

Although mixing PHP variables into your MySQL calls is powerful, you must be
careful not to allow your users to abuse your scripts to hack into your systems.
The first defense in this fight is the function mysql_escape_string(), which is
designed to make PHP variables more safe when used inside MySQL queries. To
use this function, pass in the string that you wish to make safer, and it will return
the new value. The function works by escaping all potentially dangerous charac-
ters in the string you pass in, including single quotes—be wary about using this
function in combination with addslashes().

Reading Auto-Incrementing Values

When creating your MySQL tables, you can specify fields as INT AUTO_INCREMENT
PRIMARY KEY, which means that MySQL will automatically assign increasingly
higher integers to the field as INSERT queries are sent.

There are two ways to read the last-used auto-increment value: using a query or
calling a function. The query option relies on the special MAX() function of
MySQL. As MySQL will assign increasingly higher numbers to the ID field, the
way to find the most recently assigned number is to run code like this:

mysql_query("SELECT MAX(ID) AS ID FROM dogbreeds;");

The smart alternative is to use the function mysql_insert_id(), which will return
the last ID auto-inserted by the current connection. There is a subtle difference
there, and one that makes it important enough for you to learn both methods of
retrieving auto-incrementing values. The difference lies in the fact that mysql_
insert_id() returns the last ID number that MySQL issued for this connection,

222 | Chapter 14: Databases

regardless of what other connections are doing. Furthermore, mysql_insert_id()
only stores one value—the last ID number that MySQL issued for this connection
on any table. On the other hand, using the SQL query allows you to check the
very latest ID that has been inserted, even if you have not run any queries or if it
has been 20 minutes since your last query. Furthermore, you can use the query on
any table you like, which makes it even more useful.

Unbuffered Queries for Large Data Sets

Using mysql_query() for large queries has several serious disadvantages:

• PHP must wait while the entire query is executed and returned before it can
start processing.

• In order to return the whole result to PHP at once, all the data must be held
in RAM. Thus, if you have 100MB of data to return, the PHP variable to hold
it all will be 100MB.

The disadvantages of mysql_query() are the advantages of mysql_unbuffered_
query(), which also queries data through SQL:

• The PHP script can parse the results immediately, giving immediate feedback
to users.

• Only a few rows at a time need to be held in RAM.

One nice feature of mysql_unbuffered_query() is that, internally to PHP, it is
almost identical to mysql_query(). As a result, you can almost use them inter-
changeably inside your scripts. For example, this script works fine with either
mysql_query() or mysql_unbuffered_query():

<?php mysql_connect("localhost", "php", "alm65z");
 mysql_select_db("phpdb");
 $result = mysql_unbuffered_query("SELECT ID, Name FROM
conferences;");

 while ($row = mysql_fetch_assoc($result)) {
 extract($row, EXTR_PREFIX_ALL, "conf");
 print "$conf_Name\n";
 }
?>

Before you rush off to make all your queries unbuffered, be aware that there are
drawbacks to using mysql_unbuffered_query() that can make it no better than
mysql_query():

• You must read all rows from the return value, as MySQL will not allow you to
run fresh queries until you have done so. If you’re thinking of using this as a
quick way to find something and then stop processing the rows part of the
way through, you’re way off track—sorry!

• If you issue another query before you finish processing all the rows from the
previous query, PHP will issue a warning. SELECTs within SELECTs are not pos-
sible with unbuffered queries.

PEAR::DB | 223

D
atab

ases

• Functions such as mysql_num_rows() return only the number of rows read so
far. This will be 0 as soon as the query returns, but as you call mysql_fetch_
assoc(), it will increment until it has the correct number of rows at the end.

• Between the time the call to mysql_unbuffered_query() is issued and your
processing of the last row, the table remains locked by MySQL and cannot be
written to by other queries. If you plan to do time-consuming processing on
each row, this is not good.

If you’re not sure which of the two is best, use mysql_query().

PEAR::DB
PEAR::DB is an advanced, object-oriented database library that provides full data-
base abstraction—that is, you use the same code for all your databases. If you
want your code to be as portable as possible, PEAR::DB provides the best mix of
speed, power, and portability. However, if your scripts are only ever going to run
locally, there is no compelling reason to use PEAR::DB.

PEAR::DB works by abstracting not only the calls neccessary to work with the data-
bases (such as mysql_connect(), pgsql_query(), etc.), but also clashes with SQL
syntax, such as the LIMIT clause. In PHP 5.1, there’s a new extension called PHP
Data Objects (PDO) that abstracts only the functions, which is halfway between
PEAR::DB and using normal DB calls. PEAR::DB is likely to be updated to use PDO,
as it’s much more efficient.

This script below provides a good demonstration of how PEAR::DB works:

include_once('DB.php');

$conninfo = "mysql://username:password@localhost/phpdb";
$db = DB::connect($conninfo);

if (DB::isError($db)) {
 print $db->getMessage();
 exit;
}

$result = $db->query("SELECT * FROM people;");

while ($result->fetchInto($row, DB_FETCHMODE_ASSOC)) {
 extract($row);
 print "$Name: $NumVisits\n";
}

$result->free();
$db->disconnect();

PEAR::DB uses a URL-like connection string, often called a Data Source Name
(DSN), to define its connection. This is the same method as seen in JDBC, so it
should already be familiar to Java developers. The string can be broken down into
parts, as shown in Table 14-1.

224 | Chapter 14: Databases

If any part of your DSN contains characters that might be confused for separators
(such as :, @, or /), you should use rawurlencode() to %-escape them. For
example:

$username = "paul";
$password = "p|trp@tr";

$username = rawurlencode($username);
// does nothing; our username is safe

$password = rawurlencode($password);
// $password is now p%7Ctrp%40tr

$conninfo = "mysql://$username:$password@localhost/phpdb";

The connection type is the kind of server you are connecting to. You can choose
from the list shown in Table 14-2.

Once the DSN is prepared, you must pass it into a call to DB::connect() as its first
parameter. This will return a reference to the object you can use for querying.
PEAR::DB is object-oriented, which means you need to hang on to the return value
from DB::connect().

The DB::isError() function is a special function call that takes the value to check
as its parameter, and returns true if that value is one of PEAR::DB’s error types. In
our example, $db is passed in so we can check whether DB::connect() failed. On

Table 14-1. The different parts of a PEAR::DB connection string

mysql:// Connection type

Username Your username

Password Your password

@localhost The address of your server

/phpdb The database name to use

Table 14-2. Database providers for PEAR::DB

fbsql FrontBase

ibase InterBase

ifx Informix

msql Mini SQL

mssql Microsoft SQL Server

mysql MySQL

oci8 Oracle 7/8/8i

odbc ODBC (Open Database Connectivity)

pgsql PostgreSQL

sqlite SQLite

sybase SyBase

PEAR::DB | 225

D
atab

ases

the off chance that an error has occurred, it will be stored in the getMessage()
function of your database connection.

However, if things go well, you can start querying the system using the query()
function of our $db object. This takes the SQL query to perform as its only param-
eter, and returns another kind of object that contains the result information. To
cycle through the result information, a while loop is used, taking advantage of the
fetchInto() PEAR::DB function. This will return false if it cannot return any more
rows, and takes two parameters: where it should send the data it fetches, and how
it should store the data there. Using DB_FETCHMODE_ASSOC means that PEAR::DB will
set up $row to be an associative array of one row in the result set, recursively iter-
ating through the rows with each while loop.

At the end of the script, we call the free() and disconnect() functions to clean
up.

Quick PEAR::DB Calls

PEAR::DB has the getOne(), getRow(), and getCol() functions for making easy
queries, and each takes an SQL query to execute as its parameter. The first
executes the query and then returns the first row of the first column of that query,
the second returns all columns of the first row in the query, and the last returns
the first column of all rows in the query. The getOne() function returns just one
value, whereas getRow() and getCol() both return arrays of values.

Here is an example demonstrating each of these functions in action, using a table
of people:

include_once('DB.php');
$db = DB::connect("mysql://phpuser:alm65z@localhost/phpdb");

if (DB::isError($db)) {
 print $db->getMessage();
 exit;
} else {
 $maxage = $db->getOne("SELECT MAX(Age) FROM people;");
 print "The highest age is $maxage
";
 $allnames = $db->getCol("SELECT Name FROM people;");
 print implode(', ', $allnames) . '
';
 $onecol = $db->getRow("SELECT * FROM people WHERE Name =
'Ildiko';");
 var_dump($onecol);
}

$db->disconnect();

Query Information

Because PEAR::DB smooths over the differences between database servers, it is very
helpful for measuring the effects of queries. Three particularly helpful functions
are numRows(), numCols(), and affectedRows(), which return information about
what a query actually did—numRows() returns how many rows were returned from
a SELECT statement, numCols() returns how many columns (fields) were returned

226 | Chapter 14: Databases

from a SELECT statement, and affectedRows() returns how many rows were altered
by an UPDATE, INSERT, or DELETE statement. For example, if we have three rows
with Age 35 in our people table and execute the query UPDATE people SET Name =
'xxx' WHERE Age = 35, affectedRows() would return 3.

Here is an example of these functions in action:

include_once('DB.php');
$db = DB::connect("mysql://phpuser:alm65z@localhost/phpdb");

if (DB::isError($db)) {
 print $db->getMessage();
 exit;
} else {
 $result = $db->query("SELECT * FROM people;");
 print 'Query returned ' . $result->numRows() . ' rows\n';
 print 'Query returned ' . $result->numCols() . ' cols\n';
 print 'Query affected ' . $db->affectedRows() . ' rows\n';
 $db->query("INSERT INTO people VALUES ('Thomas', 36);");
 print 'Query returned ' . $result->numRows() . ' rows\n';
 print 'Query returned ' . $result->numCols() . ' cols\n';
 print 'Query affected ' . $db->affectedRows() . ' rows\n';
 $result->free();
}

$db->disconnect();

The first PEAR::DB query is a SELECT statement, which means that it will return
values for numRows() and numCols(). The affectedRows() function is not a func-
tion of the PEAR::DB query result object—numRows() is $result->numRows(),
numCols() is $result->numCols(), but affectedRows() is $db->affectedRows().

This is because SELECT statements are read from the database and return a result
object from $db->query(). INSERT, UPDATE, and DELETE statements only return
success or failure, and because affectedRows() only returns a meaningful value
when used with these types of statements, it would be pointless to put
affectedRows() into the query() result.

This is illustrated in the next block of code—this time, we insert a new person
into the table, and again print out the three functions. Note that we do not
capture the return value of the function, because it does not return anything
useful in this script. This time around, printing out numRows() and numCols()
returns the same values as before, because the $result object is unchanged from
the previous call.

Calling $db->affectedRows() should return 1, because we inserted a row. To illus-
trate the situation with the return value of query(), try editing the code to this:

$result = $db->query("INSERT INTO people VALUES ('Thomas', 0);");

This time, you should get the following error when you try to run the script:

Fatal error: Call to a member function on a non-object

PEAR::DB | 227

D
atab

ases

This is because the return value from query() will be true if it succeeds, and an
error otherwise. As a result, calling $result->numRows() is calling a function on
true, which will not work.

Use numRows() and numCols() only with SELECT queries, and use affectedRows()
only with INSERT, UPDATE, and DELETE queries.

Advanced PEAR::DB: Prepared Statements

PEAR::DB is capable of prepared statements—a technique to handle repetitive SQL
statements. Prepared statements let you treat an SQL query somewhat like a func-
tion—you define roughly what the query will do, without actually passing it any
values, then later you “call” the query and pass it the values to use.

Prepared statements are easy to use and eliminate much of the fuss of SQL,
because you no longer need long and complicated queries to achieve your goals.
Most importantly, you don’t need to worry about escaping quotes and the like.

A prepared statement looks something like this:

INSERT INTO people VALUES (?, ?);

Once you have the prepared statement ready, it can be called later by providing
the values previously filled with question marks:

include_once('DB.php');
$db = DB::connect("mysql://phpuser:alm65z@localhost/phpdb");

if (DB::isError($db)) {
 print $db->getMessage();
 exit;
} else {
 $data = array(
 array("Gabor", 25),
 array("Elisabeth", 39),
 array("Vicky", 19)
);

 $prep = $db->prepare("INSERT INTO people VALUES (?, ?);");

 while(list($var, $val) = each($data)) {
 print "Adding element $var\n";
 $db->execute($prep, $val);
 }
}

$db->disconnect();

The $data array has three elements, each arrays in their own right. Look down to
the line $db->execute()—this function takes two parameters: the prepared state-
ment to execute and the array of values to pass to it. When PEAR::DB fills in the
question marks in the prepared statement passed in parameter one of execute(),
it iterates through the array passed as parameter two—element zero of the array is
used for the first question mark, element one is used for the second, etc.

228 | Chapter 14: Databases

Going back to the $data array, you should now realize that the reason it is an
array of arrays is because each child array holds one complete set of values for the
prepared statement, ready to be passed into $db->execute() later on. The first set
of values is “Gabor” and 25, which will be turned into this:

INSERT INTO people VALUES ('Gabor', 25);

The $db->prepare() function is what actually sets up the prepared statement. It
takes the SQL statement to use as its parameter, with question marks being used
wherever values need to be provided later. You can mix hard-coded values and
question marks freely, and you should take advantage of this so that you need to
do as little work as possible.

Calling prepare() returns the index number of the prepared statement to use,
which is an integer. This needs to be stored away in a variable so that you can
specify which prepared statement you want to use when you call execute().

The actual execution of the prepared statement is inside a while loop. The loop
iterates through each element in the $data array, extracting its key and value into
$var and $val, respectively; each time we have an element, we call execute(). This
takes two parameters: the prepared statement to execute and the values to pass to
it. In the example code above, the return value from the $db->prepare() line is
used as parameter one, and the $val value extracted from the $data array is sent in
as parameter two. That will execute the prepared statement three times, as we
have three sets of data to be inserted.

SQLite
SQLite is a fully functional relational database system that does not use the tradi-
tional client/server database architecture. For example, MySQL has a server
running on a machine somewhere, and a client (in the form of PHP, in our exam-
ples) connects to that server to perform queries. SQLite, on the other hand, works
on local files, with no database server required—when you run queries using
SQLite, they are translated into operations on the local files.

From PHP 5 onward, SQLite is bundled and enabled by default, which means that
everyone, everywhere, will have it by default. If you are writing an application that
needs a data store, you no longer need to worry whether they have Oracle or
Microsoft SQL Server installed or, indeed, whether they have any database server
installed at all.

Before You Begin

SQLite uses a file for every database you create, which means that it is very easy to
keep track of your data, particularly if you want to back up and restore informa-
tion. However, it also means that this file must be easily available, preferably
local—using remote file systems, such as NFS, is not recommended.

There are some unique aspects to SQLite that you should be aware of—the most
important is its handling of field types. SQLite does not distinguish between data
types beyond “string” and “number”—CHAR(255), for example, is the same as
VARCHAR(20), which is the same as TEXT, which makes it typeless like PHP. This

SQLite | 229

D
atab

ases

boils down to “If your data type has CHAR, TEXT, BLOB, or CLOB in it, it is text; other-
wise, it is a number.” This is fuzzy matching—VARCHAR has “CHAR” in it; thus, it is
considered to be a text field.

There is one exception to this state of affairs, and that is when you want an auto-
incrementing primary key value. If you define a field as being INTEGER PRIMARY KEY,
it must contain a 32-bit signed integer—equivalent to an INT data type in
MySQL—and, if you do not fill this value when you insert a row, SQLite will
automatically fill it with an integer one higher than the highest in there already. If
the value is already at 2147483647, which is the highest number it can hold, SQLite
will hand out random numbers. Note that the data type must be INTEGER and not
INT—INT will be treated as a normal number field.

Finally, because SQLite stores its data in files, it is not able to handle multiple
simultaneous writes to the same table. Essentially, when a write query comes in,
SQLite locks the database (a file), performs the write, then unlocks the file—
during the locked time, no other queries can write to that database. This is a
problem if you want your database to scale, or if you are using a system that does
not have a reliable file locking mechanism, such as NFS.

Getting Started

Working with SQLite is similar to working with other databases. The syntax is
slightly different, and you invariably need to pass in an exact database connection
with each call to the library; however, there should be no problem if you have
already mastered another SQL dialect.

There’s an object-oriented version of SQLite for people who like
that sort of thing.

The four key functions to use are sqlite_open(), sqlite_close(), sqlite_query(),
and sqlite_fetch_array(), and they work almost exactly like their MySQL equiv-
alents. The connection function is sqlite_open(), not sqlite_connect(),
reflecting the lack of client/server architecture.

Here is an example script:

$dbconn = sqlite_open('phpdb');

if ($dbconn) {
 sqlite_query($dbconn, "CREATE TABLE dogbreeds
 (Name VARCHAR(255), MaxAge INT);");
 sqlite_query($dbconn, "INSERT INTO dogbreeds VALUES ('Doberman',
15)");
 $result = sqlite_query($dbconn, "SELECT Name FROM dogbreeds");
 var_dump(sqlite_fetch_array($result, SQLITE_ASSOC));
} else {
 print "Connection to database failed!\n";
}

230 | Chapter 14: Databases

Connecting to an SQLite database is simply a matter of providing the filename to
use as the parameter to sqlite_open(). Some programmers have adopted the
convention of using the filename extension .sqlite for their databases, but you are
free to do as you please, as this convention has yet to catch on.

After opening the database, you will notice that sending queries requires passing
the database connection as the first parameter, with the query as the second
parameter. The queries themselves are standard SQL, so you should be able to
take your existing SQL skillset and apply it directly here. There is no sqlite_
fetch_assoc() function at this time, so the sqlite_fetch_array() function is
used, specifying SQLITE_ASSOC as parameter two. If you do not do this, sqlite_
fetch_array() will return each field of data twice—once with its numeric index,
and again with its field name string index.

Other than the minor differences listed above, SQLite works much like MySQL.
The advantage of absolute cross-platform compatibility, regardless of whether
people have a database server running, makes SQLite a great tool to keep handy
in your toolkit.

When calling sqlite_open(), you can pass in :memory: as the file-
name to have SQLite create its database in memory. This is sub-
stantially faster than working with a disk, but it will be deleted
when your script terminates.

Advanced Functions

There are three extra functions for SQLite that you are likely to find helpful. First,
the equivalent function of mysql_insert_id() is sqlite_last_insert_rowid(),
which requires the connection resource as its only parameter. Creating
auto-incrementing fields in SQLite requires you to declare them as “INTEGER
PRIMARY KEY”—the AUTO_INCREMENT keyword is not required. The sqlite_last_
insert_rowid() function will return the auto-increment ID number that was used
for the last INSERT query you sent.

Second, the functional equivalent of PEAR::DB’s getOne() is sqlite_fetch_single().
This will return the first column of the first row of the result of your query, and you
pass the return value of sqlite_query() into sqlite_fetch_single() as its only
parameter.

Finally, the function sqlite_array_query() is a very powerful function that
returns an array of all the rows returned. For example:

$dbconn = sqlite_open('phpdb');

if ($dbconn) {
 // this assumes you created the dogbreeds table using the previous
 script!
 sqlite_query($dbconn, "INSERT INTO dogbreeds VALUES
 ('Poodle', 14)");
 sqlite_query($dbconn, "INSERT INTO dogbreeds VALUES
 ('Jack Russell', 16)");
 sqlite_query($dbconn, "INSERT INTO dogbreeds VALUES

SQLite | 231

D
atab

ases

 ('Yorkshire Terrier', 13)");
 var_dump(sqlite_array_query($dbconn, "SELECT * FROM
 dogbreeds", SQLITE_ASSOC));
} else {
 print "Connection to database failed!\n";
}

The first three INSERT queries make the data more interesting. The key line is
where sqlite_array_query() is called. The function basically works as a combina-
tion of sqlite_query() and repeated calls to sqlite_fetch_array(), so it requires
the database connection as parameter one, and the query to execute as parameter
two. In the example, SQLITE_ASSOC is also passed in, as we would normally do
when calling sqlite_fetch_array().

Here is the output that script generates, when used immediately after the script
that created the dogbreeds table:

array(4) {
 [0]=>
 array(2) {
 ["Name"]=>
 string(8) "Doberman"
 ["MaxAge"]=>
 string(2) "15"
 }

 [1]=>
 array(2) {
 ["Name"]=>
 string(6) "Poodle"
 ["MaxAge"]=>
 string(2) "14"
 }

 [2]=>
 array(2) {
 ["Name"]=>
 string(12) "Jack Russell"
 ["MaxAge"]=>
 string(2) "16"
 }

 [3]=>
 array(2) {
 ["Name"]=>
 string(17) "Yorkshire Terrier"
 ["MaxAge"]=>
 string(2) "13"
 }
}

Each row in the table became an element in the returned array value, and each
element was, in fact, an array in its own right, containing the names and values of
each of the fields of that array. Using sqlite_array_query() is a very fast, very
optimized way to extract lots of data from your database with just one call.

232 | Chapter 14: Databases

Mixing SQLite and PHP

It is possible to make PHP and SQLite work together to filter data. For example,
this next code creates a PHP function that gets used in an SQLite query:

mysql_connect("localhost", "phpuser", "alm65z");
mysql_select_db("phpdb");

mysql_query("CREATE TABLE sqlite_test (ID INT NOT NULL AUTO_INCREMENT
 PRIMARY KEY, Name VARCHAR(255));");
mysql_query("INSERT INTO sqlite_test (Name) VALUES ('Peter Hutchinson');");
mysql_query("INSERT INTO sqlite_test (Name) VALUES ('Jeanette Shieldes');");

$conn = sqlite_open("employees");
sqlite_query($conn, "CREATE TABLE employees (ID INTEGER NOT NULL PRIMARY
KEY, Name VARCHAR(255));");
sqlite_query($conn, "INSERT INTO employees (Name) VALUES ('James
Fisher');");
sqlite_query($conn, "INSERT INTO employees (Name) VALUES ('Peter
Hutchinson');");
sqlite_query($conn, "INSERT INTO employees (Name) VALUES ('Richard
Hartis');");

function ExistsInBoth($name) {
 $result = mysql_query("SELECT ID FROM sqlite_test WHERE Name =
'$name';");
 if (mysql_num_rows($result)) {
 return 1;
 } else {
 return 0;
 }
}

sqlite_create_function($conn, "EXISTS_IN_BOTH", "ExistsInBoth");

$query = sqlite_query($conn, "SELECT Name FROM employees WHERE EXISTS_IN_
BOTH(Name)");

while($row = sqlite_fetch_array($query, SQLITE_ASSOC)) {
 extract($row);
 print "$Name is in both databases\n";
}

The call to sqlite_create_function() takes an SQLite connection as its first
parameter, the name you want to give the function inside SQLite as its second,
and the actual PHP function name as its third.

Persistent Connections
You can switch to persistent connections in MySQL by changing the function call
from mysql_connect() to mysql_pconnect(). They both take the same parameters,
with the difference being that mysql_connect() will always open a new connec-
tion, whereas mysql_pconnect() will open a new connection only if there is not

MySQL Improved | 233

D
atab

ases

one already available. Otherwise, it will just use the existing connection. Simi-
larly, the SQLite function sqlite_open() has a persistent counterpart, sqlite_
popen().

In the per-process Apache module (prefork), persistent resources
such as persistent MySQL connections are stored per process. This
means if you have 150 Apache children running, you’ll need 150
MySQL permanent connections—even if some of those processes
aren’t using MySQL right now.

MySQL Improved
New with PHP 5 is the MySQLi extension, which is “MySQL Improved.” This is
an all new extension designed to take advantage of the new features available
from MySQL 4.1 and upward, and includes new functionality such as native
commit and rollback, as well as prepared statements. As the MySQLi extension is
only designed to work with MySQL 4.1 and upward, it isn’t likely to see any wide-
spread use for some time.

If you are an early adopter of MySQL 4.1 and want to jump in headfirst with some
testing, the MySQLi functions work similarly to the MySQL functions—you just
need to add an “i” after “mysql” in your code. For example, mysql_connect()
becomes mysqli_connect(), mysql_query() becomes mysqli_query(), etc. That
said, there are some differences between MySQL and MySQLi code. For example,
mysqli_connect()’s fourth parameter lets you specify the default database to use,
letting you skip the call to mysqli_select_db(). If you still want to use it, mysqli_
select_db() itself is also different, now taking the return value of mysqli_connect()
as its first parameter, and the database to select as its second parameter.

At the time of writing, three MySQLi functions had potentially seri-
ous incompatibilities with their MySQL cousins. All three of
mysqli_fetch_row(), mysqli_fetch_array(), and mysqli_fetch_

assoc() return null when there are no more rows to be found, as
opposed to the false that the MySQL extension would have
returned. If you want to keep your code easily portable between
MySQL and MySQLi, do not try to differentiate between false and
null.

If you want to install support for both MySQL and MySQLi when
compiling PHP, just point --with-mysql and --with-mysqli to the
MySQL 4.1 client library on your system.

234

15
Regular Expressions

Regular expressions, usually referred to as regexps, offer you more power over
your strings, but are tricky to learn because they use complicated syntax. Regexps
can:

• Replace text

• Test for a pattern within a string

• Extract a substring from within a string

We’ll be looking at all three of these uses in this chapter, as well as providing a
comprehensive list of the different expressions you can use to work with all kinds
of strings.

You should know that the set of string functions covered in Chapter 7 are faster,
easier to read, and less hassle to use than regular expressions; you should only use
regular expressions if you have a particular need. PHP contains two ways to
perform regular expressions, known as POSIX-extended and Perl-Compatible
Regular Expressions (PCRE). The PCRE functions are more powerful than the
POSIX ones, and faster too, so we will be using the PCRE functions here.

Basic Regexps with preg_match() and preg_match_all()
The basic regexp function is preg_match() and it takes two parameters: the pattern
to match and the string to match it against. It will apply the regular expression in
parameter one to the string in parameter two and see whether it finds a match—if it
does, it will return 1; otherwise, 0. The reason it returns 1 is because regular expres-
sions return the number of matches found, but preg_match(), for speed reasons,
returns as soon as it finds the first match—this means it is very quick to check
whether a pattern exists in a string. An alternative function, preg_match_all(), does
not exit after the first match; we will get to that later in this chapter.

Regexp Character Classes | 235

R
eg

u
lar

Exp
ressio

n
s

Regular expressions are formed by starting with a forward slash /, followed by a
sequence of special symbols and words to match, then another slash and, option-
ally, a string of letters that affect the expression. Table 15-1 shows a list of very
basic regular expressions and strings, and whether or not a match is made.

The i modifier makes regexps case-insensitive.

The preg_match() returns true if there is a match, so you can use it like this:

if (preg_match("/php/i", "PHP")) {
 print "Got match!\n";
}

Regexp Character Classes
Regular expressions allow you to form character classes of words using brackets
[and]. For example, you can define a character class [Ff] that will match “F”
or “f”. You can also use character classes to accept ranges; for example, [A–Z]
will accept all uppercase letters, [A–Za–z] will accept all letters, whether upper-
case or lowercase, and [a–z0–9] will accept lowercase letters and numbers only.
At the beginning of a character class, the caret symbol ^ means “not,” therefore
[^A–Z] will accept everything that is not an uppercase letter, and [^A–Za–z0–9]
will accept symbols only—no uppercase letters, no lowercase letters, and no
numbers.

There is a list of regular expressions using character classes, along with the string
they match—and whether or not a match is made—in Table 15-2.

Table 15-1. preg_match() calls and what they match

Function call Result

preg_match("/php/", "php") True

preg_match("php/", "php") Error; you need a slash at the start

preg_match("/php/", "PHP") False; regexps are case-sensitive

preg_match("/php/i", "PHP") True; /i means “case-insensitive”

preg_match("/Foo/i", "FOO") True

Table 15-2. Regular expressions using character classes

Function call Result

preg_match("/[Ff]oo/", "Foo") True

preg_match("/[^Ff]oo/", "Foo") False; the regexp says “Anything that is not F or f,
followed by “oo”. This would match “too”, “boo”, “zoo”,
etc.

preg_match("/[A-Z][0-9]/", "K9") True

preg_match("/[A-S]esting/", "Testing") False; the acceptable range for the first character ends at S

preg_match("/[A-T]esting/", "Testing") True; the range is inclusive

preg_match("/[a-z]esting[0-9][0-9]/",
"TestingAA")

False

236 | Chapter 15: Regular Expressions

The last one is a common mistake, so make sure you understand why it does not
match.

Regexp Special Characters
The metacharacters +, *, ?, and { } affect the number of times a pattern should be
matched, () allows you to create subpatterns, and $ and ^ affect the position. +
means “Match one or more of the previous expression,” * means “Match zero or
more of the previous expression,” and ? means “Match zero or one of the previous
expression.” For example:

preg_match("/[A-Za-z]*/", $string);
// matches "", "a", "aaaa", "The sun has got his hat on", etc

preg_match("/-?[0-9]+/", $string);
// matches 1, 100, 324343995, and also -1, -234011, etc. The "-?" means
"match exactly 0 or 1 minus symbols"

This next regexp shows two character classes, with the first being required and
the second optional. As mentioned before, $ is a regexp symbol in its own right;
however, here we precede it with a backslash, which works as an escape char-
acter, turning the $ into a standard character and not a regexp symbol. We match
precisely one symbol from the range A–Z, a–z, and _, then match zero or more
symbols from the range A–Z, a–z, underscore, and 0–9. If you’re able to parse this
in your head, you will see that this regexp will match PHP variable names:

preg_match("/\$[A-Za-z_][A-Za-z_0-9]*/", $string);

Table 15-3 shows a list of regular expressions using +, *, and ?, and whether or
not a match is made.

preg_match("/[a-z]esting[0-9][0-9]/",
"testing99")

True

preg_match("/[a-z]esting[0-9][0-9]/",
"Testing99")

False; case sensitivity!

preg_match("/[a-z]esting[0-9][0-9]/i",
"Testing99")

True; case problems fixed with /i

preg_match("/[^a-z]esting/", "Testing") True; first character can be anything that is not a, b, c, d, e,
etc. (lowercase)

preg_match("/[^a-z]esting/i",
"Testing")

False; the range excludes lowercase characters only, so
you would think T would be fine. However, the “i” at the
end makes it insensitive, which turns [^a-z] into
[^a-zA-Z]

Table 15-2. Regular expressions using character classes (continued)

Function call Result

Regexp Special Characters | 237

R
eg

u
lar

Exp
ressio

n
s

Opening braces { and closing braces } can be used to define specific repeat counts
in three different ways. First, {n}, where n is a positive number, will match n
instances of the previous expression. Second, {n,} will match a minimum of n
instances of the previous expression. Third, {m,n} will match a minimum of m
instances and a maximum of n instances of the previous expression. Note that
there are no spaces inside the braces.

Table 15-4 shows a list of regular expressions using braces, and whether or not a
match is made.

Parentheses inside regular expressions allow you to define subpatterns that should
be matched individually. The most common use for these is to specify groups of
alternatives for matches, allowing you to match very specific criteria. For example,
“the (cat|car) sat on the (mat|drive)” would match “the cat sat on the mat”, “the
car sat on the mat”, “the cat sat on the drive”, and “the car sat on the drive”. You
can use as many alternatives as you want, so “the (car|cat|bat|bull|wool|white
paint) sat on the (mat|drive)” could match many sentences.

Table 15-5 shows a list of regular expressions using parentheses, and whether or
not a match is made.

Table 15-3. Regular expressions using +, *, and ?

