
Explore PHP syntax,
datatypes, and functions

Create database-driven,
dynamic Web sites

Master server-side
Web programming

The book you need to succeed!

Steve Suehring, Tim Converse, and Joyce Park

PHP6
and MySQL

®

PHP 6 and
MySQL® 6

Bible

Steve Suehring

Tim Converse

Joyce Park

PHP 6 and
MySQL® 6

Bible

PHP 6 and MySQL 6 Bible

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-38450-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data

Suehring, Steve.
 PHP 6 and MySQL 6 bible / Steve Suehring.
 p. cm.
 Includes index.
 ISBN 978-0-470-38450-3 (pbk.)
 1. PHP (Computer program language) 2. MySQL (Electronic resource) I. Title.
 QA76.73.P224S94 2009
 005.2’762 — dc22
 2008048198

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. MySQL is a registered
trademark of MySQL AB in the United States, European Union, and other countries. All other trademarks are the property
of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

www.wiley.com

About the Authors
Steve Suehring is a technology consultant with a diverse business and computing background.

Steve’s extensive experience enables him to work cross-functionally within organizations to help

create computing architectures that fit the business need. Steve has written several books and mag-

azine articles and contributed to many others. Steve has spoken internationally at user groups and

conventions. When he has the chance, Steve plays just about any sport or any musical instrument,

some with better success than others.

Tim Converse has written software to recommend neckties, answer questions about space sta-

tions, pick value stocks, and make simulated breakfast. He has an M.S. in Computer Science from

the University of Chicago, where he taught several programming classes. He is now an engineering

manager in the Web search group at Yahoo!.

Joyce Park has an M.A. in history from the University of Chicago, and has worked for several

Silicon Valley startups including Epinions, KnowNow, and Friendster. She is a co-lead of the

Mod-pubsub Open Source project.

Acquisitions Editor

Jenny Watson

Development Editor

Christopher J. Rivera

Technical Editor

Aaron Saray

Production Editor

Rachel McConlogue

Copy Editor

Foxxe Editorial Services

Editorial Manager

Mary Beth Wakefield

Production Manager

Tim Tate

Vice President and Executive Group Publisher

Richard Swadley

Vice President and Executive Publisher

Barry Pruett

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Lynsey Stanford

Compositor

Jeffrey Wilson, Happenstance Type-O-Rama

Proofreader

Publication Services, Inc.

Indexer

Ted Laux

Cover Illustration

Joyce Haughey

Cover Designer

Michael E. Trent

Credits

Acknowledgments
People sometimes ask me how many books I’ve written. I never have the answer. You see, I’ve con-

tributed to well over a dozen (maybe two dozen or more) books in one form or another, be it a chap-

ter or two here, a section there, a rewrite of an existing title with much new material, a revision of

another edition where the existing material is already pretty good (as was the case for this book), or

an original, authored work. The short answer is: I don’t know. It’s really somewhat difficult to claim

that I, alone, wrote a book. At best I put some words down into a word processor and several other

people look them over, edit them, change them for both technical and grammatical usage, and the

end result is my name on the cover or somewhere in the book, or sometimes not at all.

This brings me to the difficulty at hand. I’ve written a sufficient number books that writing

acknowledgments is becoming a bit mundane. Sure, I’ll thank my wife, Rebecca, and son, Jakob,

for their patience while I wrote this. I’ll thank my family for their continued support. I’ll thank

the Tueschers, Heins, Leus, and Guthries. I’ll thank Jason Keup and Aaron Saray, too. I’ll thank

my agent Neil Salkind at Studio B., Jim Oliva and John Eckendorf, and the 90fm staff along with

Nightmare Squad.

Of course, I’ll thank Tim and Rob @ Partners, and Jay, Deb, and Brian, and Andy Hale and Eliot

Irons and the SecAdmin team. Kyle Mac always gets mad if I don’t include him. There are lot of

people at Knob Hill who deserve thanking, and the like. And I’ll always thank Mark Little and

meek, Pat Dunn, AJ Prowant, and Andy Berkvam. But it’s the people that I don’t thank that always

find me, asking why their name isn’t in this book. With that in mind, I’ll stop here and let them

find me and hope that I write another book where I’ll remember to include them. Just a hint:

Everyone who was thanked here has paid me.

ix

Introduction ...xxxv

Part I: Introducing PHP . 1
Chapter 1: Why PHP and MySQL? ...3

Chapter 2: Server-Side Scripting Overview ..11

Chapter 3: Getting Started with PHP ...19

Chapter 4: Learning PHP Syntax and Variables ...33

Chapter 5: Learning PHP Control Structures and Functions ...59

Chapter 6: Passing Information with PHP ..99

Chapter 7: Learning PHP String Handling ... 113

Chapter 8: Learning Arrays .. 131

Chapter 9: Learning PHP Number Handling ...153

Chapter 10: PHP Gotchas ... 165

Part II: MySQL Database Integration . 183
Chapter 11: Introducing Databases and MySQL...185

Chapter 12: Installing MySQL ..189

Chapter 13: Learning Structured Query Language (SQL) ..193

Chapter 14: Learning Database Administration and Design ..207

Chapter 15: Integrating PHP and MySQL ... 219

Chapter 16: Performing Database Queries ...237

Chapter 17: Integrating Web Forms and Databases ..253

Chapter 18: Improving Database Efficiency ... 279

Chapter 19: MySQL Gotchas ..295

Part III: More PHP . 309
Chapter 20: Introducing Object-Oriented PHP .. 311

Chapter 21: Advanced Array Functions ...357

Chapter 22: Examining Regular Expressions ...371

Chapter 23: Working with the Filesystem .. 391

Chapter 24: Working with Cookies and Sessions ...409

Chapter 25: Learning PHP Types ... 433

Chapter 26: Learning PHP Advanced Functions ..443

Chapter 27: Performing Math with PHP ... 455

Chapter 28: Securing PHP.. 471

Chapter 29: Learning PHP Configuration ..483

x

 Contents at a Glance

Chapter 30: Handing Exceptions with PHP ...497

Chapter 31: Debugging PHP Programs... 511

Chapter 32: Learning PHP Style ...525

Part IV: Other Databases . 549
Chapter 33: Connecting PHP and PostgreSQL ... 551

Chapter 34: Using PEAR DB with PHP ..567

Chapter 35: An Overview of Oracle ...575

Chapter 36: An Introduction to SQLite ..605

Part V: Connections .611
Chapter 37: Sending E-Mail with PHP ...613

Chapter 38: Integrating PHP and Java .. 619

Chapter 39: Integrating PHP and JavaScript .. 631

Chapter 40: Integrating PHP and XML ..647

Chapter 41: Creating and Consuming Web Services with PHP ..675

Chapter 42: Creating Graphics with PHP ...689

Part VI: Case Studies .713
Chapter 43: Developing a Weblog with PHP ..715

Chapter 44: A Trivia Game ..727

Chapter 45: Data Visualization with Venn Diagrams ...771

Appendix A: PHP for C Programmers ..795

Appendix B: PHP for Perl Hackers ..801

Appendix C: PHP for HTML Coders ..809

Appendix D: PHP Resources .. 817

Appendix E: PEAR ...829

Index ..841

xi

Introduction . xxxv

Part I: Introducing PHP 1

Chapter 1: Why PHP and MySQL? .3

What Is PHP? ...3

What Is MySQL? ...4

Deciding on a Web Application Platform ..4

Cost ..4

Ease of Use..5

HTML-embeddedness ..5

Cross-platform compatibility ..7

Stability ..7

Many extensions ...8

Fast feature development ..8

Not proprietary ...8

Strong user communities ..9

Summary ..10

Chapter 2: Server-Side Scripting Overview . 11

Static HTML ...11

Client-Side Technologies ..13

Server-Side Scripting ..15

What Is Server-Side Scripting Good For? ... 17

Summary ..18

Chapter 3: Getting Started with PHP . 19

Installing PHP ..19

Installation procedures ...20

Installing PHP on CentOS ...21

Installing PHP on Debian ..22

Installing PHP from source ...22

Microsoft Windows and Apache ...25

Other web servers ...26

Development tools ..26

What’s to Come? ...27

Your HTML Is Already PHP-Compliant! ...27

xii

 Contents

Escaping from HTML ...28

Canonical PHP tags ..28

Hello World ..28

Jumping in and out of PHP mode ...30

Including files ...30

Summary ..32

Chapter 4: Learning PHP Syntax and Variables . 33

PHP Is Forgiving ..33

HTML Is Not PHP ..34

PHP’s Syntax Is C-Like ...34

PHP is whitespace insensitive ...34

PHP is sometimes case sensitive ...35

Statements are expressions terminated by semicolons ..35

Expressions are combinations of tokens ...35

Expressions are evaluated ...36

Precedence, associativity, and evaluation order ..36

Expressions and types ..37

Assignment expressions ..37

Reasons for expressions and statements ..38

Braces make blocks ...38

Comments ..39

C-style multiline comments ..39

Single-line comments: # and // ...39

Variables ...40

PHP variables are Perl-like ..40

Declaring variables (or not) ..40

Assigning variables ... 41

Reassigning variables .. 41

Unassigned variables .. 41

Default values ... 41

Checking assignment with isset ..42

Variable scope ...43

Functions and variable scope ..43

You can switch modes if you want ..43

Constants..44

Types in PHP: Don’t Worry, Be Happy ...45

No variable type declarations ...45

Automatic type conversion ...45

Types assigned by context ..45

Type Summary ...46

The Simple Types ...46

Integers ...47

Read formats ...47

Range ..47

xiii

 Contents

Doubles ...47

Read formats ...48

Booleans ...49

Boolean constants ...49

Interpreting other types as Booleans ...49

Examples ..50

NULL ..50

Strings ..51

Singly quoted strings ..52

Doubly quoted strings ...52

Single versus double quotation marks ...53

Variable interpolation ...54

Newlines in strings ...55

Limits ..55

Output ..55

Echo and print ..55

Echo ..56

Print ..56

Variables and strings ...57

HTML and linebreaks ...57

Summary ..57

Chapter 5: Learning PHP Control Structures and Functions 59

Boolean Expressions ...60

Boolean constants ...60

Logical operators ..60

Precedence of logical operators ...61

Logical operators short-circuit ..62

Comparison operators ..62

Operator precedence ...63

String comparison ...63

The ternary operator ...65

Branching ...65

If-else ..65

Else attachment ...66

Elseif ...67

Switch ...69

Looping ..71

Bounded loops versus unbounded loops ..71

While ..71

Do-while ...72

For ..72

Looping examples ... 74

A bounded for loop ... 74

An unbounded while loop ..75

Break and continue ...76

xiv

 Contents

A note on infinite loops ..79

Alternate Control Syntaxes ...79

Terminating Execution ...80

Using Functions ...83

Return values versus side effects ...83

Function Documentation..84

Headers in documentation ..85

Finding function documentation ..85

Defining Your Own Functions..86

What is a function? ...86

Function definition syntax ...86

Function definition example ...87

Formal parameters versus actual parameters ..88

Argument number mismatches...89

Too few arguments ..89

Too many arguments ..90

Functions and Variable Scope ..90

Global versus local .. 91

Static variables ..92

Exceptions ..93

Function Scope ...95

Include and require ..95

Including only once ..96

The include path ...96

Recursion ..96

Summary ..98

Chapter 6: Passing Information with PHP .99

HTTP Is Stateless ..99

GET Arguments ..100

A Better Use for GET-Style URLs .. 102

POST Arguments ..104

Formatting Form Variables ...106

Consolidating forms and form handlers ...109

PHP Superglobal Arrays ... 110

Summary .. 111

Chapter 7: Learning PHP String Handling . 113

Strings in PHP .. 113

Interpolation with curly braces ... 114

Characters and string indexes .. 115

String operators .. 115

Concatenation and assignment ... 116

The heredoc syntax... 116

String Functions ... 117

Inspecting strings ... 118

xv

 Contents

Finding characters and substrings .. 118

Comparison and searching ...120

Searching ..120

Substring selection ..121

String cleanup functions ...123

String replacement ..124

Case functions ..126

strtolower() ...126

strtoupper() ..127

ucfirst() ...127

ucwords() ..127

Escaping functions ...127

Printing and output ..128

Summary ..130

Chapter 8: Learning Arrays . 131

The Uses of Arrays .. 131

What Are PHP Arrays? ...132

Creating Arrays ..134

Direct assignment ...134

The array() construct ..134

Specifying indices using array() ...135

Functions returning arrays ...136

Retrieving Values ..136

Retrieving by index ...136

The list() construct ...136

Multidimensional Arrays ..137

Inspecting Arrays ...139

Deleting from Arrays ..140

Iteration ..140

Support for iteration ...140

Using iteration functions .. 141

Our favorite iteration method: foreach .. 142

Iterating with current() and next() ... 143

Starting over with reset() .. 145

Reverse order with end() and prev() ...146

Extracting keys with key() .. 147

Empty values and the each() function .. 147

Walking with array_walk() ...149

Summary ..151

Chapter 9: Learning PHP Number Handling . 153

Numerical Types ..153

Mathematical Operators ...154

Arithmetic operators ...154

Arithmetic operators and types ..155

xvi

 Contents

Incrementing operators ...155

Assignment operators ...156

Comparison operators ..157

Precedence and parentheses ...158

Simple Mathematical Functions ...158

Randomness ...159

Seeding the generator ...160

Example: Making a random selection ... 162

Summary .. 163

Chapter 10: PHP Gotchas . 165

Installation-Related Problems ... 165

Symptom: Text of file displayed in browser window ..166

Symptom: PHP blocks showing up as text under HTTP or browser prompts you to save

file ..166

Symptom: Server or host not found/Page cannot be displayed166

Rendering Problems ...166

Symptom: Totally blank page.. 167

Symptom: PHP code showing up in Web browser .. 167

Failures to Load Page ..168

Symptom: Page cannot be found ...168

Symptom: Failed opening [file] for inclusion ..169

Parse Errors ..169

Symptom: Parse error message ...169

The missing semicolon ... 170

No dollar signs.. 170

Mode issues .. 171

Unescaped quotation marks ... 172

Unterminated strings .. 172

Other parse error causes ... 173

Missing Includes ... 173

Symptom: Include warning .. 173

Unbound Variables ... 174

Symptom: Variable not showing up in print string ... 174

Symptom: Numerical variable unexpectedly zero ... 174

Causes of unbound variables .. 174

Case problems ... 175

Scoping problems .. 175

Function Problems ... 176

Symptom: Call to undefined function my_function() ... 177

Symptom: Call to undefined function () ... 177

Symptom: Call to undefined function array() ... 177

Symptom: Cannot redeclare my_function() .. 177

Symptom: Wrong parameter count ... 178

xvii

 Contents

Math Problems ... 178

Symptom: Division-by-zero warning .. 178

Symptom: Unexpected arithmetic result .. 178

Symptom: NaN (or NAN) ... 178

Timeouts .. 179

Summary ..180

Part II: MySQL Database Integration 183

Chapter 11: Introducing Databases and MySQL . 185

What Is a Database? ..185

Why a Database? ..186

Maintainability and scalability ...186

Portability ...186

Avoiding awkward programming ...187

Searching ..187

PHP-Supported Databases ..187

Our Focus: MySQL ...188

Summary ..188

Chapter 12: Installing MySQL . 189

Obtaining MySQL ..189

Installing MySQL on Linux ..189

Installing MySQL Server on Debian and Ubuntu ...190

Installing MySQL on Microsoft Windows .. 191

Installing MySQL on Windows ... 191

Summary .. 191

Chapter 13: Learning Structured Query Language (SQL) 193

Relational Databases and SQL ..193

SQL Standards ..194

The Workhorses of SQL ..194

SELECT ..195

Selecting Certain Records ...195

Joins ..196

Subselects..199

INSERT ...200

UPDATE ...200

DELETE ..200

Database Design ... 201

Privileges and Security ...204

Setting database permissions ..204

Keep database passwords outside the web area ..205

Learn to make backups ...206

Summary ..206

xviii

 Contents

Chapter 14: Learning Database Administration and Design 207

Basic MySQL Client Commands ...208

MySQL User Administration ..209

Local development .. 211

Standalone web site .. 211

Shared-hosting web site .. 211

Backups ..212

Replication .. 214

Recovery ... 217

myisamchk ... 217

mysqlcheck ... 218

Summary .. 218

Chapter 15: Integrating PHP and MySQL . 219

Connecting to MySQL .. 219

Making MySQL Queries ...221

Fetching Data Sets ..222

Getting Data about Data ...225

Multiple Connections ...226

Building in Error Checking ..227

Creating MySQL Databases with PHP ..229

MySQL data types ..230

MySQL Functions ...232

Summary ..235

Chapter 16: Performing Database Queries . 237

HTML Tables and Database Tables ...238

One-to-one mapping ..238

Example: A single-table displayer ...238

The sample tables ...240

Improving the displayer.. 241

Displaying column headers ... 242

Error checking .. 242

Cosmetic issues ... 242

Displaying arbitrary queries ... 242

Complex Mappings ... 245

Multiple queries versus complex printing ... 245

A multiple-query example ..246

A complex printing example ...248

Creating the Sample Tables ..250

Summary ..252

Chapter 17: Integrating Web Forms and Databases 253

HTML Forms ..253

Basic Form Submission to a Database ...254

xix

 Contents

Self-Submission ..257

Editing Data with an HTML Form ...264

TEXT and TEXTAREA ...264

CHECKBOX ...267

RADIO ..269

SELECT .. 274

Summary ..277

Chapter 18: Improving Database Efficiency . 279

Connections — Reduce, Reuse, Recycle ... 279

A bad example: one connection per statement ..280

Multiple results don’t need multiple connections ..281

Persistent connections ..282

Indexing and Table Design ...282

Indexing ...282

What is an index? ...282

Indexing tradeoffs ...283

Primary keys ...284

Everything including the kitchen sink..285

Other types of indexes ..286

Table design ..287

Making the Database Work for You ..288

It’s probably faster than you are ..288

A bad example: looping, not restricting ..288

Sorting and aggregating ..289

Where possible, use MIN or MAX rather than sorting289

Creating date and time fields ..290

Finding the last inserted row .. 291

Summary ..293

Chapter 19: MySQL Gotchas . 295

No Connection ...295

Problems with Privileges ..297

Unescaped Quotes ..299

Broken SQL Statements ..301

Misspelled names ...303

Comma faults ...303

Unquoted string arguments ..303

Unbound variables ...304

Too Little Data, Too Much Data ..305

Specific SQL Functions...305

mysql_affected_rows() versus mysql_num_rows() ..305

mysql_result() ..306

OCI_Fetch() ...306

Debugging and Sanity Checking ..307

Summary ..308

xx

 Contents

Part III: More PHP 309

Chapter 20: Introducing Object-Oriented PHP . 311

What Is Object-Oriented Programming? .. 312

The simple idea ... 312

The procedural approach .. 312

The object-oriented approach ... 313

Elaboration: objects as data types ... 313

Elaboration: Inheritance ... 315

Elaboration: Encapsulation ... 315

Elaboration: Constructors and destructors ... 315

Terminology ... 316

Basic PHP Constructs for OOP ... 318

Defining classes .. 318

Accessing member variables ... 319

Creating instances .. 319

Constructor functions ... 319

Inheritance ...320

Overriding functions ..322

Chained subclassing ...322

Modifying and assigning objects .. 324

Scoping issues ... 324

Advanced OOP Features ...325

Public, Private, and Protected Members ...325

Private members ...326

Protected members ...326

Interfaces .. 327

Constants.. 327

Abstract Classes ..328

Simulating class functions ..328

Calling parent functions ...329

Calling parent constructors ..329

Automatic calls to parent constructors ... 331

Simulating method overloading .. 331

Serialization ..332

Sleeping and waking up ..333

Serialization gotchas ...334

Introspection Functions ...334

Function overview .. 335

Example: Class genealogy ...337

Example: matching variables and DB columns ...340

Example: Generalized test methods ..342

Extended Example: HTML Forms ..346

xxi

 Contents

Gotchas and Troubleshooting ...352

Symptom: Member variable has no value in member function352

Symptom: Parse error, expecting T_VARIABLE353

OOP Style in PHP ...353

Naming conventions ...353

Accessor functions ..354

Designing for inheritance ... 355

Summary .. 355

Chapter 21: Advanced Array Functions . 357

Transformations of Arrays ..357

Retrieving keys and values ..358

Flipping, reversing, and shuffling ...359

Merging, padding, slicing, and splicing ..360

Stacks and Queues ...363

Translating between Variables and Arrays ..365

Sorting ..366

Printing Functions for Visualizing Arrays ..367

Summary ..369

Chapter 22: Examining Regular Expressions . 371

Tokenizing and Parsing Functions ...371

Why Regular Expressions? ... 374

Regex in PHP ..375

An example of POSIX-style regex ...375

Regular expression functions ..377

Perl-Compatible Regular Expressions ...378

Example: A simple link-scraper ..381

The regular expression ...381

Using the expression in a function ...383

Applying the function ...384

Extending the code ...384

Advanced String Functions ..385

HTML functions ...385

Hashing using MD5 ..386

Strings as character collections ...387

String similarity functions ..389

Summary ..390

Chapter 23: Working with the Filesystem . 391

Understanding PHP File Permissions ... 391

File Reading and Writing Functions ...392

File open ...393

HTTP fopen ..394

FTP fopen ...395

xxii

 Contents

File read ..396

Constructing file downloads by using fpassthru() ..397

File write ..398

File close ...399

Filesystem and Directory Functions ...400

feof ..400

file_exists..400

filesize ...400

Network Functions ...403

Syslog functions ..403

DNS functions ..403

Socket functions ...404

Date and Time Functions ...405

If you don’t know either date or time ..405

If you’ve already determined the date/time/timestamp ...406

Calendar Conversion Functions ...407

Summary ..408

Chapter 24: Working with Cookies and Sessions .409

What’s a Session? ..409

So what’s the problem? ... 410

Why should you care? ... 410

Home-grown Alternatives .. 410

IP address ... 411

Hidden variables ... 411

Cookie-based home-grown sessions ... 412

How Sessions Work in PHP .. 412

Making PHP aware of your session ... 413

Propagating session variables ... 413

The simple approach (using $_SESSION) ... 413

Where is the data really stored? .. 414

Sample Session Code .. 415

Session Functions ... 419

Configuration Issues... 421

 Cookies ...422

The setcookie() function ...422

Examples ..423

Deleting cookies ...425

Reading cookies ..425

Cookie pitfalls ..426

Sending something else first ...426

Reverse-order interpretation ... 427

Cookie refusal ... 427

Sending HTTP Headers ..428

Example: Redirection ..428

xxiii

 Contents

Example: HTTP authentication ...429

Header gotchas ...430

Gotchas and Troubleshooting ...430

Summary .. 431

Chapter 25: Learning PHP Types . 433

Type Round-up ... 433

Resources ...434

What are resources? ..434

How to handle resources .. 435

Type Testing ... 435

Assignment and Coercion ..436

Type conversion behavior ...436

Explicit conversions .. 437

Conversion examples ..438

Other useful type conversions ..440

Integer overflow ..441

Finding the largest integer ..442

Summary ..442

Chapter 26: Learning PHP Advanced Functions . 443

Variable Numbers of Arguments ..443

Default arguments ..444

Arrays as multiple-argument substitutes...445

Multiple arguments in PHP4 and above ..446

Call-by-value ..447

Call-by-reference ..448

Variable function names ...450

An extended example ...450

Summary ..454

Chapter 27: Performing Math with PHP . 455

Mathematical Constants ...455

Tests on Numbers ...456

Base Conversion ...457

Exponents and Logarithms ..461

Trigonometry ..461

Arbitrary Precision (BC) ...465

An arbitrary-precision example ..466

Converting code to arbitrary-precision ...467

Summary .. 470

Chapter 28: Securing PHP . 471

Possible Attacks ..472

Site defacement ...472

Accessing source code .. 474

xxiv

 Contents

Reading arbitrary files... 475

Running arbitrary programs ...477

Viruses and other e-critters .. 479

FYI: Security Web Sites .. 479

Summary ..480

Chapter 29: Learning PHP Configuration . 483

Viewing Environment Variables ...483

Understanding PHP Configuration ...484

Compile-time options ...484

--with-apache[=DIR] or --with-apache2=[DIR] ...485

--with-apxs[=DIR] or --with-apxs2[=DIR] ...485

--with-[database][=DIR] ..486

--with-mcrypt[=DIR]...487

--with-java[=DIR] ..487

--with-xmlrpc ...487

--with-dom[=DIR] ...487

--enable-bcmath ..488

--enable-calendar ..488

--with-config-file-path=DIR ..488

--enable-url-includes ...488

--disable-url-fopen-wrapper ..488

CGI compile-time options ..488

--with-exec-dir[=DIR] ...488

--enable-discard-path ...488

--enable-force-cgi-redirect ..489

Apache configuration files ..489

Timeout ..489

DocumentRoot ..490

AddType ...490

Action ...490

LoadModule ..491

AddModule ...491

The php.ini file ...491

short_open_tag = Off ..491

disable_functions = [function1, function2, function3 . . . functionn]492

max_execution_time = 30 ..492

error_reporting = E_ALL & ~E_NOTICE ...492

error_prepend_string = [“”] ...492

warn_plus_overloading = Off ...492

variables_order = EGPCS ..492

gpc_order = GPC ..492

auto-prepend-file = [path/to/file] ..492

auto-append-file = [path/to/file] ..493

include_path = [DIR] ..493

xxv

 Contents

doc_root = [DIR] ...493

upload_tmp_dir = [DIR] ...493

session.save-handler = files ...493

ignore_user_abort = [On/Off] ...493

Improving PHP Performance ..493

Summary ..495

Chapter 30: Handing Exceptions with PHP . 497

Error Handling in PHP ...497

Errors and exceptions ...497

The Exception class ..499

The try/catch block ...500

Throwing an exception ...501

Defining your own Exception subclasses ..502

Limitations of Exceptions in PHP ...504

Other Methods of Error Handling ..504

Native PHP errors ...504

Defining an error handler ...506

Triggering a user error ..507

Logging and Debugging ...508

Summary ..509

Chapter 31: Debugging PHP Programs . 511

 General Troubleshooting Strategies ...512

Change one thing at a time ...512

Try to isolate the problem ...512

Simplify, then build up ...512

Check the obvious ..512

Document your solution ...513

After fixing, retest ...513

A Menagerie of Bugs ...513

Compile-time bugs ...513

Runtime bugs ..513

Logical bugs ..513

Using Web Server Logs ... 514

Apache .. 514

The Common Log Format ... 514

HTTP response codes ...515

Monitoring Apache logs with tail ..515

IIS ... 516

PHP Error Reporting and Logging .. 516

Error reporting ... 516

Error logging .. 517

Choosing which errors to report or log ... 517

Error-Reporting Functions ... 518

xxvi

 Contents

Diagnostic print statements .. 518

Using var_dump() .. 519

Using syslog() ... 519

Logging to a custom location ..521

Using error_log() ..522

Summary ..523

Chapter 32: Learning PHP Style . 525

The Uses of Style ..525

Readability..526

Comments ..526

PHPDoc ..527

File and variable names ..528

Long versus short ..528

Underscores versus camelcaps ..529

Reassigning variables ..529

Uniformity of style ..530

Maintainability ...530

Avoid magic numbers ...530

Functions .. 531

Include files .. 531

Object wrappers ...532

Consider using version control ...532

Robustness ...533

Unavailability of service ...533

Unexpected variable types ..534

Efficiency and Conciseness ..534

Efficiency: only the algorithm matters ..534

Efficiency optimization tips ..534

Don’t reinvent the wheel ...535

Discover the bottleneck ..535

Focus on database queries ..535

Focus on the innermost loop ..535

Conciseness: the downside ...536

Conciseness rarely implies efficiency ..536

Conciseness trades off with readability ...536

Conciseness tips ...537

Use return values and side effects at the same time537

Use incrementing and assignment operators ...537

Reuse functions ...537

There’s nothing wrong with Boolean ..538

Use short-circuiting Boolean expressions ...539

HTML Mode or PHP Mode? ..539

Minimal PHP ..540

Maximal PHP ..541

xxvii

 Contents

Medium PHP ..542

The heredoc style ..543

Separating Code from Design ...544

Functions ..544

Cascading style sheets in PHP ..545

Templates and page consistency ...545

Summary ..547

Part IV: Other Databases 549

Chapter 33: Connecting PHP and PostgreSQL . 551

Why Choose PostgreSQL? .. 551

Why Object-Relational Anyway? ..552

But is it a database yet? ...553

Down to Real Work ..554

PHP and PostgreSQL ..556

The Cartoons Database ...557

Summary ..565

Chapter 34: Using PEAR DB with PHP . 567

Pear DB Concepts ...568

Data Source Names (DSNs) ...568

Connection ...570

Query ...570

Row retrieval...571

Disconnection ...571

A complete example ..571

PEAR DB Functions ..573

Members of the DB class ...573

Members of the DB_Common class ..573

Members of the DB_Result class ... 574

Summary .. 574

Chapter 35: An Overview of Oracle . 575

When Do You Need Oracle? ...575

Money ... 576

Other rivalrous resources ... 576

Huge data sets ... 576

Lots of big formulaic writes or data munging ...577

Triggers ...577

Legal liability ..577

Bottom line: two-year outlook ..578

Oracle and Web Architecture ...578

Specialized team members ...578

Shared development databases ...578

xxviii

 Contents

Limited schema changes ...579

Tools (or lack thereof) ...579

Replication and failover ..579

Data caching ...579

Using OCI8 Functions ..580

Escaping strings ..580

Parsing and executing ...581

Error reporting ...581

Memory management ...581

Ask for nulls ...581

Fetching entire data sets ...581

All caps ...582

Transactionality ..582

Stored procedures and cursors ...583

Project: Point Editor ...584

Project: Batch Editor ...594

Summary ..604

Chapter 36: An Introduction to SQLite .605

An Introduction to SQLite ..605

Using SQLite-related Functions ..606

Creating Databases ...606

Running Queries ..606

Creating Tables ...606

Inserting Data ...608

Fetching Data ..608

More on SQLite .. 610

Summary .. 610

Part V: Connections 611

Chapter 37: Sending E-Mail with PHP . 613

Sending E-Mail with PHP ...613

Windows configuration ..613

Linux configuration .. 614

The mail function ... 614

Sending Mail from a Form .. 616

Summary .. 618

Chapter 38: Integrating PHP and Java . 619

PHP for Java programmers ... 619

Similarities ..620

Syntax ...620

Operators ..620

Object model...620

xxix

 Contents

Memory management ...620

Packages and libraries ...620

Differences ..620

Compiled versus scripting .. 621

Variable declaration and loose typing ... 621

Java Server Pages and PHP .. 621

Embedded HTML ... 621

Choose your scripting language ..622

Integrating PHP and Java ..622

The Java SAPI ...623

Installation and setup ...623

Further information ..623

The Java extension ..623

Installation and setup ... 624

Testing ..625

The Java object ..625

Errors and exceptions ... 627

Potential gotchas ...628

Installation problems ..628

It’s the classpath, stupid ..628

Here comes that loose typing again...628

Speed ..628

The sky’s the limit ...629

Summary ..629

Chapter 39: Integrating PHP and JavaScript . 631

Outputting JavaScript with PHP ... 631

Dueling objects ...632

PHP doesn’t care what it outputs ..632

Where to use JavaScript ..633

PHP as a Backup for JavaScript ...634

Static versus Dynamic JavaScript ...636

Dynamically generated forms ...637

Passing data back to PHP from JavaScript ..642

Summary ..646

Chapter 40: Integrating PHP and XML . 647

What Is XML? ...647

Working with XML ..650

Documents and DTDs .. 651

The structure of a DTD ...653

Validating and nonvalidating parsers .. 655

SAX versus DOM .. 655

DOM ..656

Using DOM XML ..657

DOM functions ...657

xxx

 Contents

SAX ..659

Using SAX ..660

SAX options ..661

SAX functions ...663

SimpleXML API ..664

Using SimpleXML ...664

SimpleXML functions ...665

A Sample XML Application ...665

Gotchas and Troubleshooting ...672

Summary ..673

Chapter 41: Creating and Consuming Web Services with PHP 675

The End of Programming as We Know It ...675

The ugly truth about data movement ..675

Brutal simplicity ... 676

REST, XML-RPC, SOAP, .NET ...678

REST ...678

SOAP ..680

Current Issues with Web Services ..681

Large Footprint ...681

Potentially heavy load ...681

Standards ..682

Hide and seek ...682

Who pays and how? ..682

Project: A REST Client ..683

Summary ..688

Chapter 42: Creating Graphics with PHP .689

Your Options ..689

HTML Graphics ..690

Creating images using gd ...695

What is gd? ...695

Image formats and browsers ...696

Installation..696

gd Concepts ..697

Colors ...698

Drawing coordinates and commands..699

Format translation ..699

Freeing resources ..699

Functions ..700

Images and HTTP ... 701

Full-page images ... 701

Embedded images from files ...702

Embedded images from scripts ...702

Example: fractal images ..703

xxxi

 Contents

Gotchas and Troubleshooting ... 710

Symptom: completely blank image ... 710

Symptom: headers already sent... 710

Symptom: broken image ... 711

Summary ..712

Part VI: Case Studies 713

Chapter 43: Developing a Weblog with PHP . 715

Why Weblogs? ..715

The Simplest Weblog .. 716

Adding an HTML-Editing Tool ...722

Changes and Additions ..724

Summary ..725

Chapter 44: A Trivia Game . 727

Concepts Used in This Chapter ..727

The Game ...728

Our version ...728

Sample screens ...728

The rules ...729

Playing the game yourself ... 731

The Code .. 731

Code files ..732

index.php ..732

game_display_class.php ...735

game_text_class.php...744

game_class.php ...746

game_parameters_class.php ...753

certainty_utils.php .. 755

question_class.php ...759

dbvars.php .. 763

Creating the database ...764

Table definitions ...764

entry_form.php ...766

General Design Considerations ..768

Separation of code and display ...768

Persistence of data ..768

Exception handling...769

Summary ..769

Chapter 45: Data Visualization with Venn Diagrams 771

Scaled Venn diagrams ..771

The task ..772

Outline of the code ...772

xxxii

 Contents

Necessary Trigonometry ...773

Planning the Display ..777

Simplifying assumptions ..777

Determining size and scale ...777

The easy cases ...778

The hard case ..778

Display ...784

Notes on circles ...784

Notes on centering text ...785

Visualizing a Database ..785

Trying it out ..790

Extensions ..792

Summary ..793

Appendix A: PHP for C Programmers . 795

Similarities ...795

Syntax ...795

Operators ..796

Control structures...796

Many function names ...796

Differences..796

Those dollar signs ...796

Types ..796

Type conversion ..797

Arrays ...797

No structure type ...797

Objects..797

No pointers ...797

No prototypes ...797

Memory management ...798

Compilation and linking...798

Permissiveness ..798

Guide to the Book ...798

A Bonus: Just Look at the Code! ...799

Appendix B: PHP for Perl Hackers . 801

Similarities ...801

Compiled scripting languages...801

Syntax ...802

Dollar-sign variables ...802

No declaration of variables ...802

Loose typing of variables ..802

Strings and variable interpolation ...802

Differences..803

PHP is HTML-embedded ..803

No @ or % variables ...803

xxxiii

 Contents

Arrays versus hashes...803

Specifying arguments to functions ...803

Variable scoping in functions ..804

No module system as such ..804

Break and continue rather than next and last ...805

No elsif ...805

More kinds of comments ..805

Regular expressions ..805

Miscellaneous Tips ...805

What about use of strict “vars”? ..806

Where’s CPAN? ...806

Guide to the Book ...806

Appendix C: PHP for HTML Coders .809

The Good News ..809

You already know HTML ..809

PHP is an easy first programming language to learn .. 810

Web development is increasingly prefab anyway .. 810

The Bad News ... 810

If programming were that easy, you’d already know how 810

Backend servers can add complexity .. 811

Concentrate On 811

Reading other people’s code .. 811

Working on what interests you ... 812

Thinking about programming .. 812

Learning SQL and other protocols .. 813

Making cosmetic changes to prefab PHP applications .. 814

Debugging is programming .. 814

Avoid at First 814

Maximal PHP style ... 815

Programming large applications from scratch... 815

Consider This 815

Reading a book on C programming .. 815

Minimal PHP style .. 815

Use the right tools for the job ... 816

Appendix D: PHP Resources . 817

The PHP Web Site... 817

The PHP Mailing Lists .. 819

Signing up .. 819

Users’ lists and developers’ lists .. 819

Regular and digest ..821

Mailing list etiquette ...821

Remember, the community does all this work for free!821

People might be sick of your question ...821

xxxiv

 Contents

Give detailed descriptions ...822

PHP is international ..822

There are limits ...822

Do it yourself ..823

It’s probably you ..823

There are now commercial alternatives ...823

Other PHP Web Sites ..823

Core scripting engine and tools ..824

PHP knowledgebase ..824

Articles and tutorials ..825

PHP codebases ..825

Major PHP projects ...826

Appendix E: PEAR . 829

What Is PEAR? ...830

The PEAR Package System .. 831

A sampling of PEAR packages... 831

How the PEAR database works ...832

The Package Manager ...832

Installing the PEAR Package Manager on Linux ...832

Updating the Package Manager ...833

Using the Manager ..834

Automatic package installation ...834

Automatic package removal ..834

Semiautomatic package installation ..835

Using PEAR packages in your scripts ..835

PHP Foundation Classes (PFC) ..835

PHP Extension Code Library (PECL) ..836

The PEAR Coding Style ..836

Indenting, whitespace, and line length ...836

Formatting control structures ...837

if Statements ...837

if/else Statements ..838

if/elseif Statements ..838

switch Statements ...838

Formatting functions and function calls ...838

Summary ..839

Index . 841

xxxv

What Is PHP?
PHP is an open source, server-side, HTML-embedded web-scripting language that is compatible

with all the major web servers (most notably Apache). PHP enables you to embed code fragments

in normal HTML pages — code that is interpreted as your pages are served up to users. PHP also

serves as a “glue” language, making it easy to connect your web pages to server-side databases.

Why PHP?
We devote nearly all of Chapter 1 to this question. The short answer is that it’s free, it’s open

source, it’s full featured, it’s cross-platform, it’s stable, it’s fast, it’s clearly designed, it’s easy to

learn, and it plays well with others.

What’s New in This Edition?
This book is a new edition of the popular PHP Bible and PHP5 and MySQL Bible series. The book

updates the elements from previous versions, where applicable, for PHP 6 and MySQL 6.

New PHP 6 features
Although much of PHP 5’s functionality survives unchanged in PHP 6, there have been some

changes. Among the ones we cover are:

Unicode support, making internationalization easier■■

Security enhancements such as removing safe_mode and register globals■■

Enhancements to the object-oriented interfaces■■

Who wrote the book?
The first two editions were by Converse and Park, with a guest chapter by Dustin Mitchell and

tech editing by Richard Lynch. For the third edition, Clark Morgan took on much of the revision

work, with help from Converse and Park as well as from David Wall and Chris Cornell, who also

contributed chapters and did technical editing. For this edition, Steve Suehring did revision work

with Aaron Saray providing technical editing.

xxxvi

Introduction

Whom This Book Is For
This book is for anyone who wants to build web sites that exhibit more complex behavior than is

possible with static HTML pages. Within that population, we had the following three particular

audiences in mind:

Web site designers who know HTML and want to move into creating dynamic web sites■■

Experienced programmers (in C, Java, Perl, and so on) without web experience who want ■■

to quickly get up to speed in server-side web programming

Web programmers who have used other server-side technologies (Active Server Pages, Java ■■

Server Pages, or ColdFusion, for example) and want to upgrade or simply add another tool

to their kit

We assume that the reader is familiar with HTML and has a basic knowledge of the workings of the

web, but we do not assume much programming experience beyond that. To help save time for more

experienced programmers, we include a number of notes and asides that compare PHP with other

languages and indicate which chapters and sections may be safely skipped. Finally, see our appen-

dixes, which offer specific advice for C programmers, ASP coders, and pure-HTML designers.

This Book Is Not the Manual
The PHP Documentation Group has assembled a great online manual, located at www.php.net and

served up (of course) by PHP. This book is not that manual or even a substitute for it. We see the

book as complementary to the manual and expect that you will want to go back and forth between

them to some extent.

In general, you’ll find the online manual to be very comprehensive, covering all aspects and func-

tions of the language, but inevitably without a great amount of depth in any one topic. By contrast,

we have the leisure of zeroing in on aspects that are most used or least understood and give back-

ground, explanations, and lengthy examples.

How the Book Is Organized
This book is divided into five parts, as the following sections describe.

Part I: PHP: The Basics
This part is intended to bring the reader up to speed on the most essential aspects of PHP, with com-

plexities and abstruse features deferred to later parts.

Chapters 1 through 3 provide an introduction to PHP and tell you what you need to know ■■

to get started.

xxxvii

 Introduction

Chapters 4 through 9 are a guide to the most central facets of PHP (with the exception of ■■

database interaction): the syntax, the data types, and the most basic built-in functions.

Chapter 10 is a guide to the most common pitfalls of PHP programming.■■

Part II: PHP and MySQL
Part II is devoted both to MySQL and to PHP’s interaction with MySQL.

Chapters 11 and 12 provide a general orientation to web programming with SQL data-■■

bases, including installation of MySQL.

Chapter 13 covers Structured Query Language (SQL), and Chapter 14 covers database ■■

administration basics.

Chapter 15 is devoted to PHP functions for MySQL.■■

Chapters 16 and 17 are detailed, code-rich case studies of PHP/MySQL interactions.■■

Chapters 18 and 19 provide tips and gotchas specific to PHP/MySQL work.■■

Part III: Advanced Techniques
In this part we cover more advanced features of PHP, usually as self-contained chapters, including

object-oriented programming, session handling, exception handling, using cookies, and regular expres-

sions. Chapter 31 is a tour of debugging techniques, and Chapter 32 discusses programming style.

Part IV: Connections
In this part we cover advanced techniques and features that involve PHP talking to other services,

technologies, or large bodies of code.

Chapters 33 through 36 cover PHP’s interaction with other database technologies ■■

(PostgreSQL, Oracle, PDO, and SQLite).

Chapters 37 through 42 cover self-contained topics: PHP and e-mail programs, combining ■■

PHP with JavaScript, integrating PHP and Java, PHP and XML, PHP-based Web services,

and creating graphics with the gd image library.

Part V: Case Studies
Here we present three extended case studies that wrap together techniques from various early chapters.

Chapter 43 takes you through the design and implementation of a weblog.■■

Chapter 44 discusses a soup-to-nuts implementation of a novel trivia quiz game.■■

Chapter 45 uses the ■■ gd image library to visualize data from a MySQL database.

xxxviii

Introduction

Appendices
At the end, we offer three “quick-start” appendixes, for use by people new to PHP but very famil-

iar with either C (Appendix A), Perl (Appendix B), or pure HTML (Appendix C). If you are in any

of these three situations, start with the appropriate appendix for an orientation to important dif-

ferences and a guide to the book. Appendix (D) is a guide to important resources, web sites, and

mailing lists for the PHP community. The final appendix (E) is information on the PEAR repository,

which is no longer scheduled to be included in PHP 6. However, this information (from a previous

edition of the book) may be helpful to someone maintaining a PHP site on an earlier version of PHP

or one that uses PEAR.

Conventions Used in This Book
We use a monospaced font to indicate literal PHP code. Pieces of code embedded in lines of text look

like this, while full code listing lines look as follows:

print(“this”);

If the appearance of a PHP-created web page is crucial, we include a screenshot. If it is not, we

show textual output of PHP in monospaced font. If we want to distinguish the PHP output as seen

in your browser from the actual output of PHP (which your browser renders), we call the former

browser output.

If included in a code context, italics indicate portions that should be filled in appropriately, as

opposed to being taken literally. In normal text, an italicized term means a possibly unfamiliar

word or phrase.

What the Icons Mean
Icons similar to the following example are sprinkled liberally throughout the book. Their purpose is

to visually set off certain important kinds of information.

Tip icons indicate PHP tricks or techniques that may not be obvious and that enable you

to accomplish something more easily or efficiently.

Note icons usually provide additional information or clarification but can be safely

ignored if you are not already interested. Notes in this book are often audience-specific,

targeted to people who already know a particular programming language or technology.

Caution icons indicate something that does not work as advertised, something that is eas-

ily misunderstood or misused, or anything else that can get programmers into trouble.

We use this icon whenever related information is in a different chapter or section.

TIPTIP

NOTENOTE

CAUTION CAUTION

CROSS-REFCROSS-REF

IN THIS PART

Chapter 1
Why PHP and MySQL?

Chapter 2
Server-Side Scripting Overview

Chapter 3
Getting Started with PHP

Chapter 4
Learning PHP Syntax and
Variables

Chapter 5
Learning PHP Control Structures
and Functions

Chapter 6
Passing Information with PHP

Chapter 7
Learning PHP String Handling

Chapter 8
Learning Arrays

Chapter 9
Learning PHP Number Handling

Chapter 10
PHP Gotchas

Introducing PHP

3

Why PHP and MySQL?

T
his first chapter is an introduction to PHP, MySQL, and the interac-

tion of the two. In it, we’ll try to address some of the most common

questions about these tools, such as “What are they?” and “How do

they compare to similar technologies?” Most of the chapter is taken up with

an enumeration of the many, many reasons to choose PHP, MySQL, or the

two in tandem. If you’re a techie looking for some ammunition to lob at your

PHB (“Pointy-Haired Boss,” for those who don’t know the Dilbert cartoons)

or a manager asking yourself what is this P-whatever thing your geeks keep

whining to get, this chapter will provide some preliminary answers.

What Is PHP?
PHP is the web development language written by and for web developers.

PHP stands for PHP: Hypertext Preprocessor. The product was originally

named Personal Home Page Tools, and many people still think that’s what the

acronym stands for, but as it expanded in scope, a new and more appropri-

ate (albeit GNU-ishly recursive) name was selected by community vote.

PHP is currently in its sixth major rewrite, called PHP6 or just plain PHP.

PHP is a server-side scripting language, usually used to create web applica-

tions in combination with a web server, such as Apache. PHP can also be

used to create command-line scripts akin to Perl or shell scripts, but such

use is much less common than PHP’s use as a web language.

Strictly speaking, PHP has nothing to do with layout, events, on-the-fly

Document Object Model (DOM) manipulation, or really anything about the

look and feel of a web page. In fact, most of what PHP does is invisible to

the end user. Someone looking at a PHP page will not necessarily be able to

tell that it was not written purely in Hypertext Markup Language (HTML),

because the result of PHP is usually HTML.

IN THIS CHAPTER

Understanding PHP and MySQL

The benefits of using PHP

and MySQL

4

 Part I Introducing PHP

What Is MySQL?
MySQL (pronounced My Ess Q El) is an open source, SQL relational database management system

(RDBMS) that is free for many uses (more detail on that later). Early in its history, MySQL occasion-

ally faced opposition because of its lack of support for some core SQL constructs such as subselects

and foreign keys. Ultimately, however, MySQL found a broad, enthusiastic user base for its liberal

licensing terms, perky performance, and ease of use. Its acceptance was aided in part by the wide

variety of other technologies such as PHP, Perl, Python, and the like that have encouraged its use

through stable, well-documented modules and extensions.

Databases are generally useful, perhaps the most consistently useful family of software products

(the “killer product”) in modern computing. Like many competing products, both free and com-

mercial, MySQL isn’t a database until you give it some structure and form. You might think of this

as the difference between a database and an RDBMS (that is, RDBMS plus user requirements equal a

database).

There’s lots more to say about MySQL, but then again, there’s lots more space in which to say it.

Deciding on a Web Application Platform
There are many platforms upon which web applications can be built. This section compares PHP to

a few other platforms and highlights some of PHP’s and MySQL’s strengths.

Cost
PHP is one of the “P’s” in the popular LAMP stack. The LAMP stack refers to the popular combina-

tion of Linux, Apache, MySQL, and PHP/Perl/Python that runs many web sites and powers many

web applications. Many of the components of the LAMP stack are free, and PHP is no exception.

PHP is free, as in there is no cost to develop in and run programs made with PHP. Though MySQL’s

license and costs have changed, you can obtain the Community Server edition for free. MySQL

offers several levels of support contracts for their database server. More information can be obtained

at www.mysql.com. Both PHP and MySQL run on a variety of platforms, including many variants

of Linux, Microsoft Windows, and others. Running on an operating system such as Linux gives the

opportunity for a completely free web application platform, with no up-front costs.

Of course, when talking about software development and application platforms, the up-front cost of

software licensing is only a portion of the total cost of ownership (TCO). Years of real-world experi-

ence with Linux, Apache, MySQL, and PHP in production environments has proved that the total

cost of maintaining these platforms is lower, many times much lower, than maintaining an infra-

structure with proprietary, non-free software.

5

 Why PHP and MySQL? 1

Ease of Use
When compared to many other programming languages, PHP makes it easy to develop powerful

web applications quickly (this is a blessing and a curse). Many of the most useful specific functions

(such as those for opening a connection to an Oracle database or fetching e-mail from an Internet

Message Access Protocol [IMAP] server) are predefined for you. A lot of complete scripts are waiting

out there for you to look at as you’re learning PHP.

Most advanced PHP users (including most of the development team members) are diehard hand-

coders. They tend to share certain gut-level, subcultural assumptions — for instance, that hand-

written code is beautiful and clean and maximally browser-compatible and therefore the only way

to go — that they do not hesitate to express in vigorous terms. The PHP community offers help and

trades tips mostly by e-mail, and if you want to participate, you have to be able to parse plain-text

source code with facility. Some WYSIWYG users occasionally ask list members to diagnose their

problems by looking at their web pages instead of their source code, but this rarely ends well.

That said, let us reiterate that PHP really is easy to learn and write, especially for those with a little

bit of experience in a C-syntaxed programming language. It’s just a little more involved than HTML.

This small learning curve means that relatively inexperienced programmers can sometimes make

mistakes that turn into large security issues. This is the curse of PHP. While this book has no spe-

cific chapter dedicated to security, I feel that security needs to be applied at every layer, during every

phase of programming. Therefore dedicating a single chapter would not do justice to the importance

of web application security.

If you have no relational database experience, or are coming from an environment such as Microsoft

Access, MySQL’s command-line interface and lack of implicit structure may at first seem a little

daunting. MySQL has a few GUI (graphical user interface) tools to help work with databases. None

of the GUI tools is a substitute for learning a little theory and employing good design practices, but

that is a subject for another chapter.

HTML-embeddedness
PHP can be embedded within HTML. In other words, PHP pages are ordinary HTML pages that

escape into PHP mode only when necessary. Here is an example:

<HEAD>
<TITLE>Example.com greeting</TITLE>
</HEAD>
<BODY>
<P>Hello,
<?php
// We have now escaped into PHP mode.
// Instead of static variables, the next three lines
// could easily be database calls or even cookies;
// or they could have been passed from a form.
$firstname = ‘Joyce’;
$lastname = ‘Park’;

6

 Part I Introducing PHP

$title = ‘Ms.’;
echo “$title $lastname”;
// OK, we are going back to HTML now.
?>
. We know who you are! Your first name is <?php echo
$firstname; ?>.</P>

<P>You are visiting our site at <?php echo date(‘Y-m-d H:i:s’);
?></P>

<P>Here is a link to your account management page: <A
HREF=”http://www.example.com/accounts/<?php echo
“$firstname$lastname”; ?>/“><?php echo $firstname; ?>’s account
management page</P>
</BODY>
</HTML>

When a client requests this page, the web server preprocesses it. This means it goes through the

page from top to bottom, looking for sections of PHP, which it will try to resolve. For one thing, the

parser will suck up all assigned variables (marked by dollar signs) and try to plug them into later

PHP commands (in this case, the echo function). If everything goes smoothly, the preprocessor will

eventually return a normal HTML page to the client’s browser, as shown in Figure 1-1.

FIGURE 1-1

A result of preprocessed PHP

If you peek at the source code from the client browser (select Source or Page Source from the View

menu, it will look like this:

<HEAD>
<TITLE>Example.com greeting</TITLE>

7

 Why PHP and MySQL? 1

</HEAD>
<BODY>
<P>Hello,
Ms. Park
. We know who you are! Your first name is Joyce.</P>

<P>You are visiting our site at 2002-04-21 19:34:24</P>

<P>Here is a link to your account management page: <A HREF=”http://
www.example.com/accounts/JoycePark/“>Joyce’s account management page</
A></P>
</BODY>
</HTML>

This code is exactly the same as if you were to write the HTML by hand. So simple!

The HTML-embeddedness of PHP has many helpful consequences:

PHP can quickly be added to code produced by WYSIWYG editors.■■

PHP lends itself to a division of labor between designers and programmers.■■

Every line of HTML does not need to be rewritten in a programming language.■■

PHP can reduce labor costs and increase efficiency because of its shallow learning curve ■■

and ease of use.

Cross-platform compatibility
PHP and MySQL run native on every popular flavor of Linux/Unix (including Mac OS X) and

Microsoft Windows. A huge percentage of the world’s Hypertext Transfer Protocol (HTTP) servers

run on one of these two classes of operating systems.

PHP is compatible with the leading web servers: Apache HTTP Server for Linux/Unix and Windows

and Microsoft Internet Information Server. It also works with several lesser-known servers. Specific

web server compatibility with MySQL is not required, since PHP will handle all the dirty work for you.

Stability
The word stable means two different things in this context:

The server doesn’t need to be rebooted or restarted often.■■

The software doesn’t change radically and incompatibly from release to release.■■

To our advantage, both of these connotations apply to both MySQL and PHP.

Apache Server is generally considered the most stable of major web servers, with a reputation for

enviable uptime percentages. Most often, a server reboot isn’t required for each setting change. PHP

inherits this reliability; plus, its own implementation is solid yet lightweight.

8

 Part I Introducing PHP

PHP and MySQL are also both stable in the sense of feature stability. Their respective development

teams have thus far enjoyed a clear vision of their project and refused to be distracted by every new

fad and ill-thought-out user demand that comes along. Much of the effort goes into incremental per-

formance improvements, communicating with more major databases, or adding better OOP support.

In the case of MySQL, the addition of reasonable and expected new features has hit a rapid clip. For

both PHP and MySQL, such improvements have rarely come at the expense of compatibility.

Many extensions
PHP makes it easy to communicate with other programs and protocols. The PHP development team

seems committed to providing maximum flexibility to the largest number of users.

Database connectivity is especially strong, with native-driver support for about 15 of the most popu-

lar databases plus Open DataBase Connectivity (ODBC). In addition, PHP supports a large number

of major protocols such as POP3, IMAP, and LDAP. Earlier versions of PHP added support for Java

and distributed object architectures (Component Object Model [COM] and Common Object Request

Broker Architecture [CORBA]), making n-tier development a possibility for the first time, fully incor-

porated GD graphics library and revamped Extensible Markup Language (XML) support with DOM

and simpleXML.

Fast feature development
Users of proprietary web development technologies can sometimes be frustrated by the glacial speed

at which new features are added to the official product standard to support emerging technologies.

With PHP, this is not a problem. All it takes is one developer, a C compiler, and a dream to add

important new functionality. This is not to say that the PHP team will accept every random contri-

bution into the official distribution without community buy-in, but independent developers can and

do distribute their own extensions that may later be folded into the main PHP package in more or

less unitary form. For instance, Dan Libby’s elegant xmlrpc-epi extension was adopted as part of the

PHP distribution in version 4.1, a few months after it was first released as an independent package.

PHP development is also constant and ongoing. Although there are clearly major inflection points,

such as the transition between PHP4 and PHP5, these tend to be most important deep in the guts

of the parser — people were actually working on major extensions throughout the transition period

without critical problems. Furthermore, the PHP group subscribes to the open source philosophy

of “release early, release often,” which gives developers many opportunities to follow along with

changes and report bugs.

Not proprietary
The history of the personal computer industry to date has largely been a chronicle of proprietary

standards: attempts to establish them, clashes between them, their benefits and drawbacks for the

consumer, and how they are eventually replaced with new standards.

9

 Why PHP and MySQL? 1

In the past few years the Internet has demonstrated the great convenience of voluntary, standards-

based, platform-independent compatibility. E-mail, for example, works so well because it enjoys a

clear, firm standard to which every program on every platform must conform. New developments

that break with the standard (for example, HTML-based e-mail stationery) are generally regarded as

deviations, and their users find themselves having to bear the burdens of early adoption.

Furthermore, customers (especially the big-fish businesses with large systems) are fed up with

spending vast sums to conform to a proprietary standard only to have the market uptake not turn

out as promised. Much of the current momentum toward XML and web services is driven by years

of customer disappointment with Java RMI (Remote Method Invocation), CORBA, COM, and even

older proprietary methods and data formats.

Right now, software developers are in a period of experimentation and flux concerning proprietary

versus open standards. Companies want to be sure that they can maintain profitability while adopt-

ing open standards. There have been some major legal conflicts related to proprietary standards,

which are still being resolved. These could eventually result in mandated changes to the codebase

itself or even affect the futures of the companies involved. In the face of all this uncertainty, a grow-

ing number of businesses are attracted to solutions that they know will not have these problems in

the foreseeable future.

PHP is in a position of maximum flexibility because it is, so to speak, antiproprietary. It is not tied

to any one server operating system, unlike Active Server Pages. It is not tied to any proprietary

cross-platform standard or middleware, as is Java Server Pages or ColdFusion. It is not tied to any

one browser or implementation of a programming language or database. PHP isn’t even doctrinaire

about working only with other open source software. This independent but cooperative pragmatism

should help PHP ride out the stormy seas that seem to lie ahead.

Strong user communities
PHP is developed and supported in a collaborative fashion by a worldwide community of users.

Some animals (such as the core developers) are more equal than others, but that’s hard to argue

with, because they put in the most work, had the best ideas, and have managed to maintain civil

relationships with the greatest number of other users.

The main advantage for most new users is technical support without charge, without boundaries,

and without the runaround. People on the mailing list are available 24/7/52 to answer your ques-

tions, help debug your code, and listen to your gripes. The support is human and real. PHP commu-

nity members might tell you to read the manual, take your question over to the appropriate database

mailing list, or just stop your whining — but they’ll never tell you to wipe your C drive and then

charge you for the privilege. Often, they’ll look at your code and tell you what you’re doing wrong or

even help you design an application from the ground up.

As you become more comfortable with PHP, you may wish to contribute. Bug tracking, offering

advice to others on the mailing lists, posting scripts to public repositories, editing documentation,

and, of course, writing C code are all ways you can give back to the community.

10

 Part I Introducing PHP

MySQL, while open source licensed for non-redistributive uses, is somewhat less community driven

in terms of its development. Nevertheless, it benefits from a growing community of users who are

actively listened to by the development team. Rarely has a software project responded so vigorously

to community demand, and the community of users can be extremely responsive to other users who

need help. It’s a point of pride with a lot of SQL gurus that they can write the complicated queries

that get you the results you are looking for but had struggled with for days. In many cases, they’ll

help you for nothing more than the enduring, if small, fame that comes with the archived presence

of their name on Google Groups. Try comparing that with $100 per incident support.

Summary
PHP and MySQL, individually or together, aren’t the panacea for every web development problem,

but they present a lot of advantages. PHP is built by web developers for web developers and sup-

ported by a large and enthusiastic community. MySQL is a powerful standards-compliant RDBMS

that comes in at an extremely competitive price point, even more so if you qualify for free use. Both

technologies are clear-cut cases of the community banding together to address its own needs.

11

T
his chapter is about server-side scripting and its relationship to both

static HTML and common client-side technologies. By the end, you

can expect to gain a clear understanding of what kinds of things

PHP can and cannot do for you, along with a general understanding of

how it interacts with client-side code (JavaScript, Java applets, Flash, style

sheets, and the like).

Static HTML
The most basic type of web page is a completely static, text-based one, writ-

ten entirely in HTML. Take the simple HTML-only page that Figure 2-1

shows as an example.

The following example displays the source code for the web page shown in

Figure 2-1:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>
<html>
<head>
<title>Selected Constellations</title>
</head>
<body>
<h1>Constellations</h1>

Aquila
Bootes
Cassiopeia

Server-Side
Scripting Overview

IN THIS CHAPTER

Understanding static and

dynamic web pages

Client-side versus server-side

scripting

An introduction to server-side

scripting

12

 Part I Introducing PHP

Cygnus
Deneb
Draco
Gemini
Leo
Libra
Lynx
Orion
Pegasus
Perseus
Pisces
Taurus
Ursa Major
Ursa Minor
Vega

</body>
</html>

FIGURE 2-1

A static HTML example

13

 Server-Side Scripting Overview 2

Client-Side Technologies
The most common additions to plain HTML are on the client side. These add-ons include formatting

extensions, such as Cascading Style Sheets (CSS) and Dynamic HTML; client-side scripting lan-

guages, such as JavaScript; VBScript; Java applets; and Flash. Support for all these technologies is (or

is not, as the case may be) built into the web browser. They perform the tasks described in Table 2-1,

with some overlap.

TABLE 2-1

Client-Side HTML Extensions
Client-Side
Technology

Main Use Example Effects

Cascading Style
Sheets, Dynamic
HTML

Formatting pages: controlling size,
color, placement, layout, timing of
elements

Overlapping, different colored/sized
fonts

Layers, exact positioning

Client-side
scripting
(JavaScript,
VBScript)

Event handling: controlling
consequences of defined events

Link that changes color on mouseover

Mortgage calculator

Java applets Delivering small standalone
applications

Moving logo

Crossword puzzle

Flash animations Animation Short cartoon film

The page shown in Figure 2-2 is based on the same content as that in Figure 2-1. As you can see

from the following source code, however, this example adds a bit of styling with basic inline CSS.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN” “http://www.w3.org/
TR/html4/strict.dtd”>
<html>
<head>
<STYLE TYPE=”text/css”>
BODY, P {color: black; font-family: verdana; font-size: 10 pt}
H1 {margin-top: 10; color: black; font-family: arial; font-size: 12 pt}
H2 {margin-bottom: -10; color: black; font-family: verdana; font-size:
18 pt}
A:link, A:visited {color: #000080; text-decoration: none}
</STYLE>
<title>Selected Constellations</title>
</head>
<body>
<h1>Constellations</h1>

14

 Part I Introducing PHP

Aquila
Bootes
Cassiopeia
Cygnus
Deneb
Draco
Gemini
Leo
Libra
Lynx
Orion
Pegasus
Perseus
Pisces
Taurus
Ursa Major
Ursa Minor
Vega

</body>
</html>

FIGURE 2-2

An example of HTML plus CSS.

15

 Server-Side Scripting Overview 2

Unfortunately, the best thing about client-side technologies is also the worst thing about them: They

depend entirely on the browser. Wide variations exist in the capabilities of each browser and even

among versions of the same brand of browser. Individuals can also choose to configure their own

browsers in awkward ways: Some people disable JavaScript for security reasons, for example, which

makes it impossible for them to view sites that use JavaScript incorrectly or with little care.

The savvy web developer should also consider the implications of device-based browsing, universal

accessibility, and a global audience. The stubborn unwillingness of the public to upgrade is the bane

of client-side developers, causing them to frequently suffer screaming nightmares and/or existen-

tial meltdowns in the dark, vulnerable hours before dawn. The bottom-line irony is that, even after

almost 15 years of explosive web progress, the only thing that a developer can absolutely, positively

know that the client is going to see is plain text-based HTML (or, rather, the subset of HTML that’s

widely supported and has stood the tests of time and usefulness).

Server-Side Scripting
Client-side scripting is the glamorous, eye-catching part of web development. In contrast, server-side

scripting is invisible to the user. Pity the poor server-side scripters, toiling away in utter obscurity,

trapped in the no-man’s land between the web server and the database while their arty brethren bra-

zenly flash their wares before the public gaze.

Server-side web scripting is mostly about connecting web sites to backend servers, processing data

and controlling the behavior of higher layers such as HTML and CSS. This enables the following

types of two-way communication:

Server to client■■ : Web pages can be assembled from backend-server output.

Client to server■■ : Customer-entered information can be acted upon.

Common examples of client-to-server interaction are online forms with some drop-down lists (usu-

ally the ones that require you to click a button) that the script assembles dynamically on the server.

Server-side scripting products consist of two main parts: the scripting language and the scripting

engine (which may or may not be built into the web server). The engine parses and interprets pages

written in the language.

The following code shows a simple example of server-side scripting — a page assembled on the fly

from a database. We include database calls (which we don’t get around to explaining until Part II of

this book) and leave out some of the included files, because we intend this example to show the final

product of PHP rather than serve as a piece of working code.

The following PHP code shows the source on the server:

<?php

require_once(‘db-config.inc.’);

16

 Part I Introducing PHP

$dbh = mysql_connect(DB_HOST,DB_USER,DB_PASSWORD) or die(“Unable to
connect to database.”);
mysql_select_db(‘webdb’) or die(“Cannot access database.”);
$query = “SELECT pagetitle FROM sitepages
 WHERE site = ‘braingia.org’
 AND page_id = ‘1’“;
$qresult = mysql_query($query) or die(“Unable to query database.”);
$title = mysql_fetch_array($qresult);

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN” “http://www.w3.org/
TR/html4/strict.dtd”>
<html>
<head>
<STYLE TYPE=”text/css”>
BODY, P {color: black; font-family: verdana; font-size: 10 pt}
H1 {margin-top: 10; color: black; font-family: arial; font-size: 12 pt}
H2 {margin-bottom: -10; color: black; font-family: verdana; font-size:
18 pt}
A:link, A:visited {color: #000080; text-decoration: none}
</STYLE>
<title><?php echo $title[0] ?></title>
</head>
<body>
<h1>$title[0]</h1>

<?php
$linksQuery = “SELECT description,href FROM sitepagedata
 WHERE site = ‘braingia.org’
 AND pagetitle = ‘{$title}‘“;
$linksResult = mysql_query($linksQuery) or die(“Unable to query
database.”);
while ($row = mysql_fetch_array($linksResult)) {
 print “$row[0]\n”;
}
?>

</body>
</html>

This particular page isn’t significantly more impressive to look at than the version shown in

Figure 2-2.