Regexp Result

preg_match("/[A-Z]+/", "123") False

preg_match("/[A-Z][A-Z0-9]+/i", "A123") True

preg_match("/[0-9]?[A-Z]+/",
"10GreenBottles")

True; matches “0G”

preg_match("/[0-9]?[A-Z0-9]*/i",
"10GreenBottles")

True

preg_match("/[A-Z]?[A-Z]?[A-Z]*/", "") True; zero or one match, then zero or one match, then
zero or more means that an empty string matches

Table 15-4. Regular expressions using braces

Regexp Result

preg_match("/[A-Z]{3}/", "FuZ") False; the regexp will match precisely three uppercase
letters

preg_match("/[A-Z]{3}/i", "FuZ") True; same as above, but case-insensitive this time

preg_match("/[0-9]{3}-[0-9]{4}/", "555-
1234")

True; precisely three numbers, a dash, then precisely four.
This will match local U.S. telephone numbers, for example

preg_match("/[a-z]+[0-9]?[a-z]{1}/",
"aaa1")

True; must end with one lowercase letter

preg_match("/[A-Z]{1,}99/", "99") False; must start with at least one uppercase letter

preg_match("/[A-Z]{1,5}99/",
"FINGERS99")

True; “S99”, “RS99”, “ERS99”, “GERS99”, and “NGERS99”
all fit the criteria

preg_match("/[A-Z]{1,5}[0-9]{2}/i",
"adams42")

True

238 | Chapter 15: Regular Expressions

Finally, we have the dollar $ and caret ^ symbols, which mean “end of line” and
“start of line,” respectively. Consider the following string:

$multitest = "This is\na long test\nto see whether\nthe dollar\nSymbol\nand
the\ncaret symbol\nwork as planned";

As you know, \n means “new line,” so that is a string containing the following
text:

This is
a long test
to see whether
the dollar
Symbol
and the
caret symbol
work as planned

In order to parse multiline strings, we need the m modifier, so m needs to go after
the final slash. Without m, our multiline string is treated as only being one line,
with “This” at the start of the line and “planned” at the end. By adding “m” to the
regexp, we’re asking PHP to match $ and ^ against the start and end of each line
wherever the newline (\n) character is. All of these code snippets return true:

preg_match("/is$/m", $multitest);
// returns true if 'is' is at the end of a line

preg_match("/the$/m", $multitest);
// returns true if 'the' is at the end of a line

preg_match("/^the/m", $multitest);
// returns true if 'the' is at the end of a line

preg_match("/^Symbol/m", $multitest);
// returns true if 'Symbol' is at the start of a line

Table 15-5. Regular expressions using braces

Regexp Result

print preg_match("/(Linux|Mac OS X)/",
"Linux")

True

print preg_match("/(Linux|Mac OS X){2}/",
"Mac OS XLinux")

True

print preg_match("/(Linux|Mac OS X){2}/",
"Mac OS X Linux")

False; there’s a space in there, which is not part of
the regexp

preg_match("/contra(diction|vention)/",
"contravention")

True

preg_match("/Windows ([0-9][0-9]
+|Me|XP)/", "Windows 2000")

True; matches 95, 98, 2000, 2003, Me, and XP

preg_match("/Windows (([0-9][0-9]
+|Me|XP)|Codename (Whistler|Longhorn))/",
"Windows Codename Whistler")

True; uses nested subpatterns to match all versions
of Windows, but also codenames

Words and Whitespace Regexps | 239

R
eg

u
lar

Exp
ressio

n
s

preg_match("/^[A-Z][a-z]{1,}/m", $multitest);
// returns true if there's a capital and one or more lowercase letters at
line start

As explained, without the m modifier, the $ and ^ metacharacters only match the
start and end of the entire string. With m, $ and ^ match the start and end of each
new line. If you want to get the start and end of the string when m is enabled, you
should use \A and \z, like this:

preg_match("/\AThis/m", $multitest);
// returns true if the string starts with "This" (true)

preg_match("/symbol\z/m", $multitest);
// returns true if the string ends with "symbol" (false)

Words and Whitespace Regexps
While there are many other patterns for use in regular expressions, they generally
aren’t very common. So far we’ve looked at all but five of the most common ones,
which leaves us with . (a period), \s, \S, \b, and \B.

The pattern . will match any single character except \n (new line). Therefore, c.t
will match “cat,” but not “cart.”

The next two, \s and \S, equate to “Match any whitespace” and “Match any non-
whitespace,” respectively. That is, if you specify [\s\S], your regular expression
will match any single character, regardless of what it is; if you use [\s\S]*, your
regular expression will match anything. For example:

$string = "Foolish child!";
preg_match("/[\S]{7}[\s]{1}[\S]{6}/", $string);

That matches precisely seven non-whitespace characters, followed by one
whitespace character, followed by six non-whitespace characters—the exact
string.

The last two patterns, \b and \B, equate to “On a word boundary” and “Not on a
word boundary,” respectively. That is, if you use the regexp /oo\b/, it will match
“foo,” “moo,” “boo,” and “zoo,” because the “oo” is at the end of the word, but
not “fool,” “wool,” or “pool,” because the “oo” is inside the word. The \B pattern
is the opposite, which means it would match only patterns that aren’t on the
edges of a word—using the previous example, “fool,” “wool,” and “pool” would
be matched, whereas “foo,” “moo,” “boo,” and “zoo” would not.

For example:

$string = "Foolish child!";

if (preg_match("/oo\b/i", $string)) {
 // we will not get here
}

preg_match("/oo\B/i", $string);
// opposite of previous search; returns true

240 | Chapter 15: Regular Expressions

preg_match("/no\b/", "he said 'no!'");
// returns true; \b is smart enough to know that !, ', ?, and other symbols
aren't part of words

preg_match("/royalty\b/", "royalty-free photograph");
// returns true; \b considers hyphenated words to be separate

Storing Matched Strings
The preg_match() function has a fourth parameter that allows you to pass in an
array for it to store a list of matched strings. Consider this script:

$a = "Foo moo boo tool foo!";
preg_match("/[A-Za-z]oo\b/i", $a, $matches);

The regexp there translates to “Match all words that start with an uppercase or
lowercase letter followed by “oo” at the end of a word, case-insensitive.” After
running, preg_match() will place all the matched patterns in the string $a into
$matches, which you can then read for your own uses.

The preg_match() function returns as soon as it finds its first match, because most
of the time we only want to know whether a string exists, as opposed to how
often it exists. As a result, our fourth parameter is not working as we hoped quite
yet—we need another function, preg_match_all(), to get this right. This works
just like preg_match()—it takes the same parameters (except in very complicated
cases you are unlikely to encounter), and returns the same values. Thus, with no
changes, the same code works fine with the new function:

$a = "Foo moo boo tool foo!";
preg_match_all("/[A-Za-z]oo\b/i", $a, $matches);
var_dump($myarray);

This time, $matches is populated properly—but what does it contain? Many
regexp writers write complicated expressions to match various parts of a given
string in one line, so $matches will contain an array of arrays, with each array
element containing a list of the strings the preg_match_all() found.

Line three of the script calls var_dump() on the array, so you can see the matches
preg_match_all() picked up. The var_dump() function simply outputs the
contents of the variable(s) passed to it for closer inspection, and is particularly
useful with arrays and objects. You can read more on var_dump() later on.

Regular Expression Replacements
Using regular expressions to accomplish string replacement is done with the func-
tion preg_replace(), and works in much the same way as preg_match().

The preg_replace() function takes a regexp as parameter one, what it should
replace each match with as parameter two, and the string to work with as param-
eter three. The second parameter is plain text, but can contain $n to insert the text
matched by subpattern n of your regexp rule. If you have no subpatterns, you
should use $0 to use the matched text, like this:

Regular Expression Replacements | 241

R
eg

u
lar

Exp
ressio

n
s

$a = "Foo moo boo tool foo";
$b = preg_replace("/[A-Za-z]oo\b/", "Got word: $0\n", $a);
print $b;

That script would output the following:

Got word: Foo
Got word: moo
Got word: boo
tool Got word: foo

If you are using subpatterns, $0 is set to the whole match, then $1, $2, and so on
are set to the individual matches for each subpattern. For example:

$match = "/the (car|cat) sat on the (drive|mat)/";
$input = "the cat sat on the mat";
print preg_replace($match, "Matched $0, $1, and $2\n", $input);

In that example, $0 will be set to “the cat sat on the mat”, $1 will be “cat”, and $2
will be “mat”.

There are two further uses for preg_replace() that are particularly interesting: first,
you can pass arrays as parameter one and parameter two, and preg_replace() will
perform multiple replaces in one pass—we will be looking at that later. The other
interesting functionality is that you can instruct PHP that the match text should be
executed as PHP code once the replacement has taken place. Consider this script:

$a = "Foo moo boo tool foo";
$b = preg_replace("/[A-Za-z]oo\b/e", 'strtoupper("$0")', $a);
print $b;

This time, PHP will replace each match with strtoupper(“word”) and, because we
have appended an e (for “eval” or “execute”) to the end of our regular expression,
PHP will execute the replacements it makes. That is, it will take strtoupper(word)
and replace it with the result of the strtoupper() function, which is, of course,
WORD. It is essential to put the $0 inside double quotes so that it is treated as a
string—without the quotes, it will just read strtoupper(foo), which is probably
not what you meant.

Here is the output:

FOO MOO BOO tool FOO

Optionally you can also pass a fourth parameter to preg_replace() to specify the
maximum number of replacements you want to make. For example:

$a = "Foo moo boo tool foo";
$b = preg_replace("/[A-Za-z]oo\b/e", 'strtoupper("$0")', $a, 2);
print $b;

Now the output is this:

FOO MOO boo tool foo

Only the first two matches have been replaced, thanks to the fourth parameter
being set to 2.

242 | Chapter 15: Regular Expressions

Regular Expression Syntax Examples
Table 15-6 is a comprehensive table of all the regular expressions we’ve covered.
Column one contains example expressions, and column two contains what each
expression will match.

Table 15-6. Complete list of regular expression examples

Expression Will match . . .

foo The string “foo”

^foo “foo” at the start of a line

foo$ “foo” at the end of a line

^foo$ “foo” when it is alone on a line

[Ff]oo “Foo” or “foo”

[abc] a, b, or c

[^abc] d, e, f, g, V, %, ~, 5, etc.—everything that is not a, b, or c (^ is “not” inside character
classes)

[A-Z] Any uppercase letter

[a-z] Any lowercase letter

[A-Za-z] Any letter

[A-Za-z0-9] Any letter or number

[A-Z]+ One or more uppercase letters

[A-Z]* Zero or more uppercase letters

[A-Z]? Zero or one uppercase letters

[A-Z]{3} Three uppercase letters

[A-Z]{3,} A minimum of three uppercase letters

[A-Z]{1,3} One, two, or three uppercase letters

[^0-9] Any non-numeric character

[^0-9A-Za-z] Any symbol (not a number or a letter)

(cat|sat) Matches either “cat” or “sat”

([A-Z]{3}|[0-9]{4}) Matches three letters or four numbers

Fo* F, Fo, Foo, Fooo, Foooo, etc.

Fo+ Fo, Foo, Fooo, Foooo, etc.

Fo? F, Fo

. Any character except \n (new line)

\b A word boundary; e.g. te\b matches the “te” in “late” but not the “te” in “tell.”

\B A non-word boundary; “te\B” matches the “te” in “tell” but not the “te” in “late.”

\n Newline character

\s Any whitespace (new line, space, tab, etc.)

\S Any non-whitespace character

The Regular Expressions Coach | 243

R
eg

u
lar

Exp
ressio

n
s

The Regular Expressions Coach
Although there is no doubt that regular expressions are incredibly useful, they
also easily get out of hand when trying to match complex strings. Furthermore,
anything past twelve or so characters gets hard to read and understand, which is a
common source of bugs.

To work around this problem, I suggest you use a program called the Regex
Coach (pictured in Figure 15-1), available from http://www.weitz.de/regex-coach—
it is free to use non-commercially, and it is able to help you check that your
regular expressions are correct by visually highlighting strings that match. The
Coach is fully compatible with all the options shown here, including string
replacement, and can even break down a regexp and describe it in plain English.

Figure 15-1. Use the Regex Coach to try out regular expressions and get instant feedback

244

16
Manipulating Images

Lots of people stereotype PHP as only being suitable for outputting text, but that’s
not true—you can use PHP to create complex and dynamic pictures using the GD
image extension. This chapter covers many of the GD functions that will allow
you to make your own images for your site, either from scratch or by using
existing images.

For image manipulation purposes, PHP ships with its own copy of the popular
GD library. You used to have to get your own copy of GD and hope it was
compatible with your PHP version. This is no longer the case. The copy of GD
that ships with PHP will work with that version of PHP.

Getting Started
An important PHP function when working with images is header(). This outputs
a HTTP header of your choice; in this situation, we will be sending the content-
type header, which tells web browsers what kind of content they can expect
through the connection. Popular content types include text/plain for plain text
documents; text/html for most web pages; and image/*, where the * is png, jpeg,
gif, or MIME types for other picture formats.

As header() sends HTTP headers, it must be used before you send any content
through. This is a core HTTP rule—no headers can be sent after content. This is
the same thing that stops you from using cookies after you have sent content. The
header() function is covered in more detail in Chapter 20, but for now, we will
just work with this one aspect of it.

Creating a new image is done with the imagecreate() function, which has two
parameters: the height and width of the image you wish to create. This will return
false if it failed to create an image, which is usually the result of a lack of
memory; otherwise, it will return the image as a resource for you to use in other
image functions. To free up this image’s memory, pass that resource into
imagedestroy() as its only parameter.

Getting Started | 245

M
an

ip
u

latin
g

Im
ag

es

Once you have your image resource, it is yours to play with all you want. PHP
provides a selection of functions for you to use to manipulate the image. When
you are done, you just choose your output format and the picture is finished.

To output the picture, you call one of several functions. If you want to convert it
to PNG format, you call imagepng(). This function takes two parameters, which
are the image resource to use and a filename to save the picture as (optional). If
you don’t provide the second parameter, imagepng() sends the PNG-formatted
picture straight to output, which is usually a visitor to your site.

To choose JPEG, you call the imagejpeg() function, which takes three parame-
ters—the same two as imagepng(), plus the quality you wish to use for the picture.
The quality, a number between 0 (lowest quality, smallest file) and 100 (highest
quality, largest file), is optional, as is the filename parameter. If you want to set
the quality without specifying a filename, just provide an empty string (‘’) as the
filename.

The most basic image script looks like this:

$image = imagecreate(400,300);
// do stuff to the image
imagejpeg($image, '', 75);
imagedestroy($image);

Save that as picture1.php. As most of your pictures will probably be referenced
from a web page, we will also make a companion web page. Save this as
phppicture.html:

<html>
<title>PHP Art</title>
<body>
PHP woz 'ere:

</body>
</html>

Open up your web browser and load in phppicture.html—you should see a large
black box for the image, as shown in Figure 16-1.

Be sure not to have anything outside the PHP code block, not even
an empty line or a space. Everything outside the PHP block is sent
to the browser as part of the picture, and even having a single space
character at the end of the file will cause problems.

The next step is to add a little color in place of the “do stuff to the image”
comment, so we need imagecolorallocate() (note that you must use U.S. spell-
ings for these function names). This new function takes four parameters: the
image resource you are choosing a color for, then three integers between 0 and
255—one each for the red value, then green value, and the blue value of the color.
You can also specify these colors in hexadecimal format (e.g., 0xff) rather than
decimal.

246 | Chapter 16: Manipulating Images

The first color you allocate is automatically used as the background color for your
image, so this next piece of code is a minor modification of the last script to
include color information:

$image = imagecreate(400,300);
$gold = imagecolorallocate($image, 255, 240, 00);
imagepng($image);
imagedestroy($image);

Save that over picture1.php, and refresh phppicture.html—you should see the
black square replaced by a yellow square.

Don’t worry about deallocating colors, as they are just numbers
and not resources, meaning they don’t use up any special memory.
If you really want to deallocate a color (perhaps if you’re working
with a paletted image), use the imagecolordeallocate() function.

Choosing a Format
For high-quality images with many colors or a lot of detail, the JPEG format is
preferred. JPEG saves in true color and allows you to set the compression ratio in
order to get the best trade-off between size and quality. PNGs, on the other hand,
work best as a replacement for GIFs, and as such, work well using limited colors.
They also offer alpha transparency and quite small file sizes.

Figure 16-1. Our first picture using PHP is a big square colored entirely black—not exactly
a stunner, but a good start

Getting Arty | 247

M
an

ip
u

latin
g

Im
ag

es

So, put as simply as possible: for photographs, prefer JPEGs, and for everything
else, prefer PNGs. Just as an aside, and at the risk of starting a flame war, the
colorcorrect pronunciations are “ping,” “jay-peg,” and “jif.” Note that WBMP is
not Windows Bitmap, as you might have first thought—it stands for Wireless
Bitmap and is designed for use in limited bandwidth situations.

Getting Arty
The imagefilledrectangle() function takes six parameters in total, which are, in
order: an image resource to draw on, the top-left X coordinate, the top-left Y
coordinate, the bottom-right X coordinate, the bottom-right Y coordinate, and a
color to use. There is a similar function called imagerectangle(), which takes the
same parameters but only draws the outline of the rectangle, whereas
imagefilledrectangle() fills the shape with color.

In order to draw a rectangle in such a way as to make it stand out, we need to allo-
cate another color and then draw the rectangle. Here is how that is done:

$white = imagecolorallocate($image, 255, 255, 255);
imagefilledrectangle($image, 10, 10, 390, 290, $white);

Put those two lines just after the definition of $gold, then save the modified script
and refresh phppicture.html.

This function becomes more interesting when used in a loop, like this:

$image = imagecreate(400,300);
$gold = imagecolorallocate($image, 255, 240, 00);
$white = imagecolorallocate($image, 255, 255, 255);
$color = $white;

for ($i = 400, $j = 300; $i > 0; $i -= 4, $j -= 3) {
 if ($color = = $white) {
 $color = $gold;
 } else {
 $color = $white;
 }

 imagefilledrectangle($image, 400 - $i, 300 - $j, $i, $j, $color);
}

imagepng($image);
imagedestroy($image);

That script calls imagefilledrectangle() each iteration of the loop, slowly making
the rectangle smaller and smaller as $i and $j decrease in value. Your output
should look like Figure 16-2.

In place of a plain color, it is possible to fill your shapes with a tiled
image using the imagesettile() function.

248 | Chapter 16: Manipulating Images

More Shapes
Using three new functions, we can make a much more complicated image. These
are: imagecreatetruecolor(), imagefilledellipse(), and imagefilledarc().

Here is a script using these new functions:

header("content-type: image/png");

$image = imagecreatetruecolor(400,300);
$blue = imagecolorallocate($image, 0, 0, 255);
$green = imagecolorallocate($image, 0, 255, 0);
$red = imagecolorallocate($image, 255, 0, 0);

imagefilledellipse($image, 200, 150, 200, 200, $red);
imagefilledellipse($image, 200, 150, 180, 180, $blue);
imagefilledellipse($image, 200, 150, 50, 50, $red);
imagefilledarc($image, 200, 150, 200, 200, 345, 15, $green, IMG_ARC_PIE);
imagefilledarc($image, 200, 150, 200, 200, 255, 285, $green, IMG_ARC_PIE);
imagefilledarc($image, 200, 150, 200, 200, 165, 195, $green, IMG_ARC_PIE);
imagefilledarc($image, 200, 150, 200, 200, 75, 105, $green, IMG_ARC_PIE);

imagepng($image);
imagedestroy($image);

The output from that script is shown in Figure 16-3.

Figure 16-2. Using a simple loop, we’ve turned our simple rectangle into a series of
concentric rectangles

Figure 16-3. Ellipses and circles

More Shapes | 249

M
an

ip
u

latin
g

Im
ag

es

Using imagecreatetruecolor() is the same as imagecreate()—it takes the same
two parameters, and returns an image resource that is freed using imagedestroy().
The difference between the two is that imagecreatetruecolor() returns an image
with a true-color palette, whereas an image made by imagecreate() cannot
contain more than 256 colors. Furthermore, the image resource returned by
imagecreatetruecolor() automatically has a black background, so you needn’t
worry about the first allocated color being used as the image background color.

The two new shape functions take several parameters, so you may need to keep the
list at hand when working with them. The parameters for imagefilledellipse()
are: image resource, center of ellipse (X coordinate), center of ellipse (Y coordi-
nate), height, width, and color. As there are more parameters required to draw an
arc, imagefilledarc() is more complicated again: image resource, center X, center
Y, height, width, then the start and end points of the arc specified in degrees,
followed by color and, finally, the type of arc to draw.

The start and end points for arcs are specified from 0 to 359 degrees, with 0
pointing directly to the right, or 3 o’clock if you think in clock faces. To draw a
complete circle rather than just a section, as in the example, you would specify 0
and 359 as the start and end points; although, in this case, it is easier just to use
imagefilledellipse(). The final parameter to imagefilledarc() is the type of arc
to draw, and you have the choice of the following:

• IMG_ARC_PIE, as in the previous example, which draws a filled wedge shape
with a curved edge

• IMG_ARC_CHORD, which draws a straight line between the starting and ending
angles

• IMG_ARC_NOFILL, which draws the outside edge line without drawing the two
lines toward the center of the arc

• IMG_ARC_EDGED, which draws an unfilled wedge shape with a curved edge

You can combine these four together in various ways to make your own style of
arc, with the exception of IMG_ARC_CHORD and IMG_ARC_PIE, which cannot be
combined together because they conflict geometrically. Some examples:

imagefilledarc($image, 200, 150, 200, 200, 345, 15, $green,
 IMG_ARC_CHORD | IMG_ARC_NOFILL);
imagefilledarc($image, 200, 150, 200, 200, 345, 15, $green,
 IMG_ARC_EDGED | IMG_ARC_NOFILL);

If we use those to replace the first and third calls from the previous script, they
should make the righthand arc become a straight line on the outside edge of the
arc, and make the lefthand arc become an unfilled wedge. This is pictured in
Figure 16-4.

So far, we’ve only been looking at the filled shapes, but there are unfilled varieties
too: imageellipse() complements imagefilledellipse(), imagearc() complements
imagefilledarc(), and imagerectangle() complements imagefilledrectangle().
The first and last of these work the same, whether they are filled or otherwise, but
imagefilledarc() is slightly different—you don’t need the last parameter, because
the arc is always the equivalent of IMG_ARC_NOFILL.

250 | Chapter 16: Manipulating Images

Complex Shapes
Rectangles, ellipses, and arcs are inherently easy to use because they have
predefined shapes, whereas polygons are multisided shapes of arbitrary geometry
and are more complicated to define.

The parameter list is straightforward and the same for both imagefilledpolygon()
and imagepolygon(): the image resource to draw on, an array of points to draw,
the number of total points, and the color. The array is made up of pairs of X,Y
pixel positions. PHP uses these coordinates sequentially, drawing lines from the
first (X,Y) to the second, to the third, etc., until drawing a line back from the last
one to the first.

The easiest thing to draw is a square, and we can emulate the functionality of
imagefilledrectangle() like this:

$points = array(
 20, // x1, top-left
 20, // y1

 230, // x2, top-right
 20, // y2

 230, // x3, bottom-right
 230, // y3

 20, // x4, bottom-left
 230 // y4
);

$image = imagecreatetruecolor(250, 250);
$green = imagecolorallocate($image, 0, 255, 0);
imagefilledpolygon($image, $points, 4, $green);

header('Content-type: image/png');
imagepng($image);
imagedestroy($image);

I have added extra whitespace in there to make it quite clear how the points work
in the $points array—see Figure 16-5 for how this code looks in action. For more
advanced polygons, try writing a function that generates the points for you.

Figure 16-4. Now we’ve tweaked the last parameter to imagefilledarc() for the first and
third calls

Outputting Text | 251

M
an

ip
u

latin
g

Im
ag

es

PHP draws the polygon by iterating sequentially through the points
array, and if your shape crosses itself, it is interpreted as a hole in
the polygon. If you re-cross the hole, it becomes filled again, and so
on.

Outputting Text
To output text using PHP, you first need fonts. PHP allows you to use TrueType
(TTF) fonts, PostScript Type 1 (PS) fonts, or FreeType 2 fonts, with TTF tending
to be the most popular, due to the availability of fonts. If you are running
Windows, you probably have at least 20 TTF fonts already installed that you can
use—check in the “Fonts” subdirectory of your Windows directory to see what is
available. Many Unix distributions come with TTF fonts installed also—either
check in /usr/share/fonts/truetype, or run a search for them. Alternatively, if you
have a Windows CD around, you can borrow some from there. Some distribu-
tions (including Debian and SUSE) allow you to install Microsoft’s Core Fonts for
the Web. The Free Software Foundation has a set of free fonts that you can grab
from its web site.

For this next example, I used the font Arial, which is stored in the same directory
as my PHP script. Save this code as addingtext.php:

$image = imagecreate(400,300);
$blue = imagecolorallocate($image, 0, 0, 255);
$white = ImageColorAllocate($image, 255,255,255);

if(!isset($_GET['size'])) $_GET['size'] = 44;
if(!isset($_GET['text'])) $_GET['text'] = "Hello, world!";

imagettftext($image, $_GET['size'], 15, 50, 200, $white,
 "ARIAL", $_GET['text']);
header("content-type: image/png");
imagepng($image);
imagedestroy($image);

The two isset() lines in that example are there to make sure there is a default
font size, 44, and default text, “Hello, world!” for our image. These are set only if
you do not pass values using addingtext.php?size=26&text=Foobarbaz.

Figure 16-5. A square drawn using imagefilledpolygon() as opposed to imagefilled-
rectangle()—as long as you get the numbers right, it should look exactly the same

252 | Chapter 16: Manipulating Images

Next comes the important function, imagettftext(), which takes eight parame-
ters in total: the image resource to draw on, font size to use, angle to draw at, X
coordinate, Y coordinate, color, font file, and the text to write. A few of those
parameters are the same as parameters we’ve used in other functions, but font size
in points, angle, name of font, and the text to print are all new. The X and Y coor-
dinates might fool you at first, because they should be set to the position in which
you want the lower-left corner of the first character to appear.

The angle parameter works almost in the same manner as the angle parameters
used in imagefilledarc(), with the difference being that it works in the opposite
direction—the angles in imagefilledarc() work in a clockwise direction from 3
o’clock, whereas imagettftext() works counter-clockwise. That is, specifying 15
as the angle will make the text rotate 15 degrees so that it slants upward.

The font name parameter needs to point to the TTF file you want to use. If this
filename does not begin with /, PHP will automatically add .ttf to the end and
search locally. On Unix machines, you may find that PHP searches in /usr/share/
fonts/truetype. As you can see in the example, “ARIAL” is specified, so ARIAL.
TTF will be loaded and used for printing the text.

The final parameter for the function is the text to print, and you should be sure to
specify any new lines as \n\r, not one or the other. You may find that certain fonts
do not have various special characters—in this situation, you will see empty boxes
drawn rather than the special characters.

The output from this script is shown in Figure 16-6.

If you do not want your text to be anti-aliased (smooth-edged), put
a minus sign before your color, e.g., -$white.

Fitting text into an exact space is a complex art, particularly when you rotate the
text too. PHP makes the job easier with the function imagettfbbox(), which will
return an array containing the coordinates of a bounding box around the text—
literally, how big it is in each of its dimensions. The complication here is that it is
tricky to get the coordinate system right, as the numbers returned seem easier to
use than they actually are.

To call imagettfbbox(), you need to pass in four parameters: font point size, rota-
tion angle, font name, and text string to measure. This is essentially a cut-down
version of imagettftext(), so you can just copy your existing call to that and
remove the unnecessary parameters.

Figure 16-6. Any TrueType font at any size, any angle, and any color—all through one
easy function

Outputting Text | 253

M
an

ip
u

latin
g

Im
ag

es

What you will get back is an array of eight elements, which are shown in
Table 16-1.

Each of those coordinates are relative to the text itself, viewed horizontally. That
is, although 0 should be the lower-left corner of our first letter, it’s unlikely that
either the lower-left X or the lower-left Y will be 0, particularly if your text is
rotated. For example, in our previous example we rotated text 15 degrees counter-
clockwise, which would put the lower-left corner of our rotated text to the right
and above the lower-left corner of the horizontal text. Add to that the fact that the
numbers are frequently a little off, especially if you use large fonts, and you should
be ready for problems!

However, if you are not rotating your text, or if you are rotating only a little
(under about 20 degrees), you are not likely to encounter any problems, and you
can use a fairly simple script like this next one to get your image fitting your text
closely:

if(!isset($_GET['size'])) $_GET['size'] = 44;
if(!isset($_GET['text'])) $_GET['text'] = "Hello, world!";

$size = imagettfbbox($_GET['size'], 0, "ARIAL", $_GET['text']);
$xsize = abs($size[0]) + abs($size[2]);
$ysize = abs($size[5]) + abs($size[1]);

$image = imagecreate($xsize, $ysize);
$blue = imagecolorallocate($image, 0, 0, 255);
$white = ImageColorAllocate($image, 255,255,255);
imagettftext($image, $_GET['size'], 0, abs($size[0]), abs($size[5]), $white,
 "ARIAL", $_GET['text']);

header("content-type: image/png");
imagepng($image);
imagedestroy($image);

Note the use of the abs() function to convert negative numbers to positive. The
value abs($size['5']) is used as the Y coordinate for the text because
imagettfbbox() returns its values from the lower-left corner of the baseline of the
text string, not the absolute lower-left corner. The baseline of a letter is where it

Table 16-1. The eight elements in the array returned by imagettfbox()

0 Lower-left corner, X coordinate

1 Lower-left corner, Y coordinate

2 Lower-right corner, X coordinate

3 Lower-right corner, Y coordinate

4 Upper-right corner, X coordinate

5 Upper-right corner, Y coordinate

6 Upper-left corner, X coordinate

7 Upper-left corner, Y coordinate

254 | Chapter 16: Manipulating Images

would sit if you were handwriting it on lined paper—for example, the letter “a”
sits on the line, whereas the letter “y” sits below the line, with the “v” part of the
letter resting on the baseline. The baseline problem is illustrated in Figures 16-7
and 16-8.

Loading Existing Images
Some of the best ways to use the image functions in PHP are with existing images.
For example, you can write a script to dynamically create buttons by first loading
a blank button image from your hard drive and overlaying text on top. Loading
images takes the form of a call to imagecreatefrom*(), where the * is png, jpeg, or
various other formats. These functions take just one parameter, which is the file to
load, and return an image resource for use as we’ve been doing already.

The first step in creating a customizable button script is to create a blank button
(as in Figure 16-9) using the art package of your choice.

Adding text to this button is largely the same as our existing text code, with a few
minor changes:

• The $blue color is no longer needed, and we will not be using imagecreate().

• We need to center the text in the middle of the button.

• The font size needs to come down a little in order to fit the button.

With that in mind, here’s the new script:

if(!isset($_GET['size'])) $_GET['size'] = 26;
if(!isset($_GET['text'])) $_GET['text'] = "Button text";

$size = imagettfbbox($_GET['size'], 0, "ARIAL", $_GET['text']);
$xsize = abs($size[0]) + abs($size[2]);
$ysize = abs($size[5]) + abs($size[1]);

Figure 16-7. This text uses the image height to align the text to the bottom of the picture;
note how the “g” in “sitting” is cut off because it falls below the baseline

Figure 16-8. This text aligns to the top of the picture, as our code does, so that the baseline
is no longer right at the bottom and the “g” is fully visible

Figure 16-9. A blank button saved in PNG format is easy to load into PHP for dynamic
modification

Color and Image Fills | 255

M
an

ip
u

latin
g

Im
ag

es

$image = imagecreatefrompng("button.png");
$imagesize = getimagesize("button.png");
$textleftpos = round(($imagesize[0] - $xsize) / 2);
$texttoppos = round(($imagesize[1] + $ysize) / 2);
$white = ImageColorAllocate($image, 255,255,255);

imagettftext($image, $_GET['size'], 0, $textleftpos, $texttoppos, $white,
"ARIAL", $_GET['text']);
header("content-type: image/png");
imagepng($image);
imagedestroy($image);

The new function in that script is getimagesize(), which returns the width and
height of the image specified in its parameter as an array, with elements 0 and 1
being the width and height, respectively. In addition, element 2 is the type of the
picture, and will be set to either IMAGETYPE_BMP, IMAGETYPE_GIF, IMAGETYPE_JPEG,
IMAGETYPE_PNG, IMAGETYPE_PSD, IMAGETYPE_SWF, among other values. This element is
particularly helpful when used with image_type_to_mime_type().

Running that script without any parameters generates the picture shown in
Figure 16-10, although you can send “text” and “size” if you want to play around.
With this script in place, you can generate a whole toolbar of buttons for a web
site using this one script, simply by changing the “text” value you pass in. Of
course, it is not very efficient to keep regenerating the same buttons each time a
page is loaded, so if I were you, I would save each generated picture as a file
named after the text used—that way, you can use file_exists() to attempt to
load the existing picture and save the extra work.

With just a little work, we can even add a simple shadow to the text, as shown in
Figure 16-11. To do this, allocate a new color for the shadow (such as black), then
call imagettftext() twice—once for the shadow, and again for the text itself.
Offset the shadow by +1 on X and Y, and the text by -1 on X and Y, completing
the effect.

Color and Image Fills
The function imagefill() takes four parameters: an image resource, the X and Y
coordinates to start the fill at, and the color with which to fill. The fill will auto-
matically flood your image with color outward from the point specified by your X
and Y parameters until it encounters any other color.

Figure 16-10. An empty button overlaid with rendered text

Figure 16-11. Drawing text twice to get a shadow

256 | Chapter 16: Manipulating Images

Put this imagefill() function call into your addingtext.php script, just after
imagettftext():

$red = imagecolorallocate($image, 255, 0, 0);
imagefill($image, 0, 0, $red);

With that function, our red color is used to fill in the image starting from (0,0),
which is the top-left corner. If you load the script into your web browser, you will
see the fill has left some parts of the blue behind—the parts it couldn’t “reach”
inside the text. Also, you will notice there is a bluish fringe around the text, where
the white text was anti-aliased (smoothed) against the blue background,
producing a blue-white edge to the text. Figure 16-12 shows how the fill looks
with the blue areas that could not be reached inside letters. Figure 16-13 shows a
close-up of the letter “o,” where you can see the anti-aliasing in action. As our fill
starts on blue, it will not fill over any other shade of blue, which is why this fringe
has been left there.

There is a similar function, imagefilltoborder(), where the color to fill is the fifth
parameter, and the new fourth parameter is the color at which the fill should stop
“flowing.” That is, the fill will keep flooding outward until it hits the border color.
If we change our imagefill() call to imagefilltoborder() and specify $white as
the color at which to stop, it should eliminate the anti-aliasing fringe around the
letters. Replace the imagefill() call with this:

imagefilltoborder($image, 0, 0, $white, $red);

Whereas the imagefill() function will fill the image with color until it encoun-
ters any other color, the imagefilltoborder() function call shown above will fill
the image with color and continue until it finds pixels colored with $white. When
you look at it in your browser, you will notice the text has become very jagged,
because our red fill has taken away all the blue-white smoothing.

Figure 16-12. Our first fill leaves blue areas inside letters, and also a blue fringe around
each of the letters

Figure 16-13. Anti-aliasing has made PHP blend the blue and white together on the edges
of the letters to get a smooth effect—our fill leaves these intact

Adding Transparency | 257

M
an

ip
u

latin
g

Im
ag

es

The imagesettile() function allows you to use an existing image as the picture
for your fill in place of a color, which PHP will tile across your image as it fills.
This function takes just two parameters: the image you want to change and the
image to use as a tile fill.

In order to use a tiled image for your fills rather than a color, pass the constant
IMG_COLOR_TILED where you would usually pass a color. Thus, we can alter the
addingtext.php script to look like this:

if(!isset($_GET['size'])) $_GET['size'] = 44;
if(!isset($_GET['text'])) $_GET['text'] = "Hello, world!";
$size = imagettfbbox($_GET['size'], 0, "ARIAL", $_GET['text']);
$xsize = abs($size[0]) + abs($size[2]);
$ysize = abs($size[5]) + abs($size[1]);

$image = imagecreate($xsize, $ysize);
$blue = imagecolorallocate($image, 0, 0, 255);
$white = ImageColorAllocate($image, 255,255,255);
imagettftext($image, $_GET['size'], 0, abs($size[0]), $ysize, $white,
"ARIAL", $_GET['text']);

$bg = imagecreatefrompng("button_mini.png");
imagesettile($image, $bg);
imagefill($image, 0, 0, IMG_COLOR_TILED);
header("content-type: image/png");

imagepng($image);
imagedestroy($image);
imagedestroy($bg);

You can use imagesettile() as many times as you need in order to do several fills
using different images. As an added bonus, once you have used imagesettile(),
you can also use IMG_COLOR_TILED wherever you create filled shapes—just use it in
place of the color and you can create tiled polygons, ellipses, and other shapes.

Adding Transparency
Specifying the part of an image that should be transparent is as simple as picking
the color to use as transparent and passing it into the imagecolortransparent()
function. As the support for transparency in some browsers (notably with Internet
Explorer and PNG transparency) is limited, this function is most useful when the
transparent image is used as part of a larger image so that the transparency can be
seen.

$image = imagecreatetruecolor(400,400);

$black = imagecolorallocate($image, 0, 0, 0);
imagecolortransparent($image, $black);

/// rest of picture here

258 | Chapter 16: Manipulating Images

Using Brushes
In the same way that imagesettile() allows you to use a picture for filling,
imagesetbrush() allows you to use a picture for an outline. While this could be a
premade picture you’ve just loaded, you can get nice effects by using handmade
pictures that are swept around basic shapes.

Figure 16-14 shows a picture of a lot of dots ranging in color from red to yellow—
not very interesting, but great for using as a brush.

Those dots were created with this script:

$brush = imagecreate(100,100);

$brushtrans = imagecolorallocate($brush, 0, 0, 0);
imagecolortransparent($brush, $brushtrans);

for ($k = 1; $k < 18; ++$k) {
 $color = imagecolorallocate($brush, 255, $k * 15, 0);
 imagefilledellipse($brush, $k * 5, $k * 5, 5, 5, $color);
}

imagepng($brush);
imagedestroy($brush);

The next step is to create a larger image, recreate that brush, and use it as the
outline for a shape. Here’s the code:

$pic = imagecreatetruecolor(600,600);
$brush = imagecreate(100,100);

$brushtrans = imagecolorallocate($brush, 0, 0, 0);
imagecolortransparent($brush, $brushtrans);

Why JPEGs Don’t Support Transparency

JPEGs do not support transparency and will likely never do so. This is because
both methods of transparency—color selection and alpha channels—are unsuit-
able for the JPEG format.

The first is impossible because JPEGs do not guarantee exact color matching,
which means that a color you expect to be transparent may end up not. The
second is because alpha channels usually have large blocks of transparency
followed by a quick change to non-transparency—something that JPEG handles
very badly, because it relies on smooth changes in colors to compress well.

Figure 16-14. The picture we’ll be using as our brush

Using Brushes | 259

M
an

ip
u

latin
g

Im
ag

es

for ($k = 1; $k < 18; ++$k) {
 $color = imagecolorallocate($brush, 255, $k * 15, 0);
 imagefilledellipse($brush, $k * 5, $k * 5, 5, 5, $color);
}

imagesetbrush($pic, $brush);
imageellipse($pic, 300, 300, 350, 350, IMG_COLOR_BRUSHED);

imagepng($pic);
imagedestroy($pic);
imagedestroy($brush);

The new line in there is the call to imagesetbrush()—note that it takes the image
you’re changing as the first parameter, and the brush to use as the second. To
actually use the brush that has been set, we need to pass the special constant IMG_
COLOR_BRUSHED as the color parameter for our shape.

That’s pretty much it. The only other thing is the call to imagecolortransparent(),
which is there so that the black part of the brush (most of it!) doesn’t overlay
itself.

The result of that script is shown Figure 16-15—not bad for such a simple script,
particularly as only one ellipse is actually drawn in the code.

Once you’ve used your brush, you can change it for something else, and do so as
many times as you want. Figure 16-16 shows the output of this next script, which
uses ellipses drawn several times in different colors by re-creating the brush as
necessary:

$pic = imagecreatetruecolor(400,400);

$bluecol = 0;

Figure 16-15. Drawing an ellipse with our dots gives us a brightly colored Mobius strip

260 | Chapter 16: Manipulating Images

for ($i = -10; $i < 410; $i += 80) {
 for ($j = -10; $j < 410; $j += 80) {
 $brush = imagecreate(100,100);

 $brushtrans = imagecolorallocate($brush, 0, 0, 0);
 imagecolortransparent($brush, $brushtrans);

 for ($k = 1; $k < 18; ++$k) {
 $color = imagecolorallocate($brush, 255,
 $k * 15, $bluecol);
 imagefilledellipse($brush, $k * 2, $k * 2,
 1, 1, $color);
 }

 imagesetbrush($pic, $brush);
 imageellipse($pic, $i, $j, 50, 50, IMG_COLOR_BRUSHED);

 imagedestroy($brush);
 }

 $bluecol += 40;
}

imagepng($pic);
imagedestroy($pic);

Basic Image Copying
The two functions imagecopy() and imagecopymerge() are similar in that they
copy one picture into another. Both of their first eight parameters are identical:

• The destination image you’re copying to

• The source image you’re copying from

Figure 16-16. Many dots, many ellipses, and many colors: iteration in action

Basic Image Copying | 261

M
an

ip
u

latin
g

Im
ag

es

• The X coordinate you want to copy to

• The Y coordinate you want to copy to

• The X coordinate you want to copy from

• The Y coordinate you want to copy from

• The width in pixels of the source image you want to copy

• The height in pixels of the source image you want to copy

Parameters three and four allow you to position the source image where you want
it on the destination image, and parameters five, six, seven, and eight allow you to
define the rectangular area of the source image that you want to copy. Most of the
time, you will want to leave parameters five and six at 0 (copy from the top-left
corner of the image), and parameters seven and eight at the width of the source
image (the bottom-right corner of it) so that it copies the entire source image.

The way these functions differ is in the last parameter: imagecopy() always over-
writes all the pixels in the destination with those of the source, whereas
imagecopymerge() merges the destination pixels with the source pixels by the
amount specified in the extra parameter: 0 means “Keep the source picture fully,”
100 means “Overwrite with the source picture fully,” and 50 means “Mix the
source and destination pixel colors equally.” The imagecopy() function is there-
fore equivalent to calling imagecopymerge() and passing in 100 as the last
parameter.

Figures 16-17 and 16-18 show two input images that will be used to test these
functions.

Now, to get those two to merge, we need a script like this one:

$stars = imagecreatefrompng("stars.png");
$gradient = imagecreatefrompng("gradient.png");
imagecopymerge($stars, $gradient, 0, 0, 0, 0, 256, 256, 60);
header('Content-type: image/png');
imagepng($stars);
imagedestroy($stars);
imagedestroy($gradient);

That merges the two at 60%, which gives slightly more prominence to the
gradient. The result is shown in Figure 16-19.

Figure 16-17. Our source picture: some stars

262 | Chapter 16: Manipulating Images

Scaling and Rotating
PHP offers you two different ways to resize an image, and you should choose the
right one for your needs. The first option, imagecopyresized(), allows you to
change the size of an image quickly but has the downside of producing fairly low-
quality pictures. When an image with detail is resized, aliasing (“jaggies”) is
usually visible, which makes the resized version hard to read, particularly if the
resizing was to an unusual size. The other option is imagecopyresampled(), which
takes the same parameters as imagecopyresized() and works in the same way,
with the exception that the resized image is smoothed so that it is still visible. The
downside here is that the smoothing takes more CPU effort, so the image takes
longer to produce.

Here is an example of imagecopyresized() in action— save it as specialeffects.php:

header("content-type: image/png");
$src_img = imagecreatefrompng("complicated.png");
$srcsize = getimagesize("complicated.png");
$dest_x = $srcsize[0] / 1.5;
$dest_y = $srcsize[1] / 1.5;
$dst_img = imagecreatetruecolor($dest_x, $dest_y);

imagecopyresized($dst_img, $src_img, 0, 0, 0, 0,
 $dest_x, $dest_y, $srcsize[0], $srcsize[1]);
imagepng($dst_img);

Figure 16-18. Our destination picture: a smooth, blue gradient

Figure 16-19. Stars + gradient + some imagination = the night sky

Scaling and Rotating | 263

M
an

ip
u

latin
g

Im
ag

es

imagedestroy($src_img);
imagedestroy($dst_img);

There are two images being used in there. The first one, $src_img, is created from
a PNG screenshot of the online PHP manual—this contains lots of text, which
highlights the aliasing problem with imagecopyresized() nicely. The variables
$dest_x and $dest_y are set to be the width and height of complicated.png divided
by 1.5, which will set the destination size to be 66% of the source size. Resizing
“exact” values such as 10%, 50%, etc., usually looks better than resizing unusual
values such as 66%, 79%, etc.

The second image is then created using imagecreatetruecolor() and our destina-
tion sizes, and is stored in $dst_img. Now comes the key part: imagecopyresized()
takes quite a few variables, and you needn’t bother memorizing them. They are, in
order, the image to copy to, image to copy from, destination X coordinate, desti-
nation Y coordinate, source X coordinate, source Y coordinate, destination width,
destination height, source width, and source height. Parameters three to six, the
coordinates, allow you to copy regions of the picture as opposed to the whole
picture—PHP will copy from the specified coordinate to the end of the picture, so
by passing in 0, we’re using the entire picture. You probably will not ever want to
copy regions using these parameters, so just leave them as 0.

Take a screenshot of a web site of your choosing and save it as complicated.png in
the same directory as your PHP script, then load up specialeffects.php in your
browser. All being well, you should see something similar to Figure 16-20—the
web site picture has been resized down, but as a result, all the text is hard—if not
impossible—to read.

Now, to give you an idea why imagecopyresampled() is better, change the
imagecopyresized() call to imagecopyresampled(). The parameter list is identical,
so just change the function name. This time, you should see a marked

Figure 16-20. Using imagecopyresized() on a picture is fast, but produces low-quality
results

264 | Chapter 16: Manipulating Images

difference—the web site is still smaller but should be perfectly legible, as the text
should be nicely smoothed. This is shown in Figure 16-21.

The final special effect we’re going to look at is imagerotate(), which rotates an
image. This is much easier to do than resizing and resampling, as it only has three
parameters: the image to rotate, the number of degrees counter-clockwise you
wish to rotate it, and the color to use wherever space is uncovered. The rotation is
performed from the center of the source image, and the destination image will
automatically be sized to fit the whole of the rotated image.

The last parameter only really makes sense once you have seen it in action, so try
out this script:

$image = imagecreatefrompng("button.png");
$hotpink = imagecolorallocate($image, 255, 110, 221);
$rotated_image = imagerotate($image, 50, $hotpink);

header("content-type: image/png");
imagepng($rotated_image);
imagedestroy($image);
imagedestroy($rotated_image);

You’ll need to put your own file in where I have used button.png, but otherwise
you should see something like Figure 16-22 when you load the picture in your
web browser.

The image has been rotated by 50 degrees, anti-aliased to avoid jagged lines, and
resized by the minimum amount so that the outputted picture has just enough
space to hold the rotated image. Finally, note that the gaps in the image, effec-
tively the “background,” have been colored the hot pink we defined. White is
usually preferable, but it would not have been quite so obvious in the screenshot.

Figure 16-21. Using imagecopyresampled() gives a superior end result

Points and Lines | 265

M
an

ip
u

latin
g

Im
ag

es

Points and Lines
Drawing points is accomplished with the function imagesetpixel(), which takes
four parameters: the image to draw on, the X and Y coordinates, and the color to
use. Thus, you can use it like this:

$width = 255;
$height = 255;
$image = imagecreatetruecolor($width, $height);

for ($i = 0; $i <= $width; ++$i) {
 for ($j = 0; $j <= $height; ++$j) {
 $col = imagecolorallocate($image, 255, $i, $j);
 imagesetpixel($image, $i, $j, $col);
 }
}

header("Content-type: image/png");
imagepng($image);
imagedestroy($image);

In that example, there are two loops to handle setting the green and blue parame-
ters with imagecolorallocate(), with red always being set to 255. This color is
then used to set the relevant pixel to the newly allocated color, which should give
you a smooth gradient like the one in Figure 16-23.

Figure 16-22. The button rotated 50 degrees counter-clockwise

Figure 16-23. Smooth gradiants using per-pixel coloring

266 | Chapter 16: Manipulating Images

Drawing lines is only a little more difficult than individual pixels, and is handled
by the imageline() function. This time, the parameters are the image to draw on,
the X and Y coordinates of the start of the line, the X and Y coordinates of the end
of the line, and the color to use for drawing. We can extend our pixel script to
draw a grid over the gradient by looping from 0 to $width and $height, incre-
menting by 15 each time, and drawing a line at the appropriate place. $width and
$height were both set to 241 in the previous script because that is 255 - 15 + 1,
which means it is the largest grid we can draw using the stock 0–255 color range.
The +1 is necessary because drawing a line on the 255th row of the picture would
be invisible—it would be outside!

Add these lines before the header() call:

for ($i = 0; $i <= $width; $i += 15) {
 imageline($image, $i, 0, $i, 255, $black);
}

for ($i = 0; $i <= $height; $i += 15) {
 imageline($image, 0, $i, 255, $i, $black);
}

The first loop draws the vertical lines, so the X coordinate increments by 15 with
each loop, whereas the Y coordinates are always 0 and 255, or from the very top
to the very bottom. The second loop does the same for the horizontal lines, so this
time it is the Y coordinates that change.

To get the script to work, you will also need to add this line after the call to
imagecreatetruecolor():

$black = imagecolorallocate($image, 0, 0, 0);

The output from that script should generate the picture shown in Figure 16-24.

The imagesetthickness() function allows you to specify the width in pixels of all
lines drawn. All lines drawn using imageline() are affected, but it also affects rect-
angles, arcs, etc. To use the function, pass in the image to alter as parameter one,
and the width in pixels as parameter two, then simply draw lines. The new thick-
ness remains in place until you change it again or destroy the image.

Figure 16-24. Grid lines created with imageline() and loops

Special Effects Using imagefilter() | 267

M
an

ip
u

latin
g

Im
ag

es

Special Effects Using imagefilter()

The filters described here were written for the PHP-bundled build
of GD, and may not be available in other releases.

The best way to explain this function is to describe how it works, then show a
code example. Although the function accepts different numbers of parameters
that do very different things, the function returns true if the filter was applied
successfully and false otherwise.

First up is IMG_FILTER_BRIGHTNESS, which takes a number between -255 and 255
that represents how much you want to brighten or darken the image. Setting it to
0 leaves the picture unchanged, 255 sets it to full white (brightest), and -255 sets it
to full black (darkest). Most pictures tend to look almost invisible beyond +200 or
-200.

This code example will lighten our space picture just a little:

$image = imagecreatefrompng("space.png");
imagefilter($image, IMG_FILTER_BRIGHTNESS, 50);
header("content-type: image/png");
imagepng($image);
imagedestroy($image);

Next up is IMG_FILTER_COLORIZE, which takes three parameters between -255 and
255 that respectively represent the red, green, and blue values you want to add or
subtract from the image. Setting the blue value to -255 will take all the blue out of
all the pixels in the image, whereas setting the red to 128 will add red to them.
Setting all three of them to 128 will have the effect of adding white to the picture,
brightening it in the same way as IMG_FILTER_BRIGHTNESS.

This code example will make our image look more magenta:

$image = imagecreatefrompng("space.png");
imagefilter($image, IMG_FILTER_COLORIZE, 100, 0, 100);
header("content-type: image/png");
imagepng($image);
imagedestroy($image);

Moving on, the IMG_FILTER_CONTRAST filter allows you to change the contrast of the
image, and takes just one parameter for a contrast value between -255 and 255.
Lower values increase the contrast of the picture, essentially reducing the number
of colors so that they are more separate and obvious to the eye. Using positive
values brings the colors closer together by mixing them with gray until, at 255,
you have a full-gray picture.

This code example shows how even a small positive number makes quite a differ-
ence to the resulting image:

$image = imagecreatefrompng("space.png");
imagefilter($image, IMG_FILTER_CONTRAST, 20);
header("content-type: image/png");
imagepng($image);
imagedestroy($image);

268 | Chapter 16: Manipulating Images

The IMG_FILTER_EDGEDETECT and IMG_FILTER_EMBOSS filters make all the edges in
your picture stand out as if they were embossed, and sets everything else to gray.
No parameters are needed for either of them, so using them is quite easy.

This next script uses edge detection to grab the edges, then embosses them to
make the effect more obvious:

$image = imagecreatefrompng("space.png");
imagefilter($image, IMG_FILTER_EDGEDETECT);
imagefilter($image, IMG_FILTER_EMBOSS);
header("content-type: image/png");
imagepng($image);
imagedestroy($image);

If you want to blur an image, you have a choice of two filters: IMG_FILTER_
GAUSSIAN_BLUR and IMG_FILTER_SELECTIVE_BLUR. The latter is a generic blur func-
tion, and the former is a classic “out-of-focus lens” technique that often actually
enhances images. Neither function requires parameters.

Although they’re easy to use, there’s no harm showing an example—here are both
of them in action. Just comment out the one you don’t want to see:

$image = imagecreatefrompng("space.png");
imagefilter($image, IMG_FILTER_GAUSSIAN_BLUR);
imagefilter($image, IMG_FILTER_SELECTIVE_BLUR);
header("content-type: image/png");
imagepng($image);
imagedestroy($image);

There’s a similar filter, IMG_FILTER_SMOOTH, which gives you a little more control
over the output. It takes one parameter, but it takes a little explanation! Unlike
the other parameters so far, this isn’t a value pertaining to how much you’d like to
smooth the image. Instead, it’s a weighting for an image manipulation matrix, and
small changes can affect the output massively.

There isn’t enough room here to go into a full discussion of what these manipula-
tion matrices are, but suffice to say you can represent many different
transformations—from Gaussian blur to edge detection—using a 3 × 3 numerical
matrix, that defines how the colors of the eight pixels surrounding any given pixel
(with the pixel itself being the ninth) should have their RGB values changed. With
IMG_FILTER_SMOOTH, the parameter you pass is used as the change value for the
pixel itself, which means you get to define how much the pixel’s own color is used
to form its final color.

You’re not likely to want values outside of the range -8 to 8, as even one number
makes quite a big difference. At about 10, the picture is almost normal, because
the original pixel values are given more weight than the combined sum of its
neighbors. But you can get some cool effects between -6 to -8.

This code example smooths the picture just a little:

$image = imagecreatefrompng("space.png");
imagefilter($image, IMG_FILTER_SMOOTH, 6);
header("content-type: image/png");
imagepng($image);
imagedestroy($image);

Getting an Image’s MIME Type | 269

M
an

ip
u

latin
g

Im
ag

es

There are two helpful filters that alter the colors in a simple way, which are IMG_
FILTER_GRAYSCALE and IMG_FILTER_NEGATE. Both take no parameters: the first sets
the picture to grayscale, and the second sets it to use negative colors.

This code example changes the picture to grayscale, then flips it to negative
colors:

$image = imagecreatefrompng("space.png");
imagefilter($image, IMG_FILTER_GRAYSCALE);
imagefilter($image, IMG_FILTER_NEGATE);
header("content-type: image/png");
imagepng($image);
imagedestroy($image);

Interlacing an Image
Interlacing an image allows users to see parts of it as it loads, and takes different
forms depending on the image type. For example, interlaced JPEGs (called
“progressive”), GIFs, and PNG files show low-quality versions of the file as they
load. In comparison, non-interlaced JPEGs appear line by line. To enable inter-
lacing on your picture, simply call this function with the second parameter set to
1, or set to 0 if you want to disable it.

Interlacing is likely to affect your file size: JPEGs often get smaller when inter-
laced because progressive JPEGs use a more complicated mathematical formula to
compress the picture, whereas PNG files often get larger. Progressive JPEGs are a
mixed blessing, however: Internet Explorer doesn’t handle them properly, and
rather than showing low-quality versions of the JPEG as it loads, it simply down-
loads the entire picture and shows it all at once. As a result, non-progressive
JPEGs (line by line) appear to load faster on Internet Explorer. Other browsers
don’t display this problem.

This example shows interlacing in action for PNG files. It’s not likely to be very
noticeable if you run this on a local web server and/or use small files, because it
will be decompressed too fast.

$image = imagecreatefrompng("space.png");
imagefilter($image, IMG_FILTER_MEAN_REMOVAL);
imageinterlace($image, 1);
header("content-type: image/png");
imagepng($image);
imagedestroy($image);

Getting an Image’s MIME Type
So far we have been handcrafting the header() function call in each of the image
scripts, but many people find MIME types hard to remember and/or clumsy to
use. If you fit into this category, you should be using the image_type_to_mime_
type() function, as it takes a constant as its only parameter and returns the MIME
type string. For example, passing in IMAGETYPE_GIF will return image/gif, passing
in IMAGETYPE_JPEG will return image/jpeg, and passing in IMAGETYPE_PNG will return
image/png.

270 | Chapter 16: Manipulating Images

If you think these constants sound as hard to remember as the MIME types,
you’re probably right. However, a while back we looked at the getimagesize()
function, and I mentioned that the third element in the array returned by that
function is the type of file it is. These two functions both use the same constant,
which means you can use getimagesize() and pass the third element into image_
type_to_mime_type() to have it get the appropriate MIME type for your image—
no memorization of constants required.

$info = getimagesize("button.png");
print image_type_to_mime_type($info[2]);

271

17
Creating PDFs

Adobe makes a collection of commercial products to create, view, and modify
PDFs, but they invariably come with a hefty price tag and generally are restricted
to Windows and Macintosh platforms. Once again, PHP comes to the rescue!

Before you begin, note that measurements are in points, and there are 72 points to
an inch. However, this can be altered by changing the output resolution of the
produced PDF.

Getting Started
Creating a PDF document is similar to creating a picture in that, to get the desired
end result, you state the list of drawing actions required to get there—drawing
lines, text, adding fonts, etc. You need to track the PDF document you are
working with at all times, because other PDF functions use it.

Even creating a simple PDF takes quite a few functions; this next code block does
comparatively little:

$pdf = pdf_new();
pdf_open_file($pdf, "/path/to/your.pdf");
$font = pdf_findfont($pdf, "Times-Roman", "host");

pdf_begin_page($pdf, 595, 842);
pdf_setfont($pdf, $font, 30);
pdf_show_xy($pdf, "Printing text is easy", 50, 750);
pdf_end_page($pdf);

pdf_close($pdf);
pdf_delete($pdf);

Starting at line one, we use pdf_new() to create a new PDF document and store it
in $pdf. This value will be used in all the subsequent functions, so it is important
to keep.

272 | Chapter 17: Creating PDFs

The pdf_open_file() function is used to open a file for writing. Note that the free
version of PDFlib does not allow alteration of existing PDFs; this function merely
creates a new PDF of the given filename. Naturally, it will need to be somewhere
your web server is able to write to; otherwise, you will receive an error along the
lines of "Fatal error: PDFlib error: function 'PDF_set_info' must not be called
in 'object' scope in yourscript.php on line XYZ".

The next line uses pdf_findfont() to find and load a font for use inside the gener-
ated PDF file. In the example, pdf_findfont() takes three parameters—the PDF
document to work with, the name of the font to use, and which encoding to use.
In the example above, $pdf is specified as the first parameter (as always). “Times-
Roman” is specified as the font to use, which is one of the 14 standard internal
PDFlib fonts. The next parameter can be set to either “winansi” (Windows),
“macroman” (Macintosh), “ebcdic” (EBCDIC code page 1047 machines),
“builtin” (for symbol fonts), or “host” (winansi for Windows, macroman for
Macintosh, etc.; recommended).

When successful, pdf_findfont() returns a font resource which is stored in $font.
You may wish to add error checking in your own scripts for extra reliability.

At this point, we’re ready to start on the main part of PDF generation. The first
three lines merely set things up for the document. The next four—lines four to
seven—are the page itself. Reading the source, it should be easy to see that line
four and line seven encapsulate one page in the generated PDF file. Objects and
text outputted between a pdf_begin_page() and pdf_end_page() will affect that
page, and multiple begin/end blocks are used to create multiple pages.

Note that pdf_begin_page() takes a second and third parameter: the X and Y
point size of this page. The PDF format allows you to make your pages different
point sizes from page to page, but you will most often want to choose one size
and stick with it.

You need to pass three parameters to pdf_setfont(): the first is the PDF resource,
as usual; the second parameter is the return value from pdf_findfont for the font
you wish to use; and the final parameter is the size to use, in points. Immediately
afterward, we call pdf_show_xy() to place text into our page. Parameter two of
pdf_show_xy() is the string to use, and parameters three and four are the X and Y
coordinates at which to print the text.

Confusingly, there is a pdf_set_font() function that is depre-
cated—try not to get mixed up!

The last parameter passed to pdf_show_xy() is the distance the text should appear
above the page baseline in points. That is, setting this parameter to 0 will have the
bottom of a lowercase “a” at the very bottom of the page, and the bottom of a
lowercase “y” outside the margins of the page.

With pdf_end_page() called, the first and only page is completed, and all that is
left to do is clean things up. This is done through the help of two functions, which
are pdf_close() and pdf_delete(). They may sound somewhat similar, but you
do need to call them both: pdf_close() cleans up the PDFlib memory and

Adding More Pages and More Style | 273

Creatin
g

 P
D

Fs

document-related resources, whereas pdf_delete() cleans up PHP’s reference to
$pdf and any other internal resources. Be sure to call them in the order shown
above.

When you run that script through your web browser, you won’t see any
“Success!” message printed out. However, you should find your PDF file has been
created and is viewable in your PDF reader of choice.

Adding More Pages and More Style
Adding more pages is done by calling pdf_begin_page() and pdf_end_page()
repeatedly, like this:

for ($i = 1; $i < 10; ++$i) {
 pdf_begin_page($pdf, 595, 842);
 pdf_setfont($pdf, $font, 30);
 pdf_show_xy($pdf, "This is page $i", 50, 750);
 pdf_end_page($pdf);
}

A good start is to have a selection of typefaces ready for various parts of your
document. In our first example, we have just one—Times-Roman is stored in
$font. However, that could be easily modified to this:

$times = pdf_findfont($pdf, "Times-Roman", "host");
$timesb = pdf_findfont($pdf, "Times-Bold", "host");
$timesi = pdf_findfont($pdf, "Times-Italic", "host");

Combined with the use of pdf_setfont()’s third parameter, we can create headers
and subheaders like this:

for ($i = 1; $i < 10; ++$i) {
 pdf_begin_page($pdf, 595, 842);

 pdf_setfont($pdf, $times, 24);
 pdf_show_xy($pdf, "This is page $i", 50, 750);

 pdf_setfont($pdf, $timesb, 16);
 pdf_show_xy($pdf, "Subheader", 100, 700);

 pdf_setfont($pdf, $timesi, 16);
 pdf_show_xy($pdf, "This is some standard text.", 100, 700);

 pdf_end_page($pdf);
}

We can even throw in the pdf_setcolor() function, which takes two text values
followed by color values for its fourth, fifth, sixth, and (optionally) its seventh
parameters, and uses them to set the color of fills and objects that follow.