Compare the version with the PHP code to the HTML versions shown earlier in the chapter.

The source code that uses PHP is shorter because it retrieves the information from a database.

Nevertheless, this server-side code is never viewable by end users. The version that they see is

exactly the same as the HTML shown earlier. The only evidence that it’s a PHP file is the filename

extension, .php. All the heavy lifting happens before the code gets shoved down the pipe to the

client. After emerging from the web server, the code appears on the other end as normal HTML

17

 Server-Side Scripting Overview 2

and JavaScript, which also means that you can’t tell which server-side scripting language was used

unless something in the header or URL gives it away (which usually is the case, as the page you are

requesting often ends with .jsp or .php). These scripts, incidentally, were written in PHP using the

MySQL database as backend; you can learn all about these techniques in Part II of this book.

Server-Side or Client-Side?

There are client-side methods and server-side methods to accomplish many tasks. When sending e-mail,
for example, the client-side way is to open up the mail client software with a preaddressed blank e-mail

message after the user clicks a MAILTO link. The server-side method is to make the user fill out a form, and
the contents are formatted as an e-mail that is sent via a Simple Mail Transfer Protocol (SMTP) server (which
very well could be the same machine that the server-side script is executing on). You can also choose between
client methods and server methods of browser-sniffing, form validation, drop-down lists, and arithmetic cal-
culation. Sometimes you see subtle but meaningful differences in functionality (server-side drop-downs can
be assembled dynamically; client-side cannot) but not always.

How to choose? Know your audience. Server-side methods are generally a bit slower at runtime because of
the extra transits they must make, but they don’t assume anything about your visitor’s browser capabilities and
take less developer time to maintain.

What Is Server-Side Scripting Good For?
Server-side scripting languages such as PHP perfectly serve most of the truly useful aspects of the

web, such as the items in this list:

Content sites (both production and display)■■

Community features (forums, bulletin boards, and so on)■■

E-mail (web mail, mail forwarding, and sending mail from a web application)■■

Customer-support and technical-support systems■■

Advertising networks■■

Web-delivered business applications■■

Directories and membership rolls■■

Surveys, polls, and tests■■

Filling out and submitting forms online■■

Personalization technologies■■

Groupware■■

18

 Part I Intruducing PHP

Catalog, brochure, and informational sites■■

Games (for example, chess) with lots of logic but simple/static graphics■■

Any other application that needs to connect a backend server (database, Lightweight ■■

Directory Access Protocol [LDAP], and so on) to a web server

PHP can handle all these essential tasks — and then some.

But enough rhetoric! Now that you have a grasp of the differences between client-side and server-

side technologies, you can get on to the practical stuff. In Chapter 3, we show you how to get, install,

and configure PHP for yourself (or find someone to do it for you).

Summary
To understand what PHP (or any server-side scripting technology) can do for you, having a firm

grasp on the division of labor between client and server is crucial. In this chapter, we worked

through examples of plain, static HTML; HTML with client-side additions such as JavaScript and

Cascading Style Sheets; and PHP-generated web pages as viewed from both the server and the client.

Client-side scripting can be visually attractive and quickly responsive to user inputs, but anything

beyond the most basic HTML is subject to browser variation. Static client-side scripts also require

more developer time to maintain and update, because pages cannot be dynamically generated from a

constantly changing datastore. Server-side programming and scripting languages, such as PHP, can

connect databases and other servers to web pages.

19

I
n this chapter, we’ll give detailed directions for installing PHP and fin-

ish with a few tips on finding the right development tool. By the end of

the chapter, you should be ready to write your first script.

Installing PHP
This section looks at the installation of PHP onto a computer. If you’re going

to be using a hosting provider that provides PHP or if you have a friendly

sysadmin who has installed PHP for you, then this section will be of limited

usefulness. PHP runs on various platforms, including Linux, various Unix

flavors, Microsoft Windows, and Mac OS X. Linux is the most popular plat-

form for PHP, and when combined with the Apache web server, and MySQL

forms the acronym LAMP (although the “P” can also be Perl or Python).

If you plan to install PHP on Windows, you’ll also need:

A working PHP-supported web server. Under previous versions ■■

of PHP, IIS/PWS was the easiest choice because a module version

of PHP was available for it; but PHP now has added a much wider

selection of modules for Windows. These days, Apache works very

well with Windows, so we’ll be focusing on PHP with Apache on

Windows.

The PHP Windows binary distribution (download it at ■■ www.php
.net/downloads.php)

A utility to unzip files (search ■■ http://download.cnet.com for

PC file compression utilities), if your version of Windows doesn’t

include such a utility.

Getting Started with PHP

IN THIS CHAPTER

Installing PHP

Coding in PHP

20

 Part I Introducing PHP

If you plan to install PHP on Linux, you may be able to take advantage of your distribution’s PHP

package. Most Linux distributions, including Red Hat, Debian, SuSE, and Ubuntu, include PHP as

an available package, and, where possible, you should use the distribution’s official PHP package.

There are certain instances where you need to compile PHP from source, in order to take advantage

of a bleeding-edge feature, for example, but these are the rare exceptions. It is much easier and much

more stable to use the distribution’s PHP package.

Additionally, you need a web server that supports PHP. Most of the time this will be the Apache web

server, but others work well with PHP. For this book, we’ll be concentrating on Apache as the web

server of choice. Therefore, you’ll need to install Apache from your distribution, as well.

Installation procedures
Because of PHP’s strong commitment to cross-platform operability, there are far too many specific

installation methods to fully list here. We have tried to cover what we believe to be the most popular

platforms for PHP, but trying to write the installation instructions for every possible operating sys-

tem and web server would have resulted in a prohibitively long chapter.

Furthermore, while PHP installation procedures under Unix have been stable for years, Windows

installs have gone through quite a bit of flux since PHP4 was first released. Part of this is the result

of actions on the part of the PHP team; part of this is because of changes in the Windows product

line. PHP also runs on Macintosh OS X, and that installation has only fairly recently stabilized.

In response to such rapid change, we can only caution you that for the freshest information on

installation you should visit the PHP web site (www.php.net/docs.php) on each download. Even

if you’ve installed PHP a gazillion times before, there might be something new and different on the

gazillion-and-first occasion.

For those who have already successfully built an earlier version of PHP, the procedure is exactly the

same — only it takes a lot longer than before.

Your Red Hat, Mandrake, or SuSE Linux installation may have come with RPM versions

of Apache and PHP, or your Debian Linux may have come with a deb package. You must

remove these packages before compiling your new PHP! In addition, you may have RPM or apt ver-

sions of third-party servers, such as MySQL or PostgreSQL, which are generally installed differently

from their source counterparts. If you encounter problems, look in the documentation for installation

locations, or uninstall the packages and reinstall from scratch. Nevertheless, I strongly recommend

using the distribution’s version of the package unless you have specific reasons for doing otherwise.

If you choose to compile your own versions of PHP and Apache from source then you must maintain

them by hand. This means that each and every time a security update is released for either, or for a

library touching either, PHP or Apache, you need to recompile the server in order to remain up to date.

Otherwise, just use the distribution’s package. They’ll maintain the security updates, leaving you to

concentrate on things like programming PHP!

CAUTION CAUTION

21

 Getting Started with PHP 3

The following procedures give an overview of PHP installation on CentOS and Debian. As of this

writing, the only version of PHP officially available with these distributions is PHP5. We expect

these instructions to be valid when PHP6 becomes available with the distributions.

Installing PHP on CentOS
The YellowDog Update Manager (yum) is available with CentOS and is somewhat like the dpkg and

apt toolset from Debian. Therefore, installation of PHP and Apache on CentOS is rather trivial. From

the command-line as root, type:

yum install php

Doing so will cause the yum system to examine the system, gather any prerequisites, and inform

you of the installation’s progress. Our example system is a fresh CentOS 5.1 install with a minimal

package set. Therefore, yum needs to install several prerequisites, and a summary is shown.

After downloading the prerequisites (if necessary), yum will go about its business and install PHP.

Part of the install includes Apache, known as “httpd” in CentOS terminology. Apache 2 is installed

as part of the installation of PHP.

Apache isn’t started by default. To start it, run:

/etc/init.d/httpd start

While Apache is installed, it is firewalled by default in CentOS, meaning that you can’t get to the

web server through its default protocol and port, tcp/80. To alleviate this problem, edit /etc/
sysconfig/iptables and add this line, second from the bottom:

-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 80 -j
ACCEPT

The final file looks like this:

Firewall configuration written by system-config-securitylevel
Manual customization of this file is not recommended.
*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:RH-Firewall-1-INPUT - [0:0]
-A INPUT -j RH-Firewall-1-INPUT
-A FORWARD -j RH-Firewall-1-INPUT
-A RH-Firewall-1-INPUT -i lo -j ACCEPT
-A RH-Firewall-1-INPUT -p icmp --icmp-type any -j ACCEPT
-A RH-Firewall-1-INPUT -p 50 -j ACCEPT
-A RH-Firewall-1-INPUT -p 51 -j ACCEPT
-A RH-Firewall-1-INPUT -p udp --dport 5353 -d 224.0.0.251 -j ACCEPT
-A RH-Firewall-1-INPUT -p udp -m udp --dport 631 -j ACCEPT
-A RH-Firewall-1-INPUT -p tcp -m tcp --dport 631 -j ACCEPT

22

 Part I Introducing PHP

-A RH-Firewall-1-INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 22 -j
ACCEPT
-A RH-Firewall-1-INPUT -m state — state NEW -m tcp -p tcp — dport 80 -j
ACCEPT
-A RH-Firewall-1-INPUT -j REJECT --reject-with icmp-host-prohibited
COMMIT

Restart the iptables firewall by running:

/etc/init.d/iptables restart

With that, you’ll be able to access your web server with PHP enabled by visiting http://your
.ip.address/ in the browser. For example, my CentOS computer is 192.168.1.155 and so pointing

to that in the web browser looks like this:

http://192.168.1.155

You may also want to install MySQL through the yum installer and the PHP/MySQL libraries:

yum install mysql php-mysql mysql-server mysql-devel

Installing PHP on Debian
Installation of PHP (or really anything) on Debian is probably the easiest and most manageable of all

Linux distributions with which I’ve worked (and that’s more than a few). Installation of the Debian

PHP package is done through the apt-get utility:

apt-get install libapache2-mod-php5

This example shows the installation of the PHP5 module on Debian because the PHP6

module was not yet available at the time of this writing.

This will install not only the PHP module for Apache 2 but also Apache 2 itself, if the web server

software hasn’t already been installed.

Once installed, the web server is ready to use. You’ll find the default location for PHP files at /var/
www/ apache2-default/, though that location may change in future releases of Debian.

Installing PHP from source
In the following directions, you will type the code fragments into each shell prompt, substituting the

version of software shown in the examples for the version that you’re compiling.

You’ll need a C compiler, with GCC being a good choice. On Debian you can install gcc by typing
apt-get install gcc, whereas on CentOS you can install GCC by typing yum install gcc.

You’ll also need ICU (International Components for Unicode) for Unicode support. On CentOS, this

is installed with yum install icu libicu-devel.

NOTENOTE

23

 Getting Started with PHP 3

Finally, you’ll also need development libraries for libxml, which can be installed on CentOS through

the libxml2-devel package, yum install libxml2-devel.

If you’ll be using MySQL you can install it and the libraries from the command line with the yum

installer:

yum install mysql mysql-server mysql-devel

Remember to log in as the root user first if you are installing in a root-owned directory.

Remember to stop and uninstall your previous Apache server if you had one.

To start your build, just follow these steps:

 1. If you haven’t already done so, unzip and untar your Apache source distribution. Unless

you have a reason to do otherwise, /usr/local is the standard place to do so.

tar -zxvf httpd-2.2.x.tar.gz

 2. Build the Apache server: If you are installing somewhere other than /usr/local, this is

the time to say so with the --prefix flag as follows. If you are installing in /usr/local,

don’t worry that the apache directory mentioned in a moment doesn’t exist — it will by

the end of the build process. The --enable-so flag will allow Apache to load PHP sup-

port (and many other things) as a module called a Shared Object. This is how you’ll build

your PHP module later on. After the configuration finishes, the next two commands will

build the binaries and then drop everything in the appropriate place according to the target

of the --prefix flag.

cd apache_2.2.x
./configure --prefix=/usr/local/apache --enable-so
make
make install

 3. Unzip and untar your PHP source distribution. Unless you have a reason to do otherwise,

/usr/local is the standard place to do so.

tar -zxvf php-6.x.tar.gz
cd php-6.x

 4. Configure your PHP build. (Configuring PHP is a topic so large and important that it

would not fit into this chapter, so please flip over to Chapter 29 for more information.)

The most common options are the ones to build as an Apache module, which you almost

certainly want, and to do so with specific database support. The example build here is an

Apache module with MySQL support, built using apxs.

./configure
--with-apxs2=/usr/local/apache/bin/apxs
--with-mysql

 5. Make and install the PHP module.

make
make install

TIPTIP

24

 Part I Introducing PHP

 6. Install the php.ini file. Edit this file to get configuration directives; see the options listed

in Chapter 29. At this point, we highly recommend that new users set error reporting to

E_ALL on their development machines.

cd ../../php-6.x
cp php.ini-dist /usr/local/lib/php.ini

 7. Tell your Apache server what extension(s) you want to identify PHP files (.php is the stan-

dard, but you can use .html, .phtml, or whatever you want). Go to your HTTP configura-

tion files (/usr/local/apache/conf or whatever your path is), and open httpd.conf

with a text editor. Add at least one PHP extension directive, as shown in the first line of

code that follows. In the second line, we’ve also added a second handler to have all HTML

files parsed as PHP (which does impose a small performance hit and should not be done if

your architecture uses the .html file extension strictly for HTML-only files). This would

also be a good time for you to ensure that Apache knows what domain alias or IP address

to listen for. (If you have no idea what this means, search httpd.conf for the word

ServerName, add the word localhost right after it, and use that as your domain name

until you get a better one.)

AddType application/x-httpd-php .php
AddType application/x-httpd-php .html

 8. Restart your server. Every time you change your HTTP configuration or php.ini files, you

must stop and start your server again. An HUP signal will not suffice.

cd ../bin
./apachectl start

 9. Set the document root directory permissions to world-executable. The actual PHP files in

the directory need only be world-readable (644). If necessary, replace /home/httpd with

your document root in the code that follows.

chmod 755 /home/httpd/html/php

 10. Open a text editor. Type: <?php phpinfo(); ?>. Save this file in your web server’s docu-

ment root as info.php. Start any web browser and browse the file — you must always

use an HTTP request (http://www.example.com/info.php or http://localhost/
info.php or http://127.0.0.1/info.php) rather than a filename (/home/httpd/
info.php) for the file to be parsed correctly. You should see a long table of information

about your new PHP6 installation. Congratulations!

Many Apache production servers do not use a php.ini file; it can be undesirable to

have two different configuration files in two different locations. You can replicate many

of the configuration directives of php.ini in your Apache httpd.conf file. At a minimum, you prob-

ably want to set the include path and error-reporting levels, because the default settings for these are

often unsatisfactory. See Chapter 29 for more details.

CROSS-REFCROSS-REF

25

 Getting Started with PHP 3

Microsoft Windows and Apache
As with the LAMP (Linux/Apache/MySQL/Perl/PHP/Python) stack, the last several years has seen

a rise in the WAMP stack (Windows/Apache/MySQL/Perl/PHP/Python). If Microsoft Windows is

your OS of choice, then you’ll have no problem running any of these popular packages, just like

your Linux brethren. Apache, PHP, and MySQL all offer installers and source code for Windows.

This section examines installation on Microsoft Windows Server 2008, Windows Server 2003, and

Windows Vista.

Microsoft Windows XP is still quite popular on the desktop, and installation of these

components on Windows XP is roughly the same as the installation on Windows

Server 2003.

To install Apache with PHP on Microsoft Windows Vista and Windows Server 2003 and 2008:

 1. Download Apache server from http://httpd.apache.org/download.cgi. You want

the current stable release version with the no_src.msi extension (You can try the .exe

version if there is one, but it doesn’t work on all systems and isn’t any easier). Once down-

loaded, double-click the installer file to install. The installer will run through a wizard. For

our intents and purposes in this book, you can accept the defaults. As you gain experience

with the Apache server, you may find that you want to adjust and tweak the configuration,

but for now, the defaults are fine.

You may need to stop Internet Information Server (IIS) in Windows prior to starting

Apache, since both will attempt to listen on TCP port 80. You may also need to allow

Apache through the firewall in Windows. In Vista, this is accomplished through the

Security Center Control Panel in Windows Vista. Specifically, by using the “Allow a pro-

gram through Windows Firewall” option, clicking on Add Port, and then configuring TCP

port 80 within the Add a Port dialog. In Windows Server 2008, the Windows Firewall with

Advanced Security applet is found in Administrative Tools. Within the Windows Firewall

with Advanced Security applet, clicking on Inbound Rules on the left and then New Rule

on the right will result in a New Inbound Rule Wizard. Follow the wizard to add a TCP

port of 80 inbound.

 2. Next, download PHP from www.php.net/downloads.php. If there’s an installer avail-

able, get it. Otherwise get the zip file version. If you download the installer, then you can

merely follow through the Installation Wizard. Otherwise, for the zip version of PHP,

extract the PHP binary archive using your unzip utility placing it in C:\PHP.

 3. Copy some .dll files from your PHP directory to your system directory (usually C:\
Windows\System32). You need php6ts.dll for every case. You will also probably need

to copy the file corresponding to your web server module — C:\PHP\php6apache2_2.
dll — to your Apache modules directory. It’s possible that you will also need other files

from the dlls subfolder — but start with the two mentioned previously and add more

if you need them. For instance, it’s quite common to need to copy libmysql.dll from

C:\PHP to C:\Windows\System32 as well, so you might as well copy it there now. In

Windows Vista, I’ve found that the easiest way to do this is to right-click on the command

prompt, select Run as Administrator, and then copy the files using the copy command, as

in copy c:\php\php6ts.dll c:\windows\system32\.

NOTENOTE

26

 Part I Introducing PHP

 4. Rename either php.ini-dist or php.ini-recommended (preferably the latter) as php.
ini within your C:\PHP directory. Open this file in a text editor (for example, Notepad).

Edit this file to get configuration directives; see the options listed in Chapter 29. At this

point, we highly recommend that new users set error reporting to E_ALL on their devel-

opment machines. Note that it’s not strictly necessary to edit the file at this time, but you

should be familiar with its contents nonetheless.

 5. Go to your HTTP configuration files (C:\Program Files\Apache Software
Foundation\Apache2.2\conf or whatever your path is), and open httpd.conf with a

text editor. Add the PHP module load directive as shown in the first line of the following

code and add the handler for .php and .phtml files, too:

LoadModule php6_module modules/php6apache2_2.dll
AddType application/x-httpd-php .php .phtml

 6. Stop and restart the WWW service. Go to the Start menu ➪฀฀฀All Programs ➪ Apache

HTTP Server 2.2 ➪ Control Apache HTTP Server ➪ Stop/Start; or Restart, or even run

Apache from the MS-DOS prompt.

 7. Open a text editor (for example, Notepad). Type: <?php phpinfo(); ?>. Save this

file in your web server’s document root (C:\Program Files\Apache Software
Foundation\Apache2.2\htdocs by default) as info.php. Start any web browser and

request the file: http://localhost/info.php or http://127.0.0.1/info.php). You

should see a long table of information about your new PHP6 installation. Congratulations!

If things didn’t go as planned, check the error log for Apache, usually located at C:\
Program Files\Apache Software Foundation\Apache\logs\error.log.

If you follow these directions and don’t get the results you expected, don’t panic! Check

out Chapter 10 for common gotchas and quirks. If that doesn’t help, check out the com-

ments on the relevant pages in the PHP online manual — users leave specific tips for specific setups

they’ve had problems with.

Other web servers
PHP has been successfully built and run with many other web servers, such as Netscape Enterprise

Server, Xitami, Zeus, and thttpd. Module support for AOLServer, NSAPI, and fhttpd is available. See

the relevant pages on the PHP online manual’s installation section.

Development tools
When it comes to development tools, PHP used to fall between the cracks — between tools origi-

nally designed for other programming languages and those mainly used to create pretty HTML. It’s

certainly possible to write a complex 2000-line program that touches several other services and file-

systems and outputs the string 1 to the browser on completion. On the other hand, there are many

people whose main use of PHP is to slap common headers and footers on what amounts to a bunch

of static HTML pages. With such a diversity of usages, it’s perhaps not so amazing that the perfect

PHP development environment — user-friendly enough for the designers, but light and powerful

enough for the geeks — has been elusive.

CROSS-REFCROSS-REF

27

 Getting Started with PHP 3

Those coming to PHP from a strictly client-side perspective probably have the hardest adjustment

to make. There’s no such thing as a plush development environment with wizards and drag-

and-drop icons and built-in graphics manipulation. If that sort of thing is important to you, you

can use a WYSIWYG editor to format the page and then add PHP functionality later using a text

editor. The downside of this strategy is, of course, that machine-written code is often not very

human-readable — but one must suffer to be pretty.

The last year and a half, however, has seen substantial change in the market. Plenty of editors for

both Windows and Linux now offer at least syntax highlighting for PHP. Several of these can map

drive locations to server names, so you can debug in place.

Be particularly careful with using Microsoft FrontPage or Adobe Dreamweaver as a PHP

editor, as they both leave something to be desired for PHP development. .

Old-school programmers will have less of a learning curve, since they can treat PHP like any other

server-side programming language that may or may not happen to output HTML to a browser. Most

PHP users in this category seem to prefer simple text editors. Generally, these products will afford

you a modest amount of help, such as syntax highlighting, brace matching, or tag closing — most of

which is about helping you avoid stupid mistakes rather than actually writing the script for you.

My favorite is good old Vi, or Vi-Enhanced, Vim, although many people have problems using Vi.

An excellent GUI tool is Eclipse. I’ve been using Eclipse for quite some time and feel comfortable

recommending it for development in PHP, JavaScript, HTML, and just about any other language.

Get Eclipse from www.eclipse.org.

What’s to Come?
The remainder of this chapter looks at some basics of PHP, focusing on getting you up to speed for

the rest of the book!

Your HTML Is Already PHP-Compliant!
PHP is already perfectly at home with HTML — in fact, it is generally embedded within HTML. As

you’ll see in later chapters, PHP rides piggyback on some of the cleverer parts of the HTML stan-

dard, such as forms and cookies, to do all kinds of useful things.

Anything compatible with HTML on the client side is also compatible with PHP. PHP could not care

less about chunks of JavaScript, calls to music and animation, applets, or anything else on the client

side. PHP will simply ignore those parts, and the web server will happily pass them on to the client.

It should be clear that you can use any method of developing web pages and simply add PHP to that

method. If you’re comfortable having teams work on each page using huge multimedia graphics

suites, you can keep doing that. The general point is that you don’t need to change tools or workflow

order, just do what you’ve been doing and add the server-side functionality at the end.

CAUTION CAUTION

28

 Part I Introducing PHP

Escaping from HTML
By now you’re probably wondering: How does the PHP parser recognize PHP code inside your

HTML document? The answer is that you tell the program when to spring into action by using

special PHP tags at the beginning and end of each PHP section. This process is called escaping from
HTML or escaping into PHP.

Not to confuse you, but escape in this sense should not be confused with another com-

mon use of the term escape in PHP: putting a backslash in front of certain special charac-

ters (such as tab and newline) within double-quoted strings. Escaping strings is explained in Chapter 7.

Everything within these tags is understood by the PHP parser to be PHP code. Everything outside of

these tags does not concern the server and will simply be passed along and left for the client to sort

out whether it’s HTML or JavaScript or something else.

There are several styles of PHP, but it’s best to stick with the tried-and-true tags that will always

work no matter which version of PHP you’re using:

Canonical PHP tags
The most universally effective PHP tag style is:

<?php ?>

If you use this style, you can be positive that your tags will always be correctly interpreted. Unless

you have a very, very strong reason to prefer another style, use this one. Some or all of the other

styles of PHP tag may be phased out in the future — only this one is certain to be safe.

Hello World
Now you’re ready to write your first PHP program. Open a new file in your preferred editor. Type:

<HTML>
<HEAD>
<TITLE>My first PHP program</TITLE>
</HEAD>

<BODY>
<?php
print(“Hello, World
\n”);
phpinfo();
?>
</BODY>
</HTML>

In most browsers, nothing but the PHP section is strictly necessary; however, it’s a good idea to get

in the habit of always using a well-formed HTML structure in which to embed your PHP.

CAUTION CAUTION

29

 Getting Started with PHP 3

If you don’t see something pretty close to the output shown in Figure 3-1, you have a problem —

most likely some kind of installation or configuration glitch. Review Chapter 2 and make doubly

sure that your installation succeeded.

FIGURE 3-1

Your first PHP script

Refer back to Chapter 2 for installation instructions and forward to Chapter 29 for configuration

options. Chapter 10 diagnoses some common early problems and gives debugging hints.

30

 Part I Introducing PHP

Jumping in and out of PHP mode
At any given moment in a PHP script, you are either in PHP mode or you’re out of it in HTML.

There’s no middle ground. Anything within the PHP tags is PHP; everything outside is plain HTML,

as far as the server is concerned.

You can escape into PHP mode with giddy abandon, as often and as briefly or lengthily as necessary.

For example:

<?php $id = 1; ?>
<FORM METHOD=”POST” ACTION=”registration.php”“>
<P>First name:
<INPUT TYPE=”TEXT” NAME=”firstname” SIZE=”20”>
<P>Last name:
<INPUT TYPE=”TEXT” NAME=”lastname” SIZE=”20”>
<P>Rank:
<INPUT TYPE=”TEXT” NAME=”rank” SIZE=”10”>
<INPUT TYPE=”HIDDEN” NAME=”serial number” VALUE=”<?php
echo $id; ?>”>
<INPUT TYPE=”submit”SUBMIT” VALUE=”INPUT”“>
</FORM>

Notice that things that happened in the first PHP mode instance — in this case, a variable being

assigned — are still valid in the second. In Chapter 4, you’ll learn more about what happens to vari-

ables when you skip in and out of PHP mode. In Chapter 32, you’ll also learn about different styles

of using PHP mode.

Including files
Another way you can add PHP to your HTML is by putting it in a separate file and calling it by using

PHP’s include functions. There are four include functions:

include(‘/filepath/filename’)■■

require(‘/filepath/filename’)■■

include_once(‘/filepath/filename’)■■

require_once(‘/filepath/filename’)■■

In previous versions of PHP, there were significant differences in functionality and speed between

the include functions and the require functions. This is no longer true; the two sets of functions

differ only in the kind of error they throw on failure. Include() and include_once() will merely

generate a warning on failure, while require() and require_once() will cause a fatal error and

termination of the script.

As suggested by the names of the functions, include_once() and require_once() differ from

simple include() and require() in that they will allow a file to be included only once per PHP

script. This is extremely helpful when you are including files that contain PHP functions, because

31

 Getting Started with PHP 3

redeclaring functions results in an automatic fatal error. In larger PHP systems, it’s quite common

to include files that include other files that include other files — it can be difficult to remember

whether you’ve included a particular function before, but with include_once() or require_
once() you don’t have to.

How do you decide on a preferred include function? In essence, you must decide whether you

want to force yourself to write good code on pain of fatal error or whether you want it to run regard-

less of certain common errors on your part. The strictest alternative is require(), which will bring

everything grinding to a halt if your code isn’t perfect; the least strict is include_once(), which

will good-naturedly hide the consequences of some of your bad coding habits.

The most common use of PHP’s include capability is to add common headers and footers to all the

web pages on a site. For example, a simple header file (cleverly named header.php) might look

like this:

<HTML>
<HEAD>
<TITLE>A site title</TITLE>
</HEAD>

<BODY>

Similarly, a footer file called footer.php might consist of:

<P>Copyright 1995 - 2002</P>
</BODY>
</HTML>

They are called from a PHP page this way:

<?php
require_once($_SERVER[‘DOCUMENT_ROOT’].’/header.php’);
?>
<P>This is some body text for this particular page.</P>
<?php
require_once($_SERVER[‘DOCUMENT_ROOT’].’/footer.php’);
?>

Obviously, this single move greatly enhances the maintainability and scalability of an entire site.

Now, if you want a different look and feel or if you need to update the copyright notice, you can alter

one file instead of identical lines in dozens of HTML pages.

When including files, remember to set the include_path directive correctly in your

php.ini file. Remember that you can include files from above or entirely outside your

web tree by proper use of this directive. See Chapter 29 for more information.

As you can see from the preceding example, PHP’s include functions simply pass along the con-

tents of the included file as text. Many people think that because an include function occurs inside

PHP mode, the included file will also be in PHP mode. This is not true! Actually, the server escapes

TIPTIP

32

 Part I Introducing PHP

back into HTML mode at the beginning of each included file and silently returns to PHP mode at the

end, just in time to catch the semicolon.

As always, you need to say when you intend something to be PHP by using PHP opening and closing

tags. Any part of an included file that needs to be executed as PHP should be enclosed in valid PHP

tags. If the entire file is PHP (very common in files of functions), the entire file must be enclosed

within PHP tags.

Take the following file, database.php:

$db = mysql_connect(‘localhost’, ‘db_user’, ‘db_password’);
mysql_select_db(‘my_database’);

We can’t emphasize this enough: If you’re having problems including PHP files, par-

ticularly if you’re seeing output you don’t expect or not seeing output you do expect, be

ABSOLUTELY POSITIVE that you’ve put PHP tags at the beginning and end of the included file.

If you were to foolishly include this file from a PHP script, your database variables would be visible

to the world in plain text — because you neglected to use PHP tags, the parser assumes that this

block of code is HTML. A correct version of the database.php file would look like this:

<?php
$db = mysql_connect(‘localhost’, ‘db_user’, ‘db_password’);
mysql_select_db(‘my_database’);
?>

For all PHP files included from other files, you must ensure that there are no empty new

lines at the end of the file. Remember, anything outside a PHP block is considered HTML,

even a blank line. Blank lines, or even blank spaces outside a closing PHP tag, will be interpreted as

output. If you include the file in a situation where you cannot have output — say before using HTTP

headers — your script will fail with a big error message about the output stream having already been

started in your included file. See Chapter 10 for an example.

Summary
This chapter gets you up to speed with PHP, beginning with installation instructions for the several

common platforms. Finally, some coding was shown in this chapter through the venerable “Hello

World” example, illustrating not only that your PHP installation is working, but also that you can

code in PHP!

CAUTION CAUTION

CAUTION CAUTION

33

I
n this chapter, we cover the basic syntax of PHP — the rules that all

well-formed PHP code must follow. We explain how to use variables to

store and retrieve information as your PHP code executes and the type

of system that governs what kinds of values can be stored in the first place.

Finally, we look at the simplest ways to display text that will show up in

your user’s browser window.

PHP Is Forgiving
The first and most important thing to say about the PHP language is that

it tries to be as forgiving as possible. Programming languages vary quite

a bit in terms of how stringently syntax is enforced. Pickiness can be a

good thing because it helps make sure that the code you’re writing is really

what you mean. If you are writing a program to control a nuclear reactor

and you forget to assign a variable, it is far better to have the program be

rejected than to create behavior different from what you intended. PHP’s

design philosophy, however, is at the other end of the spectrum. Because

PHP started life as a handy utility for making quick web pages, it empha-

sizes convenience for the programmer over correctness; rather than have a

programmer do the extra work of redundantly specifying what is meant by

a piece of code, PHP requires the minimum and then tries its best to figure

out what was meant. Among other things, this means that certain syntacti-

cal features that show up in other languages, such as variable declarations

and function prototypes, are simply not necessary.

Learning PHP Syntax
and Variables

IN THIS CHAPTER

Understanding the basic rules

of PHP

Storing information in variables

Constants, variables, and data

types

Output to HTML

34

 Part I Introducing PHP

With that said, though, PHP can’t read your mind; it has a minimum set of syntactical rules that

your code must follow. Whenever you see the words parse error in your browser window instead

of the cool web page you thought you had just written, it means that you’ve broken these rules to the

point that PHP has given up on your page.

HTML Is Not PHP
The second most important thing to understand about PHP syntax is that it applies only within PHP.

Because PHP is embedded in HTML documents, every part of such a document is interpreted as

either PHP or HTML, depending on whether that section of the document is enclosed in PHP tags.

PHP syntax is relevant only within PHP, so we assume for the rest of this chapter that PHP mode is

in force — that is, most code fragments will be assumed to be embedded in an HTML page and sur-

rounded with the appropriate tags.

PHP’s Syntax Is C-Like
The third most important thing to know about PHP syntax is that, broadly speaking, it is like the

C programming language. If you happen to be one of the lucky people who already know C, this is

very helpful; if you are uncertain about how a statement should be written, try it first the way you

would do it in C, and if that doesn’t work, look it up in the manual. The rest of this section is for the

other people, the ones who don’t already know C. (C programmers might want to skim the headers

of this section and also see Appendix A, which is specifically for C programmers.)

PHP is whitespace insensitive
Whitespace is the stuff you type that is typically invisible on the screen, including spaces, tabs,

and carriage returns (end-of-line characters). PHP’s whitespace insensitivity does not mean that

spaces and such never matter. (In fact, they are crucial for separating the words in the PHP lan-

guage.) Instead, it means that it almost never matters how many whitespace characters you have in

a row — one whitespace character is the same as many such characters.

For example, each of the following PHP statements that assigns the sum of 2 + 2 to the variable

$four is equivalent:

$four = 2 + 2; // single spaces
$four <tab>=<tab>2<tab>+<tab>2 ; // spaces and tabs
$four =
2
+
2; // multiple lines

35

 Learning PHP Syntax and Variables 4

The fact that end-of-line characters count as whitespace is handy, because it means you never have

to strain to make sure that a statement fits on a single line.

PHP is sometimes case sensitive
Having read that PHP isn’t picky, you may be surprised to learn that it is sometimes case sensitive

(that is, it cares about the distinction between lowercase and capital letters). In particular, all vari-

ables are case sensitive. If you embed the following code in an HTML page:

<?php
 $capital = 67;
 print(“Variable capital is $capital
”);
 print(“Variable CaPiTaL is $CaPiTaL
”);
?>

The output you will see is:

Variable capital is 67
Variable CaPiTaL is

The different capitalization schemes make for different variables. (Surprisingly, under the default

settings for error reporting, code like this fragment will not produce a PHP error — see the section

“Unassigned variables,” later in this chapter.)

On the other hand, unlike in C, function names are not case sensitive, and neither are the basic lan-

guage constructs (if, then, else, while, and the like).

Statements are expressions terminated
by semicolons
A statement in PHP is any expression that is followed by a semicolon (;). If expressions correspond

to phrases, statements correspond to entire sentences, and the semicolon is the full stop at the end.

Any sequence of valid PHP statements that is enclosed by the PHP tags is a valid PHP program. Here

is a typical statement in PHP, which in this case assigns a string of characters to a variable called
$greeting:

 $greeting = “Welcome to PHP!”;

The rest of this subsection is about how such statements are built from smaller components and how

the PHP interpreter handles the evaluation of statements. (If you already feel comfortable with state-

ments and expressions, feel free to skip ahead.)

Expressions are combinations of tokens
The smallest building blocks of PHP are the indivisible tokens, such as numbers (3.14159), strings

(“two”), variables ($two), constants (TRUE), and the special words that make up the syntax of PHP

36

 Part I Introducing PHP

itself (if, else, and so forth). These are separated from each other by whitespace and by other spe-

cial characters such as parentheses and braces.

The next most complex building block in PHP is the expression, which is any combination of tokens

that has a value. A single number is an expression, as is a single variable. Simple expressions can

also be combined to make more complicated expressions, usually either by putting an operator
in between (for example, 2 + (2 + 2)) or by using them as input to a function call (for example,

pow(2 * 3, 3 * 2)). Operators that take two inputs go in between their inputs, whereas functions

take their inputs in parentheses immediately after their names, with the inputs (known as argu-
ments) separated by commas.

Expressions are evaluated
Whenever the PHP interpreter encounters an expression in code, that expression is immediately

evaluated. This means that PHP calculates values for the smallest elements of the expression and suc-

cessively combines those values connected by operators or functions, until it has produced an entire

value for the expression. For example, successive steps in an imaginary evaluation process might

look like:

$result = 2 * 2 + 3 * 3 + 5;
 (= 4 + 3 * 3 + 5) //imaginary evaluation steps
 (= 4 + 9 + 5)
 (= 13 + 5)
 (= 18)

with the result that the number 18 is stored in the variable $result.

Precedence, associativity, and evaluation order
There are two kinds of freedom PHP has in expression evaluation: how it groups or associates sub-

expressions and the order in which it evaluates them. For example, in the evaluation process just

shown, multiplications were associated more tightly than additions, which affects the end result.

The particular ways that operators group expressions are called precedence rules — operators that

have higher precedence win in grabbing the expressions around them. If you want, you can memo-

rize the rules, such as the fact that * always has higher precedence than +. Or you can just use the

following cardinal rule: When in doubt, use parentheses to group expressions.

For example:

$result1 = 2 + 3 * 4 + 5; // is equal to 19
$result2 = (2 + 3) * (4 + 5); // is equal to 45

Operator precedence rules remove much of the ambiguity about how subexpressions are associated.

But what about when two operators have the same precedence? Consider this expression:

$how_much = 3.0 / 4.0 / 5.0;

37

 Learning PHP Syntax and Variables 4

Whether this is equal to 0.15 or 3.75 depends on which division operator gets to grab the num-

ber 4.0 first. There is an exhaustive list of rules of associativity in the online manual, but the rule

to remember is that associativity is usually left-before-right — that is, the preceding expression

would evaluate to 0.15, because the leftmost of the two division operators wins the dispute over

precedence.

The final wrinkle is order of evaluation, which is not quite the same thing as associativity. For

example, look at the arithmetic expression:

3 * 4 + 5 * 6

We know that the multiplications will happen before the additions, but that is not the same as

knowing which multiplication PHP will perform first. In general, you need not worry about evalua-

tion order, because in almost all cases it will not affect the result. You can construct weird examples

where the result does depend on order of evaluation, usually by making assignments in subexpres-

sions that are used in other parts of the expression. For example:

$huh = ($this = $that + 5) + ($that = $this + 3); // BAD

But don’t do this, okay? PHP may or may not have a predictable order of evaluation of expressions,

but you shouldn’t depend on it — so we’re not going to tell you! (The one legitimate use of relying on

left-to-right evaluation order is in short-circuiting Boolean expressions, which we cover in Chapter 5.)

Expressions and types
Usually, the programmer is careful to match the types of expressions with the operators and func-

tions that combine them. Common expressions are mathematical (with mathematical operators

combining numbers) or Boolean (combining true-or-false statements with ands and ors) or string
expressions (with operators and functions constructing strings of characters). As with the rest of PHP,

however, the treatment of types is surprisingly forgiving. Consider the following expression, which

deliberately mixes the types of subexpressions in an inappropriate way:

2 + 2 * “nonsense” + TRUE

Rather than produce an error, this evaluates to the number 3. (You can take this as a puzzle for now,

but we will explain how such a thing can happen in the “Types in PHP” section of this chapter.)

Assignment expressions
A very common kind of expression is the assignment, where a variable is set to equal the result of

evaluating some expression. These have the form of a variable name (which always starts with a $),

followed by a single equal sign, followed by the expression to be evaluated. For example:

$eight = 2 * (2 * 2);

assigns the variable $eight the value you would expect.

38

 Part I Introducing PHP

An important thing to remember is that even assignment expressions are expressions and so have val-

ues themselves! The value of an expression that assigns a variable is the same as the value assigned.

This means that you can use assignment expressions in the middle of more complicated expressions.

If you evaluate the statement:

$ten = ($two = 2) + ($eight = 2 * (2 * 2));

each variable would be assigned a numerical value equal to its name.

Reasons for expressions and statements
There are usually only two reasons to write an expression in PHP: for its value or for a side effect. The

value of an expression is passed on to any more complicated expression that includes it; side effects

are anything else that happens as a result of the evaluation. The most typical side effects involve

assigning or changing a variable, printing something to the user’s screen, or making some other per-

sistent change to the program’s environment (such as interacting with a database).

Although statements are expressions, they are not themselves included in more complicated expres-

sions. This means that the only good reason for a statement is a side effect! It also means that it is

possible to write legal (yet totally useless statements) such as the second of these:

print(“Hello”); // side effect is printing to screen

2 * 3 + 4; // useless - no side effect

$value_num = 3 * 4 + 5; // side effect is assignment

store_in_database(49.5); // side effect to DB

Braces make blocks
Although statements cannot be combined like expressions, you can always put a sequence of state-

ments anywhere a statement can go by enclosing them in a set of curly braces.

For example, the if construct in PHP has a test (in parentheses) followed by the statement that

should be executed if the test is true. If you want more than one statement to be executed when the

test is true, you can use a brace-enclosed sequence instead. The following pieces of code (which sim-

ply print a reassuring statement that it is still true that 1 + 2 is equal to 3) are equivalent:

if (3 == 2 + 1)
 print(“Good - I haven’t totally lost my mind.
”);

if (3 == 2 + 1)
 {
 print(“Good - I haven’t totally “);
 print(“lost my mind.
”);
 }

39

 Learning PHP Syntax and Variables 4

You can put any kind of statement in a brace-enclosed block, including, say, an if statement that

itself has a brace-enclosed block. This means that if statements can have other if statements inside

them. In fact, this kind of nesting can be done to an arbitrary number of levels.

Comments
A comment is the portion of a program that exists only for the human reader. The very first thing that

a program executor does with program code is to strip out the comments, so they cannot have any

effect on what the program does. Comments are invaluable in helping the next person who reads

your code figure out what you were thinking when you wrote it, even when that person is yourself a

week from now.

PHP drew its inspiration from several different programming languages, most notably C, Perl, and

Unix shell scripts. As a result, PHP supports styles of comments from all those languages, and those

styles can be intermixed freely in PHP code.

C-style multiline comments
The multiline style of commenting is the same as in C: A comment starts with the character pair /*

and terminates with the character pair */. For example:

/* This is
 a comment in
 PHP */

The most important thing to remember about multiline comments is that they cannot be nested.

You cannot put one comment inside another. If you try, the comment will be closed off by the first

instance of the */ character pair, and the rest of what was intended to be an enclosing comment will

instead be interpreted as code, probably failing horribly. For example:

/* This comment will /* fail horribly on the
 last word of this */ sentence
*/

This is an easy thing to do unintentionally, usually when you try to deactivate a block of commented

code by “commenting it out.”

Single-line comments: # and //
In addition to the /* ... */ multiple-line comments, PHP supports two different ways of comment-

ing to the end of a given line: one inherited from C++ and Java and the other from Perl and shell

scripts. The shell-script-style comment starts with a pound sign, whereas the C++ style comment

starts with two forward slashes. Both of them cause the rest of the current line to be treated as a

comment, as in the following:

This is a comment, and
 # this is the second line of the comment

40

 Part I Introducing PHP

 // This is a comment too. Each style comments only
 // one line so the last word of this sentence will fail
horribly.

The very alert reader might argue that single-line comments are incompatible with what we said

earlier about whitespace insensitivity. That would be correct — you will get a very different result if

you take a single-line comment and replace one of the spaces with an end-of-line character. A more

accurate way of putting it is that, after the comments have been stripped out of the code, PHP code

is whitespace insensitive.

Variables
The main way to store information in the middle of a PHP program is by using a variable — a way to

name and hang on to any value that you want to use later.

Here are the most important things to know about variables in PHP (more detailed explanations

will follow):

All variables in PHP are denoted with a leading dollar sign (■■ $).

The value of a variable is the value of its most recent assignment.■■

Variables are assigned with the ■■ = operator, with the variable on the left-hand side and the

expression to be evaluated on the right.

Variables can, but do not need, to be declared before assignment.■■

Variables have no intrinsic type other than the type of their current value.■■

Variables used before they are assigned have default values.■■

PHP variables are Perl-like
All variables in PHP start with a leading $ sign just like scalar variables in the Perl scripting lan-

guage, and in other ways they have similar behavior (need no type declarations, may be referred to

before they are assigned, and so on). (Perl hackers may need to do no more than skim the headings

of this section, which is really for the rest of us.)

After the initial $, variable names must be composed of letters (uppercase or lowercase), digits (0–9),

and underscore characters (_). Furthermore, the first character after the $ may not be a number.

Declaring variables (or not)
This subheading is here simply because programmers from some other languages might be looking for

it — in languages such as C, C++, and Java, the programmer must declare the name and type of any

variable before making use of it. However in PHP, because types are associated with values rather than

variables, no such declaration is necessary — the first step in using a variable is to assign it a value.

41

 Learning PHP Syntax and Variables 4

Assigning variables
Variable assignment is simple — just write the variable name, and add a single equal sign (=); then

add the expression that you want to assign to that variable:

$pi = 3 + 0.14159; // approximately

Note that what is assigned is the result of evaluating the expression, not the expression itself. After

the preceding statement is evaluated, there is no way to tell that the value of $pi was created by

adding two numbers together.

It’s conceivable that you will want to actually print the preceding math expression rather than evalu-

ate it. You can force PHP to treat a mathematical variable assignment as a string by quoting the

expression:

$pi = “3 + 0.14159”;

Reassigning variables
There is no interesting distinction in PHP between assigning a variable for the first time and chang-

ing its value later. This is true even if the assigned values are of different types. For example, the fol-

lowing is perfectly legal:

$my_num_var = “This should be a number – hope it’s reassigned”;
$my_num_var = 5;

If the second statement immediately follows the first one, the first statement has essentially no effect.

Unassigned variables
Many programming languages will object if you try to use a variable before it is assigned; others

will let you use it, but if you do you may find yourself reading the random contents of some area of

memory. In PHP, the default error-reporting setting allows you to use unassigned variables without

errors, and PHP ensures that they have reasonable default values.

If you would like to be warned about variables that have not been assigned, you should

change the error-reporting level to E_ALL (the highest level possible) from the default level

of error reporting. You can do this either by including the statement error_reporting(E_ALL); at

the top of a script or by changing your php.ini file to set the default level (see Chapters 29 and 30).

Default values
Variables in PHP do not have intrinsic types — a variable does not know in advance whether it will

be used to store a number or a string of characters. So how does it know what type of default value

to have when it hasn’t yet been assigned?

CROSS-REFCROSS-REF

42

 Part I Introducing PHP

The answer is that, just as with assigned variables, the type of a variable is interpreted depend-

ing on the context in which it is used. In a situation where a number is expected, a number will be

produced, and this works similarly with character strings. In any context that treats a variable as a

number, an unassigned variable will be evaluated as 0; in any context that expects a string value, an

unassigned variable will be the empty string (the string that is zero characters long).

Checking assignment with isset
Because variables do not have to be assigned before use, in some situations you can actually convey

information by selectively setting or not setting a variable! PHP provides a function called isset

that tests a variable to see whether it has been assigned a value.

As the following code illustrates, an unassigned variable is distinguishable even from a variable that

has been given the default value:

$set_var = 0; //set_var has a value
 //never_set does not
print(“set_var print value: $set_var
”);
print(“never_set print value: $never_set
”);
if ($set_var == $never_set)
 print(“set_var is equal to never_set!
”);
if (isset($set_var))
 print(“set_var is set.
”);
else
 print(“set_var is not set.
”);
if (isset($never_set))
 print(“never_set is set.
”);
else
 print(“never_set is not set.”);

Oddly enough, this code will produce the following output:

set_var print value: 0
never_set print value:
set_var is equal to never_set!
set_var is set.
never_set is not set.

The variable $never_set has never been assigned, so it produces an empty string when a string is

expected (as in the print statement) and a zero value when a number is expected (as in the com-

parison test that concludes that the two variables are the same). Still, isset can tell the difference

between $set_var and $never_set.

Assigning a variable is not irrevocable — the function unset() will restore a variable to an unas-

signed state (for example, unset($set_var); will make $set_var into an unbound variable,

regardless of its previous assignments).

43

 Learning PHP Syntax and Variables 4

Variable scope
Scope is the technical term for the rules about when a name (for, say, a variable or function) has the

same meaning in two different places and in what situations two names spelled exactly the same

way can actually refer to different things.

Any PHP variable not inside a function has global scope and extends throughout a given “thread” of

execution. In other words, if you assign a variable near the top of a PHP file, the variable name has

the same meaning for the rest of the file; and if it is not reassigned, it will have the same value as the

rest of your code executes (except inside the body of functions and classes).

The assignment of a variable will not affect the value of variables with the same name in other

PHP files or even in repeated uses of the same file. For example, let’s say that you have two files,
startup.php and next_thing.php, which are typically visited in that order by a user. Let’s also

say that near the top of startup.php, you have the line:

$username = “Jane Q. User”;

which is executed only in certain situations. Now, you might hope that, after setting that variable in

startup.php, it would also be preset automatically when the user visited next_thing.php, but

no such luck. Each time a PHP page executes, it assigns and reassigns variables as it goes, and those

variables disappear at the end of a page’s production. Assignments of variables in one file do not

affect variables of the same name in a different file or even in other requests for the same file.

Obviously, there are many situations in which you would like to hold onto information for longer

than it takes to generate a particular web page. There are a variety of ways you can accomplish this,

and the different techniques are a lot of what the rest of this book is about. For example, you can

pass information from page to page using GET and POST variables (Chapter 6), store information

persistently in a database (all of Part II of this book), associate it with a user’s session using PHP’s

session mechanism (see Chapter 24), or store it on a user’s hard disk via a cookie (see Chapter 24).

Functions and variable scope
Except inside the body of a function, variable scope in PHP is quite simple: Within any given execu-

tion of a PHP file, just assign a variable, and its value will be there for you later. We haven’t yet cov-

ered how to define your own functions, but it’s worth a look-ahead note: Variables assigned within

a function are local to that function, and unless you make a special declaration in a function, that

function won’t have access to the global variables defined outside the function, even when they are

defined in the same file. (We will discuss the scope of variables in functions in depth when we cover

function definitions in Chapter 5.)

You can switch modes if you want
One scoping question that we had the first time we saw PHP code was: Does variable scope persist

across tags? For example, we have a single file that looks like:

<HTML>
<HEAD>

44

 Part I Introducing PHP

<?php
 $username = “Jane Q. User”;
?>
</HEAD>
<BODY>
<?php
 print(“$username
”);
?>
</BODY>
</HTML>

Should we expect our assignment to $username to survive through the second of the two PHP-

tagged areas? The answer is yes — variables persist throughout a thread of PHP execution (in other

words, through the whole process of producing a web page in response to a user’s request). This is

a single manifestation of a general PHP rule, which is that the only effect of the tags is to let the PHP

engine know whether you want your code to be interpreted as PHP or passed through untouched as

HTML. You should feel free to use the tags to switch back and forth between modes whenever it is

convenient.

Constants
In addition to variables, which may be reassigned, PHP offers constants, which have a single value

throughout their lifetime. Constants do not have a $ before their names, and by convention the

names of constants usually are in uppercase letters. Constants can contain only scalar values (num-

bers and string). Constants have global scope, so they are accessible everywhere in your scripts after

they have been defined — even inside functions.

For example, the built-in PHP constant E_ALL represents a number that indicates to the error_
reporting() function that all errors and warnings should be reported. A call to error_report-
ing() might look like this:

error_reporting(E_ALL);

This is identical to calling error_reporting() on the integer value of E_ALL, but is better because

the actual value of E_ALL may change from one version of PHP to the next.

It’s also possible to create your own constants using the define() function. The code:

define(MY_ANSWER, 42);

would cause MY_ANSWER to evaluate to 42 everywhere it appears in your code. There is no way to

change this assignment after it has been made, and like variables, user-defined constants that are

not part of PHP itself do not persist across pages unless they are explicitly passed to a new page.

When created constants are used, they are generally most usefully defined in an external include file

and might be used for such information as a sales-tax rate or perhaps an exchange rate.

45

 Learning PHP Syntax and Variables 4

Types in PHP: Don’t Worry, Be Happy
All programming languages have some kind of type system, which specifies the different kinds of

values that can appear in programs. These different types often correspond to different bit-level rep-

resentations in computer memory, although in many cases programmers are insulated from having

to think about (or being able to mess with) representations in terms of bits.

PHP’s type system is simple, streamlined, and flexible, and it insulates the programmer from low-level

details. PHP makes it easy not to worry too much about typing of variables and values, both because it

does not require variables to be typed and because it handles a lot of type conversions for you.

No variable type declarations
As you saw in Chapter 3, the type of a variable does not need to be declared in advance. Instead, the

programmer can jump right ahead to assignment and let PHP take care of figuring out the type of

the expression assigned:

$first_number = 55.5;
$second_number = “Not a number at all”;

Automatic type conversion
PHP does a good job of automatically converting types when necessary. Like most other modern

programming languages, PHP will do the right thing when, for example, doing math with mixed

numerical types. The result of the expression

$pi = 3 + 0.14159;

is a floating-point (double) number, with the integer 3 implicitly converted into floating point before

the addition is performed.

Types assigned by context
PHP goes further than most languages in performing automatic type conversions. Consider:

$sub = substr(12345, 2, 2);
print(“sub is $sub
”);

The substr function is designed to take a string of characters as its first input and return a sub-

string of that string, with the start point and length determined by the next two inputs to the func-

tion. Instead of handing the function a character string, however, we gave it the integer 12345. What

happens? As it turns out, there is no error, and we get the browser output:

sub is 34

Because substr expects a character string rather than an integer, PHP converts the number 12345

to the character string ‘12345’, which substr then slices and dices.

46

 Part I Introducing PHP

Because of this automatic type conversion, it is very difficult to persuade PHP to give a type error —

in fact, PHP programmers need to exercise a little care sometimes to make sure that type confusions

do not lead to error-free but unintended results.

Type Summary
PHP has a total of eight types: integers, doubles, Booleans, strings, arrays, objects, NULL, and resources.

Integers■■ are whole numbers, without a decimal point, like 495.

Doubles■■ are floating-point numbers, like 3.14159 or 49.0.

Booleans■■ have only two possible values: TRUE and FALSE.

NULL■■ is a special type that only has one value: NULL.

Strings■■ are sequences of characters, like ‘PHP 4.0 supports string operations.’

Arrays■■ are named and indexed collections of other values.

Objects■■ are instances of programmer-defined classes, which can package up both other

kinds of values and functions that are specific to the class.

Resources■■ are special variables that hold references to resources external to PHP (such as

database connections).

Of these, the first five are simple types, and the next two (arrays and objects) are compound — the

compound types can package up other arbitrary values of arbitrary type, whereas the simple types

cannot. We treat only the simple types in this chapter, since arrays (see Chapter 8) and objects (see

Chapter 20) need chapters all to themselves. Finally, the thorniest details of the type system, includ-

ing discussion of the resource type, are deferred to Chapter 25.

The Simple Types
The most of the simple types in PHP (integers, doubles, Booleans, NULL, and strings) should be familiar

to those with programming experience (although we will not assume that experience and will explain

them in detail). The only thing likely to surprise C programmers is how few types there are in PHP.

Many programming languages have several different sizes of numerical types, with the larger ones

allowing a greater range of values, but also taking up more room in memory. For example, the C lan-

guage has a short type (for relatively small integers), a long type (for possibly larger integers), and

an int type (which might be intermediate, but in practice is sometimes identical either to the short

or long type). It also has floating-point types, which vary in their precision. This kind of typing

choice made sense in an era when tradeoffs between memory use and functionality were often ago-

nizing. The PHP designers made what we think is a good decision to simplify this by having only

two numerical types, corresponding to the largest of the integral and floating-point types in C.

47

 Learning PHP Syntax and Variables 4

Integers
Integers are the simplest type — they correspond to simple whole numbers, both positive and nega-

tive. Integers can be assigned to variables, or they can be used in expressions, like this:

$int_var = 12345;
$another_int = -12345 + 12345; // will equal zero

Read formats
Integers can actually be read in three formats, which correspond to bases: decimal (base 10), octal
(base 8), and hexadecimal (base 16). Decimal format is the default, octal integers are specified with

a leading 0, and hexadecimals have a leading 0x. Any of the formats can be preceded by a - sign to

make the integer negative. For example:

$integer_10 = 1000;
$integer_8 = -01000;
$integer_16 = 0x1000;
print(“integer_10: $integer_10
”);
print(“integer_8: $integer_8
”);
print(“integer_16: $integer_16
”);

yields the browser output:

integer_10: 1000
integer_8: -512
integer_16: 4096

Note that the read format affects only how the integer is converted as it is read — the value stored in

$integer_8 does not remember that it was originally written in base 8. Internally, of course, these

numbers are represented in binary format; we see them in their base 10 conversion in the preceding

output because that is the default for printing and incorporating int variables into strings.

Range
How big (or small) can integers get? Because PHP integers correspond to the C long type, which

in turn depends on the word-size of your machine, this is difficult to answer definitively. For most

common platforms, however, the largest integer is 231 – 1 (or 2,147,483,647), and the smallest (most

negative) integer is –(231 – 1) (or –2,147,483,647).

The PHP constant PHP_INT_MAX will tell you the maximum integer for your implementation. If you

really need integers even larger or smaller than the preceding, PHP does have some arbitrary-preci-

sion functions — see the BC section of the “Mathematics” chapter (see Chapter 27).

Doubles
Doubles are floating-point numbers, such as:

$first_double = 123.456;

48

 Part I Introducing PHP

$second_double = 0.456;
$even_double = 2.0;

Note that the fact that $even_double is a “round” number does not make it an integer. Integers and

doubles are stored in different underlying formats, and the result of:

$five = $even_double + 3;

is a double, not an integer, even if it prints as 5. In almost all situations, however, you should feel

free to mix doubles and integers in mathematical expressions, and let PHP sort out the typing.

By default, doubles print with the minimum number of decimal places needed — for example, the code:

$many = 2.2888800;
$many_2 = 2.2111200;
$few = $many + $many_2;
print(“$many + $many_2 = $few
”);

produces the browser output:

2.28888 + 2.21112 = 4.5

If you need finer control of printing, see the printf function in Chapter 7.

Read formats
The typical read format for doubles is -X.Y, where the - optionally specifies a negative number, and

both X and Y are sequences of digits between 0 and 9. The X part may be omitted if the number is

between –1.0 and 1.0, and the Y part can also be omitted. Leading or trailing zeros have no effect.

All the following are legal doubles:

$small_positive = 0.12345;
$small_negative = -.12345;
$even_double = 2.00000;
$still_double = 2.;

In addition, doubles can be specified in scientific notation, by adding the letter e and a desired

integral power of 10 to the end of the previous format — for example, 2.2e-3 would correspond

to 2.2 x 10-3. The floating-point part of the number need not be restricted to a range between 1.0

and 10.0. All the following are legal:

$small_positive = 5.5e-3;
print(“small_positive is $small_positive
”);
$large_positive = 2.8e+16;
print(“large_positive is $large_positive
”);
$small_negative = -2222e-10;
print(“small_negative is $small_negative
”);
$large_negative = -0.00189e6;
print(“large_negative is $large_negative
”);

CROSS-REFCROSS-REF

49

 Learning PHP Syntax and Variables 4

The preceding code produces the following browser output:

small_positive is 0.0055
large_positive is 2.8E+16
small_negative is -2.222E-07
large_negative is –1890

Notice that, just as with octal and hexadecimal integers, the read format is irrelevant once PHP has

finished reading in the numbers — the preceding variables retain no memory of whether or not

they were originally specified in scientific notation. In printing the values, PHP is making its own

decisions to print the more extreme values in scientific notation, but this has nothing to do with the

original read format.

Booleans
Booleans are true-or-false values, which are used in control constructs like the testing portion of

an if statement. As you will see in Chapter 5, Boolean truth values can be combined using logical

operators to make more complicated Boolean expressions.

Boolean constants
PHP provides a couple of constants especially for use as Booleans: TRUE and FALSE, which can be

used like this:

if (TRUE)
 print(“This will always print
”);
else
 print(“This will never print
”);

Interpreting other types as Booleans
Here are the rules for determine the “truth” of any value not already of the Boolean type:

If the value is a number, it is false if the number is zero and true otherwise.■■

If the value is a string, it is false if the string is empty (has zero characters) ■■ or is the string

“0”, and is true otherwise.

Values of type NULL are always false.■■

If the value is a compound type (an array or an object), it is false if it contains no other val-■■

ues, and it is true otherwise. For an object, containing a value means having a member vari-

able that has been assigned a value.

Valid resources are true (although some functions that return resources when they are suc-■■

cessful will return FALSE when unsuccessful).

For a more complete account of converting values across types, see Chapter 25.
CROSS-REFCROSS-REF

50

 Part I Introducing PHP

Examples
Each of the following variables has the truth value embedded in its name when it is used in a

Boolean context.

$true_num = 3 + 0.14159;
$true_str = “Tried and true”;
$true_array[49] = “An array element”; // see next section
$false_array = array();
$false_null = NULL;
$false_num = 999 – 999;
$false_str = “”; // a string zero characters long

Don’t use doubles as Booleans

Note that, although Rule 1 implies that the double 0.0 converts to a false Boolean value, it is danger-

ous to use floating-point expressions as Boolean expressions, because of possible rounding errors.

For example:

$floatbool = sqrt(2.0) * sqrt(2.0) - 2.0;
if ($floatbool)
 print(“Floating-point Booleans are dangerous!
”);
else
 print(“It worked ... this time.
”);
print(“The actual value is $floatbool
”);

The variable $floatbool is set to the result of subtracting two from the square of the square root of

two — the result of this calculation should be equal to zero, which means that $floatbool is false.

Instead, the browser output we get is:

Floating-point Booleans are dangerous!
The actual value is 4.4408920985006E-16

The value of $floatbool is very close to 0.0, but it is nonzero and, therefore, unexpectedly true.

Integers are much safer in a Boolean role — as long as their arithmetic happens only with other inte-

gers and stays within integral sizes, they should not be subject to rounding errors.

NULL
The world of Booleans may seem small, since the Boolean type has only two possible values. The

NULL type, however, takes this to the logical extreme: The type NULL has only one possible value,

which is the value NULL. To give a variable the NULL value, simply assign it like this:

$my_var = NULL;

The special constant NULL is capitalized by convention, but actually it is case insensitive; you could

just as well have typed:

$my_var = null;

51

 Learning PHP Syntax and Variables 4

So what is special about NULL? NULL represents the lack of a value. (You can think of it as the non-
value or the unvalue.) A variable that has been assigned the value NULL is nearly indistinguishable

from a variable that has not been set at all. In particular, a variable that has been assigned NULL has

the following properties:

It evaluates to ■■ FALSE in a Boolean context.

It returns ■■ FALSE when tested with IsSet(). (No other type has this property.)

PHP will not print warnings if you pass the variable to functions and back again, whereas ■■

passing a variable that has never been set will sometimes produce warnings.

The NULL value is best used for situations where you want a variable not to have a value, intention-

ally, and you want to make it clear to both a reader of your code and to PHP that this is what you

want. The latter point is particularly relevant when passing variables to functions.

For example, the following pseudocode may print a warning (depending on your error-reporting

settings) if the variable $authorization has never been assigned before you pass it to your test_
authorization() function.

if (test_authorization($authorization)) {
 // code that grants a privilege of some sort
}

On the other hand, code like this:

$authorization = NULL;
// code that might or might not set $authorization
if (test_authorization($authorization)) {
 // code that grants a privilege of some sort
}

does not cause an unbound-variable warning, assuming that you have written test_authoriza-
tion() to handle arguments that might be NULL. It also makes clear to a reader of the code that

you intend for the variable to lack a value unless there’s a case where it is assigned.

Strings
Strings are character sequences, as in the following:

$string_1 = “This is a string in double quotes.”;
$string_2 = ‘This is a somewhat longer, singly quoted string’;
$string_39 = “This string has thirty-nine characters.”;
$string_0 = “”; // a string with zero characters

Strings can be enclosed in either single or double quotation marks, with different behavior at read

time. Singly quoted strings are treated almost literally, whereas doubly quoted strings replace vari-

ables with their values as well as specially interpreting certain character sequences.

52

 Part I Introducing PHP

Singly quoted strings
Except for a couple of specially interpreted character sequences, singly quoted strings read in and

store their characters literally. The following code:

$literally = ‘My $variable will not print!\\n’;
print($literally);

produces the browser output:

My $variable will not print!\n

Singly quoted strings also respect the general rule that quotation marks of a different type will not

break a quoted string. This is legal:

$singly_quoted = ‘This quote mark: “ is no big deal’;

To embed a single quotation mark (such as an apostrophe) in a singly quoted string, escape it with a

backslash, as in the following:

$singly_quoted = ‘This quote mark\‘s no big deal either’;

Although in most contexts backslashes are interpreted literally in singly quoted strings, you may

also use two backslashes (\\) as an escape sequence for a single (nonescaping) backslash. This is

useful when you want a backslash as the final character in a string, as in:

$win_path = ‘C:\\InetPub\\PHP\\‘;
print(“A Windows-style pathname: $win_path
”);

which is displayed as:

A Windows-style pathname: C:\InetPub\PHP\

We could have used single backslashes to produce the first two backslashes in the output,

but the escaping is necessary at the end of the string so that the closing quotation mark

will not be escaped.

These two escape sequences (\\ and \‘) are the only exceptions to the literal-mindedness of singly

quoted strings.

Doubly quoted strings
Strings that are delimited by double quotes (as in “this”) are preprocessed in both the following

two ways by PHP:

Certain character sequences beginning with backslash (■■ \) are replaced with special

characters.

Variable names (starting with ■■ $) are replaced with string representations of their values.

NOTENOTE

53

 Learning PHP Syntax and Variables 4

The escape-sequence replacements are:

\n■■ is replaced by the newline character

\r■■ is replaced by the carriage-return character

\t■■ is replaced by the tab character

\$■■ is replaced by the dollar sign itself ($)

\“■■ is replaced by one double quotation mark (“)

\\■■ is replaced by a single backslash (\)

The first three of these replacements make it easy to visibly include certain whitespace characters

in your strings. The \$ sequence lets you include the $ symbol when you want it, without it being

interpreted as the start of a variable. The \“ sequence is there so that you can include a double quo-

tation mark symbol without terminating your doubly quoted string. Finally, because the \ character

starts all these sequences, you need a way to include that character literally, without it starting an

escape sequence — to do this, you preface it with itself.

Just as with singly quoted strings, quotes of the opposite type can be freely included without an

escape character:

$has_apostrophe = “There’s no problem here”;

Single versus double quotation marks
PHP does some preprocessing of doubly quoted strings (strings with quotation marks like “this”)

before constructing the string value itself. For one thing, variables are replaced by their values (as in

the preceding example). To see that this replacement is really about the quoted string rather than the
print construct, consider the following code:

$animal = “antelope”; // first assignment
$saved_string = “The animal is $animal
”;
$animal = “zebra”; // reassignment
print(“The animal is $animal
”); //first display line
print($saved_string); //second display line

What output would you expect here? As it turns out, your browser would display:

The animal is zebra
The animal is antelope

And the browser displays the preceding output in exactly that order. This is because “antelope”

is spliced into the string $saved_string, before the $animal variable is reassigned. In addition to

splicing variable values into doubly quoted strings, PHP also replaces some special multiple-char-

acter escape sequences with their single-character values. The most commonly used is the end-of-line

sequence (“\n”) — in reading a string like:

“The first line \n\n\nThe fourth line”

54

 Part I Introducing PHP

Variable interpolation
Whenever an unescaped $ symbol appears in a doubly quoted string, PHP tries to interpret what

follows as a variable name and splices the current value of that variable into the string. Exactly what

kind of substitution occurs depends on how the variable is set:

If the variable is currently set to a string value, that string is interpolated (or spliced) into ■■

the doubly quoted string.

If the variable is currently set to a nonstring value, the value is converted to a string, and ■■

then that string value is interpolated.

If the variable is not currently set, PHP interpolates nothing (or, equivalently, PHP splices ■■

in the empty string).

For example:

$this = “this”;
$that = “that”;
$the_other = 2.2000000000;
print(“$this,$not_set,$that+$the_other
”);

produces the PHP output

this,,that+2.2

which in turn, when seen in a browser, looks like:

this,,that+2.2

If you find any part of this example puzzling, it is worth working through exactly what PHP does to

parse the string in the print statement. First, notice that the string has four $ signs, each of which

is interpreted as starting a variable name. These variable names terminate at the first occurrence of a

character that is not legal in a variable name. Legal characters are letters, numbers, and underscores;

the illegal terminating characters in the preceding print string are (in order) a comma, another

comma, the plus symbol (+), and a left angle bracket (<). The first two variables are bound to strings

(‘this’ and ‘that’), so those strings are spliced in literally. The next variable ($not_set) has

never been assigned, so it is omitted entirely from the string under construction. Finally, the last

variable ($the_other) is discovered to be bound to a double — that value is converted to a string

(“2.2”), which is then spliced into our constructed string.

For more about converting numbers to strings, see the “Assignment and Coercion” sec-

tion in Chapter 25.

As we said earlier in this chapter, all this interpretation of doubly quoted strings happens when

the string is read, not when it is printed. If we saved the example string in a variable and printed

it out later, it would reflect the variable values in the preceding code even if the variables had been

changed in the meantime.

CROSS-REFCROSS-REF

55

 Learning PHP Syntax and Variables 4

In addition to single quotation marks and double quotation marks, there is another way

to create strings (called the heredoc syntax), which in some ways makes it even easier to

splice in the values of variables. We cover it in Chapter 7.

Newlines in strings
Although PHP offers an escape sequence (\n) for newline characters, it is good to know that you

can literally include new lines in the middle of strings, which PHP also treats as a newline charac-

ters. This capability turns out to be convenient when creating HTML strings, because browsers will

ignore the line breaks anyway, so you can format your strings with line breaks to make your PHP

code lines short:

print(“<HTML><HEAD></HEAD><BODY>My HTML page is too big
to fit on a single line, but that doesn’t mean that I
need multiple print statements!</BODY></HTML>”);

We produced this statement in our text editor by literally hitting the Enter key at the end of the first

two lines — these newlines are preserved in the string, so the single print statement will produce

three distinct lines of PHP output. (Your mileage may vary depending on your text editor — if your

editor automatically wraps lines in displaying them, you may see three lines of code that are actu-

ally one long line.) Of course, the browser program will ignore these newlines and will make its own

decisions about whether and where to break the lines in display, but you will see the linebreaks if

you use View Source in your browser to see the HTML itself.

Limits
There are no artificial limits on string length — within the bounds of available memory, you ought

to be able to make arbitrarily long strings.

Output
Most of the constructs in the PHP language execute silently — they don’t print anything to output.

The only way that your embedded PHP code will display anything in a user’s browser program is

either by means of statements that print something to output or by calling functions that, in turn,

call print statements.

Echo and print
The two most basic constructs for printing to output are echo and print. Their language status

is somewhat confusing, because they are basic constructs of the PHP language, rather than being

functions. As a result, they can be used either with parentheses or without them. (Function calls

always have the name of the function first, followed by a parenthesized list of the arguments to the

function.)

CROSS-REFCROSS-REF

56

 Part I Introducing PHP

Echo
The simplest use of echo is to print a string as argument, for example:

echo “This will print in the user’s browser window.”;

Or equivalently:

echo(“This will print in the user’s browser window.”);

Both of these statements will cause the given sentence to be displayed, without displaying the quote

signs. (Note for C programmers: Think of the HTTP connection to the user as the standard output

stream for these functions.)

You can also give multiple arguments to the unparenthesized version of echo, separated by commas,

as in:

echo “This will print in the “, “user’s browser window.”;

The parenthesized version, however, will not accept multiple arguments:

echo (“This will produce a “, “PARSE ERROR!”);

Print
The command print is very similar to echo, with two important differences:

Unlike ■■ echo, print can accept only one argument.

Unlike ■■ echo, print returns a value, which represents whether or not the print statement

succeeded.

The value returned by print is always 1.

Both echo and print are usually used with string arguments, but PHP’s type flexibility means that

you can throw pretty much any type of argument at them without causing an error. For example, the

following two lines will print exactly the same thing:

print(“3.14159”); // print a string
print(3.14159); // print a number

Technically, what is happening in the second line is that, because print expects a string argument,

the floating-point version of the number is converted to a string value before print gets hold of it.

However, the effect is that both print and echo will reliably print out numbers as well as string

arguments.

For the sake of simplicity and uniformity, we will typically use the parenthesized version of print

in our examples, rather than using echo.

57

 Learning PHP Syntax and Variables 4

In addition to the printing functions discussed here, there are two primary printing func-

tions used mostly for debugging: print_r() and var_dump(). The point of these func-

tions is to help you visualize what’s going on with compound data structures like arrays, so we cover

them along with the details of arrays in Chapter 8.

Variables and strings
C programmers are accustomed to using a function called printf, which allows you to splice values

and expressions into a specially formatted printing string. PHP has analogous functions (which we

will cover in Chapter 6), but as it turns out we can get much of the same functionality just by using
print (or echo) with quoted strings. For example, the fragment:

$animal = “antelope”;
$animal_heads = 1;
$animal_legs = 4;
print(“The $animal has $animal_heads head(s).
”);
print(“The $animal has $animal_legs leg(s).
”);

will produce the following output in the browser:

The antelope has 1 head(s).
The antelope has 4 leg(s).

The values for the variables we included in the string have been neatly spliced into the printed out-

put. This makes it very easy to quickly produce web pages with content that varies depending on

how variables have been set. It is not the result of any magical properties of print, however — the

magic is really happening in the interpretation of the quoted string itself.

HTML and linebreaks
One mistake often made by new PHP programmers (especially those from a C background) is to

try to break lines of text in their browsers by putting end-of-line characters (“\n”) in the strings

they print. To understand why this doesn’t work, you have to distinguish the output of PHP (which

is usually HTML code, ready to be sent over the Internet to a browser program) from the way that

output is rendered by the user’s browser. Most browser programs will make their own choices about

how to split up lines in HTML text, unless you force a line break with the
 tag. End-of-line

characters in strings will put line breaks in the HTML source that PHP sends to your user’s browser

(which can still be useful for creating readable HTML source), but they will usually have no effect on

the way that text looks in a web page.

Summary
PHP code follows a basic set of syntactical rules, mostly borrowed from programming languages

such as C and Perl. The syntactical requirements of PHP are minimal, and in general PHP tries to

display results when it can rather than generating an error.

CROSS-REFCROSS-REF

58

 Part I Introducing PHP

PHP has eight types: integer, double, Boolean, NULL, string, array, object, and resource. Five of

these are simple types: Integers are whole numbers, doubles are floating-point numbers, Booleans

are true-or-false values, NULL has just one value (NULL), and strings are sequences of characters.

Arrays are a compound type that holds other PHP values, indexed either by integers or by strings.

Objects are instances of programmer-defined classes, which can contain both member variables and

member functions, and which can inherit functions and data types from other classes. (We address

arrays in Chapter 8 and objects in Chapter 20.) Finally, resources are special references to memory

allocated from external programs, which memory PHP frees automatically when they are no longer

needed (we cover resources in Chapter 25).

Only values are typed in PHP — variables have no inherent type other than the value of their most

recent assignment. PHP automatically converts value types as demanded by the context in which the

value is used. The programmer can also explicitly control types by means of both conversion func-

tions and type casts.

PHP code is whitespace insensitive, and although variable names are case sensitive, basic language

constructs and function names are not. Simple PHP expressions are combined into larger expres-

sions by operators and function calls, and statements are expressions with a terminating semicolon.

Variables are denoted by a leading $ character and are assigned using the = operator. They need

no type declarations and have reasonable default values if used before they are assigned. Variable

scope is global except inside the body of functions, where it is local to the function unless explicitly

declared otherwise.

The simplest way to send output to the user is by using either echo or print, which output the

string arguments. They are particularly useful in combination with doubly quoted strings, which

automatically replace embedded variables with their values.

59

I
t’s difficult to write interesting programs if you can’t make the course of

program execution depend on anything. In a weak sense, the behavior

of code that prints variables depends on the variable values, but that

is as exciting as filling out a template. As programmers, we want programs

that react to something (the world, the time of day, user input, or the con-

tents of a database) by doing something different.

This kind of program reaction requires a control structure, which indicates

how different situations should lead to the execution of different code.

In Chapter 4, we informally used the if control structure without really

explaining it; in this chapter, we lay out every kind of control structure

offered by PHP and study their workings in detail.

Experienced C programmers: Of all the features in PHP, control

is probably the most reliably C-like — all the structures you are

used to are here, and they work the same way.

The two broad types of control structures we will talk about are branches
and loops. A branch is a fork in the road for a program’s execution —

depending on some test or other, the program goes either left or right,

possibly following a different path for the rest of the program’s execution.

A loop is a special kind of branch, where one of the execution paths jumps

back to the beginning of the branch, repeating the test and possibly the

body of the loop.

Before we can make interesting use of control structures, however, we have

to be able to construct interesting tests. We’ll start from the very simplest

of tests, working our way up from the constants TRUE and FALSE and then

move on to using these tests in more complicated code.

NOTENOTE

Learning PHP Control
Structures and Functions

IN THIS CHAPTER

Boolean expressions

Branching

Looping

Terminating execution

Exceptions

Using functions

Function documentation

Defining your own functions

Functions and variable scope

Function scope

60

 Part I Introducing PHP

Any real programming language has some kind of capability for procedural abstraction — a way to

name pieces of code so that you can use them as building blocks in writing other pieces of code.

Some scripting languages lack this capability, and we can tell you from our own sorrowful experi-

ence that complex server-side code can quickly become unmanageable without it.

PHP’s mechanism for this kind of abstraction is the function. There are really two kinds of functions

in PHP — those that have been built into the language by the PHP developers and those defined by

individual PHP programmers.

In this chapter, we also look at how to use the large body of functions already provided in PHP and

then, a bit later, how to define your own functions. Luckily, there is no real difference between using

a built-in function and using your own functions. But first, let’s discuss control.

Boolean Expressions
Every control structure in this chapter has two distinct parts: the test (which determines which part

of the rest of the structure executes), and the dependent code itself (whether separate branches or the

body of a loop). Tests work by evaluating a Boolean expression, an expression with a result treated as

either true or false.

Boolean constants
The simplest kind of expression is a simple value, and the simplest Boolean values are the con-

stants TRUE and FALSE. We can use these constants anywhere we would use a more complicated

Boolean expression, and vice versa. For example, we can embed them in the test part of an if-else

statement:

if (TRUE)
 print(“This will always print
”);
else
 print(“This will never print
”);

Or equivalently:

if (FALSE)
 print(“This will never print
”);
else
 print(“This will always print
”);

Logical operators
Logical operators combine other logical (aka Boolean) values to produce new Boolean values. The

standard logical operations (and, or, not, and exclusive-or) are supported by PHP, which has

alternate versions of the first two, as shown in Table 5-1.

61

 Learning PHP Control Structures and Functions 5

TABLE 5-1

Logical Operators
Operator Behavior

and Is true if and only if both of its arguments are true.

or Is true if either (or both) of its arguments are true.

! Is true if its single argument (to the right) is false and false if its argument is true.

xor Is true if either (but not both) of its arguments are true.

&& Same as and but binds to its arguments more tightly. (See the discussion of precedence later
in the chapter.)

|| Same as or but binds to its arguments more tightly.

The && and || operators will be familiar to C programmers. The ! operator is usually called not,

since it negates the argument it operates on.

As an example of using logical operators, consider the following expression:

 (($statement_1 && $statement_2) ||
 ($statement_1 && !$statement_2) ||
 (!$statement_1 && $statement_2) ||
 (!$statement_1 && !$statement_2))

This is a tautology, meaning that it is always true regardless of the values of the statement variables.

There are four possible combinations of truth values for the two variables, each of which is repre-

sented by one of the && expressions. One of these four must be true, and because they are linked by

the || operator, the entire expression must be true.

Here’s another, slightly trickier tautology using xor:

(($statement_1 and $statement_2 and
 $statement_3) xor
 ((!($statement_1 and $statement_2)) or
 (!($statement_1 and $statement_3)) or
 (!($statement_2 and $statement_3))))

In English, this expression says, “Given three statements, one and only one of the following two things

hold — either 1) all three statements are true, or 2) there are two statements that are not both true.”

Precedence of logical operators
Just as with any operators, some logical operators have higher precedence than others, although pre-

cedence can always be overridden by grouping subexpressions using parentheses. The logical opera-

tors listed in declining order of precedence are: !, &&, ||, and, xor, or. Actually, and, xor, and or

62

 Part I Introducing PHP

have much lower precedence than the others, so that the assignment operator (=) binds more tightly

than and but less tightly than &&.

A complete table of operator precedence and associativity can be found in the online

manual at www.php.net.

Logical operators short-circuit
One very handy feature of Boolean operators is that they associate left to right, and they short-circuit,
meaning that they do not even evaluate their second argument if their truth value is unambiguous

from their first argument. For example, imagine that you wanted to determine a very approximate

ratio of two numbers but also wanted to avoid a possible division-by-zero error. You can first test to

make sure that the denominator is not zero by using the != (not-equal-to) operator:

if ($denom != 0 && $numer / $denom > 2)
 print(“More than twice as much!”);

In the case where $denom is zero, the && operator should return false regardless of whether the sec-

ond expression is true or false. Because of short-circuiting, the second expression is not evaluated,

so an error is avoided. In the case where $denom is not zero, the && operator does not have enough

information to reach a conclusion about its truth value, so the second expression is evaluated.

So far, all we’ve formally covered are the TRUE and FALSE constants and how to combine them to

make other true-or-false values. Now we’ll move on to operators that actually let you make meaning-

ful Boolean tests.

Comparison operators
Table 5-2 shows the comparison operators, which can be used for either numbers or strings

(although you should see the cautionary sidebar entitled “Comparing Things That Are Not Integers”).

TABLE 5-2

Comparison Operators
Operator Name Behavior

== Equal True if its arguments are equal to each other, false otherwise

!= Not equal False if its arguments are equal to each other, true otherwise

< Less than True if the left-hand argument is less than its right-hand
argument but false otherwise

> Greater than True if the left-hand argument is greater than its right-hand
argument but false otherwise

<= Less than or equal to True if the left-hand argument is less than its right-hand
argument or equal to it but false otherwise

NOTENOTE

63

 Learning PHP Control Structures and Functions 5

Operator Name Behavior

>= Greater than or equal to True if the left-hand argument is greater than its right-hand
argument or equal to it but false otherwise

=== Identical True if its arguments are equal to each other and of the same
type but false otherwise

As an example, here are some variable assignments, followed by a compound test that is always true:

$three = 3;
$four = 4;
$my_pi = 3.14159;
if (($three == $three) and
 ($four === $four) and
 ($three != $four) and
 ($three < $four) and
 ($three <= $four) and
 ($four >= $three) and
 ($three <= $three) and
 ($my_pi > $three) and
 ($my_pi <= $four))
 print(“My faith in mathematics is restored!
”);
else
 print(“Sure you typed that right?
”);

Watch out for a very common mistake: confusing the assignment operator (=) with the

comparison operator (==). The statement if ($three = $four) will (probably unex-

pectedly) set the variable $three to be the same as $four; what’s more, the test will be true if $four

is a true value!

Operator precedence
Although overreliance on precedence rules can be confusing for the person who reads your code

next, it’s useful to note that comparison operators have higher precedence than Boolean operators.

This means that a test like the following:

 if ($small_num > 2 && $small_num < 5) ...

doesn’t need any parentheses other than those shown.

String comparison
The comparison operators may be used to compare strings as well as numbers (see the cautionary

sidebar). We would expect the following code to print its associated sentence (with apologies to Billy

Bragg):

if ((“Marx” < “Mary”) and
 (“Mary” < “Marzipan”))

CAUTION CAUTION

64

 Part I Introducing PHP

{
 print(“Between Marx and Marzipan in the “);
 print(“dictionary, there was Mary.
”);
}

The comparisons are case sensitive, and the only reason that this example will print anything is

because our values are case-consistent. Because of the capitalization of Dennis, the following will

not print anything:

if ((“deep blue sea” < “Dennis”) and
 (“Dennis” < “devil”))
{
 print(“Between the deep blue sea and “);
 print(“the devil, that was me.
”);
}

Comparing Things That Are Not Integers

Although comparison operators work with numbers or strings, a couple of gotchas lurk here.

First of all, although it is always safe to do less-than or greater-than comparisons on doubles (or even
between doubles and integers), it can be dangerous to rely on equality comparisons on doubles, especially
if they are the result of a numerical computation. The problem is that a rounding error may make two values
that are theoretically equal differ slightly.

Second, although comparison operators work for strings as well as numbers, PHP’s automatic type conversions
can lead to counterintuitive results when the strings are interpretable as numbers. For example, the code:

$string_1 = “00008”;
$string_2 = “007”;
$string_3 = “00008-OK”;
if ($string_2 < $string_1)
 print(“$string_2 is less than $string_1
”);
if ($string_3 < $string_2)
 print(“$string_3 is less than $string_2
”);
if ($string_1 < $string_3)

 print(“$string_1 is less than $string_3
”);

gives this output (with comments added):

007 is less than 00008 // numerical comparison
00008-OK is less than 007 // string comparison
00008 is less than 00008-OK // string comp. - contradiction!

When it can, PHP will convert string arguments to numbers, and when both sides can be treated that way, the
comparison ends up being numerical, not alphabetic. The PHP designers view this as a feature, not a bug. Our
view is that if you are comparing strings that have any chance of being interpreted as numbers, you’re better
off using the strcmp() function.

65

 Learning PHP Control Structures and Functions 5

The ternary operator
One especially useful construct is the ternary conditional operator, which plays a role somewhere

between a Boolean operator and a true branching construct. Its job is to take three expressions and

use the truth value of the first expression to decide which of the other two expressions to evaluate

and return. The syntax looks like:

testExpression ? yesExpression : noExpression

The value of this expression is the result of yes-expression if test-expression is true; other-

wise, it is the same as no-expression.

For example, the following expression assigns to $max_num either $first_num or $second_num,

whichever is larger:

$max_num = $first_num > $second_num ? $first_num : $second_num;

As you will see, this is equivalent to:

if ($first_num > $second_num)
 $max_num = $first_num;
else
 $max_num = $second_num;

but is somewhat more concise.

Branching
The two main structures for branching are if and switch. If is a workhorse and is usually the first

conditional structure anyone learns. Switch is a useful alternative for certain situations where you

want multiple possible branches based on a single value and where a series of if statements would

be cumbersome.

If-else
The syntax for if is:

if (test)
 statement-1

Or with an optional else branch:

if (test)
 statement-1
else
 statement-2

66

 Part I Introducing PHP

When an if statement is processed, the test expression is evaluated, and the result is interpreted

as a Boolean value. If test is true, statement-1 is executed. If test is not true, and there is an

else clause, statement-2 is executed. If test is false, and there is no else clause, execution sim-

ply proceeds with the next statement after the if construct.

Note that a statement in this syntax can be a single statement that ends with a semicolon, a brace-

enclosed block of statements, or another conditional construct (which itself counts as a single state-

ment). Conditionals can be nested inside each other to arbitrary depth. Also, the Boolean expression

can be a genuine Boolean (TRUE, FALSE, or the result of a Boolean operator or function), or it can be

a value of another type interpreted as a Boolean.

For the full story on how values of non-Boolean types are treated as Booleans, see

Chapter 25. The short version is that the number 0, the string “0”, and the empty string,

“”, are false, and almost every other value is true.

The following example, which prints a statement about the absolute difference between two num-

bers, shows both the nesting of conditionals and the interpretation of the test as a Boolean:

if ($first - $second)
 if ($first > $second)
 {
 $difference = $first - $second;
 print(“The difference is $difference
”);
 }
 else
 {
 $difference = $second - $first;
 print(“The difference is $difference
”);
 }
else
 print(“There is no difference
”);

This code relies on the fact that the number 0 is interpreted as a false value — if the difference is

zero, then the test fails, and the no difference message is printed. If there is a difference, a fur-

ther test is performed. (This example is artificial, because a test like $first != $second would

accomplish the same thing comprehensibly.)

Else attachment
At this point, former Pascal programmers may be warily wondering about else attachment — that

is, how does an else clause know which if it belongs to? The rules are simple and are the same as

in most languages other than Pascal. Each else is matched with the nearest unmatched if that can

be found, while respecting the boundaries of braces. If you want to make sure that an if statement

stays solo and does not get matched to an else, wrap it up in braces like this:

if ($num % 2 == 0) // $num is even?
 {
 if ($num > 2)

CROSS-REFCROSS-REF

67

 Learning PHP Control Structures and Functions 5

 print(“num is not prime
”);
 }
else
 print(“num is odd
”);

This code will print num is not prime if $num happens to be an even number greater than 2, num

is odd if $num is odd, and nothing if $num happens to be 2. If we had omitted the curly braces, the

else would attach to the inner if, and so the code would buggily print num is odd if $num were

equal to 2 and would print nothing if $num were actually odd.

In this chapter’s examples, we often use the modulus operator (%), which is explained in

Chapter 9. For the purposes of these examples, all you need to know is that if $x % $y is

zero, $x is evenly divisible by $y.

Elseif
It’s very common to want to do a cascading sequence of tests, as in the following nested if statements:

if ($day == 5)
 print(“Five golden rings
”);
else
 if ($day == 4)
 print(“Four calling birds
”);
 else
 if ($day == 3)
 print(“Three French hens
”);
 else
 if ($day == 2)
 print(“Two turtledoves
”);
 else
 if ($day == 1)
 print(“A partridge in a pear tree
”);

We have indented this code to show the real syntactic structure of inclusions — although

this is always a good idea, you will often see code that does not bother with this and

where each else line starts in the first column.

This pattern is common enough that there is a special elseif construct to handle it. We can rewrite

the preceding example as:

if ($day == 5)
 print(“Five golden rings
”);
elseif ($day == 4)
 print(“Four calling birds
”);
elseif ($day == 3)
 print(“Three French hens
”);
elseif ($day == 2)
 print(“Two turtledoves
”);
elseif ($day == 1)
 print(“A partridge in a pear tree
”);

NOTENOTE

NOTENOTE

68

 Part I Introducing PHP

Branching and HTML Mode

As you may have learned from earlier chapters, you should feel free to use the PHP tags to switch back and
forth between HTML mode and PHP mode, whenever it seems convenient. If you need to include a large

chunk of HTML in your page that has no dynamic code or interpolated variables, it can be simpler and more
efficient to escape back into HTML mode and include it literally than to send it using print or echo.

What may not be as obvious is that this strategy works even inside conditional structures. That is, you can
use PHP to decide what HTML to send and then “send” that HTML by temporarily escaping back to HTML
mode.

For example, the following cumbersome code uses print statements to construct a complete HTML page
based on the supposed gender of the viewer. (We’re assuming a nonexistent Boolean function called female()
that tests for this.)

<HTML><HEAD>
<?php
if (cat())
 {
 print(“<TITLE>The cat-only site</TITLE>
”);
 print(“</HEAD><BODY>”);
 print(“This site has been specially constructed “);
 print(“for cats only.
 No dogs allowed here!”);
 }
else
 {
 print(“<TITLE>The dog-only site</TITLE>
”);
 print(“</HEAD><BODY>”);
 print(“This site has been specially constructed “);
 print(“for dogs only.
 No cats allowed here!”);
 }
?>

</BODY></HTML>

Instead of all these print statements, we can duck back into HTML mode within each of the two branches:

<HTML><HEAD>
<?php
if (cat())
 {
?>
<TITLE>The cat-only site</TITLE>
</HEAD><BODY>
This site has been specially constructed
for cats only.
 No dogs allowed here!
<?php

69

 Learning PHP Control Structures and Functions 5

 }
else
 {
?>
<TITLE>The dog-only site</TITLE>

</HEAD><BODY>
This site has been specially constructed
for dogs only.
 No cats allowed here!
<?php
 }
?>
</BODY></HTML>

This version is somewhat more difficult to read, but the only difference is that it replaces each set of print
statements with a block of literal HTML that starts with a closing PHP tag (?>) and ends with a starting PHP
tag (<?php).

In this book’s examples, we mostly avoid this kind of conditional inclusion, simply because we feel that it
may be harder for the novice PHP programmer to decipher. But that shouldn’t stop you — literal inclusion
has advantages, including fast execution. (In HTML mode, all the PHP engine must do is pass on characters
and watch for the next PHP start tag, which is inevitably faster than parsing and executing print statements,
especially if they include doubly quoted strings.)

A third alternative, when large blocks of HTML are conditionally included, is the heredoc, alluded to in Chapter
4 and explained fully in Chapter 7. The heredoc will allow you to include large blocks of HTML code inside a
chunk of PHP without several consecutive print statements.

The if, elseif construct allows for a sequence of tests that executes only the first branch that has a

successful test. In theory, this is syntactically different from the previous example (we have a single

construct with five branches rather than a nesting of five two-branch constructs), but the behavior is

identical. Use whichever syntax you find more appealing.

Switch
For a specific kind of multiway branching, the switch construct can be useful. Rather than branch

on arbitrary logical expressions, switch takes different paths according to the value of a single

expression. The syntax is as follows, with the optional parts enclosed in square brackets ([]):

switch(expression)
{
 case value-1:
 statement-1;
 statement-2;
 ...
 [break;]
 case value-2:

70

 Part I Introducing PHP

 statement-3;
 statement-4;
 ...
 [break;]
 ...
 [default:
 default-statement;]
}

The expression can be a variable or any other kind of expression, as long as it evaluates to a simple

value (that is, an integer, a double, or a string). The construct executes by evaluating the expression

and then testing the result for equality against each case value. As soon as a matching value is found,

subsequent statements are executed in sequence until the special statement (break;) or until the

end of the switch construct. (As we’ll see in the “Looping” section of this chapter, break can also

be used to break out of looping constructs.) A special default tag can be used at the end, which

will match the expression if no other case has matched it so far.

For example, we can rewrite the if-else example as follows:

switch($day)
{
 case 5:
 print(“Five golden rings
”);
 break;
 case 4:
 print(“Four calling birds
”);
 break;
 case 3:
 print(“Three French hens
”);
 break;
 case 2:
 print(“Two turtledoves
”);
 break;
 default:
 print(“A partridge in a pear tree
”);
}

This will print a single appropriate line for days 2–5; for any day other than those, it will print A

partridge in a pear tree. Although switch will accept only a single argument, there’s no rea-

son why that argument can’t be the value of expressions evaluated previously in your code.

The single most confusing aspect of switch is that all cases after a matching case will

execute, unless there are break statements to stop the execution. In the “partridge”

example, the break statements ensure that we see only one line from the song at a time. If we remove

the break statements, we will see a sequence of lines counting down to the final line, just as in the

song.

CAUTION CAUTION

71

 Learning PHP Control Structures and Functions 5

Looping
Congratulations! You just passed the boundary from scripting into real programming. The branch-

ing structures we have looked at so far are useful, but there are limits to what can be computed with

them alone. On the other hand, it’s well established in theoretical computer science that any lan-

guage with tests plus unbounded looping can do pretty much anything that any other language can

do. You may not actually want to write a C compiler in PHP, for example, but it’s nice to know that

no inherent language limits are going to stop you.

Bounded loops versus unbounded loops
A bounded loop executes a fixed number of times — you can tell by looking at the code how many

times the loop will iterate, and the language guarantees that it won’t loop more times than that. An

unbounded loop repeats until some condition becomes true (or false), and that condition is dependent

on the action of the code within the loop. Bounded loops are predictable, whereas unbounded loops

can be as tricky as you like.

Unlike some languages, PHP doesn’t actually have any constructs specifically for bounded loops —
while, do-while, and for are all unbounded constructs — but as you will see in this section, an

unbounded loop can do anything a bounded loop can do.

In addition to the looping constructs in this chapter, PHP provides functions for iterating

over the contents of arrays, which are covered in Chapter 8.

While
The simplest PHP looping construct is while, which has the following syntax:

while (condition)
 statement

The while loop evaluates the condition expression as a Boolean — if it is true, it executes statement
and then starts again by evaluating condition. If the condition is false, the while loop terminates. Of

course, just as with if, statement may be a single statement or it may be a brace-enclosed block. The

body of a while loop may not execute even once, as in:

while (FALSE)
 print(“This will never print.
”);

Or it may execute forever, as in this code snippet:

while (TRUE)
 print(“All work and no play makes
 Jack a dull boy.
”);

CROSS-REFCROSS-REF

72

 Part I Introducing PHP

Or it may execute a predictable number of times, as in:

$count = 1;
while ($count <= 10)
 {
 print(“count is $count
”);
 $count = $count + 1;
 }

which will print exactly 10 lines. (For more interesting examples, see the “Looping examples” sec-

tion, later in this chapter.)

Do-while
The do-while construct is similar to while, except that the test happens at the end of the loop.

The syntax is:

do statement
 while (expression);

The statement is executed once, and then the expression is evaluated. If the expression is true, the

statement is repeated until the expression becomes false. The only practical difference between

while and do-while is that the latter will always execute its statement at least once. For example:

$count = 45;
do
 {
 print(“count is $count
”);
 $count = $count + 1;
 }
 while ($count <= 10);

prints the single line:

count is 45

For
The most complicated looping construct is for, which has the following syntax:

for (initial-expression;
 termination-check;
 loop-end-expression)
 statement

In executing a for statement, first the initial-expression is evaluated just once, usually to initialize

variables. Then termination-check is evaluated — if it is false, the for statement concludes, and if it is

73

 Learning PHP Control Structures and Functions 5

true, the statement executes. Finally, the loop-end-expression is executed and the cycle begins again

with termination-check. As always, by statement we mean a single (semicolon-terminated) statement, a

brace-enclosed block, or a conditional construct.

If we rewrote the preceding for loop as a while loop, it would look like this:

initial-expression;
while (termination-check)
 {
 statement
 loop-end-expression;
 }

Actually, although the typical use of for has exactly one initial-expression, one termination-check,

and one loop-end-expression, it is legal to omit any of them. The termination-check is taken to be

always true if omitted, so:

for (;;)
 statement

is equivalent to:

while (TRUE)
 statement

It is also legal to include more than one of each kind of for clause, separated by commas. The

termination-check will be considered to be true if any of its subclauses is true; it is like an ‘or’ test.

For example, the following statement:

for ($x = 1, $y = 1, $z = 1; //initial expressions
 $y < 10, $z < 10; // termination checks
 $x = $x + 1, $y = $y + 2, // loop-end expressions
 $z = $z + 3)
 print(“$x, $y, $z
”);

would give the browser output:

1, 1, 1
2, 3, 4
3, 5, 7

Although the for syntax is the most complex of the looping constructs, it is often used for simple

bounded loops, using the following idiom:

for ($count = 0; $count < $limit; $count = $count + 1)
 statement

74

 Part I Introducing PHP

Looping examples
Now let’s look at some examples.

A bounded for loop
Listing 5-1 shows a typical use of bounded for loops. The page produced by Listing 5-1 is shown in

Figure 5-1.

LISTING 5-1

A division table

<?php
 $start_num = 1;
 $end_num = 10;
?>
<HTML>
<HEAD>
<TITLE>A division table</TITLE>
</HEAD>
<BODY>
<H2>A division table</H2>
<TABLE BORDER=1>
<?php
 print(“<TR>”);
 print(“<TH> </TH>”);
 for ($count_1 = $start_num;
 $count_1 <= $end_num;
 $count_1++)
 print(“<TH>$count_1</TH>”);
 print(“</TR>”);

 for ($count_1 = $start_num;
 $count_1 <= $end_num;
 $count_1++)
 {
 print(“<TR><TH>$count_1</TH>”);
 for ($count_2 = $start_num;
 $count_2 <= $end_num;
 $count_2++)
 {
 $result = $count_1 / $count_2;
 printf(“<TD>%.3f</TD>”,
 $result); // see Chapter 7
 }
 print(“</TR>\n”);
 }

75

 Learning PHP Control Structures and Functions 5

?>
</TABLE>
</BODY>
</HTML>

FIGURE 5-1

A division table

The main body of this code simply has one for loop nested inside another, with each loop executing

10 times, resulting in a 10 x 10 table. Each iteration of the outer loop prints a row, whereas each inner

iteration prints a cell. The only novel feature is the way we chose to print the numbers — we used
printf (covered in Chapter 7), which allows us to control the number of decimal places printed.

The $variable_name++ feature used above is called an increment. It’s a fairly standard

shorthand for $variable_name + 1.

An unbounded while loop
Now let’s look at a loop not so obviously bounded. The sole purpose of the code in Listing 5-2 is to

approximate the square root of 81 (using Newton’s method). The approximation starts with a guess

of 1 and then “zeros in” on the actual square root of 9 by improving the guesses. A trace of this

approximation is shown in Figure 5-2.

NOTENOTE

76

 Part I Introducing PHP

LISTING 5-2

Approximating a square root

<HTML>
<HEAD>
<TITLE>Approximating a square root</TITLE>
</HEAD>
<BODY>
<H3>Approximating a square root</H3>

<?php
$target = 81;
$guess = 1.0;
$precision = 0.0000001;

$guess_squared = $guess * $guess;
while (($guess_squared - $target > $precision) or
 ($guess_squared - $target < - $precision))
{
 print(“Current guess: $guess is the square
 root of $target
”);
 $guess = ($guess + ($target / $guess)) / 2;
 $guess_squared = $guess * $guess;
}
print(“$guess squared = $guess_squared
”);
?>
</BODY>
</HTML>

Now, although it nicely illustrates a potentially unbounded loop, this approximation example is very

artificial — first, because PHP already has a perfectly good square-root function (sqrt) and second,

because the number 81 is hardcoded into the page. We can’t use this page to find the square root of

any other number.

Break and continue
The standard way to get out of a looping structure is for the main test condition to become false. The

special commands break and continue offer an optional side exit from all the looping constructs,

including while, do-while, and for:

The ■■ break command exits the innermost loop construct that contains it.

The ■■ continue command skips to the end of the current iteration of the innermost loop

that contains it.

77

 Learning PHP Control Structures and Functions 5

FIGURE 5-2

Approximating a square root

For example, the following code:

for ($x = 1; $x < 10; $x++)
{
 // if $x is odd, break out
 if ($x % 2 != 0)
 break;
 print(“$x “);
}

prints nothing, because 1 is odd, which terminates the for loop immediately. On the other hand,

the code:

for ($x = 1; $x < 10; $x++)
{
 // if $x is odd, skip this loop
 if ($x % 2 != 0)
 continue;
 print(“$x “);
}

78

 Part I Introducing PHP

prints:

2 4 6 8

because the effect of the continue statement is to skip the printing of any odd numbers.

Using the break command, the programmer can choose to dispense with the main termination test

altogether. Consider the following code, which prints a list of prime numbers (that is, numbers not

divisible by something other than 1 or the number itself):

$limit = 500;
$to_test = 2;
while(TRUE)
{
 $testdiv = 2;
 if ($to_test > $limit)
 break;
 while (TRUE)
 {
 if ($testdiv > sqrt($to_test))
 {
 print “$to_test “;
 break;
 }
 // test if $to_test is divisible by $testdiv
 if ($to_test % $testdiv == 0)
 break;
 $testdiv = $testdiv + 1;
 }
 $to_test = $to_test + 1;
}

In the preceding code, we have two while loops — the outer loop works through all the numbers

between 1 and 500, and the inner loop actually does the testing with each possible divisor. If the

inner loop finds a divisor, the number is not prime, so it breaks out without printing anything. If, on

the other hand, the testing gets as high as the square root of the number, we can safely assume that

the number must be prime, and the inner loop is broken without printing. Finally, the outer loop is

broken when we have reached the limit of numbers to test. The result in this case is a list of primes

less than 500:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83
89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167
173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257
263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353
359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449
457 461 463 467 479 487 491 499

Notice that it is crucial to this code that break interrupt the inner while loop only.

79

 Learning PHP Control Structures and Functions 5

There is another iteration construct, called foreach, which is used only for iterating

over arrays. We cover it in Chapter 8.

A note on infinite loops
If you’ve ever programmed in another language, you’ve probably had the experience of acciden-

tally creating an infinite loop (a looping construct whose exit test never becomes true and so never

returns). The first thing to do when you realize this has happened is to interrupt the program, which

will otherwise continue “forever” and use up a lot of CPU time. But what does it mean to interrupt a

PHP script? Is it sufficient to click the Stop button on your browser?

As it turns out, the answer is dependent on some PHP configuration settings — you can set the PHP

engine to ignore interruptions from the browser (like the result of clicking Stop) and also to impose

a time limit on script execution (so that “forever” will only be a short time). The default configura-

tion for PHP is to ignore interruptions, but with a script time limit of 30 seconds — the time limita-

tion means that you can afford to forget about infinite loops that you may have started.

For more on the configuration of PHP, see Chapter 29.

Alternate Control Syntaxes
PHP offers another way to start and end the bodies of the if, switch, for, and while constructs.

It amounts to replacing the initial brace of the enclosed block with a colon and the closing brace

with a special ending statement for that construct (endif, endswitch, endfor, or endwhile). For

example, the if syntax becomes:

if (expression):
 statement1
 statement2
 ..
endif;

Or:

if (expression):
 statement1
 statement2
 ..
elseif (expression2):
 statement3
 ..
else:
 statement4
 ..
endif;

CROSS-REFCROSS-REF

CROSS-REFCROSS-REF

80

 Part I Introducing PHP

Note that the else and elseif bodies also begin with colons. The corresponding while syntax is:

while (expression):
 statement
endwhile;

Which syntax you use is a matter of taste. The nonstandard syntax in PHP is largely used for histori-

cal reasons and for the comfort of people who are familiar with it from the early versions of PHP. We

will consistently use the standard syntax in the rest of this book.

Terminating Execution
Sometimes you just have to give up, and PHP offers a construct that helps you do just that. The

exit() construct takes either a string or a number as argument, prints out the argument, and

then terminates execution of the script. Everything that PHP produces up to the point of invoking

exit() is sent to the client browser as usual, and nothing in your script after that point will even be

parsed — execution of the script stops immediately. If the argument given to exit is a number rather

than a string, the number will be the return value for the script’s execution. Because exit is a con-

struct, not a function, it’s also legal to give no argument and omit the parentheses.

The die() construct is an alias for exit() and so behaves exactly the same way. (We’ll usually use the

die() version because we find the name more evocative.) So what’s the point of exit() and die()?

One possible use is to cut off production of a web page when your script has determined that there is no

more interesting information to send, without bothering to wrap up the different branches in a condi-

tional construct. This usage can make long scripts somewhat difficult to read and debug, however.

A better use for die() is to make your crashes informative. It’s good to get into the habit of test-

ing for unexpected conditions that would crash your script if they were true, and throw in a die()

statement with an informative message. If you’re correct in your expectations, the die() will never

be invoked; if you’re wrong, you will have an error message of your own rather than a possibly

obscure PHP error. For example, consider the following pseudocode, which assumes that we have

functions to make a database connection and that we then use that database connection:

$connection = make_database_connection();
if (!$connection)
 die(“No database connection!”);
use_database_connection($connection);

This example assumes that our imaginary function make_database_connection(), like many

PHP functions, returns a useful value if it succeeds, and a false value if it fails. An even more com-

pact version of the preceding code takes advantage of the fact that or has lower precedence than the

= assignment operator.

$connection = make_database_connection()
 or die(“No database connection!”);
use_database_connection($connection);

81

 Learning PHP Control Structures and Functions 5

This works because the or operator short-circuits, and therefore the die() construct will only be

evaluated if the expression $connection = make_database_connection() has a false value.

Because the value of an assignment expression is the value assigned, this code ends up being equiva-

lent to the earlier version. (Note that this would not work the same way if we used || instead of

or, because || has higher precedence than assignment, and so $connection would end up being

assigned to the true-or-false result of the || expression.)

Before PHP5, the control structures we’ve presented so far were really the only alterna-

tives; control would flow from the first statement in a file to the last (possibly bounced

around by function calls), unless prematurely terminated with die(). With exception handling, PHP5

introduces an alternate way to deal with problematic conditions, and one that is much more flexible

than die(). We treat exceptions briefly later in this chapter, and more thoroughly in Chapter 30.

In Table 5-3, we summarize all the control structures you’ve seen thus far.

TABLE 5-3

PHP Control Structures
Name Syntax Behavior

If
(or if-else)

if (test)statement-1
 -or-
if (test)
 statement-1
else
 statement-2
 -or-
if (test)
 statement-1
elseif (test2)
 statement-2
else
 statement-3

Evaluate test and if it is true, execute
statement-1. If test is false and there is an
else clause, execute statement-2. The
elseif construct is a syntactic shortcut for
else clauses, where the included statement is
itself an if construct.
Statements may be single statements
terminated with a semicolon or brace-
enclosed blocks.

Ternary operator expression-1 ?
expression-2 :
expression-3

Evaluate expression-1 and interpret it as a
Boolean. If it is true, evaluate expression-2 and
return it as the value of the entire expression.
Otherwise, evaluate and return expression-3.

continued

NOTENOTE

82

 Part I Introducing PHP

TABLE 5-3 (continued)

PHP Control Structures
Name Syntax Behavior

If
(or if-else)

if (test)statement-1
 -or-
if (test)
 statement-1
else
 statement-2
 -or-
if (test)
 statement-1
elseif (test2)
 statement-2
else
 statement-3

Evaluate test and if it is true, execute
statement-1. If test is false and there is an
else clause, execute statement-2. The
elseif construct is a syntactic shortcut for
else clauses, where the included statement is
itself an if construct.
Statements may be single statements
terminated with a semicolon or brace-
enclosed blocks.

Ternary operator expression-1 ?
expression-2 :
expression-3

Evaluate expression-1 and interpret it as a
Boolean. If it is true, evaluate expression-2 and
return it as the value of the entire expression.
Otherwise, evaluate and return expression-3.

Switch switch(expression)
{
 case value-1:
 statement-1
 statement-2

 …
 [break;]
 case value-2:
 statement-3
 statement-4
 …
 [break;]
 …
 [default:
 default-statement]
}

Evaluate expression, and compare its value
to the value in each case clause. When
a matching case is found, begin executing
statements in sequence (including those from
later cases), until the end of the switch
statement or until a break statement is
encountered. The optional default case
will execute if no other case has matched the
expression.

While while (condition)
 statement

Evaluate condition and interpret it as Boolean.
If condition is false, the while construct
terminates. If it is true, execute statement, and
keep executing it until condition becomes
false. Terminate the while loop if the special
break command is encountered, and skip
the rest of the current iteration if continue is
encountered.

83

 Learning PHP Control Structures and Functions 5

Name Syntax Behavior

Do-while do statement
 while (condition);

Perform statement once unconditionally,
then keep repeating statement until condition
becomes false. (The break and continue
commands are handled as in while.)

For for (initial-expression;
 termination-check;
 loop-end-
expression)
 statement

Evaluate initial-expression once
unconditionally. Then if termination-check
is true, evaluate statement, and then loop-
end-expression, and repeat that loop until
termination-check becomes false. Clauses
may be omitted, or multiple clauses of the
same kind can be separated with commas — a
missing termination-check is treated as
true. (The break and continue commands
are handled as in while.)

Using Functions
The basic syntax for using (or calling) a function is:

function_name(expression_1, expression_2, ..., expression_n)

This includes the name of the function followed by a parenthesized and comma-separated list of

input expressions (which are called the arguments to the function). Functions can be called with zero

or more arguments, depending on their definitions.

When PHP encounters a function call, it first evaluates each argument expression and then uses

these values as inputs to the function. After the function executes, the returned value (if any) is the

result of the entire function expression.

All the following are valid calls to built-in PHP functions:

sqrt(9); // square root function, evaluates to 3
rand(10, 10 + 10); // random number between 10 and 20
strlen(“This has 22 characters”); // returns the number 22
pi(); // returns the approximate value of pi

These functions are called with 1, 2, 1, and 0 arguments, respectively.

Return values versus side effects
Every function call is a PHP expression, and (just as with other expressions) there are only two rea-

sons why you might want to include one in your code: for the return value or for the side effects.

84

 Part I Introducing PHP

The return value of a function is the value of the function expression itself. You can do exactly the

same things with this value as with the results of evaluating any other expression. For example, you

can assign it to a variable, as in:

$my_pi = pi();

Or you can embed it in more complicated expressions, as in:

$approx = sqrt($approx) * sqrt($approx)

Functions are also used for a wide variety of side effects, including writing to files, manipulating

databases, and printing things to the browser window. It’s okay to make use of both return values

and side effects at the same time — for example, it is very common to have a side-effecting function

return a value that indicates whether or not the function succeeded.

The result of a function may be of any type, and it is common to use the array type as a way for

functions to return multiple values.

Function Documentation
The architecture of PHP has been cleverly designed to make it easy for other developers to extend.

The basic PHP language itself is very clean and flexible, but there is not a lot there — most of PHP’s

power resides in the large number of built-in functions. This means that developers can contribute

simply by adding new built-in functions, which is nice especially because it does not change any-

thing that PHP users may be relying on.

Although this book covers many of these built-in functions, explaining some of them in greater

detail than the online manual can, the manual at www.php.net is the authoritative source for func-

tion information. In this book, we get to choose our topics to some extent, whereas the PHP docu-

mentation group has the awesome responsibility of covering every aspect of PHP in the manual.

Also, although we hope to keep updating this book in future editions, the manual will have the

freshest information on new additions to the ever-growing PHP functionality. It’s worth looking at

some of the different resources that the PHP site and manual offer.

Although the following information is correct at this writing, some details may become

dated or inapplicable if the online manual is reorganized.

To find the manual, head to www.php.net. A handy search bar at the top offers quick and easy

access to any individual part of the online documentation. Alternatively, find the Documentation

item at the top of the page. The Documentation page that this tab leads to has links to manual infor-

mation in a wide variety of formats and languages.

The largest section of the manual is the function reference, where each built-in function gets its own

page of documentation. Typically, each group of functions has a page of general explanation, leading

to pages for individual functions. Each function page starts off with the name of the function and a

one-line description. This is followed by a C-style header declaration of the function (explained in

NOTENOTE

85

 Learning PHP Control Structures and Functions 5

the next section), followed by a slightly longer description and possibly an example or two, and then

(in the annotated manual) clarifications and gotcha reports from users.

Headers in documentation
For those unfamiliar with C function headers, the very beginning of a function documentation page

might be confusing. The format is:

return-type function-name(type1 arg1, type2 arg2, . . .);

This specifies the type of value the function is expected to return, the name of the function, and the

number and expected types of its arguments.

Here is a typical header description:

string substr(string string, int start[, int length]);

This says that the function substr() will return a string and expects to be given a string and two

integers as its arguments. Actually, the square brackets around length indicate that this argument

is optional — so substr() should be called either with a string and an int, or a string and two ints.

Unlike in C, the argument types in these documentary headers are not absolute requirements. If

you call substr() with a number as its first argument, you will not get an error. Instead, PHP will

convert the first argument to a string as it begins to execute the function. However, the argument

types do document the intent of the function’s author, and it is a good idea either to use the function

as documented or to understand the type conversion issues well enough that you are sure the result

will be what you expect.

In general, the type names used in function documentation will be those of the basic types or of

their aliases: integer (or int), double (or float, real), Boolean, string, array, object, resource, and

NULL. In addition, you may see the types void and mixed. The void return type means that the

function does not return a value at all, whereas the mixed argument type means that the argument

might be of any type.

Finding function documentation
What’s the best way to find information about a function in the manual? That is likely to depend on

what kind of curiosity you have. The most common questions about functions are:

I want to use function X. Now, how does X work again?■■

I’d really like to do task Y. Is there a function that handles that for me?■■

For the first type of curiosity, the full version of the online manual offers an automatic lookup by

function name. You can simply type http://php.net/functionName and the functionName

will be searched for automatically. Alternately, the “Search For” box in the upper-right corner of

the manual pages defaults to a mode where it searches for specific function names and displays the

86

 Part I Introducing PHP

corresponding function page if found. (You can also make other choices, including searching the

mailing list or the entire online documentation — the latter is a good choice when you don’t know

the name of the function you want, but can guess at words that appear on its manual page.)

For the second type of curiosity, your best bet is probably to use the hierarchical organization of the

function reference. For example, the substr function shown in the “Headers in Documentation”

section is found in the “String Functions” section. You can browse the chapter list of the function

reference for the best fit for the task you want to do.

Defining Your Own Functions
User-defined functions are not a requirement in PHP. You can produce interesting and useful web

sites simply with the basic language constructs and the large body of built-in functions. If you find

that your code files are getting longer, harder to understand, and more difficult to manage, however,

it may be an indication that you should start wrapping some of your code up into functions.

What is a function?
A function is a way of wrapping up a chunk of code and giving that chunk a name, so that you can

use that chunk later in just one line of code. Functions are most useful when you will be using the

code in more than one place, but they can be helpful even in one-use situations, because they can

make your code much more readable.

Function definition syntax
Function definitions have the following form:

function function-name ($argument-1, $argument-2, ..)
{
 statement-1;
 statement-2;
 ...
}

That is, function definitions have four parts:

The special word ■■ function

The name that you want to give your function■■

The function’s parameter list — dollar-sign variables separated by commas■■

The function body — a brace-enclosed set of statements■■

Just as with variable names, the name of the function must be made up of letters, numbers, and

underscores, and it must not start with a number. Unlike variable names, function names are

87

 Learning PHP Control Structures and Functions 5

converted to lowercase before they are stored internally by PHP, so a function is the same regardless

of capitalization.

The short version of what happens when a user-defined function is called is:

 1. PHP looks up the function by its name (you will get an error if the function has not yet

been defined).

 2. PHP substitutes the values of the calling arguments (or the actual parameters) into the vari-

ables in the definition’s parameter list (or the formal parameters).

 3. The statements in the body of the function are executed. If any of the executed statements

are return statements, the function stops and returns the given value. Otherwise, the

function completes after the last statement is executed, without returning a value.

The alert and experienced programmer will have noticed that the preceding description

implies call-by-value, rather than call-by-reference. In Chapter 26, we explain the differ-

ence and show how to get call-by-reference behavior.

Function definition example
As an example, imagine that we have the following code that helps decide which size of bottled soft

drink to buy. (This is sometime next year, when supermarket shoppers routinely use their wearable

wireless web browsers to get to our handy price-comparison site.)

$liters_1 = 1.0;
$price_1 = 1.59;
$liters_2 = 1.5;
$price_2 = 2.09;

$per_liter_1 = $price_1 / $liters_1;
$per_liter_2 = $price_2 / $liters_2;
if ($per_liter1 < $per_liter2)
 print(“The first deal is better!
”);
else
 print(“The second deal is better!
”);

Because this kind of comparison happens in our web site code all the time, we would like to make

part of this a reusable function. One way to do this would be the following rewrite:

function better_deal ($amount_1, $price_1,
 $amount_2, $price_2)
{
 $per_amount_1 = $price_1 / $amount_1;
 $per_amount_2 = $price_2 / $amount_2;
 return($per_amount_1 < $per_amount_2);
}

$liters_1 = 1.0;

NOTENOTE

88

 Part I Introducing PHP

$price_1 = 1.59;
$liters_2 = 1.5;
$price_2 = 2.09;

if (better_deal($liters_1, $price_1,
 $liters_2, $price_2))
 print(“The first deal is better!
”);
else
 print(“The second deal is better!
”);

Our better_deal function abstracts out the three lines in the previous code that did the arithmetic

and comparison. It takes four numbers as arguments and returns the value of a Boolean expression.

As with any Boolean value, we can embed it in the test portion of an if statement. Although this

function is longer than the original code, there are two benefits to this rewrite: We can use the func-

tion in multiple places (saving lines overall), and if we decide to change the calculation, we have to

make the change in only one place.

Alternatively, if the only way we ever use these price comparisons is to print which deal is preferred,

we can include the printing in the function, like this:

function print_better_deal ($amount_1, $price_1,
 $amount_2, $price_2)
{
 $per_amount_1 = $price_1 / $amount_1;
 $per_amount_2 = $price_2 / $amount_2;
 if ($per_amount_1 < $per_amount_2)
 print(“The first deal is better!
”);
 else
 print(“The second deal is better!
”);
}

$liters_1 = 1.0;
$price_1 = 1.59;
$liters_2 = 1.5;
$price_2 = 2.09;

print_better_deal($liters_1, $price_1,
 $liters_2, $price_2);

Our first function used the return statement to send back a Boolean result, which was used in

an if test. The second function has no return statement, because it is used for the side effect of

printing text to the user’s browser. When the last statement of this function is executed, PHP simply

moves on to executing the next statement after a function call.

Formal parameters versus actual parameters
In the preceding examples, the arguments we passed to our functions happened to be variables, but

this is not a requirement. The actual parameters (that is, the arguments in the function call) may

89

 Learning PHP Control Structures and Functions 5

be any expression that evaluates to a value. In our examples, we could have passed numbers to our

function calls rather than variables, as in:

print_better_deal(1.0, 1.59, 1.5, 2.09);

Also, notice that in the examples we had a couple of cases where the actual parameter variable had

the same name as the formal parameter (for example, $price_1), and we also had cases where the

actual and formal names were different. ($liters_1 is not the same as $amount_1.) As we will see

in the next section, this name agreement doesn’t matter either way — the names of a function’s for-

mal parameters are completely independent of the world outside the function, including the function

call itself.

Argument number mismatches
What happens if you call a function with fewer arguments than appear in the definition, or with

more? As you might have come to expect by now, PHP handles this without anything crashing, but

it may print a warning depending on your settings for error reporting.

Too few arguments
If you supply fewer actual parameters than formal parameters, PHP will treat the unfilled formal

parameters as if they were unbound variables. However, under the usual settings for error reporting

in PHP6, you will also see a warning printed to the browser.

The default error-reporting setting in PHP6 reports on every kind of error except runtime notices,

which are the least serious condition that is detected. The reason you see warnings about too few

arguments to a function is that this is treated as a runtime-warning situation (the next most serious

category). If you really need function calls that sometimes provide too few arguments and seeing

warnings is unacceptable, you have two options for suppressing the warnings:

You can temporarily change the value of error reporting in your script, with a statement ■■

like error_reporting(E_ALL ^ E_NOTICE ^ E_WARNING;. This will turn off both

runtime notices and runtime warnings from the point where it appears in your script up

to the next error_reporting() statement (if any). (Note that this is dangerous, as lots of

other problems might produce warnings besides the one you’re interested in.)

You can suppress errors for any single expression by using the error-control operator ■■ @,

which you can put in front of any expression to suppress errors from that expression only.

For example, if the function call my_function() is producing a warning, @my_function()

will not. Note that this is dangerous as well because all types of errors except for parse errors

will be suppressed.

We don’t advise using either of these workarounds, but we provide them because we are such non-

judgmental people by nature. PHP actually provides ways to write functions that expect variable

numbers of arguments (see the “Variable Numbers of Arguments” section in Chapter 26), and using

them is a much better idea than shooting the messenger.

90

 Part I Introducing PHP

Rather than decreasing PHP’s reportage of errors, we advise increasing it to the

maximum level possible when you are developing new code. You can do this glob-

ally by changing the php.ini file (see Chapter 29) or simply by including the statement error_
reporting(E_ALL); at the top of your scripts. Among other things, this increase in reportage will

mean that you will be warned about variables you have forgotten to assign, which is one of the most

frequent causes of time-wasting bugs.

Too many arguments
If you hand too many arguments to a function, the excess arguments will simply be ignored, even

when error reporting is set to E_ALL. As you will see in Chapter 26, this tolerance turns out to be

helpful in defining functions that can take a variable number of arguments.

Functions and Variable Scope
As we said in Chapter 4, outside of functions, the rules about variable scope are simple: Assign a

variable anywhere in the execution of a PHP code file, and the value will be there for you later in

that file’s execution. The rules become somewhat more complicated in the bodies of function defini-

tions, but not much.

The basic principle governing variables in function bodies is: Each function is its own little world.

That is, barring some special declarations, the meaning of a variable name inside a function has

nothing to do with the meaning of that name elsewhere. (This is a feature, not a bug — you want

functions to be reusable in different contexts, and so having the behavior be independent of the con-

text is a good thing. If not for this kind of scoping, you would waste a lot of time chasing down bugs

caused by using the same variable name in different parts of your code.)

As of PHP 4.1, there is a small set of global variables that are automatically visible from

within function definitions, in contradiction to the previous paragraph and the following

one. These are the superglobal arrays ($_POST, $_GET, $_SESSION, and so on), which contain keys

and values corresponding to variable bindings from different sources. For more on these variables and

their uses, see Chapter 6.

The only variable values that a function has access to are the formal parameter variables (which have

the values copied from the actual parameters), plus any variables assigned inside the function. This

means that you can use local variables inside a function without worrying about their effects on the

outside world. For example, consider this function and its subsequent use:

function SayMyABCs ()
{
 $count = 0;
 while ($count < 10)
 {
 print(chr(ord(‘A’) + $count));
 $count = $count + 1;
 }

TIPTIP

NOTENOTE

91

 Learning PHP Control Structures and Functions 5

 print(“
Now I know $count letters
”);
}
$count = 0;
SayMyABCs();
$count = $count + 1;
print(“Now I’ve made $count function call(s).
”);
SayMyABCs();
$count = $count + 1;
print(“Now I’ve made $count function call(s).
”);

The intent of SayMyABCs() is to print a sequence of letters. (The functions chr() and ord() trans-

late between letters and their numeric ASCII codes — we use them here just as a trick to generate

letters in sequence.) The output of this code is:

ABCDEFGHIJ
Now I know 10 letters
Now I’ve made 1 function call(s).
ABCDEFGHIJ
Now I know 10 letters
Now I’ve made 2 function call(s).

Both the function definition and the code outside the function make use of variables called $count,

but they refer to different variables and do not clash.

The default behavior of variables assigned inside functions is that they do not interact with the out-

side world; they act as though they are newly created each time the function is called. Both of these

behaviors, however, can be overridden with special declarations.

Global versus local
The scope of a variable defined inside a function is local by default, meaning that (as we explained

in the previous section) it has no connection with the meaning of any variables outside the function.

Using the global declaration, you can inform PHP that you want a variable name to mean the same

thing as it does in the context outside the function. The syntax of this declaration is simply the word

global, followed by a comma-delimited list of the variables that should be treated that way, with a

terminating semicolon. To see the effect, consider a new version of the previous example. The only

difference is that we have declared $count to be global, and we have removed its initial assignment

to zero inside the function:

function SayMyABCs2 ()
{
 global $count;
 while ($count < 10)
 {
 print(chr(ord(‘A’) + $count));
 $count = $count + 1;
 }
 print(“
Now I know $count letters
”);

92

 Part I Introducing PHP

}
$count = 0;
SayMyABCs2();
$count = $count + 1;
print(“Now I’ve made $count function call(s).
”);
SayMyABCs2();
$count = $count + 1;
print(“Now I’ve made $count function call(s).
”);

Our revised version prints the following browser output:

ABCDEFGHIJ
Now I know 10 letters
Now I’ve made 11 function call(s).

Now I know 11 letters
Now I’ve made 12 function call(s).

This is buggy behavior, and the global declaration is to blame. There is now only one $count

variable, and it is being increased both inside and outside the function. When the second call to

SayMyABCs() happens, $count is already 11, so the loop that prints letters is never entered.

Although this example shows global to bad advantage, it can be quite useful, especially because (as

we’ll see in Chapter 6) PHP provides some variable bindings to every page even before any of your

own code is executed. It can be helpful to have a way for functions to see these variables without the

bother of passing them in as arguments with each call.

Static variables
By default, functions retain no memory of their own execution, and with each function call local

variables act as though they have been newly created. The static declaration overrides this behav-

ior for particular variables, causing them to retain their values in between calls to the same function.

Using this, we can modify our earlier function SayMyABCs2() to give it some memory:

function SayMyABCs3 ()
{
 static $count = 0; //assignment only if first time called
 $limit = $count + 10;
 while ($count < $limit)
 {
 print(chr(ord(‘A’) + $count));
 $count = $count + 1;
 }
 print(“
Now I know $count letters
”);
}
$count = 0;
SayMyABCs3();
$count = $count + 1;

93

 Learning PHP Control Structures and Functions 5

print(“Now I’ve made $count function call(s).
”);
SayMyABCs3();
$count = $count + 1;
print(“Now I’ve made $count function call(s).
”);

This memory-enhanced version gives us the following output:

ABCDEFGHIJ
Now I know 10 letters
Now I’ve made 1 function call(s).
KLMNOPQRST
Now I know 20 letters
Now I’ve made 2 function call(s).

The static keyword allows for an initial assignment, which has an effect only if the function has not

been called before. The first time SayMyABCs3() executes, the local version of $count is set to zero.

The second time the function is called, it has the value it had at the end of the last execution, so we

are able to pick up our studies where we left off. Notice that changes to $count outside the function

still have no effect on the local value.

Exceptions
You’ve already seen some fairly primitive error handling in the form of die(), and you might well

imagine the custom error handling possibilities implied by the combination of control structures

and basic use of print() or printf() commands (more on this in Chapter 26). However, in prior

versions of PHP, a chief complaint was the lack of standardized means for handling errors, and sepa-

rating that means from the application code itself. Enter Exceptions.

Exceptions use the try, catch syntax similar to Java or Python, although programmers using

those languages will note the absence of finally.

Let’s start with a simple example that has no error handling at all:

function print_header($title, $keywords, $description) {
 print(“<HTML><HEAD>”);
 print(“<TITLE>$title</TITLE>”);
 print(“<META NAME=\“Keywords\“ CONTENT=\“$keywords\“>”);
 print(“<META NAME=\“Description\“ CONTENT=\“$description\“>”);
 print(“</HEAD><BODY>”);
}

print_header(‘My Page’,
 ‘PHP, Programming, Beer’,
 ‘’);

The custom function print_header() is designed to make it easy for us to place a standardized,

search engine–friendly header at the top of each page. However, we’ve left the description variable

undefined, which will not yield an error, but will leave us without a meaningful description for our

94

 Part I Introducing PHP

page. Unfortunately, because the function is essentially called correctly and PHP is forgiving in nature,

we may never know that we’ve left off this important detail. Some form of error handling is necessary

to point this out, and Exceptions provide a handy way of dong so. Consider this revised code:

function print_header($title, $keywords, $description) {
 if(strlen($description) < 40)
 throw new Exception(‘A reasonable description length is
required
’);
 print(“<HTML><HEAD>”);
 print(“<TITLE>$title</TITLE>”);
 print(“<META NAME=\“Keywords\“ CONTENT=\“$keywords\“>”);
 print(“<META NAME=\“Description\“ CONTENT=\“$description\“>”);
 print(“</HEAD><BODY>”);
}

try {
 print_header(‘My Page’,
 ‘PHP, Programming, Beer’,
 ‘’);
} catch (Exception $e) {
 echo($e->getMessage());
}

The first new thing in our revised function is a simple test in line 2 suggesting an appropriate mini-

mum length for the $description variable. The line immediately following initiates an instance of

the Exception class with the message suggested by the quoted value.

You can create your own classes and extensions of existing classes, including those for

exception handling. PHP gives you Exception for free. We’ll go into much greater depth

on the subject of classes in Chapter 20 and exception handling itself in Chapter 30.

Next, instead of simply calling the function, we’ve enclosed the function in a new control structure,

the try. . .catch block. If we execute the code as written, PHP first tries to execute the function

as described, then it terminates execution almost immediately, because the $description variable

has failed our simple test. At this point, the script can continue execution after the try. . .catch

block, or it can be terminated with die() or exit().