Try adding this line just before the first pdf_setfont()...

pdf_setcolor($pdf, "both", "rgb", 1.0 - (0.1 * $i), 0.0, 0.0);

And adding this line just before the second pdf_setfont()...

pdf_setcolor($pdf, "both", "rgb", 0.0, 0.0, 0.0 + (0.1 * $i));

274 | Chapter 17: Creating PDFs

The "both" in there means “Set both fill and stroke color” (recommended most of
the time), and the "rgb" means “We’re going to provide red, green, and blue
values for the value.” If you’d rather provide CMYK, specify "cmyk" instead of
"rgb" and add the extra color value. The PDF generated from that code should
have a top header that starts off red and fades into black, and a second-level
header and main text that starts off black and fades into blue.

Adding Images
PHP provides us with two functions for using images in PDFs: pdf_open_image_
file() and pdf_place_image(). The former reads a specified image type (param-
eter two) of a specified file name (parameter three) and returns an image that can
be used in subsequent functions.

The pdf_place_image() function then takes the returned image as its second
parameter, and also allows you to specify the X coordinate (parameter three), Y
coordinate (parameter four), and any scaling (parameter five) you wish to be
applied to the image.

For this next example, you will need to find a JPEG, name it myimage.jpg, and
place it in the same directory as the script before you run the script.

$pdf = pdf_new();
pdf_open_file($pdf, "/path/to/your.pdf");
pdf_begin_page($pdf, 595, 842);

$testimage = pdf_open_image_file($pdf, "jpeg", "myimage.jpg");
pdf_place_image($pdf, $testimage, 0, 0, 0.5);
pdf_end_page($pdf);
pdf_close($pdf);
pdf_delete($pdf);

In the above example, we set the scale parameter of pdf_place_image() (param-
eter five) to 0.5, which will show our myimage.jpg picture at half its original size.
Note that altering the scale value of pictures will not change the final file size of
the PDF that you output, because the file is saved unscaled and then scaled at run-
time.

Owing to its saving pictures unscaled, the PDF format allows you to reuse images
without having to store multiple copies in the file. So, if we go back to our earlier
for loop where we had 10 pages being generated, we get something like this:

$pdf = pdf_new();
pdf_open_file($pdf, "/path/to/your.pdf");

$times = pdf_findfont($pdf, "Times-Roman", "host");
$timesb = pdf_findfont($pdf, "Times-Bold", "host");
$timesi = pdf_findfont($pdf, "Times-Italic", "host");

$testimage = pdf_open_image_file($pdf, "jpeg", "myimage.jpg");

for ($i = 1; $i < 10; ++$i) {
 pdf_begin_page($pdf, 595, 842);
 pdf_setcolor($pdf, 0.0, 0.0, 0.0);

Adding Document Data | 275

Creatin
g

 P
D

Fs

 pdf_setfont($pdf, $times, 24);
 $scaleval = $i * 10 . '%';
 $smallscale = 0.1 * $i;
 pdf_show_xy($pdf, "This is page $i - $scaleval scale", 50, 750);
 pdf_place_image($pdf, $testimage, 0, 0, $smallscale);
 df_end_page($pdf);
}

pdf_close($pdf);
pdf_delete($pdf);

The PDF file generated by that script will be only slightly larger than the previous
file.

PDF Special Effects
We can further manipulate images through the use of pdf_rotate() and pdf_skew()
—two functions whose purposes you should be able to guess quite easily. Both take a
PDF document reference as their first parameter. The pdf_rotate() function then
takes one extra parameter—how much to rotate the coordinate system, in degrees—
whereas pdf_skew() takes two extra parameters: how much to skew the coordinate
system in the X direction and how much in the Y direction.

Try adding these two lines just after the call to pdf_begin_page() inside the loop
of the previous script:

pdf_skew($pdf, 10, 10);
pdf_rotate($pdf, 5);

Adding Document Data
PDFs are designed to be read like normal printed documents, so Adobe incorpo-
rated the ability to add notes in the same manner one might scribble in a margin.

These notes, which can be edited and re-edited by readers, can also be created
using PHP by calling the function pdf_add_note(). Here is an example of its use:

pdf_add_note($pdf, 100, 500, 700, 600, "You can create notes easily
 using pdf_add_note()", "Sticky notes", "note", 1);

The second, third, fourth, and fifth parameters are, respectively, the lower-left X
and lower-left Y coordinates, and the upper-right X and upper-right Y coordi-
nates of the note boundaries. The sixth and seventh parameters are the text to put
inside the note and the title to place at the top, and the final two parameters
decide the icon used to display the note when closed, and whether or not the note
starts open. Once the PDF is loaded, your reader is usually free to move these
notes around and edit the text inside them.

In the line above, we add a 600x100 note box that is already open (use 1 to specify
the note is open, and 0 to specify it is closed). Instead of note as the penultimate
parameter, we have various other options: comment, insert, paragraph,
newparagraph, key, or help. In several PDF readers, this parameter has no effect
and can be just left as note.

276 | Chapter 17: Creating PDFs

Another important facet to improving the usefulness of documents is to provide
meta-data regarding who created the document, and when. This can be achieved
through the use of pdf_set_info(), which takes a key and a value as its second
and third parameters. The standard keys for use are Subject, Title, Creator,
Author, and Keywords, but you are also able to add your own keys, such as
Modified, Created, etc.

Now we can finish off our script by adding in some metadata—add these three
lines just below pdf_open_file():

pdf_set_info($pdf, "Creator", "TelRev");
pdf_set_info($pdf, "Title", "PHP PDF 101");
pdf_set_info($pdf, "MyInfo", "You can write what you please here");

When you read the PDF generated by the finished script, you should see the note
sticking out quite obviously. The metadata will be there too, but it is likely to be
hidden away under a menu somewhere.

277

18
Creating Flash

PHP uses the Ming library for generating Flash movies, which is licensed under
the LGPL. The library is also object-oriented and actively developed by the main-
tainers. In Flash, all values specifying some form of distance, length, height, or
size are in twips, which means a twentieth of a pixel. Flash movies scale to fit their
container, though, so these measurements are entirely arbitrary figures.

A Simple Movie
One of the biggest advantages to Ming is that it is object-oriented, so you create a
shape object, tell it what color it should be, then add it to the movie. The same
process applies for all the other operations in Ming, which makes the code easy to
read. Here is a script that creates a basic movie:

$mov = new SWFMovie();
$mov->setDimension(200,20);

$shape = new SWFShape();
$shape->setLeftFill($shape->addFill(0xff, 0, 0));
$shape->movePenTo(0,0);
$shape->drawLineTo(199,0);
$shape->drawLineTo(199,19);
$shape->drawLineTo(0,19);
$shape->drawLineTo(0,0);

$mov->add($shape);
header('Content-type: application/x-shockwave-flash');
$mov->output();

Save that script as ming1.php.

First we create a new instance of the SWFMovie class and assign it to our $mov vari-
able. An SWFMovie object allows you to manipulate attributes of the movie as a

278 | Chapter 18: Creating Flash

whole —size, color, animation frame rate, etc. It is also used to add other Flash
objects to your movie, so you must hold on to the SWFMovie object that was
created.

The setDimension() function is an SWFMovie function that allows you to set the
height and width of a movie by specifying values in the first and second parame-
ters. Remember that Flash movies generally have their dimensions set in their host
application (usually a web browser). The values you specify here are for the movie
as you are creating it; however, if the Flash movie is forced to display at a different
size, your items will automatically be proportionally scaled to fit the assigned
space.

Moving on to the core of the code, we have a new class: SWFShape. Not surpris-
ingly, we use objects of this class to manipulate shapes in Flash movies—the
process is simply to create, manipulate, and then add to the parent movie object.
If you forget to add your shapes to your movie object, the end result is that they’ll
be missing from the final output, so be careful.

In the example above, the parameter that SetLeftFill() takes is the return value
of an AddFill() call. This is a function of the SWFShape class, and is overloaded
(there is more than one version of it). The version used in the example above takes
four parameters—the amount of red to use, the amount of blue, then green, and
finally, an optional alpha parameter. The fill returned by the AddFill() function is
used to supply the first parameter to SetLeftFill(), which is also overloaded. The
end result is that the value passed to SetLeftFill() sets the fill on the left-hand
side of the edge—in our example above, this is red.

Next we call MovePenTo() and DrawLineTo() several times. The movePenTo() func-
tion lifts the drawing “pen” from the canvas and places it down at the X and Y
points specified by the first two parameters, respectively. The drawLineTo() func-
tion moves the pen in the same sort of way, except that it does not “lift” the pen
from the canvas first, meaning that a line is drawn from the last pen location to the
X and Y parameters passed into drawLineTo(), respectively. The drawLineTo() func-
tion is called a total of four times, giving us a box, and finally we call the Add()
function of our SWFMovie object, $mov, passing in our new box as the parameter—
this adds the new shape to the final output.

The last two lines are crucial to the whole process, and must be used precisely as
seen above. The first of the two calls the header() function, passing in the correct
content type to instruct browsers that the information following is a Shockwave
Flash movie. The last line calls the Output() function of our SWFMovie object,
which sends all the information you have prepared about your Flash movie out to
your client. Once you have called this line, your script is complete.

Generally speaking, you will want to embed your Flash movies inside web pages,
and that requires inserting the following line somewhere in a HTML page:

<embed src="ming1.php" menu="false" quality="best" bgcolor="#FFFFFF"
swLiveConnect="FALSE" WIDTH="200" HEIGHT="200"
TYPE="application/x-shockwave-flash" PLUGINSPAGE="http://www.macromedia.com/
shockwave/download/index.cgi?P1_Prod_Version=ShockwaveFlash" />

Flash Text | 279

Creatin
g

 Flash

To view your animation in action, load the HTML page into your browser. If your
Flash movie does not load at all, there may be an error in the PHP script. When
viewing the HTML page, you will not see any PHP warnings, because the Flash
movie is being sent directly to your browser’s Flash player as part of a larger page.
You can work around this by loading the Flash movie directly into your
browser—you should see the errors printed as normal.

Flash Text
Following the rest of the library, text inside your Flash movie is manipulated using
objects. The two key classes here are SWFFont and SWFText. The former holds the
actual font shape data, whereas the latter holds information about the text as a
whole, including color, position, string data, and the instance of SWFFont used to
draw the letters.

The code to generate text works differently under Windows and Unix. First up,
Linux users:

$font = new SWFFont("Impact.fdb");
$text = new SWFText();

$text->setFont($font);
$text->moveTo(200, 400);
$text->setColor(0, 0xff, 0);
$text->setHeight(200);
$text->addString("Text is surprisingly easy");

$movie = new SWFMovie();
$movie->setDimension(6400, 4800);
$movie->add($text);

header('Content-type: application/x-shockwave-flash');
$movie->output();

The Windows code isn’t far off, and the end result is the same:

$font = new SWFFont("Impact");
$text = new SWFTextField(); // new!
$sprite = new SWFSprite(); // new!

$text->setFont($font);
$text->setColor(0, 0xff, 0);
$text->setHeight(200);
$text->addString("Windows is a little harder!");

$spritepos = $sprite->add($text); // new!
$spritepos->moveTo(200, 400); // new!

$movie = new SWFMovie();
$movie->setDimension(6400, 4800);
$movie->add($text);

header('Content-type: application/x-shockwave-flash');
$movie->output();

280 | Chapter 18: Creating Flash

You’ll need to alter your HTML file to display the new script, and also change the
width and height attributes of the <embed> object so that the Flash movie is larger;
otherwise, you will find the text is probably too small to notice.

That code starts with the two new classes, SWFFont and SWFText. The SWFFont class
is remarkably easy to use—merely pass the name of the FDB file you want to use
as a font, and save the return value for later use. You can create your own FDB
fonts using Ming’s makefdb utility (available from Ming’s home page, http://ming.
sourceforge.net), so you should replace Impact.fdb in the example with your own
font.

In line two of our script, we create a new SWFText object and store it in a $text
variable. This object works in pretty much the same way as our previous SWFShape
object—we set various properties of it, then add it to the parent movie once we’re
done.

The first thing we do with our $text object is call its setFont() function, which
makes this SWFText object render in the font used to create the SWFFont object
specified as the only parameter. In our case, we created our SWFFont object using
Impact.fdb, so calling setFont() using the new SWFText object will draw the text in
this object using the Impact font.

Next, we call the moveTo() function to place the text neatly inside the movie, and
then call the setColor() function (the values are in hexadecimal) to set the text to
lime green. The setHeight() function sets the height of the text in twips, but
again, remember that the final size of the text is dependent on the size at which
the movie is played back, and also the dimensions of the parent movie object
itself—the value you set here is just relative to the rest of the movie.

The most important function we call for our SWFText object is addString()—this
allows us to draw the string passed as parameter one to the position we set with
our moveTo() call. It is important to note that the pen the text is drawn with is set
to the baseline. If you use moveTo() to set the position to 0,0, the text drawn will
be drawn outside of your movie.

Actions
Through its powerful ActionScript language, Flash provides a flexible scripting
environment to allow developers to take more direct control over the operation
and flow of their script. For example, you can call stop() to stop playing the
movie, then play() to continue; gotoFrame() allows you to jump to a particular
part of your movie, and getURL() allows you to browse to a new web page. There
is a large collection of actions available to you, and the PHP documentation has
some very good (if long) examples on how to make use of various functions.

This next script gives you a quick start in using ActionScript:

function MakeActionBox($red, $green, $blue){
 $shape = new SWFShape();
 $shape->setLeftFill($shape->addFill($red, $green, $blue));
 $shape->movePenTo(-100,-20);
 $shape->drawLineTo(100,-20);
 $shape->drawLineTo(100,20);

Actions | 281

Creatin
g

 Flash

 $shape->drawLineTo(-100,20);
 $shape->drawLineTo(-100,-20);
 return $shape;
}

$button = new SWFButton();
$button->setUp(MakeActionBox(0xff, 0, 0));
$button->setOver(MakeActionBox(0xff, 0xff, 0));
$button->setDown(MakeActionBox(0, 0, 0xff));
$button->setHit(MakeActionBox(0, 0, 0));
$button->addAction(new SWFAction("getURL('http://www.slashdot.org',
 'slashdot');"), SWFBUTTON_MOUSEUP);

$movie = new SWFMovie();
$movie->setDimension(200,200);

$displayitem = $movie->add($button);
$displayitem->moveTo(100,100);

header("Content-type: application/x-shockwave-flash");
$movie->output();

That script uses a custom function, MakeActionBox(), to handle some of the grunt
work you will experience when working with the SWFButton class. The SWFButton
class, used for the $button variable, has several “states” that each require a
shape—how the button looks when it is up, when the mouse is over it, when the
mouse is clicked on it, and where the mouse can be clicked on it. Each of these
states requires a complete shape of its own, so their creation is automated by
using the function MakeActionBox().

Going through the main chunk of code line by line, you can see it creates an
instance of SWFButton and stores it in the $button variable. Four functions are then
called: setUp(), setOver(), setDown(), and setHit(). These define how this
button should look when the user interacts with it. The example is quite short;
you will find it is more visually appealing to have more than just the color change
between states!

Next we come to the important function of this particular script: addAction().
This takes two parameters: the SWFAction object to add and a flag for when the
action should execute. Options include SWFBUTTON_MOUSEUP as seen above or, alter-
natively, SWFBUTTON_MOUSEDOWN, SWFBUTTON_MOUSEOVER, and more—see the
documentation for a full list.

As the first parameter to addAction(), we pass in new SWFAction(...). The
constructor of the SWFAction class takes a string that contains the ActionScript
code you wish the action to execute. For this action, which will execute when the
user clicks the mouse button on the object, we want to execute the GetUrl()
ActionScript function. In the example, GetUrl() is passed two parameters: the
URL to load, and the name of the window to load it in. If the named window does
not exist, it will be created for you. So, the addAction() line translates to “Create a
new ActionScript action that will load the Slashdot web site into a new window,
then attach that action to our button so that it executes whenever the user clicks
the button.”

282 | Chapter 18: Creating Flash

After the ActionScript code, there is a slight change to the normal procedure—we
use $movie->add() as before, except this time we grab the return value and store it
in the $displayitem variable. This is done because, when adding shapes, text,
buttons, and sprites to a movie, the add() function returns a special type of
object—SWFDisplayItem()—which is a handle to the object inside the movie. This
means you can add the same button (or shape, text, etc.) to the movie several
times over, and manipulate them individually without much fuss.

This functionality is important because you cannot manipulate the position of an
SWFButton object directly—you need to add it to the movie first, then manipulate
the position of the returned SWFDisplayItem object. In the line after the add() call,
we do just that.

Finally, the movie is sent to output as usual. If you would like to make your
button more interesting, you might want to try combining the previous code for
manipulating text. To make your ActionScript more interesting, try reading the
ActionScript documentation, available from http://www.macromedia.com/support/
flash/action_scripts/.

Animation
Adding animation to your Flash movies is both fun and taxing. The key to anima-
tion is the SWFDisplayItem object returned by the add() function of your movie
object. SWFDisplayItem objects have a variety of functions that allow you to move,
rotate, scale, and skew your objects easily. This next example demonstrates some
basic animation:

$font = new SWFFont("Impact.fdb");
$text = new SWFText();
$text->setFont($font);
$text->moveTo(300, 500);
$text->setColor(0, 0xff, 0);
$text->setHeight(200);
$text->addString("Text is surprisingly easy");

$movie = new SWFMovie();
$movie->setDimension(6400, 4800);

$displayitem = $movie->add($text);

for($i = 0; $i < 100; ++$i) {
 $displayitem->rotate(-1);
 $displayitem->scale(1.01, 1.01);
 $movie->nextFrame();
}

header('Content-type: application/x-shockwave-flash');
$movie->output();

Although that code is largely the same as a previous script, the $movie->
add($text) line has now changed so that the return value is captured and stored in
$displayitem.

Animation | 283

Creatin
g

 Flash

The script then runs through a loop 100 times, each time calling rotate(), scale(),
and nextFrame(). Animation works by defining the initial state of the movie,
advancing the frame, then specifying changes from the previous frame. In practice,
this means you use nextFrame() each time you want to move forward to the next
frame of your Flash animation.

The rotate() function takes a single parameter, which is the floating-point value
of the amount to rotate your SWFDisplayItem object from its current rotation. In
our example, I have used -1, which means it adds -1 of a degree of rotation with
each frame. Because of the way Flash rotation works, this means that the text
rotates in a clockwise manner.

The scale() function takes two parameters: the amount to scale the object’s
width and the amount to scale its height. Again, this is based on its last state,
which means that the scaling is compounded. By adding 0.01% to the size of our
text over 100 frames, we are almost tripling the size of the object.

So, the contents of the for loop translate to “Rotate slightly, scale slightly, next
frame” 100 times.

284

19
XML & XSLT

This chapter covers XML parsing and manipulation using PHP, and requires that
you have some familiarity with XML, although XML syntax and grammar are not
mentioned in detail—the focus is PHP.

SimpleXML
PHP offers several different ways of parsing XML, but as of PHP 5, the most
popular way is to use the SimpleXML extension. SimpleXML works by reading in
the entire XML file at once and converting it into a PHP object containing all the
elements of that XML file chained together in the same way. Once the file has
been loaded, you can simply pull data out by traversing the object tree.

The advantage of SimpleXML is that you no longer need to write any compli-
cated code to access your XML—you simply load it, then read in attributes as you
would expect to be able to. Consider the following XML file, employees.xml:

<employees>
 <employee>
 <name>Anthony Clarke</name>
 <title>Chief Information Officer</title>
 <age>48</age>
 </employee>

 <employee>
 <name>Laura Pollard</name>
 <title>Chief Executive Officer</title>
 <age>54</age>
 </employee>
</employees>

SimpleXML | 285

XM
L &

 XSLT

The base element is a list of employees, and it contains several employee elements.
Each employee has a name, a title, and an age. Now take a look at this basic
SimpleXML script:

$employees = simplexml_load_file('employees.xml');
var_dump($employees);

Here is the output:

object(simplexml_element)#1 (1) {
 ["employee"]=>
 array(2) {
 [0]=>
 object(simplexml_element)#2 (3) {
 ["name"]=>
 string(14) "Anthony Clarke"
 ["title"]=>
 string(25) "Chief Information Officer"
 ["age"]=>
 string(2) "48"
 }

 [1]=>
 object(simplexml_element)#3 (3) {
 ["name"]=>
 string(13) "Laura Pollard"
 ["title"]=>
 string(23) "Chief Executive Officer"
 ["age"]=>
 string(2) "54"
 }
 }
}

From that, you should be able to see that the base element has an array employee,
containing two elements—one for each of the employees in the XML file. Each
element in that array is another object, containing the name, the title, and the age
of each employee. Put simply, each collection of data is made into an array, and
each distinct XML element is made into an object.

Now, consider the following script, using the same XML file:

$employees = simplexml_load_file('employees.xml');

foreach ($employees->employee as $employee) {
 print "{$employee->name} is {$employee->title} at age {$employee->
age}\n";
}

This time the script actually does something useful with the XML content, and
iterates through the $employees->employee array. As each employee element is
read from the array, its information is printed out. Note how easy it is to read
information from elements, simply because the XML is all converted to standard
PHP variables.

286 | Chapter 19: XML & XSLT

XML Attributes

SimpleXML allows you to access attributes of XML elements as if the element
were an array. Here’s some very simple XML with attributes:

<cakes>
 <cake type="sponge">
 <name language="english">Victoria Cake</name>
 </cake>
</cakes>

In that example, the cake element has a type attribute, and the name element has
a language attribute. This next script accesses them both:

$xml = simplexml_load_file("cakes.xml");
print "{$xml->cake[0]["type"]}\n";
print "{$xml->cake[0]->name["language"]}\n";

The $xml->cake[0] part accesses the first cake element, as we have already
discussed. However, note that it treats the cake as an array in order to get the type
attribute. If we had used $xml->cake[0]->type, it would have looked for a <type>
child element of the cake, which doesn’t exist.

The next line, $xml->cake[0]->name["language"], gets the first cake, pulls out its
<name> child element, then reads the “language” attribute. As long as you
remember that elements use -> and attributes use [], you’ll be OK.

Reading from a String

While simplexml_load_file() loads XML data from a file, simplexml_load_
string() loads XML data from a string. This is generally not as useful, but it does
allow you to load several XML files into one string, then use that inside one
SimpleXML structure.

For example:

$employees = <<<EOT
<employees>
<employee ID="2" FOO="BAR">
<name>Anthony Clarke</name>
<title>Chief Information Officer</title>
<age>48</age>
</employee>
<employee ID="2" BAZ="WOM">
<name>Laura Pollard</name>
<title>Chief Executive Officer</title>
<age>54</age>
</employee>
</employees>
EOT;

$employees = simplexml_load_string($employees);

foreach ($employees->employee as $employee) {

SimpleXML | 287

XM
L &

 XSLT

 print "{$employee->name} is {$employee->title} at age {$employee->
age}\n";
}

The majority of that script is just the heredoc-style string assignment that sets up
the XML. Then, with a call to simplexml_load_string(), the XML is parsed into
the $employees object, just as with the simplexml_load_file() function. The
resulting object is no different.

Searching and Filtering with XPath

The standard way to search through XML documents for particular nodes is
called XPath. Sterling Hughes (the creator of the SimpleXML extension) described
it by saying it’s “as important to XML as regular expressions are to plain text,”
which should give you an idea of just how important it is!

Fortunately for us, XPath is much easier than regular expressions for basic usage.
Using the same employees.xml file, here is an XPath script:

$xml = simplexml_load_file('employees.xml');

echo "Using direct method...
";
$names = $xml->xpath('/employees/employee/name');
foreach($names as $name) {
 echo "Found $name
";
}
echo "
";

echo "Using indirect method...
";
$employees = $xml->xpath('/employees/employee');
foreach($employees as $employee) {
 echo "Found {$employee->name}
";
}
echo "
";

echo "Using wildcard method...
";
$names = $xml->xpath('//name');
foreach($names as $name) {
 echo "Found $name
";
}

That pulls out names of employees in three different ways, and the work is all
done in the call to the xpath() function. This takes a query as its only parameter,
and returns the result of that query. The query itself has specialized syntax, but
it’s very easy. The first example says, “Look in all the employees elements, find any
employee elements in there, and retrieve all the names of them.” It’s very specific
because only employees/employee/name is matched.

The second query matches all employee elements inside employees, but doesn’t go
specifically for the name of the employees. As a result, we get the full employee
back, and need to print $employee->name to get the name.

The last one just looks for name elements, but note that it starts with “//”—this is
the signal to do a global search for all name elements, regardless of where—or
how deeply nested—they are in the document.

288 | Chapter 19: XML & XSLT

XPath can also be used to filter your results according to any values you want. For
example:

$xml = simplexml_load_file('employees.xml');

echo "Matching employees with name 'Laura Pollard'
";
$employees = $xml->xpath('/employees/employee[name="Laura Pollard"]');

foreach($employees as $employee) {
 echo "Found {$employee->name}
";
}

echo "
";

echo "Matching employees younger than 54
";
$employees = $xml->xpath('/employees/employee[age<54]');

foreach($employees as $employee) {
 echo "Found {$employee->name}
";
}

echo "
";

echo "Matching employees as old or older than 48
";
$employees = $xml->xpath('//employee[age>=48]');

foreach($employees as $employee) {
 echo "Found {$employee->name}
";
}

echo "
";

The filter is done between the square brackets, [and]. The first query grabs all
employees elements, then all employee elements inside it, and then filters them so
that only those that have a name that matches Laura Pollard are retrieved. Once
you get that, the other two are quite obvious: <, >, <=, etc., all work as you’d
expect in PHP.

If you want to filter by the value of an attribute rather than the value of an
element, you need to use the @ symbol. For example, our cakes.xml file has cakes
that have a “type” attribute. To search for specific types using XPath, you would
need to use code like this:

$sponge_cakes = $xml->Xpath('//cake[@type="sponge"]');

You can grab only part of a query result by continuing on as normal afterward,
like this:

$ages = $xml->xpath('//employee[age>=48]/age');

foreach($ages as $age) {
 echo "Found $age
";
}

You can even run queries on queries, with an XPath search like this:

$employees = $xml->xpath('//employee[age>=49][name="Laura Pollard"]');

SimpleXML | 289

XM
L &

 XSLT

Going back to selecting various types of elements, you can use the | symbol (OR)
to select more than one type of element, like this:

echo "Retrieving all titles and ages
";
$results = $xml->xpath('//employee/title|//employee/age');

foreach($results as $result) {
 echo "Found $result
";
}

That will output the following:

Found Chief Information Officer
Found 48
Found Chief Executive Officer
Found 54

You can combine all of this together to search on more than one value, like this:

$names = $xml->xpath('//employee[age<40]/name|//employee[age>50]/name');

foreach($names as $name) {
 echo "Found $name
";
}

For more complex work, you can run calculations using XPath in order to get
tighter control over your queries. For example, if you only wanted the names of
employees who have an odd age (that is, cannot be divided by two without
leaving a remainder), you would use an XPath query like this:

$names = $xml->xpath('//employee[age mod 2 = 1]/name');

Along with mod (equivalent to % in PHP) there’s also div for division, + and -,
and ceiling() and floor() (equivalent to their namesakes in PHP). These are
quite advanced and don’t get much use in practice. When using “-”, you have
to keep it from looking like part of an element name, so foo-bar needs to be
written as foo - bar so that we don’t think we’re talking about an element
named foo-bar.

Outputting XML

One of the most interesting features about SimpleXML is that it can, at any time,
give you a string containing the well-formed XML representation of its data. This
essentially does the opposite of simplexml_load_file(), but incorporates any
changes you’ve made to the data while it was in SimpleXML form.

For example:

$xml = simplexml_load_file('employees.xml');
$xml->employee[1]->age = 55;
echo $xml->asXML();

That loads our XML file, and changes the second employee to have an age of 55.
The call to asXML() then outputs the changed data tree, printing this:

<?xml version="1.0"?>
<employees>
 <employee>

290 | Chapter 19: XML & XSLT

 <name>Anthony Clarke</name>
 <title>Chief Information Officer</title>
 <age>48</age>
 </employee>

 <employee>
 <name>Laura Pollard</name>
 <title>Chief Executive Officer</title>
 <age>55</age>
 </employee>
</employees>

Note the changed value for Laura’s age. However, blindly changing values isn’t a
smart move: the XML could change quite easily so that Pollard is no longer the
second person in there. Instead, you should really combine it with an XPath
search, like this:

$xml = simplexml_load_file('employees.xml');
echo "\nBefore transformation:\n\n";

echo $xml->asXML();

$xml->employee[1]->age = 55;

$employees = $xml->xpath('/employees/employee[name="Anthony Clarke"]');
$employees[0]->title = "Chairman of the Board, Chief Information Officer";

echo "\n\nAfter transformation:\n\n";
echo $xml->asXML();

This time the age is changed by referencing Laura directly, but I’ve also changed
the job title of Anthony Clarke using a smart XPath search for his exact name. Of
course, even names can be duplicated by chance, so an employee ID would be
even better!

Transforming XML Using XSLT
XSLT is an XML-based language that allows you to manipulate XML documents
before outputting them. With one XML document, you can make the same
content look vastly different—for example, you could transform it with a WML
XSL stylesheet and send it to WAP devices, or parse it with an SQL XSL stylesheet
and send it to a database.

Several browsers (most notably Firefox and Internet Explorer) can perform XSL
transformation on the client side by downloading an XML document, the XSL
stylesheet, and any accompanying CSS files, then combining them all together on
your visitor’s computer. But someone with an old version of IE, or any other non-
XSL-enabled browser, would not get the same experience.

This is where PHP comes in: your visitor types a URL as usual, but it is PHP that
loads the XML and the XSL and combines the two together into the output. On
the client side, users see no XML or XSL at all, just normal XHTML. Of course,
there is nothing stopping that PHP page from analyzing the visitor’s user agent

Transforming XML Using XSLT | 291

XM
L &

 XSLT

and sending content fit for that browser, whether it be HTML 2, XHTML, WAP,
or anything else.

An Example XSL Document

Here is an example XSL document designed to work on the employees.xml file
from before. Save it in the same directory, as input.xsl:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://my.netscape.com/rdf/simple/0.9/">
 <xsl:output method="html" indent="no" encoding="utf-8"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>XSLT</title>
 </head>
 <body>

 <xsl:for-each select="/employees/employee">
 Job Title: <xsl:value-of select="title"/>

 </xsl:for-each>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

As this is not a book on XSLT (there are enough of those available already!), we
will not spend much time analyzing what that does to our XML.

After the long document type header that is the norm with XML-based languages,
we come to the line starting “<xsl-template”. This matches the root of our XML
input, and prints out some basic HTML to give our page a minimum structure.
The “<xsl:for-each” line is basically an array iterator, like the foreach construct
in PHP. Here, the array is whatever XML elements are found by pattern matching
against the “select” attribute of the for-each, which is /employees/employee in the
example.