Multiple exceptions can be defined in a single function. This is a good idea because it yields more

specific information about what exactly happened. Because execution stops with the first exception,

only this exception will be caught.

Exceptions are a huge topic; they’re outlined here so that you can start using them imme-

diately. You’ll find nods to exceptions throughout this book, but they are covered in

depth in Chapter 30.

NOTENOTE

CROSS-REFCROSS-REF

95

 Learning PHP Control Structures and Functions 5

Function Scope
Although the rules about the scope of variable names are fairly simple, the scoping rules for function

names are even simpler. There is just one rule in PHP6: Functions must be defined once (and only

once) somewhere in the script that uses them. (See the following note about differences between

this behavior and PHP3.) The scope of function names is implicitly global, so a function defined in

a script is available everywhere in that script. For clarity’s sake, however, it is often a good idea to

define all your functions before any code that calls those functions.

In PHP3, functions could be used only after they were defined. This meant that the safest

practice was to define (or include the definitions of) all functions early in a given script,

before actually using any of them. Beginning with PHP4, scripts are precompiled before being run,

and one effect of this precompilation is that the compiler discovers all function definitions before actu-

ally running the code. This means that functions and code can appear in any order in a script, as long

as all functions are defined once (and only once).

Include and require
It’s very common to want to use the same set of functions across a set of web site pages, and the usual

way to handle this is with either include or require, both of which import the contents of some

other file into the file being executed. Using either one of these forms is vastly preferable to cloning

your function definitions (that is, repeating them at the beginning of each page that uses them); when

you want to modify your functions, you will have to do it only once. (We covered these forms in

Chapter 3, but they are worth reviewing here in the context of including function definitions.)

For example, at the top of a PHP code file we might have lines like:

include “basic-functions.inc”;
include “advanced-function.inc”;
(.. code that uses basic and advanced functions ..)

which import two different files of function definitions. (Note that parentheses are optional with

both include() and require().) As long as the only things in these files are function definitions,

the order of their inclusion does not matter.

Both include and require have the effect of splicing in the contents of their file into the PHP code

at the point that they are called. The only difference between them is how they fail if the file cannot

be found. The include construct will cause a warning to be printed, but processing of the script

will continue; require, on the other hand, will cause a fatal error if the file cannot be found.

Note that include and require are now more similar in their behavior than they used

to be. Prior to PHP 4.0.2, require had its file contents spliced in statically, before the

actual execution of the page; whereas the contents from include were spliced in dynamically as the

page executed. Among other things, this led to subtle differences in behavior when the include/
require form was in conditional code. Now, however, both include and require have the same

dynamic behavior. This means, for example, that if an include/require form is in a loop executed

10 times, 10 inclusions will be made.

NOTENOTE

NOTENOTE

96

 Part I Introducing PHP

Including only once
Sometimes you really want a file to be included once, but not more than once. This is true most

often in the case of function definitions. For example, two different function definition files might,

in turn, include the same file of utility functions — if a top-level page includes both of these files,

the utility functions might be included twice, leading to complaints from PHP that functions are

being defined twice.

To the rescue come include_once and require_once, which act just like their counterparts except

that they will not include a file named by a given string if that file has already been included. It’s usu-

ally better to use the _once version, in general, for including function and class definition files.

The include path
When you include a filename, PHP searches for a file by that name in the directories specified in

the include_path (which is settable in your php.ini file). The default path includes the same

directory as the one the top-level code page is in. See Chapter 29 for details about how to add loca-

tions to your include path.

In situations where a single instance of PHP serves several virtual sites, it’s generally easier and less

confusing to PHP to use the $_SERVER superglobal array to specify the location of an include file:

include_once($_SERVER[‘DOCUMENT_ROOT’].”/path/to/include_file”);

Remember that included (and required) files are parsed by default in HTML mode rather

than in PHP mode. This means that any included file meant to be interpreted as PHP needs

to have the usual PHP tags at the beginning and end, though the end tags aren’t technically required.

Recursion
Some compiled languages, like C and C++, impose somewhat complex ordering constraints on how

functions are defined. To know how to compile a function, the compiler must know about all the

functions that the function calls, which means the called functions must be defined first. So what

do you do if two functions each call the other or if one function calls itself? Issues like this led the

designers of C to a separation of function declarations (or prototypes) from function definitions (or

implementations). The idea is that you use declarations to inform the compiler in advance about the

types of arguments and return types of the functions you plan to use, which is enough information

for the compiler to handle the actual definitions in any order.

In PHP, this problem goes away, and so there is no need for separate function prototypes. As long

as each function that is called is defined once (and only once) in the current code file or one that is

included in the course of the current script’s execution, PHP will have no problem resolving func-

tion calls, regardless of the interleaving of function calls and definitions.

This means that recursive functions (functions that call themselves) are no problem in PHP4. For

example, we can define a recursive function and then immediately call it:

function countdown ($num_arg)

CAUTION CAUTION

97

 Learning PHP Control Structures and Functions 5

 {
 if ($num_arg > 0)
 {
 print(“Counting down from $num_arg
”);
 countdown($num_arg - 1);
 }
 }
countdown(10);

This produces the browser output:

Counting down from 10
Counting down from 9
Counting down from 8
Counting down from 7
Counting down from 6
Counting down from 5
Counting down from 4
Counting down from 3
Counting down from 2
Counting down from 1

As with all recursive functions, it’s important to be sure that the function has a base case (a nonrecur-

sive branch) in addition to the recursive case, and that the base case is certain to eventually occur. If

the base case is never invoked, the situation is much like a while loop where the test is always true

— we will have an infinite loop of function calling. In the case of the preceding function, we know

that the base case will happen, because every invocation of the recursive case reduces the countdown

number, which must eventually become zero. Of course, this assumes that the input is a positive inte-

ger rather than a negative number or a double. Notice that our “greater than zero” test guards against

infinite recursion even in these cases, whereas a “not equal to zero” test would not.

Similarly, mutually recursive functions (functions that call each other) work without a hitch. For exam-

ple, the following definitions plus function call:

function countdown_first ($num_arg)
 {
 if ($num_arg > 0)
 {
 print(“Counting down (first) from $num_arg
”);
 countdown_second($num_arg - 1);
 }
 }
function countdown_second ($num_arg)
 {
 if ($num_arg > 0)
 {
 print(“Counting down (second) from $num_arg
”);
 countdown_first($num_arg - 1);
 }

98

 Part I Introducing PHP

 }

countdown_first(5);

produce the browser output:

Counting down (first) from 5
Counting down (second) from 4
Counting down (first) from 3
Counting down (second) from 2
Counting down (first) from 1

Summary
PHP has a C-like set of control structures, which branch or loop depending on the value of Boolean

expressions, which in turn can be combined using Boolean operators (and, or, xor, !, &&, ||). The

structures if and switch are used for simple branching; while, do-while, and for are used for

looping, and exit() or die() terminates script execution.

Most of the power of PHP resides in the large number of built-in functions provided by PHP’s benev-

olent army of open source developers. Each of these functions should be documented (albeit briefly)

in the online manual at www.php.net.

You can also write your own functions, which are then used in exactly the same way as the built-in

functions. Functions are written in a simple C-style syntax, as in the following:

function my_function ($arg1, $arg2, ..)
{
statement1;
statement2;
..
return($value);
}

User-defined functions can use arguments of any PHP type and can also return values of any type.

The types of arguments and return values do not need to be declared.

In PHP, the ordering of function definitions and function calls makes no difference, as long as every

function that is called is defined exactly once. There is no need for separate function declarations or

prototypes. Variables assigned inside a function are local to that function, unless specified otherwise

with the global declaration. Local variables may be declared to be static, which means that they

hold onto their values in between function calls.

Finally, with our brief treatment of exceptions, we’re well on our way to writing thoughtful friendly

code that uses standardized error handling.

99

I
n this chapter, we’ll briefly discuss some things you need to know

about passing data between web pages. Some of this information is not

specific to PHP but is a consequence of the PHP/HTML interaction or

of the HTTP protocol itself.

HTTP Is Stateless
The most important thing to recall about the way the web works is that the

HTTP protocol itself is stateless. If you are a poetic soul, you might say that

each HTTP request is on its own, with no direction home, like a complete

unknown . . . you know how the rest goes.

For the less lyrical among us, this means that each HTTP request — in

most cases, this translates to each resource (HTML page, .jpg file, style

sheet, and so on) being asked for and delivered — is independent of all the

others, knows nothing substantive about the identity of the client, and has

no memory.

Even if you design your site with very strict one-way navigation (Page 1

leads only to Page 2, which leads only to Page 3, and so on), the HTTP

protocol will never know or care that someone browsing Page 2 must have

come from Page 1. You cannot set the value of a variable on Page 1 and

expect it to be imported to Page 2 by the exigencies of HTTP itself. You

can use HTTP to display a form, and someone can enter some information

using it — but unless you employ some extra means to pass the informa-

tion to another page or program, the variable will simply vanish into the

ether as soon as you move to another page.

Passing Information
with PHP

IN THIS CHAPTER

HTTP is stateless

GET arguments

A better use for GET-style URLs

POST arguments

Formatting form variables

PHP superglobal arrays

100

 Part I Introducing PHP

This is where a form-handling technology like PHP comes in. PHP will catch the variable tossed

from one page to the next and make it available for further use. PHP happens to be unusually good

at this type of data-passing function, which makes it fast and easy to employ for a wide variety of

web site tasks.

HTML forms are mostly useful for passing a few values from a given page to one single other page of

a web site. There are more persistent ways to maintain state over many pageviews, such as cookies

and sessions, which we cover in Chapter 24. This chapter will focus on the most basic techniques of

information-passing between web pages, which utilize the GET and POST methods in HTTP to create

dynamically generated pages and to handle form data.

GET Arguments
The GET method passes arguments from one page to the next as part of the Uniform Resource
Indicator (you may be more familiar with the term Uniform Resource Locator, or URL) query string.

When used for form handling, GET appends the indicated variable name(s) and value(s) to the URL

designated in the ACTION attribute with a question mark separator and submits the whole thing to

the processing agent (in this case a web server).

This is an example HTML form using the GET method (save the file under the name sportselect
.html):

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN” “http://www.w3.org/
TR/html4/strict.dtd”>
<HTML>
<HEAD>
<TITLE>A GET method example, part 1</TITLE>
</HEAD>

<BODY>
<FORM ACTION=”sports.php” METHOD=”GET”>
<P>Choose your favorite sport:

<SELECT NAME=”Sport”>
<OPTION VALUE=”Baseball”>Baseball</OPTION>
<OPTION VALUE=”Basketball”>Basketball</OPTION>
<OPTION VALUE=”Football”>Football</OPTION>
<OPTION VALUE=”Ice Hockey”>Ice Hockey</OPTION>
<OPTION VALUE=”Racing”>Auto Racing</OPTION>
<OPTION VALUE=”Soccer”>Soccer</OPTION>
</SELECT>
<P><INPUT TYPE=”submit” NAME=”Submit” VALUE=”Select”></P>
</FORM>
</BODY>
</HTML>

101

 Passing Information with PHP 6

When the user makes a selection and clicks the Submit button, the browser agglutinates these ele-

ments in this order, with no spaces between the elements:

The URL in quotes after the word ■■ ACTION (http://localhost/baseball.php)

A question mark (■■ ?) denoting that the following characters constitute a GET string.

A variable ■■ NAME, an equal sign, and the matching VALUE (Team=Cubbies)

An ampersand (■■ &) and the next NAME-VALUE pair (Submit=Select); further name-value

pairs separated by ampersands can be added as many times as the server query-string-

length limit allows.

The browser thus constructs the URL string:

http://<your-server-name>/sports.php?Sport=Ice+Hockey&Submit=Select

It then forwards this URL into its own address space as a new request. The PHP script to which the

preceding form is submitted (sports.php) will grab the GET variables from the end of the request

string, stuff them into the $_GET superglobal array (explained in a moment), and do something use-

ful with them — in this case, plug one of two values into a text string.

The following code sample shows the PHP form handler for the preceding HTML form:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN” “http://www.w3.org/
TR/html4/strict.dtd”>
<HTML>
<HEAD>
<TITLE>A GET method example, part 2</TITLE>
<STYLE TYPE=”text/css”>
<!--
BODY {font-size: 24pt;}
-->
</STYLE>
</HEAD>

<BODY>
<P>You’ve indicated that you like
<?php echo $_GET[‘Sport’]; ?>!</P>
</BODY>
</HTML>

Note that the value inputted into the previous page’s HTML form field named “Sport“ is now avail-

able in a PHP variable called $_GET[‘Sport’]. Finally, you should see a page that says You’ve indi-

cated that you like Ice Hockey! in big type.

102

 Part I Introducing PHP

At this point, it makes some sense to explain just how to access values submitted from

page to page. This chapter discusses the two main methods for passing values: GET and

POST (there are others, but they are not covered until Part III). Each method has an associated super-

global array, explained in more depth in Chapter 8, which can be distinguished from other arrays by the

underscore that begins its name. Each item submitted via the GET method is accessed in the handler via

the $_GET array; each item submitted via the POST method is accessed in the handler via the $_POST

array. The syntax for referencing an item in a superglobal array is simple and 100 percent consistent:

$_ARRAY_NAME[‘index_name’]

where the index_name is the name part of a name-value pair (for the GET method), or the name of an

HTML form field (for the POST method). As in the preceding example, $_GET[‘Sport’], indicates the

value of the form select field called ‘Sport’, sent by the GET operation in the original file. You must

use the array appropriate to the method used to send data. In this case, $_POST[‘Sport’] is unde-

fined because no data was POSTed by the original form.

The GET method of form handling offers one big advantage over the POST method: It constructs an

actual new and differentiable URL query string. Users can now bookmark this page. The result of

forms using the POST method is not bookmarkable.

Just because you can achieve the desired functionality with GET arguments doesn’t mean you should.

The disadvantages of GET for most types of form handling are so substantial that the original HTML

4.0 draft specification deprecated its use in 1997. These flaws include:

The ■■ GET method is not suitable for logins because the username and password are fully vis-

ible onscreen as well as potentially stored in the client browser’s memory as a visited page.

Every ■■ GET submission is recorded in the web server log, data set included.

Because the ■■ GET method assigns data to a server environment variable, the length of the URL

is limited. You may have seen what seem like very long URLs using GET — but you really

wouldn’t want to try passing a 300-word chunk of HTML-formatted prose using this method.

The original HTML spec called for query strings to be limited to 255 characters. Although

this stricture was later loosened to mere encouragement of a 255-character limit, using a

longer string is asking for trouble.

The GET method of form handling had to be reinstated by the W3C after much outcry, largely

because of the bookmarkability factor. Despite that it’s still implemented as the default choice for

form handling in all browsers, GET now comes with a strong recommendation to deploy it in idem-
potent usages only — in other words, those that have no permanent side effects. Putting two and two

together, the single most appropriate form-handling use of GET is the search box. Unless you have a

compelling reason to use GET for non-search-box form handling, use POST instead.

A Better Use for GET-Style URLs
Although the actual GET method of form handling is deprecated, the style of URL associated with it

turns out to be very useful for site navigation. This is especially true for dynamically generated sites

such as those often constructed with PHP, because the appended-variable style of URL works par-

ticularly smoothly with a template-based content-development system.

NOTENOTE

CAUTION CAUTION

103

 Passing Information with PHP 6

As an illustration, imagine you are the proud proprietor of an information-rich web site about solar

cars. You’ve toiled long and hard over informative and attractive pages such as these:

Suspension_design.html
Windtunnel_testing.html
friction_braking.html

But as your site grows, a flat-file site structure like this can take a lot of time to administer, as even

the most trivial changes must be repeated on every page. If the structure of these pages is very simi-

lar, you might want to move to a template-based system with PHP.

You might decide to utilize a single template with separate text files for each topic (containing infor-

mation, photos, comments, and so on):

topic.php
 suspension_design.inc
 windtunnel_testing.inc
 friction_braking.inc

Or you might decide you needed a larger, more specialized choice of template files:

Vehicle_structure.php
 Tubular_frames.inc
Mechanical_systems.php
 Friction_braking.inc
Electrical_systems.php
 Solar_array.inc
racing.php
 race_strategy.inc

A simple template file might look something like this (because we haven’t included the necessary

.inc text files, this example will not actually work):

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN” “http://www.w3.org/
TR/html4/strict.dtd”>
<HTML>
<HEAD>
<TITLE>Solar-car topics</TITLE>
<STYLE TYPE=”text/css”>
<!--
BODY {font: verdana; font-size: 12pt}
-->
</STYLE>
</HEAD>

<BODY>
<TABLE BORDER=0 CELLPADDING=0 WIDTH=”100%“>
<TR>
<!-- Navbar, with Get-style URLs. -->
<TD ALIGN=CENTER VALIGN=TOP>
 <P>

104

 Part I Introducing PHP

Friction braking

Steering

Suspension

Tires and wheels

 </P>
</TD>

<!-- Main body of content -->
<TD ALIGN=LEFT VALIGN=TOP>
<?php include($_GET[‘Name’] . “inc”); ?>
</TD></TR></TABLE>
</BODY>
</HTML>

Notice that the links on the navbar, when clicked, will be handled by the browser as if they were the

product of a GET submission.

But even with this solution, you still have to tend part of your garden by hand: making sure that each

include file is properly formatted in HTML, adding a new link to the navbar each time you add a new

page to the site, and other such chores. Following the general rule to separate form and content as much

as is feasible, you might choose to go to another level of abstraction with a database. In that case, a URL

such as http://www.example.com/topic.php?topicID=2 would point to a PHP template that

makes database calls. (Using a number variable rather than a word makes for faster database interac-

tion.) This system could also automatically add a link to the navbar whenever you added new topics

to the database, so it could produce web pages entirely without ongoing human intervention (all right,

maybe entirely is an exaggeration — but with significantly fewer person-hours of grunt labor).

POST Arguments
POST is the preferred method of form submission today, particularly in nonidempotent usages (those

that will result in permanent changes), such as adding information to a database. The form data set

is included in the body of the form when it is forwarded to the processing agent (in this case, PHP).

No visible change to the URL will result according to the different data submitted.

The POST method has one primary advantage:

There is a much larger limit on the amount of data that can be passed (a couple of mega-■■

bytes rather than a couple of hundred characters).

105

 Passing Information with PHP 6

POST has these disadvantages:

The results at a given moment cannot be bookmarked.■■

Browsers exhibit different behavior when the visitor uses their Back and Forward naviga-■■

tion buttons within the browser.

There is a misguided belief that POST is more secure than GET. In reality, neither offers any more

security than the other. The visitor can still view variables and data being sent with a POST just as

they can with a GET. The only difference is that the data doesn’t show up in the address bar. This

doesn’t mean that it’s hidden. Data sent with a POST can be viewed and altered by the web site user.

The first and most important rule of programming, especially web programming is:

Never Trust Input

Always assume that the visitor has either maliciously or accidentally altered the data being passed

into your application, and validate the data.

Only when the request is secured using SSL or TLS or some other form of encryption is the form

data somewhat secure. Nevertheless, the end user or visitor can still see and alter the data. SSL

merely encrypts the data in transit, preventing prying eyes on the network from looking at it. SSL

does nothing to prevent the visitor from changing form data.

I’ll cover much more about security throughout the book. I believe security needs to be included in

every aspect of programming, and, therefore, you’ll see security tips when appropriate and within

context, rather than trying to make sense of them in a specific chapter. Chapter 28 will examine

PHP security, concentrating on overall best practices and also server security, as well.

Get and Post Both

Did you know that with PHP you can use both GET and POST variables on the same page? You might want
to do this for a dynamically generated form, for example.

But what if you (deliberately or otherwise) use the same variable name in both the GET and the POST variable
sets? PHP keeps all ENVIRONMENT, GET, POST, COOKIE, and SERVER variables in the $GLOBALS array if you
have set the register_globals configuration directive to “on” in your php.ini file (doing so creates a
security risk). If there is a conflict, it is resolved by overwriting the variable values in the order you set, using the
variables_order option in php.ini. Later trumps earlier, so if you use the default “EGPCS” value, cookies
will triumph over POSTs that will themselves obliterate GETs. You can control the order of overwriting by simply
changing the order of the letters on the appropriate line of this file, or even better, turning register_globals
off and using the new PHP superglobal arrays instead. See the section on superglobals later in this chapter.

106

 Part I Introducing PHP

Formatting Form Variables
PHP is so efficient at passing data around because the developers made a very handy but (in theory)

slightly sketchy design decision. PHP automatically, but invisibly, assigns the variables for you on

the new page when you submit a data set using GET or POST. Most of PHP’s competitors make you

explicitly do this assignment yourself on each page; if you forget to do so or make a mistake, the

information will not be available to the processing agent. PHP is faster, simpler, and mostly more

goof-proof.

But because of this automatic variable assignment, you need to always use a good NAME attribute for

each INPUT. NAME attributes are not strictly necessary in HTML proper — your form will render fine

without them — but the data will be of little use because the HTML form-field NAME attribute will

be the variable name in the form handler.

In other words, in this form:

<FORM ACTION=”<?php echo $_SERVER[‘PHP_SELF’]; ?>”
METHOD=”POST”>
<INPUT TYPE=”text” NAME=”email”>
<INPUT TYPE=”submit” NAME=”submit” VALUE=”Send”>
</FORM>

the text field named email will cause the creation of a PHP variable called $_POST[‘email’]

when the form is submitted. Similarly, the submit button will lead to the creation of a variable called

$_POST[‘submit’] on the next page. The name you use in the HTML form will be the name of

your variable in the PHP form handler.

$HTTP_POST_VARS, $HTTP_SERVER_VARS, and the whole family of these long-form

predefined variables were deprecated in PHP5. If you are already an experienced PHP

programmer, perhaps with a large body of previously written code lying around, you might want to

think about rewriting now for backward compatibility. They are supported for the time being, but their

days are numbered. Use $_POST, $_GET, and friends instead.

Remember that you cannot use a variable name beginning with a number — so you should not

name your form field something like 5 (you laugh, but we’ve seen people try to do it) — and PHP

variable names are case sensitive. Also, please try to use informative variable names rather than a

succession of form fields named myvar and e.

It’s a good idea to standardize how you name form variables, to make your code more

readable and so that you spend less time flipping back to the form itself when you are

supposed to be writing code to process that form. For example, you might precede all form variables

with frm to indicate their source. You might then consistently use the first few letters of each identify-

ing word for what a field does, for example, frmNameFirst, frmOfficeAdd, frmHomeAdd, and so

on. The specific standard you set is less important than having a standard to begin with.

CAUTION CAUTION

TIPTIP

107

 Passing Information with PHP 6

Another thing to keep in mind when creating your HTML forms is that, if you ever want this form to

be displayed with prefilled inputs, you need to set the VALUE attribute. This is particularly relevant

to two kinds of forms: those that are used to edit data from a database, and those that are intended

to possibly be submitted more than once. The latter case is very common in situations where a form

should redisplay on error with values already prefilled — for instance, a registration form that will

not work until the user provides a valid e-mail address or other required data.

For example, the form in Listing 6-1 (which represents a retirement savings calculator) is designed

to be submitted multiple times while the user fiddles around with the values. Every time you submit

the form, the values from the previous go-round will be filled in for you automatically. Note the use

of the VALUE attribute in the form fields in this code sample.

LISTING 6-1

Form with prefilled values (retirement_calc.php)

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN” “http://www.w3.org/TR/html4/
strict.dtd”>
<HTML>
<HEAD>
<TITLE>A POST example: retirement savings worksheet</TITLE>
<STYLE TYPE=”text/css”>
<!--
BODY {font-size: 14pt}
.heading {font-size: 18pt; color: red}
-->
</STYLE>
</HEAD>

<?php

// This test, along with the Submit button value in the form
// below, will check to see if the form is being rendered for
// the first time (in which case it will display with only the
// default annual gain filled in).

if (!IsSet($_POST[‘Submit’]) || $_POST[‘Submit’] != ‘Calculate’)
{
 $_POST[‘CurrentAge’] = “”;
 $_POST[‘RetireAge’] = “”;
 $_POST[‘Contrib’] = “”;
 $Total = 0;
 $AnnGain = 7;
} else {
 $AnnGain = $_POST[‘AnnGain’];
 $Years = $_POST[‘RetireAge’] - $_POST[‘CurrentAge’];
 $YearCount = 0;

108

 Part I Introducing PHP

 $Total = $_POST[‘Contrib’];

 while ($YearCount <= $Years) {
 $Total = round($Total * (1.0 + $AnnGain/100) +
$_POST[‘Contrib’]);
 $YearCount = $YearCount + 1;
 }
}
?>
<BODY>

<DIV ID=”Div1” class=”heading”>
A retirement-savings calculator</DIV>

<P class=blurb>Fill in all the values (except “Nest Egg”)
and see how much money you’ll have for your retirement
under different scenarios. You can change the values and
resubmit the form as many times as you like. You must fill
in the two “Age” variables. The “Annual return” variable has
a default inflation-adjusted value (7% = 8% growth minus 1%
inflation) which you can change to reflect your greater
optimism or pessimism.</P>

<FORM ACTION=”<?php echo $_SERVER[‘PHP_SELF’]; ?>”
METHOD=”POST”>
<P>Your age now:
<INPUT TYPE=”text” SIZE=5 NAME=”CurrentAge”
VALUE=”<?php echo $_POST[‘CurrentAge’]; ?>”>
<P>The age at which you plan to retire:
<INPUT TYPE=”text” SIZE=6 NAME=”RetireAge”
VALUE=”<?php echo $_POST[‘RetireAge’]; ?>”>
<P>Annual contribution:
<INPUT TYPE=”text” SIZE=15 NAME=”Contrib”
VALUE=”<?php echo $_POST[‘Contrib’]; ?>”>
<P>Annual return:
<INPUT TYPE=”text” SIZE=5 NAME=”AnnGain”
VALUE=”<?php echo $AnnGain; ?>”> %

<P>NEST EGG: <?php echo $Total; ?>
<P><INPUT TYPE=”submit” NAME=”Submit” VALUE=”Calculate”>
</FORM>
</BODY>
</HTML>

Figure 6-1 shows the result of the Listing 6-1.

109

 Passing Information with PHP 6

FIGURE 6-1

A form using the POST method with VALUE attributes

Consolidating forms and form handlers
As you can see in the preceding example, it is often handy to make the HTML form and the form

handler into one script. This practice has many advantages, such as making it easier to change the

name of the file without harming functionality, making it easier to display error messages and pre-

filled form fields, and achieving better control over your variable namespace. Suppose that you are

making a login form that redisplays with an error message if the login is unsuccessful. If you have

separate forms and form handlers, you’ll probably have to do something yucky with GET vars and

redirection. If you consolidate, it’s very simple to control the display without these machinations.

To see how these techniques can be used with data from MySQL, see Chapter 17.

When you consolidate, generally the form-handling code should come before the form display. This

order may be something of a shift in thinking for those who are used to writing the form before the

handler, but if you think it through, you will see the logic of the practice. You have to give yourself

an opportunity to set variables and make choices before you can decide what to show the user. This

CROSS-REFCROSS-REF

110

 Part I Introducing PHP

is especially relevant if you will be redirecting the user to a different page under certain circum-

stances, via the header() function, because this decision point must come before any HTML out-

put has been displayed to the browser.

PHP Superglobal Arrays
A change that has been coming for a long time in PHP is the gradual phasing out of automatic global

variables in favor of superglobal arrays, which were introduced in PHP4. Understanding superglobal

arrays before you understand arrays may present difficulties; if so, we recommend that you read

Chapter 8 and come back to this section later.

In the good old days before PHP4.1, you could write a piece of code like this and expect it to work:

<?php
if (isSet($submit)) {
 echo $email;
} else {
?>
<FORM ACTION=”<?php echo $PHP_SELF; ?>” METHOD=”POST”>
<INPUT TYPE=”text” NAME=”email”>
<INPUT TYPE=”submit” NAME=”submit” VALUE=”Send”>
</FORM>

All GET, POST, COOKIE, ENVIRONMENT, and SERVER variables were made global by the register_
globals directive in php.ini and were directly accessible by their names by default.

The PHP team decided to phase out the practice of registering globals, forcing everyone to call these

variables as indices in an array (for example, $_POST[‘secretpassword’]). This had already been

possible in PHP4, via arrays named $HTTP_GET_VARS, $HTTP_POST_VARS, $HTTP_POST_VARS,

and so on, but few developers had used this syntax; frankly, it was a lot of extra keystrokes for a

small increase in security. So the PHP team also took this opportunity to rename these arrays with

shorter names: $_GET, $_POST, $_COOKIE, $_ENV, and $_SERVER.

These superglobal arrays also have one cool feature that may ameliorate some pain: They are auto-

matically global everywhere. This means, for instance, that you no longer have to pass cookie values

into a function or declare the $HTTP_COOKIE_VARS array global before you can access those values

in a function. This will help those who functionalize to the max and will be a small amelioration for

everyone else.

As of PHP6, register_globals is officially gone.

111

 Passing Information with PHP 6

Summary
The HTTP protocol is stateless. This means a plain HTML page is incapable of receiving informa-

tion from any other page. It can be used to pass values via a URL or an HTML form, but a separate

program called a form handler must step in to recognize and perform actions on the passed values.

In first-generation web development, these form handlers were Perl or C CGI scripts, but nowadays

web developers are more likely to use an HTML-embedded programming language such as PHP.

PHP makes it particularly easy to write form handlers and even to combine them with HTML dis-

play on a single web page.

Information is passed between web pages using one of four main methods: GET, POST, a cookie, or

sessions. GET is mainly used to construct complex URL strings for use with dynamically generated

pages. Forms are a good way to pass information from one web page to a single other web page. We

deal with the persistent state methods, cookies, and sessions in Chapter 24.

113

A
lthough images, sound files, videos, animations, and applets make

up an important portion of the World Wide Web, much of the web

is still text — one character’s worth after another, like this sen-

tence. The basic PHP data type for representing text is the string.

In this chapter, we cover almost all PHP’s capabilities for manipulating strings

(although we leave more advanced string functions and the pattern-matching

power of regular expressions for separate treatment in Chapter 22). We start

with the basics of strings, then move to the most commonly used operators

and functions.

Strings in PHP
Strings are sequences of characters that can be treated as a unit — assigned

to variables, given as input to functions, returned from functions, or sent

as output to appear on your user’s web page. The simplest way to specify a

string in PHP code is to enclose it in quotation marks, whether single quo-

tation marks (‘) or double quotation marks (“), like this:

$my_string = ‘A literal string’;
$another_string = “Another string”;

The difference between single and double quotation marks lies in how

much interpolation PHP does of the characters between the quote signs

before creating the string itself. If you enclose a string in single quota-

tion marks, almost no interpolation will be performed; if you enclose it in

Learning PHP
String Handling

IN THIS CHAPTER

Strings in PHP

String functions

114

 Part I Introducing PHP

double quotation marks, PHP will splice in the values of any variables you include, as well as make

substitutions for certain special character sequences that begin with the backslash (\) character. For

example, if you evaluate the following code in the middle of a web page:

$statement = ‘everything I say’;
$question_1 =
 “Do you have to take $statement so literally?\n
”;
$question_2 =
 ‘Do you have to take $statement so literally?\n
’;
echo $question_1;
echo $question_2;

you should expect to see the browser output:

Do you have to take everything I say so literally?
Do you have to take $statement so literally?\n

For the details on exactly how PHP interprets both singly and doubly quoted strings, see

the “Strings” section of Chapter 4.

Interpolation with curly braces
In most situations, you can simply include a variable in a doubly quoted string, and the variable’s

value will be spliced into the string when it is interpreted. There are two situations where the string

parser might very reasonably get confused and need more guidance from you. The first situation is

when your notion of where the variable name should stop is not the same as the parser’s, and the

other occurs when the expression you want to have interpolated is not a simple variable. In these

cases, you can clear things up by enclosing the value you want interpolated in curly braces: {}.

For example, PHP has no difficulty with the following code:

$sport = ‘volleyball’;
$plan = “I will play $sport in the summertime”;

The parser in this case encounters the $ symbol, and then begins collecting characters for a vari-

able name until it runs into the space after $sport. Spaces cannot be part of a variable name, so it

is clear that the variable in question is $sport, and PHP successfully finds a value for that variable

(‘volleyball’), and splices the value in.

Sometimes, though, it is not convenient to stop a variable name with a space. Take this example:

$sport1 = ‘volley’;
$sport2 = ‘foot’;
$sport3 = ‘basket’;
$plan1 = “I will play $sport1ball in the summertime”; //wrong
$plan2 = “I will play $sport2ball in the fall”; //wrong
$plan3 = “I will play $sport3ball in the winter”; //wrong

CROSS-REFCROSS-REF

115

 Learning PHP String Handling 7

You will not get the desired effect here, because PHP interprets $sport1 as part of the variable

name $sport1ball, which is probably unbound. Instead, you need something like:

$plan1 = “I will play {$sport1}ball in the summertime”; //right

which asks PHP to evaluate only the variable expression within the braces before interpolating.

For similar reasons, PHP has difficulty interpolating complex variable expressions, such as multi-

dimensional arrays and object variables, unless curly braces are used. The general rule is that if you

have a { immediately followed by a $, PHP will evaluate the variable expression up until the closing

} and will interpolate the resulting value into the string. (If you need a literal {$ to appear in your

string, you can accomplish it by escaping either character with a backslash (\)).

See the “Concatenation and Assignment” section later in this chapter for ideas on other

ways to address challenges like this.

Characters and string indexes
Unlike some programming languages, PHP has no distinct character type different from the string

type. In general, functions that would take character arguments in other languages expect strings of

length 1 in PHP.

You can retrieve the individual characters of a string by including the number of the character, start-

ing at 0, enclosed in curly braces immediately following a string variable. These characters will actu-

ally be one-character strings. For example, the following code:

$my_string = “Doubled”;
for ($index = 0; $index < 7; $index++) {
 $string_to_print = $my_string{$index};
 print(“$string_to_print$string_to_print”);
}

gives the browser output:

DDoouubblleedd

with each character of the string being printed twice per loop. (The number 7 is hardcoded in this

example only because we haven’t yet covered how to find out the length of a string — see the func-

tion strlen() in the later section “Inspecting strings.”)

String operators
PHP offers two string operators: the dot (.) or concatenation operator and the .= concatenating

assignment operator. The concatenating assignment operator is discussed in the next section. The

concatenation operator, when placed between two string arguments, produces a new string that is

the result of putting the two strings together in sequence. For example:

$my_two_cents = “I want to give you a piece of my mind “;

TIPTIP

116

 Part I Introducing PHP

$third_cent = “ And another thing”;
print($my_two_cents . “...” . $third_cent);

gives the output:

I want to give you a piece of my mind ... And another thing

Note that we are not passing multiple string arguments to the print statement — we are handing it

one string argument, which was created by concatenating three strings together. The first and third

strings are variables, but the middle one is a literal string enclosed in double quotation marks.

Note that the concatenation operator is not + as in Java, and it does not overload any-

thing else. If you forget this and add strings using +, they will be interpreted as numbers,

with the result that ‘one’ + ‘two’ equals 0 (because no successful string-to-number conversion can

be made).

Concatenation and assignment
Just as with arithmetic operators, PHP has a shorthand operator (.=) that combines concatenation

with assignment. The following statement:

$my_string_var .= $new_addition;

is exactly equivalent to:

$my_string_var = $my_string_var . $new_addition;

Note that, unlike commutative addition and multiplication, with this shorthand operator it matters

that the new string is added to the right. If you want the new string tacked on to the left, there’s no

alternative shorter than:

$my_string_var = $new_addition . $my_string_var;

Note also that unassigned variables are treated as empty strings for the purposes of concatenation,

so $my_string_var will end up unchanged if $new_addition has never been given a value.

The heredoc syntax
In addition to the single-quote and double-quote syntaxes, PHP offers another way to specify a

string, called the heredoc syntax. This syntax turns out to be extremely useful for specifying large

chunks of variable-interpolated text, because it spares you from the need to escape internal quota-

tion marks. It is especially useful in creating pages that contain HTML forms.

The operator in the heredoc syntax is <<<. What is expected immediately after this is a label

(unquoted) that indicates the beginning of a multiline string. PHP will continue including subse-

quent lines in this string until it sees the same label again, beginning a line. The ending label may

optionally be followed by a semicolon but by nothing else.

NOTENOTE

117

 Learning PHP String Handling 7

For example:

$my_string_var = <<<EOT
Everything in this rather unnecessarily wordy
ramble of prose will be incorporated into the
string that we are building up inevitably, inexorably,
character by character, line by line, until we reach that
blessed final line which is this one.
EOT;

Note that the preceding final EOT must not be indented at all — otherwise it will be taken to be just

more text to be included. The label need not be literally EOT — it can be whatever you like within

the normal rules for variable names in PHP.

Interpolation of variables happens exactly the same way as with double-quoted strings. The nice

thing about heredoc, though, is that quote signs can be included without any escaping and without

prematurely terminating the string. Here’s another example:

echo <<<ENDOFFORM
<FORM METHOD=POST ACTION=”{$_ENV[‘PHP_SELF’]}“>
<INPUT TYPE=TEXT NAME=FIRSTNAME VALUE=$firstname>
<INPUT TYPE=SUBMIT NAME=SUBMIT VALUE=SUBMIT>
</FORM>
ENDOFFORM;

This has the effect of echoing a very simple form to the browser.

String Functions
PHP gives you a huge variety of functions for the munching and crunching of strings. If you’re ever

tempted to roll your own function that reads strings character by character to produce a new string,

pause for a moment to think whether the task might be common. If so, there is probably a built-in

function that handles it.

For more information on string functions see http://php.net/manual/en/ref.strings.php.

In this section, we present the basic functions for inspecting, comparing, modifying, and printing

strings. If you want to be really comfortable with string manipulation in PHP, you should probably

have at least a passing acquaintance with everything in this section. Both the regular expression

functions and the more abstruse string functions can be found in Chapter 22.

A note for C programmers: Many of the PHP string function names should be familiar to

you. Just keep in mind that, because PHP takes care of memory management for you, the

functions that return strings are allocating the string storage on their own and do not need to be given

a preallocated string to write into.

NOTENOTE

118

 Part I Introducing PHP

Inspecting strings
What kinds of questions can you ask strings? First on the list is how long the string is, using the

strlen() function (the name is short for string length).

$short_string = “This string has 29 characters”;
print(“It does have “ . strlen($short_string) .
 “ characters”);

This code gives the following output:

It does have 29 characters

Knowing the string’s length is particularly useful in form validation or for situations in which we’d

like to loop through a string character by character. A useless but illustrative example, using the pre-

ceding example string, is:

for ($index = 0; $index < strlen($short_string); $index++)
 print($short_string{$index});

This simply prints:

This string has 29 characters

which is the string we started with.

Finding characters and substrings
The next question you can ask your strings is what they contain. For example, the strpos() func-

tion finds the numerical position of a particular character in a string, if it exists.

$twister = “Peter Piper picked a peck of pickled peppers”;
print(“Location of ‘p’ is “ . strpos($twister, ‘p’) .’
’);
print(“Location of ‘q’ is “ . strpos($twister, ‘q’) .’
’);

This gives us the browser output:

Location of ‘p’ is 8
Location of ‘q’ is

The ‘q’ location is apparently blank because strpos() returns false if the character in question

cannot be found, and a false value prints as the empty string. You should note that the strpos()

function is case sensitive.

The strpos() function is one of those cases where PHP’s type-looseness can be prob-

lematic. If no match can be found, the function returns a false value; if the very first

character is a match, the function returns 0 (because the indexing count starts with 0 rather than 1).

Both of these values look false if used in a Boolean test. One way to distinguish them is to use the iden-

tity comparison operator (===, introduced as of PHP4), which is true only if its arguments are the same

and of the same type — you can use it to test if the returned value is 0 (or is FALSE) without risk of

confusion with other values that might be the same after type coercion.

CAUTION CAUTION

119

 Learning PHP String Handling 7

The strpos() function can also be used to search for a substring rather than a single character,

simply by giving it a multicharacter string rather than a single-character string. You can also supply

an extra integer argument specifying the position to begin searching forward from.

Searching in reverse is also possible, using the strrpos() function. (Note the extra r, which you

can think of as standing for reverse.) This function takes a string to search and a single-character

string to locate, and it returns the last position of occurrence of the second argument in the first

argument. (Unlike with strpos(), the string searched for must have only one character.) If we use

this function on our example sentence, we find a different position:

$twister = “Peter Piper picked a peck of pickled peppers”;
printf(“Location of ‘p’ is “ . strrpos($twister, ‘p’) .’
’);

Specifically, we find the third p in peppers:

Location of ‘p’ is 40

Are strings immutable?

In some programming languages (such as C), it is common to manipulate strings by directly changing
them — that is, storing new characters into the middle of an existing string, replacing old characters. Other

languages try to keep the programmer out of certain kinds of trouble by making string classes that are immutable
(or unchangeable) — you can make new strings by creating modified copies of old ones, but once you have
made a string, you are not allowed to change it by directly changing the characters that make it up.

Where does PHP fit in? As it turns out, PHP strings can be changed, but the most common practice seems to
be to treat strings as immutable.

Strings can be changed by treating them as character arrays and assigning directly into them, like this:

$my_string = “abcdefg”;
$my_string[5] = “X”;

print($my_string . “
”);

which will give the browser output:

abcdeXg

This modification method seems to be undocumented, however, and shows up nowhere in the online manual,
even though the corresponding extraction method (now updated to use curly braces) is highlighted. Also, almost
all PHP string-manipulation functions return modified copies of their string arguments rather than making direct
changes, which seems to indicate that this is the style that the PHP designers prefer. Our advice is not to use
this direct-modification method to change strings, unless you know what you are doing and there is some large
benefit in terms of memory savings.

120

 Part I Introducing PHP

Comparison and searching
Is this string the same as that string? It’s a question that your code is likely to have to answer fre-

quently, especially when dealing with input typed by the end user.

For the == operator, two strings are the same if they contain exactly the same sequence

of characters. It does not test any stricter notion of being the same, such as being stored

at the same memory address, but it does pay attention to case (or capitalization).

The simplest method to find an answer is to use the basic comparison operator (==), which does

equality testing on strings as well as numbers.

Comparing two strings using == (or the corresponding < and > operators) is trustworthy

if both the arguments are strings and if you know that no type conversion is being per-

formed. (See Chapter 4 for more on this.) Using strcmp() (described next) is always trustworthy.

The most basic workhorse string-comparison function is strcmp(). It takes two strings as argu-

ments and compares them byte by byte until it finds a difference. It returns a negative number if the

first string is less than the second and a positive number if the second string is less. It returns 0 if

they are identical.

The strcasecmp() function works the same way, except that the equality comparison is case

insensitive. The function call strcasecmp(“hey!”, “HEY!”) should return 0.

Searching
The comparison functions just described tell you whether one string is equal to another. To find

out if one string is contained within another, use the strpos() function (covered earlier) or the

strstr() function (or one of its relatives).

The strstr() function takes a string to search in and a string to look for (in that order). If it suc-

ceeds, it returns the portion of the string that starts with (and includes) the first instance of the

string it is looking for. If the string is not found, a false value is returned. Here is a successful search

followed by an unsuccessful search:

$string_to_search = “showsuponceshowsuptwice”;
$string_to_find = “up”;
print(“Result of looking for $string_to_find” .
 strstr($string_to_search, $string_to_find) . “
”);
$string_to_find = “down”;
print(“Result of looking for $string_to_find” .
 strstr($string_to_search, $string_to_find));

which gives us:

Result of looking for up: uponceshowsuptwice
Result of looking for down:

NOTENOTE

CAUTION CAUTION

121

 Learning PHP String Handling 7

The blank space after the colon in the second line is the result of trying to print a false value, which

prints as the empty string. The strstr() function also has an alias by the name of strchr().

Other than the name, the two functions are identical. Just as with strcmp(), strstr() has a case-

insensitive version, by the name of stristr(). (That i in the middle stands for insensitive.) It is
identical to strstr() in every way, except that the comparison treats lowercase letters as indistin-

guishable from their uppercase counterparts. The string functions we have covered so far are sum-

marized in Table 7-1.

TABLE 7-1

Simple Inspection, Comparison, and Searching Functions
Function Behavior

strlen() Takes a single string argument and returns its length as an integer.

strpos() Takes two string arguments: a string to search, and the string being searched for.
Returns the (0-based) position of the beginning of the first instance of the string if
found and a false value otherwise. It also takes a third optional integer argument,
specifying the position at which the search should begin.

strrpos() Like strpos(), except that it searches backward from the end of the string, rather
than forward from the beginning. The search string must only be one character long,
and there is no optional position argument.

strcmp() Takes two strings as arguments and returns 0 if the strings are exactly equivalent. If
strcmp() encounters a difference, it returns a negative number if the first different
byte is a smaller ASCII value in the first string, and a positive number if the smaller
byte is found in the second string.

strcasecmp() Identical to strcmp(), except that lowercase and uppercase versions of the same
letter compare as equal.

strstr() Searches its first string argument to see if its second string argument is contained in it.
Returns the substring of the first string that starts with the first instance of the second
argument, if any is found — otherwise, it returns false.

strchr() Identical to strstr().

stristr() Identical to strstr() except that the comparison is case independent.

Substring selection
Many of PHP’s string functions have to do with slicing and dicing your strings. By slicing, we mean

choosing a portion of a string; by dicing, we mean selectively modifying a string. Keep in mind that

(most of the time) even dicing functions do not change the string you started out with. Usually, such

functions return a modified copy, leaving the original argument intact.

122

 Part I Introducing PHP

The most basic way to choose a portion of a string is the substr() function, which returns a new

string that is a subsequence of the old one. As arguments, it takes a string (that the substring will be

selected from), an integer (the position at which the desired substring starts), and an optional third

integer argument that is the length of the desired substring. If no third argument is given, the sub-

string is assumed to continue until the end. (Remember that, as with all PHP arguments that deal

with numerical string positions, the numbering starts with 0 rather than 1.)

For example, the statement:

echo(substr(“Take what you need, and leave the rest behind”,
 23));

prints the string leave the rest behind, whereas the statement:

echo(substr(“Take what you need, and leave the rest behind”,
 5, 13));

prints what you need — a 13-character string starting at (0-based) position 5.

Both the start-position argument and the length argument can be negative, and in each case the neg-

ativity has a different meaning. If the start position is negative, it means that the starting character

is determined by counting backward from the end of the string, rather than forward from the begin-

ning. (A start position of –1 means start with the last character, –2 means second to last, and so on.)

Now, you might expect that a negative length would similarly imply that the substring should be

determined by counting backward from the start character rather than forward. This is not the case

— it is always true that the character at the start position is the first character in the returned string

(not the last). Instead, a negative-length argument means that the final character is determined by

counting backward from the end rather than forward from the start position.

Here are some examples, with positive and negative arguments:

$alphabet_test = “abcdefghijklmnop”;
print(“3: “ . substr($alphabet_test, 3) . “
”);
print(“-3: “ . substr($alphabet_test, -3) . “
”);
print(“3, 5: “ . substr($alphabet_test, 3, 5) . “
”);
print(“3, -5: “ . substr($alphabet_test, 3, -5) . “
”);
print(“-3, -5: “ . substr($alphabet_test, -3, -5) . “
”);
print(“-3, 5: “ . substr($alphabet_test, -3, 5) . “
”);

This gives us the output:

3: defghijklmnop
-3: nop
3, 5: defgh
3, -5: defghijk
-3, -5:
-3, 5: nop

123

 Learning PHP String Handling 7

Notice that there is an intimate relationship between the functions substr(), strstr(), and

strpos(). The substr() function selects a substring by numerical position, strstr() selects

a substring by its content, and strpos() finds the numerical position of a given substring. In the

case where we’re sure in advance that the string $containing has the string $contained as a sub-

string, the expression:

strstr($containing, $contained)

should be equivalent to the code:

substr($containing, strpos($containing, $contained))

String cleanup functions
Although they are technically substring functions, just like the others in this chapter, the functions

chop(), ltrim(), and trim() are really used for cleaning up untidy strings. They trim whitespace

off the end, the beginning, and the beginning and end, respectively, of their single string argument.

Some examples:

$original = “ More than meets the eye “;
$chopped = chop($original);
$ltrimmed = ltrim($original);
$trimmed = trim($original);
print(“The original is ‘$original’
”);
print(“Its length is “ . strlen($original) . “
”);
print(“The chopped version is ‘$chopped’
”);
print(“Its length is “ . strlen($chopped) . “
”);
print(“The ltrimmed version is ‘$ltrimmed’
”);
print(“Its length is “ . strlen($ltrimmed) . “
”);
print(“The trimmed version is ‘$ltrimmed’
”);
print(“Its length is “ . strlen($trimmed) . “
”);

The result as viewed by a browser is:

The original is ‘ More than meets the eye ‘
Its length is 28
The chopped version is ‘ More than meets the eye’
Its length is 25
The ltrimmed version is ‘More than meets the eye ‘
Its length is 26
The trimmed version is ‘More than meets the eye’
Its length is 23

The original string had three spaces at the end (subject to removal by chop() or trim()) and two

at the beginning (removed by ltrim() and trim()). We were careful to describe our result as

viewed by a browser because the multiple spaces have apparently been collapsed to one in the out-

put, as browsers will do. If we viewed the HTML source produced by PHP originally, we would still

see sequences of two and three spaces.

124

 Part I Introducing PHP

In addition to spaces, these functions remove whitespace like that denoted by the escape sequences

\n, \r, \t, and \0 (end-of-line characters, tabs, and the null character used to terminate strings in

C programs).

You will hear the name chop() more frequently, but the identical function can also be called with

the more logical name of rtrim(). Finally, notice that although chop() sounds extremely destruc-

tive, it does not harm the $original argument, which retains the same value.

String replacement
The substring functions we’ve seen so far are all about choosing a portion of the argu-

ment rather than building a genuinely new string. Enter the functions str_replace() and

substr_replace().

The str_replace() function enables you to replace all instances of a particular substring with an

alternate string. It takes three arguments: the string to be searched for, the string to replace it with

when it is found, and the string to perform the replacement on. For example:

$first_edition =
 “Burma is similar to Rhodesia in at least one way.”;
$second_edition = str_replace(“Rhodesia”, “Zimbabwe”,
 $first_edition);
$third_edition = str_replace(“Burma”, “Myanmar”,
 $second_edition);
print($third_edition);

gives us:

Myanmar is similar to Zimbabwe in at least one way.

This replacement will happen for all instances found of the search string. If our outdated encyclope-

dia could be snarfed into a single PHP string, we could update it in one pass.

One subtlety to be aware of: What happens when multiple instances of the search string overlap?

For example, with code like:

$tricky_string = “ABA is part of ABABA”;
$maybe_tricked = str_replace(“ABA”, “DEF”, $tricky_string);
print(“Substitution result is ‘$maybe_tricked’
”);

the behavior we see is:

Substitution result is ‘DEF is part of DEFBA’

which is probably as reasonable as any other alternative.

As you’ve seen, str_replace() picks out portions to replace by matching to a target string; by

contrast, substr_replace() chooses a portion to replace by its absolute position. The function

takes up to four arguments: the string to perform the replacement on, the string to replace it with,

125

 Learning PHP String Handling 7

the starting position for the replacement, and (optionally) the length of the section to be replaced.

For example:

print(substr_replace(“ABCDEFG”, “-“, 2, 3));

gives us:

AB-FG

The CDE portion of the string has been replaced with the single -. Notice that you are allowed

to replace a substring with a string of a different length. If the length argument is omitted, it is

assumed that you want to replace the entire portion of the string after the start position.

The substr_replace() function also takes negative arguments for starting position and length,

which are treated exactly the same way as in the substr() function (described in the earlier section

“Substring selection”). It is important to remember with both str_replace and substr_replace

that the original string remains unchanged by these operations.

Finally, we have a couple more whimsical functions that produce new strings from old. The
strrev() function simply returns a new string with the characters of its input in reverse order. The

str_repeat() function takes a string argument and an integer argument and returns a string that

is the appropriate number of copies of the string argument tacked together. For example:

print(str_repeat(“cheers “, 3));

gives us:

cheers cheers cheers

for the end of this section at long last.

The substring search and replacement functions are summarized in Table 7-2.

TABLE 7-2

Substring and String Replacement Functions
Function Behavior

substr() Returns a subsequence of its initial string argument, as specified by the second (position)
argument and optional third (length) argument. The substring starts at the indicated
position and continues for as many characters as specified by the length argument or until
the end of the string, if there is no length argument.

A negative position argument means that the start character is located by counting backward
from the end, whereas a negative length argument means that the end of the substring is
found by counting back from the end, rather than forward from the start position.

continued

126

 Part I Introducing PHP

TABLE 7-2 (continued)

Substring and String Replacement Functions
Function Behavior

chop(), or
rtrim()

Returns its string argument with trailing (right-hand side) whitespace removed. Whitespace
is a blank space, \n, \r, \t, and \0.

ltrim() Returns its string argument with leading (left-hand side) whitespace removed.

Trim() Returns its string argument with both leading and trailing whitespace removed.

Str_
replace()

Used to replace target substrings with another string. Takes three string arguments: a substring
to search for, a string to replace it with, and the containing string. Returns a copy of the
containing string with all instances of the first argument replaced by the second argument.

Substr_
replace()

Puts a string argument in place of a position-specified substring. Takes up to four
arguments: the string to operate on, the string to replace with, the start position of the
substring to replace, and the length of the string segment to be replaced. Returns a copy of
the first argument with the replacement string put in place of the specified substring.

If the length argument is omitted, the entire tail of the first string argument is replaced.
Negative position and length arguments are treated as in substr().

Case functions
These functions change lowercase to uppercase and vice versa. The first two (de)capitalize entire

strings, whereas the second two operate only on first letters of words.

strtolower()
The strtolower() function returns an all-lowercase string. It doesn’t matter if the original is all

uppercase or mixed. This fragment:

<?php
$original = “They DON’T KnoW they’re SHOUTING”;
$lower = strtolower($original);
echo $lower;
?>

returns the string “they don’t know they’re shouting”.

If you have been faced with extensive form-validation needs before, you might already

have noticed that strtolower() is extremely handy for use with those that still think

their e-mail addresses contain capital letters. Subsequent functions in this category will prove similarly

useful.

TIPTIP

127

 Learning PHP String Handling 7

strtoupper()
The strtoupper() function returns an all-uppercase string, regardless of whether the original was

all lowercase or mixed:

<?php
$original = “make this link stand out”;
echo(“strtoupper($original)”);
?>

ucfirst()
The ucfirst() function capitalizes only the first letter of a string:

<?php
$original = “polish is a word for which pronunciation depends on
capitalization”;
echo(ucfirst($original));
?>

ucwords()
The ucwords() function capitalizes the first letter of each word in a string:

<?php
$original = “truth or consequences”;
$capitalized = ucwords($original);
echo “While $original is a parlor game, $capitalized is a town in New
Mexico.”;
?>

Neither ucwords() nor ucfirst() converts anything into lowercase. Each makes only

the appropriate leading letters into uppercase. If there are inappropriate capital letters in

the middle of words, they will not be corrected.

Escaping functions
One of the virtues of PHP is that it is willing to talk to almost anybody. In its role as a glue language,

PHP talks to database servers, to LDAP servers, over sockets, and over the HTTP connection itself.

Frequently, it accomplishes this communication by first constructing a message string (like a data-

base query) and then shipping it off to the receiving program. Often, however, the program attaches

special meanings to certain characters, which therefore have to be escaped, meaning that the receiv-

ing program is told to take them as a literal part of the string rather than treating them specially.

Many users deal with this issue by enabling magic-quotes, which ensures that quotation marks

are escaped before strings are inserted into databases. If that’s not feasible or desirable, there

are good old-fashioned strip-slashing and add-slashing by hand. The addslashes() function

NOTENOTE

128

 Part I Introducing PHP

escapes quotation marks, double quotation marks, backslashes, and NULLs with backslashes,

because these are the characters that typically need to be escaped for database queries.

<?php
$escapedstring = addslashes(“He said, ‘I’m a dog.’“);
$query = “INSERT INTO test (quote) values (‘$escapedstring’)“;
$result = mysql_query($query) or die(mysql_error());
?>

This will prevent the SQL statement from thinking it’s finished right before the letter I. When you

pull the data back out, you’ll need to use stripslashes() to get rid of the slashes.

<?php
$query = “SELECT quote FROM test WHERE ID=1”;
$result = mysql_query($query) or die(mysql_error());
$new_row = mysql_fetch_array($result);
$quote = stripslashes($new_row[0]);

echo $quote;

The quotemeta() function escapes a wider variety of characters, all of which usually have a special

meaning in the Unix command line: ‘.’, ‘\‘ ‘+’, ‘*‘, ‘?’, ‘[‘, ‘^’, ‘]‘, ‘(‘, ‘$’, and ‘)‘.

For example, the code:

$literal_string =
 ‘These characters ($, *) are very special to me\n
’;
$qm_string = quotemeta($literal_string);
echo $qm_string;

will print:

These characters \(\$, *\) are very special to me\\n

For escaping functions specific to HTML, see the “Advanced String Functions” section in

Chapter 22.

Printing and output
The workhorse constructs for printing and output are print and echo, which we cover in detail in

Chapter 4. The standard way to print the value of variables to output is to include them in a doubly

quoted string (which will interpolate their values) and then give that string to print or echo.

If you need even more tightly formatted output, PHP also offers printf() and sprintf(), which

are modeled on C functions of the same name. The two functions take identical arguments: a special

format string (described later in this section) and then any number of other arguments, which will

be spliced into the right places in the format string to make the result.

The only difference between printf() and sprintf() is that printf() sends the resulting string

directly to output, whereas sprintf() returns the result string as its value.

CROSS-REFCROSS-REF

129

 Learning PHP String Handling 7

To C programmers: This sprintf() function is slightly different from C’s version in that

you need not supply an allocated string for sprintf() to write into — PHP allocates the

result string for you.

The complicated bit about these functions is the format string. Every character that you put in the

string will show up literally in the result, except the % character and characters that immediately

follow it. The % character signals the beginning of a conversion specification, which indicates how to

print one of the arguments that follow the format string.

After the %, there are six elements that make up the conversion specification, some of which are

optional: padding, alignment, minimum width, precision, and type.

An optional ■■ sign character used for numbers to indicate whether the number will be

negative (-).

The single (optional) ■■ padding character is either a 0 or a space (). This character is used to

fill any space that would otherwise be unused but that you have insisted (with the mini-

mum width argument) be filled with something. If this padding character is not given, the

default is to pad with spaces.

The optional ■■ alignment character (-) indicates whether the printed value should be left- or

right-justified. If present, the value will be left-justified; if absent, it will be right-justified.

An optional ■■ minimum width number that indicates how many spaces this value should take

up, at a minimum. (If more spaces are needed to print the value, it will overflow beyond its

bounds.)

An optional precision specifier is written as a dot (■■ .) followed by a number. It indicates

how many decimal points of precision a double should print with. (This has no effect on

printing things other than doubles.)

A single character indicating how the ■■ type of the value should be interpreted. The f char-

acter indicates printing as a double, the s character indicates printing as a string, and then

the rest of the possible characters (b, c, d, o, x, X) mean that the value should be inter-

preted as an integer and printed in various formats. Those formats are b for binary, c for

printing the character with the corresponding ASCII values, o for octal, x for hexadecimal

(with lowercase letters) and X for hexadecimal with uppercase letters.

Here’s an example of printing the same double in several different ways:

<pre>
<?php
$value = 3.14159;
printf(“%f,%10f,%-010f,%2.2f\n”,
 $value, $value, $value, $value);
?>
</pre>

gives us:

3.141590, 3.141590,3.141590000000000, 3.14

NOTENOTE

130

 Part I Introducing PHP

The <pre></pre> construct is HTML that tells the browser to format the enclosed block literally,

without collapsing many spaces into one, and so on.

Summary
Strings are sequences of characters, and the string is one of the eight basic data types in PHP. Unlike

in some other languages, there is no distinct character type, since single characters behave as strings

of length 1. Literal strings are specified in code by either single (‘) or double (“) quotation marks.

Singly quoted strings are interpreted nearly literally, while doubly quoted strings interpret a number

of escape sequences and automatically interpolate variable values.

The main string operator is ‘.’, which concatenates two strings together. In addition, there is a

dizzying array of string functions, which help you inspect, compare, search, extract, chop, replace,

slice, and dice strings to your heart’s content. For the most sophisticated string-manipulation needs,

PHP supports both POSIX and Perl-compatible regular expressions (covered in Chapter 22).

131

A
rrays are definitely one of the coolest and most flexible features of

PHP. Unlike vector arrays from other languages (C, C++, Pascal),

PHP arrays can store data of varied types and automatically orga-

nize it for you in a large variety of ways.

This chapter treats arrays and array functions in some depth.

For a very quick introduction to the syntax and use of arrays,

see Chapter 4. For a more complete survey of advanced array functions, see

Chapter 21.

The Uses of Arrays
An array is a collection of variables indexed and bundled into a single, eas-

ily referenced supervariable that offers an easy way to pass multiple values

between lines of code, functions, and even pages. Throughout much of this

chapter, we will be looking at the inner workings of arrays and exploring

all the built-in PHP functions that manipulate them. Before we get too deep

into that, however, it’s worth listing the common ways that arrays are used

in real PHP code.

Many built-in PHP environment variables are in the form of arrays (for

example, $_SESSION, which contains all the variable names and values

being propagated from page to page via PHP’s session mechanism). If you

want access to them, you need to understand, at a minimum, how to refer-

ence arrays.

Almost any situation that calls for a number of pieces of data to be pack-

aged and handled as one is appropriate for a PHP array.

CROSS-REFCROSS-REF

Learning Arrays

IN THIS CHAPTER

An all-purpose data type

Storing and retrieving values

Multidimensional arrays

Iteration

132

 Part I Introducing PHP

What Are PHP Arrays?
PHP arrays are associative arrays with a little extra machinery thrown in. The associative part means

that arrays store element values in association with key values rather than in a strict linear index

order. (If you have seen arrays in other programming languages, they are likely to have been vector
arrays rather than associative arrays — see the related sidebar for an explanation of the difference.)

If you store an element in an array, in association with a key, all you need to retrieve it later from

that array is the key value. For example, storage is as simple as this:

$state_location[‘San Mateo’] = ‘California’;

which stores the element ‘California’ in the array variable $state_location, in association

with the lookup key ‘San Mateo’. After this has been stored, you can look up the stored value by

using the key, like so:

$state = $state_location[‘San Mateo’]; // equals ‘California’

Simple, no?

If all you want arrays for is to store key/value pairs, the preceding information is all you need to

know. Similarly, if you want to associate a numerical ordering with a bunch of values, all you have to

do is use integers as your key values, as in:

$my_array[1] = “The first thing”;
$my_array[2] = “The second thing”; // and so on ...

For Perl programmers: Arrays in PHP are much like hashes in Perl, with some syntactic

differences. For one thing, all variables in PHP are denoted with a leading $, not just sca-

lar variables. Second, even though the array is associative, the indices are grouped by square brackets

([]) rather than curly braces ({}). Finally, there is no array or list type indexed only by integers. The

convention is to use integers as associative indices, and the array itself maintains an internal ordering

for iteration purposes.

In addition to the machinery that makes this kind of key/value association possible, arrays track

some other things behind the scenes. Because of this, we sometimes treat them as other kinds of

data structures. As you will see, arrays can be multidimensional. They can store values in associa-

tion with a sequence of key values rather than a single key. Also, arrays automatically maintain an

ordered list of the elements that have been inserted in them, independent of what the key values

happen to be. This makes it possible to treat arrays as linked lists. In general, we will reveal the

workings of this extra machinery as we explore the functions that use it.

A note for C++ programmers: You should be aware that arrays can handle some of the

same tasks that require the use of template libraries in C++. Much of the reason for hav-

ing templates in the first place is to get around restrictions having to do with strict typing of data. PHP’s

looser typing system makes it possible, for example, to write general algorithms that iterate over the

contents of arrays without committing to the type of the array elements themselves.

NOTENOTE

NOTENOTE

133

 Learning Arrays 8

Associative Arrays versus Vector Arrays

If you have programmed in languages like C, C++, and Pascal, you are probably used to a particular usage
of the word array, one that doesn’t match the PHP usage very well at all. A more specific term for a C-style

array is a vector array, whereas a PHP-style array is an associative array.

In a vector array, the contained elements all need to be of the same type, and usually the language compiler
needs to know in advance how many such elements there are likely to be. For example, In C you might declare
an array of 100 double-precision floating-point numbers with a statement like:

double my_array[100]; // This is C, not PHP!

The restriction on types and the advance declaration of size have an associated benefit: Vector arrays are very
fast, both for storage and lookup. The reason is that the compiler will usually lay out the array in a contiguous
block of computer memory, as large as the size of the element type multiplied by the number of elements.
This makes it very easy for the programming language to locate a particular array slot — all it needs to know
is the starting memory address of the array, the size of the element type, and the index of the element it wants
to look up, and it can directly compute the memory address of that slot.

By contrast, PHP arrays are associative (and so some would call them hashes, rather than arrays). Rather than
having a fixed number of slots, PHP creates array slots as new elements that are added to the array. Rather
than requiring elements to be of the same type, PHP arrays have the same type-looseness that PHP variables
have — you can assign arbitrary PHP values to be array elements. Finally, because vector arrays are all about
laying out their elements in numerical order; the keys used for lookup and storage must be integer numbers.
PHP arrays can have keys of arbitrary type, instead, including string keys. So, you could have successive array
assignments like:

$my_array[1] = 1;
$my_array[‘orange’] = 2;
$my_array[3] = 3;

without any paradox. The result is that your array has three values (1, 2, 3), each of which is stored in associa-
tion with a key (1, ‘orange’, and 3, respectively).

The extra flexibility of associative arrays comes at a price, because there is a little bit more going on between
your code and the actual computation of a memory address than is true with vector arrays. For most web
programming purposes, however, this extra access time is not a significant cost.

The fact that integers are legal keys for PHP arrays means that you can easily imitate the behavior of a vector
array, simply by restricting your code to use only integers as keys.

A general note for programmers familiar with other languages: PHP does not need very

many different kinds of data structures, in part because of the great flexibility offered by

PHP arrays. By careful choice of a subset of array functions, you can make arrays pretend to act like

vector arrays, structure/record types, linked lists, hash tables, or stacks and queues — data structures

that in other languages either require their own data types or less common language features such as

pointers and explicit memory management.

NOTENOTE

134

 Part I Introducing PHP

Creating Arrays
There are three main ways to create an array in a PHP script: by assigning a value into one (and

thereby implicitly creating it), by using the array() construct, and by calling a function that hap-

pens to return an array as its value.

Direct assignment
The simplest way to create an array is to act as though a variable is already an array and assign a

value into it, like this:

$my_array[1] = “The first thing in my array that I just made”;

If $my_array was an unbound variable (or bound to a nonarray variable) before this statement, it

will now be a variable bound to an array with one element. If instead $my_array was already an

array, the string will be stored in association with the integer key 1. If no value was associated with

that number before, a new array slot will be created to hold it; if a value was associated with 1, the

previous value will be overwritten. (You can also assign into an array by omitting the index entirely

as in $my_array[], described later in this chapter.)

The array() construct
The other way to create an array is via the array() construct, which creates a new array from the

specification of its elements and associated keys. In its simplest version, array() is called with no

arguments, which creates a new empty array. In its next simplest version, array() takes a comma-

separated list of elements to be stored, without any specification of keys. The result is that the ele-

ments are stored in the array in the order specified and are assigned integer keys beginning with

zero. For example, the statement:

$fruit_basket = array(‘apple’, ‘orange’, ‘banana’, ‘pear’);

causes the variable $fruit_basket to be assigned to an array with four string elements (‘apple’,

‘banana’, ‘orange’, ‘pear’), with the indices 0, 1, 2, and 3, respectively. In addition (as you’ll

see in the “Iteration” section later in this chapter), the array will remember the order in which the

elements were stored.

The assignment to $fruit_basket, then, has exactly the same effect as the following:

$fruit_basket[0] = ‘apple’;
$fruit_basket[1] = ‘orange’;
$fruit_basket[2] = ‘banana’;
$fruit_basket[3] = ‘pear’;

assuming that the $fruit_basket variable was unbound at the first assignment. The same effect

could also have been accomplished by omitting the indices in the assignment, like so:

$fruit_basket[] = ‘apple’;
$fruit_basket[] = ‘orange’;

135

 Learning Arrays 8

$fruit_basket[] = ‘banana’;
$fruit_basket[] = ‘pear’;

In this case, PHP again assumes that you are adding sequential elements that should have numerical

indices counting upward from zero.

Yes, the default numbering for array indices starts at zero, not one. This is the conven-

tion for arrays in most programming languages. We’re not sure why computer scientists

start counting at zero (mathematicians, like everyone else in the world, start with one), but it prob-

ably has its origin in the kind of pointer arithmetic that calculates memory addresses for vector arrays.

Addresses for successive elements of such arrays are found by adding successively larger offsets to the

array’s address, but the offset for the first element is zero (because the first element’s address is the

same as the array’s address).

Specifying indices using array()
The simple example of array() in the preceding section assigns indices to our elements, but those

indices will be the integers, counting upward from zero — we’re not getting a lot of choice in the

matter. As it turns out, array() offers us a special syntax for specifying what the indices should be.

Instead of element values separated by commas, you supply key/value pairs separated by commas,

where the key and value are separated by the special symbol =>.

Consider the following statement:

$fruit_basket = array(0 => ‘apple’, 1 => ‘orange’,
 2 => ‘banana’, 3 => ‘pear’);

Evaluating it will have exactly the same effect as our earlier version — each string will be stored in

the array in succession, with the indices 0, 1, 2, 3 in order. Instead, however, we can use exactly the

same syntax to store these elements with different indices:

$fruit_basket = array(‘red’ => ‘apple’, ‘orange’ => ‘orange’,
 ‘yellow’ => ‘banana’, ‘green’ => ‘pear’);

This gives us the same four elements, added to our new array in the same order, but indexed by

color names rather than numbers. To recover the name of the yellow fruit, for example, we just

evaluate the expression:

$fruit_basket[‘yellow’] // will be equal to ‘banana’

Finally, as we said earlier, you can create an empty array by calling the array function with no

arguments. For example:

$my_empty_array = array();

creates an array with no elements. This can be handy for passing to a function that expects an array

as argument.

NOTENOTE

136

 Part I Introducing PHP

Functions returning arrays
The final way to create an array in a script is to call a function that returns an array. This may be a user-

defined function, or it may be a built-in function that makes an array via methods internal to PHP.

Many database-interaction functions, for example, return their results in arrays that the functions

create on the fly. Other functions exist simply to create arrays that are handy to have as grist for later

array-manipulating functions. One such is range(), which takes two integers as arguments and

returns an array filled with all the integers (inclusive) between the arguments. In other words:

$my_array = range(1,5);

is equivalent to:

$my_array = array(1, 2, 3, 4, 5);

Retrieving Values
After we have stored some values in an array, how do we get them out again?

Retrieving by index
The most direct way to retrieve a value is to use its index. If we have stored a value in $my_array at

index 5, $my_array[5] should evaluate to the stored value. If $my_array has never been assigned,

or if nothing has been stored in it with an index of 5, $my_array[5] will behave like an unbound

variable.

The list() construct
There are a number of other ways to recover values from arrays without using keys, most of which

exploit the fact that arrays are silently recording the order in which elements are stored. We cover

this in more detail in this chapter’s “Iteration” section, but one such example is list(), which is

used to assign several array elements to variables in succession. Suppose that the following two

statements are executed:

$fruit_basket = array(‘apple’, ‘orange’, ‘banana’);
list($red_fruit, $orange_fruit) = $fruit_basket;

This will assign the string ‘apple’ to the variable $red_fruit and the string ‘orange’ to the

variable $orange_fruit (with no assignment of ‘banana’, because we didn’t supply enough

variables). The variables in list() will be assigned to elements of the array in the order they were

originally stored in the array. Notice the unusual behavior here — the list() construct is on the

left-hand side of the assignment operator (=), where we normally find only variables.

137

 Learning Arrays 8

In some sense, list() is the opposite or inverse of array() because array() packages its argu-

ments into an array, and list() takes the array apart again into individual variable assignments. If

we evaluate:

list($first, $second) = array($first, second);

the original values of $first and $second will be assigned to those variables again, after having

been briefly stored in an array.

We have been careful to refer to both array() and list() as constructs, rather than

functions. This is because they are not in fact functions — like certain other specialized

PHP language features (if, while, function, and so on) they are interpreted specially by the lan-

guage itself and are not run through the usual routine of function-call interpretation. Remember that

the arguments to a function call are evaluated before the function is really invoked on those arguments,

so constructs that need to do other kinds of interpretation on what they are given cannot be imple-

mented as function calls. It’s a useful exercise to look hard at the example uses of both array() and

list() to figure out why treating them as function calls could not result in the behavior advertised.

Multidimensional Arrays
So far, the array examples we have looked at have all been one-dimensional, with only one level

of bracketed keys. However, PHP can easily support multidimensional arrays, with arbitrary num-

bers of keys. And just as with one-dimensional arrays, there is no need to declare our intentions in

advance — the first reference to an array variable can be an assignment like:

$multi_array[1][2][3][4][5] = “deeply buried treasure”;

That is a five-dimensional array with successive keys that happen, in this case, to be five successive

integers.

Actually, in our opinion, thinking of arrays as multidimensional makes matters more confusing

than they need to be. Instead, just remember that the values that are stored in arrays can themselves

be arrays, just as legitimately as they can be strings or numbers. The multiple-index syntax in the

preceding example is simply a concise way to refer to a (four-dimensional) array that is stored with

a key of 1 in $multi_array, which in turn has a (three-dimensional) array stored in it, and so on.

Note also that you can have different depths of reference in different parts of the array, like this:

$multi_level_array[0] = “a simple string”;
$multi_level_array[1][‘contains’] = “a string stored deeper”;

The integer key of 0 stores a string, and the key of 1 stores an array that, in turn, has a string in it.

However, you cannot continue on with this assignment:

$multi_level_array[0][‘contains’] = “another deep string”;

without the result of losing the first assignment to ‘a simple string’. The key of 0 can be used to

store a string or another array, but not both at once.

NOTENOTE

138

 Part I Introducing PHP

If we remember that multidimensional arrays are simply arrays that have other arrays stored in

them, it’s easier to see how the array() creation construct generalizes. In fact, even this seemingly

complicated assignment is not that complicated:

$cornucopia = array(‘fruit’ =>
 array(‘red’ => ‘apple’,
 ‘orange’ => ‘orange’,
 ‘yellow’ => ‘banana’,
 ‘green’ => ‘pear’),
 ‘flower’ =>
 array(‘red’ => ‘rose’,
 ‘yellow’ => ‘sunflower’,
 ‘purple’ => ‘iris’));

It is simply an array with two values stored in association with keys. Each of these values is an array

itself. After we have made the array, we can reference it like this:

$kind_wanted = ‘flower’;
$color_wanted = ‘purple’;
print(“The $color_wanted $kind_wanted is “ .
 $cornucopia[$kind_wanted][$color_wanted]);

See the browser output:

The purple flower is iris

There’s a reason that we used the string concatenation operator, ., in the preceding

print statement, rather than simply embedding the $cornucopia[$kind_wanted]
[$color_wanted] in our print string as we do with other variables. PHP3 string parsing can be

confused by multiple array indices within a double-quoted string, so it needs to be concatenated sepa-

rately. PHP since version 4 handles this in a better way — you are safe embedding array references in a

string as long as you enclose the reference in curly braces, like this:

print(“The thing we want is
{$cornucopia[$kind_wanted][$color_wanted]}“);

Finally, notice that there is no great penalty for misindexing into a multidimensional array when we

are trying to retrieve something; if no such key is found, the expression is treated like an unbound

variable. So, if we try the following instead:

$kind_wanted = ‘fruit’;
$color_wanted = ‘purple’; //uh-oh, we didn’t store any plums
print(“The $color_wanted $kind_wanted is “ .
 $cornucopia[$kind_wanted][$color_wanted]);

The worst that happens is the unsatisfying:

The purple fruit is

NOTENOTE

139

 Learning Arrays 8

This is the worst thing that happens, of course, unless you have raised your error_reporting level

to E_ALL, as we advise you to do at some points in this book. In that case, you will get a notice mes-

sage about an undefined index (‘purple’) just as you would if you had an unbound variable.

Inspecting Arrays
Now we can make arrays, store values in arrays, and then pull the values out again when we want

them. Table 8-1 summarizes a few other functions we can use to ask questions of our arrays.

TABLE 8-1

Simple Functions for Inspecting Arrays
Function Behavior

is_array() Takes a single argument of any type and returns a true value if the argument
is an array, and false otherwise.

count() Takes an array as argument and returns the number of nonempty elements
in the array. (This will be 1 for strings and numbers.)

sizeof() Identical to count().

in_array() Takes two arguments: an element (that might be a value in an array), and
an array (that might contain the element). Returns true if the element is
contained as a value in the array, false otherwise. (Note that this does not
test for the presence of keys in the array.)

isset($array[$key]) Takes an array[key] form and returns true if the key portion is a
valid key for the array. (This is a specific use of the more general function
isset(), which tests whether a variable is bound.)

Note that all of these functions work on only the depth of the array specified, so that testing for val-

ues layers deep in a multidimensional array requires that you specify out that number of places. In

the case of our preceding $cornucopia example, for instance:

count($cornucopia); // what do you expect here? 2? 7? 9?

returns a 2, while

count($cornucopia[fruit]);

returns 4.

140

 Part I Introducing PHP

Deleting from Arrays
Deleting an element from an array is simple, exactly analogous to getting rid of an assigned variable.

Just call unset(), as in the following:

$my_array[0] = ‘wanted’;
$my_array[1] = ‘unwanted’;
$my_array[2] = ‘wanted again’;
unset($my_array[1]);

Assuming that $my_array was unbound when we started, at the end it has two values (‘wanted’,

‘wanted again’), in association with two keys (0 and 2, respectively). It is as though we had

skipped the original ‘unwanted’ assignment (except that the keys are numbered differently).

Note that this is not the same as setting the contents to an empty value. If, instead of calling

unset(), we had the following statement:

$my_array[1] = ‘’;

at the end we would have three stored values (‘wanted’, ‘’, ‘wanted again’) in association with

three keys (0, 1, and 2, respectively).

Iteration
We’ve seen how to put things into arrays, how to find them once we have put them there, and how

to delete them when we don’t want them anymore. What we need next is a technique for dealing

with array elements in bulk. Iteration constructs help us do this by letting us step or loop through

arrays, element by element or key by key.

We’ll first delve briefly into the internal representation of arrays to understand how PHP supports

iteration. (Although important, this subsection is skippable — if you want to use it but don’t want to

know how it works, you can jump down to the section titled “Using iteration functions.”)

Support for iteration
In addition to storing values in association with their keys, PHP arrays silently build an ordered

list of the key/value pairs that are stored, in the order that they are stored. The reason for this is to

support operations that iterate over the entire contents of an array. (Notice that this is difficult to

do simply by building a loop that increments an index, because array indices are not necessarily

numerical.)

There is, in fact, sort of a hidden pointer system built into arrays. Each stored key/value pair points

to the next one, and one side effect of adding the first element to an array is that a current pointer

points to the very first element, where it will stay unless disturbed by one of the iteration functions.

141

 Learning Arrays 8

Each array remembers a particular stored key/value pair as being the current one, and

array iteration functions work in part by shifting that current marker through the internal

list of keys and values. Although we will call this marker the current pointer, PHP does not support full

pointers in the sense that C and C++ programmers may be used to, and this usage of the word will turn

up only in the context of iterating through arrays.

This linked-list pointer system is an alternative way to inspect and manipulate arrays, which exists

alongside the system that allows key-based lookup and storage. Figure 8-1 shows an abstract view

(not necessarily reflecting the real implementation) of how these systems locate elements in an array.

FIGURE 8-1

Internal structure of an array

Hashing
lookup

Linked list
structure

current

Index Value

Index Value

Index Value

Index Value

Iteration
functions

Index-based
functions

Using iteration functions
To explore the iteration functions, let’s construct a sample array that we can iterate over.

$major_city_info = array();
$major_city_info[0] = ‘Chicago’;

NOTENOTE

142

 Part I Introducing PHP

$major_city_info[‘Chicago’] = ‘United States’;
$major_city_info[1] = ‘Stockholm’;
$major_city_info[‘Stockholm’] = ‘Sweden’;
$major_city_info[2] = ‘Montreal’;
$major_city_info[‘Montreal’] = ‘Canada’;

In this example, we created an array and stored some names of cities in it, in association with

numerical indices. We also stored the names of the relevant countries into the array, indexed by the

city names. (We could have accomplished all this with one big call to array(), but the separate

statements make the structure of the array somewhat clearer.)

Now, we can use the array key system to pull out the data we have stored. If we want to rely on the

convention in the preceding example (cities stored with numerical indices, countries stored with

city-name indices), we can write a function that prints the city and the associated country, like this:

function city_by_number ($number_index, $city_array)
{
 if (IsSet($city_array[$number_index]))
 {
 $the_city = $city_array[$number_index];
 $the_country = $city_array[$the_city];
 print(“$the_city is in $the_country
”);
 }
}
city_by_number(0, $major_city_info);
city_by_number(1, $major_city_info);
city_by_number(2, $major_city_info);

If we have set $major_city, as in the previous block of code, the browser output we should expect is:

Chicago is in United States
Stockholm is in Sweden
Montreal is in Canada

Now, this method of retrieval is fine when we know how the array is structured and we know what

all the keys are, but what if you would simply like to print everything that an array contains?

Our favorite iteration method: foreach
Our favorite construct for looping through an array is foreach. Although it is probably inherited

from Perl’s foreach, it has a somewhat odd syntax (which is not the same as Perl’s odd syntax). It

comes in two flavors — which one you decide to use will depend on whether you care about the

array’s keys or just the values.

foreach ($array_variable as $value_variable) {
 // .. do something with the value in $value_variable
} // Note that this is an example template, not real PHP code

143

 Learning Arrays 8

foreach ($array_variable as $key_var => $value_var) {
// .. do something with $key_var and/or $value_var
}

Although in the preceding pseudocode we assume that the array of interest is in the variable

$array_variable, you can have any expression that evaluates to an array in that position, for

example:

foreach (function_returning_array() as $value_variable) {
 // .. do something with the value in $value_variable
}

Like array() and list(), but unlike the genuine iteration functions in the rest of this

section, foreach is a language construct, not a function. (See the earlier note about

list() for an explanation of the difference.)

As an example, let’s write a function to print all the names from our sample array:

function print_all_foreach ($city_array)
{
 foreach ($city_array as $name_value) {
 print(“$name_value
”);
 }
}
print_all_foreach($major_city_info);
print_all_foreach($major_city_info);// again, as an experiment

As output, we get all the names, in the order we stored them, twice over:

Chicago
United States
Stockholm
Sweden
Montreal
Canada
Chicago
United States
Stockholm
Sweden
Montreal
Canada

We printed the contents twice to show that calling the function is repeatable.

Iterating with current() and next()
We like foreach, but it is really only good for situations where you want to simply loop through an

array’s values. For more control, let’s look at current() and next().

NOTENOTE

144

 Part I Introducing PHP

The current() function returns the stored value that the current pointer points to. (Refer back to

Figure 8-1 for a diagram of the array internals.) When an array is newly created with elements, the

element pointed to will always be the first element. The next() function first advances that pointer

and then returns the current value pointed to. If the next() function is called when the current

pointer is already pointing to the last stored value and, therefore, runs off the end of the array, the

function returns a false value.

As an example, we can print out an array’s contents with the iteration functions current() and

next(). (Notice that the final function call is repeated.)

function print_all_next($city_array)
{ // warning--doesn’t quite work. See the function each()
 $current_item = current($city_array);
 if ($current_item)
 print(“$current_item
”);
 else
 print(“There’s nothing to print”);
 while($current_item = next($city_array))
 print(“$current_item
”);
}
print_all_next($major_city_info);
print_all_next($major_city_info);// again, to see what happens

There is a gotcha lurking in the preceding code example, which doesn’t bite us in this

particular example but makes this function untrustworthy as a general method for find-

ing everything in an array. The problem is that we may have stored a false value in the array, which our

while loop won’t be able to distinguish from the false value that next() returns when it has run out

of array elements. See the discussion of the each() function later in this chapter under “Empty values

and the each() function” for a solution.

When we execute this array-printing code, we get the following again:

Chicago
United States
Stockholm
Sweden
Montreal
Canada
Chicago
United States
Stockholm
Sweden
Montreal
Canada

Now, how is it that we are seeing the same thing from the second call to print_all_next()? How

did the current pointer get back to the beginning to start all over again the second time? The answer

NOTENOTE

145

 Learning Arrays 8

lies in the fact that PHP function calls are call-by-value, meaning that they copy their arguments

rather than operating directly on them. Both of the function calls, then, are getting a fresh copy of

their array argument, which has never itself been disturbed by a call to next().

For more on under what circumstances functions copy their arguments rather than oper-

ating on them directly, see Chapter 5.

We can test this explanation by passing the arrays by reference rather than by value. If we define the

same function but call it with ampersands (&) like this:

print_all_next(&$major_city_info);
print_all_next(&$major_city_info);// again

We get the following printing behavior:

Chicago
United States
Stockholm
Sweden
Montreal
Canada
There’s nothing to print

The trick we used to test the array behavior (passing a variable reference to a function)

has been deprecated, so you may get a warning when running this code, in addition to

seeing the results printed above.

The reason is that this time the current pointer of the global version of the array was moved by the

first function call.

Most of the iteration functions have both a returned value and a side effect. In the case

of the functions next(), prev(), reset(), and end(), the side effect is to change the

position of the internal pointer, and what is returned is the value from the key/value pair pointed to

after the pointer’s position is changed.

Starting over with reset()
In the preceding section, we wrote a function intended to print out all the values in an array, and we

saw how it could fail if the array’s internal pointer did not start off at the beginning of the list of key/

value pairs. The reset() function gives us a way to “rewind” that pointer to the beginning — it sets

the pointer to the first key/value pair and then returns the stored value. We can use it to make our

printing function more robust by replacing the call to current() with a call to reset().

function print_all_array_reset($city_array)
{ // warning--still not reliable. See the function each()
 $current_item = reset($city_array); //rewind, return value
 if ($current_item)
 print(“$current_item
”);

CROSS-REFCROSS-REF

NOTENOTE

NOTENOTE

146

 Part I Introducing PHP

 else
 print(“There’s nothing to print”);
 while($current_item = next($city_array))
 print(“$current_item
”);
}

This function is somewhat more predictable in that it will always start with the first element,

regardless of the pointer’s location in the array it is handed. (Whether this is a good idea depends,

of course, on what the function is used for and whether its arguments are passed by value or by

reference.)

Perhaps confusingly, we use our call to reset() in the preceding example both for its side effect

(rewinding the pointer) and for its return value (the first value stored). Alternatively, we could

replace the first real line of the function body with these two lines:

reset($city_array); // rewind to the first element
$current_item = current($city_array); // the first value

Reverse order with end() and prev()
We have seen the functions next(), which moves the current pointer ahead by one, and reset(),

which rewinds the pointer to the beginning. Analogously, there are also the functions prev(),

which moves the pointer back by one, and end(), which jumps the pointer to the last entry in the

list. We can use these, for example, to print our array entries in reverse order.

function print_all_array_backwards($city_array)
{ // warning--still not reliable. See the function each()
 $current_item = end($city_array); //fast-forward to last
 if ($current_item)
 print(“$current_item
”);
 else
 print(“There’s nothing to print”);
 while($current_item = prev($city_array))
 print(“$current_item
”);
}
print_all_array_backwards($major_city_info);

If we call this on the same $major_city_info data as in previous examples, we get the same print-

out in reverse order:

Canada
Montreal
Sweden
Stockholm
United States
Chicago

147

 Learning Arrays 8

Extracting keys with key()
So far, we have printed only the values stored in arrays, even though we are storing keys as well. The

keys are also retrievable from the internal linked list of an array by using the key() function — this

acts just like current() except that it returns the key of a key/value pair, rather than the value. (Refer

to Figure 8-1.) Using the key() function, we can modify one of our earlier printing functions to print

keys as well as values.

function print_keys_and_values($city_array)
{ // warning--See the discussion of each() below
 reset($city_array);
 $current_value = current($city_array);
 $current_key = key($city_array);
 if ($current_value)
 print(“Key: $current_key; Value: $current_value
”);
 else
 print(“There’s nothing to print”);
 while($current_value = next($city_array))
 {
 $current_key = key($city_array);
 print(“Key: $current_key; Value: $current_value
”);
 }
}
print_keys_and_values($major_city_info);

With the same data as before, this gives us the browser output:

Key: 0; Value: Chicago
Key: Chicago; Value: United States
Key: 1; Value: Stockholm
Key: Stockholm; Value: Sweden
Key: 2; Value: Montreal
Key: Montreal; Value: Canada

Empty values and the each() function
We have written several functions that print the contents of arrays by iterating through them and,

as we have pointed out, all but the foreach version have the same weakness. Each one of them

tests for completion by seeing whether next() returns a false value. This will reliably happen

when the array runs out of values, but it will also happen if and when we encounter a false value

that we have actually stored. False values include the empty string (“”), the number 0, and the

Boolean value FALSE, any or all of which we might reasonably store as a data value for some task

or other.

To the rescue comes each(), which is somewhat similar to next() but has the virtue of return-

ing false only after it has run out of array to traverse. Oddly enough, if it has not run out, each()

returns an array itself, which holds both keys and values for the key/value pair it is pointing at. This

148

 Part I Introducing PHP

characteristic makes each() confusing to talk about because you need to keep two arrays straight:

the array that you are traversing and the array that each() returns every time that it is called. The

array that each() returns has the following four key/value pairs:

Key: ■■ 0; Value: current-key

Key: ■■ 1; Value: current-value

Key: ■■ ‘key’; Value: current-key

Key: ■■ ‘value’; Value: current-value

The current-key and current-value are the key and value from the array being traversed. In other

words, the returned array packages up the current key/value pair from the traversed array and offers

both numerical and string indices to specify whether you are interested in the key or the value.

In addition to having a different type of return value, each() differs from next() in

that each() returns the value that was pointed to before moving the current pointer

ahead, whereas next() returns the value after the pointer is moved. This means that if you start with

a current pointer pointing to the first element of an array, successive calls to each() will cover each

array cell, whereas successive calls to next() will skip the first value.

We can use each() to write a more robust version of a function to print all keys and values in

an array:

function print_keys_and_values_each($city_array)
{ // reliably prints everything in array
 reset($city_array);
 while ($array_cell = each($city_array))
 {
 $current_value = $array_cell[‘value’];
 $current_key = $array_cell[‘key’];
 print(“Key: $current_key; Value: $current_value
”);
 }
}
print_keys_and_values_each($major_city_info);

Applying this function to our standard sample array gives the following browser output:

Key: 0; Value: Chicago
Key: Chicago; Value: United States
Key: 1; Value: Stockholm
Key: Stockholm; Value: Sweden
Key: 2; Value: Montreal
Key: Montreal; Value: Canada

NOTENOTE

149

 Learning Arrays 8

This is exactly the same as was produced by our earlier function print_keys_and_values(). The

difference is that our new function will not stop prematurely if one of the values is false or empty.

Walking with array_walk()
Our last iteration function lets you pass an arbitrary function of your own design over an array,

doing whatever your function pleases with each key/value pair. The array_walk() function takes

two arguments: an array to be traversed and the name of a function to apply to each key/value pair.

(It also takes an optional third argument, discussed later in this section.)

The function that is passed in to array_walk() should take two (or three) arguments. The first

argument will be the value of the array cell that is visited, and the second argument will be the

key of that cell. For example, here is a function that prints a descriptive statement about the string

length of an array value:

function print_value_length($array_value, $array_key_ignored)
{
 $the_length = strlen($array_value);
 print(“The length of $array_value is $the_length
”);
}

(Notice that this function intentionally does nothing with the second argument.) Now let’s pass this

function over our standard sample array using array_walk():

array_walk($major_city_info, ‘print_value_length’);

which gives the browser output:

The length of Chicago is 7
The length of United States is 13
The length of Stockholm is 9
The length of Sweden is 6
The length of Montreal is 8
The length of Canada is 6

The final flexibility that array_walk() offers is accepting an optional third argument that, if pres-

ent, will be passed on, in turn, as a third argument to the function that is applied. This argument

will be the same throughout the array’s traversal, but it offers an extra source of runtime control for

the passed function’s behavior.

You should not alter an array while you are iterating through the array using array_
walk(). There is no guarantee how array_walk() will behave if you do this.

Table 8-2 shows a summary of the behavior of the array iteration functions that we covered in this

section. Notice that foreach and list are not included; they are not functions.

CAUTION CAUTION

150

 Part I Introducing PHP

TABLE 8-2

Functions for Iterating over arrays
Function Arguments Side Effect Return Value

current() One array argument None. The value from the key/value
pair currently pointed to by the
internal “current” pointer (or
false if no such value).

next() One array argument Advances the pointer by
one. If already at the last
element, it will move the
pointer “past the end,”
and subsequent calls to
current() will return
false.

The value pointed to after the
pointer has been advanced (or
false if no such value).

prev() One array argument Moves the pointer back
by one. If already at the
first element, will move
the pointer “before the
beginning.”

The value pointed to after the
pointer has been moved back
(or false if no such value).

reset() One array argument Moves the pointer back
to point to the first key/
value pair, or “before the
beginning” if the array is
empty.

The first value stored in the
array, or false for an empty
array.

end() One array argument Moves the pointer ahead
to the last key/value pair.

The last value that is currently
in the list of key/value pairs.

pos() One array argument None. (This function is an
alias for current().)

The value of the key/value pair
that is currently pointed to.

each() One array argument Moves the pointer ahead
to the next key/value pair.

An array that packages the
keys and values of the key/
value pair that was current
before the pointer was moved
(or false if no such pair). The
returned array stores the key
and value under its own keys
0 and 1, respectively, and also
under its own keys ‘key’ and
‘value’.

151

 Learning Arrays 8

Function Arguments Side Effect Return Value

array_
walk()

1) An array
argument, 2) the
name of a two- (or
three-) argument
function to call on
each key/value, and
3) an optional third
argument.

This function invokes
the function named by
its second argument on
each key/value pair. Side
effects depend on the
side effects of the passed
function.

(Returns 1.)

Summary
The array is a basic PHP data type and plays the role of both record types and vector array types in

other languages. PHP arrays are associative, meaning that they store their values in association with

unique keys or indices. Indices can be either strings or numbers, and are denoted as indices by square

brackets. (The expression $my_array[4] refers to the value stored in $my_array in association

with the integer index 4, and not necessarily to the 4th element of $my_array.)

The loose typing of PHP means that any PHP value can be stored as an array. In turn, this means

that arrays can be stored as array elements. Multidimensional arrays are simply arrays that contain

other arrays as elements, with a reference syntax of successive brackets. (The expression $my_
array[3][4] refers to the element (indexed by 4) of an array that is an element [indexed by 3] of

$my_array.)

The array is the standard vehicle for PHP functions that return structured data, so PHP program-

mers should learn to unpack arrays, even if they are not interested in constructing them. PHP also

offers a huge variety of functions for manipulating data after you have it stored in an array, including

functions for counting, summarizing, and sorting.

153

I
f you need to do serious numerical, scientific, or statistical computa-

tion, a web-scripting language is probably not where you want to be

doing it. With that said, however, PHP does offer a generous array of

functions that nicely cover most of the mathematical tasks that arise in web

scripting. It also offers some more advanced capabilities such as arbitrary-

precision arithmetic and access to hashing and cryptographic libraries.

The PHP designers have, quite sensibly, not tried to reinvent any wheels

in this department. Instead, they found about 18 perfectly good wheels by

the side of the road and built a lightweight fiberglass chassis to connect

them all together. Many of the more basic math functions in PHP are simple

wrappers around their C counterparts (for more on this, see the sidebar “A

Glimpse behind the Curtain” in Chapter 27, which will cover PHP’s math-

ematics capabilities in greater detail).

Numerical Types
PHP has only two numerical types: integer (also known as long), and double

(aka float), which correspond to the largest numerical types in the C lan-

guage. PHP does automatic conversion of numerical types, so they can be

freely intermixed in numerical expressions, and the “right thing” will typi-

cally happen. PHP also converts strings to numbers where necessary.

Learning PHP Number
Handling

IN THIS CHAPTER

Numerical types

Mathematical operators

Simple math functions

Random numbers

154

 Part I Introducing PHP

In situations where you want a value to be interpreted as a particular numerical type, you can force a

typecast by prepending the type in parentheses, such as:

(double) $my_var
(integer) $my_var

Or you can use the functions intval() and doubleval(), which convert their arguments to inte-

gers and doubles, respectively.

For more details on the integer and double types, see Chapter 4.

Mathematical Operators
Most of the mathematical action in PHP is in the form of built-in functions rather than in the form

of operators. In addition to the comparison operators covered in Chapter 5, PHP offers five opera-

tors for simple arithmetic, as well as some shorthand operators that make incrementing and assigning

statements more concise.

Arithmetic operators
The five basic arithmetic operators are those you would find on a four-function calculator, plus the

modulus operator (%). (If you are unfamiliar with modulus, see the discussion following Table 9-1.)

The operators are summarized in Table 9-1.

TABLE 9-1

Arithmetic Operators
Operator Behavior Examples

+ Sum of its two arguments. 4 + 9.5 evaluates to 13.5

– If there are two arguments, the right-
hand argument is subtracted from the
left-hand argument. If there is just a
right-hand argument, then the negative
of that argument is returned.

50 - 75 evaluates to -25
- 3.9 evaluates to -3.9

* Product of its two arguments. 3.14 * 2 evaluates to 6.28

/ Floating-point division of the left-hand
argument by the right-hand argument.

5 / 2 evaluates to 2.5

% Integer remainder from division of left-
hand argument by the absolute value of
the right-hand argument. (See discussion
in the following section.)

101 % 50 evaluates to 1
999 % 3 evaluates to 0
43 % 94 evaluates to 43
-12 % 10 evaluates to –2
-12 % -10 evaluates to -2

CROSS-REFCROSS-REF

155

 Learning PHP Number Handling 9

Arithmetic operators and types
With the first three arithmetic operators (+, -, *), you should expect type contagion from doubles to

integers; that is, if both arguments are integers, the result will be an integer, but if either argument is

a double, then the result will be a double. With the division operator, there is the same sort of conta-

gion, and in addition the result will be a double if the division is not even.

If you want integer division rather than floating-point division, simply coerce or convert

the division result to an integer. For example, intval(5 / 2) evaluates to the integer 2.

Modular arithmetic is sometimes taught in school as clock arithmetic. The process of taking one num-

ber modulo to another amounts to “wrapping” the first number around the second, or (equivalently)

taking the remainder of the first number after dividing by the second. The result of such an opera-

tion is always less than the second number.

Roughly speaking, a conventional civilian analog clock displays hours elapsed modulo 12, while

military time is modulo 24. (The roughly in the previous sentence is because the real modulus

function converts numbers to the range 0 to n-1, rather than the range 1 to n. If bell-tower clocks

respected this, noontime would be marked by silence, rather than by 12 chimes.)

The modulus operator in PHP (%) expects integer arguments — if it is given doubles, they will sim-

ply be converted to integers (by truncation) first. The result is always an integer.

Most programming languages have some form of the modulus operator, but they differ in how they

handle negative arguments. In some languages, the result of the operator is always positive, and –2

% 26 equals 24. In PHP, though, –2 % 26 is –2, and, in general, the statement $mod = $first_num %

$second_num is exactly equivalent to the expression:

if ($first_num >= 0)
 $mod = $first_num % abs($second_num);
else
 $mod = - (abs($first_num) % abs($second_num));

where abs() is the absolute value function.

Incrementing operators
PHP inherits a lot of its syntax from C, and C programmers are famously proud of their own con-

ciseness. The incrementing/decrementing operators taken from C make it possible to more concisely

represent statements like $count = $count + 1, which tend to be typed frequently.

The increment operator (++) adds one to the variable it is attached to, and the decrement operator

(--) subtracts one from the variable. Each one comes in two flavors, postincrement (which is placed

immediately after the affected variable), and preincrement (which comes immediately before). Both

flavors have the same side effect of changing the variable’s value, but they have different values as

expressions. The postincrement operator acts as if it changes the variable’s value after the expres-

sion’s value is returned, whereas the preincrement operator acts as though it makes the change

TIPTIP

156

 Part I Introducing PHP

first and then returns the variable’s new value. You can see the difference by using the operators in

assignment statements, like this:

$count = 0;
$result = $count++;
print(“Post ++: count is $count, result is $result
”);
$count = 0;
$result = ++$count;
print(“Pre ++: count is $count, result is $result
”);
$count = 0;
$result = $count--;
print(“Post --: count is $count, result is $result
”);
$count = 0;
$result = --$count;
print(“Pre --: count is $count, result is $result
”);

which gives the browser output:

Post ++: count is 1, result is 0
Pre ++: count is 1, result is 1
Post --: count is -1, result is 0
Pre --: count is -1, result is –1

In this example, the statement $result = $count++; is exactly equivalent to:

$result = $count;
$count = $count + 1;

while $result = ++$count; is equivalent to:

$count = $count + 1;
$result = $count;

Assignment operators
Incrementing operators like ++ save keystrokes when adding one to a variable, but they don’t help

when adding another number or performing another kind of arithmetic. Luckily, all five arithmetic

operators have corresponding assignment operators (+=, -=, *=, /=, and %=) that assign to a variable

the result of an arithmetic operation on that variable in one fell swoop. The statement:

$count = $count * 3;

can be shortened to:

$count *= 3;

157

 Learning PHP Number Handling 9

and the statement:

$count = $count + 17;

becomes:

$count += 17;

Comparison operators
PHP includes the standard arithmetic comparison operators, which take simple values (numbers or

strings) as arguments and evaluate to either TRUE or FALSE:

For examples of using the comparison operators and also some gotcha issues with com-

paring doubles and strings, see Chapter 5.

The ■■ < (less than) operator is true if its left-hand argument is strictly less than its right-hand

argument but false otherwise.

The ■■ > (greater than) operator is true if its left-hand argument is strictly greater than its

right-hand argument but false otherwise.

The ■■ <= (less than or equal) operator is true if its left-hand argument is less than or equal to

its right-hand argument but false otherwise.

The ■■ >= (greater than or equal) operator is true if its left-hand argument is greater than or

equal to its right-hand argument but false otherwise.

The ■■ == (equal to) operator is true if its arguments are exactly equal but false otherwise.

The ■■ != (not equal) operator is false if its arguments are exactly equal and true otherwise.

This operator is the same as <>.

The ■■ === operator (identical to) is true if its two arguments are exactly equal and of the

same type.

The !== operator (not identical to) is true if the two arguments are not equal or not of the ■■

same type.

The identical to operator (===)can, at times, be a necessary antidote to PHP’s auto-

matic type conversions. None of the following expressions will have a true value:

2 === 2.0

2 === “2”

“2.0” === 2.0

0 === FALSE

This behavior can be invaluable, for example, if you have a function that returns a string when it suc-

ceeds (which might be the empty string) and a FALSE value when it fails. Testing the truth of the return

value would confuse FALSE with the empty string, whereas the identical operator can distinguish them.

CROSS-REFCROSS-REF

TIPTIP

158

 Part I Introducing PHP

Precedence and parentheses
Operator precedence rules govern the relative stickiness of operators, deciding which operators in

an expression get first claim on the arguments that surround them. You can find a complete table

of all operator precedences in the manual at www.php.net, but the important precedence rules for

arithmetic are:

Arithmetic operators have higher precedence (that is, bind more tightly) than comparison ■■

operators.

Comparison operators have higher precedence than assignment operators.■■

The ■■ *, /, and % arithmetic operators have the same precedence.

The ■■ + and – arithmetic operators have the same precedence.

The ■■ *, /, and % operators have higher precedence than + and –.

When arithmetic operators are of the same precedence, associativity is from left to right ■■

(that is, a number will associate with an operator to its left in preference to the operator on

its right).

If you find the precedence rules difficult to remember, the next person who reads your code may

have the same problem, so feel free to parenthesize when in doubt. For example, can you easily fig-

ure out the value of this expression?

1 + 2 * 3 - 4 - 5 / 4 % 3

As it turns out, the value is 2, as you can see more easily when we add parentheses that are not,

strictly speaking, necessary:

((1 + (2 * 3)) – 4) – ((5 / 4) % 3)

Simple Mathematical Functions
The next step up in sophistication from the arithmetic operators consists of miscellaneous functions

that perform tasks like converting between the two numerical types (which we discussed in Chapter 4)

and finding the minimum and maximum of a set of numbers (see Table 9-2).

For example, the result of the following expression:

min(3, abs(-3), max(round(2.7), ceil(2.3), floor(3.9)))

is 3, because the value of every function call is also 3.

159

 Learning PHP Number Handling 9

TABLE 9-2

Simple Math Functions
Function Behavior

floor() Takes a single argument (typically a double) and returns the largest integer that is less
than or equal to that argument.

ceil() Short for ceiling — takes a single argument (typically a double) and returns the smallest
integer that is greater than or equal to that argument.

round() Takes a single argument (typically a double) and returns the nearest integer. If the
fractional part is exactly 0.5, it returns the nearest even number.

abs() Short for absolute value — if the single numerical argument is negative, the
corresponding positive number is returned; if the argument is positive, the argument
itself is returned.

min() Takes any number of numerical arguments (but at least one) and returns the smallest of
the arguments.

max() Takes any number of numerical arguments (but at least one) and returns the largest of
the arguments.

Randomness
PHP’s functions for generating pseudo-random numbers are summarized in Table 9-3. (If you are

new to random number generation and are wondering what the pseudo is all about, please see the

accompanying sidebar.)

There are two random number generators (invoked with rand() and mt_rand(), respectively),

each with the same three associated functions: a seeding function, the random number function

itself, and a function that retrieves the largest integer that might be returned by the generator.

The particular pseudo-random function that is used by rand() may depend on the particular

libraries that PHP was compiled with. By contrast, the mt_rand() generator always uses the same

random function (the Mersenne Twister), and the author of mt_rand()’s online documentation

argues that it is also faster and “more random” (in a cryptographic sense) than rand(). We have no

reason to believe that this is not correct, so we prefer mt_rand() to rand().

160

 Part I Introducing PHP

TABLE 9-3

Random Number Functions
Function Behavior

srand() Takes a single positive integer argument and seeds the random number generator with it.

rand() If called with no arguments, returns a “random” number between 0 and RAND_MAX
(which can be retrieved with the function getrandmax()). The function can also be
called with two integer arguments to restrict the range of the number returned — the
first argument is the minimum and the second is the maximum (inclusive).

getrandmax() Returns the largest number that may be returned by rand(). This number is limited to
32768 on Windows platforms.

mt_srand() Like srand(), except that it seeds the “better” random number generator.

mt_rand() Like rand(), except that it uses the “better” random number generator.

mt_
getrandmax()

Returns the largest number that may be returned by mt_rand().

On some PHP versions and some platforms, you can apparently get seemingly random

numbers from rand() and mt_rand() without seeding first — this should not be relied

upon, however, both for reasons of portability and because the unseeded behavior is not guaranteed.

Seeding the generator
The typical way to seed either of the PHP random number generators (using mt_srand() or

srand()) looks like this:

mt_srand((double)microtime()*1000000);

This sets the seed of the generator to be the number of microseconds that have elapsed since the

last whole second. (Yes, the typecast to double is necessary here, because microtime() returns a

string, which would treated as an integer in the multiplication but for the cast.) Please use this seed-

ing statement even if you don’t understand it — just place it in any PHP page, once only, before you

use the corresponding mt_rand() or rand() functions, and it will ensure that you have a varying

starting point and therefore random sequences that are different every time. This particular seeding

technique has been thought through by people who understand the ins and outs of pseudo-random

number generation and is probably better than any attempt an individual programmer might make

to try something trickier.

Although the random number functions only return integers, it is easy to convert a ran-

dom integer in a given range to a corresponding floating-point number (say, one between

0.0 and 1.0 inclusive) with an expression like rand() / getrandmax(). You can then scale and shift

the range as desired (to, say, a number between 100.0 and 120.0) with an expression like 100.0 +

20.0 * (rand() / getrandmax()).

NOTENOTE

TIPTIP

161

 Learning PHP Number Handling 9

Pseudo-Random Number Generators

As with all programming languages, the “random” number functions offered by PHP are really implemented
by pseudo-random number generators. This is because conventional computer architectures are deter-

ministic machines that will always produce the same results given the same starting conditions and inputs and
have no good source of randomness. (Here we’re talking about the ideal computer as it is supposed to work,
not the actual physically embodied, power-interruptible, cosmic-ray flippable, seemingly very random machines
we all struggle with daily!) You could imagine connecting a conventional computer to a source of random bits
such as a mechanical coin-flip reader, or a device that observed quantum-level events, but such peripherals
don’t seem to be widely available at this time.

So we must make do with pseudo-random generators, which produce a deterministic sequence of numbers
that looks random enough for most purposes. They typically work by running their initial input number (the
seed) through a particular mathematical function to produce the first number in the sequence; each subsequent
number in the sequence is the result of applying that same function to the previous number in the sequence.
The sequence will repeat at some point (once it generates a particular number for the second time, it is doomed
to follow the same sequence as it did the first time around), but a good iteration function will generate a very
long sequence of numbers that have little apparent pattern before the loop occurs.

How do you choose a seed to start off with? Because of the generator’s determinism, if you hardcode a PHP
page to have a particular seed, that page will always see the same sequence from the generator. (Although this
is not usually what you want, it can be an invaluable trick when you are trying to debug behavior that depends
on the particular numbers that are generated.) The typical seeding technique is to use a fast-changing digit from
the system clock as the initial seed — although those numbers are not exactly random, they are likely to vary
quickly enough that subsequent page executions will start with a different seed every time.

Here’s some representative code that uses the pseudo-random functions:

print(“Seeding the generator
”);
mt_srand((double)microtime() * 1000000);
print(“With no arguments: “ . mt_rand() . “
”);
print(“With no arguments: “ . mt_rand() . “
”);
print(“With no arguments: “ . mt_rand() . “
”);
print(“With two arguments: “ .
 mt_rand(27, 31) . “
”);
print(“With two arguments: “ .
 mt_rand(27, 31) . “
”);
print(“With two arguments: “ .
 mt_rand(27, 31) . “
”);

with the browser output:

Seeding the generator
With no arguments: 1962311688
With no arguments: 1494083765
With no arguments: 1224081997
With two arguments: 31
With two arguments: 27
With two arguments: 30

162

 Part I Introducing PHP

Obviously, if you run exactly this code, you will get numbers that differ from those in the output

shown here, because the point of seeding the generator this way is to ensure that different execu-

tions produce different sequences of numbers.

In some old versions of PHP3, the rand() function buggily ignored its arguments,

returning numbers between 0 and getrandmax() regardless of restrictions. We have

also heard some reports of that behavior under more recent Windows implementations. If you suspect

that you are suffering from such a bug, you can define your own restricted version of rand() like this:

function my_rand ($min, $max)
{
 return(rand() % (($max - $min) + 1)
 + $min);
}

Unlike rand(), this version requires the min and max arguments.

Example: Making a random selection
Now let’s use the random functions for something useful (or, at least, something that could be used

for something useful). The following two functions let you construct a random string of letters,

which could, in turn, be used as a random login or password string:

function random_char($string)
{
 $length = strlen($string);
 $position = mt_rand(0, $length - 1);
 return($string[$position]);
}
function random_string ($charset_string, $length)
{
 $return_string = “”; // the empty string
 for ($x = 0; $x < $length; $x++)
 $return_string .= random_char($charset_string);
 return($return_string);
}

The random_char() function chooses a character (or, actually, a substring of length 1) from its input

string. It does this by restricting the mt_rand() function to positions within the length of the string

(with chars numbered starting at zero), and then returning the character that is at that random posi-

tion. The random_string() function calls random_char() a number of times on a string repre-

senting the universe of characters to be chosen from and concatenates a string of the desired length.

Now, to demonstrate this code, we first seed the generator, define our universe of allowable charac-

ters, and then call random_string() a few times in a row:

mt_srand((double)microtime() * 1000000);
$charset = “abcdefghijklmnopqrstuvwxyz”;

CAUTION CAUTION

163

 Learning PHP Number Handling 9

$random_string = random_string($charset, 8);
print(“random_string: $random_string
”);
$random_string = random_string($charset, 8);
print(“random_string: $random_string
”);
$random_string = random_string($charset, 8);
print(“random_string: $random_string
”);

with the result:

random_string: eisexkio
random_string: mkvflwfy
random_string: gpulbwth

In this example, we seed the generator only once, and we draw that seed value from the system

clock. Notice what happens if we make the mistake of repeatedly seeding the generator with the

same value:

mt_srand(43);
$random_string = random_string($charset, 8);
print(“random_string: $random_string
”);

mt_srand(43);
$random_string = random_string($charset, 8);
print(“random_string: $random_string
”);

mt_srand(43);
$random_string = random_string($charset, 8);
print(“random_string: $random_string
”);

Because the sequence that is generated depends deterministically on the seed, we get the same

behavior each time:

random_string: qgkxvurw
random_string: qgkxvurw
random_string: qgkxvurw

In these examples, we chose to draw random characters from strings, but this kind of selection pro-

cess is generalizable to draw items from arrays or to be used in any situation that requires choosing

random members from a set. All you need is the universe of items, a way to put them in numerical

order, and a way to retrieve them by order number, and you can then use the rand() or mt_rand()

function to choose a random order number for the retrieval.

Summary
The highlights of PHP math are summarized in Table 9-4. Refer to Chapter 27 for more advanced

mathematical concepts as they are handled by PHP.

164

 Part I Introducing PHP

TABLE 9-4

Summary of PHP Math Operators and Functions
Category Description

Arithmetic
operators

Operators +, -, *, /, % perform basic arithmetic on integers and doubles.

Incrementing
operators

The ++ and -- operators change the values of numerical variables, increasing them
by one or decreasing them by one (respectively). The value of the postincrement form
($var++) is the same as the variable’s value before the change; the value of the
preincrement form (++$var) is the variable’s value after the change.

Assignment
operators

Each arithmetic operator (like +) has a corresponding assignment operator (+=). The
expression $count += 5 is equivalent to $count = $count + 5.

Comparison
operators

These operators (<, <=, >, >=, ==, !=) compare two numbers and
return either true or false. The === operator is true if and only if its arguments
are equal and of the same type while the !== is true if the arguments are not equal or
aren’t of the same type.

Basic math
functions

floor(), ceil(), and round() convert doubles to integers, min() and max()
take the minimum and maximum of their numerical arguments, and abs() is the
absolute value function.

165

E
ven though we’ve tried to give clear instructions, and you’ve no

doubt followed them to the letter, problems can still arise. This

chapter lays out some of the most common problems by symptom

and suggest some frequent causes.

There is a whole other universe of gotchas involving database

connectivity. This chapter deals with PHP-only problems. You

may want to skip ahead to Chapter 19 if you’re having problems with PHP

and a database. Also, problems specific to certain more advanced features

(including sessions, cookies, building graphics, e-mail, and XML) are dealt

with in their individual chapters in Parts III and IV.

Installation-Related Problems
Instead of getting moralistic about people who rush through their installs

without understanding the documentation, we’ll point out a few common

symptoms that characteristically appear when you’ve just installed PHP for

the first time.

If you are seeing similar errors but are confident that your

installation is stable, follow the cross-references to later parts of

this chapter.

CROSS-REFCROSS-REF

TIPTIP

PHP Gotchas

IN THIS CHAPTER

Installation-related problems

Rendering problems

Failures to load page

Parse errors

File permissions

Missing includes

Unbound variables

Function problems

Math problems

Timeouts

166

 Part I Introducing PHP

Symptom: Text of file displayed in browser window
If you are seeing the text of your PHP script instead of the resulting HTML, the PHP engine is clearly

not being invoked. Check that you are accessing the site through the web server and not via the file-

system. Use this:

http://localhost/mysite/mypage.php

rather than this:

file://home/httpd/html/mysite/mypage.php

Symptom: PHP blocks showing up as text under
HTTP or browser prompts you to save file
The PHP engine is not being invoked properly. If you’re properly requesting the file via HTTP as

explained previously, the most common reason for this error is that you haven’t specified all the file

extensions you want to be served by the web server and parsed with the PHP interpreter. Go back

to Chapter 2, and review how to configure your Web server to recognize PHP file extensions. The

second most common reason is that your php.ini file is in the wrong place or has a bad configu-

ration directive.

If you see PHP code in your Web browser and you have a stable installation, your prob-

lem is probably due to missing PHP tags. See the “Rendering Problems” section later in

this chapter.

Symptom: Server or host not found/Page cannot
be displayed
If your browser can’t find your server, you may have a DNS (Domain Name Service) or Web-server

configuration issue.

If you can get to the site via IP address rather than domain name, your problem is probably DNS-related.

If you cannot get to the site via IP address for a new installation, it’s likely you haven’t successfully

bound the IP address to your network interface or configured the web server to handle requests for

a particular domain (see Chapter 2). If you can’t get to the site via IP address for a previously work-

ing installation, most likely your Web server is down or unreachable for a reason not related to PHP.

Rendering Problems
This section covers problems where PHP does not report an error per se, but what you see is not

what you thought you would get.

CROSS-REFCROSS-REF

167

 PHP Gotchas 10

Symptom: Totally blank page
A blank page could be caused by any number of issues. Usually, it’s caused by a fatal error in the

PHP code from which the PHP interpreter cannot recover. Begin by debugging at the top of the PHP

file that you’re trying to visit by placing a die() after the opening <?php tag:

<?php
die(print “hello”);

If you refresh the page, and see the word hello in the browser, then you’ve ruled out problems with

the web server and the PHP module itself. Continue to move the die() statement further down into

the PHP code until you reproduce the blank page error. Don’t forget that any files included through

a “require,” “require_once,” “include,” or the like could also be causing the script to fail. If

you place the die() statement just before an included file and it works and then move the die()

just after the included file and the script fails, then you’ve determined that the problem (or at least a

problem) lies in the included file.

Of course, another possible answer in this case is that the PHP module is not working at all. Test

by browsing a different page in the same directory that you’ve previously verified is being correctly

handled by PHP.

Also see the “Timeouts” section near the end of this chapter for more information on what happens

when you write code that runs “forever.”

Finally, you might be seeing a blank screen if your PHP hits a more or less fatal error but you have

error reporting turned off. Error reporting should probably be turned off for production servers

for security reasons, but error reporting to the browser is actually a huge help for development

servers. Check your php.ini file’s display_errors setting and make sure the settings are what

you expected. If you really dislike error reporting to the browser, you need to make heavy use of

the error_log function in exception handling. See Chapters 30 and 31 for more debugging tips.

Symptom: PHP code showing up in Web browser
If you are seeing literal PHP code in your browser, rather than a rendering of the HTML it should

be producing, you may have omitted a PHP start tag somewhere. (This assumes that you have had

PHP running successfully and that you are using the correct tags for your installation. If not, see the

“Installation-Related Problems” section near the beginning of this chapter.)

It’s easy to forget that PHP treats included files as HTML, not as PHP, unless you tell it otherwise

with a start tag at the beginning of the file. For example, assume that we load the following PHP file:

<HTML><HEAD></HEAD><BODY>
<?php include(“secret.php”);
secret_function(); ?>
</BODY></HTML>

168

 Part I Introducing PHP

which includes the file secret.php, which in turn looks like this:

function secret_function ()
{
 echo “Open sesame!”;
}

The result is shown in Figure 10-1.

FIGURE 10-1

A PHP include appearing as HTML

This can be fixed by adding PHP tags to the included file like this:

<?php
function secret_function ()
{
 echo “Open sesame!”;
}
?>

Failures to Load Page
A couple of different kinds of errors are seen when PHP is unable to find a file that you have asked it

to load.

Symptom: Page cannot be found
If your browser can’t find a PHP page you’ve created, and you have recently installed PHP, please see the

section “Installation-Related Problems” earlier in this chapter. If you get this message when you have

169

 PHP Gotchas 10

been loading other PHP files without incident, it’s quite likely you are just misspelling the filename or

path. Alternatively, you may be confused about where the web server document root is located.

Symptom: Failed opening [file] for inclusion
When including files from PHP files, we sometimes see errors like this (on a Unix platform, the file

paths would be different):

Warning Failed opening ‘C:\InetPub\wwwroot\asdf.php’ for
inclusion (include_path=’‘) in [no active file] on line 0

It turns out that this is the included-file version of Page cannot be found — that is, PHP hasn’t

even gotten to loading the first line of the active file. There is no active file because no file by that

name could be found.

It’s also possible that you will see this message as a result of incorrect permissions on the file you are

trying to load.

Parse Errors
The most common category of error arises from mistyped or syntactically incorrect PHP code, which

confuses the PHP parsing engine.

Symptom: Parse error message
Although the causes of parsing problems are many, the symptom is almost always the same: a parse

error message like that in Figure 10-2.

FIGURE 10-2

A parse error message

170

 Part I Introducing PHP

The most common causes of parse errors, detailed in the subsections that follow, are all quite minor

and easy to fix, especially with PHP lighting the way for you. However, every parse error returns

the identical message (except for filenames and line numbers) regardless of cause. Any HTML that

may be in the file, even if it appears before the error-causing PHP fragment, will not be displayed or

appear in the source code.

The missing semicolon
If each PHP instruction is not duly finished off with a semicolon, a parse error will result. In this

sample fragment, the first line lacks a semicolon, and therefore, the variable assignment is never

completed.

What we have here is
<?php
$Problem = “a silly misunderstanding”
echo $Problem; ?>.

No dollar signs
Another very common problem is that a dollar sign prepending a variable name is missing. If the

dollar sign is missing during the initial variable assignment, like this:

What we have here is
<?php
Problem = “a big ball of earwax”;
echo $Problem; ?>.

a parse error message will result. However, if instead the dollar sign is missing from a later output of

the variable, like this:

What we have here is
<?php
$Problem = “a big ball of earwax”;
print(“Problem”); ?>.

PHP will not indicate a parse error. Instead, you will get the screen shown in Figure 10-3.

This is an excellent example of why you should not rely on PHP to tell you something is wrong.

Although PHP’s error messages are more informative than most, errors such as this are easily missed

if your proofreading efforts aren’t up to par.

If you spend any significant portion of your time debugging PHP code, an editor that can

jump to specific line numbers can be invaluable. Note that the actual mistake that caused

the error may be on the line that PHP complains about, or before it, but never after it. For example,

because there’s nothing wrong with commands that span several lines, a missed semicolon won’t cause

a parse error until PHP tries to interpret subsequent lines as part of the same statement. Some inte-

grated development environments (IDEs) will do on-the-fly syntax checking while you write. These can

be helpful to spot the errors before they get to the server, while you’re still coding.

TIPTIP

171

 PHP Gotchas 10

FIGURE 10-3

A missing dollar sign on variable output

Mode issues
Another family of glitches arises from faulty transitions in and out of PHP mode.

A parse error will result if you fail to close off a PHP block properly, as in:

What we have here is
<?php
$Problem = “Bad Code!”;
echo $Problem; .

This particular mode issue is very common with short PHP blocks. Conversely, if you fail to begin

the PHP block properly, the rest of the intended block will simply appear as HTML.

A slightly more tricky issue is engendered by the use of the minimal PHP style, which entails weav-

ing in and out of HTML mode frequently. (See the discussion of minimal versus maximal style in

Chapter 33.) For instance, this fragment (which omits the ?> after the first curly brace, when we

intend to return to HTML mode) will return a parse error:

<?php if(!IsSet($stage))
{
What we have here is
<?php
$Problem = “an awful kerfuffle “;
print(“$Problem”); ?>.
<?php
} else {
print(“$Stage”); }
?>

172

 Part I Introducing PHP

Another instance of a very common problem is this one, which combines the short block and

weaving-in-and-out-of-HTML issues neatly:

<FORM>
<INPUT TYPE=”TEXT” SIZE=15 NAME=”FirstName”
VALUE=”<?php print(“$FirstName”); ?>”>
<INPUT TYPE=”TEXT” SIZE=15 NAME=”LastName”
VALUE=”<?php print(“$LastName”); ?>”>
<INPUT TYPE=”TEXT” SIZE=10 NAME=”PhoneNumber”
VALUE=”<?php print($PhoneNumber”); ?>”
<INPUT TYPE=”SUBMIT” NAME=”Submit”>
</FORM>

A PHP double-quote and the HTML closing bracket have been forgotten on the PhoneNumber

input line here. This will both cause a parse error and prevent the Submit button from appearing

on a client browser.

The sample code is meant to demonstrate how easy it can be to forget an element on a crowded

page with lots of small but important symbols. You can reduce this type of error either by using a

good programmer’s text editor or by completing and testing the HTML first and adding the PHP

later (or both).

Unescaped quotation marks
Another type of parse error is characteristic of maximal PHP: the unescaped quotation mark.

<?php
print(“She said, /“What we have here is “);
$Problem = “a difference of opinion\“”;
print(“$Problem”); ?>.

In this case, the double-quote just before the word What is incorrectly, and therefore ineffectively,

escaped by a forward slash rather than a backslash. If you simply forgot the backslash, the effect

would be the same.

Unterminated strings
Failing to close off a quoted string can cause parse errors that refer to line numbers far away from

the source of the problem. For example, a code file like this:

print(“I am a guilty print statement!); // line 5
// 47 lines of PHP code omitted ...
print(“I am an innocent print statement!”); // line 53

might well produce a parse error that complains about line 53. This is because PHP is happy to

include any text you might want in a quoted string, including many lines of your own code. This

173

 PHP Gotchas 10

inclusion finishes happily with the first double-quote in line 53, and then the parser finds the sym-

bol I, which it can’t figure out how to interpret as PHP code.

If the quotation mark symbol that begins the unterminated string happens to be the last one in the

file, the line number in the complaint will be the last line in the file — again, probably far away from

the scene of the crime.

Other parse error causes
The problems we have named are not an exhaustive list of the sources of parse errors. Anything

that makes a PHP statement malformed will confuse the parser, including unclosed parentheses,

unclosed brackets, operators without arguments, control structure tests without parentheses, and

so on. Sometimes the parse error will include a statement about what PHP was expecting and didn’t

find, which can be a helpful clue. If the line of the parse error is the very last line of the file, it usu-

ally means that some kind of enclosure (quotation marks, parentheses, braces) was opened and

never closed, and PHP kept on hoping until the very end.

Missing Includes
In addition to loading top-level source files, PHP needs to be able to load any files you bring in via

include() or require().

Symptom: Include warning
This kind of error is shown in Figure 10-4.

FIGURE 10-4

Include warning

174

 Part I Introducing PHP

The problem is that you call somewhere in the script for a file to be included, but PHP can’t find it.

Check to see that the path is correct. You might also have a case sensitivity or other typographic

issue. Note the important difference between include() and require(). If a file is included

and PHP can’t locate the file, execution of the script will continue with a PHP warning. If a file is

required and PHP can’t locate that file, execution will stop with an error.

Unbound Variables
PHP is different from many programming languages in that variables do not have to be declared

before being assigned, and (under its default settings) PHP will not complain if they are used before

being assigned (or bound) either. As a result, forgetting to assign a variable will not result in direct

errors — either you will see puzzling, but error-free output, or you will see a downstream error that

is a result of variables not having the values you expected. (If you would rather be warned, you can

set the error-reporting level in php.ini or by evaluating error_reporting(E_ALL).) Some symp-

toms of this kind of problem follow.

Symptom: Variable not showing up in print string
If you embed a variable in a double-quoted string (“like $this”) and then print the string using

print or echo, the variable’s value should show up in the string. If it seems to not be there at all in

the output (“like “), the variable has probably never been assigned.

Symptom: Numerical variable unexpectedly zero
Although it’s possible to have a math error or misunderstanding result in this symptom, it’s much

more likely that you believe that the variable has been assigned when it actually hasn’t been.

Causes of unbound variables
PHP automatically converts the types of variables depending on the context in which they are used,

and this is also true of unbound variables. In general, unbound variables are interpreted as 0 in a

numerical context, “” in a string context, FALSE in a Boolean context, and as an empty array in an

array context. The following code shows the effect of forgetting to bind two variables ($two_string

and $three); the resulting display appears in Figure 10-5:

<?php
$one_string = “one”;
$three_string = “three”;
$one = 1;
$two = 2;
print(“This math is as easy as $one_string, $two_string,
$three_string!
”);
print(“$one_string is equal to $one
”);
print(“$two_string is equal to $two
”);

175

 PHP Gotchas 10

print(“$three_string is equal to $three
”);
print(“$one_string divided by $two_string is “ .
 ($one / $two) . “
”);
print(“$one_string divided by $three_string is “ .
 ($one / $three) . “
”);
?>

FIGURE 10-5

The effect of unbound variables

Case problems
Variables in PHP are case sensitive, so the same name with different capitalization results in a dif-

ferent variable. Even after a value is assigned to the variable $Mississippi, the variable $mis-
sissippi will still be unbound. (Capitalization aside, variables that are this difficult to spell are

probably to be avoided for the same reason.)

Scoping problems
As long as no function definitions are involved, PHP variable scoping is simple: Assign a variable,

and its value will be there for you from that point on in that script’s execution (until the variable is

reassigned). However, the only variables that are available inside a function body are the function’s

formal parameters and variables that have been declared to be global — if you have a puzzling,

unbound variable inside a function, this is probably something you’ve forgotten. In the following

code, for example, the variable $serial_no is neither passed in to the function nor declared to be

global:

$name = “Steve Suehring”;
$rank = “Intarweb Programmer”;
$serial_no = “4”;

function Answer($name)

176

 Part I Introducing PHP

{
global $rank;
print(“Name: $name; Rank: $rank;
 serial no: $serial_no
”);
}
Answer($name);

The resulting browser output looks like:

Name: Steve Suehring, Rank: Intarweb Programmer, serial no:

because the variable is unbound inside the function.

Variable Naming Conventions

One way to avoid a lot of the gotchas in PHP is to decide on, and to rigorously use, a set of variable nam-
ing conventions for all of your code. In the frequent cases where variables will be assigned and used in

widely separated places in the same script and even across scripts, such a set of standards will save lots of time
referring back and forth. What conventions you decide on are less important than that you have some standard
in the first place. That said, here are a few tips to help you decide what to do:

A common mistake many new programmers make is thinking that variables must somehow be an ■■

abbreviation of the thing they represent. Remember, a variable is not an abbreviation, but rather
a stand-in for some value that may change depending on circumstances or as a script executes. A
longer, meaningful, and easy-to-remember variable name is better than a shorter variable name that
is anybody’s guess.

Variable names that consist of multiple words strung together can be made more readable by using ■■

underscores (for example, $office_address) or initial capitalization ($OfficeAddress). There
is some sense to the notion that the underscore solution can create confusion with function-naming
conventions. Use what works best for you.

In a more general sense, remember that you may not be the only person that has to read this code. ■■

You may get really excited about PHP and get involved in one of the many open source projects
that use PHP. You may even start your own project (we’d be delighted to see that happen)! In either
case, readable code will be a must, and good variable names are a foundation of producing read-
able code.

Function Problems
Many problems having to do with function calls result in fatal errors, which means that PHP gives

up on processing the rest of the script.