The for-each loop contains a line that prints out the value of the title attribute of
each employee. The foreach code is executed once for every matching element it
finds in the input XML, so given our employees.xml, it will execute twice.

Adding PHP to the Mix

PHP’s XSL support was rewritten for PHP 5, and although you can
retrieve the old extension from PECL, it is not recommended.

292 | Chapter 19: XML & XSLT

PHP uses the libxslt library to perform internal XSLT transformations, presenting
its functions through an object-oriented interface.

There are two classes you need to know about to use XSLT: DOMDocument, which
holds XML data, and XSLTProcessor, which does the transformation. The DOMDocument
class is also interesting for more advanced SimpleXML users, as the two exten-
sions can share their XML data.

To perform XSLT transformation, you need two instances of DOMDocument (one for
the XML, and one for the XSL) and one instance of XSLTProcessor. You load XML
documents into a DOMDocument class by calling its load(), like this:

$xml = new DOMDocument;
$xml->load("employees.xml");
$xsl = new DOMDocument;
$xsl->load("input.xsl");

Then, to perform the XSLT transformation, you need to use XSLTProcessor’s
importStyleSheet() function to load your XSL, then its transformToXML() func-
tion to load your XML and transform it. The transformToXML sends back
transformed content as its return value.

The full PHP code looks like this:

$xsl = new DOMDocument();
$xml = new DOMDocument();

$xsl->load("input.xsl");
$xml->load("employees.xml");

$xsltproc = new XSLTProcessor();
$xsltproc->importStylesheet($xsl);
echo $xsltproc->transformToXML($xml);

293

20
Network Programming

PHP has a number of ways to work over a network: the most common protocols
have special functions to make often-used functionality easy, but it is possible to
use PHP to write any kind of data over any kind of protocol.

Sockets
While it is out of the scope of this book to go into detail about network infrastruc-
ture, you at least need to know what protocols, ports, and sockets are. Protocols
are like languages, defining how two computers can talk to each other, and there
are hundreds of protocols to perform all varieties of operations—there is a
protocol for file transfer (File Transfer Protocol, or FTP), a protocol for transfer-
ring web pages (Hypertext Transfer Protocol, or HTTP), a protocol for network
management (Simple Network Management Protocol, or SNMP), and many
more.

Each protocol has a set of ports that it uses, which are theoretical openings in
your computer’s Internet connection that clients can connect to. They are
numbered 1 to 65535, of which the first 1023 are considered reserved for adminis-
trative users. By default, your PC “listens” to no ports, meaning that it ignores all
incoming connections. However, if you run a web server, it will open up port
80—this is the port for HTTP, where your web server will listen for requests for
web pages. Many of the first 1023 ports are used already, which means if you
want to use a port for a new service you have written, it is best that you use a
number above 1024.

Sockets are the literal connectors between a port and a program, sort of how a
plug socket connects an appliance to the electricity grid in your house. Manage-
ment of sockets in PHP comes in two flavors: easy and hard. As per usual, the
easy option is not as flexible as the hard option, but it is much faster to get started
with. We are going to be covering both here, because both have their own uses.

294 | Chapter 20: Network Programming

Sockets Are Files

The simplest way to work with sockets is by using them as if they were files. In
fact, if you are using Unix, sockets actually are files, whereas in Windows this
behavior is just emulated.

PHP works the same way as Unix, which means you can fread() and fwrite() to
sockets as you would a normal file. For example:

$fp = fsockopen ("slashdot.org", 80);

if ($fp) {
 fwrite($fp, "GET / HTTP/1.1\r\nHOST: slashdot.org\r\n\r\n");

 while (!feof($fp)) {
 print fread($fp,256);
 }

 fclose ($fp);
} else {
 print "Fatal error\n";
}

The fsockopen() call above opens a server on the port we specify, then waits for
us to specify what to do with it. Using this function, you could send a hand-
crafted HTTP request to the server. In contrast, the fopen() remote file handler
uses PHP’s stream functionality to automatically connect to the server and send
the HTTP request using the GET method—there is no flexibility.

As it stands, we open a socket for server slashdot.org on port 80; then, after
checking the fsockopen() call has not returned false to signal failure, we write a
HTTP GET request to the connection. Our HTTP request has two lines: first, we
send the GET request using fwrite(), asking for /, which is the root of the server.
Second, we specify that we want to read from the host slashdot.org, which is a
requirement for virtually hosted machines and HTTP 1.1.

With the HTTP request sent, we just need to wait for the response (the web page).
This is done using a while loop—while there is more to be read from the file
(socket), we fread() in another 256 bytes and print it out. Once we are at the end
of the “file,” we close the socket and end the script.

Using fopen() would make the socket open line shorter, at the expense of flexi-
bility. For example, the above script could be rewritten to specify that we are able
to receive compressed content:

$fp = fsockopen ("slashdot.org", 80);

if ($fp) {
 fwrite($fp, "GET / HTTP/1.1\r\nHOST: slashdot.org\r\n
 ACCEPT-ENCODING: gzip\r\n\r\n");

 while (!feof($fp)) {
 print fread($fp,256);
 }

Sockets | 295

N
etw

o
rk

P
ro

g
ram

m
in

g

 fclose ($fp);
} else {
 print "Fatal error\n";
}

Slashdot is set up to serve compressed content when requested, so it will respond
to our custom request with the compressed web page.

If you liked persistent database connections, you might also like
persistent socket connections—the function pfsockopen() takes the
same parameters as fsockopen(), but it remains open over requests.

Creating a Server

The server socket system starts with socket_create_listen(), which takes a port
number to listen on as its only parameter. This function creates a socket, binds it
to the port you specify, and returns a pointer to the socket it created or false if it
failed. You will need the socket resource it returns for later functions, so you
should always save it in a variable. If the function fails, it is probably because the
port you specified is already being used, or because you have insufficient privi-
leges to open the port.

The socket_accept() function takes the return value of socket_create_listen()
as its only parameter, and returns a client connection—someone who connected
to our port number. It works by examining the queue of people waiting to be
served, and taking the first client from there. If there are no clients waiting to be
served, socket_accept() will wait (“block”) until a client does become available, at
which point it will return that.

You need to provide two parameters to the socket_write() function: the client to
write to and the value you want to write. This data is then sent through our socket
to the client, as you would expect. Its partner, socket_read(), also takes two
parameters, which are the connection to read from and the number of bytes to
read. By using socket_write() and socket_read() together, you can interact with
clients connecting to your socket.

Here is an example script that creates a ROT13 server—when people connect to it
and send text, it responds with the ROT13 equivalent of their text:

$socket = socket_create_listen("12345");

if (!$socket) {
 print "Failed to create socket!\n";
 exit;
}

while (true) {
 $client = socket_accept($socket);
 $welcome = "\nWelcome to the Amazing ROT13 Machine.\n
 Type '!close' to close this connection, or type '!halt'
 to halt the server.\n";

 socket_write($client, $welcome);

296 | Chapter 20: Network Programming

 while (true) {
 $input = trim(socket_read ($client, 256));
 if ($input = = '!close') {
 break;
 }

 if ($input = = '!halt') {
 socket_close ($client);
 break 2;
 }

 $output = str_rot13($input) . "\n";
 socket_write($client, $output);
 print "Them: $input, Us: $output\n";
 }

 socket_close ($client);
}

socket_close ($socket);

Because this is going to serve data over a potentially infinite length of time, it is
important that you execute that script using the CLI SAPI, not your web browser.
Once you have it running, bring up a new command-line window and enter the
following: telnet localhost 12345.

That should launch your telnet program, which is useful for forming simple
connections to servers. All being well, you should receive the welcome message
from the ROT13 server—try it out with a few words, then type !shutdown to
finish. If you have followed correctly so far, you should see something like
Figure 20-1.

Figure 20-1. Using telnet, we can connect to the ROT13 server and convert text by typing it in

HTTP | 297

N
etw

o
rk

P
ro

g
ram

m
in

g

HTTP
Hypertext Transport Protocol is a primarily a basic protocol to handle data trans-
mission, but it is also capable of authentication and more. PHP gives you all the
tools you need to manipulate HTTP for your own needs.

Sending Custom Headers

There are several special HTTP headers you can send to instruct the remote client.
For example, the “Location” header instructs browsers to request a different URL,
the “Content-Type” header tells browsers what kind of content they are about to
receive, and the “WWW-Authenticate” header tells browsers that they need to
send some authentication information to proceed.

Sending custom headers in PHP is done using the header() function, which takes
the header to send as its parameter. So, to make a browser go to www.example.
com when it visits a certain script, this would be used:

header("Location: http://www.example.com");

Special attention should be paid when using the Location header, however, as it is
used to redirect clients from one page to another. When you send a Location
header, the rest of your script will still be executed, potentially allowing people to
see pages they would otherwise not be able to see. As a result, it’s best to call exit
immediately after header("Location: ...") to ensure that nothing happens after
the redirect notice has been sent.

The headers_sent() function, when called with no parameters, returns true if your
HTTP headers have been sent or false otherwise. That isn’t “whether some
headers have been sent” but “whether the header-sending opportunity has passed.”
That is, if headers_sent() returns true, sending more headers will trigger an error
because non-header information has already been sent. If you pass in two parame-
ters as references, PHP will fill them with the name of the file and the line number
therein where the first output was sent, like this:

header("Expires: Sat, 22 Dec 1979 05:30:00 GMT");
echo "This is some text for output.
";

if (!headers_sent($filename, $linenum)) {
 // If no headers have been sent, send one.

 // This code will not execute, as we sent the
 // Expires header back in line 1
 header("Location: www.yoursite.com");
 exit;
} else {
 echo "Headers already sent in $filename on line $linenum.";
 exit;
}

That will print out the following:

This is some text for output.
Headers already sent in C:\home\header.php on line 3.

298 | Chapter 20: Network Programming

Reading Queued Headers

The headers_sent() takes no parameters, and returns an array that contains a
numerically indexed list of the headers that are ready for sending. Using this, we
can extend our previous example like this:

header("Expires: Sat, 22 Dec 1979 05:30:00 GMT");
echo "This is some text for output.
";

if (!headers_sent($filename, $linenum)) {
 // if no headers have been sent, send one
 // this will not execute, as we sent the Expires header.
 header("Location: www.yoursite.com");
 exit;
} else {
 echo "Headers already sent in $filename on line $linenum.
";
 echo "Headers sent are:
 ";

 $headers = headers_list();
 foreach($headers as $header) {
 echo "$header";
 }

 echo "";

 exit;
}

Authentication Over HTTP

HTTP authentication is largely a matter of sending special HTTP headers to your
clients, asking them to provide access codes, and it’s easy to do with PHP as long
as you have configured PHP to run as an Apache module. For example:

if (!isset($_SERVER['PHP_AUTH_USER'])) {
 header("WWW-Authenticate: Basic realm=\"Private Area\"");
 header("HTTP/1.0 401 Unauthorized");
 // only reached if authentication fails
 print "Sorry - you need valid credentials granted access
 to the private area!\n";
 exit;
} else {
 // only reached if authentication succeeds
 print "Welcome to the private area, {$_SERVER['PHP_AUTH_USER']}
 - you used {$_SERVER['PHP_AUTH_PW']} as your password.";
}

To start the authentication process, we send two HTTP headers using header().
WWW-Authenticate allows us to define the area, or realm, to which we are limiting
access. It might be “Internet Mail Gateway”, “Members Area”, or, in our example,
“Private Area”. This realm name is usually shown to users when they are
prompted for their username and password, as shown in Figure 20-2.

HTTP | 299

N
etw

o
rk

P
ro

g
ram

m
in

g

The second header() function sends the HTTP status “401”, which means “no
access”. This most often means no username and password have been entered,
but it may also mean the details entered were incorrect. Therefore, WWW-
Authenticate tells the browser what response is required to authenticate, and the
401 header says “no entry”—you need both to perform authentication.

If your user clicks “Cancel,” she should be presented with something other than a
blank page. In our example above, we have the print line beginning “Sorry - you
need valid . . .” ready for this eventuality.

The last print statement, "Welcome to the private area", is for people who have
authenticated successfully. All it takes to authenticate currently is a username and
password—we don’t check the values of the data, we just accept whatever they
give us.

if (!isset($_SERVER['PHP_AUTH_USER'])) {

That line forms the crux of authentication with PHP. When users submit authen-
tication, PHP receives the username and password as $_SERVER['PHP_AUTH_USER']
and $_SERVER['PHP_AUTH_PW'], respectively. By checking whether $_SERVER['PHP_
AUTH_USER'] is set, we are saying, “Have we received an authentication username
from the client?” If we have not, we send a request for authentication using WWW-
Authenticate and exit the script.

When our visitors provide a username and password, the script is called again.
This time the ‘if’ statement evaluates to true and we print out our welcome
message. Most sites would want to perform some sort of username and password
checking in order to make authentication worthwhile, so let us change the script
to include simple credentials checking:

if (!isset($_SERVER['PHP_AUTH_USER'])) {
 header("WWW-Authenticate: Basic realm=\"Private Area\"");
 header("HTTP/1.0 401 Unauthorized");
 print "Sorry - you need valid credentials to be granted access!\n";
 exit;
} else {
 if (($_SERVER['PHP_AUTH_USER'] = = 'paul') &&
 ($_SERVER['PHP_AUTH_PW'] = = 'hudson')) {
 print "Welcome to the private area!";
 } else {
 header("WWW-Authenticate: Basic realm=\"Private Area\"");

Figure 20-2. HTTP authentication is a simple way to keep parts of your site safe from
prying eyes

300 | Chapter 20: Network Programming

 header("HTTP/1.0 401 Unauthorized");
 print "Sorry - you need valid credentials to be granted
access!\n";
 exit;
 }
}

The modified script above now only allows users that provide the username ‘paul’
and the password ‘hudson’.

Sending Mail
The primary function for sending email is mail(), which takes three basic parame-
ters and one optional one. These parameters are, in order, the email address to
send to, the subject of the message, the body of the message, and finally, any extra
headers you want to include. Note that this function relies on a working email
server that you have permission to use: for Unix machines, this is often Sendmail;
Windows machines, you must set the SMTP value in your php.ini file.

Here is an example of the most basic type of mail() call:

mail("a_friend@example.com", "My Subject", "Hello, world!");

If you receive mailing errors or don’t receive the test mail, you have probably
installed PHP incorrectly, or may not have permission to send emails.

You can use variables in place of any of the parameters, like this:

$mailaddress = "a_friend@example.com";
$mailsubject = "My Subject";
$mailbody = "Hello, world!";
mail($mailaddress, $mailsubject, $mailbody);

To make the email address textual, e.g., “A. Friend” rather than a_friend@example.
com, you need to add both name and address values into the email address, like
this:

$mailtoname = "My Best Friend";
$mailtoaddress = "a_friend@example.com";
$mailtocomplete = "$mailtoname <$mailtoaddress>";
mail($mailtocomplete, "My Subject", "Hello, world!");

With that new code, the email will appear to have been sent to “My Best Friend”,
which is much easier to read. The fourth parameter is where you specify any
number of additional email headers to send along with the email—these let you
affect how the email looks, how it is parsed, and other key information. For
example, we can specify who sent the email using the From header, we can specify
who else should get the email using the CC and BCC headers, or we can specify
that the email is to be treated as containing HTML. Each header sent in the third
parameter needs to be separated by a carriage return and new line, not just a new
line. That is, only \r\n should be used to separate the various parameters, and not
any other combination.

Here is a script that sends a HTML mail from a given email address:

Sending Mail | 301

N
etw

o
rk

P
ro

g
ram

m
in

g

$message = "This is a <i>test</i>";
$headers = "From: foo@bar.com\r\nContent-type: text/html\r\n";
mail("you@yourdomain.com", "Testing", $message, $headers);

That should send a message with the text all in bold, and the word “test” in
italics. The $headers variable is used to set From so that it appears to be from
foo@bar.com, then add a carriage return and a new line, and finally send a
Content-type header of text/html, which should make the email client display it as
HTML. Because HTML emails allow potentially unsafe content, many email
clients (such as KMail on Linux) will stop HTML emails being displayed by
default, and will instead display a warning—you should be aware of this, and only
use HTML email if it is necessary.

MIME Types

The Multipurpose Internet Mail Extensions (MIME) system was designed to allow
the formatting of emails so that they can include files, and it is made up of several
parts. In order to be able to instruct email clients what types of files are attached,
MIME types were created—short, textual descriptions of the file types that can be
recognized by everyone. MIME types are so popular that they are used across the
Web as a whole now, and many operating systems rely on them to decide how to
open a file. In emails, attachments are literally copied into the message as an
encoded string, with MIME boundary markers being used to tell mail readers
where each attachment starts and stops.

There are MIME types for all sorts of formats, from application/zip for zip files
to video/quicktime for Quicktime .mov files and application/x-tar for tarballs. It
is the job of the Internet Assigned Numbers Authority (IANA) to assign official
MIME types, and it also keeps a list of all the registered MIME types on its web
site. At the time of writing, this list was available at http://www.iana.org/
assignments/media-types—worth taking a look.

There are hundreds, possibly even thousands, of MIME types out there, simply
because there are so many file formats out there. But there are a certain few that
stand out as being popular, which are shown in Table 20-1.

Table 20-1. Mime types

application/msexcel Microsoft Excel data file

application/msword Microsoft Word data file

application/octet-stream Generic binary file

application/pdf Adobe PDF

application/x-shockwave-flash Macromedia Flash

application/zip Zip file

audio/mp3 MP3

audio/wav Wave sound file

audio/x-ogg Ogg file

font/ttf TrueType Font

image/bmp MS Windows .bmp image

image/gif GIF image

302 | Chapter 20: Network Programming

MIME types are used in many places other than in emails—web servers, for
example, make very heavy use of MIME types in order to know how to handle
files as they are requested, and also so they know what kinds of documents clients
can and cannot receive.

It is undesirable to have to keep looking up long lists to find the MIME type you
want every time you get a file, but PHP comes to the rescue with a special MIME
lookup function, mime_content_type(). This is based upon the Apache module
mod_mime_magic, which itself is based upon the Unix file command. If you have
never used this before, the principle is that many types of files have a unique iden-
tifier in the first few bytes, referred to as a magic number, that specifies what type
of file it is. Bitmaps, for example, start with “BM”, and MS DOS executables start
with “MZ”. By having a large lookup table of a selection of these magic numbers,
it is quite easy to get an idea what kind of file is being examined, and thus what its
MIME type should be.

To enable the MIME magic extension, you must either configure PHP with the
switch --==with-mime-magic (Unix), or enable the extension in your php.ini file
(Windows). On Windows, you will also need to edit one other entry in your php.
ini file—mime_magic.magicfile should be set to the directory where PHP was
installed, with the subdirectory “extras”. So if you installed PHP into c:\php, this
would need to be set to c:/php/extras/magic.mime. On Unix, this extension relies
on the file “magic,” shipped with Apache. If PHP fails to find this for some reason,
try setting the php.ini entry also.

Once you have the MIME magic extension working, you just need to pass a file-
name to mime_content_type() to get its MIME type as the return value, like this:

print mime_content_type("myfiles.zip");
print mime_content_type("poppy.jpg");

Given that you actually have those files, that script should output application/zip
and image/jpeg.

image/jpeg JPEG image

image/png PNG image

image/tiff TIFF image

image/svg+xml Scalable Vector Graphic (SVG)

text/html HTML file

text/plain Plain text

text/rtf Rich-Text File

text/tab-separated-values Tab-Separated Values (TSV)

text/xml XML

video/mpeg MPEG video

video/quicktime Quicktime video

Table 20-1. Mime types (continued)

Sending Mail | 303

N
etw

o
rk

P
ro

g
ram

m
in

g

Easier Mail Sending with PEAR::Mail

Using PEAR::Mail, we can write a simple email script like this:

include('Mail.php');
$mail = Mail::factory("mail");

$headers = array("From"=>"me@example.com", "Subject"=>"Test Mail");
$body = "This is a test!";
$mail->send("best@friend.com", $headers, $body);

The Mail.php file is the PEAR::Mail script, so it needs to be included before any
PEAR::Mail functions are used. Line two creates a default instance of PEAR::Mail—
the parameter mail is passed in so that PEAR::Mail will use PHP’s mail() function
to send the email. If you pass in sendmail, it will send direct via the sendmail
program (Unix only).

Alternatively, you can pass in smtp, which lets you send a second parameter that is
an array containing five keys: host, port, auth, username, and password. Each of
these should have a value assigned to it: host should be the SMTP server to
connect to, port should be the port number (defaults to 25), auth should be true if
you want to authenticate with username and password (defaults to false), and
username and password should be set if you want to authenticate. Unless you
really want the extra power of connecting directly by hand, it’s best to stick with
mail().

Line three sets up the headers to use in the email. This time, we need to provide
the subject inside a header, as well as the sender information. Here you can use all
the techniques we have looked at so far; for example, the From element could
have the value "Me <me@example.com>" to have the email addresses pretty-printed.

Line four sets the body text to use in the email, which is standard enough. Line
five is where the email is actually sent, and you will see that send() takes three
parameters: address to send to, headers to use, and the content of the email. The
first parameter can either be a string with each person’s name separated by a
comma, or it can be an array.

Sending Mixed-Type Messages with PEAR::Mail_Mime

There is a close cousin of PEAR::Mail called PEAR::Mail_Mime that has a number of
features to make sending attachments very easy.

The first type of attachment we are going to send does not even look like an
attachment on the surface. Previous scripts sent HTML mail by adding "Content-
type: text/html" to the headers. The problem with this is that people without a
HTML mail reader cannot read the message, because they will receive a huge
chunk of HTML and will have to dig through it by hand to find the message.

The solution here is to send the message in both plain text and HTML-encoded
format, by attaching the HTML message separately. When the email is received
by mail readers, they will automatically choose the correct one to display.

304 | Chapter 20: Network Programming

We can do this using PEAR::Mail and PEAR::Mail_Mime, as the latter has a very
simple way of attaching both a plain text mail and a HTML mail:

include('Mail.php');
include('Mail/mime.php');

$message = new Mail_mime();
$text = file_get_contents("mail_text.txt");
$html = file_get_contents("mail_html.html");

$message->setTXTBody($text);
$message->setHTMLBody($html);
$body = $message->get();
$extraheaders = array("From"=>"me@example.com", "Subject"=>"My Subject 7");
$headers = $message->headers($extraheaders);

$mail = Mail::factory("mail");
$mail->send("best@friend.com", $headers, $body);

Now the script includes both PEAR::Mail and PEAR::Mail_Mime, as it takes both
classes to get the full email sent. Also, rather than handling our message as a text
string, the message is an instance of Mail_mime. In the example, the message is
stored in the $message variable. Next, both the plain text and HTML messages are
retrieved from disk using file_get_contents() and stored in $text and $html,
respectively.

Once we have the content loaded, we can put it into the message using the
setTxtBody() and setHTMLBody() methods of our $message variable. These both
take a string as their only parameter, so just pass in the appropriate return value
from file_get_contents().

The body for the message, still stored in $body, now comes from the return value
of $message->get(). This retrieves the full message text to send, and is a combina-
tion of the HTML and text information all encoded for sending over the Internet.
If you want to see how the system works behind the scenes, echo out $body and
have a look through.

With the line starting "$extraheaders = ", things begin to get more complicated.
The PEAR::Mail->send() function takes its headers as an array and, to accommo-
date this, PEAR::Mail_Mime also returns its headers as an array. When sending
complex emails, you need to have a special set of headers in there that tells the
mail reader what to expect. So, once you have your content in place, you just call

When Not To Use HTML Mail

Mailing lists, particularly those attached to the open source community, take a
very strong stance against HTML emails. The reason for this is that your
message gets sent twice inside the one email—once in plain text and once in
HTML. While this is fine for sending personal mails and mails to a controlled
list who are willing to receive this, it does waste space in people’s email inboxes
and also wastes bandwidth for the list host.

Sending Mail | 305

N
etw

o
rk

P
ro

g
ram

m
in

g

headers() to get the header information. As you still need to use the old headers
(from, subject, etc.), you can pass into headers() an array of existing headers, and
it will add these to the array it returns.

For example, calling headers() on its own might return something like this:

array(2) {
 ["MIME-Version"]=>
 string(3) "1.0"
 ["Content-Type"]=>
 string(64) "multipart/mixed;
 boundary="=_067d506611ba7a0da2b6106b54282d16""
}

However, passing our array $extraheaders in as the only parameter, headers()
returns this:

array(4) {
 ["MIME-Version"]=>
 string(3) "1.0"
 ["From"]=>
 string(14) "me@example.com"
 ["Subject"]=>
 string(12) "My Subject 7"
 ["Content-Type"]=>
 string(64) "multipart/mixed;
 boundary="=_307c199ae5303dac356d5cf48c89fc7c""
}

The “boundary” string in Content-Type is randomized, so yours will be different.

Once we have the complete list of headers, this is passed into the send() call at
the end, which is otherwise unchanged. Now when the mail is received, mail
readers should automatically pick the best format for them and display it.

Sending Real Attachments

Using PEAR::Mail_Mime makes it very easy to add attachments to your messages.
Add this line after the call to setHTMLBody():

$message->addAttachment("example.txt");

You will, of course, need to change example.txt to the name of a file in the same
directory as the script. That’s all it takes to add an attachment once you are using
PEAR::Mail and PEAR::Mail_Mime.

If you run the script again, you should see the attachment has come through prop-
erly. However, there is one more thing you can do with PEAR::Mail_Mime and
attachments, and that is to attach HTML images. These are essentially the same
thing as attachments, except they are not shown as an attachment in most HTML-
compliant mail readers; they are shown only in the message body. This makes
better sense for HTML pictures, because it would likely confuse people to see a
dozen pictures attached to the mail that aren’t of importance.

To add a HTML picture, use the addHTMLImage() function. As with addAttachment(),
this takes the filename to attach as its only parameter. In order to use this picture,

306 | Chapter 20: Network Programming

you need to edit the HTML file you are attaching and add the appropriate line, for
example:

// in the PHP file:
$message->addHTMLImage("button.png");
// and in the HTML file:

Now when you send the mail, button.png should be sent along and displayed
inside the message. In Outlook, this results in the first picture file being attached,
and the second file being attached (but not listed as an attachment) and shown
inside the message—perfect!

Curl
The cURL extension to PHP is designed to allow you to use a variety of web
resources from within your PHP script. The name cURL (called Curl from now
on, for ease of reading) stands either for “Client for URLs” or “Client URL
Request Library,” but the function is the same: it lets you use several Internet
protocols using one uniform interface, most notably FTP, FTPS, HTTP, HTTPS,
and LDAP.

The basic premise to using Curl is that there are four steps: initialize Curl, set your
options, execute your query, and close Curl. Steps 1, 3, and 4 are easy, with the
majority of the work taking place in step 2. Curl is highly configurable, and there
are dozens of options you can set to make it do all sorts of weird and wonderful
things. While this is undoubtedly a great advantage, it does make the learning
curve a little high.

Installing Curl

If you’re using Windows, you can enable Curl support by copying the files
libeay32.dll and ssleay32.dll into your c:\windows\system32 folder, then enabling
the extension in your php.ini file. Look for the line ";extension=php_curl.dll" and
take the semicolon off from the beginning.

If you’re using Unix, you either have to install Curl support through your package
manager, or you need to compile it from source. Compiling Curl support into
your PHP takes two steps: installing the Curl development libraries on your
machine (do this through your package manager), then recompiling PHP with the
--with-curl switch in your configure line. As long as you have the development
version of Curl installed, this should work fine.

Your First Curl Script

The first Curl script we are going to look at is the simplest Curl script that is actu-
ally useful: it will load a web page, retrieve the contents, then print it out. So,
keeping the four-step Curl process in mind, this equates to:

1. Initialize Curl

2. Set URL we want to load

Curl | 307

N
etw

o
rk

P
ro

g
ram

m
in

g

3. Retrieve and print the URL

4. Close Curl

Here is how that looks in PHP code:

$curl = curl_init();
curl_setopt($curl, CURLOPT_URL, "http://www.php.net");
curl_exec($curl);
curl_close($curl);

There is a one-to-one mapping of steps to lines of code there—step 1, “Initialize
Curl,” is done by line one, $curl = curl_init();, etc. There are four functions in
that simple script, which are curl_init() for initializing the Curl library, curl_
setopt() for setting Curl options, curl_exec() for executing the Curl query, and
curl_close() for shutting down the Curl system. As mentioned already, of these
four, only the second is complicated—the rest stay as you see them. Curl’s func-
tionality is, for the most part, largely manipulated through repeated calls to curl_
setopt(), and it is this that distinguishes how Curl operates.

The curl_init() function returns a Curl instance for us to use in later functions,
and you should always store it in a variable. It has just one optional parameter: if
you pass a string into curl_init(), it will automatically use that string as the URL
to work with. In the script above, we use curl_setopt() to do that for clarity, but
it is all the same.

You need to provide three parameters to the curl_setopt() function: the Curl
instance to use, a constant value for the setting you want to change, and the value
you want to use for that setting. There are a huge number of constants you can
use for settings, and many of these are listed shortly. In the example we use
CURLOPT_URL, which is used to set the URL for Curl to work with, and so the
working URL is set to the third parameter.

Calling curl_exec() means, “We’re finished setting our options, go ahead and do
it,” and you need to pass precisely one parameter: the Curl resource to use. The
return value of curl_exec() is true/false by default, although we will be changing
that soon.

The final function, curl_close(), takes a Curl resource as its only parameter,
closes the Curl session, then frees up the associated memory.

Trapping Return Values

To improve on the previous script, it would be good if we actually had some
control over the output of our retrieved HTML page. As it is, calling curl_exec()
retrieves and outputs the page, but it would be nice to have the retrieved content
stored in a variable somewhere for use when we please. There are two ways of
doing this. We already looked at how output buffering—and more specifically,
the ob_get_contents() function—allows you to catch output before it gets to your
visitor and manipulate it as you want. While this might seem like a good way to
solve the problem, the second way is even better: Curl has an option specifically
for it.

308 | Chapter 20: Network Programming

Passing CURLOPT_RETURNTRANSFER to curl_setopt() as parameter two and 1 as
parameter three will force Curl to not print out the results of its query. Instead, it
will return the results as a string return value from curl_exec() in place of the
usual true/false. If there is an error, false will still be the return value from curl_
exec().

Capturing the return value from curl_exec() looks like this in code:

$curl = curl_init()
curl_setopt($curl, CURLOPT_URL, "http://www.php.net");
curl_setopt($curl, CURLOPT_RETURNTRANSFER, 1);

$result = curl_exec($curl);
curl_close($curl);
print $result;

That script will output the same as the previous script, but having the web page
stored in a variable before printing gives us more flexibility—we could have
manipulated the data in any number of ways before printing.

Alternatively, you can have Curl save its output to a file using CURLOPT_FILE, which
takes a file handle as its third parameter. This time the script looks like this:

$curl = curl_init();
$fp = fopen("somefile.txt", "w");
curl_setopt ($curl, CURLOPT_URL, "http://www.php.net");
curl_setopt($curl, CURLOPT_FILE, $fp);

curl_exec ($curl);
curl_close ($curl);

Using FTP to Send Data

Our next basic script is going to switch from HTTP to FTP so you can see how
little difference there is. This next script connects to the GNU FTP server and gets
a listing of the root directory there:

$curl = curl_init();
curl_setopt($curl, CURLOPT_URL,"ftp://ftp.gnu.org");
curl_setopt($curl, CURLOPT_RETURNTRANSFER, 1);

$result = curl_exec ($curl);
curl_close ($curl);
print $result;

We could have made that script more FTP-specific by providing some FTP
options to the script. For example, the CURLOPT_FTPLISTONLY option will make PHP
return much less information. If you tried the script without this, you would have
received read/write information for each of the files and directories, when they
were last changed, and so on. CURLOPT_FTPLISTONLY changes this so that you only
get the file/directory names.

The second FTP option of interest is CURLOPT_USERPWD, which makes PHP use the
third parameter to curl_setopt() as the username and password used for logging
in. As the third parameter contains both the username and the password, you

Curl | 309

N
etw

o
rk

P
ro

g
ram

m
in

g

need to split them using a colon, like this: username:password. When logging onto
the GNU FTP server, we want to use the anonymous FTP account reserved for
guests. In this situation, you generally provide your email address as the
password.

With both of these changes implemented, the new script looks like this:

$curl = curl_init();
curl_setopt($curl, CURLOPT_URL,"ftp://ftp.gnu.org");
curl_setopt($curl, CURLOPT_FTPLISTONLY, 1);
curl_setopt($curl, CURLOPT_USERPWD, "anonymous:your@email.com");
curl_setopt($curl, CURLOPT_RETURNTRANSFER, 1);

$result = curl_exec ($curl);
curl_close ($curl);
print $result;

Try changing the username and password to random values, as this will cause the
login to fail. If you run the script again, you will see nothing is printed out—no
errors, no warnings; nothing. This is because Curl fails silently, and you need to
request Curl’s error message explicitly using curl_error(). As with the other basic
functions, this takes just a Curl session handler as its only parameter, and returns
the error message from Curl. So, with this in mind, here is our final FTP script:

$curl = curl_init();
curl_setopt($curl, CURLOPT_URL,"ftp://ftp.gnu.org");
curl_setopt($curl, CURLOPT_FTPLISTONLY, 1);
curl_setopt($curl, CURLOPT_USERPWD, "foo:barbaz");
curl_setopt($curl, CURLOPT_RETURNTRANSFER, 1);

$result = curl_exec ($curl);
echo curl_error($curl);
curl_close ($curl);
print $result;

Note the bad username and password and the extra call to curl_error() after
curl_exec(). As long as the GNU team don’t change their FTP permissions before
you read this, running that script should output "Access denied: This FTP server
is anonymous only."

Sending Data Over HTTP

The last Curl script we are going to look at, before we go over a list of the most
popular options for curl_setopt(), shows how to send data out to the Web as
opposed to just retrieving it.

First, create the file posttest.php in your web server’s public directory. Type into
the file this code:

var_dump($_POST);

That simply takes the HTTP POST data that has come in and spits it back out
again. Now, create this new script:

$curl = curl_init();
curl_setopt($curl, CURLOPT_URL,"http://localhost/posttest.php");

310 | Chapter 20: Network Programming

curl_setopt($curl, CURLOPT_POST, 1);
curl_setopt($curl, CURLOPT_POSTFIELDS, "Hello=World&Foo=Bar&Baz=Wombat");

curl_exec ($curl);
curl_close ($curl);

If you are running your posttest.php file on a remote server, change “localhost” to
the server URL. There are two new values for curl_setopt() in there, but other-
wise, the script should be clear.

The two new values, CURLOPT_POST and CURLOPT_POSTFIELDS, make our session
prepare to send data over HTTP POST and assign the data to send, respectively.
CURLOPT_POST just takes a 1 to enable to POST usage, but CURLOPT_POSTFIELDS needs
a properly formatted data string to send. The string you use for the third param-
eter with CURLOPT_POSTFIELDS should be a list of the variables you want to send in
the format Variable=Value, with each variable separated by an ampersand, &.
Thus, the above script sends three variables over: Hello, Foo, and Baz, with values
World, Bar, and Wombat, respectively.

Once the values are sent, Curl captures the response from the server and prints it
out directly. Our posttest.php script dumps what it got through HTTP POST, so
your output should be this:

array(3) {
 ["Hello"]=>
 string(5) "World"
 ["Foo"]=>
 string(3) "Bar"
 ["Baz"]=>
 string(6) "Wombat"
}

The field data you pass in as the third parameter to CURLOPT_

POSTFIELDS should not have any spaces or special characters. Spaces
should be replaced with %20—you can have this and other special
characters automatically replaced by using urlencode() on the
string.

The Abridged List of Curl Options

There are a large number of options available for curl_setopt()—far too many to
cover here. However, of the full list, about half or so are used regularly and, there-
fore, deserve printing here. They are shown in Table 20-2.

Table 20-2. Curl options

If the 2nd parameter is... 3rd parameter should be...

CURLOPT_COOKIE A string containing the contents of the cookie data to be set in the HTTP
header.

CURLOPT_COOKIEFILE A string containing the name of the file containing cookie data to be sent.

CURLOPT_CRLF 1 if you want Curl to convert Unix new lines to CR/LF new lines.

Curl | 311

N
etw

o
rk

P
ro

g
ram

m
in

g

There is a large selection available online at http://curl.haxx.se/libcurl/c/curl_easy_
setopt.html.

Debugging Curl

Because it works with so many different network protocols, it is very easy to make
mistakes when using Curl. You can speed up your debugging efforts by using
CURLOPT_VERBOSE to have Curl output detailed information about its actions.

CURLOPT_FAILONERROR 1 if you want Curl to fail silently if the HTTP code returned is equal to or larger
than 300.

CURLOPT_FILE A string containing the filename where the output of your transfer should be
placed. Default is straight to output (STDOUT).

CURLOPT_FOLLOWLOCATION 1 if you want Curl to follow all “Location: “ headers that the server sends as part
of the HTTP header. You can limit the number of "Location" headers to follow
using CURLOPT_MAXREDIRS.

CURLOPT_FTPAPPEND 1 to have Curl append to the remote file instead of overwriting it.

CURLOPT_FTPLISTONLY 1 to list just the names of an FTP directory as opposed to more detailed
information.

CURLOPT_HEADER 1 if you want the header to be included in the output. Usually for HTTP only.

CURLOPT_HTTPHEADER An array of HTTP header fields to be set.

CURLOPT_INFILE A string containing the filename where the input of your transfer comes from.

CURLOPT_INFILESIZE The size of the file being uploaded to a remote site.

CURLOPT_MAXREDIRS The number of “Location:” headers Curl should follow before erroring out. This
option is only appropriate if CURLOPT_FOLLOWLOCATION is used also.

CURLOPT_NOBODY 1 to tell Curl not to include the body part in the output. For HTTP(S) servers, this
is equivalent to a HEAD request—only the headers will be returned.

CURLOPT_POST 1 if you want Curl to do a regular HTTP POST.

CURLOPT_POSTFIELDS A string containing the data to post in the HTTP “POST” operation.

CURLOPT_REFERER A string containing the “referer” header to be used in an HTTP request. This is
only necessary if the remote server relies on this value.

CURLOPT_RESUME_FROM A number equal to the offset, in bytes, that you want your transfer to start
from.

CURLOPT_RETURNTRANSFER 1 if you want Curl to return the transfer data instead of printing it out directly.

CURLOPT_STDERR A string containing the filename to write errors to instead of normal output.

CURLOPT_TIMEOUT A number equal to the maximum time in seconds that Curl functions can take.

CURLOPT_UPLOAD 1 if you want PHP to prepare for a file upload.

CURLOPT_URL A string containing the URL you want Curl to fetch.

CURLOPT_USERPWD A string formatted in the username:password manner, for Curl to give to the
remote server if requested.

CURLOPT_USERAGENT A string containing the “user-agent” header to be used in a HTTP request.

CURLOPT_VERBOSE 1 if you want Curl to give detailed reports about everything that is happening.

CURLOPT_WRITEHEADER A string containing the filename to write the header part of the output into.

Table 20-2. Curl options (continued)

If the 2nd parameter is... 3rd parameter should be...

312 | Chapter 20: Network Programming

To give you an idea of how CURLOPT_VERBOSE affects the output of your script, here
is a script we used earlier, rewritten to add CURLOPT_VERBOSE:

$curl = curl_init();
curl_setopt ($curl, CURLOPT_URL, "http://www.php.net");
curl_setopt($curl, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($curl, CURLOPT_VERBOSE, 1);

curl_exec ($curl);
curl_close ($curl);

Note that CURLOPT_RETURNTRANSFER was used but the output from curl_exec() was
ignored—this is because the extra data provided by CURLOPT_VERBOSE is actually
sent straight to the browser, irrespective of CURLOPT_RETURNTRANSFER. By ignoring
the output of curl_exec(), the script will only print out the debugging informa-
tion. Here is what you should get:

* About to connect() to www.php.net:80
* Connected to php.net (64.246.30.37) port 80
> GET / HTTP/1.1 Host: www.php.net Pragma: no-cache Accept: image/gif,
 image/x-xbitmap, image/jpeg, image/pjpeg, */*
< HTTP/1.1 200 OK < Date: Fri, 06 Feb 2004 22:13:29 GMT
< Server: Apache/1.3.26 (Unix) mod_gzip/1.3.26.1a PHP/4.3.3-dev
< X-Powered-By: PHP/4.3.3-dev
< Last-Modified: Fri, 06 Feb 2004 22:14:38 GMT
< Content-language: en
< Set-Cookie: COUNTRY=GBR%2C213.152.58.41; expires=Fri,
 13-Feb-04 22:13:29 GMT; path=/; domain=.php.net
< Connection: close
< Transfer-Encoding: chunked
< Content-Type: text/html;charset=ISO-8859-1
* Closing connection #0

Note that lines that start with > are headers sent by Curl, lines that start with <
are headers sent by the responding server, and lines that start with * are Curl infor-
mational messages.

313

21
Distributing Your Code

Once you have your ideal scripts written, very often you will want to give them to
other people. Perhaps you have written code to generate graphs or predict the
weather, or perhaps you have just written Yet Another Forum (YAF)—it does not
matter what you write, because there are few feelings quite as nice as watching
people take your code and use it.

Cross-Platform Code 1: Loading Extensions
The dl() function lets you load PHP extensions at runtime, which is a simple way
of making sure a particular extension is available to your script. Of course, it is
best to have the extension loaded in the php.ini file, because it’s a lot faster;
however, that is not always possible.

The problem with dl() is that it requires the filename and extension of the exten-
sion you want to include, and extensions differ across platforms. PHP extensions
on Windows start with php_ and end with .dll, whereas PHP extensions on Unix
just end with .so. For example, the IMAP extension is called php_imap.dll on
Windows, and just imap.so on Unix. The dl() function needs that full filename,
so we need to add some special code to check which to load.

Luckily, PHP has a special constant value, PHP_SHLIB_SUFFIX, which contains the
file extension of PHP extensions on that platform. As such, the code below works
around the problems of dl() by choosing how to load the extension based upon
the platform:

function useext($extension) {
 if (!extension_loaded('$extension')) {
 if (PHP_SHLIB_SUFFIX = = 'dll') {
 dl('php_$extension.dll');
 } else {
 dl('$extension.' . PHP_SHLIB_SUFFIX);
 }

314 | Chapter 21: Distributing Your Code

 }
}

useext("imap");

The non-Windows code uses PHP_SHLIB_SUFFIX for platforms that do not use .so
as their extension, such as NetWare, which uses .nlm.

Cross-Platform Code 2: Using Extensions
In order to be most flexible, PHP offers several extensions that are not cross-
platform. For example, the COM extension is only available for Windows, and
the process control extension is only available for Unix. This is a necessary evil: it
is often better to have something that works for just a few people than to have
nothing at all.

If you need to make use of OS-specific extensions, you have two options: inform
your users that they need to use a specific OS, or edit your source code to force-
fully bail out if you find it being run on the wrong OS. The first option relies on
people actually reading your documentation before using the script, but the
second option means that each script needs to do unnecessary work to make sure
the right OS is being used.

Your best bet is usually to add text everywhere you have the chance: documenta-
tion, readme, FAQ, on the web site, etc., and leave the script with no checking.
When it does not work because a specific extension does not exist, people will
look for the answer and hopefully find it wherever you put it.

Cross-Platform Code 3: Path and Line Separators
Each OS has a different way of representing path and line separators for files.
Unix and modern Mac OS versions use / as a path separator and \n as a line sepa-
rator, whereas Windows uses \ or / as a path separator and \r\n as a line
separator. Just to make things even more confusing, some old Mac OS versions
use \r as a line separator and : as a path separator, so all three are different!

You can make your life easier by using forward slashes (/) everywhere, because
Windows accepts both \ and / as path separators. If you are able to refrain from
using OS-specific path names like c:/home/website/index.php, then do—very often,
just /home/website/index.php will work just fine everywhere.

Line separators are slightly trickier and, if you don’t have PHP 5.0.2 or higher, the
easiest way to handle them is to put a few lines of code into your shared code
library that checks the OS and stores the appropriate line end character in a vari-
able—you can then reuse that variable throughout your other scripts. If you do
have PHP 5.0.2 or higher, the constant PHP_EOL is available to you and represents
the appropriate newline character for the current OS.

Cross-Platform Code 4: Coping with php.ini Differences | 315

D
istrib

u
tin

g
Yo

u
r Co

d
e

Using the OS-specific newline character, e.g., \r\n on Windows, is
not a smart move if you want the generated files to be portable to
other platforms. This is because a script running on Windows will
load and save files with \r\n as line ends, whereas the same script
on Unix will use just \n. So, if you run a script on Windows that
saves a file, it will use \r\n as line ends, but if you try to load that
using a Unix machine, it will just look for \n. If you want the files to
be portable, always use a consistent newline character. If you’re not
sure what newline type a file is using, try Sean Burke’s “whatnew-
line” utility from http://interglacial.com/~sburke/pub/whatnewline.

Cross-Platform Code 4: Coping with php.ini Differences
If you have made a lot of changes to your php.ini file, or indeed any changes from
the default php.ini file, it is possible that scripts you write will not work else-
where. There are three common culprits: extensions, register_globals, and safe
mode.

If you have enabled an extension that isn’t enabled in someone else’s php.ini file,
people deploying your script will get lots of errors about undefined functions. The
best way around this, other than adding warnings about required extensions in
your readme file, is to have a checkconfig.php file that runs checks on the current
configuration to make sure it has the correct extensions available.

Register_globals is a setting that, when enabled, makes PHP put all user-
submitted variables into the global scope automatically—not very secure, as you
can imagine. The problem is that this setting was enabled by default in old
versions of PHP 4, which means that a lot of people still have this setting enabled.
If someone gives you a script that requires register_globals being enabled, it is
probably best that you don’t use it—it’s just not worth the security risk. Simi-
larly, you should avoid writing scripts that rely on register_globals, even if you
choose to enable it locally—most people out there leave it disabled, as
recommended.

The third problem you are likely to encounter when people use your scripts else-
where is safe mode. With safe mode enabled, there is very little you can do to
ensure your script will work without flaw, because administrators can disable
whichever functions they deem unsafe—even very basic functions. If you think
there might be problems with your script (reading files is the most common
problem), your best bet is to provide a list of what your script requires with your
documentation. That way, people stuck with safe mode enabled can at least see
what the problem is, and maybe even ask their ISP to relax their restrictions a
little.

316 | Chapter 21: Distributing Your Code

Cross-Platform Code 5: Checking the PHP Version with
phpversion() and version_compare()
If you only want your script to work on certain versions of PHP, there are two
functions just for you: phpversion() and version_compare(). The first takes no
parameters, and returns a string containing the version number of the current
version of PHP. The second takes two parameters, which should be two version
strings of the type returned by phpversion(), and returns -1 if the first version is
lower than the second, 0 if they are the same, and 1 if the first version is higher
than the second.

$CurrentVer = phpversion()
print "Current PHP version: $CurrentVer\n";

switch (version_compare($CurrentVer, '5.0.0') {
 case -1:
 print "You're running an old PHP: $CurrentVer\n";
 break;
 case 0:
 print "You are running PHP 5\n";
 break;
 case 1:
 print "You are running a version of PHP after 5.0.0:
$CurrentVer\n";
}

That should output "Current PHP version: <your version here>", then either "You
are running PHP 5" or "You are running a version of PHP after 5.0.0: <your version
here>". Internally, this is actually a very advanced function, as it automatically
distinguishes between development code, alpha, beta, and release candidate
versions, and it allows you to check an arbitrary amount of version numbers. For
example: 5.0.0b1 < 5.0.0RC1-dev < 5.0.0RC1 < 5.0.0RC2 < 5.0.0 < 5.0.0.0.0.0.1
< 5.0.1, etc.

What’s more, there’s nothing to say you have to use the PHP version for your
checks. For example, if you are distributing your PHP application and want to
check that each file is the correct version, you can compare your own version
strings using this function as long as they match the same format as PHP.

Instead of using the function phpversion(), you can also use the
constant PHP_VERSION. Many people still prefer to use the function,
however, as its behavior is clearer—the choice is yours, as they
both do exactly the same thing.

317

22
Debugging

Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible,

you are, by definition, not smart enough to debug it.

—Brian W. Kernighan

No matter how good a programmer you are, you will at some point find that there
are at least one or two errors in your code—sometimes because you hit the wrong
key while typing, other times because you misunderstood how a function worked,
and sometimes even because you were coding at 5 a.m. It is important to under-
stand the arsenal that PHP puts at your disposal.

The Most Basic Debugging Technique
If you are experiencing a problem with your script, the time-honored way to
figure out what’s going on is to sprinkle your code with lots of print statements.
This is a technique that few people will admit they use, but I can assure you it is
widespread—and not just in the PHP programming world! Consider this
following script:

$foo = "bar";
$wombat = somefunc($foo);
print "After somefunc()\n";
$wombat2 = somefun2($wombat);
print "After somefunc2()\n";

If we found that somefunc2() was causing a problem that caused PHP to silently
exit the script, we would see the output "After somefunc()", but not "After
somefunc2()", which points to the problem function.

This method has benefits: it is easy to use, and will generally find the problem
through trial and error. The downsides are clear, though: you need to edit your

318 | Chapter 22: Debugging

script quite heavily to make use of the print statements, then you need to re-edit
it once you have found the problem to take the print statements back out.
Furthermore, the technique is a relatively slow way of finding problems, as you
literally need to keep placing more and more print statements until you find the
problem.

Many people combine this with the use of var_dump() to inspect variable contents
at various points in their script. If you do not have a good debugger (such as the
one built into the Zend Studio IDE), this is the only way you will find out what
your variables contain; however, you may find it easier to use the function debug_
zval_dump(), which takes one parameter (the variable to dump information
about) and prints out even more detailed information than var_dump(). The key
advantage of debug_zval_dump() is that it prints out the refcount value of vari-
ables sent into it—that is, how many times each variable is being used. If you have
trouble getting references to work, using debug_zval_dump() is a smart move.

For more advanced debug output, use the debug_backtrace() function discussed
in the section “Backtracing Your Code” later in this chapter.

Making Assertions
The assert() function is a clever one that works along the same lines as our print
statements, but it only works if a certain condition is not matched. Essentially,
assert() is used to say “This statement must be true—if it isn’t, please tell me.”
For example:

print "Stage 1\n";
assert(1 = = 1);
print "Stage 2\n";
assert(1 = = 2);
print "Stage 3\n";

Here we have two assert()s, with the first call asserting that one must be equal to
one, and the second call asserting that one must be equal to two. As it is impos-
sible to redefine constants like 1 and 2, the first assert() will always evaluate to
true, and the second will always evaluate to false. Here is the output from the
script:

Stage 1
Stage 2
Warning: assert() [http://www.php.net/function.assert]: Assertion failed
 in /home/paul/sandbox/php/assert.php on line 5
Stage 3

The first assert() is not seen in the output at all because it evaluated to true,
whereas the second assert() evaluated to false, so we get a warning about an
assertion failure. However, script execution carries on so that we see "Stage 3"
after the assertion failure warning. As long as assertions evaluate to true, they
have no effect on the running of the script, which means you can insert them for
debugging purposes and not have to worry about taking them out once you are
finished debugging.

Making Assertions | 319

D
eb

u
g

g
in

g

If you are worried about your assertions slowing execution down, which,
although the speed hit will be minimal, is still a valid concern, you can disable
execution of assert() by using the assert_options() function or by setting
assert.active to Off in your php.ini file. If you want to use assert_options(), it
takes two parameters: the option to set and the value you wish to set it to.

Table 22-1 shows the list of options you can use for the first parameter of assert_
options():

To disable assert() calls, use this line of code:

assert_options(ASSERT_ACTIVE, 0);

And to make PHP end script execution rather than just issue a warning, we can
use this line of code:

assert_options(ASSERT_BAIL, 1);

Note that all of these options can be set in your php.ini file so that they are always
in effect. The options to change there are assert.active, assert.warning, assert.
bail, assert.quiet_eval, and assert_callback.

ASSERT_CALLBACK is a useful option, as it allows you to write an error handler for
when your code fails an assertion. It takes the string name of a function to execute
when assertions fail, and the function you define must take three parameters: one
to hold the file where the assertion occurred, one to hold the line, and one to hold
the expression. Using all three together in your callback function allows you to
generate meaningful error messages that you can debug. For example:

function assert_failed($file, $line, $expr) {
 print "Assertion failed in $file on line $line: $expr\n";
}

assert_options(ASSERT_CALLBACK, 'assert_failed');
assert_options(ASSERT_WARNING, 0);

$foo = 10;
$bar = 11;
assert($foo > $bar);

That example shows a callback function defined that takes $file, $line, and $expr
for the three variables passed in, and outputs them whenever an assertion fails. To
make that result actually happen, assert_options() is called to let PHP know that
assert_failed() is the correct function to use as a callback—note that there are
no brackets after the string being passed into assert_options().

Table 22-1. First parameter of assert_options()

Parameter Default Description

ASSERT_ACTIVE On Enables evaluation of assert() calls

ASSERT_WARNING On Makes PHP output a warning for each failed assertion

ASSERT_BAIL Off Forces PHP to end script execution on a failed assertion

ASSERT_QUIET_EVAL Off Ignores errors in assert() calls

ASSERT_CALLBACK Off Names user function to call on a failed assertion

320 | Chapter 22: Debugging

ASSERT_WARNING is also disabled, which stops PHP from outputting a warning as
well as running the callback function. Finally, two variables are set, and are used
as part of a call to assert()—as you can see, $foo is quite clearly not greater than
$bar, which means the assertion will fail and call our callback. So, the output from
the script is: Assertion failed in /home/paul/tmp/blerg.php on line 9: $foo >
$bar.

You can assert() any statement you like, as long as it will return either true or
false. This makes the assert() function incredibly powerful—even more so
when you think that you can just turn off assertion execution to make the code
run at full speed.

Here are some more examples of assert()able things:

assert($savings >= $salary / 10);
assert($myarray = = array("apone", "burke", "hicks"));
assert(preg_match("/wild sheep chase/", $book));

Triggering Your Own Errors
It is a fairly common task to want to bring up an error message similar to PHP’s
when your code is being used incorrectly, and this is what trigger_error() does.
While it is not often necessary to throw up error messages in your code when only
you use it, it becomes much more important when your code is being distributed
to other programmers—it is often important to make sure they are using your
code in the correct way, and to force output of a certain type of error if they are
doing something unexpected.

The trigger_error() function takes two parameters: the string output message to
be printed out as the error and an optional second parameter of the type of error
you want to issue. The first parameter can be whatever you wish, “Function X
called with wrong parameter type” or “Objects of class MyElephant can only be
gray”—it is just a string that is sent directly to users who find themselves on the
receiving end of your error. The second parameter affects how the script should
react to the error. If you do not provide the second parameter, the default is a user
notice—a minor message that many people might not even see. However, you can
select from any of the user error types as the second parameter, which can allow
you to halt execution of the script if your error is triggered.

Using trigger_error() is better than just printing an error message and exiting
the script, because trigger_error() takes the form of PHP’s default errors—it will
automatically print out the filename and line number where the error occurred.
Furthermore, it will uses PHP’s default settings, which allow people to ignore
certain classes of errors if they wish. That said, most people tend to write their
own error-handling code, as it allows them more control over the content and
style—keep use of trigger_error() for errors that other programmers must fix
when they use your code.

Source Highlighting | 321

D
eb

u
g

g
in

g

Testing with php_check_syntax()
Because PHP is an interpreted language, you can run tests on individual scripts
simply by executing them—any execution errors will be reported back immedi-
ately. If you would rather not execute your scripts again and again, use the “lint”
mode of the PHP CLI SAPI by typing php -l yourscript.php from the command
prompt. Users on Windows will need to change directory to where they placed
php.exe (or have it in their PATH variable). Note that linting your script only
returns syntax errors—execution errors, such as treating an integer variable as an
array, are not reported.

You can also lint your script from within PHP by using the php_check_syntax()
function, which takes a filename as its first parameter and an optional variable
passed by reference as its second parameter. If the script has no problem, true will
be returned and the variable will be empty. If the script does have problems, false
will be returned and the variable will be filled with the first error message that was
encountered. This is a lot slower than using the CLI directly, as you have to work
through each error one at a time; however, it is the only option if you do not have
the CLI on hand and don’t want to execute the script.

As well as linting and running your scripts, you should also try going through
entire scenarios as part of your tests. If you have the resources, a member of your
team should spend some time creating test cases for each part of your system that
involves complete, standalone transactions that can be performed, such as
“Adding a user,” “Editing a message,” etc. For each major test build that is made,
a team of testers (depending on the size of your project) can simply work through
the tests, checking them off as they go.

Source Highlighting
An easy way to spot very basic errors is to use a text editor that has syntax high-
lighting capabilities. Editors like these will recognize that you are editing a PHP
script and automatically highlight the text in such a way as to make each element
stand out in the source code. We discussed syntax highlighting earlier, but what I
want to mention here is that PHP has built-in support for syntax highlighting
itself.

The two key functions here are highlight_file() and highlight_string(),
although there is also a function show_source() that is an alias to highlight_file().
This takes a filename as its parameter and outputs that file to the screen, with all
keywords, strings, numbers, and functions highlighted in various colors, as shown
in Figure 22-1. The highlight_string() function is almost identical, except it takes
a string as its parameter.

Many people use these two functions to allow visitors to their site
to view the source code for their pages. However, it is important to
remember that doing so potentially reveals secret information,
such as database passwords.

322 | Chapter 22: Debugging

This example shows how to highlight a string of code and also a file:

$mystr = '<?php $foo = "bar"; $bar = array("baz", "wombat", "foo");
 var_dump($foo); ?>';

highlight_string($mystr);
file_put_contents("highlighter.php", $mystr);
highlight_file("highlighter.php");

As you can see, that passes the string into highlight_string(), then saves it out as
highlighter.php and passes that filename into highlight_file() to print out again.
Both highlight_string() and highlight_file() can take a second parameter,
which, if set to true, will make these functions return the highlighted HTML
rather than just print it out directly, giving you more control over it.

Handling MySQL Errors
When it comes to handling SQL querying problems, these are often easier to fix
than pure PHP problems because you can narrow down the position of the error
very easily, then analyze the faulty SQL line to spot the problem.

Always check that your code is actually correct. Use the MySQL monitor to try
your queries out to make sure they do what you think they should do, as it will
show you your results in an easy-to-read manner and will also give you mean-
ingful error messages if you have slipped up along the way.

Also, remember that mysql_query() will return false if the query failed to execute,
which means you can test its return value to see whether your SQL statement is

Figure 22-1. PHP has its own syntax highlighting system that provides a little help for
debugging, but is still no replacement for full syntax highlighting

Exception Handling | 323

D
eb

u
g

g
in

g

faulty. You should be wary of trying to wrap mysql_query() up inside another
function call, because if it returns false due to a bad query, the chances are the
parent function will error out. For example:

extract(mysql_fetch_assoc(mysql_query("SELECT Blah FROM Blah
 WHERE Blah = $Blah;")));

Yes, it is perfectly valid SQL and under ideal conditions should work, but what if
$Blah is unset? Another possibility is that $Blah might end up being a string—
there are no quotes around $Blah, which means that if $Blah is a string, MySQL
will consider it to be a field name, and the query will likely fail.

If the query does fail for some reason, mysql_fetch_assoc() will fail and output
errors, then extract() will fail and output errors, causing a mass of error
messages that hinder more than help. This code is much better:

$result = mysql_query("SELECT Blah FROM Blah WHERE Blah = $Blah;");
if ($result) {
 extract(mysql_fetch_assoc($result));
}

That isn’t to say that having all three functions on one line is incorrect. However,
you should be very sure of any SQL statement you use in that manner, because
any mistakes will be very visible to your users.

A helpful function for debugging MySQL queries is mysql_error(), which returns
any MySQL errors from the last function call. Each time you call a new MySQL
function, the value mysql_error() is wiped, which means you need to call mysql_
error() as soon as your suspect mysql_query() has been called; otherwise, it
might be wiped over by subsequent queries from your connection.

Exception Handling
Although solving all the bugs and potential errors in your code sounds like a nice
idea, it’s not likely for anything beyond “Hello, world” scripts. The main reason
for this is because it’s hard to predict how your code will operate in all scenarios,
so you can’t write code to handle it all.

The solution here is to write exception handlers, which allow you to explicitly
state what PHP should do if there’s a problem in a block of code. Exceptions are
interesting because they all come from the root class Exception, but you can
extend that with your own custom exceptions to trap specific errors.

As exceptions are new in PHP 5, they are primarily for userland code (PHP code
you write) as opposed to internal PHP functions. As new versions of PHP get
released, more and more internal code should be switched over to use exceptions
so that you have a chance to handle errors smoothly, but this is a gradual process.

The basic exception handler uses try/catch blocks to encase blocks of code in a
virtual safety barrier that you can break out of by throwing exceptions. Here’s a
full try/catch statement to give you an idea of how it works:

try {
 $num = 10;
 if ($num < 20) {

324 | Chapter 22: Debugging

 throw new Exception("D'oh!");
 }
 $foo = "bar";
} catch(Exception $exception) {
 print "Except!\n";
}

In that example, PHP enters the try block and starts executing code. When it hits
the line "throw new Exception", it will stop executing the try block and jump to
the catch block. Here it checks each exception option against the list in catch and
executes the appropriate code. Once PHP has left the try block, it will not return
to it, which means that the line $foo = "bar" will never be executed.

The Exception class in there is necessary because PHP decides which catch block
to execute by looking for the same class type as was thrown. Well, that’s the
“easy” way of looking at it: what actually happens is that PHP searches each catch
block, using what is essentially an instanceof check on it. This means that if the
exception thrown is of the same class as the exception in the class block, or if it is
a descendant of that class, PHP will execute that catch block.

The $exception variable after the Exception class is there because PHP actually
hands you an instance of that Exception class, set up with information about the
exception you’ve just experienced. As all exceptions extend from the base class
Exception, you get a basic level of functionality no matter what you do. What’s
more, most of the functions in the Exception class are marked final, meaning they
can’t be overridden in inherited classes, again guaranteeing a set level of function-
ality. For example, you can call $exception->getMessage() to see why the
exception was thrown (the “D’oh!” part in the throw() statement), you can call
getFile() to see where the exception was called, etc.

This example demonstrates how PHP handles multiple catch blocks:

class ExceptFoo extends Exception { }
class ExceptBar extends ExceptFoo { }

try {
 $foo = "bar";
 throw new ExceptFoo("Baaaaad PHP!");
 $bar = "baz";
} catch (ExceptFoo $exception) {
 echo "Caught ExceptFoo\n";
 echo "Message: {$exception->getMessage()}\n";
} catch (ExceptBar $exception) {
 echo "Caught ExceptBar\n";
 echo "Message: {$exception->getMessage()}\n";
} catch (Exception $exception) {
 echo "Caught Exception\n";
 echo "Message: {$exception->getMessage()}\n";
}

That will output the following:

Caught ExceptFoo
Message: Baaaaad PHP!