177

 PHP Gotchas 10

Symptom: Call to undefined function my_function()
PHP is trying to call the function my_function(), which has not been defined. This could be

because you misspelled the name of a function (built-in or user-defined) or because you have simply

omitted the function definition. If you use include/require files to load user-defined functions,

make sure that you are loading the appropriate files.

If the problem involves a fairly specialized, built-in function (for instance, it is related to XML or

arbitrary-precision math), it may be that you did not enable the relevant function family when you

installed or configured PHP.

Symptom: Call to undefined function ()
In this case, PHP is trying to call a function and doesn’t even know the function’s name. This is

invariably because you have code of the form $my_function(), where the name of the function is

itself a variable. Unless you are intentionally trying to exploit the variable-function-name feature of

PHP, you probably accidentally put a $ in front of a sensible call to my_function(). Because $my_
function is an unbound variable, PHP interprets it as the empty string — which is not the name of

a defined function — and gives this uninformative error message.

Symptom: Call to undefined function array()
This problem has a cause that is similar to the cause of the previous problem, although it still baffled

us completely the first time we ran into it. It can arise when you have code like the following:

$my_amendments = array();
$my_amendments(5) = “the fifth”;

Unless you look closely, this looks like an innocent pair of statements to create an array and then store

something in that array, with the number 5 as a key. And yet PHP is telling us that array() is an

unbound function, even though we know that it is a very standard built-in function. What’s going on?

The fault is actually with Line 2 above, rather than with Line 1. If we want to access an element of
$my_amendments, the correct syntax is $my_amendments[5], with square brackets. Instead, we

used parentheses, which the parser interprets as an attempted function call. It takes what is imme-

diately before the left parenthesis to be a function. Instead, what comes before the parenthesis is an

array, which is not a function; PHP gives up on us, with this obscure complaint.

Symptom: Cannot redeclare my_function()
This is a simple one — somewhere in your code you have two definitions of my_function(), which

PHP will not stand for. Make sure that you are not using include to pull in the same file of function

definitions more than once. Use include_once or require_once to avoid seeing this error, with

the caveat that, well, you won’t see this error. Why might that be bad? It’s conceivable that you could

define two distinctly different functions and inadvertently give them the same name. This runs the

risk of exposing your mistake at a somewhat inconvenient moment.

178

 Part I Introducing PHP

Symptom: Wrong parameter count
The function named in the error message is being called with either fewer or more arguments than

it is supposed to handle. In the case of more parameters you’re okay, but if you use fewer parameters

than is expected you will get an error.

Math Problems
The problems that follow are specific to math and the numerical data types.

Symptom: Division-by-zero warning
Somewhere in your code, you have a division operator where the denominator is zero. The most

common cause of this is an unbound variable, as in:

$numerator = 5;
$ratio = $numerator / $denominator;

where $denominator is unbound. It’s also possible, of course, that the legitimate result of a compu-

tation is producing a zero denominator. In this case, the only thing to do is catch it with a test and

do something reasonable if the test applies. See the following example:

$numerator = 5;
if (isset($denominator) && $denominator != 0)
 $ratio = $numerator / $denominator;
else
 print(“I’m sorry, Dave, I cannot do that
”);

Symptom: Unexpected arithmetic result
Sometimes things just don’t add up (or multiply up, or subtract up). If you are having this experi-

ence, check any complex arithmetic expressions for unbound variables (which would act as zeros)

and for precedence confusions. If you have any doubt about the precedence of operators, add (pos-

sibly redundant) parentheses to make sure the grouping is as you intend.

Symptom: NaN (or NAN)
If you ever see this dreaded acronym, it means that some mathematical function you used has gone

out of range or given up on its inputs. The value NAN stands for “Not a Number,” and it has some

special properties. Here’s what happens if we try to take the arccosine of 45, even though arccosine

is defined only when applied to numbers between –1.0 and 1.0:

$value = acos(45);
print(“acos result is $value
”);
print(“The type is “ . gettype($value) . “
”);

179

 PHP Gotchas 10

$value2 = $value + 5;
print(“Derived result is $value
”);
print(“The type is “ . gettype($value2) . “
”);
if ($value == $value)
 print(“At least that much makes sense
”);
else
 print(“Hey, value isn’t even equal to itself!
”);

The browser output looks like:

acos result is NAN
The type is double
Derived result is NAN
The type is double
Hey, value isn’t even equal to itself!

Oddly enough, NAN is a number, at least in the sense that its PHP type in this example turns out to

be double rather than string. It also infects other values with not-a-numberness when used in math

expressions. (This behavior is a feature, not a bug, when used in very complex calculations that

must be correct. It’s better to have the whole value be tagged as untrustworthy than have one subex-

pression be silently bogus.) Finally, any equality comparison that involves NAN will be false — NAN

is neither less than, nor greater than, nor equal to any other number, including itself. It is always

unequal (!=) to all numbers, including itself. (The NAN value is not a PHP-specific feature — it is

part of the IEEE standard for floating-point arithmetic, which is implemented by the C functions

that underlie PHP.)

Because of the contagion of NAN values, this kind of problem can be difficult to debug. The best way

to try to find the original offending NAN is with diagnostic print statements, especially because

comparison tests will give counterintuitive results. You can explicitly test for NAN values using the

built-in is_nan() function, which returns TRUE if the number submitted is not a number or FALSE

otherwise. In earlier versions (you aren’t using an earlier version, are you?), you can cobble together

your own function for NAN testing like this:

function is_nan($value)
{
 return($value != $value);
}

It uses the weird comparison properties of NAN as a type checker.

Timeouts
Of course any download can occasionally time out before a complete page can be delivered.

However, this shouldn’t be happening frequently on your local development server!

180

 Part I Introducing PHP

The most interesting reason for a timeout is an infinite loop. These can be difficult to track down

quickly, as in this example:

//compute the factorial of 10
$Fact = 1;
for ($Index = 1; $Index <= 10; $index++)
 $Fact *= $Index;

This code shows a nasty little collaboration between a loop and a case confusion — the lowercase

$index that is incremented has nothing to do with the $Index that is being tested, so the test will

never become false.

Summary
In Table 10-1, we summarize the gotchas in this chapter by mapping symptoms to possible causes.

We also offer some suggestions on how to fix the most common problems.

TABLE 10-1

From Symptoms to Causes
Symptom Possible Causes Advice

(New installation)
Text of file
displayed in
browser window

The PHP engine is not being invoked,
possibly because you are opening it
via the local filesystem rather than as a
request to your server.

Make sure that your request is to the web
server, either via localhost (http://
localhost/[path]) if testing on the
server machine, or by the full URL (www.
example.com/[path]).

(New installation)
PHP blocks
showing up as
text, or browser
prompts you to
save file

PHP is not being invoked properly.
Your web server may not be set up
to map the right file extensions (for
example, .php) to the PHP engine,
or there may be a problem with the
location or contents of php.ini.

Check your web server configuration,
and the PHP init file (php.ini).

(New installation)
Server or host
not found/
Page cannot be
displayed

Often due to Internet/DNS/web-server
configuration problems, rather than PHP.

Try loading a pure HTML file with a file
extension you have not set up for PHP
(for example, .html) to rule out PHP
problems.

Totally blank page Usually due to PHP syntax errors. Use die() to determine the location of
the syntax error.

181

 PHP Gotchas 10

Symptom Possible Causes Advice

PHP code
showing up in
browser window

If the PHP engine is installed and
functioning properly, this is usually
due to a missing PHP start tag or
misconfigured web server.

Check start and end tags and make sure
that any include files of PHP code
have correct tags at beginning and end
also check web server functionality with
a basic PHP page.

Parse error
message

A variety of causes, including missing
semicolons, variables without a
$, unescaped quotation marks,
unclosed quotation marks, brackets,
or parentheses, and HTML being
interpreted as PHP.

Locate the line with the parse error in the
PHP file, and look for one of the causes
in that line or the lines immediately
preceding it. If the “error” is on the final
line of the file, look for an unclosed
quote, parenthesis, or bracket, possibly
much earlier in the file.

Include
warning

For one reason or another, PHP was
not able to load a file named in an
include statement.

Check that the file actually exists, the
spelling of the filename, the pathname,
and (on Unix systems) the case of the
name. Also make sure that the file
permissions allow the file to be read.

Variable value
not showing up
in print string

The variable has not been assigned,
and so its value in a printed string is the
empty string.

Check that you are assigning the variable
before the print statement and compare
spelling and case (capitalization). Make
sure that you are not embedding any
objects or multidimensional arrays in
quoted strings. You can also use the
statement error-reporting(15) to tell
PHP to warn about any unbound variables.

Numerical
variable
unexpectedly
zero

Often due to the variable never having
been assigned.

(See preceding.)

Variable value
is valid, but
unexpected.

Often due to variable having been
unexpectedly overwritten.

Use good variable names; search through
all included files for variable name.

Call to undefined
function my_
function()

Function my_function() is being
called without having been defined
first.

If you are trying to call a function of
your own, check that the definition
(or inclusion of the file containing the
definition) is before the use. If you are
trying to call a built-in function, check
the spelling. If it is correct, investigate
whether that “family” of functions was
included when you configured PHP (for
example, either all the XML functions
will work, or none will).

continued

182

 Part I Introducing PHP

TABLE 10-1 (continued)

Symptom Possible Causes Advice

Call to undefined
function ()

An expression of the form $my_
function() is being evaluated, and
$my_function is not bound to the
name of a defined function.

If you intend to use the variable-function
feature, then add (or correct) the
assignment of $my_function. If you
are just trying to call my_function(),
remove the $.

Call to undefined
function
array()

You probably have an expression of
the form $array_var_name(3),
when what you want is $array_var_
name[3]

Decide whether you want an array
expression or a function call — if the
former, then change parentheses to
square brackets.

Cannot
redeclare my_
function()

The function my_function()
is being defined twice in a page’s
execution.

Look for double definitions of my_
function in the PHP file, or double-
inclusions of the file that defines it.

Wrong parameter
count

The named function (usually a built-in
function) is being called with an
incorrect number of arguments.

Compare the function call to the
definition in the online PHP manual
(www.php.net)

Division-by-zero
warning

A / operator has a right-hand argument
of zero. Can be due to an unbound
variable in the denominator.

Assign the unbound variable if that’s the
cause. If the desired logic could actually
result in zero denominators, install a test
to catch that case.

Unexpected
arithmetic result

Frequently due to an unbound variable
in an arithmetic expression.

Check for unbound variables (see
preceding), and make sure that
arithmetic expressions are parenthesized
appropriately.

NAN value A built-in math function is being given
inputs outside its acceptable range.
If that function’s results are used in
arithmetic, the results are also NAN.

Trace backward from the NAN value
to function calls that contribute to
its computation. Test with print
statements, or test for values that fail to
be self-equal (a diagnostic for NAN).

MySQL Database
Integration

IN THIS PART

Chapter 11
Introducing Databases and
MySQL

Chapter 12
Installing MySQL

Chapter 13
Learning Structured Query
Language (SQL)

Chapter 14
Learning Database Administration
and Design

Chapter 15
Integrating PHP and MySQL

Chapter 16
Performing Database Queries

Chapter 17
Integrating Web Forms and
Databases

Chapter 18
Improving Database Efficiency

Chapter 19
MySQL Gotchas

185

D
atabases and PHP go together like cake and ice cream, Trinidad

and Tobago, green eggs and ham — you get the picture.

After all, what’s the Web about? Making vast stores of informa-

tion available to a more or less wide public, that’s what. Not that there

aren’t small brochureware sites galore, but the bigger and more frequently

updated the data source, the more comparative value is provided by the

Web over other media.

Perhaps the single greatest advantage of PHP over similar products is the

unsurpassed choice and ease of database connectivity it offers. As detailed

in the “Choosing a Database” section of this chapter, PHP supports native

connections to a number of the most popular database server types, open

source and commercial alike. Almost any database that will open its appli-

cation programming interface (API) to the public seems to be included

eventually. For any unsupported databases, there’s generic ODBC (Open

Database Connectivity) support.

What Is a Database?
A database is a collection of data. The term database usually indicates that

the collection of data is stored on a computer. Regardless, it’s the databases

that are on computers that I’ll concentrate on in this book.

Databases implemented through a computer are created within software.

That software, commonly known as a database application, controls how

Introducing Databases
and MySQL

IN THIS CHAPTER

What is a database?

PHP-supported databases

Our focus: MySQL

186

 Part II MySQL Database Integration

the actual data is stored and retrieved. Some database applications include Microsoft Access and

OpenOffice.org’s Base. Sometimes, databases are stored in a central location and managed by a data-

base server. A database server is a database application built with multiple users in mind.

Most of the time when programming PHP you’ll be accessing a database server. Some database servers

include PostgreSQL, MySQL, Microsoft’s SQL Server, and the Oracle suite of databases. You may also

see database servers called RDBMS, which is an acronym for relational database management system.

Database servers usually have one or more distinct APIs for programmatically creating, accessing,

managing, searching, and replicating the data they hold. It is through the API that you connect to

and work with data stored in database servers when using PHP.

There is no requirement that an RDBMS be used to store data. Other data stores can be used such as

a flat file or a table known as a hash table. These are perfectly fine for some applications, especially

smaller applications; however, for larger applications or applications that require optimal speed for

large data stores, an RDBMS is a requirement.

Why a Database?
If you’re going to the trouble to use PHP at all, you’re likely to need a database sooner or later —

probably sooner. Even for something small, like a personal blog, you want to think hard about the

advantages of using a database instead of static pages or included text files.

Maintainability and scalability
Having PHP assemble your pages on the fly from a template and a database is an addictive experi-

ence. Once you enjoy it, you’ll never go back to managing a static HTML site of any size. For the

effort of programming one page, you can produce an infinite number of uniform pages. Change one,

and you’ve changed them all.

There are now web sites with hundreds of thousands of separate pages — you can rest assured that

no one is maintaining them all by hand. If you have a web site that may eventually grow to more

than a few dozen pages, you should think about moving to a database sooner rather than later.

Portability
Because a database is an application rather than a part of the operating system, you can easily trans-

fer its structure and contents from one machine to another or (in certain cases) even from one plat-

form to another. This is especially valuable for contractors, who may develop a project without being

able to control the environment in which it will eventually be deployed — they can deliver a pack-

age of PHP plus a MySQL database schema dump.

187

 Introducing Databases and MySQL 11

Avoiding awkward programming
Certain things can be done with PHP but probably shouldn’t, because they entail ugly or risky pro-

gramming moves.

Say that you happen to be the commander of the starship Enterprise and are keeping a captain’s

log. Each log entry is contained in a text file identified by its unique stardate, which is plugged into

a template by PHP — but hey, you’re a busy spaceman with whole galaxies to explore; you don’t

always have time to write in your log every day. You want to put automatically generated Next and

Previous links on each page for those who wish to read in straight chronological order. It’s pretty

easy to use PHP to find the previous stardated entry, but any attempt to locate the next entry can

quickly become an infinite loop — because it’s easier to prove something does exist than that it

doesn’t. On the other hand, if you put your log data in a database, the whole job becomes trivial.

The database will tell you which is the latest entry at any given moment.

There are other types of programming tasks that a database is highly optimized to do, and given

the option, you should take advantage of it to perform these chores. For instance, you should avoid

sorting data sets on the PHP side in favor of writing queries so the data is returned presorted. We

discuss these efficiency issues in greater detail in Chapter 18.

Searching
Although it’s possible to search multiple text files for strings (especially on Unix platforms), it’s not

something most web developers will want to do often. After you search a few hundred files, the task

becomes slow and hard to manage. Databases exist to make searching easy. With a single command,

you can find anything from one ID number to a large text block to a JPEG-format image.

In some cases, information attains value only when put into a searchable database. For instance,

relatively few people would want to read a long text list of movie directors and their films, but

many might occasionally want to search a database of that information. You could argue that it’s the

searchability, as much as the information itself, that creates the value here.

PHP-Supported Databases
PHP Data Objects (PDO) was introduced back with the 5.1 release of PHP. PDO creates a consistent,

abstracted interface to database servers and data. PHP offers several database-specific drivers for

both PDO and non-PDO access. The PHP web site contains a list with the latest information about

databases that can be integrated along with the PDO abstraction layer and other abstraction layers.

See www.php.net/pdo for more information.

188

 Part II MySQL Database Integration

Our Focus: MySQL
MySQL, (officially pronounced my- S - Q - L and not “mysequel”), is an incredibly popular and powerful

RDBMS. MySQL provides one of the letters in the ubiquitous acronym “LAMP,” which is an abbreviation

for Linux, Apache, MySQL, PHP/Perl/Python. MySQL has become so popular for several reasons. First,

MySQL is free (as in price), although the licensing has changed (discussed later). Second, MySQL is also

stable, meaning that it’s not prone to crashing even under load. Third, MySQL is lightweight, meaning

that it doesn’t require many resources to install or run. Fourth, MySQL is fast and easy to use. Finally,

MySQL is powerful, with all of the features required for web applications.

MySQL AB, which is the company behind MySQL (owned by Sun), changed the licensing for MySQL

relatively recently. In the latest iteration as of this writing, MySQL offers a product called MySQL

Server Community Edition, which is essentially the same as the MySQL Enterprise Server, but is

lacking official MySQL support and some graphical user interface (GUI) tools. If your organization

needs an officially supported product, where you can call for assistance with the database server at

any time, then MySQL Enterprise is for you. MySQL AB’s support is excellent; it’s not unheard of to

get responses from developers themselves. Otherwise, the MySQL Server Community Edition is your

choice. For more information on the differences between the two versions, see www.mysql.com/
products/which-edition.html.

I’ll be concentrating on the MySQL Server Community Edition in this book, and the next chapter

will show you how to obtain and install MySQL.

Summary
The great advantage of the Web is its capability to make large quantities of information publicly

available quickly and cheaply. This functionality has been tremendously enhanced by the recent

increase in availability of inexpensive, reliable databases.

PHP supports several types of databases, including flat-file, hash, and relational databases. Most

large web sites (and even small sites, too) use some sort of relational database management system

(RDBMS). MySQL is a common choice among PHP developers. MySQL is not only free but also light-

weight, stable, and full of features necessary for both online and offline applications.

189

B
efore jumping into MySQL installation you need to get the software.

MySQL’s database server can be downloaded from MySQL’s web site

at www.mysql.com. As of this writing, the free Community Edition

server feels somewhat hidden on the web site. Therefore, with the caveat

that the URL may change on a whim by the time you read this text, the

download section for MySQL is currently located at http://dev.mysql
.com/downloads. However, realize that most distributions of Linux

include their own MySQL server package.

Obtaining MySQL
I strongly recommend using the MySQL server package directly from your

Linux distribution rather than downloading from MySQL AB unless you

have a very specific reason for using a different version. If you can’t think

what one of those specific reasons might be, then you probably don’t have

one, and you therefore should use the MySQL server available with your

distribution.

Installing MySQL on Linux
There are several distributions upon which you might find yourself install-

ing MySQL. It’s always a challenge choosing which distributions to cover.

No matter which ones we decide to cover there will always be someone

installing on another distribution.

Installing MySQL

IN THIS CHAPTER

Obtaining MySQL

Installing MySQL on Linux

Installing MySQL on Windows

190

 Part II MySQL Database Integration

In this section I’ll examine MySQL installation on Debian, CentOS, and Ubuntu. Additionally,

I’ll demonstrate compiling MySQL from source for those who don’t have a MySQL server package

available with their distribution. It should be noted that because MySQL 6 is so new it may not be

available as a package in your distribution. If this is the case, I recommend sticking with the latest

MySQL available for your distribution. For the most part, this book will use functions available in

MySQL 5 and later, so MySQL 6 isn’t a requirement. Where MySQL 6 is required, a special note will

be shown.

Installing MySQL Server on Debian and Ubuntu
Debian’s dpkg and apt installation and package management tools make installation of MySQL (and

everything else for that matter) incredibly easy. Debian is a system administrator’s dream because

it’s so stable, package installation is so easy, and the packages are maintained and configured with

excellent defaults. But enough evangelizing; installation of MySQL server on Debian requires super-

user privileges and is accomplished simply by running apt-get:

apt-get install mysql-server

Of course, that assumes that you have correctly configured sources in /etc/apt/sources.list.

For more information on APT and configuration of the sources.list file, see www.debian.org/
doc/manuals/apt-howto/ch-basico.en.html. Debian’s package management system will

install and configure any necessary prerequisites for you.

Debian separates MySQL into its components such as server, client, and libraries. Therefore, in order

to use MySQL and PHP together, you should install the php5-mysql package:

apt-get install php5-mysql

As you can see by that installation command, the PHP5 version of the interface is being installed.

That is the latest version available as of this writing.

Finally, you’ll likely also want to install the MySQL command-line interface (CLI), which is accom-

plished by installing the mysql-client package:

apt-get install mysql-client

MySQL will now be installed and ready to use on your Debian server. However, by default the

MySQL server won’t listen on anything by localhost. To change this, edit /etc/mysql/my.cnf and

comment out the skip-networking line with a pound sign or hash mark (#), so it looks like this:

#skip-networking

Now restart the MySQL server by typing this command:

/etc/init.d/mysql restart

191

 Installing MySQL 12

Installing MySQL on Microsoft Windows
MySQL installation on Windows is much, much easier than it used to be thanks to fully automated

installers

Installing MySQL on Windows
Default installation on any version of Windows is now much easier than it used to be, as MySQL

now comes neatly packaged with a native Windows installer. Simply download the installer package,

usually an msi, and run it. This will walk you through the trivial process and by default will install

everything under C:\Program Files\MySQL, which is probably as good a place as any.

The MySQL installer will attempt to install itself as a service, which means you need Administrator

rights on the computer upon which MySQL is being installed. Part of the installation process will

configure the MySQL server. During this portion of the installation, you can configure things like

the root password, the port on which MySQL will listen, and whether to include the MySQL utilities

in the Windows path (I recommend that you do so).

The Windows install is now so simplified that for most cases you can simply click “Next” to con-

tinue and, where you have an exception, refer to the online manual for MySQL at www.mysql.com.

Summary
This chapter examined installation of MySQL on Linux and Windows. The Linux installation var-

ies somewhat depending on the flavor of Linux on which MySQL is being installed. However, the

Windows installation has been greatly refined and reduced to simply clicking through the installa-

tion and receiving a fully functional yet incredibly powerful database system. The online documen-

tation for MySQL is available for assistance with installation issues, should they arise.

193

T
his chapter is a basic introduction to SQL databases in which we

discuss standards, database design, Data Manipulation Language,

Data Definition Language, and database security procedures com-

mon to all SQL databases.

This chapter is in no way a comprehensive guide to SQL or to

any particular SQL database. To go beyond the simplest com-

mon features, you will need to consult your particular manufacturer’s docu-

mentation or specific books. You will also want to look at documentation and

books relating to your specific SQL database.

Relational Databases and SQL
SQL is the language of relational databases. A simple query like a one-table

SELECT will be more or less the same whether you’re using a tiny database

like mSQL or an expensive behemoth like Oracle.

The big advantage for you, the web developer, is that, after you learn SQL,

you will be able to interact with numerous databases across all platforms

without a steep retraining curve. Just imagine how horrible life would be if

Oracle, MySQL, and SQL Server all had entirely different sets of commands

for putting data in and getting data out of their stores — as if Oracle used
SELECT to ask for data sets, MySQL used VALJ (the developers are Swedish,

you know), and SQL Server used FIND IT IN THIS TABLE (to better match

NOTENOTE

Learning Structured Query
Language (SQL)

IN THIS CHAPTER

Relational databases and SQL

SQL standards

The workhorses of SQL

Database design

Privileges and security

194

 Part II MySQL Database Integration

the vocabulary of Windows). SQL is the common vocabulary and syntax that will save you from this

nightmare. There are differences among products, and in their implementations of the SQL standard

and the extensions they each define to that standard, but it’s better to have 80 percent in common and

20 percent different than the other way around.

SQL Standards
According to Andrew Taylor, original inventor of SQL, SQL does not stand for Structured Query

Language (or anything else for that matter). But for the rest of the world, it does now. As you would

expect from the (non-) title, SQL represents a stricter and more general method of data storage than

the previous standard of flat-file DBM-style databases.

SQL is a standard under both the American National Standards Institute (ANSI) and the Equipment

Managers Council of America (ECMA); both are international standards-maintenance organizations.

You can read the standards on payment of a fee to these organizations:

www.ansi.org■■

www.ecma.org■■

However, within the general guidelines of the standard there are considerable differences among the

products of individual companies and open source database development organizations. The past

few years, for instance, have seen the rapid growth of so-called object-relational databases, as well as

of SQL products specifically slanted toward the web market.

The key to choosing a database is to be selfish, or at least supremely self-centered. You will see

plenty of unusually virulent postings out there opining that a certain advanced database fea-

ture (like triggers or cross joins) is a “must,” and any SQL installation without this feature hardly

deserves the name. Take this stuff with a grain of salt. It’s far better to make a blind shopping list of

functions you need in order of importance and then go out looking for the product that best meets

your requirements.

That said, a good deal of SQL really is pretty standardized. You will be using a few SQL statements

over and over and over, no matter which specific product you choose to deploy.

The Workhorses of SQL
The basic logical structure of a SQL database is very simple. A given SQL installation can usually

contain multiple databases — for instance, one for customer data and one for product data. (It’s

problematic that both the SQL server itself and the collections of tables within it are commonly

referred to by the term database — but what can you do?) Each database contains a number of

tables. Each table is made up of carefully defined columns, and every entry can be thought of as an

added record or row. (It’s not really a row, but this is a concept so stuck in our visualization that we

may as well go with it.)

195

 Learning Structured Query Language (SQL) 13

Four so-called data manipulation statements are supported by every SQL server and will constitute an

extremely high percentage of all the things you’ll want to do with a relational database. These four

horsemen of the database are SELECT, INSERT, UPDATE, and DELETE. These commands are your

friends and helpmates; get comfy with them, and they will serve you well.

The thing to remember about these four SQL statements is that they manipulate only database val-
ues, not the structure of the database itself. In other words, you can use these commands to add data

but not to make a database; you can get rid of every piece of data in a database, but the shell will still

be there — so, for instance, you wouldn’t be able to name another database on the same server with

the same name. If you want to add or get rid of columns, blow away entire databases as if they never

existed, or make up new databases, you need to use other commands such as DROP, ALTER, and

CREATE. We discuss these in the “Database Design” section later in this chapter.

A note on SQL style: Many SQL queries that you see are written in one long line of code —

which becomes totally illegible once you’re dealing with more than four or five fields. A

very accomplished PL/SQL programmer of our acquaintance recommends that you break up every SQL

statement into as many lines as you need for maximum legibility. He also does not shy away from using

indentation in a SQL query with many variables. (SQL queries are usually quite whitespace insensitive.)

He has years of experience working on big Oracle installations, and his recommendations actually are

very helpful — so that is the style we try to use in this book.

SELECT
SELECT is the main command you need to get information out of a SQL database. The basic syntax

is extremely simple:

SELECT field1, field2, field3
FROM table

That’s no harder than asking your coworker to get you last month’s sales records from the file cabi-

net in the hallway.

In some cases, you’ll want to ask for entire records instead of picking out individual pieces of infor-

mation. This practice is generally frowned upon, but it is still widely used and, therefore, we need to

mention it. A whole record is called for by using the wildcard (asterisk) symbol:

SELECT *
FROM mytable

Selecting Certain Records
The previous two examples show how to retrieve all rows from the table. It’s not all that common

to do this in the real world, which is where the WHERE clause comes in. The WHERE clause places a

condition on the SELECT statement that causes only those rows matching the WHERE clause to be

returned in the result set. For example:

SELECT *
FROM mytable
WHERE ID < 100;

TIPTIP

196

 Part II MySQL Database Integration

This example retrieves all fields from the table mytable where the ID column value is less than

the integer 100. WHERE clauses can get quite complex, and, frequently, multiple conditions are used

together with the AND keyword.

Joins
Joins are one of the main useful features of SQL.

A SELECT statement on a single table without joins might be visualized as being something like a

row in a spreadsheet. But an SQL database is by definition relational. To understand the philosophy

behind the relational database concept, you have to think back to some occasion on which you were

forced to fill out a whole bunch of forms — such as applying for a loan, visiting a doctor’s office for

the first time, or dealing with some kind of governmental formality. (If you’ve never had this experi-

ence, it’s because you’re young enough to have lived entirely in a world of relational databases.) As

you were writing down your name, address, phone, and Social Security number for the 15th time,

you probably thought, “Why can’t I just write my address down once, and then they could just look

it up on a need-to-know basis?” That’s exactly the concept behind a relational database.

The way a relational database differs from paper forms is the main identifier. Humans do well with

text and prefer to categorize by textual identifiers such as names. If a dentist’s office or auto body

shop stored its paper files in numerical order, it would be difficult for anyone to lay his hands on

John Johnson’s forms when John next required service. Frankly, most paper file users these days ask

for your Social Security number as a backup — it works solely to differentiate you from other people

in their files with exactly the same first, last, and middle names.

Databases, on the other hand, work well with integers. You’ll frequently use integer values to create

unique identifiers or IDs within a database table. This field or column is then called a primary key,

which indicates that each value in that column will be unique and that the rows within that column

will always have a value in the primary key field. Because primary keys are unique by nature, a

database needs only one to identify a person, place, or thing uniquely — no matter how many tables

refer to that piece of information.

So instead of needing to repeat information several times, like this:

Name: John Johnson
SS#: 123-45-6789

Name: John Johnson
Fears: Cats, Friday the 13th, Flying

Name: Jane Jones
SS#: 987-65-4321

Name: Jane Jones
Fears: Heights, Flying

with a relational database you can write down each piece of information just once and then relate it

to each other piece using integers, as shown in Tables 13-1 to 13-3.

197

 Learning Structured Query Language (SQL) 13

TABLE 13-1

People
PersonID Name SS#

1 John Johnson 998-00-9889

2 Jane Jones 987-65-4321

3 Aloysius Snuffleupagus 987-65-4329

TABLE 13-2

Fears
FearID Fear

1 Black cats

2 Friday the 13th

3 Peanut butter sticking to the roof of your mouth

4 Heights

5 Flying

TABLE 13-3

Person_Fear
ID PersonID FearID

1 1 1

2 1 2

3 1 5

4 2 4

5 2 5

This is clearly a neater and faster (for a database) way to store this information. But when you need

to pull out the data into a human-readable form, there’s a problem: You have to get and correlate

information from more than one database. That’s the job of a join.

198

 Part II MySQL Database Integration

To find out what phobias were suffered by Ms. Jones, you could first look up her personal unique ID:

SELECT PersonID
FROM People
WHERE Name = ‘Jane Jones’;

that returns the unique integer 2. Then you can define another SELECT statement using that

information:

SELECT FearID
FROM Person_Fear
WHERE PersonID = 2;

You get the values 4 and 5 back, which you can use in a third query:

SELECT Fear
FROM Fears
WHERE FearID = 4 OR FearID = 5;

This returns the values Heights and Flying. We should make it clear that there is nothing

inherently incorrect about doing it this way, as long as any performance loss is within parameters

acceptable to you.

Alternatively, you can perform a join, which returns the same information in a single SELECT

statement:

SELECT Fears.Fear
FROM Fears, Person_Fear, People
WHERE Fears.FearID = Person_Fear.FearID
AND Person_Fear.PersonID = People.PersonID
AND People.Name = ‘Jane Jones’;

An alternate syntax for this join is:

SELECT Fears.Fear
FROM (Fears INNER JOIN Person_Fear ON FearID INNER JOIN People on
PersonID)
WHERE People.Name = ‘Jane Jones’;

As you can see, you need only know one single piece of information to be able to get all the data in

the database about that subject using joins. In effect, a join makes two or more tables into one for

purposes of searching for a particular piece of information.

Joins come in several different flavors. The one in the preceding example is called an inner join,

which is the most common and restrictive type. Another common type is the outer join. This is used

199

 Learning Structured Query Language (SQL) 13

to return a list of all fears even if they do not have people attached to them. In this example, we are

using a left outer join (also known as a natural join):

SELECT Fear
FROM Fears LEFT JOIN People ON PersonID;

Fears that have people attached to them would appear in the data set multiple times, but fears with-

out people would each appear once.

You can also get a list of all people even if they do not have fears attached to them, using a right outer join:

SELECT Name
FROM Fears RIGHT JOIN People ON PersonID;

Again, the fears that are actually attached to people appear multiple times, whereas the fears that are not

suffered by any people still show up once in the data set. As you can see, left and right outer joins differ

in which of the two tables you want the actual data set from: the first (left) or the second (right). Because

you can switch them around at will, many people consistently use the left outer join for all outer joins.

Ask yourself whether you really need to be using outer joins. Because outer joins require less

precision to format, inexperienced SQL users often perform an outer join and then filter the

results in the code layer. This is wasteful and slow. Outer joins are all about the NULL values, which are not

easily returned by inner joins. An example of a good use for an outer join is a report where you want to see

which of your registered users had and had not downloaded your latest software product and how many

times they had downloaded. If you are not in this situation, learn to use inner joins instead.

Finally, there is something known as the self-join, which is a more advanced technique and won’t

really make a lot of sense with the example data set. It’s often used with denormalized data, which

means data that deliberately bends the rules of good SQL design (for example, never repeating any

data point) for performance reasons (for example, to reduce the number of complex multitable joins).

If you need to make complex and frequent joins, this may constrain the brand of SQL database you

can use, because not all of them support every type of join.

Subselects
Before we leave the realm of SELECT statements, we should mention the subselect. This is a statement

such as:

SELECT phone_number
FROM table
WHERE name = (SELECT name FROM table2 WHERE ID = 1);

Subselects are more of a convenience than a necessity. They can be very handy if you’re working

with enormous batches of data, but you can get the same result with two simpler SELECTs. The sub-

select is faster if the subselect clause returns a large data set, but there are cases where two selects

will not appreciably affect performance.

CAUTION CAUTION

200

 Part II MySQL Database Integration

INSERT
Of course, no matter how many SELECT queries you write, all is for naught if you haven’t put any

information in the database to begin with. The command you need to put new data into a database

is INSERT. The basic syntax is:

INSERT INTO table (col1, col2, col3) VALUES(val1, val2, val3);

Obviously, the columns and their values need to match up; if you mix up your array items, noth-

ing good will happen. If some of the rows will not have values for some of the fields, you will need

to use an empty, null, or auto-incremented value — and, at a deeper level, you may need to have

ensured beforehand that fields can be nullable or auto-incrementable. If this is not possible, you

should simply leave out any columns you wish to default to an empty value in an INSERT statement.

A twist on the basic INSERT is the INSERT INTO...SELECT. This just means you can INSERT the

results of a SELECT statement:

INSERT INTO customer(birthmonth, birthflower, birthstone) SELECT * FROM
birthday_info WHERE birthmonth = $birthmonth;

Not every SQL server has this capability. Also, you need to be careful with this command

because you can cause problems for yourself quite easily — for instance you can overwrite data

or experience locking issues. In general, it’s not a good idea to select from the same database

you’re inserting into.

UPDATE
UPDATE is used to edit information already in the database, without deleting any rows. In other

words, you can selectively change some information without having to delete an entire old record

and insert a new one. The syntax is:

UPDATE table
SET field1=’val1’, field2=’val2’, field3=’val3’
WHERE condition;

The conditional statement is just like a SELECT condition, such as WHERE ID>15 AND ID<21 or

WHERE gender=’F’.

DELETE
DELETE is pretty self-explanatory: You use it to delete the contents of one or more fields perma-

nently from the database. The syntax is:

DELETE datapoint
FROM table
WHERE condition;

201

 Learning Structured Query Language (SQL) 13

The most important thing to remember is the condition — if you don’t set one, you will delete

every entry in the specified columns from the database, without a confirmation or a second chance

in many cases!

Let us reemphasize: you must remember to use a condition every single time you UPDATE

or DELETE! If you do not, every single row in the table will experience the same altera-

tion or deletion. Even very experienced programmers have forgotten to include the condition, to their

vast professional embarrassment. You should also give a good deal of thought to restricting database

permissions so the minimum number of people can perform these potentially dangerous operations. I’ll

usually jump ahead and write the beginnings of the WHERE condition before filling out the rest of the

DELETE FROM portion of the statement, just to make sure I don’t inadvertently delete the entire table’s

worth of data. Another tip is to use the limit keyword within the DELETE statement so as only to

delete the number of rows specified in the limit.

Database Design
As should be obvious from the previous section, learning to use a SQL database isn’t exactly rocket

science — you can get a lot done with just a few simple commands. The hard part is designing the

database in the first place and, of course, operating it in the real world over time. Not every web

developer will be asked to design a schema in a professional context, but it never hurts to know how.

At the most fundamental level, database design can be broken down into the following mantra:

One to one,
One to many,
Many to many,
Many to one;
And always use a unique ID.

An example of one-to-one data for Americans is the Social Security number (other nations probably

have similar identification cards with unique numbers). Each U.S. citizen has only one unique iden-

tifier; it is, in fact, a crime to use the Social Security number of another individual or apply for more

than one number. Database designers seize upon truly unique identifiers such as this because almost

every other piece of personal information is subject to change — which accounts for the large num-

ber of businesses who inappropriately use the Social Security number for identification purposes.

One-to-many data and many-to-one are the same, differing only in how the columns are placed in a

database. An example of one-to-many data comes from the medical realm: patients to visits. Each

patient will always be a discrete individual but may have any number of visits to the doctor. If you

designed the table to represent visits to patients, it would instantly become many-to-one data.

Finally, many-to-many data is well represented by the relationship of authors to books. Not only can

a given book have multiple authors, but each author may have written or coauthored many books.

CAUTION CAUTION

202

 Part II MySQL Database Integration

This is not a matrix of relationships that would be easy to represent efficiently in a spreadsheet, but

it is precisely this category of data at which relational databases most excel.

Every data relationship falls into one of these categories. As a database designer, it’s your job to

decide which one of these represents what you need to know in the way you need to know it.

This is not as trivial as it sounds. Imagine that you want to develop a database of movie information.

One decision you might have to make is whether movie and title are in a one-to-one relationship

with each other, or whether enough films have alternate titles to merit an alternate title field or even

a one-to-many representation. There’s no right answer here — the decision depends on exactly how

the information will be used, how large the database will be, if the extra resources required to main-

tain a more precise data structure are worth the cost, and whether there’s a better-than-even chance

that today’s tangential trivia will become tomorrow’s crucial discovery. Some people may be sur-

prised to learn that archiving information can be as much about ruthless excluding as about careful

hoarding. As historians say, history is about forgetting as much as it is about remembering.

The simplest relationship is the one-to-one because you can group all these fields into a single table

that can be searched more quickly. For instance, a table holding customer information might con-

tain the following fields:

Customer ID
Customer name
Administrative contact
Technical contact

The hardest thing about the one-to-one relationship is definitively deciding that you will never need

to make it into a one-to-many relationship. For instance, what if your biggest customer decides it

wants to designate two technical contacts?

As soon as you have a one-to-many, many-to-one, or many-to-many relationship, you’re looking at

going from a single table to multiple tables: one each for the main variables and one stating the rela-

tionship. Tables 13-4 through 13-6 show a common example of a many-to-many relationship:

TABLE 13-4

Customer
Customer_id Name

1 Acme Bread

2 Baker Construction

3 Coolee Dam

203

 Learning Structured Query Language (SQL) 13

TABLE 13-5

Interactions
Interaction_id Type

1 Phone-support incident

2 On-site incident

3 Written complaint

4 Phone complaint

5 Kudo

TABLE 13-6

Customer-Interaction
Customer-
interaction_id

Customer_id Interaction_id

1 1 1

2 3 5

3 2 4

4 2 3

5 1 2

After you’ve decided on a database design, the mechanical details of constructing the database are

minimal. The main data structure statements of SQL are CREATE, ALTER, and DROP.

CREATE is used to make a completely new table. All the work is in defining the columns of each

table. First, you declare the name of the table, and then you must detail the specific data types of

that table’s columns in what is called a create definition. A CREATE statement will take this form:

CREATE TABLE tablename (
 id_col INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 col1 TEXT NULL INDEX,
 col2 DATE NOT NULL
);

204

 Part II MySQL Database Integration

Different SQL Servers have slightly different data types and definition options, so the syntax of one

may not transfer exactly to another. For instance, Oracle databases do not auto-increment; to get a

new value, you must generally call a function.

DROP can be used to completely delete a table and all its associated data. It’s not the most subtle

command:

DROP TABLE tablename;

Obviously, you need to be very careful with this statement.

ALTER is the way to change a table’s structure. You simply indicate which table you’re changing and

redefine its specs. Again, SQL products differ in functionality here. The ALTER statement usually

takes this form:

ALTER TABLE table RENAME AS new_table;
ALTER TABLE new_table ADD COLUMN col3 VARCHAR(50);
ALTER TABLE new_table DROP COLUMN col2;

Privileges and Security
As we state in Chapter 28, security online is analogous to security in the real world. Any cop will

tell you that you cannot make your home absolutely crime-proof. A more realistic goal is to increase

the difficulty and risk to a level where a large percentage of intruders will choose to go to an easier

target down the block.

Setting database permissions
The most fundamental rule of database use (of any computer security, really) is to give each user or

group only the minimum permissions necessary to do what needs to be done. Besides the threat

of malicious/experimental outsiders, setting the correct permissions can protect you from your

coworkers and yourself. Insiders have been known to cause massive problems through disgruntle-

ment, ignorance, momentary brain freeze, or a combination of motives. You do not want to have to

cope with the consequences of a fired employee’s parting shot or a new intern trying out the DROP

database command just to see what happens.

A typical database permissions package might be something like:

Web visitor:■■ SELECT only

Contributor:■■ SELECT, INSERT, and maybe UPDATE

Editor:■■ SELECT, INSERT, UPDATE, and maybe DELETE and maybe GRANT

Database Administrator:■■ SELECT, INSERT, UPDATE, DELETE, GRANT, and DROP

205

 Learning Structured Query Language (SQL) 13

DROP in particular is the nuclear bomb of SQL because it allows you to blow away an entire table

or database with a single command. Someone’s got to have the ability, but heavy lies the tiara of

responsibility on the head of the root database user. Use the power wisely, grasshopper.

In many databases, including MySQL, passwords are encrypted using a different algorithm from

system passwords (and, of course, they are typically stored in entirely different locations). Even if

one is cracked, the other is not necessarily vulnerable. This assumes that you take the time to set

permissions correctly, pick good passwords, and usually employ a special command to insert user-

names and passwords correctly into the grant table (as opposed to inserting them like other data).

Database usernames and passwords should not be identical to system usernames and

passwords.

Chapter 14 covers permissions for MySQL specifically.

Keep database passwords outside the web area
It’s a good idea to separate passwords from the web pages that use them. With PHP’s include()/

include_once() and require()/require_once() functions, it’s very easy to drop in text (such

as database passwords) from another file at runtime. Remember that these included files do not have

to be in a PHP or web server–enabled directory! Whenever possible, keep them somewhere outside

your web area or the file hierarchy viewable to the public through the web server. A good example is

a directory above or outside of your web document root or in a home directory.

Taking the database variables out of PHP files is also good for other reasons. If you have many PHP

scripts using the same database, they can all use the same password file. When you suspect the

password has been compromised, or when you change the password on a regular schedule, you

need only alter one script for all the files to be updated.

The unavoidable downside of this technique is that the file must be readable by the user through

which the web server runs, such as wwwuser, httpd, or Apache. This usually involves changing the

ownership of the file with the database credentials to that of the Apache web server user, and, of

course, making sure that the mode of the file doesn’t allow it to be world-readable.

If you have a set of database variables you use infrequently — a configuration script or the like — you

can keep it in a non-Apache-readable directory and change the permissions only on the rare occa-

sions necessary. We infrequently have to go to the trouble to delete postings from our sites’ forums. So

it’s not that much more work (and much more secure) to keep this file in a non-Apache-user-owned

directory, once in awhile change the permissions just long enough to delete the offending post, and

then immediately change everything back.

If for whatever reason, you decide to put your database username, password, hostname, and database

name into a PHP script in plain text, this is what you can expect. If the web server is functioning

normally, the database passwords should be as safe as any file on that server. But if the daemon goes

down, there is some chance your raw PHP (including plain-text database variables) will be delivered in

a human-readable form. You can reduce this risk by avoiding the use of the .html suffix for PHP files.

CAUTION CAUTION

CROSS-REFCROSS-REF

206

 Part II MySQL Database Integration

In some versions of PHP, if database connectivity went down and you hadn’t specified silent mode,

you would see something like the following:

Warning: MySQL Connection Failed: Access denied for user:
‘someuser@localhost’ (Using password: NO) in
/home/web/html/mysqltest.php3
on line 2

This constitutes a security breach, because it reveals your MySQL username and whether or not you use

a password. From PHP4 forward, MySQL error messages are no longer displayed by default. Two func-

tions, mysql_errno() and mysql_error(), allow you to opt for error codes or text warnings — but

now you have to deliberately choose to ask for the information. Because, in most cases, you can opt for

the more configurable die() instead or remove error messages after debugging, it’s still not a good idea

to use mysql_error on a public production server unless you scrupulously send messages to error logs

using the error_log() function rather than to standard output.

Learn to make backups
And finally, the biggest part of database security may be backing up. Take an hour to learn the best

way to back up data in your particular database (for example, via the mysqldump command in

MySQL), and then schedule regular backups right away. Even better, with a little foresight you can

also set up an automatic database backup schedule.

Summary
SQL is not rocket science. The four basic data-manipulation statements supported by essentially

all SQL databases are SELECT, INSERT, UPDATE, and DELETE. SELECT gets data out of the data-

base, INSERT puts in a new entry, UPDATE edits pieces of the entry in place, and DELETE gets rid

of an entry.

Designing databases is where most of the difficulty lies. Not all web developers will be asked to do

this. The designer must think long and hard about the best way to represent each piece of data and

relationship for the intended use. Well-designed databases are a pleasure to program with, while

poorly designed ones can leave you pulling your hair out while contemplating numerous connec-

tions and icky joins.

SQL databases are created by so-called data structure statements. The most important of these are
CREATE, ALTER, and DROP. As one would expect, CREATE TABLE defines a new table within a data-

base. ALTER changes the structure of a table. DROP is the nuclear bomb of SQL commands because it

deletes entire tables or sometimes even whole databases.

207

M
ySQL is one of the easiest databases to administer on all plat-

forms, and because it’s so lightweight, it can run on even

low-powered PCs. Thus, PHP developers have long found it

convenient to throw a copy of MySQL on client machines — even on lap-

tops — for a complete local web development environment. Many devel-

opers learn to run their own MySQL installations so that they can work at

home or on the road, using the OS of their choice. Work teams also some-

times prefer developers to each use a separate local MySQL installation, so

that there is no single point of failure that could affect an entire develop-

ment group. And many PHP-based open source projects assume complete

familiarity with MySQL database administration for all developers.

Unlike some other databases, it should be well within the capability of any

PHP developer to self-administer a MySQL database. There is a plethora of

tools, both in MySQL itself and available from third parties, to make this

job even easier. Many PHP-based application packages, both commercial

and open source, also require familiarity with a MySQL database to install,

run, and debug the web app. So even if you don’t plan to write all your PHP

code yourself, getting comfortable with MySQL administration will pay

many dividends.

Learning Database
Administration and Design

IN THIS CHAPTER

Administering MySQL

Backups

Replication

Recovery

208

 Part II MySQL Database Integration

Basic MySQL Client Commands
It may surprise you to know that the binary named mysql in your mysql/bin directory is not the

server, but the client (the server is mysqld). When you type mysql into a shell, you are using the

MySQL command-line client to access some MySQL server.

To connect to the MySQL server using the command-line client, the basic command is:

mysql [-h hostname] [-P portnumber] -u username -p

You almost certainly need to pass the username; if you don’t, the client will try the name of your

shell user. If you don’t pass the password flag, mysql will check whether a password is needed for

the user you claim to be — and if so, it will reject you. If you’re connecting to a local host, you don’t

need the hostname flag; if you’re connecting to the default port (3306), you don’t need the port num-

ber flag. There are a bunch of other options, but usually this is all you need the first time. Assuming

that you use the username root, you will be prompted for the root password that you just set in the

previous step.

At this point, you will need to select a database to use. The command for that is:

USE databasename;

The semicolon is optional for this command, but you need one for every other SQL command, so

you might as well get used to using it. Until you create new databases, there are only two databases

in a fresh install: mysql and test. If you just connected to MySQL as the root user, you have access

to both; if you are connected as any other user, you have access only to test.

The command SHOW TABLES; will dump a list of all the tables in this database.

To quickly see the structure of a database table, use SHOW COLUMNS FROM tablename;. This dis-

plays all the columns with their types, sizes, default values, and other helpful information.

To see all the values in a table, just do a SELECT with unrestrictive conditions:

SELECT * FROM tablename;

Be careful though, since in live databases this kind of query can be huge and take up a lot of

resources. If you have reason to suspect that the data set is more than a few rows, you should take

steps to limit the query.

See Chapter 13 for more information on how to write SQL statements such as SELECT,

INSERT, and so forth. Remember that one of the best ways of debugging problems with

SQL statements in your PHP code is to try them out (with suitable fake data plugged into the variables)

using the MySQL command-line client rather than the PHP client. See Chapter 19 for more information

on debugging SQL in your PHP.

Finally, to get out of the MySQL client session, use the command quit;. Again, the semicolon is

optional for this command. This should drop you back into your normal shell.

CROSS-REFCROSS-REF

209

 Learning Database Administration and Design 14

MySQL User Administration
A big part of using MySQL safely and effectively is understanding its privilege system and learning

how to use the tools provided for controlling user privileges.

MySQL allows you to grant quite fine-grained permissions to different users from different client

locations. There are four descending levels of privileges: global, database, table, and column. So in

theory, you could allow a particular user to write data only to certain columns of certain tables of

certain databases on your MySQL server. Or you could just as easily give any database user con-

necting from anywhere the same powers as the root database user (although this is totally not

recommended).

Of course, for security reasons it’s generally a good rule of thumb to grant each user only the mini-

mal permissions necessary to perform his or her function.

There are two different ways to add or edit user permissions in MySQL (assuming that you’re the

root database user): by direct SQL statements (for example, putting a Y by hand into every relevant

field of every relevant grant table) or by use of the GRANT and REVOKE syntax. The latter is easier,

and less dangerous if you make a small mistake, since in most cases your query will choke with a

SQL error instead of just leaving a gaping security hole.

To add a new MySQL user, type the following:

GRANT priv_type [(column1, column2, column3)]
ON database.[table]
TO user@host IDENTIFIED BY ‘new_password’;

where columns and tables are optional and additional priv_types can be appended in a comma-

separated list.

The types of privileges and their scope are shown in Table 14-1.

Obviously, there’s no point in trying to give anyone the SHUTDOWN privilege at the table level. You

will merely get an error message referring you to the manual. If you grant ALL to a column, table, or

database, the user will get only the basket of privileges appropriate to that level.

You should be especially careful about giving users the following privileges, which are all dangerous:
GRANT, ALTER, CREATE, DROP, FILE, SHUTDOWN, PROCESS. No normal database user, especially a

PHP user, should need these permissions in production.

The syntax for revoking privileges is very similar, although simpler:

REVOKE priv_type [(column1, column2, column3)]
ON database[.table]
FROM user@host;

210

 Part II MySQL Database Integration

TABLE 14-1

MySQL Privilege Scope for Selected Privileges
Privilege Global Database Table Column

ALL ✓

ALTER ✓ ✓ ✓

CREATE ✓ ✓ ✓

CREATE
TEMPORARY
TABLE

✓ ✓ ✓

DELETE ✓ ✓ ✓

DROP ✓ ✓ ✓

EXECUTE ✓ ✓

FILE ✓ ✓

INDEX ✓ ✓ ✓

INSERT ✓ ✓ ✓ ✓

LOCK TABLES ✓ ✓

PROCESS ✓ ✓

REFERENCES ✓ ✓

RELOAD ✓ ✓

REPLICATION
CLIENT

✓

REPLICATION
SLAVE

✓

SELECT ✓ ✓ ✓ ✓

SHOW DATABASES ✓

SHUTDOWN ✓

SUPER ✓ ✓

UPDATE ✓ ✓ ✓ ✓

USAGE ✓ ✓

GRANT OPTION ✓ ✓ ✓

211

 Learning Database Administration and Design 14

After you grant or revoke privileges to any user, you need to force the database to reload the new

privilege data into memory. You do this by issuing the FLUSH PRIVILEGES command. You could

also start and stop the server, but that’s impractical in many circumstances.

This is all well and good, but by now you’re probably thinking: But what actual permissions should I

actually grant to my actual PHP user? Let’s look at some common cases from the real world.

Local development
For purely local stuff, especially on a machine that isn’t connected to the Internet all the time or is

tucked securely behind a good firewall, almost anything goes. If you need to experiment with your

schema, this is the place to do it — so it’s appropriate to have permissions like ALTER, CREATE,

DELETE, and DROP in addition to the normal SELECT, INSERT, UPDATE. A lot of people will find it

convenient to just grant ALL PRIVILEGES on a certain database to a local user, like this:

GRANT ALL PRIVILEGES on database.*
TO username@localhost
IDENTIFIED BY ‘password’;

Standalone web site
A self-hosted database probably needs to accept connections from numerous web servers in the same

domain. In production, all machines should be limited to SELECT, INSERT, UPDATE, and possibly

DELETE — although many systems never actually delete data, and it’s a little safer not to do so. Since

there probably won’t be multiple databases on a standalone web site’s production database, global

permissions are faster with not much more real security risk. So a possible grant statement is:

GRANT SELECT, INSERT, UPDATE ON *.*
TO phpdbuser@%.example.com
IDENTIFIED BY ‘password’;

However, this is the situation that is most likely to use master-slave replication. Often, these MySQL

clusters are configured so that all writes go to the master, while the slaves do nothing but serve up

very fast reads. In that case, you would give only SELECT privileges on each slave and only INSERT

and UPDATE privileges on the master — possibly to two different database users.

Shared-hosting web site
If you are an Internet service provider (ISP) that offers shared hosting, or a customer hosting your

web site with one, your primary concern should be security over performance. Under no circum-

stances do you want one user to be able to tamper with or delete data belonging to another user.

Unless each user has her own MySQL instance running on her own port, the ISP administrator

should not allow users to create or drop globally. Obviously, though, there is no good way to deny

table creates or drops, which implies that each user will also be able to drop his own database if he

so desires. Yes, that’s right: If your users can define new tables, as they almost certainly will have to

212

 Part II MySQL Database Integration

in this situation, there’s no good way to prevent them from blowing away all their data with a single

command! That’s part of the easy come, easy go thrill of MySQL. The database administrator can

and should, however, prevent users from being able to do this to other users on the same server.

Backups
Database backups can be made in two ways: by copying the data directory directly (either manually

or by means of the mysqlhotcopy script on Unix) or by using the mysqldump tool to write out a

SQL file that will replicate your database. The former is a little faster, but the latter is more flexible.

With mysqldump you can choose to copy just the structure of the database, just the data, or both.

The most basic usage of mysqldump is:

mysqldump -u username -p databasename > dumpfilename.sql

This command will dump a text file that can be read into another database server, like this:

mysql -u root -p databasename < dumpfilename.sql

Instead of directing the output of mysqldump to a file, you can also pipe it directly to another server,

like this:

mysqldump -u username -p databasename |
mysql -h remote-host -u remoteuser -p -C databasename

However, this can be less secure in some cases, since you have to tell the remote host to accept

database-modifying connections from external clients.

This basic command is fine as far as it goes — meaning that it will result in a nice SQL file contain-

ing both the structure and data of the named database. But sometimes you will want something

more specific than that: maybe just the structure or just the data or all the databases on that server

or just some tables from your chosen database. MySQL allows you to both specify different combina-

tions of databases and/or tables and to add option flags to your command.

If you want to select specific tables to dump from your chosen database, just list them after the data-

base name:

mysqldump -u username -p databasename table1 table2
> dumpfilename.sql

If you want to dump some but not all databases on your server, use the -- databases flag and then

list the databases. However, in this case, you will not be able to specify tables.

mysqldump -u username -p --databases database1 database2 >
dumpfilename.sql

213

 Learning Database Administration and Design 14

If you want to dump all databases, use the -- all-databases flag:

mysqldump -u username -p --all-databases > dumpfilename.sql

You can specify any of these options before specifying the databases and tables. There are many

mysqldump options, but Table 14-2 lists the most commonly used options.

TABLE 14-2

mysqldump Options
Option Explanation

-- add-locks Adds table locking to SQL file for faster inserts on the target table.
See also -- opt.

-- add-drop-table Will overwrite each table definition. Be careful with this option, as
you could delete data! If you don’t use this option but a table of
the same name already exists, you will get an error on the target
database.

-a, -- all All options. Be careful!

-c, -- complete-insert Use more complete insert statements with column names, instead
of simply reading in values.

-- help Displays help message with options.

-l, -- lock-tables Locks tables on the source machine before the dump.

-n, -- no-create-db Will not create databases of the specified names if they don’t exist
already. Default with the -- databases and -- all-databases
options.

-t, -- no-create-info Will not create tables of the specified names if they don’t exist
already.

-d, -- no-data Just the structure of the specified database(s) or tables.

-- opt Equal to -- quick -- add-drop-table -- add-locks --
extended-insert -- lock-tables. Fastest possible dump.
Make sure that you want to drop existing tables if there’s a conflict.

-q, -- quick No buffering.

-r, -- result-file=filename Dump result to file. In DOS, creates Unix-style line breaks.

-w, -- where=’condition’ Select results by the WHERE clause in single quotes.

214

 Part II MySQL Database Integration

Because mysqldump is so easy to use, you should have no excuse for not adhering to a regular

backup schedule. This is why cronjobs were invented! If your data changes relatively infrequently,

you might be able to get away with weekly or fortnightly backups; if you have a fairly high-traffic

site, you’ll want to schedule one every night.

Users of PHPMyAdmin have access to mysqldump through the Export tab. However, PHPMyAdmin

currently offers only the most common options for your data dump. If you need more control over

the format of your SQL file, you’ll have to use mysqldump as previously described instead.

Replication
MySQL replication is based on a one-way single-master, single-or-multiple-slave model. The mas-

ter database will handle all writes — meaning all INSERTs, UPDATEs, and DELETEs, as well as all

schema changes. The slaves will periodically get these changes from the master and in the meantime

will be available for highly optimized read-only data serving (meaning all SELECTs). The master

does not know anything about slave databases. It simply makes its binary logs available, and the

slaves do all the rest: scheduling updates, connecting to the master, getting the changes, applying

the changes, and so on. Thus, slaves are aware of the identity of the master, but masters are not

aware of the identities of slaves.

If the master database goes down for any reason, no replacement will be automatically elected. The

entire system is likely to become unresponsive, as the slaves spend many resources trying in vain to

connect to the master for updates, while PHP tries to perform writes without success. The database

administrator will have to manually break the existing master-slave relationships and designate a

new master by hand. Luckily, if something goes wrong with the master, there’s no way the slaves

will have gotten out of sync — so if a database administrator notices the problem and is available to

deal with it, changing to a new master database should be relatively quick.

Because there have been many changes and upgrades to the replication function in recent versions

of MySQL, many recent versions are incompatible with other recent versions in a replication setup.

If you want to try replication, we recommend that you make sure all the database servers involved

are using the same version of MySQL, and furthermore, that this version is 4.0.3+. If you are trying

to replicate with disparate versions of MySQL between 3.23 and 4.0.3, it is very likely that things

will not work properly.

In a nutshell, the operations that must be performed to establish MySQL replication are:

 1. Grant permissions to slave user on master.

 2. Take snapshot of master data; copy to slave machines.

 3. Shut down MySQL servers.

 4. Restart MySQL servers with correct server-ids.

 5. Establish master-slave relationship from each slave.

215

 Learning Database Administration and Design 14

Now we’ll explain the process in more detail.

You will need to create an account on the master database for slaves to use, with the REPLICATE

SLAVE privilege. You do not need to grant any other privileges to this account.

GRANT REPLICATE SLAVE ON *.*
TO replicant@‘%‘ IDENTIFIED BY ‘replpwd’;

Next, lock the master server and take a snapshot of its state immediately before the replication. On

the master server, log in to a MySQL client session as the root user and issue the commands:

FLUSH TABLES WITH READ LOCK;
SHOW MASTER STATUS;

This will prevent any changes from being made to the database until you are ready to bring up the

cluster. You may also (depending on whether this server has been run with binary logging) see some

data about the location of the binary log file and offset. If so, write it down; if not, use the default

values ‘’ (empty string) and 4, respectively.

Next, copy the master database structure and data. There are two ways to do this. The first is to

simply copy the mysql/data directory into a tarball or zip file by using one of these commands or a

GUI procedure:

tar -cvf master_snapshot.tar data/
zip master_snapshot.zip data/

Alternatively, you can use mysqldump to make a backup as described in the next section. Copy this

snapshot file to each slave server.

Now shut down all the master and slave servers. Quit any mysql client shell sessions, and issue the

command:

mysqladmin -u root -p shutdown

on each server. The reason you are shutting the servers down is to give them unique server-id

values. They will use these values to find each other when they establish the master-slave relation-

ship. This value is set in each server’s my.cnf file and will be read in on startup. On Windows, the

my.cnf file is located in one of two places: C:\my.cnf or C:\[Windows directory]\my.ini.

On Unix systems, the global my.cnf file is found in /etc/my.cnf and the server-specific file

(which is probably the one you want to use) is found in /path/to/mysql/data/my.cnf.

First, set the server-id on the master machine. Find or create a file called my.cnf in the proper

location for your platform, and make sure that it contains the lines:

[mysqld]
log-bin
server-id=1

216

 Part II MySQL Database Integration

Restart the master server:

bin/mysqld_safe --user=mysql

In each slave server’s my.cnf files, you need only the server-id, not the log-bin line. The

most important thing is that you are absolutely positive that all the server-id values in your

cluster are unique! If they are not, bad things will happen. So the first slave’s my.cnf file would

contain this line:

[mysqld]
server-id=2

The second slave would set server-id=3, and so forth.

Now, before you bring up each slave server, you may need to do a little bit of housekeeping. If this

MySQL server has been used as a slave before, you may want to delete the files data/master.info

and data/relay-log.info. You may also want to delete the .err and .pid files in the data

directory. Also, if you copied the master’s data snapshot into a tarball or zipfile, now is the time to

copy it to the slave with a command like one of these (from the mysql directory):

tar -xvf master_snapshot.tar
unzip master_snapshot.zip

If you used mysqldump instead, you have to wait until the server is back up.

Now bring up the slave:

bin/mysqld_safe --user=mysql --skip-slave-start --log-warnings

If you took your master data snapshot with mysqldump, now is the time to apply the SQL file to

the slave:

mysql -u root -p databasename < master_snapshot.sql

Finally, you will establish the master-slave relationship. Log in to a mysql shell and then enter the

following commands, substituting the values you wrote down at the beginning of the process:

CHANGE MASTER TO
 MASTER_HOST=’masterhostname’,
 MASTER_USER=’replicant’,
 MASTER_PASSWORD=’replpwd’,
 MASTER_LOG_FILE=’‘,
 MASTER_LOG_POS=4;
START SLAVE;

If there are problems, they will appear in the slave machine’s error log.

217

 Learning Database Administration and Design 14

Recovery
Normally, MySQL does not require much attention. MySQL servers have happily puttered away for

months if not years with minimal administration. However, bad things do happen to data: Hard

disks melt down, hosting centers lose power suddenly, and human error is a constant and awful

probability. If you have insufficient memory for all the applications you’re running on a server, or

insufficient disk space on a partition, you may also get an error that requires a recovery process.

It must be admitted that MySQL seems to have minor database corruption events with greater fre-

quency than heavier-weight databases — or perhaps it’s just easier for the administrator to notice

these events.

Luckily, MySQL is designed to make it amazingly easy to repair small flaws in your data and get

back up quickly. Only once have we had to actually scrap an entire database after repeated attempts

at recovery, and that disaster was caused by a total hard disk failure, which is something a developer

can do nothing to plan for or recover gracefully from — except make frequent backups.

MySQL has long shipped with a command-line tool called myisamchk for checking and repairing

tables. This was a fine script but it suffered from one flaw: It could be run effectively only when the

database was shut down. That’s fine when you’re actually recovering from a disaster, since you’re

unlikely to be able to start your database anyway, but it’s a significant barrier to trying to head off

problems by regularly checking your data tables. Luckily, there is now a new tool that can be used

during operation — mysqlcheck. You can continue to use myisamchk (used only for myisam

tables) when the server is not running. Refer to the MySQL manual for more information on trouble-

shooting table problems.

Both these tools basically can do three things: check a MyISAM table for errors, repair problems, and

optimize the database. The syntax by which you use the scripts is different, however.

myisamchk
The myisamchk utility is invoked like this:

myisamchk [options] table_name

or

myisamchk [options] /path/to/mysql/data/database/table.MYI

You can wildcard both database directories and table names with an asterisk, which is more com-

mon than specifying a table, since you usually don’t know exactly which table is causing the prob-

lems. Use the following commands to check all the tables of all the databases on a server:

myisamchk [options] /path/to/mysql/data/*/*.MYI
myisamchk [options] /path/to/mysql/data/*/*.MYD

.MYI extensions designate index files, and .MYD extensions designate data files — you need to

check both.

218

 Part II MySQL Database Integration

With no option flags, myisamchk will simply check the designated table. If you pass the -r option

flag, myisamchk will repair the designated tables. You can also check and repair any corrupted

tables in a single operation:

myisamchk --silent --force --fast --update-state -O
key_buffer=64M -O sort_buffer=64M -O read_buffer=1 -O
write_buffer=1M /path/to/mysql/data/*/*.MYI

The command myisamchk -r tablename will also optimize a table that has been fragmented by

deletes and updates.

mysqlcheck
The mysqlcheck tool has several handy advantages over myisamchk. As previously mentioned,

it can be used while the server is running — even while serving up queries. It works on databases

rather than tables, using the same syntax as the mysqldump tool. And instead of having to remem-

ber the meaning of a bunch of option flags, you can copy and rename the executable to get different

behaviors.