Backtracing Your Code | 325

D
eb

u
g

g
in

g

So we throw an ExceptionFoo, and PHP jumps to the ExceptionFoo catch block.
However, the output remains the same even if we change the throw() line to this:

throw new ExceptBar("Baaaaad PHP!");

Why? Because PHP matches the first catch block handling the exception’s class or
any parent class of it. Because ExceptionBar inherits from ExceptionFoo, and the
ExceptionFoo catch block comes before the ExceptionBar catch block, the
ExceptionFoo catch block gets called first.

You can rewrite the code to this:

class ExceptFoo extends Exception { }
class ExceptBar extends ExceptFoo { }

try {
 $foo = "bar";
 throw new ExceptBar("Baaaaad PHP!");
 $bar = "baz";
} catch (ExceptBar $exception) {
 echo "Caught ExceptBar\n";
 echo "Message: {$exception->getMessage()}\n";
} catch (ExceptFoo $exception) {
 echo "Caught ExceptFoo\n";
 echo "Message: {$exception->getMessage()}\n";
} catch (Exception $exception) {
 echo "Caught Exception\n";
 echo "Message: {$exception->getMessage()}\n";
}

This time, we have the exception classes in descending order by their inheritance,
so the script works as we would expect.

If you want to, you can throw an exception inside a catch block—either a new
exception or just the old exception again. This is called rethrowing the exception,
and is commonly used if you have ascertained that you cannot (or do not want to)
handle the exception there.

Using this form of debugging allows you to have debugging code next to the code
you think has a chance of breaking, which is much easier to understand than
having one global error-handling function. Whenever you have code that you
know might break and want to include code to handle the problem in a smooth
manner, try/catch is the easiest and cleanest way of debugging.

Backtracing Your Code
Debugging complex scripts can sometimes be a nightmare because objects call
functions, which call other objects and other functions, and so on—you end up
with a nest of calls that make tracing the problem difficult. To make your life
easier, you can use the function debug_backtrace() to tell you about the chain of
events that led up to the call to debug_backtrace().

326 | Chapter 22: Debugging

For example:

function A($param1, $param2) {
 B("bar", "baz");
}

function B($param1, $param2) {
 C("baz", "wom");
}

function C($param1, $param2) {
 var_dump(debug_backtrace());
}

A("foo", "bar");

That script calls function A(), which calls B(), which calls C(), which var_dump()s
the output from debug_backtrace(). Now, what debug_backtrace() will return is
an array of the steps that occurred in getting to it, so that script should output the
following:

array(3) {
 [0]=>
 array(4) {
 ["file"]=>
 string(20) "C:\php\backtrace.php"
 ["line"]=>
 int(6)
 ["function"]=>
 string(1) "C"
 ["args"]=>
 array(2) {
 [0]=>
 &string(3) "baz"
 [1]=>
 &string(3) "wom"
 }
 }
 [1]=>
 array(4) {
 ["file"]=>
 string(20) "C:\php\backtrace.php"
 ["line"]=>
 int(3)
 ["function"]=>
 string(1) "B"
 ["args"]=>
 array(2) {
 [0]=>
 &string(3) "bar"
 [1]=>
 &string(3) "baz"
 }
 }
 [2]=>

Custom Error Handlers | 327

D
eb

u
g

g
in

g

 array(4) {
 ["file"]=>
 string(20) "C:\php\backtrace.php"
 ["line"]=>
 int(11)
 ["function"]=>
 string(1) "A"
 ["args"]=>
 array(2) {
 [0]=>
 &string(3) "foo"
 [1]=>
 &string(3) "bar"
 }
 }
}

Start from the first element, 0, and work your way down in order to visually back-
trace the steps performed before debug_backtrace() was called. Each element in
the return from debug_backtrace() is an array of values that together form a
“step”—here is how it works:

1. The first element (step) has a “file” of c:\php\backtrace.php, which means this
is where the code was at this step. “Line” is set to 6, and “function” is set to
“C”, which means that on line 6 of c:\php\backtrace.php, C() was called.
There is also an “args” array containing “baz” and “wom”—the two parame-
ters passed into C().

2. The second element tells us that B() was called on line three of the same
script, with the parameters “bar” and “baz”.

3. The third element tells us that A() was called on line 11 of the same script,
with “foo” and “bar” passed in.

That is the complete contents of the array, but you can see it has told us exactly
how PHP got to where it was, including all the parameters passed into functions.
This is invaluable for tracking down bugs, particularly when bad parameters are
being passed into functions. Having the “file” element in each step also means
that it works very nicely across multiple files, so even the most complicated scripts
are brought to heel with debug_backtrace().

Custom Error Handlers
While assert() is a good function to make extensive use of, it only catches errors
you were expecting. While that might sound obvious, it is quite crucial—if an
error you have not planned for occurs, how are you to find out about it? Never
fear—there are two functions available to make your life much easier: set_error_
handler() and error_log().

The set_error_handler() function takes the name of a user callback function as
its only parameter, and it notifies PHP that any errors should use that function to
handle them. The user function needs to accept a minimum of two parameters,
but in practice you will likely want to accept four. These are, in order, the error

328 | Chapter 22: Debugging

number that occurred, the string version of the error, the file the error occurred in,
and the line of the error. For example:

function on_error($num, $str, $file, $line) {
 print "Encountered error $num in $file, line $line: $str\n";
}

set_error_handler("on_error");
print $foo;

On line four, we define the general error handler to be the on_error() function,
then call print $foo, which, as $foo does not exist, is an error and will result in
on_error() being called. The definition of on_error() is as described: it takes four
parameters, then prints them out to the screen in a nicely formatted manner.

There is a second parameter to set_error_handler() that lets you choose what
errors should trigger the error handler, and it works like the error_reporting
directive in php.ini. However, you can only have one active error handler at any
time, not one for each level of error. This code should explain it:

function func_notice($num, $str, $file, $line) {
 print "Encountered notice $num in $file, line $line: $str\n";
}

function func_error($num, $str, $file, $line) {
 print "Encountered error $num in $file, line $line: $str\n";
}

set_error_handler("func_notice", E_NOTICE);
set_error_handler("func_error", E_ERROR);

echo $foo;

As before, the error is that $foo isn’t set; that should output a notice. On the
surface, that looks as though we’re assigning func_notice() to handle E_NOTICE-
level messages and also assigning func_error() to handle E_ERROR-level messages.
However, because we can only have one error handler at any one time, the second
call to set_error_handler() replaces the first with one that only listens to E_ERROR
messages.

The restore_error_handler() takes no parameters and returns no meaningful
value, but it restores the previous error handler. There is only really one potential
slip-up here, and that’s when you accidentally call set_error_handler() twice with
the same function name. If you’ve done this, calling restore_error_handler()
won’t make any change on the surface. Internally, it will be using the previous
error handler, but as that happens to be same as the other handler, it will appear
the same.

It’s important to note that set_error_handler() does stack up previous error
handlers neatly, as this script demonstrates:

function func_notice($num, $str, $file, $line) {
 print "Encountered notice $num in $file, line $line: $str\n";
}

Custom Error Handlers | 329

D
eb

u
g

g
in

g

set_error_handler("func_notice", E_NOTICE);
set_error_handler("func_notice", E_NOTICE);
set_error_handler("func_notice", E_NOTICE);

echo $foo;
set_error_handler("func_notice", E_NOTICE);
echo $foo;
restore_error_handler();
echo $foo;
restore_error_handler();
echo $foo;
restore_error_handler();
echo $foo;
restore_error_handler();
echo $foo;

That will only really make sense once you’ve seen the output:

Encountered notice 8 in C:\home\error.php, line 14: Undefined variable: foo
Encountered notice 8 in C:\home\error.php, line 18: Undefined variable: foo
Encountered notice 8 in C:\home\error.php, line 22: Undefined variable: foo
Encountered notice 8 in C:\home\error.php, line 26: Undefined variable: foo
Encountered notice 8 in C:\home\error.php, line 30: Undefined variable: foo
PHP Notice: Undefined variable: foo in C:\home\error.php on line 34

So you can see that we need to call restore_error_handler() enough times to fully
unwind the stack of error handlers, until eventually the default PHP error handler
has control and spits out the usual message.

The error_log() function is a great way to get error data saved to disk (or else-
where) in just one call. At its simplest, you can pass error_log() just one
parameter—an error message—and it will log it for you. To get that, edit your
php.ini file and set the error_log directive to a location Apache/PHP can write to.
For example, /var/log/php_error would be good for Unix, and c:/windows/php_
error.log is good for Windows.

With that done (don’t forget to restart Apache, if necessary), we can go ahead and
use error_log() in its most simple form:

if (!mysql_connect("localhost", "baduser", "badpass")) {
 error_log("Failed to connect to MySQL!");
}

That will output data to our error log. It should also output actual execution
errors into the file—something like Warning: mysql_connect(): Access denied
for user: 'baduser@localhost' (Using password: YES) in C:\home\log.php on
line 2. If not, enable log_errors in your php.ini file. PHP automatically inserts
line breaks for you after each error.

The next two parameters really work in tandem, so I’ll cover them together. The
second parameter—oddly—takes an integer to determine where your error should
be sent: 0 sends it to the error_log (the default), 1 sends it by email using the
mail() function, 3 is unused, and 4 saves it to a file of your choice.

The third parameter qualifies the second in that if you set the second parameter to
be 1 (send error by email), the third parameter should be the email address of the

330 | Chapter 22: Debugging

recipient. Similarly, if you set the second parameter to be 3, parameter three
should be the filename to save the error to. There is a slight twist to saving to a
custom file, because PHP will not do any of the nice formatting for you like it does
in the default error log. For example, it won’t insert line breaks for you, and
neither will it insert timestamps automatically—you need to insert all that your-
self. This works out for the best, as it means you have complete control over your
custom error log.

Here’s a Windows example:

if (!mysql_connect("localhost", "baduser", "badpass")) {
 error_log("Failed to connect to MySQL!\r\n", 3, "c:/myerror.txt");
}

Custom Exception Handlers
In the same way that set_error_handler() sets a handler for uncaught errors, set_
exception_handler() sets a handler for uncaught exceptions. As exceptions are
more powerful than errors, your exception-handling function need only take one
parameter: an exception object. From that, you can glean the usual information
such as message, line number, etc.

Apart from the parameters passed, these work the same as set_error_handler().
Here’s an example:

function handle_exception($exception) {
 echo "Caught exception: {$exception->getMessage()}\n";
}

set_exception_handler("handle_exception");

throw(new Exception('The engines cannot take much more!'));

Having a custom exception handler is a smart move wherever you’re using excep-
tions, because it essentially captures all exceptions that would otherwise have
been uncaught, and gives you one last chance to take some action before the
script potentially terminates.

Using @ to Disable Errors
If you find an error message particularly annoying and you are sure it definitely
does not apply to you, PHP has a method for you to silence the message entirely.
If you place an at symbol, @, before a function that generates an error, PHP will
catch the error and silence it entirely. Consider the following two complete
scripts:

$passwd = fopen("/etc/shadow", "r");
if (!$passwd) {
 echo "Failed to open /etc/shadow.\n";
}

$passwd = @fopen("/etc/passwd", "r");

Output Style | 331

D
eb

u
g

g
in

g

In script one, fopen() is used to open the /etc/shadow Unix password file, which is
inaccessible to everyone but the superuser. If our user isn’t running as root, this
will fail, but fopen() will also output an error message. We already have code to
handle the possibility that the file open failed, so we don’t want that error
message to be printed. So, the second script shows us using the @ symbol to ignore
errors in that function call—if the open fails, nothing will happen. Even if the
function doesn’t exist for some reason, nothing will happen—it is all suppressed
by @.

While there are legitimate uses for suppressing errors in this way, it is not advised,
because it usually works in the same way that sweeping dust under a carpet does
not make a house any cleaner. If you explicitly wish to have errors suppressed
with @, it is strongly advised that you always write your own code to check return
values of functions.

phpinfo()
The phpinfo() function serves two very helpful purposes:

• It replaces the standard “Hello, world!” scripts that verify a PHP installation
is working correctly.

• It outputs a massive amount of very helpful information about a PHP installa-
tion, including what is installed and how it is configured.

Not surprisingly, it is the second instance we’re most interested in, because
phpinfo() outputs information on all extensions enabled in your PHP installa-
tion, as well as how they are configured. As such, if you ever want to know a
setting, you can read it from php.ini—all the way down to the current level of
error reporting, the time that PHP was compiled, and whether or not you have a
PHP accelerator installed.

Output Style
Owing to the fact that PHP generates its output dynamically, it is easy to generate
messy output that is hard to read. While this is not a problem in itself, it does not
look good on you and your web site, and also makes the outputted HTML source
code hard to read if you have debugging to do. Help is at hand: the Tidy exten-
sion, amongst other things, can clean up and repair poorly written HTML.

Here’s an example HTML document:

<TITLE>This is bad HTML</title>

<BODY>
This would get rejected as XHTML for a number of reasons.
First, the <FOO> tag doesn't exist.
Second, the tags aren't the same
case.
Third, tags that don't end, like <HR>, aren't allowed.

Tidy should fix all this for us!

332 | Chapter 22: Debugging

As you can see, it’s quite messy. Let’s put it through Tidy with no particular
options set:

<?php $tidy = new tidy("lame.html");
 $tidy->cleanRepair();
 echo $tidy;
?>

That will output the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<title>This is bad HTML</title>
</head>
<body>
This would get rejected as XHTML for a number of reasons. First,
the tag doesn't exist.

Second, the tags aren't the same case. Third, tags that don't end,
like
<hr>
, aren't allowed.

Tidy should fix all this for us!
</body>
</html>

Tidy has added all the right header and footer tags to make the overall content
compliant, and normalized the case of the elements. Second, it has taken away the
FOO tag because it is invalid. Third, it has wrapped the lines so they aren’t too
long. Finally, it added a new line after each tag.

If you would rather do without line wrapping, you can turn it off. Tidy accepts a
variety of options, and we’ll go over some of the popular ones in a moment. First
things first, though: blast line wrapping and make the output actually look tidy!

$tidyoptions = array("indent" => true,
 "wrap" => 1000);
$tidy = new tidy("lame.html", $tidyoptions);
$tidy->cleanRepair();
echo $tidy;

This time, we use an array to store the options, enabling indent mode and setting
the character-wrap limit to 1000 characters. The output now looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
 <head>
 <title>
 This is bad HTML
 </title>
 </head>
 <body>
 This would get rejected as XHTML for a number of reasons.
 First, the tag doesn't exist.

 Second, the tags aren't the same case. Third, tags that don't end, like
 <hr>
 , aren't allowed.

Output Style | 333

D
eb

u
g

g
in

g

 Tidy should fix all this for us!
 </body>
</html>

Much better, but not yet perfect: it’s valid HTML 3.2 now, but XHTML is the
future, so it is recommended that you try to write conforming code—or let Tidy
do it for you, like this:

$tidyoptions = array("indent" => true,
 "wrap" => 1000,
 "output-xhtml" => true);
$tidy = new tidy("lame.html", $tidyoptions);
$tidy->cleanRepair();
echo $tidy;

That extra option makes the world of difference to the output:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 This is bad HTML
 </title>
 </head>
 <body>
 This would get rejected as XHTML for a number of reasons.
 First, the tag doesn't exist.

 Second, the tags aren't the same case. Third, tags that don't end, like
 <hr />
 , aren't allowed.

 Tidy should fix all this for us!
 </body>
</html>

Now we get the works: a full XHTML doctype, all our tags are indented, and all
our tags are closed. This is what we should be aiming for as standard.

To let you customize various aspects of how your tidied output should look, there
is a wide variety of options that can be passed in. As you saw in the previous
script, the way to do this is to create an array where the keys are the option names
and the values are the settings for those options, then pass that in as the second
parameter when creating a Tidy object.

The official list of Tidy options is available online in the Tidy manual (see http://
tidy.sourceforge.net/docs/quickref.html), but here are a few to get you started:

logical-emphasis
Set to true to have Tidy change <i> tags to , and to .

replace-color
Set to true to have Tidy change numeric HTML color values to their named
equivalents, wherever possible. That is, #FFFFFF becomes "white".

334 | Chapter 22: Debugging

show-body-only
Set to true to have Tidy only output the contents of the <body> tag—no
headers, no titles, not even the body tag itself. This is used to grab the
content (and only the content!) of a web page.

word-2000
My favorite. Set to true to have Tidy turn Word 2000’s mangled attempt at
HTML into proper HTML.

vertical-space
Set to true to have Tidy insert blank lines in the output to make it more
readable.

fix-backslash
Set to true if someone in your company likes writing URLs with a \ rather
than a /—this corrects it.

Installing Tidy

If you’re using Windows, you can enable Tidy support by enabling the extension
in your php.ini file. Look for the line ";extension=php_tidy.dll" and take the
semicolon off from the beginning.

If you’re using Unix, you either have to install Tidy support through your package
manager, or you need to compile it from source. Compiling Tidy support into
your PHP takes two steps: installing the Tidy development libraries on your
machine (do this through your package manager), then recompiling PHP with the
--with-tidy switch in your configure line. As long as you have the development
version of Tidy installed, this should work fine.

335

23
Performance

Many people see performance and security as mutually exclusive, particularly in
the cost-restricting IT environment in which we currently live. Faced with that
choice, it’s not surprising that many choose to write very secure—but very slow—
PHP scripts. “Fast, cheap, good—pick two” is a compromise we all have to live
with to some degree, but you may be surprised to learn that you can speed up
your code and add security if you take the time to plan.

Write Your Code Sensibly
“The fastest code is the code that is never executed.”

If you are working on something you originally thought would be easy but has
ended up being many more lines of code than you originally intended, it is quite
possible that your code is getting a little bloated, and more than a little slow.
Hoare’s law tells us, “Inside every large program is a small program struggling to
get out,” so you should consider chopping out blocks of code that are outdated,
outmoded, replaced, or irrelevant.

In his book The Art of Unix Programming (Addison-Wesley), Eric Raymond says,
“The most powerful optimization tool in existence may be the delete key.” He
also quotes Ken Thompson (one of the most highly respected Unix hackers in the
world) as saying, “One of my most productive days was throwing away 1000 lines
of code.” Very true.

Optimization is down to personal intuition, and is hard to do at first. However,
try this out to give you an idea of script performance:

print "Start: ", microtime(true);
// ...[snip]...
print "End: ", microtime(true);

336 | Chapter 23: Performance

This allows you to time the execution of your script, or at least certain parts of
your script. If you see something running particularly slowly, it may be because
your implementation is bad, or because your actual algorithm is faulty.

There are many optimizations that can be implemented to make your code run
faster/smoother; however, most of them also make the code harder to read and/or
edit.

Use the Zend Optimizer
The Zend Optimizer is a free product that helps your PHP code go faster by
changing your compiled code around (but leaving the “meaning” of the code the
same) to increase execution speed.

Even though it runs every time your page is executed, it has little to no noticeable
overhead and can drastically improve performance. Note that there are some cases
where using the Optimizer will actually slow things down—usually when scripts
are short or exit early. Even these situations become irrelevant if you install a PHP
code cache (see next section).

Use a PHP Code Cache
There is one simple way you can double the speed of your server, and that is to
install a PHP code cache. There are a few to choose from, but several of them
don’t keep up-to-date with new releases. IonCube’s PHP Accelerator (http://www.
ioncube.co.uk) used to be good, but hasn’t seen an update for a while at the time
of writing.

The finest code cache available is now unequivocally Zend Platform, which
combines an advanced code acceleration system with numerous management
features. The downside is that it’s expensive, but if you’re a small business, you
can sign up for their Small Business program, which gives you a cutdown version
of their code cache for a much lower price.

If you’re watching your pennies, the Alternative PHP Cache (http://pecl.php.net/
package/APC) will get you almost as much performance as Zend Performance
Suite, at no cost.

Compress Your Output
HTML is a very wordy format, which means there’s a lot of duplication in the
form of HTML tags, and in the main body text. Furthermore, by default, PHP will
send text to Apache as soon as it is ready, which results in less efficient transfer of
data.

The solution is to enable output buffering, and to use gzip compression for the
buffers. Not all clients support receiving compressed content (every browser made
in the last five years will), and to handle that, PHP will only compress data if the
client can support it—this means you can enable compression and not have to
worry about old clients, because PHP will not send them compressed data.

Compile Right | 337

P
erfo

rm
an

ce

The best way to use output buffering is to use the commands shown in
Chapter 11. However, if you don’t want to change your scripts, open up your
php.ini file and set output_buffering to 1 and output_handler to ob_gzhandler
(without the quotes). You’ll find those values already set in your php.ini already,
so just change the existing values. You should check your phpinfo() output to
make sure output buffering is enabled correctly.

Don’t Use CGI
You have two options when installing PHP: use it as a CGI executable, or use it as
an Apache/ISAPI module. Although there are advantages to both options, running
PHP as a module is overwhelmingly favorable when it comes to performance, as
all of PHP and its extension modules reside in memory as opposed to being
loaded with every request.

From a purely performance-motivated point of view, you would be crazy to run
PHP as a CGI executable.

Debug Your Code
One problem with PHP is that it’s very easy to miss some error messages because
it outputs them along with the rest of your content, if they are minor. To avoid
this, check the output your pages produce in order to make sure PHP is not emit-
ting errors behind your back. Alternatively, make sure error logging is turned on
in your php.ini file, then check the error log regularly.

Use Persistent Connections
If you connect to a database with each script, consider using a persistent connec-
tion rather than a normal connection. For MySQL users, that is the difference
between using mysql_pconnect() rather than mysql_connect(). Persistent connec-
tions remain connected even after your script has ended, which means that the
next time a script asks for a connection, it uses the one that is already open—this
saves a lot of time negotiating passwords and such that can otherwise be used to
execute important code.

Switching to persistent connections does not require any other change than
adding a “p” in the function name—the parameters are still the same. If your
database server is not on the same machine as your web server, consider using
CLIENT_COMPRESS as the fifth parameter to your mysql_connect()/mysql_pconnect()
call, as it allows MySQL to compress data to save space, and can drastically lower
network bandwidth and transfer speed, particularly when reading in lots of data.

Compile Right
One of the biggest advantages to using a Unix box is that you get to compile your
software yourself, and it does make a difference to the speed of your software. If

338 | Chapter 23: Performance

you are able to, I suggest you compile Apache, PHP, and MySQL yourself, using
GCC 4.x and as many optimizations turned on as you have time to wait for.

Particularly important here is the PHP compilation, as you are not likely to get
much improvement in your MySQL compilation over the stock binaries you can
grab directly from MySQL.

339

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
[] array operator, 63

A
abnormal script termination, 22
abs() function, 91
abstract keyword, OOP, 138
acos() function, 91
ActionScript, Flash, 280
addslashes() function, 91
animation, Flash, 282
Apache installation, Windows, 12
appending variables, 25
arithmetic operators, 79–80
array() function, 60
array operator, 63
array types, 47
array_diff() function, 65
array_filter() fucntion, 65
array_flip() function, 65
array_intersect() function, 66
array_keys() function, 66
array_merge() function, 67
array_pop() function, 68
array_rand() function, 68
arrays, 60

array cursor, 76
associative, 62
elements, 61

keys, 61
values, 61

holes, 77
introduction, 60
multidimensional, 75
returning from functions, 64
saving, 77
in strings, 77
var_dump() function, 62

array_shift() function, 69
array-specific functions, 64
array_unique() function, 69
array_unshift() function, 69
array_values() function, 69
arsort() function, 70
asin() function, 92
asort() function, 70
assertions, debugging and, 318
assigning variables, 24
assignment operators, 80
associative arrays, 62
associativity of operators, 87
atan() function, 92
attachments to email messages, 305
authentication, HTTP and, 298
auto-incrementing values, MySQL

databases, 221
__autoload() method, 149

340 | Index

B
backtracing, debugging and, 325–327
base_convert() function, 92
bindec() function, 93
bitwise operators, 81
blocks of code, 27
boolean types, 47
break command, loops, 36
brushes, images, 258–260
buffering output (see output buffering)
bug submission, 6

C
__call() method, 151
calling functions, 89
call_user_func() function, 93
call_user_func_array() function, 93
case switching, 30
case-sensitivity, variables, 24
ceil() function, 94
certification, 7
CGI, performance and, 337
character classes, regular

expressions, 235
character matching, regular

expressions, 239
characters, non-English, 90
chdir() function, 211
checksums, 213
chmod() function, 209
chown() function, 209
chr() function, 94
classes

character classes, regular
expressions, 235

OOP, 129–131
defining, 130
designing, 130
inheritance, 131
overriding methods, 131
scope resolution operator, 131

static class methods, 152
SWFFont, 279
SWFText, 279

CLI (command-line interface), script
execution, 19

closedir() function, 210
code blocks, 27
code caches, 336

code distribution
loading extensions, 313–314
path and line separators, 314
php.ini differences, 315
versions, 316

code islands, 27–28
code writing, performance and, 335
color in images, 255, 257
comments, 28
comparing objects, 146
comparison operators, 82
compiled code, 3
compiling, performance and, 337
complex data types, storage, 179
complex shapes, images, 250
compression

HTML, 187
output, 187
performance and, 336

concatenation, string operators, 81
conditional statements, 28
conditions, case switching, 30
conferences as resource, 5
configuration

extensions, 14
system configuration, 17
testing, 17

configuration files, parsing, 213
connection_status() function, 94
constants, 58

define() function, 58
mathematical, 60
preset, 59

constructors, OOP, 142
parent constructors, 143

cookies
introduction, 170
sessions comparison, 170

coordinates, images, 247
copy() function, 201
copying files, 200

copy(), 201
copying images, 260
cos() function, 95
count_chars() function, 95
cURL (Client for URLs), 306

debugging, 311
FTP and, 308
HTTP and, 309
installation, 306

Index | 341

options, 310
return values, 307
scripts, 306

cursors, array cursor, 76

D
data handling, HTML forms, 162–165
data types, 47–48

storage, 179
databases

files comparison, 175–179
MySQL

auto-incrementing values, 221
connecting to, 216–217
disconnecting, 218
formatting, 217
persistent connections, 232
PHP variables, 220
queries, 217
reading data, 219
unbuffered queries, 222

MySQL and, 216
MySQLi, 233
SQLite, 228–232

date() function, 95, 203
DB::connect() function, 224
DB::isError() function, 224
debugging

assertions, 318
backtracing, 325–327
cURL, 311
error disabling, 330
error handlers, 327–330
exception handlers, 323–325

custom, 330
highlighting and, 321
introduction, 317
MySQL and, 322
output, 331
performance and, 337
php_check_syntax() function, 321
submitting bugs, 6
syntax, 321
Tidy and, 334
triggering errors, 320

decbin() function, 97
dechex() function, 97
decimals, 50
decoct() function, 97
decrementing operators, 83
decryption, symmetric, 194

define() function, 58
defining classes, OOP, 130
deg2rad() function, 97
deleting directories, rmdir(), 211
deleting files, 200

unlink(), 202
dereferencing return values, 156
design, HTML forms, 169
designing classes, OOP, 130
destructors, OOP, 142, 144
directories, 210

creating, mkdir(), 211
deleting, rmdir(), 211
scandir(), 212
working directories, 211

disabling errors, 330
disconnecting from MySQL

databases, 218
distributing code (see code distribution)
dl() function, 98, 313
document root, security and, 190
documentation, 4
do...while keyword, 31
dynamic, definition, 158

E
elements

arrays
keys, 61
values, 61

HTML forms, 159
email

sending messages, 300
attachments, 305
MIME types, 301
PEAR::Mail and, 303
PEAR::Mail_Mime, 303

empty() function, 98
encryption, 192

decryption, symmetric, 194
functions, 192

ending sessions, 174
$_ENV superglobal array, 55
error handlers, debugging and, 327–330
errors, disabling, 330
escape sequences, 48
escapeshellcmd() function, 98
eval() function, 99
exception handlers, custom, 330
exception handling, 323–325
exec() function, 99

342 | Index

execution operators, 86
exit() function, 100
explode() function, 71
expressions (see regular expressions)
extensions, 20–21

configuration, 14
loading, 313–314

extract() function, 71

F
fgets() function, 199
file() function, 196
file functions, 202
fileatime() function, 203
file_exists() function, 203
file_get_contents() function, 196
filemtime() function, 203
filenames, 204
file_put_contents() function, 199
files

checksums, 213
configuration, parsing, 213
copying, 200

copy(), 201
databases comparison, 175–179
deleting, 200

unlink(), 202
existence, checking, 203
locking, 206
moving, 200

rename(), 201
ownership, changing, 209
parsing, configuration files, 213
permissions, 208

changing, 209
reading

fgets(), 199
file(), 196
file_get_contents(), 196
fopen(), 197
fread(), 197
readfile(), 195

remote, 212
status, 208
time information, 203
uploads, 205
writing to

file_put_contents(), 199
fwrite(), 200

fills, images, 255–257
filters, XPath and, 287–289

final keyword, OOP, 137
Flash

ActionScript, 280
animation, 282
movie creation, 277–279
text, 279

float types, 47, 50
flock() function, 206
floor() function, 100
flush() function, 185–187
flushing output, 185–187
flushing stacked buffers, 183
fonts, TrueType, 251
fopen() function, 197, 212
for keyword, 31
foreach keyword, 31
<form> tag (HTML), 158
formats

images, 246
MySQL databases, 217

forms, HTML (see HTML, forms)
fread() function, 197
fseek() function, 202
fsockopen() function, 294
FTP, cURL and, 308
function keyword, 40
function_exists() function, 100
functions

abs(), 91
acos(), 91
addslashes(), 91
array(), 60
array_diff(), 65
array_filter(), 65
array_flip(), 65
array_intersect(), 66
array_keys(), 66
array_merge(), 67
array_pop(), 68
array_rand(), 68
array_shift(), 69
array-specific, 64
array_unique(), 69
array_unshift(), 69
array_values(), 69
arsort(), 70
asin(), 92
asort(), 70
assert(), 318
atan(), 92
base_convert(), 92

Index | 343

bindec(), 93
calling, 89
call_user_func(), 93
call_user_func_array(), 93
ceil(), 94
chdir(), 211
chmod(), 209
chown(), 209
chr(), 94
closedir(), 210
connection_status(), 94
copy(), 201
cos(), 95
count_chars(), 95
date(), 95, 203
DB::connect(), 224
DB::isError(), 224
decbin(), 97
dechex(), 97
decoct(), 97
define(), 58
defining, 40
deg2rad(), 97
dl(), 98, 313
empty(), 98
encryption functions, 192
escapeshellcmd(), 98
eval(), 99
exec(), 99
exit(), 100
explode(), 71
extract(), 71
fgets(), 199
file(), 196
file functions, 202
fileatime(), 203
file_exists(), 203
file_get_contents(), 196
filemtime(), 203
file_put_contents(), 199
flock(), 206
floor(), 100
flush(), 185–187
fopen(), 197, 212
fread(), 197
fseek(), 202
fsockopen(), 294
function_exists(), 100
fwrite(), 200, 202
getcwd(), 211
get_extension_funcs(), 101

get_loaded_extensions(), 101
header(), 244
hexdec(), 102
highlight_file(), 321
highlight_string(), 321
html_entities(), 102
html_entity_decode(), 102
ignore_user_abort(), 102
imagecolorallocate(), 245
imagecreate(), 244
imagedestroy(), 244
implode(), 72
in_array(), 72
ini_get(), 103
ini_set(), 103
introduction, 39
is_callable(), 103
is_dir(), 208
is_executable(), 208
is_file(), 208
is_readable(), 208
isset(), 52, 104, 174
is_writeable(), 208
krsort(), 73
ksort(), 73
link(), 210
ltrim(), 104
mail(), 300
mcrypt_create_iv(), 193
mcrypt_module_open(), 193
md5(), 104
microtime(), 104
mkdir(), 211
mktime(), 105
move_uploaded_file(), 206
mt_rand(), 105
mycrypt_generic_init(), 193
mysql_close(), 218
mysql_connect(), 216
mysql_fetch_assoc(), 219
mysql_free_result(), 218
mysql_query(), 217
nl2br(), 106
number_format(), 106
ob_clean(), 182
ob_end_clean(), 182
ob_end_flush(), 182
ob_flush(), 182
ob_get_contents(), 184
ob_get_length(), 185
ob_get_level(), 185

344 | Index

functions (continued)
ob_start(), 182
octdec(), 106
OOP, 153
opendir(), 210
ord(), 107
parameters, 41

default parameters, 42
parse_ini_file(), 213
parse_str(), 107
passing by reference and, 41
passing by value, 89
passthru(), 108
pathinfo(), 204
pdf_begin_page(), 272, 273
pdf_end_page(), 273
pdf_findfont(), 272
pdf_open_file(), 272
pdf_open_image_file(), 274
pdf_place_image(), 274
pdf_rotate(), 275
pdf_setfont(), 272
pdf_show_xy(), 272
pdf_skew(), 275
php_check_syntax(), 321
phpinfo(), 17
phpversion(), 316
pow(), 109
preg_match(), 234
preg_match_all(), 234
printf(), 109
rad2deg(), 111
rand(), 111
range(), 74
rawurldecode(), 111
rawurlencode(), 111
readdir(), 210
readfile(), 195
readlink(), 210
recursive, 45
register_shutdown_function(), 112
rename(), 201
return values, 40
returning by reference, 42
returns, arrays, 64
rewind(), 202
rmdir(), 211
round(), 112
rtrim(), 113
scandir(), 212

scope
overriding, GLOBALS array, 45
variable, 44

serialize(), 77, 179
session_destroy(), 174
session_start(), 173
setcookie(), 171
set_time_limit(), 113
sha1(), 114
sha1_file(), 213
show_source(), 321
shuffle(), 74
sin(), 115
sleep(), 115
sqrt(), 115
strcasecmp(), 118
strcmp(), 118
stripslashes(), 119
strip_tags(), 118
strlen(), 120
str_pad(), 116
strpos(), 120
str_replace(), 116
strstr(), 121
strtolower(), 121
strtotime(), 121
strtoupper(), 122
str_word_count(), 117
substr(), 123
symlink(), 210
tan(), 124
time(), 124
trigger_error(), 320
trim(), 125
ucfirst(), 125
ucwords(), 125
undocumented, 90
unlink(), 202
unserialize(), 77, 179
unset(), 126, 174
urldecode(), 77
urlencode(), 77
user functions, 39
usleep(), 126
version_compare(), 316
virtual(), 126
wordwrap(), 127

fwrite() function, 200, 202

Index | 345

G
__get() method, 149
GET method, 159
getcwd() function, 211
get_extension_funcs() function, 101
get_loaded_extensions() function, 101
global variables, superglobals, 54
GLOBALS array, overriding scope, 45
Gutmans, Andi, 1

H
hard links, 210
header() function, 244
headers, HTTP

custom, 297
reading queued, 298

Help
conferences, 5
documentation, 4
IRC, 5
mailing lists, 4
user groups, 6

heredoc, 26
hexadecimals, 50
hexdec() function, 102
hiding PHP, security, 192
highlight_file() function, 321
highlighting, debugging and, 321
highlight_string() function, 321
history of PHP, 1–2
holes in arrays, 77
HTML (Hypertext Markup

Language), 2, 157
compressed, 187
forms

creating, 160
design, 169
designing, 158
elements, 159
GET method, 159
input validation, 166
magic quotes, 164
multiple pages, 166
POST method, 159
register_globals, 163

XML and, 157
html_entities() function, 102
html_entity_decode() function, 102

HTTP (Hypertext Transport Protocol)
authentication, 298
cURL and, 309
headers

custom, 297
queued, reading, 298

HTTP_REFERER, 56
HTTP_USER_AGENT, 56

I
identity, security and, 191
ignore_user_abort() function, 102
imagecolorallocate() function, 245
imagecreate() function, 244
imagedestroy() function, 244
images

brushes, 258–260
color, 255–257
coordinates, 247
copying, 260
creating, 244
fills, 255–257
formats, 246
interlacing, 269
introduction, 244
JPEG format, 245, 246
lines, 265
loading, 254
MIME types, 269
PDFs, 274

rotating, 275
skewing, 275

PNG format, 245
points, 265
rotating, 262–264
scaling, 262–264
shapes, 248

complex, 250
special effects, 267
text, 252
transparency, 257

implode() function, 72
in_array() function, 72
include keyword, 37
incrementing operators, 83
infinite loops, 34
inheritance

OOP, 153
OOP classes, 131

multiple inheritance, 129

346 | Index

ini_get() function, 103
ini_set() function, 103
input validation, HTML forms, 166
installation

Apache, Windows, 12
cURL, 306
Microsoft IIS, 12
on Unix, 14–17
on Windows, 11–14

instance of keyword, OOP, 140
integer types, 47
integers, 49

decimals, 50
hexadecimals, 50
octals, 50

interfaces, OOP, 153
interlacing images, 269
interpreted code, 3
IonCube’s PHP Accelerator, 336
IRC, 5
is_callable() function, 103
is_dir() function, 208
is_executable() function, 208
is_file() function, 208
is_readable() function, 208
isset() function, 52, 104, 174
is_writeable() function, 208
iteration, OOP object properties, 139

J
JPEG format, 245–246

K
keys, array elements, 61
keywords

function, 40
include, 37
loops, 31, 34
OOP

abstract, 138
final, 137
instance of, 140
private, 135
public, 135

OOP access control, 134
return, 40

krsort() function, 73
ksort() function, 73

L
Lerdorf, Rasmus, 1
line separators, code distribution

and, 314
lines, images, 265
link() function, 210
links

hard links, 210
symlinks, 210

loading extensions, 313–314
loading images, 254
locking files, flock(), 206
logical operators, 84
loops, 31

break command, 36
infinite, 34
keywords, 34
nesting, 35

ltrim() function, 104

M
magazines, 9
magic quotes, 164
mail() function, 300
mailing lists, 4
matched strings, storage, 240
mathematical constants, 60
mcrypt_create_iv() function, 193
mcrypt_generic_init() function, 193
mcrypt_module_open() function, 193
md5() function, 104
metacharacters, regular

expressions, 236–239
methods

OOP, 148
__autoload(), 149
__call(), 151
__get(), 149
__set(), 150
__toString(), 151

overriding, OOP classes, 131
static class methods, 152

Microsoft IIS installation, 12
microtime() function, 104
MIME types

email messages, 301
images and, 269

Ming, 277
mixed-mode processing, 37
mkdir() function, 211

Index | 347

mktime() function, 105
modes, mixed-mode processing, 37
move_uploaded_file() function, 206
moving files, 200

rename(), 201
mt_rand() function, 105
multidimensional arrays, 75
MySQL

databases
auto-incrementing values, 221
connecting to, 216–217
disconnecting, 218
formatting, 217
persistent connections, 232
PHP variables, 220
querying, 217
reading data, 219
unbuffered queries, 222

debugging and, 322
introduction, 216

mysql_close() function, 218
mysql_connect() function, 216
mysql_fetch_assoc() function, 219
mysql_free_result() function, 218
MySQLi, 233
mysql_query() function, 217

N
nest count, output buffering, 185
nesting loops, 35
nl2br() function, 106
non-English characters, 90
number_format() function, 106
numbers

float types, 47
floating-point, 50
integer types, 47
variables, 24

O
ob_clean() function, 182
ob_end_clean() function, 182
ob_end_flush() function, 182
ob_flush() function, 182
ob_get_contents() function, 184
ob_get_length() function, 185
object types, 47
objects

comparing, 146
copying, 145

deleting, 145
OOP, 131

object types, 140
saving, 147
within objects, 133

properties, iteration, 139
ob_start() function, 182
octals, 50
octdec() function, 106
OOP (object-oriented programming)

access control keywords, 134
classes, 129

defining, 130
designing, 130
inheritance, 131
inheritance, multiple, 129
overriding methods, 131
scope resolution operator, 131
static class methods, 152

constructors, 142
parent constructors, 143

destructors, 142, 144
functions, 153
inheritance, 153
interfaces, 153
introduction, 128
keywords

abstract, 138
access control, 134
final, 137

methods, 148
__autoload(), 149
__call(), 151
__get(), 149
__set(), 150
static class methods, 152
__toString(), 151

object comparison, 146
object copying, 145
object deletion, 145
object properties, iteration, 139
object types, 140
objects, 131

saving, 147
within objects, 133

properties, 132
private, 135
protected, 136
public, 135
static, 152

this variable, 133

348 | Index

opendir() function, 210
operators

arithmetic, 79–80
array operator, 63
assignment, 80
associativity, 87
bitwise, 81
comparison, 82
decrementing, 83
examples, 85
execution, 86
incrementing, 83
logical, 84
precedence, 87
scope resolution operator, OOP, 131
string, 81
ternary, 86

ord() function, 107
output, 3

compressed, performance and, 336
compression, 187
debugging and, 331
flushing, 185–187
XML, 289

output buffering, 3
buffer creation, 182
buffer reuse, 182
buffer stacking, 182
functions, 185
introduction, 181
nest count, 185
reading buffers, 184
stackability, 181
stacking buffers, flushing, 183
web server speed and, 181

outputting text, 251–254
overriding methods, OOP classes, 131
overriding scope, GLOBALS array, 45
ownership, files, 209

P
parameters

counts, variable, 43
functions, 41

default parameters, 42
parent constructors, OOP, 143
parse_ini_file() function, 213
parse_str() function, 107
parsing configuration files, 213

passing
by reference, 41
by value, 89

passthru() function, 108
path separators, code distribution

and, 314
pathinfo() function, 204
PCRE (Perl-Compatible Regular

Expressions), 234
pdf_begin_page() function, 272, 273
pdf_end_page() function, 273
pdf_findfont() function, 272
pdf_open_file() function, 272
pdf_open_image_file() function, 274
pdf_place_image() function, 274
pdf_rotate() function, 275
PDFs

adding pages, 273
creating, 271–273
document data, adding, 275
images

rotating, 275
skewing, 275

images, adding, 274
styles, 273

pdf_setfont() function, 272
pdf_show_xy() function, 272
pdf_skew() function, 275
PDO (PHP Data Objects), 223
PEAR (PHP Extension and Application

Repository), 21
PEAR::DB

introduction, 223
prepared statements, 227
queries, 225
quick calls, 225

PEAR::Mail, 303
PEAR::Mail_Mime, 303

email attachments, 305
PECL code, 21
performance

CGI and, 337
code caches and, 336
compiling and, 337
compressed output, 336
debugging and, 337
introduction, 4
persistence connections and, 337
writing code and, 335
Zend Optimizer and, 336

Index | 349

permissions, files, 208
changing, 209

persistent connections
MySQL, 232
performance and, 337

PHP
hiding, security and, 192
history of, 1–2
HTML and, 2
installation

on Unix, 14–17
on Windows, 11–14

PHP code, 21
php_check_syntax() function, 321
phpinfo() function, 17
phpversion() function, 316
PNG format, 245
points, images, 265
ports, 293

sockets and, 293
POST method, 159
pow() function, 109
precedence, operators, 87
preg_match() function, 234
preg_match_all() function, 234
prepared statements, PEAR::DB, 227
preset constants, 59
printf() function, 109
private properties, OOP, 135
properties

OOP, 132
private, 135
protected, 136
public, 135

static, 152
protected properties, OOP, 136
protocols, 293

ports, 293
public files, security and, 191
public properties, OOP, 135

Q
queries

MySQL databases, 217
unbuffered, 222

PEAR::DB, 225
queued headers, reading (HTTP), 298

R
rad2deg() function, 111
rand() function, 111
range() function, 74
rawurldecode() function, 111
rawurlencode() function, 111
readdir() function, 210
readfile() function, 195
reading data in to MySQL

databases, 219
reading files

fgets(), 199
file(), 196
file_get_contents(), 196
fopen(), 197
fread(), 197
readfile(), 195

reading output buffers, 184
reading session data, 174
readlink() function, 210
recursive functions, 45
references, 57

passing by, 41
returning by, 42

Regex Coach, 243
register_globals, HTML forms, 163
register_shutdown_function()

function, 112
regular expressions

character classes, 235
character matching, 239
introduction, 234
matched string storage, 240
metacharacters, 236–239
preg_match() function, 234
preg_match_all() function, 234
Regex Coach, 243
replacements, 240
special characters, 236–239
syntax, 242
whitespace, 239

remote files, 212
rename() function, 201
resource types, 47
resources

books, 7
conferences, 5
documentation, 4
IRC, 5
magazines, 9

350 | Index

resources (coninued)
mailing lists, 4
submitting bugs, 6
user groups, 6
web sites, 9

return keyword, 40
return values, 40
returning by reference, 42
returns

arrays from functions, 64
dereference return values, 156

rewind() function, 202
rewriting URLs, 188
rmdir() function, 211
ROT13 server, 295
rotating images, 262–264
round() function, 112
rtrim() function, 113
running scripts, 19

S
saving arrays, 77
scaling images, 262–264
scandir() function, 212
scope

functions
overriding, GLOBALS array, 45
variable, 44

variables, 52
scope resolution operator, OOP, 131
scripts

cURL, 306
.php extension, 23
running, 19
termination, abnormal, 22

searches, XPath and, 287–289
security

document root and, 190
encryption, 192

decryption, 194
functions, 192

hiding PHP, 192
identity and, 191
public files, 191

serialize() function, 77, 179
server sockets, creating, 295
$_SERVER superglobal array, 55
session_destroy() function, 174
sessions

adding data, 173
checking data, 174

cookies comparison, 170
ending, 174
introduction, 170
reading data, 174
removing data, 174
starting, 173

session_start() function, 173
__set() method, 150
setcookie() function, 171
set_time_limit() function, 113
sha1() function, 114
sha1_file() function, 213
shapes, images, 248

complex, 250
shorthand concatenation, 81
show_source() function, 321
shuffle() function, 74
SimpleXML

introduction, 284–285
outputting XML, 289
reading from strings, 286
XML attributes, 286
XPath and, 287–289

sin() function, 115
sleep() function, 115
sockets

as files, 294
opening, 294
ports and, 293
protocols and, 293
server sockets, 295

special characters in regular
expressions, 236–239

SQLite database, 228–232
sqrt() function, 115
stacking buffers, 182

flushing stacked, 183
statements, 23

conditional, 28
static class methods, 152
static properties, 152
strcasecmp() function, 118
strcmp() function, 118
string operators, 81
string types, 47
strings, 48

arrays in, 77
escape sequences, 48
heredoc, 26
reading from, XML, 286
regular expressions, matched, 240

Index | 351

stripslashes() function, 119
strip_tags() function, 118
strlen() function, 120
str_pad() function, 116
strpos() function, 120
str_replace() function, 116
strstr() function, 121
strtolower() function, 121
strtotime() function, 121
strtoupper() function, 122
str_word_count() function, 117
substitution, variables, 25
substr() function, 123
superglobals, 54
Suraski, Zeev, 1
SWFFont class, 279
SWFText class, 279
switch/case blocks, 30
symlink() function, 210
symlinks, 210
symmetric decryption, 194
syntax

debugging and, 321
regular expressions, 242

system configuration, 17

T
tags, HTML (see HTML)
tan() function, 124
terminating scripts, abnormal, 22
ternary operators, 86
testing configuration, 17
text

Flash, 279
images, 252
output, 251–254
TrueType fonts, 251

this variable, OOP, 133
Tidy, 334
time() function, 124
time information on files, 203
__toString() method, 151
transparency in images, 257
trigger_error() function, 320
triggering errors, debugging and, 320
trim() function, 125
TrueType fonts, 251
type conversion, automatic, 51–52
typecasting, 52

U
ucfirst() function, 125
ucwords() function, 125
unbuffered queries, MySQL

databases, 222
undocumented functions, 90
Unix, PHP installation, 14–17
unlink() function, 202
unserialize() function, 77, 179
unset() function, 126, 174
uploads, 205
urldecode() function, 77
urlencode() function, 77
URLs

cURL, 306–312
rewriting, 188

user groups, 6
usleep() function, 126

V
validation, HTML form input, 166
values

array elements, 61
dereferencing return values, 156
passing by, 89
true/false, 48

var_dump() function, 62
variable scope, functions, 44
variable variables, 53
variables, 24–26

appending, 25
assigning, 24
case-sensitivity, 24
global

superglobals, 54
heredoc, 27
invalid characters, 24
isset() function, 52
register_globals and, 163
scope, 52
substitution, 25
this (OOP), 133
types, 27
variable variables, 53

version_compare() function, 316
virtual() function, 126

352 | Index

W
web server speed, output buffering

and, 181
web sites, 9
while keyword, 31
whitespace, 26

regular expressions, 239
Windows

Apache installation, 12
PHP installation, 11–14

wordwrap() function, 127
working directory, 211
writing code, performance and, 335
writing to files

file_put_contents(), 199
fwrite(), 200

X
XHTML, 157
XML

attributes, 286
HTML and, 157
SimpleXML

introduction, 284–285
outputting XML, 289

XSLT and, 290
XPath, 287–289
XSL document sample, 291
XSLT, 290

Z
Zend Engine, 2
Zend Optimizer, 336

About the Author

Paul Hudson, an avid PHP programmer, is Deputy Editor of the popular

European Linux journal Linux Format and author of the publication’s PHP

tutorial section. He is the author of Red Hat Fedora 4 Unleashed (Sams) and

the online book Practical PHP Programming, available at www.hudzilla.org.

Colophon

Our look is the result of reader comments, our own experimentation, and
feedback from distribution channels. Distinctive covers complement our
distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The animal on the cover of PHP in a Nutshell is a cuckoo (Cuculus canorus).
Cuckoos epitomize minimal effort. The common cuckoo doesn’t build a
nest—instead, the female cuckoo finds another bird’s nest that already
contains eggs and lays an egg in it (a process she may repeat up to 25 times,
leaving 1 egg per nest). The nest mother, who is usually of a different bird
species, rarely notices the addition, and usually incubates the egg and then
feeds the hatchling as if it were her own. Why don’t nest mothers notice that
the cuckoo’s eggs are different from their own eggs? Recent research
suggests that it’s because the eggs look the same in the ultraviolet spectrum,
which birds can see.

When they hatch, the baby cuckoos push all the other (non-cuckoo) eggs
out of the nest. If the other eggs hatched first, the babies are pushed out too.
The host parents often continue to feed the cuckoo even after it grows to be
much larger than they are, and cuckoo chicks sometimes use their call to
lure other birds to feed them as well. Interestingly, only Old World (Euro-
pean) cuckoos colonize other nests. The New World (American) cuckoos
build their own (untidy) nests. Like many Americans, these cuckoos migrate
to the tropics for winter.

Cuckoos have a long and glorious history in literature and the arts. The
Bible mentions them, as do Pliny and Aristotle. Beethoven used the cuckoo’s
distinctive call in his Pastoral Symphony. And here’s a bit of etymology: the
word “cuckold” (a husband whose wife is cheating on him) comes from
“cuckoo.” Presumably, the practice of laying one’s eggs in another’s nest
seemed an appropriate metaphor.

Adam Witwer was the production editor and Chris Downey was the copy-
editor for PHP in a Nutshell. Carol Marti proofread the text. Sanders
Kleinfeld and Claire Cloutier provided quality control. Johnna VanHoose
Dinse wrote the index.

Karen Montgomery designed the cover of this book, based on a series design
by Edie Freedman, and produced the cover layout with Adobe InDesign CS
using Adobe’s ITC Garamond font. The cover image is a 19th-century
engraving from the Dover Pictorial Archive.

David Futato designed the interior layout. This book was converted by Judy
Hoer to FrameMaker 5.5.6 with a format conversion tool created by Erik
Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML
technologies. The text font is Linotype Birka; the heading font is Adobe
Myriad Condensed; and the code font is LucasFont’s TheSans Mono
Condensed. The illustrations that appear in the book were produced by
Robert Romano, Jessamyn Read, and Lesley Borash using Macromedia Free-
Hand MX and Adobe Photoshop CS. The tip and warning icons were drawn
by Christopher Bing. This colophon was written by Nathan Torkington and
Rachel Wheeler.

	Table of Contents
	Preface
	Audience
	Assumptions
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Enabled
	How to Contact Us
	Acknowledgments

	Introduction to PHP
	PHP History
	Advantages of PHP
	The HTML Relationship
	Interpreting Versus Compiling
	Output Control
	Performance

	Getting Help
	The Documentation
	Mailing Lists
	IRC
	Conferences
	User Groups
	Submitting a Bug

	Getting Certified
	PHP Resources
	Books
	Magazines
	Web Sites

	Installing PHP
	Installing on Windows
	Installing Apache
	Installing Microsoft IIS
	Configuring Extensions

	Installing on Unix
	Installing Using Packages
	Compiling from Source
	Configuring Extensions

	Testing Your Configuration
	System Configuration

	The PHP Interpreter
	Running PHP Scripts
	Extending PHP
	PEAR
	Abnormal Script Termination

	The PHP Language
	The Basics of PHP
	Variables
	Whitespace
	Heredoc
	Brief Introduction to Variable Types
	Code Blocks
	Opening and Closing Code Islands
	Comments
	Conditional Statements
	Case Switching
	Loops
	Infinite Loops
	Special Loop Keywords
	Loops Within Loops
	Mixed-Mode Processing
	Including Other Files
	Functions
	A Simple User Function
	Return Values
	Parameters
	Passing By Reference
	Returning by Reference
	Default Parameters
	Variable Parameter Counts
	Variable Scope in Functions
	Overriding Scope with the GLOBALS Array
	Recursive Functions

	Variables and Constants
	Types of Data
	True or False
	Strings
	Escape Sequences

	Integers
	Floats
	Automatic Type Conversion
	Checking Whether a Variable Is Set: isset(��)
	Variable Scope
	Variable Variables
	Superglobals
	Using $_ENV and $_SERVER
	References
	Constants
	Preset Constants
	Mathematical Constants

	Arrays
	First Steps
	Associative Arrays
	The Array Operator
	Returning Arrays from Functions
	Array-Specific Functions
	array_diff(��)
	array_filter(��)
	array_flip(��)
	array_intersect(��)
	array_keys(��)
	array_merge(��)
	array_pop(��)
	array_push(��)
	array_rand(��)
	array_shift(��)
	array_unique(��)
	array_unshift(��)
	array_values(��)
	arsort(��)
	asort(��)
	explode(��)
	extract(��)
	implode(��)
	in_array(��)
	krsort(��)
	ksort(��)
	range(��)
	shuffle(��)

	Multidimensional Arrays
	The Array Cursor
	Holes in Arrays
	Using Arrays in Strings
	Saving Arrays

	Operators
	Arithmetic Operators
	Assignment Operators
	String Operators
	Bitwise Operators
	Comparison Operators
	Incrementing and Decrementing Operators
	Logical Operators
	Some Operator Examples
	The Ternary Operator
	The Execution Operator
	Operator Precedence and Associativity

	Function Reference
	Undocumented Functions
	Handling Non-English Characters
	abs(��)
	acos(��)
	addslashes(��)
	asin(��)
	atan(��)
	base_convert(��)
	bindec(��)
	call_user_func(��)
	call_user_func_array(��)
	ceil(��)
	chr(��)
	connection_status(��)
	cos(��)
	count_chars(��)
	date(��)
	decbin(��)
	dechex(��)
	decoct(��)
	deg2rad(��)
	die(��)
	dl(��)
	empty(��)
	escapeshellcmd(��)
	eval(��)
	exec(��)
	exit(��)
	floor(��)
	function_exists(��)
	get_extension_funcs(��)
	get_loaded_extensions(��)
	hexdec(��)
	html_entities(��)
	html_entity_decode(��)
	ignore_user_abort(��)
	ini_get(��)
	ini_set(��)
	is_callable(��)
	isset(��)
	ltrim(��)
	md5(��)
	microtime(��)
	mktime(��)
	mt_rand(��)
	nl2br(��)
	number_format(��)
	octdec(��)
	ord(��)
	parse_str(��)
	passthru(��)
	pow(��)
	printf(��)
	rad2deg(��)
	rand(��)
	rawurldecode(��)
	rawurlencode(��)
	register_shutdown_function(��)
	round(��)
	rtrim(��)
	set_time_limit(��)
	sha1(��)
	sin(��)
	sleep(��)
	sqrt(��)
	str_pad(��)
	str_replace(��)
	str_word_count(��)
	strcasecmp(��)
	strcmp(��)
	strip_tags(��)
	stripslashes(��)
	strlen(��)
	strpos(��)
	strstr(��)
	strtolower(��)
	strtotime(��)
	strtoupper(��)
	substr(��)
	tan(��)
	time(��)
	trim(��)
	ucfirst(��)
	ucwords(��)
	unset(��)
	usleep(��)
	virtual(��)
	wordwrap(��)

	Object-Oriented PHP
	Conceptual Overview
	Classes
	Defining a Class
	How to Design Your Class
	Basic Inheritance
	Overriding Methods
	The Scope Resolution Operator

	Objects
	Properties
	The ‘this’ Variable
	Objects Within Objects
	Access Control Modifiers
	Public
	Private
	Protected
	Final
	Abstract
	Iterating Through Object Properties

	Object Type Information
	Class Type Hints
	Constructors and Destructors
	Parent Constructors
	Destructors
	Deleting Objects

	Copying Objects
	Comparing Objects with == and ===
	Saving Objects
	Magic Methods
	_�_autoload(��)
	_�_get(��)
	_�_set(��)
	_�_call(��)
	_�_toString(��)

	Static Class Methods and Properties
	Helpful Utility Functions
	Interfaces
	Dereferencing Object Return Values

	HTML Forms
	What Does It Mean to Be Dynamic?
	Designing a Form
	GET and POST
	Available Elements
	A Working Form

	Handling Data
	register_globals
	Working Around register_globals
	Magic Quotes
	Handling Our Form

	Splitting Forms Across Pages
	Validating Input
	Form Design
	Summary

	Cookies and Sessions
	Cookies Versus Sessions
	Using Cookies
	Using Sessions
	Starting a Session
	Adding Session Data
	Reading Session Data
	Removing Session Data
	Ending a Session
	Checking Session Data
	Files Versus Databases

	Storing Complex Data Types

	Output Buffering
	Why Use Output Buffering?
	Getting Started
	Reusing Buffers
	Stacking Buffers
	Flushing Stacked Buffers
	Reading Buffers
	Other OB Functions
	Flushing Output
	Compressing Output
	URL Rewriting

	Security
	Security Tips
	Put Key Files Outside Your Document Root
	Remember That Most Files Are Public
	Hide Your Identity
	Hiding PHP

	Encryption
	Encrypting Data
	Symmetric Decryption

	Files
	Reading Files
	readfile(��)
	file_get_contents(��) and file(��)
	fopen(��) and fread(��)
	Reading by line using fgets(��)

	Creating and Changing Files
	file_put_contents(��)
	fwrite(��)

	Moving, Copying, and Deleting Files
	Moving Files with rename(��)
	Copying Files with copy(��)
	Deleting Files with unlink(��)

	Other File Functions
	Checking Whether a File Exists
	Retrieving File Time Information
	Dissecting Filename Information
	Handling File Uploads
	Checking Uploaded Files

	Locking Files with flock(��)
	Reading File Permissions and Status
	Changing File Permissions and Ownership
	Working with Links
	Working with Directories
	Creating Directories
	Deleting Directories
	Reading and Changing the Working Directory
	One Last Directory Function

	Remote Files
	File Checksums
	Parsing a Configuration File

	Databases
	Using MySQL with PHP
	Connecting to a MySQL Database
	Querying and Formatting
	Disconnecting from a MySQL Database
	Reading in Data
	Mixing in PHP Variables
	Reading Auto-Incrementing Values
	Unbuffered Queries for Large Data Sets

	PEAR::DB
	Quick PEAR::DB Calls
	Query Information
	Advanced PEAR::DB: Prepared Statements

	SQLite
	Before You Begin
	Getting Started
	Advanced Functions
	Mixing SQLite and PHP

	Persistent Connections
	MySQL Improved

	Regular Expressions
	Basic Regexps with preg_match(��) and preg_match_all(��)
	Regexp Character Classes
	Regexp Special Characters
	Words and Whitespace Regexps
	Storing Matched Strings
	Regular Expression Replacements
	Regular Expression Syntax Examples
	The Regular Expressions Coach

	Manipulating Images
	Getting Started
	Choosing a Format
	Getting Arty
	More Shapes
	Complex Shapes
	Outputting Text
	Loading Existing Images
	Color and Image Fills
	Adding Transparency
	Using Brushes
	Basic Image Copying
	Scaling and Rotating
	Points and Lines
	Special Effects Using imagefilter(��)
	Interlacing an Image
	Getting an Image’s MIME Type

	Creating PDFs
	Getting Started
	Adding More Pages and More Style
	Adding Images
	PDF Special Effects
	Adding Document Data

	Creating Flash
	A Simple Movie
	Flash Text
	Actions
	Animation

	XML & XSLT
	SimpleXML
	XML Attributes
	Reading from a String
	Searching and Filtering with XPath
	Outputting XML

	Transforming XML Using XSLT
	An Example XSL Document
	Adding PHP to the Mix

	Network Programming
	Sockets
	Sockets Are Files
	Creating a Server

	HTTP
	Sending Custom Headers
	Reading Queued Headers
	Authentication Over HTTP

	Sending Mail
	MIME Types
	Easier Mail Sending with PEAR::Mail
	Sending Mixed-Type Messages with PEAR::Mail_Mime
	Sending Real Attachments

	Curl
	Installing Curl
	Your First Curl Script
	Trapping Return Values
	Using FTP to Send Data
	Sending Data Over HTTP
	The Abridged List of Curl Options
	Debugging Curl

	Distributing Your Code
	Cross-Platform Code 1: Loading Extensions
	Cross-Platform Code 2: Using Extensions
	Cross-Platform Code 3: Path and Line Separators
	Cross-Platform Code 4: Coping with php.ini Differences
	Cross-Platform Code 5: Checking the PHP Version with phpversion(��) and version_compare(��)

	Debugging
	The Most Basic Debugging Technique
	Making Assertions
	Triggering Your Own Errors
	Testing with php_check_syntax(��)
	Source Highlighting
	Handling MySQL Errors
	Exception Handling
	Backtracing Your Code
	Custom Error Handlers
	Custom Exception Handlers
	Using @ to Disable Errors
	phpinfo(��)
	Output Style
	Installing Tidy

	Performance
	Write Your Code Sensibly
	Use the Zend Optimizer
	Use a PHP Code Cache
	Compress Your Output
	Don’t Use CGI
	Debug Your Code
	Use Persistent Connections
	Compile Right

	Index