The mysqlcheck tool is invoked in one of these ways:

mysqlcheck [options] databasename table1 table2 table3
mysqlcheck [options] --databases database1 database2
mysqlcheck [options] --all-databases

To repair, analyze, or optimize databases, you simply copy the mysqlcheck file and change its

name to mysqlrepair, mysqlanalyze, or mysqloptimize — and then invoke it the same way.

So, for instance, to repair all the databases on your server, you might give this command:

mysqlrepair -u root -p --all-databases

MySQL AB recommends that you set up a regular schedule of data file checking via cronjob, plus

run one of these utilities every time you start up your MySQL server. This should help keep your

data compact for fast reads, head off problems while they’re still tiny, and minimize your chances of

a database problem that is visible to your users.

Summary
MySQL is one of the easiest databases to administer, and learning to do so provides many benefits

to PHP developers. MySQL installations have become easier of late on many platforms, and there are

GUI as well as command-line tools available to help you view the structure of your database, man-

age database users, and make backups. More advanced MySQL administration tasks include disaster

recovery and replication — both of which are probably as easy to accomplish on MySQL as they

could possibly be made. However, even long-time MySQL users should consider the impact of recent

changes to the MySQL-PHP relationship: licensing issues, client-version incompatibility, the new
mysql extension, and transactions.

219

A
fter you’ve installed and set up your MySQL database, you can

begin to write PHP scripts that interact with it. Here, we will try

to explain all the basic functions that enable you to pass data back

and forth from web site to database.

Information related to creating a MySQL database is at the end

of this chapter, because it is a more advanced skill that builds

on the fundamental MySQL skills discussed in the earlier parts of the chapter.

Connecting to MySQL
The basic command to initiate a MySQL connection is

mysql_connect($hostname, $user, $password);

if you’re using variables, or

mysql_connect(‘localhost’, ‘root’, ‘sesame’);

if you’re using literal strings.

The password is optional, depending on whether this particular database

user requires one (it’s a good idea). If not, just leave that variable off. You can

also specify a port and socket for the server ($hostname:port:socket),

but unless you’ve specifically chosen a nonstandard port and socket, there’s

little to gain by doing so.

The corresponding mysqli function is mysqli_connect, which adds a

fourth parameter allowing you to select a database in the same function you

use to connect. The function mysqli_select_db exists, but you’ll need it

only if you want to use multiple databases on the same connection.

NOTENOTE

Integrating PHP and MySQL

IN THIS CHAPTER

Connecting to MySQL

MySQL queries

Fetching data

Metadata

Using multiple connections

Error checking

Creating MySQL databases with

PHP

MySQL functions

220

 Part II MySQL Database Integration

You do not need to establish a new connection each time you want to query the database in the same

script. You will need to run this function again, however, for each script that interacts with the data-

base in some fashion.

Next, you’ll want to choose a database to work on:

mysql_select_db($database);

if you’re using variables, or

mysql_select_db(‘phpbook’);

if you’re using a literal string.

You will sometimes see these two functions used with an @ prepended, such as @mysql_
select_db($database). This symbol denotes silent mode, meaning the function will

not return any message on failure, as a security precaution. You should have display_errors set to

off on production servers anyway.

You must select a database each time you make a connection, which means at least once per page or

every time you change databases. Otherwise, you’ll get a Database not selected error. Even if you’ve

created only one database per daemon, you must do this, because MySQL also comes with default

databases (called mysql and test) you might not be taking into account.

You may find it convenient to group all your connection information into a custom connect func-

tion and put it someplace where you can access it from all your scripts, such as the php includes

directory, or in the case of a virtual server, a site-specific include file. This function might look like

the following:

// Connect to a single db
function qdbconn() {
 $dbUser = “myuser”;
 $dbPass = “mypassword”;
 $dbName = “mydatabase”;
 $dbHost = “myhost”;
 if (!($link=mysql_connect($dbHost, $dbUser, $dbPass))) {
 error_log(mysql_error(), 3, “/tmp/phplog.err”);
 }
 if (!mysql_select_db($dbName, $link)) {
 error_log(mysql_error(), 3, “/tmp/phplog.err”);
 }
}

If you like, you could extend this function by creating links (for example, $link1, $link2) to

multiple databases on the same server. This code also records a MySQL error message in the PHP

error log.

Now that you’ve established a connection to a specific database, you’re ready to make a query.

TIPTIP

221

 Integrating PHP and MySQL 15

Making MySQL Queries
A database query from PHP is basically a MySQL command wrapped up in a tiny PHP function

called mysql_query(). This is where you use the basic SQL workhorses of SELECT, INSERT,

UPDATE, and DELETE that we discussed in Chapter 13. The MySQL commands to CREATE or DROP

a table can also be used with this PHP function if you do not wish to make your databases using the

MySQL client.

You could write a query in the simplest possible way, as follows:

mysql_query(“SELECT Surname FROM personal_info WHERE ID < 10”);

PHP would dutifully try to execute it. However, there are very good reasons to split up this and

similar commands into two lines with extra variables, like this:

$query = “SELECT Surname FROM personal_info WHERE ID < 10”;
$result = mysql_query($query);

The main rationale is that the extra variable gives you a handle on an extremely valuable piece of

information. Every MySQL query gives you a receipt whether you succeed or not — sort of like a

cash machine when you try to withdraw money. If things go well, you hardly need or notice the

receipt — you can throw it away without a qualm. But if a problem occurs, the receipt will give you

a clue as to what might have gone wrong, similar to the “Is the machine not dispensing or is your

account overdrawn?” type of message that might be printed on your ATM receipt.

Another advantage of assigning the query string to a variable is that you can more easily view the

query if you run into an error. Of course, you would accomplish this by writing the variable out to

an error log — never by dumping it out to the browser in production!

The function mysql_query takes as arguments the query string (which should not have a semicolon

within the double quotation marks) and optionally a link identifier. Unless you have multiple con-

nections, you don’t need the link identifier. It returns a TRUE (nonzero) integer value if the query

was executed successfully even if no rows were affected. It returns a FALSE integer if the query was

illegal or not properly executed for some other reason.

For purposes of this chapter, we’ve left the link identifier off; however, if you need to use multiple

databases in your script, you can use code like this:

$query = “SELECT Surname FROM personal_info WHERE ID < 10”;
$result = mysql_query($query, $link_1);
$query = “SELECT * FROM orders WHERE date > 20030702”;
$result = mysql_query($query, $link_2);

As expected, the MySQL improved analog for this function is mysqli_query. It is very similar to its

counterpart; however, the link and query parameters change places, and a third parameter allows

you to specify a result flag indicating how PHP should handle the result.

222

 Part II MySQL Database Integration

If your query was an INSERT, UPDATE, DELETE, CREATE TABLE, or DROP TABLE and returned TRUE,

you can now use mysql_affected_rows to see how many rows were changed by the query. This

function optionally takes a link identifier, which is only necessary if you are using multiple con-

nections. It does not take the result handle as an argument! You call the function like this, without a

result handle:

$affected_rows = mysql_affected_rows();

If your query was a SELECT statement, you can use mysql_num_rows($result) to find out how

many rows were returned by a successful SELECT.

The mysqli_affected_rows and mysqli_num_rows behave exactly the same as their mysql_

counterparts.

The mysql_num_rows function can be useful in paginating large data sets returned by

MySQL queries.

Fetching Data Sets
One thing that often seems to temporarily stymie new PHP users is the whole concept of fetching

data from PHP. It would be logical to assume that the result of a query would be the desired data,

but that is not correct. As we discussed in the previous section, the result of a PHP query is an inte-

ger representing the success or failure or identity of the query.

What actually happens is that a mysql_query() command pulls the data out of the database and

sends a receipt back to PHP reporting on the status of the operation. At this point, the data exists in

a purgatory that is immediately accessible from neither MySQL nor PHP — you can think of it as a

staging area of sorts. The data is there, but it’s waiting for the commanding officer to give the order

to deploy. It requires one of the mysql_fetch functions to make the data fully available to PHP.

The fetching functions are as follows:

mysql_fetch_row■■ : Returns row as an enumerated array

mysql_fetch_object■■ : Returns row as an object

mysql_fetch_array■■ : Returns row as an associative array

mysql_result■■ : Returns one cell of data

In our humble opinion, the functions mysql_fetch_field and mysql_fetch_
lengths are misleadingly named. They both provide information about database

entries rather than the entry values themselves. For instance, one might expect a function named

mysql_fetch_field to be a quick way to fetch a single-field result set (the ID associated with a par-

ticular username, for instance), but that is not the case at all. The actual purpose of these functions is

explained in Table 15-2 at the end of the chapter — but for the moment, the point is not to be misled

into thinking that these functions will return database values.

TIPTIP

CAUTION CAUTION

223

 Integrating PHP and MySQL 15

The differences among the three main fetching functions is small. The most general one is mysql_
fetch_row, which can be used something like this:

$query = “SELECT ID, LastName, FirstName
 FROM users WHERE Status = 1”;
$result = mysql_query($query);
while ($name_row = mysql_fetch_row($result)) {
 print(“{$name_row[0]} {$name_row[1]} {$name_row[2]}
\n”);
}

This code will output the specified rows from the database, each line containing one row or the

information associated with a unique ID (if any).

In an enumerated array, the integers in brackets are called field offsets. Remember that

they always begin with the integer zero. If you start counting at 1, you will miss the value

of your first column.

The function mysql_fetch_object performs much the same task, except the row is returned as an

object rather than an array. Obviously, this is helpful for those among the PHP brethren who utilize

the object-oriented notation:

$query = “SELECT ID, LastName, FirstName
 FROM users WHERE Status = 1”;
$result = mysql_query($query);
while ($row = mysql_fetch_object($result)) {
 echo “{$row->ID}, {$row->LastName}, {$row->FirstName}
\n”;
}

The most useful fetching function, mysql_fetch_array, offers the choice of results as an associa-

tive or an enumerated array — or both, which is the default. This means you can refer to outputs by

database field name rather than number:

$query = “SELECT ID, LastName, FirstName
 FROM users WHERE Status = 1”;
$result = mysql_query($query);
while ($row = mysql_fetch_array($result)) {
 echo “{$row[‘ID’]}, {$row[‘LastName’]}, {$row[‘FirstName’]}
\n”;
}

Remember that mysql_fetch_array can also be used exactly the same way as mysql_fetch_
row — with numerical identifiers rather than field names. By using this function, you leave your-

self the option. If you want to specify offset or field name rather than making both available, you

can do it like this:

$offset_row = mysql_fetch_array($result, MYSQL_NUM);
or
$associative_row = mysql_fetch_array($result, MYSQL_ASSOC);

CAUTION CAUTION

224

 Part II MySQL Database Integration

It’s also possible to use MYSQL_BOTH as the second value, but because that’s the default, it’s

redundant.

In early versions of PHP, mysql_fetch_row was considered to be significantly faster than mysql_
fetch_object and mysql_fetch_array, but this is no longer an issue, as the speed differences

have become imperceptible. The PHP junta now recommends use of mysql_fetch_array over

mysql_fetch_row because it offers increased functionality and choice at little cost in terms of pro-

gramming difficulty, performance loss, or maintainability.

Last and least of the fetching functions is mysql_result(). You should only even consider using

this function in situations where you are positive you need only one piece of data to be returned

from MySQL. An example of its usage is:

$query = “SELECT count(*) FROM personal_info”;
$db_result = mysql_query($query);
$datapoint = mysql_result($db_result, 0, 0);

The mysql_result function takes three arguments: result identifier, row identifier, and (option-

ally) field. Field can take the value of the field offset as above or its name as in an associative array

(“Surname”) or its MySQL field-dot-table name (“personal_info.Surname”). Use the offset if at

all possible, as it is substantially faster than the other two. Even better, don’t use this function with

any frequency. A well-formed query will almost always return a specific result more efficiently.

You should never use mysql_result() to return information that is available to you

through a predefined PHP-MySQL function. The classic no-no is inserting a row and

then selecting out its ID number (extra demerits if you select on MAX(ID)!). Wicked bad style — use

mysql_insert_id() instead.

All of the PHP functions for fetching MySQL data have identical mysqli counterparts. They take the

same parameters and return comparable results.

A special MySQL function can be used with any of the fetching functions to more specifically

designate the row number desired. This is mysql_data_seek, which takes as arguments the

result identifier and a row number and moves the internal row pointer to that row of the data set.

The most common use of this function is to reiterate through a result set from the beginning by

resetting the row number to zero, similar to an array reset. This obviates another expensive data-

base call to get data you already have sitting around on the PHP side. Here’s an example of using
mysql_data_seek():

<?php
echo(“<TABLE>\n<TR><TH>Titles</TH></TR>\n<TR>”);
$query = “SELECT title, publisher FROM books”;
$result = mysql_query($query);
while ($book_row = mysql_fetch_array($result)) {
 echo(“<TD>$book_row[0]</TD>\n”);
}
echo(“</TR></TABLE>
\n”);
echo(“<TABLE>\n<TR><TH>Publishers</TH></TR>\n<TR>”);

CAUTION CAUTION

225

 Integrating PHP and MySQL 15

mysql_data_seek($result, 0);
while ($book_row = mysql_fetch_array($result)) {
 echo(“<TD>{$book_row[1]}</TD>\n”);
}
echo(“</TR></TABLE>
\n”);
?>

Without using mysql_data_seek, the second usage of the result set would turn back no 0 rows

because it has already iterated through to the end of the dataset and the pointer stays there until

you explicitly move it. This handy function helps greatly when you are formatting data in a way that

does not place fields in columns and records in rows.

Getting Data about Data
You only need four PHP functions to put data into or get data out of a preexisting MySQL database:

mysql_connect, mysql_select_db, mysql_query, and mysql_fetch_array. Most of the rest

of the functions in this section are about getting information about the data you put into or took out

of the database or about the construction of the database itself. PHP offers extensive built-in func-

tions to help you learn the name of the table in which your data resides, the data type handled by

a particular column, or the number of the row into which you have just inserted data. With these

functions, you can effectively work with a database about which you know very little.

The MySQL metadata functions fall into two major categories:

Functions that return information about the previous operation only■■

Functions that return information about the database structure in general■■

A very commonly used example of the first type is mysql_insert_id(), which returns the auto-

incremented ID assigned to a row of data you just inserted. A commonly used example of the second

type is mysql_field_type(), which reveals whether a particular database field’s data must be an

integer, a varchar, text, or what have you. Observe however, that this function is also deceptively

named. Rather than returning the MySQL type, it returns the PHP data type. For example, an

ENUM-type field will return ‘string’. Use mysql_field_flags to return more specialized field

information. This should be apparent when you consider that it works on a result rather than on an

actual MySQL field. It would be useful to have a function that got the possible values for an ENUM

field, but there isn’t a canned version at this point. Instead, use a “describe table” query and parse

the result using PHP’s regex functions.

Most of the data-about-data functions are pretty self-explanatory. There are a couple of things to

keep in mind when using them, though. First, most of these functions are only effective if used in

the proper combination — don’t try to use a mysql_affected_rows after a SELECT query and then

wonder what went wrong. Second, be careful about security with the functions that return informa-

tion about your database structure. Knowing the name and structure of each table is very valuable

to a cracker. And finally, be aware that some of these functions are shopping baskets full of simpler

226

 Part II MySQL Database Integration

functions. If you need several pieces of information about a particular result set or database, it could

be faster to use mysql_fetch_field than all the mysql_field functions one after the other.

All of the MySQL metadata functions are fairly easy to use. However, their efficacy is directly related

to intelligent database design rather than a mere marker of the PHP’s strengths. Good database

practices will make these functions useful over the long haul. The mysqli equivalent functions are

perfect analogues in each of these cases.

Multiple Connections
Unless you have a specific reason to require multiple connections, you only need to make one data-

base connection per PHP page. Even if you escape into HTML many times within the page, your

connection is still good (assuming that it was good in the first place). You do not want to make mul-

tiple connections if you don’t have to, because that is one of the most costly and time-consuming

parts of most database queries.

Conversely, there’s no easy way to keep your connection open from page to page — because PHP

and MySQL would never know for sure when to close it after visitors wander off. Therefore, your

connection is closed at the end of each script unless you use persistent connections.

The main time that you need to use different connections is when you’re querying two or more com-

pletely separate databases. The most common situation in which you might do this is when you’re

using MySQL in a replicated situation. MySQL replication is accomplished through a master-slave

setup, where you typically get reads from a slave and make writes to the master.

To use multiple connections, you simply open connections to each database as needed and make

sure to hang on to the right result sets. PHP will help you do this by utilizing the result identifiers

discussed in the “Making MySQL Queries” section earlier in the chapter. You pass the identifiers

along with each MySQL function as an optional argument. If you’re completing all your queries on

one connection before moving on to the next, you don’t even need to do this; PHP will automatically

use the last link opened.

In this example, we are using connections from three different databases on different servers:

<?php
$link1 = mysql_connect(‘host1’, ‘me’, ‘sesame’);
mysql_select_db(‘userdb’, $link1);
$query1 = “SELECT ID FROM usertable
 WHERE username = ‘$username’“;
$result1 = mysql_query($query1, $link1);
$array1 = mysql_fetch_array($result1);
$usercount = mysql_num_rows($result1);
mysql_close($link1);

$today = ‘2002-05-01’;
$link2 = mysql_connect(‘host2’, ‘myself’, ‘benne’);
mysql_select_db(‘inventorydb’, $link2);

227

 Integrating PHP and MySQL 15

$query2 = “SELECT sku FROM widgets
 WHERE ship_date = ‘$today’“;
$result2 = mysql_query($query2, $link2);
$array2 = mysql_fetch_array($result2);
$widgetcount = mysql_num_rows($result2);
mysql_close($link2);

if ($usercount > 0 && $widgetcount > 0) {
 $link3 = mysql_connect(‘host3’, ‘I’, ‘seed’);
 mysql_select_db(‘salesdb’, $link3);
 $query3 = “INSERT INTO saleslog (ID, date, userID, sku)
 VALUES (NULL, ‘$today’, ‘$array1[0]‘, ‘$array2[0]‘)“;
 $result3 = mysql_query($query3, $link3);
 $insertID = mysql_insert_id($link3);
 mysql_close($link3);
 if ($insertID >= 1) {
 print(“Perfect entry”);
 }
 else {
 print(“Danger, danger, Will Robinson!”);
 }
} else {
 print(“Not enough information”);
}
?>

In this example, we have deliberately kept the connections as discrete as possible for clarity’s sake,

even going to the trouble to close each link after we use it. Without the mysql_close() commands,

we would be running multiple concurrent connections — which you may want to do. There’s noth-

ing stopping you from doing so. Just remember to pass the link value carefully from one function to

the next, and you should be fine.

Building in Error Checking
This section could have been titled “Die, die, die!” because the main error-checking function is actu-

ally called die(). There was something about that title that failed to reinforce the warm, hospitable

learning environment we cherish, so we went with the more prosaic subheading.

die() is not a MySQL-specific function — the PHP manual lists it in “Miscellaneous Functions.” It

simply terminates the script (or a delimited portion thereof) and returns a string of your choice.

mysql_query(“SELECT * FROM mutual_funds
 WHERE code = ‘$searchstring’“)
or die(“Please check your query and try again.”);

Notice the syntax: the word or (you could alternatively use ||, but that isn’t as much fun as saying

or die) and only one semicolon per pair of alternatives.

228

 Part II MySQL Database Integration

Until quite recently, MySQL via PHP returned very insecure and unenlightening (except to crackers)

error messages upon encountering a problem with a database query. die() was often used as a way

to exert control over what the public would see on failure. Now that no error messages are returned

at all, die() may be even more necessary — unless you want your visitors to be left wondering

what happened.

Other built-in means of error-checking are error messages. These are particularly helpful during the

development and debugging phase, and they can be easily commented out in the final edit before

going live on a production server. As mentioned, MySQL error messages no longer appear by default.

If you want them, you have to ask for them by using the functions mysql_errno() (which returns

a code number for each error type) or mysql_error() (which returns the text message). Then you

can send them to a custom error log by using the error_log() function:

if (!mysql_select_db($bad_db)) {
 print(mysql_error());
}

There’s more to database error handling than judicious use of die(), however. Servers become

unavailable, data sets get corrupted, and so forth. We’ve been fairly liberal in setting up connections

and executing queries, but ideally, every interaction with the database should be nested inside a

conditional that returns the desired result on success and a nice clean error page on failure. This is

where die() drops the ball. Execution immediately stops for the entire script, leaving off, if noth-

ing else, closing tags for your HTML page if they are defined in PHP. Additionally, there may be

plenty more perfectly good scripting or HTML left to go on the page — code that is unaffected by a

dropped database connection or a failed query. Finally, die() doesn’t let you know anything went

wrong. Do you really think that your users will tell you? Probably not. It’s much more realistic that

they will leave your site in disgust and never return. An example of good error checking is:

function printError($errorMesg) {
 printf(“%s
\n”, $errorMesg);
}
function notify($errorMesg) {
 mail(webmaster@example.com, “An Error has occurred at
example.com”, $errorMesg)
}
if ($link = mysql_connect(“host”, “user”, “pass”)) {
 // Things to do if the connection is successful
} else {
 printError(“Sorry for the inconvenience; but we are unable
to process your request at this time. Please check back
later”);
 notify(“Problem connecting to database in $SCRIPT_NAME at
line 12 on date(‘Y-m-D’)”);
}

Even better, if you really want to get your feet wet with PHP6’s new object-oriented programming

(OOP) features, try using exceptions, which are covered in Chapter 30.

229

 Integrating PHP and MySQL 15

Creating MySQL Databases with PHP
You can, if you wish, actually create your databases with PHP rather than using the MySQL client

tool. This practice has potential advantages — you can use an attractive front end that may appeal to

those who find the MySQL command-line client horribly plain or finicky to use — counterbalanced

by one big disadvantage, which is security.

To create a database from PHP, the user of your scripts will need to have full CREATE/DROP privi-

leges on MySQL. That means anyone who can get hold of your scripts can potentially blow away all

your databases and their contents with the greatest of ease. This is not such a great idea from a secu-

rity standpoint.

If you’re even considering creating databases with PHP, do yourself a big favor and at least don’t store

the database username and password in a text file. Make yourself type your database username and

password into a form and pass the variables to the inserting handler each and every time you use

this script. This is one case where keeping the variables in an include file outside your web tree is

not sufficient precaution. Better yet, run the scripts manually from the command line through SSH:

mysql –u <username> -p <databasename> < sql-script.sql

For those times when you need to create databases programmatically, the relevant functions are:

mysql_create_db()■■ : Creates a database on the designated host, with name specified in

arguments

mysql_drop_db()■■ : Deletes the specified database

mysql_query()■■ : Passes table definitions and drops in this function

A bare-bones database-generation script might look like this:

<?php
$linkID = mysql_connect(‘localhost’, ‘root’, ‘sesame’);
mysql_create_db(‘new_db’, $linkID);
mysql_select_db(‘new_db’);
$query = “CREATE TABLE new_table (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 new_col VARCHAR(25)
)“;
$result = mysql_query($query);
$axe = mysql_drop_db(‘new_db’);
?>

Several other GUI tools are available that are not database-specific but will probably work with

MySQL. As MySQL has become more and more popular, a number of applications for both

Windows and Linux have come into play that allow you to administer MySQL databases in the

graphical fashion you may have become accustomed to. Like their web counterparts, these applica-

tions offer full administrative control, but without the headache of exposing yourself to the security

230

 Part II MySQL Database Integration

risk of a web-based interface. The list changes often as software comes and goes, so a listing here

would probably very quickly go out of date. However, the MySQL web site keeps a pretty compre-

hensive list at http://dev.mysql.com.

MySQL data types
The actual PHP functions used to create MySQL databases are trivial compared to the MySQL data

structure statements that are passed in those functions. The “Database Design” section of Chapter 13

has general rules on how to conceptualize a database schema and use the CREATE, DROP, and ALTER

statements. To implement your abstract schema in MySQL, however, you also need to understand

MySQL data types and how to use them.

The general rule is to use the smallest and most specific data type that will adequately meet the

needs of this particular column in your database. MySQL is known for having compact types, such

as TINYINT and TINYTEXT, that are good for things like 0/1 values or first names. It also has very

large types that can store 4GB (or more) of data in one field.

There are three buckets of MySQL data types: numeric types, date and time types, and string (or

character) types. For the most part, their use is fairly straightforward — in the sense that the aver-

age user is not going to know or care whether you used an INT or a MEDIUMINT. However, if you’re

the type of programmer who cares about doing everything in the absolutely tightest and fastest way

possible, the MySQL manual gives subtle tips on maximizing efficiency — for instance, always use

the DECIMAL type with money, or it takes 8 bytes to store a DATETIME but only 4 bytes to store a

Unix TIMESTAMP, which PHP can convert to any date-time format you desire. Careful perusal of the

“Column Types” section of the MySQL manual (at www.mysql.com/doc/en/Column_types.html)

may yield hidden treasures of insight.

Table 15-1 shows the current MySQL data types and their possible values. M stands for the maxi-

mum number of digits displayed, and D stands for the maximum number of decimal places in a

floating-point number. Both are optional.

TABLE 15-1

MySQL Data Types
Name and Aliases Storage size Usage

TINYINT(M)

BIT, BOOL, BOOLEAN are
synonyms for TINYINT(1)

1 byte If unsigned, stores values from 0 to 255; otherwise,
from -128 to 127. A new Boolean type will appear
in future, but until now has been implemented as a
TINYINT(1).

SMALLINT(M) 2 bytes If unsigned, stores values from 0 to 65535;
otherwise, from -32768 to 32767.

231

 Integrating PHP and MySQL 15

Name and Aliases Storage size Usage

MEDIUMINT(M) 3 bytes If unsigned, stores values from 0 to 16777215;
otherwise, from -8388608 to 8388607.

INT(M)

INTEGER(M) 4 bytes If unsigned, stores values from 0 to 4294967295;
otherwise, from -2147483648 to 2147483647.

BIGINT(M) 8 bytes If unsigned, stores values from 0 to
18446744073709551615; otherwise,
from -9223372036854775808 to
9223372036854775807. You may experience
strangeness when performing arithmetic with
unsigned integers of this size due to limitations in
your operating system.

FLOAT(precision) 4 or 8 bytes Where precision is an integer up to 53. If precision
<= 24, converted to a FLOAT; if precision > 24 and
<= 53, converted to a DOUBLE. Provided for Open
DataBase Connectivity (ODBC) compatibility;
in general, use the normal MySQL FLOAT and
DOUBLE types.

FLOAT(M, D) 4 bytes Single-precision floating-point number.

DOUBLE(M, D)

DOUBLE PRECISION,
REAL

8 bytes Double-precision floating-point number.

DECIMAL(M,D)

DEC, NUMERIC, FIXED M+1 or M+2 bytes An unpacked floating-point number that is stored
like a CHAR. Used for small decimals, such as
money.

DATE 3 bytes Displayed in the format YYYY-MM-DD.

DATETIME 8 bytes Displayed in the format YYYY-MM-DD HH:MM:SS.

TIMESTAMP 4 bytes Since MySQL 4.1, can no longer set display size.
Displayed in the same format as DATETIME.

TIME 3 bytes Displayed in the format HHH:MM:SS where HHH is
a value from -838 to 838. This allows a TIME value
to represent an elapsed time between two events.

YEAR 1 byte Displayed in the format YYYY, which is a value
from 1901 to 2155. To use an earlier date, you
should use a TINYINT type.

continued

232

 Part II MySQL Database Integration

TABLE 15-1 (continued)

Name and Aliases Storage size Usage

CHAR(M) M bytes Fixed in length. If your string is not long enough, it
will be padded with spaces at the end. M must be
<= 255.

VARCHAR(M) Up to M bytes Variable in length. M must be <= 255.

BINARY(M) Up to M bytes Stores byte strings.

VARBINARY(M) Up to M bytes Similar to VARCHAR. Stores byte strings.

TINYBLOB or TINYTEXT Up to 255 bytes TINYBLOB is case-sensitive for sorting and
comparison; TINYTEXT is case-insensitive.

BLOB or TEXT Up to 64KB BLOB is case-sensitive for sorting and comparison;
TEXT is case-insensitive.

MEDIUMBLOB or
MEDIUMTEXT

Up to 16MB MEDIUMBLOB is case-sensitive for sorting and
comparison; MEDIUMTEXT is case-insensitive.

LONGBLOB or LONGTEXT Up to 4GB LONGBLOB is case-sensitive for sorting and
comparison; LONGTEXT is case-insensitive.

ENUM(value1,
...valueN)

1 or 2 bytes Up to 65535 distinct values.

SET(value1,...
valueN)

Up to 8 bytes Up to 64 distinct values.

MySQL Functions
Table 15-2 includes a recap of the MySQL functions. All arguments in brackets are optional.

TABLE 15-2

PHP-MySQL Functions
Function Name Usage

mysql_affected_rows([link_id]) Use after a nonzero INSERT, UPDATE, or
DELETE query to check number of rows
changed.

233

 Integrating PHP and MySQL 15

Function Name Usage

mysql_change_user(user, password[, database]
[, link_id])

Changes MySQL user on an open link.

mysql_close([link_id]) Closes the identified link (usually
unnecessary).

mysql_connect([host][:port][:socket][,
username][, password])

Opens a link on the specified host, port,
socket; as specified user with password.
All arguments are optional.

mysql_create_db(db_name[, link_id]) Creates a new MySQL database on the
host associated with the nearest open
link.

mysql_data_seek(result_id, row_num) Moves internal row pointer to specified
row number. Use a fetching function to
return data from that row.

mysql_drop_db(db_name[, link_id]) Drops specified MySQL database.

mysql_errno([link_id]) Returns ID of error.

mysql_error([link_id]) Returns text error message.

mysql_fetch_array(result_id[, result_type]) Fetches result set as associative array.
Result type can be MYSQL_ASSOC,
MYSQL_NUM, or MYSQL_BOTH (default).

mysql_fetch_field(result_id[, field_offset]) Returns information about a field as an
object.

mysql_fetch_lengths(result_id) Returns length of each field in a result set.

mysql_fetch_object(result_id[, result_type]) Fetches result set as an object. See
mysql_fetch_array for result types.

mysql_fetch_row(result_id) Fetches result set as an enumerated array.

mysql_field_name(result_id, field_index) Returns name of enumerated field.

mysql_field_seek(result_id, field_offset) Moves result pointer to specified field
offset. Used with mysql_fetch_field.

mysql_field_table(result_id, field_offset) Returns name of specified field’s table.

mysql_field_type(result_id, field_offset) Returns type of offset field (for example,
TINYINT, BLOB, VARCHAR).

mysql_field_flags(result_id, field_offset) Returns flags associated with enumerated
field (for example, NOT NULL, AUTO_
INCREMENT, BINARY).

continued

234

 Part II MySQL Database Integration

TABLE 15-2 (continued)

Function Name Usage

mysql_field_len(result_id, field_offset) Returns length of enumerated field.

mysql_free_result(result_id) Frees memory used by result set (usually
unnecessary).

mysql_insert_id([link_id]) Returns AUTO_INCREMENTED ID of
INSERT; or FALSE if insert failed or last
query was not an insert.

mysql_list_fields(database, table[, link_id]) Returns result ID for use in mysql_
field functions, without performing an
actual query.

mysql_list_dbs([link_id]) Returns result pointer of databases
on mysqld. Used with mysql_
tablename.

mysql_list_tables(database[, link_id]) Returns result pointer of tables
in database. Used with mysql_
tablename.

mysql_num_fields(result_id) Returns number of fields in a result set.

mysql_num_rows(result_id) Returns number of rows in a result set.

mysql_pconnect([host][:port][:socket][,
username][, password])

Opens persistent connection to database.
All arguments are optional. Be careful —
mysql_close and script termination will
not close the connection.

mysql_query(query_string[, link_id]) Sends query to database. Remember to
put the semicolon outside the double-
quoted query string.

mysql_result(result_id, row_id, field_
identifier)

Returns single-field result. Field
identifier can be field offset (0), field
name (FirstName) or table-dot name
(myfield.mytable).

mysql_select_db(database[, link_id]) Selects database for queries.

mysql_tablename(result_id, table_id) Used with any of the mysql_list
functions to return the value referenced
by a result pointer.

235

 Integrating PHP and MySQL 15

Summary
PHP’s MySQL and MySQL Improved functions are easy to use, if sometimes named confusingly.

Each instance of a PHP/MySQL interaction must have a connection, a database select, and a query or

command that returns a result identifier. The result identifier is like an ATM receipt that reports on

the success or failure of an operation.

If data is returned after a SELECT statement, one of the PHP/MySQL fetching functions must also

be employed. Data pulled from a MySQL database exists in a kind of limbo until one of the fetching

functions is applied to the result set. If you wish to loop through the result set again, you can use
mysql_data_seek() to reset the row pointer to zero.

PHP also has a large number of functions that return data about the database itself or about a par-

ticular operation. Two of the most common are mysql_num_rows(), which returns the number

of rows in a result set, and mysql_insert_id(), which returns the ID of the proximate INSERT

operation.

PHP handles much of the MySQL connectivity for you without requiring specific link identifiers or

result pointers. The exception comes when you need multiple database connections on the same web

page. In this case, you use exactly the same functions and syntax but simply pass the correct link

identifier with most commands.

We do not personally recommend creating MySQL databases with PHP front ends.

237

M
uch of the point of PHP is to help you translate between a back-

end database and its frontend presentation on the web. Data can

be viewed, added, removed, and tweaked as a result of your web

user’s keystrokes and mouse clicks.

For most of this chapter, we restrict ourselves to ways to use PHP to look at

the contents of a database without altering it, using only the SELECT state-

ment from SQL and displaying the results in HTML tables. We use a single

database example to show different strategies, including some handy reus-

able functions. Finally, we look at code to create the sample data shown in

the display examples, using the INSERT statement.

The two big productivity points from this chapter are:

Reuse functions■■ in simple cases. The problem of database table

display shows up over and over in database-enabled site design.

If the display is not complicated, you should be able to throw the

same simple function at the problem rather than reinventing the

wheel with each PHP page you write.

Choose between techniques■■ in complex cases. You may find yourself

wanting to pull out a complex combination of information from

different tables (which, of course, is part of the point of using a

relational database to begin with). You may not be able to map

this onto a simple reusable function, but there aren’t that many

novel solutions either — get to know the alternatives, and you can

decide how to trade off efficiency, readability, and your own effort.

This chapter uses the MySQL database and functions exclusively,

but the display strategies should be directly transferable to

almost any SQL-compliant database supported by PHP.

NOTENOTE

Performing
Database Queries

IN THIS CHAPTER

HTML tables and MySQL tables

Complex mappings

Creating the sample tables

238

 Part II MySQL Database Integration

HTML Tables and Database Tables
First of all, some terminology — unfortunately, both relational databases and HTML scripting use

the term table, but the term means very different things in the two cases. A database table persis-

tently stores information in columns, which have predefined names and types so that the informa-

tion in them can be recovered later. An HTML table is a construct that tells the browser to lay out

arbitrary HTML contents in a rectangular array in the browser window. We’ll try to always make it

clear which kind of table we are talking about.

One-to-one mapping
HTML tables are really constructed out of rows (the <TR></TR> construct), and columns have no

independent existence — each row has some number of table datum items (the <TD></TD> con-

struct), which will produce a nice rectangular array only if there are the same number of TDs for

every TR. (There is no corresponding <TC> construct that lets you display by column first.) By con-

trast, fields (aka columns) in database tables are the more primary entity — defining a table means

defining the fields, and then you can add as many rows as you like. In this chapter, we will focus

on printing out tables and queries in such a way that each database field prints in its own HTML

column, simply because there are usually more database rows than database fields, and people are

more used to up-and-down scrolling than left-to-right scrolling. If you find yourself wanting to map

database fields to HTML rows, it is a simple inversion exercise.

The simplest case of displaying a table is the one in which the structure of a database table or query

does correspond to the structure of the HTML table we want to display — the database entity has m

columns and n rows, and we’d like to display an m-by-n rectangular grid in the user’s browser win-

dow, with all the cells filled in appropriately.

Example: A single-table displayer
So let’s write a simple translator that queries the database for the contents of a single table and dis-

plays the results onscreen. Here’s the top-down outline of how the code will get the job done:

 1. Establish a database connection.

 2. Construct a query to send to the database.

 3. Send the query and hold on to the result identifier that is returned.

 4. Using the result identifier, find out how many columns (fields) there are in each row.

 5. Start an HTML table.

 6. Loop through the database result rows, printing a <TR></TR> pair to make a correspond-

ing HTML table row.

 7. In each row, retrieve the successive fields and display them wrapped in a <TD></TD> pair.

 8. Close off the HTML table.

 9. Close the database connection.

239

 Performing Database Queries 16

Finally, we’d like to wrap all the preceding steps up into a handy function that we can use whenever

we want to. Also, for reasons of efficiency, we don’t want to include the first and last steps of creating

and closing the database connection in the function — we may want to use such a function more

than once per page, and it wouldn’t make sense to open and close the connection each time. Instead,

we’ll assume that we have a connection already and pass the connection to the function along with

the table name.

Such a function is shown in Listing 16-1, embedded in a complete PHP page that uses the function

to display the contents of a couple of tables.

LISTING 16-1

A table displayer

<?php
include(“/home/phpbook/phpbook-vars.inc”);
$global_dbh = mysql_connect($hostname, $username, $password);
mysql_select_db($db, $global_dbh);

function display_db_table($tablename, $connection)
{
 $query_string = “SELECT * FROM $tablename”;
 $result_id = mysql_query($query_string, $connection);
 $column_count = mysql_num_fields($result_id);

 print(“<TABLE BORDER=1>\n”);
 while ($row = mysql_fetch_row($result_id))
 {
 print(“<TR ALIGN=LEFT VALIGN=TOP>”);
 for ($column_num = 0;
 $column_num < $column_count;
 $column_num++)
 print(“<TD>$row[$column_num]</TD>\n”);
 print(“</TR>\n”);
 }
 print(“</TABLE>\n”);
}
?>

<HTML>
<HEAD>
<TITLE>Cities and countries</TITLE>
</HEAD>
<BODY>

<TABLE><TR><TD>
<?php display_db_table(“country”, $global_dbh); ?>
</TD><TD>

240

 Part II MySQL Database Integration

<?php display_db_table(“city”, $global_dbh); ?>
</TD></TR></TABLE></BODY></HTML>

Some things to notice about this script:

Although the script refers to specific database tables, the ■■ display_db_table() function

itself is general. You could put the function definition in an include file and then use it

anywhere on your site.

The first thing the script does is load in an ■■ include file that contains variable assignments

for the database name, database username, and database password. It then uses those vari-

ables to connect to MySQL and then to choose the desired database. (The fact that this file

is located outside the publicly available web hierarchy makes it slightly more secure than

just including that information in your code.)

In the function itself, we chose to use a ■■ while loop for printing rows and a for loop to

print the individual items. We could as easily have used a bounded for loop for both and

recovered the number of rows with mysql_num_rows().

The main ■■ while loop reflects a very common idiom, which exploits the fact that the value

of a PHP assignment statement is the value assigned. The variable $row is assigned to the

result of the function mysql_fetch_row(), which will be either an array of values from

that row or a false value if there are no more rows. If we’re out of rows, $row is false, which

means that the value of the whole expression is false, which means that the while loop

terminates.

We put line breaks (■■ \n) at the end of selected lines, so that the HTML source would have

a readable structure when printed or viewed as source from the browser. Notice that these

breaks are not HTML line breaks (
) and do not affect the look of the resulting web

page. (In fact, if you want to make it annoying for someone else to scrutinize the HTML

you generate, don’t put breaks in at all!)

The sample tables
To see the Listing 16-1 script in action, see Figure 16-1, which shows the displayed contents of the

Country and City sample tables. These tables have the following structure:

Country:
 ID int (auto-incremented primary key)
 continent varchar(50)
 countryname varchar(50)
City:
 ID int (auto-incremented primary key)
 countryID int
 cityname varchar(50)

241

 Performing Database Queries 16

FIGURE 16-1

A simple database table display

Think of these tables as a rough draft of the database for an eventual online almanac. They employ

our usual convention of always having one field per table called ID, which is a primary key and has

successive integers assigned to it automatically for each new row. Although you can’t tell for sure

from the preceding description, the tables have one “relation” embodied in their structure — the
countryID field of the City table is matched up with the ID field of the Country table, represent-

ing which country the city belongs to. (If you were designing a real almanac database, you would

want to take this one step further and break the Country table into a relational pair of Country and

Continent tables.)

To see how we created these tables and populated them with sample data, see the

“Creating the Sample Tables” section at the end of this chapter.

Improving the displayer
Our first version of this function has some limitations: It works with a single table only, does no

error-checking and is very bare-bones in its presentation. We’ll address these problems one by one

and then fix them in one fell revision. (If you want to look ahead, the new-and-improved version of

the function is in Listing 16-2.)

CROSS-REFCROSS-REF

242

 Part II MySQL Database Integration

Displaying column headers
Our first version of a database table displayer simply displays all the table cells, without any labeling

of what the different fields are. It’s conventional in HTML to use the <TH> element for column and/

or row headers — in most browsers and styles, this displays as a bold table cell. One improvement

we can make is to optionally display column headers that are based on the names of the table fields

themselves. To actually retrieve those names, we can use the function mysql_field_name().

Error checking
Our original version of the code assumes that we have written it correctly and also that our database

server is up and functioning normally — if either of these is not the case, we will run into puzzling

errors. We can partially address this by appending a call to die() to the actual database queries

— if they fail, an informative message will be printed. This is a reasonable approach for such a small

example, but as projects get larger it is better to use the exception-handling capability introduced

back in PHP5.

For an introduction to exception handling, see Chapter 30.

Cosmetic issues
Another source of dissatisfaction with our simple table-displayer is that it always has the same look.

It would be nice, at a minimum, to control whether table borders are displayed. The simple solution

we will use in our new function is just to permit passing in a string of arguments that will be spliced

into the HTML table definition. This is a pretty crude form of style control that style sheet propo-

nents would discourage, but it will permit us to directly specify some elements of the table’s look

without writing an entirely new function.

Displaying arbitrary queries
Finally, it would be nice to be able to exploit our relational database and display the results of com-

plex queries rather than just single tables. Actually, our single-table displayer has an arbitrary query

embedded in it — it just happens that it is hardcoded as select * from table, where table is the

supplied table name. So let us transform our simple table displayer into a query displayer and then

recreate the table displayer as a simple wrapper around the query displayer. These two functions,

complete with the cosmetic improvements and better error checking, are shown in Listing 16-2.

LISTING 16-2

A query displayer

<?php
include(“/home/phpbook/phpbook-vars.inc”);
$global_dbh = mysql_connect($hostname, $username, $password)
 or die(“Could not connect to database”);

CROSS-REFCROSS-REF

243

 Performing Database Queries 16

mysql_select_db($db, $global_dbh)
 or die(“Could not select database”);

function display_db_query($query_string, $connection,
 $header_bool, $table_params)
{

 // perform the database query
 $result_id = mysql_query($query_string, $connection)
 or die(“display_db_query:” . mysql_error());

 // find out the number of columns in result
 $column_count = mysql_num_fields($result_id)
 or die(“display_db_query:” . mysql_error());

 // TABLE form includes optional HTML arguments passed
 // into function
 print(“<TABLE $table_params >\n”);

 // optionally print a bold header at top of table
 if ($header_bool)
 {
 print(“<TR>”);
 for ($column_num = 0;
 $column_num < $column_count;
 $column_num++)
 {
 $field_name =
 mysql_field_name($result_id, $column_num);
 print(“<TH>$field_name</TH>”);
 }
 print(“</TR>\n”);
 }
 // print the body of the table
 while ($row = mysql_fetch_row($result_id))
 {
 print(“<TR ALIGN=LEFT VALIGN=TOP>”);
 for ($column_num = 0;
 $column_num < $column_count;
 $column_num++)
 {
 print(“<TD>$row[$column_num]</TD>\n”);
 }
 print(“</TR>\n”);
 }
 print(“</TABLE>\n”);
}

function display_db_table($tablename, $connection,
 $header_bool, $table_params)

244

 Part II MySQL Database Integration

{
 $query_string = “SELECT * FROM $tablename”;
 display_db_query($query_string, $connection,
 $header_bool, $table_params);
}
?>

<HTML><HEAD><TITLE>Countries and cities</TITLE></HEAD>
<BODY>
<TABLE><TR><TD>
<?php display_db_table(“country”, $global_dbh,
 TRUE, “BORDER=2”); ?>
</TD><TD>
<?php display_db_table(“city”, $global_dbh,
 TRUE, “BORDER=2”); ?>
</TD></TR></TABLE></BODY></HTML>

The result of using this code on the same database contents is shown in Figure 16-2. The only vis-

ible difference is the column header. Splitting the functions apart means that we also have a new

function in our bag of tricks — we could do the same kind of display with an arbitrary query string

that joins data from different tables.

FIGURE 16-2

Using the query displayer

245

 Performing Database Queries 16

Complex Mappings
So far in this chapter, we’ve enjoyed a very nice and simple-minded correspondence between query

resultsets and HTML tables — every row in the resultset corresponds to a row in the table, and

the structure of the code is simply two nested loops. Unfortunately, life isn’t often this simple, and

sometimes the structure of the HTML table we want to display has a complex relationship to the

relational structure of the database tables.

Views and Stored Procedures

Our query displayer assumes a particular division of labor between the PHP code and the database system
itself — the PHP code sends off an arbitrary query string, which the database responds to by setting up a

resultset. In particular, this means that the database system has to parse that query and then figure out the best
way to go about retrieving the results. This is part of what can make querying a database a mildly expensive
operation.

In cases where your code may construct novel queries on the fly, this is the best you can hope for. However,
some databases offer ways to set up queries in advance, which gives the database system a chance to preop-
timize how it handles the query. One such construct is called a view under MS SQL Server and some other
RDBMSs — after you have set up a query as a named view, it can be treated just like a real table. A related
idea is the stored procedure, which is like a view that also accepts runtime arguments that are spliced into the
query. In general, if you realize that you are suffering from slow query performance, you may want to investigate
what similar optimizations your particular RDBMS makes available.

Multiple queries versus complex printing
Let’s say that, rather than displaying our sample City and Country tables individually, we want to

match them up in a tabular display.

We can easily write a SELECT statement that joins these tables appropriately:

 SELECT country.continent, country.countryname,
 city.cityname
 FROM country, city
 WHERE city.countryID = country.ID
 ORDER BY continent, countryname, cityname

Now, this would be a handy place to use our query-displayer function — all we have to do is send

it the preceding statement as a string, and it will print out a table of cities matched up with their

continents and countries. However, if we do this, we will see an individual HTML table row for each

city, and the continent and country will print each time — for example, we’ll see North America

printed several times. Instead, what if we want one name matched with many titles? This is a case

where the structure of what we print differs from the structure of the most convenient query.

246

 Part II MySQL Database Integration

If we want to do a more complex mapping, we have a choice: We can throw database queries at the

problem, or we can write more complex display code. Let’s look at each option in turn. (For each of

these examples, we’ll be moving away from the reusable generality of the functions we wrote earlier

toward functions that address a particular display problem.)

A multiple-query example
If we want to print just one HTML row per country, we can make a query for the countries and then

make another query for the relevant cities in each trip through a country row. A function written

using this strategy is shown in Listing 16-3.

LISTING 16-3

A display with multiple queries

<?php
include(“/home/phpbook/phpbook-vars.inc”);
/* open database connection */
$global_dbh = mysql_connect($hostname, $username, $password)
 or die(“Could not connect to database”);
mysql_select_db($db, $global_dbh)
 or die(“Could not select database”);

function display_cities($db_connection)
{
 /* Displays table of cities and countries */
 $country_query = “SELECT id, continent, countryname
 FROM country
 ORDER BY continent, countryname”;
 $country_result =
 mysql_query($country_query, $db_connection);

 /* begin table, print hard-coded table header */
 print(“<TABLE BORDER=1>\n”);
 print(“<TR><TH>Continent</TH><TH>Country</TH>
 <TH>Cities</TH></TR>”);

 /* loop through countries */
 while ($country_row = mysql_fetch_row($country_result))
 {
 /* set up country info */
 $country_id = $country_row[0];
 $continent = $country_row[1];
 $country_name = $country_row[2];

 print(“<TR ALIGN=LEFT VALIGN=TOP>”);
 print(“<TD>$continent</TD>”);

247

 Performing Database Queries 16

 print(“<TD>$country_name</TD>”);

 /* begin table cell for city list */
 print(“<TD>”);
 $city_query = “select cityname from city
 where countryID = $country_id
 order by cityname”;
 $city_result =
 mysql_query($city_query, $db_connection)
 OR die(mysql_error());
 /* loop through cities */
 while ($city_row = mysql_fetch_row($city_result))
 {
 $city_name = $city_row[0];
 print(“$city_name
”);
 }
 /* close city cell and country row */
 print(“</TD></TR>”);
 }
 print(“</TABLE>\n”);
}
?>

<HTML>
<HEAD>
<TITLE>Cities by Country</TITLE>
</HEAD>
<BODY>
<?php
 display_cities($global_dbh);
?>
</BODY>
</HTML>

The strategy is appealingly simple: There is an outer loop that uses one query to proceed through

all the countries, saving the country’s name and the primary ID field of each country row. Then for

each country, the ID field is used to look up all the cities belonging to that country. Notice the trick

of embedding the $countryid variable in the inner query — the query string sent is actually differ-

ent on each iteration through the country loop.

Simple? Yes. Efficient? Probably not. This code makes a separate city query for each country. If there

are 500 countries in the database, this function will make 501 separate database queries (the extra

one being the enclosing country query).

Your mileage will vary according to how efficient your particular database is in parsing queries and

planning query retrieval, but the sum of these queries will certainly take more time than the simple

query we started this section with.

248

 Part II MySQL Database Integration

A complex printing example
Now let’s solve exactly the same problem, but using a different strategy. Instead of making multiple

queries, we will make a single query and print the resulting rows selectively, so that each HTML

table row corresponds to more than one database row (see Listing 16-4). The resulting browser dis-

play is exactly the same as in the previous example.

LISTING 16-4

A complex display with a single query

<?php
include(“/home/phpbook/phpbook-vars.inc”);
/* open a single DB connection for this page */
$global_dbh = mysql_connect($hostname, $username, $password)
 or die(“Could not connect to database”);
mysql_select_db($db, $global_dbh)
 or die(“Could not select database”);

function display_cities($db_connection)
{
 /* print table of countries and their cities,
 selectively printing only one HTML table row
 per country */
 $query = “SELECT country.id,
 country.continent, country.countryname,
 city.cityname
 FROM country, city
 WHERE country.id = city.countryID
 ORDER BY country.continent,
 country.countryname,
 city.cityname”;
 $result_id =
 mysql_query($query, $db_connection)
 OR die(mysql_error($query));

 /* begin table, print hard-coded table header */
 print(“<TABLE BORDER=1>\n”);
 print(“<TH>Continent</TH><TH>Country</TH>
 <TH>Cities</TH></TR>”);

 /* Initialize the ID for the “previous” country.
 We will rely on the fact that Country.ID is
 numbered beginning with 1, so a previous ID
 value of zero means that the current country
 is the first */
 $old_country_id = 0;

249

 Performing Database Queries 16

 /* loop through result rows (one per city) */
 while ($row_array = mysql_fetch_row($result_id))
 {
 $country_id = $row_array[0];
 /* if we have a new country */
 if ($country_id != $old_country_id)
 {
 /* set up country info */
 $continent = $row_array[1];
 $country_name = $row_array[2];

 /* if there was a previous country
 close the city datum and country row */
 if ($old_country_id != 0)
 print(“</TD></TR>\n”);

 /* start a row for the new country,
 and begin the city table datum */
 print(“<TR ALIGN=LEFT VALIGN=TOP>”);
 print(“<TD>$continent</TD>”);
 print(“<TD>$country_name</TD><TD>”);

 /* the new country is no longer new */
 $old_country_id = $country_id;
 }
 /* the only thing that is printed for every result
 row is the name of a city */
 $city_name = $row_array[3];
 print(“$city_name
”);
 }
 /* close off final country and table */
 print(“</TD></TR></TABLE>”);
}
?>
<HTML><HEAD><TITLE>Cities by Country</TITLE></HEAD>
<BODY>
<?php display_cities($global_dbh);
 ?>
</BODY></HTML>

This code is somewhat tricky — although it goes through the result rows in order, and everything

it prints is grabbed from the current row, it prints countries only when their values have changed.

(Continents are still printed redundantly.)

The change in a country is detected by monitoring the ID field of the country row. A country

change is also a signal to print out the HTML necessary to close off the preceding table row and start

a new one. Finally, the code must handle printing the HTML necessary to start the first row and end

the last one.

250

 Part II MySQL Database Integration

Creating the Sample Tables
Now we will show you the PHP/MySQL code we actually used to create the sample tables. (Such

data might more normally be created by interacting only with MySQL, but we decided to respect our

book’s title by doing it from PHP.) The code (shown in Listing 16-5) is a special-purpose, one-time

hack, not a model of style, but it has useful examples of using the SQL INSERT statement.

LISTING 16-5

Creating the sample tables

<?php
include(“/home/phpbook/phpbook-vars.inc”);
$global_dbh = mysql_connect($hostname, $username, $password)
 or die(“Could not connect to database”);
mysql_select_db($db, $global_dbh)
 or die (“Could not select databased”);

function add_new_country($dbh, $continent, $countryname,
 $city_array)

{
 $country_query =
 “INSERT INTO country (continent, countryname)
 VALUES (‘$continent’, ‘$countryname’)“;
 $result_id = mysql_query($country_query)
 OR die($country_query . mysql_error());
 if ($result_id)
 {
 $countryID = mysql_insert_id($dbh);
 for ($city = current($city_array);
 $city;
 $city = next($city_array))
 {
 $city_query =
 “INSERT INTO city (countryID, cityname)
 VALUES ($countryID, ‘$city’)“;
 mysql_query($city_query, $dbh)
 OR die($city_query . mysql_error());
 }
 }
}

function populate_cities_db($dbh)
{
 /* drop tables if they exist — permits function to be
 tried more than once */

251

 Performing Database Queries 16

 mysql_query(“DROP TABLE city”, $dbh);
 mysql_query(“DROP TABLE country”, $dbh);

 /* create the tables */
 mysql_query(“CREATE TABLE country
 (ID int not null auto_increment primary key,
 continent varchar(50),
 countryname varchar(50))“,
 $dbh)
 OR die(mysql_error());
 mysql_query(“create table city
 (ID int not null auto_increment primary key,
 countryID int not null,
 cityname varchar(50))“,
 $dbh)
 OR die(mysql_error());

 /* store data in the tables */
 add_new_country($dbh, ‘Africa’, ‘Kenya’,
 array(‘Nairobi’,’Mombasa’,’Meru’));
 add_new_country($dbh, ‘South America’, ‘Brazil’,
 array(‘Rio de Janeiro’, ‘Sao Paulo’,
 ‘Salvador’, ‘Belo Horizonte’));
 add_new_country($dbh, ‘North America’, ‘USA’,
 array(‘Chicago’, ‘New York’, ‘Houston’, ‘Miami’));
 add_new_country($dbh, ‘North America’, ‘Canada’,
 array(‘Montreal’,’Windsor’,’Winnipeg’));

 print(“Sample database created
”);
}
?>
<HTML><HEAD><TITLE>Creating a sample database</TITLE></HEAD>
<BODY>
<?php populate_cities_db($global_dbh); ?>
</BODY></HTML>

You should be able to use this code to recreate the sample database on your development machine,

assuming that you have PHP and MySQL configured, and an appropriately located file called php-
book-vars.inc containing username, password, and database-name strings.

Just as in the display examples, this code sends off query strings (with embedded variables), but this

time the queries are INSERT statements, which create new table rows. For the most part, the data

inserted is just string data passed in to the function, although we chose to pass in an arbitrary num-

ber of cities per country by using an array.

The only tricky thing in creating these sample tables is setting up the relational structure. We want

each city row to have an appropriate countryID, which should be equal to the actual ID of the

appropriate row from the country table. However, these countryIDs are automatically assigned

252

 Part II MySQL Database Integration

in sequence by MySQL and are not under our control. How can we know the right countryID to

assign? The answer is in the incredibly handy function mysql_insert_id(), which recovers the

ID associated with the last INSERT query made via the given database connection. We insert the

new country, recover the ID of the newly created row, and then use that ID in our city insertion

queries.

Summary
Database interaction is one of the areas where PHP really shines. One very common use for data-

base-enabled web code is simply to display database contents attractively. One approach to this kind

of display is to map the contents of database tables, or SELECT statements, to corresponding HTML

table elements.

When the mapping is simple enough, you can employ reusable functions that take arbitrary table

names, or SELECT statements, and display them as a grid. When you need a more complicated

combination of information from relational tables, you probably need a special-purpose function,

but certain tricks recur there as well. One such trick is to craft a SQL statement that returns all the

information you need, in the order you want, and selectively print only the nonredundant portions.

Near the end of this chapter, you saw a quick example of populating a set of database tables using
INSERT statements. Aside from that, all the techniques in this chapter were read-only and do not

modify the contents of databases at all. In Chapter 17, you’ll see how you can get a more intimate

connection to your database by combining SQL queries with HTML forms.

253

F
orm handling is one of PHP’s very best features. The combination

of HTML to construct a data-input form, PHP to handle the data,

and a database server to store the data lies at the heart of all kinds of

supremely useful web tasks.

HTML Forms
You already know most of what you need to make good forms to be handled

by PHP and a database. There are a few PHP-specific points to brush up on:

You must use extra caution when using any data that comes from ■■

a visitor’s web browser. It may seem like common sense, but there

are still too many PHP programs that don’t escape incoming data

from a web form or from a web browser (or anywhere). Never use

unfiltered data in a database query.

Always, always, ■■ always use a NAME for every data entry element

(INPUT, SELECT, TEXTAREA, and so on). These NAME attributes

will become PHP variable names — you will not be able to access

your values if you do not use a NAME attribute for each one. If

your WYSIWYG editor doesn’t allow you to do this, you’ll need to

remember to add these NAME attributes by hand.

A form field ■■ NAME does not need to be the same as the correspond-

ing database field name.

The ■■ VALUE can be set to data you wish to display in the form.

Remember that you can pass hidden variables from form to form ■■

(or page), using the HIDDEN data entry elements. This practice has

Integrating Web Forms
and Databases

IN THIS CHAPTER

Understanding HTML forms

Submitting data via forms

Self-submitting forms

Editing data with an HTML form

254

 Part II MySQL Database Integration

negative security implications, so don’t use it to store sensitive data and always validate the

data you receive in a HIDDEN element; never trust it to be what you expect.

See Chapter 6 for more information on how to format an HTML form for use with PHP.

Basic Form Submission to a Database
Submitting data to a database via an HTML form is straightforward if the form and form handler

are two separate pages. Listing 17-1, newsletter_signup.html, is a simple form with only one

input field.

LISTING 17-1

A simple form (newsletter_signup.html)

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
<!--
BODY, P {color: black; font-family: verdana;
font-size: 10 pt}
H1 {color: black; font-family: arial; font-size: 12 pt}
-->
</STYLE>
</HEAD>

<BODY>
<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>
<TR>
<TD BGCOLOR=”#F0F8FF” ALIGN=CENTER VALIGN=TOP WIDTH=17%>
</TD>
<TD BGCOLOR=”#FFFFFF” ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Newsletter sign-up form</H1>
<P>Enter your email address and we will send you our
weekly newsletter.</P>
<FORM METHOD=”post” ACTION=”formhandler.php”>
<INPUT TYPE=”text” SIZE=25 NAME=”email”>

<INPUT TYPE=”submit” NAME=”submit” VALUE=”Submit”>
</FORM>
</TD>
</TR>
</TABLE>

</BODY>
</HTML>

CROSS-REFCROSS-REF

255

 Integrating Web Forms and Databases 17

Figure 17-1 shows the result of the preceding code sample, a basic form to insert data into a database.

FIGURE 17-1

A form to insert data into a database

You enter the data in the database and acknowledge receipt in the form handler in Listing 17-2,

which (with great originality) we are calling formhandler.php.

LISTING 17-2

Form handler for newsletter_signup.html (formhandler.php)

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
<!--
BODY, P {color: black; font-family: verdana;
font-size: 10 pt}
H1 {color: black; font-family: arial; font-size: 12 pt}
-->
</STYLE>
</HEAD>

<BODY>
<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>
<TR>
<TD BGCOLOR=”#F0F8FF” ALIGN=CENTER VALIGN=TOP WIDTH=17%>
</TD>
<TD BGCOLOR=”#FFFFFF” ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Newsletter sign-up form</H1>

256

 Part II MySQL Database Integration

<?php

if (!$_POST[‘email’] || $_POST[‘email’] == “” ||
 strlen(isset($_POST[‘email’]) && $_POST[‘email’] > 30) {
 echo ‘<P>Is your e-mail address really that long?</P>’;
} else {
 // Open connection to the database
 mysql_connect(“localhost”, “phpuser”, “sesame”)
or die(“Failure to communicate with database”);
 mysql_select_db(“test”);

 // Insert email address
 $as_email = mysql_real_escape_string($_POST[‘email’]);
 $tr_email = trim($as_email);
 $query = “INSERT INTO mailinglist (ID, Email, Source)
 VALUES(NULL, ‘$tr_email’,
 ‘www.example.com/newsletter_signup.html’)
 “;
 $result = mysql_query($query);
 if (mysql_affected_rows() == 1) {
 echo ‘<P>Your information has been recorded.</P>’;
 } else {
 error_log(mysql_error());
 echo ‘<P>Something went wrong with your signup
attempt.</P>’;
 }
}
?>
</TD>
</TR>
</TABLE>
</BODY>
</HTML>

Having a separate form and form handler is a very clean design that can potentially be easier to

maintain. However, there are quite a few things that you might want to do that you can’t do easily

with this model, caused by the difficulty of going back to the form from the form handler and the

fact that variables are not available to both at the same time.

For one thing, if something goes wrong with the submission, it’s very difficult to redisplay the form

with the values you just filled in. This is particularly important with something like a user registra-

tion form, where you might want to check for unique e-mail addresses or matching passwords and

reject the entire registration with an error message if it doesn’t pass the tests. People are going to be

very annoyed if one little typo causes them to lose all the data that they just filled in — and after one

or two go-rounds, they will simply stop trying to register.

The first step to solving all these problems is to combine form and handler into one self-submitting

PHP script.

257

 Integrating Web Forms and Databases 17

Self-Submission
Self-submission refers to the process of combining one or more forms and form handlers in a single

script, using the HTML FORM standard to submit data to the script one or more times.

Another situation in which self-submission is a win occurs when you need to submit the same form

more than once. Say that you are applying for auto insurance online, and you need to give the par-

ticulars of three or four different cars. It’s extra work for the user to submit the form, get a success

message, and then have to click a button to go back to the form for car #2. This kind of navigation

problem has no perfect solution, but in situations where there’s a high probability of multiple sub-

missions, self-submission causes fewer clickthroughs for your web users.

Finally, the separate form and form handler make it difficult to pull data from the database, edit it,

and submit it — repeating the process however many times it takes for the user to be satisfied. A

common example of this usage is a form to allow users to change their personal information, such as

photos and bios, which people often like to fiddle with until they look exactly the way that the users

want. If you want to make five small incremental edits to your user profile, you aren’t going to want

to go back and forth between the form and form handler 10 times.

Self-submission is accomplished by the simplest of means: specifying the same script name as the
ACTION target in the FORM element, like this:

<FORM METHOD=”POST” ACTION=”myself.php”>

The single most important thing to remember about self-submitting forms is: The logic comes before
the display. If you’re used to writing separate forms and handlers, this may seem a little counterin-

tuitive at first — but think of it this way: Because your form will look different or display variables

based on interactions with the database, obviously these interactions must happen before the HTML

for the page is output to the browser. After you construct a few self-submitting forms, logic-before-

display will seem totally natural and painless.

To use self-submission with controls, you will need to employ a more programmatic PHP-

writing style — what we term the maximum or medium style. Beginners may find this

somewhat more difficult than a clear division between the functions of HTML (form display) and PHP

(form handling). This can be mitigated somewhat by using the heredoc syntax, as we do in many of our

examples.

If you’re a think-ahead type, by now you’re wondering: “But if the logic comes before the display,

won’t my script try to do the database operations before showing me the HTML form in the first

place?” Good question — and an indication that we need some way to tell the script either “We want

to see the form now” or “We want to insert data into the database now.” This “What am I supposed

to be doing now?” bit is called a stage variable. It lets you keep track of how many times the form has

submitted values to itself and, therefore, which stage of a multistep process you have reached.

The cheapest stage variable to test for is the Submit button. You can name your Submit button and

give it a value, which will be set as a PHP value only after the form is submitted at least once. The

easiest way to demonstrate what we’re talking about is by rewriting the previous form and form han-

dler as one self-submitting form, as we do in Listing 17-3.

CAUTION CAUTION

258

 Part II MySQL Database Integration

LISTING 17-3

Unified form and form handler (newsletter_signup.php)

<?php

if (isset($_POST[‘submit’]) && $_POST[‘submit’] == ‘Submit’) {
 if (!isset($_POST[‘email’]) || $_POST[‘email’] == “” ||
strlen($_POST[‘email’] > 30)) {
 $message = ‘<P>There is a problem. Did you enter an email
address?</P>’;
 } else {
 // Open connection to the database
 mysql_connect(“localhost”, “phpuser”, “sesame”)
or die(“Failure to communicate with database”);
 mysql_select_db(“test”);

 // Insert email address
 $as_email = mysql_real_escape_string($_POST[‘email’]);
 $tr_email = trim($as_email);
 $query = “INSERT INTO mailinglist (ID, Email, Source)
 VALUES(NULL, ‘$tr_email’,
 ‘www.example.com/newsletter_signup.html’)
 “;
 $result = mysql_query($query);
 if (mysql_affected_rows() == 1) {
 $message = ‘<P>Your information has been recorded.</P>’;

 $noform_var = 1;
 } else {
 error_log(mysql_error());
 $message = ‘<P>Something went wrong with your signup
attempt.</P>’;
 }
 }

 // Show the form in every case except successful submission
 if (!isset($noform_var)) {
 $thisfile = “newsletter_signup.php”;
 $message .= <<< EOMSG
<P>Enter your email address and we will send you our weekly
newsletter.</P>
<FORM METHOD=”post” ACTION=”$thisfile”>
<INPUT TYPE=”text” SIZE=25 NAME=”email”>

<INPUT TYPE=”submit” NAME=”submit” VALUE=”Submit”>
</FORM>

259

 Integrating Web Forms and Databases 17

EOMSG;
 }
}
?>

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
<!--
BODY, P {color: black; font-family: verdana;
font-size: 10 pt}
H1 {color: black; font-family: arial; font-size: 12 pt}
-->
</STYLE>
</HEAD>

<BODY>
<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>
<TR>
<TD BGCOLOR=”#F0F8FF” ALIGN=CENTER VALIGN=TOP WIDTH=17%>
</TD>
<TD BGCOLOR=”#FFFFFF” ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Newsletter sign-up form</H1>
<?php echo $message; ?>
</TD>
</TR>
</TABLE>

</BODY>
</HTML>

The first time you load up this page, you should see a normal HTML form exactly like the one in

Figure 17-1. If you submit it without any data or with a string that’s too long (often a sign of a crack-

ing attempt), you’ll see an error message and the form again. If something goes wrong with the

database INSERT, you’ll see an error message and the form again. Only if the INSERT completes suc-

cessfully will you not see the form again — which is the navigation we want because we don’t want

people to sign up for the newsletter more than once.

In the preceding example, we need to check only for two states of the form (unsubmitted or submit-

ted), so we can use the Submit button as our stage variable. But what if you want to check for more

than one state? You need a variable that is capable of taking more than one value. You could either

give your Submit button different values, which would show up as different labels in the button

itself, or you could set a hidden variable that is capable of taking more than one value, depending on

the state. We demonstrate the technique in Listing 17-4, which collects some information and then

allows you to rate your boss anonymously.

260

 Part II MySQL Database Integration

LISTING 17-4

A three-part form (rate_boss.php)

<?php

// First set the form strings, which will be displayed
//in various cases below
$thisfile = “rate_boss.php”; //Have to set this for heredoc

$reg_form = <<< EOREGFORM
<P>We must ask for your name and email address to ensure that no
one votes more than once, but we do not associate your personal
information with your rating.</P>
<FORM METHOD=”post” ACTION=”$thisfile”>
Name: <INPUT TYPE=”text” SIZE=25 NAME=”name”>

Email: <INPUT TYPE=”text” SIZE=25 NAME=”email”>
<INPUT TYPE=”hidden” NAME=”stage” VALUE=”register”>

<INPUT TYPE=”submit” NAME=”submit” VALUE=”Submit”>
</FORM>
EOREGFORM;

$rate_form = <<< EORATEFORM
<P>My boss is:</P>
<FORM METHOD=”post” ACTION=”$thisfile”>
<INPUT TYPE=”radio” NAME=”rating” VALUE=1>
Driving me to look for a new job.

<INPUT TYPE=”radio” NAME=”rating” VALUE=2>
Not the worst, but pretty bad.

<INPUT TYPE=”radio” NAME=”rating” VALUE=3>
Just so-so.

<INPUT TYPE=”radio” NAME=”rating” VALUE=4>
Pretty good.

<INPUT TYPE=”radio” NAME=”rating” VALUE=5>
A pleasure to work with.

Boss’s name: <INPUT TYPE=”text” SIZE=25 NAME=”boss”>

<INPUT TYPE=”hidden” NAME=”stage” VALUE=”rate”>

<INPUT TYPE=”submit” NAME=”submit” VALUE=”Submit”>
</FORM>
EORATEFORM;

if (!isset($_POST[‘submit’])) {
 // First time, just show the registration form
 $message = $reg_form;

261

 Integrating Web Forms and Databases 17

} elseif (isset($_POST[‘submit’]) && $_POST[‘submit’] == ‘Submit’ && $_
POST[‘stage’] ==
‘register’) {
 // Second time, show the registration form again on error,
 // rating form on successful INSERT

 if (!isset($_POST[‘name’]) || $_POST[‘name’] == “” ||
strlen($_POST[‘name’] > 30) || !$_POST[‘email’] ||
$_POST[‘email’] == “” || strlen($_POST[‘email’] > 30)) {
 $message = ‘<P>There is a problem. Did you enter a name and
email address?</P>’;
 $message .= $reg_form;
 } else {
 // Open connection to the database
 mysql_connect(“localhost”, “phpuser”, “sesame”)
or die(“Failure to communicate with database”);
 mysql_select_db(“test”);

 // Check to see this name and email have not appeared before
 $as_name = mysql_real_escape_string($_POST[‘name’]);
 $tr_name = trim($as_name);
 $as_email = mysql_real_escape_string($_POST[‘email’]);
 $tr_email = trim($as_email);
 $query = “SELECT sub_id FROM raters
 WHERE Name = ‘$tr_name’
 AND Email = ‘$tr_email’
 “;
 $result = mysql_query($query);
 if (mysql_num_rows($result) > 0) {
 error_log(mysql_error());
 $message = ‘Someone with this name and password has
already rated . If you think a mistake was made, please email
help@example.com.’;
 } else {
 // Insert name and email address
 $query = “INSERT INTO raters (ID, Name, Email)
 VALUES(NULL, ‘$tr_name’, ‘$tr_email’)
 “;
 $result = mysql_query($query);
 if (mysql_affected_rows() == 1) {
 $message = $rate_form;
 } else {
 error_log(mysql_error());
 $message = ‘<P>Something went wrong with your signup
attempt.</P>’;
 $message .= $reg_form;
 }
 }

262

 Part II MySQL Database Integration

 }

} elseif (isset($_POST[‘submit’]) && $_POST[‘submit’] == ‘Submit’ && $_
POST[‘stage’] ==
‘rate’) {
 // Third time, store the rating and boss’s name

 // Open connection to the database
 mysql_connect(“localhost”, “phpuser”, “sesame”)
or die(“Failure to communicate with database”);
 mysql_select_db(“test”);

 // Insert rating and boss’s name
 $as_boss = mysql_real_escape_string($_POST[‘boss’]);
 $tr_boss = trim($as_boss);
 $rating = mysql_real_escape_string($_POST[‘rating’]);
 $query = “INSERT INTO ratings (ID, Rating, Boss)
 VALUES(NULL, ‘$rating’, ‘$tr_boss’)
 “;
 $result = mysql_query($query);
 if (mysql_affected_rows() == 1) {
 $message = ‘<P>Your rating has been submitted.</P>’;
 } else {
 error_log(mysql_error());
 $message = ‘<P>Something went wrong with your rating
attempt. Try again.</P>’;
 $message .= $rate_form;
 }
}
?>

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
<!--
BODY, P {color: black; font-family: verdana;
font-size: 10 pt}
H1 {color: black; font-family: arial; font-size: 12 pt}
-->
</STYLE>
</HEAD>

<BODY>
<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>
<TR>
<TD BGCOLOR=”#F0F8FF” ALIGN=CENTER VALIGN=TOP WIDTH=17%>
</TD>
<TD BGCOLOR=”#FFFFFF” ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Rate your boss anonymously</H1>
<?php echo $message; ?>

263

 Integrating Web Forms and Databases 17

</TD>
</TR>
</TABLE>

</BODY>
</HTML>

Figure 17-2 shows the rating form after an error has occurred.

FIGURE 17-2

A multiple self-submitting form

Some of you might be thinking, “Hey, wait! You said logic always comes before display — but then

you started this script with a bunch of HTML.” Very observant — but not quite right. Look closely,

and you will realize that we are merely setting a bunch of text to a couple of variable strings ($reg_
form and $rate_form). In the entire PHP section, we actually don’t display anything. We merely

construct a string, $message, which will be plugged in to the HTML at the bottom. If we took away

the HTML, you would see a blank page in the browser. So it’s okay to assemble the text you’re going

to want to display in the logic part; just don’t echo it out to the browser until the end.

Another issue with self-submitted forms is navigation. With the traditional HTML form, navigation

is strictly one-way: form to handler to whatever navigational device (if any) the designer decrees.

264

 Part II MySQL Database Integration

Self-submitted forms need not conform to this rule, however. In each individual instance, you need

to decide:

Whether the form can be resubmitted multiple times by the user, in whole or in part■■

Whether the user decides when to move on by clicking a link or the form moves users ■■

along automatically

Whether you need to pass variables on to the next page, hidden or in plain view■■

Whether you want to control where the user can go next or if you want to give users mul-■■

tiple choices

The answers to these questions will determine whether you need a control, another form, a simple

link or button, or multiple links.

Whatever you decide about navigation, remember to provide plenty of text that clearly

explains what’s going to happen at every step. Because PHP gives you so much flexibil-

ity with forms, new users’ default expectations may be crossed up, and they could end up uncertain

whether they accomplished their mission with your form.

Editing Data with an HTML Form
PHP is brilliant at putting variables into a database, but it really shines when taking data from a

database, displaying it in a form to be edited, and then putting it back in the database. Its HTML-

embeddedness, easy variable passing, and slick database connectivity are at their best in this kind

of job. These techniques are extremely useful, because you will find a million occasions to edit data

you’re storing in a database.

Let’s look at the specific kinds of HTML FORM data elements and how they are handled.

TEXT and TEXTAREA
TEXT and TEXTAREA are the most straightforward types because they enjoy an unambiguous one-

to-one relationship between identifier and content. In other words, there is only one possible VALUE

per NAME. You just pull the data field from the database and display it in the form by referencing the

appropriate array value, as shown in Figure 17-3.

Listing 17-5, comment_edit.php, takes a comment out of the database and allows you to edit it.

You may need to use the stripslashes function when displaying TEXTAREA and TEXT

if there’s any chance the values might have single quotation marks or apostrophes. Watch

out for people with apostrophe’d names like O’Malley or D’Nesh!

TIPTIP

TIPTIP

265

 Integrating Web Forms and Databases 17

FIGURE 17-3

Displaying text for editing

LISTING 17-5

Editing data from database (comment_edit.php)

<?php

// Open connection to the database
mysql_connect(“localhost”, “phpuser”, “sesame”)
or die(“Failure to communicate with database”);
mysql_select_db(“test”);

if (isset($_POST[‘submit’] && $_POST[‘submit’] == ‘Submit’) {
 // Format the data
 $comment_id = mysql_real_escape_string($_POST[‘comment_id’]);
 $comment_header = mysql_real_escape_string($_POST[‘comment_header’]);
 $as_comment_header = mysql_real_escape_string($comment_header);
 $comment = mysql_real_escape_string($_POST[‘comment’]);
 $as_comment = mysql_real_escape_string($_POST[‘comment’]);

 // Update values

266

 Part II MySQL Database Integration

 $query = “UPDATE comments
 SET comment_header = ‘$as_comment_header’,
 comment = ‘$as_comment’
 WHERE ID = $comment_id”;
 $result = mysql_query($query);
 if (mysql_affected_rows() == 1) {
 $success_msg = ‘<P>Your comment has been updated.</P>’;
 } else {
 error_log(mysql_error());
 $success_msg = ‘<P>Something went wrong.</P>’;
 }
} else {
 // Get the comment header and comment
 $comment_id = mysql_real_escape_string($_GET[‘comment_id’]);
 $query = “SELECT comment_header, comment
 FROM comments
 WHERE ID = $comment_id”;
 $result = mysql_query($query);
 $comment_arr = mysql_fetch_array($result);
 $comment_header = stripslashes($comment_arr[0]);
 $comment = stripslashes($comment_arr[1]);
}

$thispage = “comment_edit.php”; //Have to do this for heredoc

$form_page = <<< EOFORMPAGE
<STYLE TYPE=”text/css”>
<!--
BODY, P {color: black; font-family: verdana;
font-size: 10 pt}
H1 {color: black; font-family: arial; font-size: 12 pt}
-->
</STYLE>
</HEAD>

<BODY>
<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>
<TR>
<TD BGCOLOR=”#F0F8FF” ALIGN=CENTER VALIGN=TOP WIDTH=17%>
</TD>
<TD BGCOLOR=”#FFFFFF” ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Comment edit</H1>

$success_msg
<FORM METHOD=”post” ACTION=”$thispage”>
<INPUT TYPE=”text” SIZE=”40” NAME=”comment_header”
VALUE=”$comment_header”>

267

 Integrating Web Forms and Databases 17

<TEXTAREA NAME=”comment” ROWS=10 COLS=50>$comment</TEXTAREA>

<INPUT TYPE=”hidden” NAME=”comment_id” VALUE=”$comment_id”>
<INPUT TYPE=”submit” NAME=”submit” VALUE=”Submit”>
</FORM>

</TD></TR></TABLE>
</BODY>
</HTML>
EOFORMPAGE;
echo $form_page;
?>

Remember that in an HTML form integers and doubles must use the TEXT or TEXTAREA

type, as there is no specifically numeric HTML form field type.

CHECKBOX
The CHECKBOX type has only one possible value per input: off (unchecked) or on (checked). The

database field that records this information is almost always going to be a small integer or bit type

with values 0 and 1 corresponding to unchecked or checked check boxes. Figure 17-4 shows a com-

mon type of check box being edited.

Listing 17-6 demonstrates how to use a check box to display and change a Boolean value.

FIGURE 17-4

A prepopulated check box

TIPTIP

268

 Part II MySQL Database Integration

LISTING 17-6

Check box displaying boolean data from database (optout.php)

<?php

// Open connection to the database
mysql_connect(“localhost”, “phpuser”, “sesame”)
or die(“Failure to communicate with database”);
mysql_select_db(“test”);

// If the form has been submitted, record the preference and
// redisplay
if (isset($_POST[‘submit’] && $_POST[‘submit’] == ‘Submit’) {
 $email = $_POST[‘email’];
 $as_email = mysql_real_escape_string($_POST[‘email’]);
 if (isSet($_POST[‘OptOut’] && $_POST[‘OptOut’] == 1) {
 $optout = 1;
 } else {
 $optout = 0;
 }

 // Update value
 $query = “UPDATE checkbox
 SET BoxValue = $optout
 WHERE BoxName = ‘OptOut’
 AND email = ‘$as_email’“;
 $result = mysql_query($query);
 if (mysql_error() == “”) {
 $success_msg = ‘<P>Your preference has been updated.</P>’;
 } else {
 error_log(mysql_error());
 $success_msg = ‘<P>Something went wrong.</P>’;
 }
 // Get the value
 $query = “SELECT BoxValue FROM checkbox
 WHERE BoxName = ‘OptOut’ AND email = ‘$as_email’“;
 $result = mysql_query($query);
 $optout = mysql_result($result, 0, 0);

 if ($optout == 0) {

 $checked = “”;
 } elseif ($optout == 1) {
 $checked = ‘CHECKED’;
 }
}

// Now display the page
$thispage = “optout.php”; //Have to do this for heredoc

269

 Integrating Web Forms and Databases 17

$form_page = <<< EOFORMPAGE
<HTML>
<HEAD>
<TITLE>Semi-sleazy opt-in form</TITLE>
</HEAD>

<BODY>
$success_msg
<FORM METHOD=POST ACTION=”$thispage”>
Email address:
<INPUT TYPE=”text” NAME=”email” SIZE=25 VALUE=”$email”>

Please send me lots of e-mail bulletins!

opt out by clicking this tiny checkbox
<INPUT TYPE=”checkbox” NAME=”OptOut” VALUE=1 $checked>

<INPUT TYPE=”submit” NAME=”submit” VALUE=”Submit”>
</FORM>

</BODY>
</HTML>
EOFORMPAGE;
echo $form_page;

?>

Although each check box is capable of expressing only a fixed chunk of data, check boxes are often used

in bunches to convey more complex aggregate meanings. Look at the check box grouping in Figure 17-5.

RADIO
RADIO data elements allow for a one-to-many relationship between identifier and value. In other

words, they have multiple possible values, but only one can be predisplayed or selected. They are

best for small sets of options, generally between two and ten, which need more than a word or two

of text to identify themselves.

Unfortunately, it’s somewhat more difficult to represent stored data in a radio button than in a check

box or text field. This is because there is only one possible value for text or a textarea and only

two possible values for a check box — but radio buttons can have more than two possible values.

Therefore, you will have to output part of the actual form with PHP. This looks a little bit less neat

than the styles we employed previously, so you have to go to a little more trouble to have an eas-

ily readable script. Again, the user interface experience allowed by radio buttons is worth the extra

trouble it gives to the web developer.

In the example in Figure 17-6 and accompanying code, we are assembling a series of radio buttons

that display preference data from the database.

270

 Part II MySQL Database Integration

FIGURE 17-5

A cluster of check boxes

FIGURE 17-6

Prepopulated radio buttons

271

 Integrating Web Forms and Databases 17

Listing 17-7 shows the code for Figure 17-6, which shows how to edit forms with radio buttons.

LISTING 17-7

Radio buttons displaying boolean data from database (date_prefs.php)

<?php

// Subscriber ID is stored in a cookie on the user’s browser
if (isset($_COOKIE[‘userID’])) {
 $sub_id = mysql_real_escape_string($_COOKIE[‘userID’]);
}

if (!isset($sub_id)) {
 die(“Cookie Not Found.”);
}

// Open connection to the database
mysql_connect(“localhost”, “mysqluser”, “sesame”)
or die(“Failure to communicate with database”);
mysql_select_db(“test”);

// If the form has been submitted, record the preferences
if (isset($_POST[‘submit’] && $_POST[‘submit’] == ‘Submit’) {
 $height = mysql_real_escape_string($_POST[‘height’]);
 $haircolor = mysql_real_escape_string($_POST[‘haircolor’]);
 $edu = mysql_real_escape_string($_POST[‘edu’]);

 // Update value
 $query = “UPDATE qualities
 SET height = $height, haircolor = $haircolor,
 edu = $edu
 WHERE subscriber = $sub_id”;
 $result = mysql_query($query);
 if (mysql_affected_rows() == 1) {
 $success_msg = ‘<P>Your preferences have been updated.</P>’;
 } else {
 error_log(mysql_error());
 $success_msg = ‘<P>Something went wrong.</P>’;
 }

}

// Get the values
$query = “SELECT height, haircolor, edu FROM qualities
 WHERE subscriber = $sub_id”;
$result = mysql_query($query);
$pref_arr = mysql_fetch_array($result);
$height = $pref_arr[0];

272

 Part II MySQL Database Integration

$haircolor = $pref_arr[1];
$edu = $pref_arr[2];

// Assemble the radio button part of the form
if ($height == 1) {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“height\“ VALUE=1
checked> Short
\n”;
} else {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“height\“ VALUE=1> Short
\n”;
}
if ($height == 2) {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“height\“ VALUE=2
checked> Average height
\n”;
} else {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“height\“ VALUE=2>
Average height
\n”;
}
if ($height == 3) {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“height\“ VALUE=3
checked> Tall
\n”;
} else {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“height\“ VALUE=3>
Tall
\n”;
}
if ($height == 0) {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“height\“ VALUE=0
checked> Doesn’t matter

\n”;
} else {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“height\“ VALUE=0>
Doesn’t matter

\n”;
}

if ($haircolor == 1) {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“haircolor\“ VALUE=1
checked> Blonde
\n”;
} else {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“haircolor\“ VALUE=1>
Blonde
\n”;
}
if ($haircolor == 2) {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“haircolor\“ VALUE=2
checked> Brunette
\n”;
} else {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“haircolor\“ VALUE=2>
Brunette
\n”;
}
if ($haircolor == 3) {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“haircolor\“ VALUE=3
checked> Redhead
\n”;
} else {

273

 Integrating Web Forms and Databases 17

 $radio_str .= “<INPUT TYPE=RADIO NAME=\“haircolor\“ VALUE=3>
Redhead
\n”;
}
if ($haircolor == 0) {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“haircolor\“ VALUE=0
checked> Doesn’t matter

\n”;
} else {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“haircolor\“ VALUE=0>
Doesn’t matter

\n”;
}

if ($edu == 1) {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“edu\“ VALUE=1 checked>
High school graduate
\n”;
} else {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“edu\“ VALUE=1> High
school graduate
\n”;
}
if ($edu == 2) {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“edu\“ VALUE=2 checked>
College graduate
\n”;
} else {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“edu\“ VALUE=2> College
graduate
\n”;
}
if ($edu == 3) {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“edu\“ VALUE=3 checked>
Advanced degree holder
\n”;
} else {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“edu\“ VALUE=3>
Advanced degree holder
\n”;
}
if ($edu == 0) {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“edu\“ VALUE=0 checked>
Doesn’t matter

\n”;
} else {
 $radio_str .= “<INPUT TYPE=RADIO NAME=\“edu\“ VALUE=0> Doesn’t
matter

\n”;
}

// Now display the page
$thispage = “date_prefs.php”; //Have to do this for heredoc

$form_page = <<< EOFORMPAGE
<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
<!--
BODY, P {color: black; font-family: verdana;

274

 Part II MySQL Database Integration

font-size: 10 pt}
H1 {color: black; font-family: arial; font-size: 12 pt}
-->
</STYLE>
</HEAD>

<BODY>
<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>
<TR>
<TD BGCOLOR=”#F0F8FF” ALIGN=CENTER VALIGN=TOP WIDTH=17%>
</TD>
<TD BGCOLOR=”#FFFFFF” ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Dating service</H1>
$success_msg
<P>I am looking for a girl who is:</P>
<FORM METHOD=POST ACTION=”$thispage”>
$radio_str
<INPUT TYPE=SUBMIT NAME=”submit” VALUE=”Submit”>
</FORM>

</TD>
</TR>
</TABLE>
</BODY>
</HTML>
EOFORMPAGE;
echo $form_page;

?>

SELECT
The SELECT field type is perhaps the most interesting of all. It can handle the largest number of

options, and it also allows the user to select multiple options that can be passed back to the database

using arrays.

See Chapter 39 for ideas about using JavaScript to make even more interesting SELECT

forms.

In Figure 17-7, we are using the SELECT form element with multiple options. In PHP, this is done by

creating an array of the multiple selected option values to pass to the form handler. You set up the

array in the HTML form by declaring the MULTIPLE attribute of the SELECT element and by naming

the SELECT element something like $val[] — in other words, appending a set of square brackets to

the variable name. This will indicate to PHP that it’s dealing with an array rather than a single vari-

able, and it will construct the array appropriately with the multiple selected values. When the array

gets to the form handler, you will need to deal with the values as you would any array’s values — by

dereferencing, or by listing out the contents of the array.

CROSS-REFCROSS-REF

275

 Integrating Web Forms and Databases 17

FIGURE 17-7

A prepopulated select with multiple choices

Listing 17-8 shows the code for Figure 17-7, which demonstrates how to display and edit a select list

with multiple options.

LISTING 17-8

Select list displaying database values (skills_profile.php)

<?php

if (isset($_COOKIE[‘user_id’])) {
 $user_id = mysql_real_escape_string($_COOKIE[‘user_id’]);
}

if (!isset($user_id)) {
 die(“Cookie Not Found.”);
}

// Open connection to the database
mysql_connect(“localhost”, “mysqluser”, “sesame”)
or die(“Database error!”);
mysql_select_db(“test”);

276

 Part II MySQL Database Integration

if (isset($_POST[‘submit’] && $_POST[‘submit’] == ‘Submit’) {

 // Delete this user’s skills
 $query2 = “DELETE FROM user_skill
 WHERE user_id = $user_id”;
 $result2 = mysql_query($query2);

 foreach ($_POST[‘skills’] as $val) {
 $cleanVal = mysql_real_escape_string($val);
 $query = “INSERT INTO user_skill (ID, user_id, skill_id)
 VALUES (NULL, $user_id, $cleanVal)“;
 $result = mysql_query($query);
 if (mysql_affected_rows() == 1) {
 continue;
 } else {
 error_log(mysql_error());
 $error_msg = ‘<P>Something went wrong</P>’;
 break;
 }
 }
}

// Get all the results
$query = “SELECT * FROM skills”;
$result = mysql_query($query);

// Download this user’s skills
$query1 = “SELECT skill_id
 FROM user_skill
 WHERE user_id = $user_id”;
$result1 = mysql_query($query1);
while ($user_skill = mysql_fetch_array($result1)) {
 $skill_id = $user_skill[0];
 $user_skill_arr[$skill_id] = $skill_id;
}

while ($skills = mysql_fetch_array($result)) {
 $key = $skills[0];
 if ($key == $user_skill_arr[$key]) {
 $select_str .= “<OPTION VALUE=\“$key\“
SELECTED>$skills[1]\n”;
 } else {
 $select_str .= “<OPTION VALUE=\“$key\“>$skills[1]\n”;
 }
}

$thispage = “skills_profile.php”; //Have to do this for heredoc

277

 Integrating Web Forms and Databases 17

$form_str = <<< EOFORMSTR
<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
<!--
BODY, P {color: black; font-family: verdana;
font-size: 10 pt}
H1 {color: black; font-family: arial; font-size: 12 pt}
-->
</STYLE>
</HEAD>

<BODY>
<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>
<TR>
<TD BGCOLOR=”#F0F8FF” ALIGN=CENTER VALIGN=TOP WIDTH=17%>
</TD>
<TD BGCOLOR=”#FFFFFF” ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Skills profile</H1>
<P>Select as many skills from the following list as apply. Hold
down the control key to select multiple skills.</P>
$error_msg

<FORM METHOD=POST ACTION=”$thispage”>
<SELECT NAME=”skills[]“ SIZE=10 MULTIPLE>
$select_str
</SELECT>

<INPUT TYPE=”submit” NAME=”submit” VALUE=”Submit”>
</FORM>

</TD></TR></TABLE>
</BODY></HTML>
EOFORMSTR;
echo $form_str;

?>

Summary
PHP is an extremely powerful form-handling tool, especially in conjunction with a database. You

can use PHP to display database-stored data as form values, and of course, you can also store form-

generated data in the database.

278

 Part II MySQL Database Integration

To prepare your HTML forms to work smoothly with PHP, you need to follow a few simple rules.

First and foremost, never use data that comes from the user directly in a database call or query. This

means using the mysql_real_escape_string() function on any $_POST, $_GET, and $_COOKIE

values. Also, remember always to name every single form element — the HTML standard itself

doesn’t require this, but PHP does because the element names will become variable names in the

form handler. One method that is sometimes helpful is to match the form element name to the cor-

responding database field name so that they are easy to remember, perhaps prefixing form variables

with frm or something similar to help distinguish them from their database counterparts in code.

PHP also allows you to make clever use of hidden form inputs and of multiple SELECT options,

which should be delineated with square brackets (denoting an array) after the element name.

You have the choice with PHP to have separate HTML forms and PHP form handlers or to combine

the two in a PHP script. The latter option is arguably the more powerful, but it can also be more dif-

ficult to work with and maintain. You will need to set a variable within the form to indicate whether

the entries have been submitted; the PHP logic should be placed before the HTML display. You can

even have multiple forms on one page that are handled by the same PHP script.

279

T
his quick chapter is for people making database-enabled PHP web

sites who suspect that they are doing things awkwardly or inef-

ficiently. Maybe you are new to databases, or maybe you know

there must be a way to speed things up just because your pages are loading

unacceptably slowly.

We offer some tips and tricks for making things run faster, and we show

you some common ways that database systems can save you from writ-

ing unnecessary PHP code. As usual, some of our code examples will use

MySQL functions, although the lessons are mostly general and independent

of particular database implementations.

This chapter will do little to help you get your database-enabled

code working in the first place. For a guide to common errors,

gotchas, and problems with PHP/database code, see Chapter 19.

Connections — Reduce,
Reuse, Recycle
One important thing to realize is that establishing an initial connection

with a database is never a cheap operation in terms of resource usage and

time. Unless your PHP script is doing some unusually computationally

intensive work, the overall database interaction will be the most time- and

resource-intensive part of your code, and it is frequently true that the estab-

lishment of a connection is the most expensive (in terms of resource usage)

part of code that interacts with a database, even if the connection is only

established once in serving the page.

CROSS-REFCROSS-REF

Improving Database
Efficiency

IN THIS CHAPTER

Connections — reduce, reuse,

recycle

Indexing to speed up queries

Make MySQL work for you

280

 Part II MySQL Database Integration

You have two potentially competing goals here. On one hand, you want to minimize the number

of times your code makes the time-consuming call to open an entirely new database connection.

This argues for leaving connections open during the course of page execution, rather than closing

and reopening. On the other hand, there are sometimes hard limits on the number of simultane-

ous connections that a database program can support. This might argue for closing connections

whenever possible in hopes that less connected time per script might allow more scripts to execute

simultaneously.

In our experience, however, most web scripts are evanescent enough that it is never worth the over-

head to close and reopen a database connection within one page’s execution. If you want to mini-

mize total time connected, open the connection immediately before the first call to the database, and

close it immediately after the last one.

A bad example: one connection per statement
The first bad example seems stylistically reasonable in one sense because it uses a function to elimi-

nate repetitive code.

<?php
function box_query ($query, $user, $pass, $db)
{
 $my_connection =
 mysql_connect(‘localhost’, $user, $pass)
 or die(“Couldn’t connect to database”);
 mysql_select_db($db, $my_connection)
 or die(“Couldn’t select database”);
 $result_id = mysql_query($query, $my_connection)
 or die(mysql_error());
 print(“<H3>Results for query: $query</H3>”);
 print(“<TABLE>”);
 while ($row = mysql_fetch_row($result_id))
 {
 print(“<TR>”);
 $row_length = mysql_num_fields($result_id);
 for ($x = 0; $x < $row_length; $x++)
 {
 $entry = $row[$x];
 print(“<TD>$entry</TD>”);
 }
 print(“</TR>\n”);
 }
 print(“</TABLE>”);
 mysql_close($my_connection);
}
/* code that uses box_query() */
?>

281

 Improving Database Efficiency 18

The idea is that we take a function that packages up an arbitrary MySQL query and displays the

returned data in an attractive HTML table. The main virtue of this function as defined is that it is

very self-contained — it opens its own database connection for its own purposes, and then it dis-

poses of that connection when the function is done.

The preceding code is fine if we expect to display only one such table per page. If we use this func-

tion more than once per page, however, we will find ourselves opening and closing connections

every time the function is invoked, which is bound to be less efficient than leaving the connection

open. One approach is to leave a single connection open for as long as it is needed in the execution

of a single page’s script. Applying this rule to the preceding function would mean rewriting it so that

it takes a connection as argument (or implicitly uses a connection opened at the beginning of the

script) and then opening a single connection per page.

Multiple results don’t need multiple connections
One thing that surprised us the very first time we saw web-database scripting was that, with many

database programs, it is possible to retain the results from more than one query at one time, even

though only one connection has been opened. For example, with a MySQL database you can do

something like this:

mysql_connect(‘localhost’, $user, $pass); //opens connection
mysql_select_db(‘scienceguide’);
$author_result = mysql_query(“SELECT ID FROM author”)
 or die(mysql_error());
while ($author_row = mysql_fetch_row($author_result))
{
 $book_result =
 mysql_query(“SELECT title FROM book
 WHERE authorID = {$author_row[0]}“)
 or die(mysql_error());
while ($book_row = mysql_fetch_row($book_result))
 {
 $title = $book_row[0];
 print(“$title
”);
 }
}

This would print titles of books after retrieving them from the book table, using IDs from rows

retrieved from the author table. If we assume there is not more than one author per book, then this

is an extremely inefficient way to retrieve the data (see the section “Making the Database Work for

You” later in this chapter), but it illustrates that two different result sets (identified by the variables
$author_result and $book_result) can be actively used at the same time, after having been

retrieved over a single connection.

282

 Part II MySQL Database Integration

Persistent connections
Finally, if you become convinced that the sheer overhead of opening new database connections

is killing the performance of your application, you might want to investigate opening persistent
connections. Unlike regular database connections, these connections are not automatically killed

when your page exits (or even when mysql_close() is called) but are saved in a pool for future

use. The first time one of your scripts opens such a connection, it is opened in the same resource-

intensive way as with a regular database connection. The next script that executes, however, might

get that very same connection in response to its request, which saves the cost of reopening a fresh

connection. (The previous connection will be reused only if the parameters of the new request are

identical.)

Persistent database connections work only in the module installation of PHP. If you ask

for a persistent connection in the CGI version, you will simply get a regular connection.

The PHP function to request such a persistent connection for MySQL is mysql_pconnect(), which

is used in exactly the same way as mysql_connect(). This naming convention seems to be stable

across PHP functions for the different databases — if you use a particular DB connect function, you

should consult the documentation to see if a pconnect version exists.

Other than offering a particular kind of increased efficiency, persistent database connec-

tions do not provide any functionality beyond that of regular database connections. In

particular, you should not expect persistent connections to have any memory of previous queries or of

variables from previous page executions.

Indexing and Table Design
MySQL is a pretty fast database, even absent any serious design considerations. In a lot of installa-

tions and applications, the database-design part of your job may be no more difficult than creating

a single basic table with four or five fields in anticipation of holding no more than a few hundred

records. However, as your database needs grow, your database itself will doubtless grow as well —

in both size and complexity. That’s no sweat for a good RDBMS: MySQL and other products in this

class excel at handling these needs. Still, careful choice of both indexes and field types when design-

ing tables can be crucial for performance as your tables get larger.

Indexing
Probably the first thing to investigate when SELECT statements are slow is whether you have defined

appropriate indexes.

What is an index?
Wikipedia defines an index in the following manner: “A database index is a data structure that improves

the speed of operations in a table” (http://en.wikipedia.org/wiki/Index_(database)). An

NOTENOTE

NOTENOTE

283

 Improving Database Efficiency 18

index on a table field is an indication by a database designer to the database system that any searches

made on that field should be fast. Usually, this is implemented by the RDBMS as a side table that

maintains all the values for the field in order, and maps them to rows in the original table. Whenever a
SELECT statement has a WHERE condition that mentions the indexed field, the side table is consulted to

locate the rows that have the desired values for the field. The ordering of the side table means that the

database system can do fast lookups (for example, using binary search).

Indexing tradeoffs
There are two mantras to keep in mind when thinking about creating indexes:

SELECT■■ statements that filter on unindexed fields may require full table scans.

While indexes speed up ■■ SELECT statements, they slow down INSERTs, UPDATEs, and

DELETEs.

To see why both these statements are true, imagine that we gave you a large telephone book (sorted

by last name) and asked you to find us everyone in the book with a first name of ‘Zachary’.

Unfortunately, it’s difficult to see how to accomplish this without looking through the entire book.

A database system trying to execute a statement like:

SELECT lastname FROM phonebook WHERE firstname = ‘Zachary’

is in exactly the same situation, if there is no index on the field ‘firstname’. In database parlance,

the system must resort to a full table scan, meaning that every row in the table is inspected.

If your job were to do this phonebook lookup frequently, you might find it worth your while to com-

mission an extra index (in the book-publishing sense) that listed all the first names in order, along

with the page numbers and associated last names. Once the newly indexed phone book arrived,

your job would become a lot easier.

The bad news is that as soon as the new phone book arrived, we decided to promote you.

Congratulations! Your new job is to keep the phone book up to date (including, of course, any asso-

ciated indexes). Here is a list of 10,000 new customers, 8,000 people who have moved away, and 45

people who have had name changes. Now the firstname index is a burden rather than a benefit.

Again, it’s the same with the database system — the indexes that make lookups faster are a mainte-

nance burden when the data must be modified.

The general lesson is that you should consider indexes on fields that you use frequently in the
WHERE clauses of SELECT statements, especially when the data-modifying statements (INSERT,

UPDATE, DELETE) will be used rarely. If modification is much more common than lookup, indexes

make less sense.

Now we move on to the specifics of using indexes in MySQL, beginning with the most common

usage: a single index that uniquely identifies each table row.

284

 Part II MySQL Database Integration

Primary keys
Simply put, a primary key is a field in a table that uniquely identifies each record in that table. A

good primary key choice needs to meet a few criteria:

A primary key should be of an integer type. These may vary some from one database tool ■■

to the next, but in MySQL, they are TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT.

Refer to the MySQL online documentation for the current ranges and other properties of

these types.

A primary key should not return a null value. Your column definition should contain the ■■

SQL keyword NOT NULL. In fact, many databases, MySQL included, will not let you desig-

nate a primary key that is capable of returning a null value.

A primary key MUST be unique. That’s the point, isn’t it? And because a primary key must ■■

be unique, it should also have an auto-increment feature set. Most databases offer this, and

most call it the same thing.

Auto-increment and its use are often debated. In your Internet travels, you’ll come across

those who don’t like auto-increment and variously describe it as an accident waiting to

happen or a cop out. To be honest, there are some meritorious arguments in this vein. However, we

believe the benefits significantly outweigh the concerns. The alternatives are either expensive database

calls to determine what key values are available or to generate an ID programmatically and then insert

it with your SQL statement. Neither of these is as reliable nor worry free as auto-increment.

If you’ve already forged ahead and created some database tables of your own without a primary key,

consider the fields you have already created. Does one of these meet the tests described previously?

It may be that you have wisely foreseen or intuited this need and created something like it already. If

this field exists, but lacks one or more of the components, you can alter it with a SQL statement like

the following:

ALTER TABLE ‘my_table’ CHANGE ‘existing_field’ ‘my_key’ SMALLINT
NOT NULL AUTO_INCREMENT PRIMARY KEY

Or if your field already has all the necessary characteristics, you can simply make it the primary key

like this:

ALTER TABLE ‘my_table’ ADD PRIMARY KEY (‘my_key’)

In the first statement, we indicate that we are altering a table and indicate which table we want to

operate on. CHANGE further indicates that we are changing a field’s properties and indicating which

field with its quoted existing name. We can then specify a name that may indicate more specifically

what sort of field it is and set the relevant properties in one fell swoop.

If you don’t already have an appropriate field choice, the syntax doesn’t change much:

ALTER TABLE ‘my_table’ ADD ‘my_key’ SMALLINT NOT NULL
AUTO_INCREMENT PRIMARY KEY

CAUTION CAUTION

285

 Improving Database Efficiency 18

Finally, you may just be creating your table for the first time. If that’s the case, you simply need to

include the following field definition in your table create statement:

ID SMALLINT UNSIGNED AUTO_INREMENT NOT NULL PRIMARY KEY

where ID is the name you’ve assigned to your primary key. There’s nothing magical about this name;

you can call it Fido if you want, but ID is a good, meaningful self-descriptive name.

So now you’ve got a primary key. What’s it good for? Well, it helps define the master record in a

one-to-many relationship. Its other properties enforce an unambiguous identity for each record,

such that the SQL statement delete from ‘my_table’ where id = 12 can have only one possible

result. Phew, and you thought you just blew that whole table away.

Creation of the primary key also has the net effect of speeding up queries that join tables on this

unique ID because in the process of making it a primary key, we made it an index as well. An index

is stored separately by MySQL and operates transparently to the end user.

When you are defining a relationship in your SQL, the child table — the many side of the one-to-

many relationship — will also store a copy of the master table’s primary key value. But it will store

it once for every record that is a child of the parent record, making it unsuitable for use as a primary

key. You may still wish to define a primary key for each record in the child table — in fact, it’s a

good idea to do so, but you won’t be able to define a primary key on this particular field because

values may not be unique to this column. On the other hand, you still want to improve the process

MySQL uses to locate related records for queries that perform joins. That works out alright, because

MySQL can still index a field without making it a primary key:

ALTER TABLE `child table’ ADD INDEX MyIndex (child_id)

This will work great for an existing field, but as before, you may need to create a suitable field for

this purpose:

ALTER TABLE ‘child_table’ ADD ‘child_id’ SMALLINT NOT NULL

Then make the field an index:

ALTER TABLE ‘child_table’ ADD INDEX (‘child_id’)

Everything including the kitchen sink
Indexes are almost a requirement for speedy, efficient joins. Even those most ardently concerned

about things like disk space will rarely find room to argue about the merits of an index that speeds

up the definition of relationships. More debatable, however, may be indexes that do not specifically

operate on joins.

You can index virtually anything. Sure, binary data presents some problems and is almost always

an ill-advised choice for indexing, but strings, the larger text fields, and numbers (including floats

and decimals) are all fair game. Aside from defining a relationship, the only other overriding

286

 Part II MySQL Database Integration

qualification for index candidacy is that it should be something you’re likely to use in the WHERE

clause of your SQL statement.

Let’s say you want to create a membership directory for your local Linux Users Group and you

want members to be able to find other members in the same part of town so that they can easily get

together for a drink or a movie. If you’re like us, you’re probably thinking Zip code. Excellent choice.

A universally used (at least in the U.S.), well-documented, predictable and fairly stable search crite-

rion. Of course, you don’t have to index this field:

SELECT name, phone from members where zip = ‘32223’

will get you an answer, the same answer in fact, with or without an index. On a table with 100 or so

records, you’ll get your answer instantaneously — again, with or without an index.

But maybe you have several hundred, perhaps even thousands of members. An index may just speed

up this search. Add one and try your search again:

ALTER TABLE ‘members’ ADD INDEX (‘zip’)

Perhaps do it while watching the output of Linux’s ps or top commands. Perhaps you’ll see user

discernible improvement; perhaps you’ll need a professional diagnostic tool of some kind to measure

what just happened; perhaps your performance improvement will be measured in nanoseconds. The

point is, at some number of records, you almost certainly will see an improvement at each of these

levels. It will be up to you as the designer to determine whether the benefits justify the tradeoffs.

What are the tradeoffs? Disk space, for one. Depending on the number of records and the size of the

field, an index can increase storage requirements by nearly as much as the table size itself. If you’ve

got 80GBs of storage, you probably don’t care. If you’re on a 50MB shared hosting plan, you probably

care very much. Another tradeoff is that although SELECT operations benefit, INSERT, UPDATE, and

DELETE operations actually take longer because the indexes must be updated each time one of these

is performed. The good thing about an index is that it’s not irreversible. Try an index on anything

you think might be useful, measure the performance improvement, and weigh it against what you

may or may not be giving up to get that improvement.

Other types of indexes
There are a couple other types of indexes, or more appropriately, parameters to indexing functions,

that specify how indexes work. Using them may have the net effect of making an index work better

or worse. Again, consider each type, experiment and measure your results. It’s a small effort to make

with potentially huge dividends.

UNIQUE

Isn’t that a primary key? Maybe. In MySQL at least, a primary key is by definition nothing more

or less complicated than a UNIQUE INDEX with the name PRIMARY. If you find yourself defining a

unique index, consider whether what you’ve got is really a primary key candidate. Social Security

numbers, if your users are consistently willing to provide them, may work well in this regard. This

287

 Improving Database Efficiency 18

choice certainly meets the criteria and offers some additional advantages such as knowing what the

primary key will be before you insert anything, enabling you to create master and child records

without the intermediate call to mysql_insert_id().

A phone number, on the other hand, may not be such a good choice. Sure, it’s unique. It also is, or

can be defined as, an integer. But you may wish to store phone numbers as a string to avoid some

post-formatting for creating a readable display, such as parenthesizing an area code or inserting

the traditional, if somewhat meaningless hyphen. But even if you are willing to forgo the aesthetic

concerns, as an integer, a phone number is almost certainly larger than necessary. The largest pos-

sible phone number will store as 9,999,999,999. Yeah, that’s what we said. This integer would

require a field type of at least INT. You probably aren’t going to store more than nine billion records.

SMALLINT or MEDIUMINT would be better choices for a storage and searchable volume savings of 218

or 29 bytes, respectively.

All that said, you can still use UNIQUE without having it as a primary key, and that is precisely why

it exists. A UNIQUE attribute on a phone number field can still serve as a data integrity check, once

again relieving you of the responsibility of performing the check programmatically (of course, you

will still probably have to respond to the problem).

A unique index can be specified in MySQL like this:

ALTER TABLE ‘members’ ADD UNIQUE my_index (‘phone’)

Table design
In Chapter 14, we discussed table design pretty extensively; we’re not going to recap all that infor-

mation here. However, we do want to reiterate some points about field types because choice of table

fields can have significant performance impact.

There are two interrelated concerns when choosing field types for a table: speed and size in memory.

Your field definitions should anticipate the largest possible value that they may be asked to store,

while not overanticipating and therefore creating unnecessarily huge tables with lots of unused

space, both on disk and in memory. Appropriate field choices also come into play when choosing

indexes for your table. Indexes are of the greatest benefit when they are set on a field type that is

optimized for the type of data it is expected to hold. If, for example, you want an indexed number

field where the count will never be more than 65,000 or so records, that index will perform more

efficiently on the SMALLINT field type than it will on the MEDIUMINT field type, which allocates

more space and therefore must search that extra space when attempting to isolate a specific value.

A similar principle holds true for the string types. Although there’s some debate whether or not it’s

even advisable to index on a string column, that index will certainly perform more efficiently on a

field that is defined precisely to the specifications of the data you will wish to store on it.

Earlier in this book, we pointed out that sometimes concerns about performance are so inflated that

they border on the ridiculous. That’s still the way we feel. It should not, however, appear inconsis-

tent that we stress performance concerns now. This section and those that follow offer easily imple-

mented design considerations that will collectively improve the performance of your databases.

288

 Part II MySQL Database Integration

Making the Database Work for You
Just as when you write code in a programming language, writing code that interacts with a database

is an exercise in appropriate division of labor. People who write programming languages and data-

bases have agreed to automate, standardize, and optimize certain tasks that come up over and over

again in programming, so that programmers don’t have to constantly reinvent the wheel when mak-

ing their individual applications. The very general rule is that, unless you’re willing to spend a lot of

energy in optimizing code for your special case, you are better off using a database-provided facility

than trying to invent your own solution for the same task.

It’s probably faster than you are
Database programs are judged partly on their speed, so database programmers devote a large por-

tion of their effort toward ensuring that queries execute as quickly as possible. In particular, any

searching or sorting of the contents of a database is best done within that database (if possible)

rather than by your own code.

A bad example: looping, not restricting
For example, take the following code fragment (and please don’t laugh — we have actually seen code

like this):

function print_first_name_bad ($lastname, $dbconnection)
{
 $query = “SELECT firstname, lastname FROM author”;
 $result_id = mysql_query($query, $dbconnection)
 or die(mysql_error());
 while ($row = mysql_fetch_array($result_id))
 {
 if ($row[‘lastname’] == $lastname)
 print(“The first name is “ . $row[‘firstname’]);
 }
}

When this code is handed a last name string and a database connection, it will print out associated

first names, if any, in the “author table” of the database. For example, a call to print_first_
name_bad(‘Sagan’, $dbconnection) might produce the output:

The first name is Carl

If there were multiple authors in that table with the same last name, then multiple lines would be

printed.

The problem here is that we don’t need to grab all the data in this table, pull it through the narrow

pipe of a connection, and then pick and choose from it on our side of the pipe. Instead, we should

restrict the query with a WHERE clause:

289

 Improving Database Efficiency 18

function print_first_name_better ($lastname, $dbconnection)
{
 $query = “SELECT firstname, lastname FROM author
 WHERE lastname = ‘$lastname’“;
 $result_id = mysql_query($query, $dbconnection)
 or die(mysql_error());
 while ($row = mysql_fetch_array($result_id))
 {
 print(“The first name is “ . $row[‘firstname’]);
 }
}

The WHERE clause ensures that only the rows we care about are selected in the first place. Not only

does this cut down on the data passed over the SQL connection, but the code used to locate the cor-

rect rows on the database side is almost certainly quicker than your PHP code.

Sorting and aggregating
Exactly the same argument applies if you find yourself writing code to sort results that have been

returned from your database, or to count, average, or otherwise aggregate those results. In general,

the ORDER BY syntax in SQL will allow you to presort your retrieved rows by any prioritized list of

columns in the query, and that sort will probably be more efficient than either homegrown code or

the PHP array-sorting functions. Similarly, rather than looping through DB rows to count, sum, or

average a value, investigate whether the syntax of your particular DB’s flavor of SQL supports the
GROUP BY construct and in-query functions such as count(), sum(), and average(). In general,

executing a query like:

$query = “SELECT count(ID) FROM author”;

will be a radically more efficient approach to counting table rows than selecting them and iterating

through them with a PHP looping construct.

Where possible, use MIN or MAX rather than sorting
Although it’s good to let the database system do your sorting for you, it’s even better to not have to

sort at all. One task that is often addressed by unnecessary sorting is finding the minimum or maxi-

mum value in a set of result rows. You may see code like this:

$query = “SELECT ID FROM author ORDER BY ID limit 1;
// inefficient

This query will return a single ID from the author table after having sorted it in ascending order

— in other words, the minimum ID. It does have the virtue that the actual result set returned is

small, so it is a better approach for finding the minimum than using the same query without the

limit clause and picking off the desired value from the top of that large result set. But if all we are

interested in is the minimum (or maximum) value, there is no need to require the DB to figure out

the rank order of all the other IDs that we are not interested in. A better solution is:

$query = select min(ID) from author; // efficient

290

 Part II MySQL Database Integration

The difference between these approaches will be imperceptible when your tables have only tens or

hundreds of rows in them but will begin to matter as your tables grow to thousands or tens of thou-

sands of rows in size.

Creating date and time fields
It is very common to want to associate a date and/or time with a row’s worth of data. For instance,

your table rows might represent requests made by your web site users, and the associated date/time

is the time that that request hit your database.

Now, one way to insert or update date fields is to include a string that represents the desired date in

a format parsable by your database. For example, if you want to set the mydate datetime field of all

rows of mytable to a particular date, you might set up a query like this one:

$query = “UPDATE mytable SET mydate = ‘2003-11-24’“;

and then send that query off for evaluation. (Unfortunately, the exact standards of readable date for-

mats vary quite widely from one SQL database system to another. This particular date string means

November 24, 2003, as far as MySQL is concerned.)

The preceding approach is fine, as long as you take care that the particular date string you send is,

in fact, readable as a date by your DB. Things get more complicated if you need to construct such a

string on the fly to represent a date that depends on the value of variables in your script.

The main thing to remember is that, with most database systems, there is no need to go through

such contortions to set a field to the current date or time. Many have a current-date function that

can be embedded directly in your query. For example, a MySQL version of the preceding query that

sets the relevant date/time field to the current instant looks like this:

$query = “UPDATE mytable SET mydate = now()“;

Note that the call to now() is not enclosed in single quotation marks, because it’s a call to database

function rather than a string to be interpreted by the database as data. The analogous query for

Microsoft SQL Server looks like this:

$query = “UPDATE mytable SET mydate = getdate()“;

Finally, even if the time you want stored is not that of the instant of execution, there may still be

better alternatives than constructing readable date strings in your script. In addition to functions

returning the current date, many versions of SQL offer functions for performing date arithmetic —

start with a particular date/time, and then add or subtract years, months, or hours. In MySQL, these

functions are:

date_add(date,■■ date-interval)

date_sub(date,■■ date-interval)

291

 Improving Database Efficiency 18

Here date-interval is a string that includes a number of time units and the type of unit. A

MySQL query to set all rows to a time a week from now might look like this:

$query = “UPDATE mytable SET mydate = date_add(now(), INTERVAL 7
DAY)“;

MySQL has a plethora of date and time related functions. See the MySQL documentation at:

http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html for more

information on all of the functions.

Finding the last inserted row
Another surprisingly helpful capability offered by some database systems is finding the ID of the last

row inserted. This problem arises when you are trying to create a new database entry that is distrib-

uted across several database tables, each of which has an automatically incremented primary key. As

an example, take the tables created by the following MySQL statements:

CREATE TABLE author (ID int primary key auto_increment,
 lastname varchar(75),
 firstname varchar (75));
CREATE TABLE book (ID int primary key auto_increment,
 authorID int,
 title varchar(100));

One intent of these statements is that the book table is linked to the author table by joining them

so that book.authorID = author.ID. Another intent is that we don’t have to worry about assign-

ing unique ID fields for either table — the database will automatically assign them. Unfortunately,

the combined intent leads to a problem. How do we write code that will gracefully insert a linked

book-author pair, when both the author and the book are new to the database? If we insert a new

author, the ID field of the inserted row will be automatically created by the database and so will not

be a part of our SQL insert statement. How can we give the correct authorID to our new book row?

One possible strategy is to do something like the following (in MySQL):

$author_lastname = ‘Feynman’;
$author_firstname = ‘Richard’;
$book_title = ‘The Character of Physical Law’;
$author_insert = “INSERT INTO author (lastname, firstname)
 VALUES (‘$author_lastname’,’$author_firstname’)“;
mysql_query($author_insert) OR die(mysql_error());
$author_id_query =
 “SELECT ID FROM author
 WHERE lastname = ‘$author_lastname’
 AND firstname = ‘$author_firstname’“;
$author_id_result =
 mysql_query($author_id_query) OR die(mysql_error());
if (mysql_num_rows($author_id_result) <= 0)
 die(“Inserted author not found!”);

292

 Part II MySQL Database Integration

else
 $author_row = mysql_fetch_row($author_id_result);
$authorID = $author_row[0];
$book_insert = “INSERT INTO book (authorID, title)
 VALUES ($authorID, $book_title)“;
mysql_query($book_insert) OR die(mysql_error());

In this code, we create a new author row, use the last name and first name of the author to select the

row we have just created, pull out the unique ID of that newly created row, and then incorporate

that ID in a statement inserting a new row into the book table. This code would probably work in

this particular instance, if we assume that the author’s last name and first name are sufficient for

unique identification. But for many databases, we will not be able to make such an assumption,

which is, of course, why the convention of unique IDs developed in the first place.

A similar approach that is sometimes used is to insert a row (for example, into the author table)

and then select the maximum ID from that table, on the theory that the highest row ID will be the

one most recently inserted. If the most recently inserted row is, in fact, the one we just inserted,

this will work like a charm. Unfortunately, this is exactly the kind of approach that appears to work

when tested by a solitary user/programmer and then breaks when used with a real database server

that is dealing with requests from multiple connections at the same time. The problem is that an

insertion from another connection might well arrive in between our own insertion and the statement

we send to retrieve the maximum ID to date, with the result that our second insertion is matched

with an inappropriate ID.

The best solution, when it is available, is to have the database itself keep track of the last inserted ID

in a retrievable way, and do this tracking on a per-connection basis, so that there are no worries about

the synchronization issues in the previous paragraph. For MySQL users, PHP offers the function
mysql_insert_id(), which takes a connection ID as argument and returns the auto-incremented

ID of the last inserted row. We can use it to rewrite our previous code example:

$author_lastname = ‘Feynman’;
$author_firstname = ‘Richard’;
$book_title = ‘The Character of Physical Law’;
$author_insert = “INSERT INTO author (lastname, firstname)
 VALUES($author_insert) OR die(mysql_error());
$authorID = mysql_insert_id();
$book_insert = “INSERT INTO book (authorID, title)
 VALUES ($authorID, ‘$book_title’)“;
mysql_query($book_insert) OR die (mysql_error());

As with many PHP/MySQL functions, the connection argument to mysql_insert_id() is actually

optional and defaults to the most recently opened connection.

In some other database systems, the ID of the most recent auto-increment is available (per session)

as a “special” variable that can be embedded in the next query. In Microsoft SQL Server, for exam-

ple, the variable is %%identity, which can be embedded in a query as follows to retrieve the last

insert ID:

$query = “SELECT @@identity”;

293

 Improving Database Efficiency 18

Summary
Because database-related functionality is among the most resource-intensive things that PHP can do,

you can become a hero by giving just a little thought to efficient coding practices. Particularly if your

data-driven PHP scripts are sluggish, you want to learn to work with the database instead of against it.

The basic principles of database-intensive coding are simple. It costs a lot to open a connection to a

database, so don’t turn the tap on and off unnecessarily. Remember the pipe is narrow — you want

to transport the bare minimum of data you need for each page. And take the time to learn all the

functionality your particular database can offer you. SQL is really good at indexing, sorting, filter-

ing, restricting, numbering, and grouping — use these powers rather than doing it less well and

more slowly with PHP.

In Chapter 19, we move from these tips and stylistic concerns to problems and gotchas that can

actually break your database code or give you unintended results.

295

T
his chapter details some of the common difficulties that arise with

using PHP and databases. The goal is to help you diagnose and

solve problems more quickly and with less frustration. As usual, our

specific code and function references are to MySQL (with one exception),

although the set of gotchas is fairly independent across different databases.

This chapter is about diagnosing and fixing PHP/database code

that is genuinely broken — that is, it is not successfully retriev-

ing data, or it is producing error messages. If your scripts are working, but too

slowly, see Chapter 18.

No Connection
If you have a database call in your PHP script and the connection can’t be

opened, you will see a version of one of these two warning screens (depend-

ing on how high your error reporting levels are cranked up, and, to some

extent, the precise cause of the problem).

The first possibility is the No Connection warning, as shown in

Figure 19-1.

This option indicates a problem either with the MySQL server itself or with

the path to mysqld. In its own special way, PHP is telling you that it knows

about MySQL but can’t hook up to it. This is the error you will see on a

working PHP-MySQL installation if the database server crashes.

If the problem is on the PHP side, your error screen will look more like the

one shown in Figure 19-2.

CROSS-REFCROSS-REF

MySQL Gotchas

IN THIS CHAPTER

Connection errors

Problems with privileges

Unescaped quotation marks

Bad SQL

More or less data than expected

Specific SQL functions

Debugging

296

 Part II MySQL Database Integration

FIGURE 19-1

A No Connection warning

FIGURE 19-2

An undefined function fatal error

This means PHP doesn’t know about MySQL at all.

Of the two, the fatal error is much more straightforward to fix. Clearly, if you’re running into an

undefined function that is supposed to be in the PHP function set, you can be pretty sure that

you simply forgot to build that module into your installation. So on the Unix side, you will need

to recompile the code with the -- with-mysql option. On the Windows side, MySQL should be

297

 MySQL Gotchas 19

precompiled into the binary for you and immediately available. In the case of any other supported

database or a version of PHP older than 4.1, you merely need to uncomment the extension=php_
[database].dll line in your php.ini file to be ready to go, unless you put your MySQL execut-

able in a very, very strange place (which you shouldn’t do unless you’re prepared to handle the

consequences, including fatal errors).

The innocuous-looking No Connection error is actually a little harder to diagnose because there are

several possible causes. They fall into two main categories:

The MySQL daemon isn’t running.■■

The MySQL socket isn’t where PHP is looking for it.■■

It’s easy to check whether mysqld is running, so you may as well do that first. Just use whatever

method you prefer to check running processes. On Windows, this means it’s time for the old

Ctrl+Alt+Delete action to bring up the Task Manager. On Linux you can check the system processes

by means of ps.

If mysqld is not running, perhaps you have merely forgotten to (re)start it. (Don’t laugh. It happens.)

If it’s been running continuously for 143 days before suddenly quitting in the middle of an opera-

tion, your problem is beyond the scope of this book. We can only direct you to the MySQL web site

(at www.mysql.com) with our deepest sympathies and most fervent hopes that you’ve maintained a

good backup schedule.

The socket problem usually arises the first time you fire up MySQL on a new server. It’s rather

uncommon for this problem to occur in a long-running site, although it does happen. For instance,

we recently had a web host move our MySQL daemon to another server on short notice, at which

point all our scripts that used the hostname localhost immediately crashed.

The solution to your database connection problems is generally to be found in the php.ini file.

There’s a section of MySQL variables that you must carefully check against whatever hostname, port,

and socket you’re specifying in your PHP scripts. You want to ensure that you’re not inadvertently

directing PHP to look for MySQL on an odd port or at the wrong default host. On Linux, you can

also check the /etc/services file for a different socket address, and the /etc/hosts file for an

unexpected server alias. In general, you should leave these variables open unless you have a specific

reason to set them.

Problems with Privileges
Error messages caused by privilege problems look a lot like the connection errors described previ-

ously. You will see a No Connection error that looks like Figure 19-3.

The key differentiator is that little piece about the user and password.

298

 Part II MySQL Database Integration

Because of the security issues caused by these failure messages, which include the database

username and host and whether you’re using a password or not, it’s best to use silent mode

on a production site. You do this by putting the character @ in front of the functions mysql_connect

and mysql_select_db or by setting display_errors to off in the php.ini file.

These errors are many in number but fall into pretty clear major types:

Employing a database username that lacks the necessary permissions for the task.■■

Mistyping usernames/passwords.■■

Failing to use a necessary password.■■

Trying to use a nonexistent password.■■

Trying to use your system’s username/password instead of the MySQL username/password.■■

Logging in from a location or client that the MySQL database does not allow for a ■■

particular user.

PHP’s being unable to open the database-password ■■ include file because of incorrect file

permissions. (It must be a file readable by your web.)

The database root user’s having deliberately changed permissions on you.■■

FIGURE 19-3

Privilege problems

These are not structural problems but usually just simple slips of memory that result in miscues or

misrecollections. They are very common. We aren’t too proud to confess that we’ve fallen victim to

all of them — and not just once but over and over. They should be trivial to fix in the vast majority

of situations. If you are confident your username and password combination is correct, you try using

MySQL’s FLUSH PRIVILEGES command to ensure that the most current changes are loaded.

CAUTION CAUTION

299

 MySQL Gotchas 19

Unescaped Quotes
Quotes can cause many small but annoying buglets between PHP and MySQL. The crux of the issue

is that PHP evaluates within double quotation marks and largely ignores single quotation marks,

whereas MySQL evaluates within single quotation marks and largely ignores double quotation

marks. This can lead to situations where you have to think hard about the purpose of each quotation

mark. An example is:

mysql_query(“INSERT INTO book (ID, title, year, ISBN)
 VALUES(NULL, ‘$title’, ‘$year’, ‘$ISBN’)“);

In most of PHP, variables within single quotation marks are not expanded, whereas variables in dou-

ble quotation marks or unquoted variables are — so this query looks a bit strange. But if you think

about it, the statement is valid in both languages. The single quotation marks exist within double

quotation marks, so PHP takes them as literal characters, and the variables are actually within

double quotation marks, so PHP replaces them with their values. You can think of the division of

labor this way: In a database query, PHP does its thing on the stuff between double quotation marks

(treating single quotation marks literally), and MySQL later deals with the stuff left over within

single quotation marks.

Obviously, you’ll need to exercise some care when writing these statements. This is one of the rea-

sons why it’s preferable to break up your MySQL queries into two parts, a query string and a mysql_
query() function, like this:

$query = “INSERT INTO book (ID, title, year, ISBN)
 VALUES(NULL, ‘$title’, ‘$year’, ‘$ISBN’)“;
$result = mysql_query($query);

This style also eliminates the double parentheses that account for common PHP errors.

Even greater issues arise with strings that use single quotation marks and double quotation marks

within the text. Remember that apostrophes and single quotation marks are the same thing for PHP

and MySQL — they have no smart-quoting feature (not that most smart quotation marks are all that

smart anyway). So this insertion query will break as follows if any of your lastname entries ever has

an apostrophe in it (for example, O’Hara, D’Souza, and M’Naughten):

$query = “INSERT INTO employee (ID, lastname, firstname)
 VALUES(NULL, ‘$lastname’, ‘$firstname’)“;
$result = mysql_query($query);

Other very common problems are caused by names of businesses with apostrophes in them, such as

Rosalita’s Bar and Grill or Yoshi’s Hair Salon, and by any string that might have a contraction or pos-

sessive in it (such as can’t, what’s, or Mike’s).

The parallel issue on the PHP side is a string with a double quotation mark in it. This construction

will definitely not work as intended:

$string = “He said, “I’m not angry,” but I knew he was.”;

300

 Part II MySQL Database Integration

$statement = mysql_query(“INSERT INTO diary (ID, entry)
 VALUES(NULL, ‘$string’)“;

In very long text entries, a quotation mark problem may present as a partial string being

inserted, or it may appear as a complete failure, or it may seem as though only short

entries are being accepted while longer entries fail.

If you’re using an HTML form with values, and only the first word of your string is being inserted, the prob-
lem is likely to be that you forgot to quote the form value properly. In other words, your form field says
<INPUT TYPE=”text” VALUE=quoted string> rather than <INPUT TYPE=”text” VALUE=”quoted
string”>.

The following list reviews the three ways of dealing with quoting issues:

In cases where the string is directly stated within the code, you can escape the necessary ■■

characters with a backslash.

$query = “INSERT INTO employee (ID, lastname, firstname)
 VALUES(NULL, ‘O\‘Donnell’, ‘Sean’)“;

In cases where the string is represented by a variable, you can use ■■ addslashes(), which

will automatically add any necessary backslashes.

$string =
mysql_real_escape_string(“He said, ‘I’m not angry,’ but I knew he
was.”);
$statement = mysql_query(“INSERT INTO diary (ID, entry)
 VALUES(NULL, ‘$string’)“);

For some murky psychological reason, many PHP users seem exceedingly averse to using add-
slashes() and its partner, stripslashes(). People will tie themselves in knots using single quo-

tation marks when they really shouldn’t, just so they don’t have to escape double quotation marks.

This practice is bad style at any time but is especially dangerous when using a database.

You need to add slashes when inserting values into a database; conversely, you’ll need to strip out the

slashes when pulling strings from a database (unless you have magic quotation marks turned on).

$query = “SELECT passphrase FROM userinfo
 WHERE username=’$username’“;
$result = mysql_query($query);
$query_row = mysql_fetch_array($result);
$passphrase = stripslashes($query_row[0]);

If you fail to do this, more and more slashes will be added each time you reenter the data into

MySQL! This is an issue that is very frequently encountered with editable Web forms that redisplay

values pulled from a database, as shown in Figure 19-4.

However, the preferred solution is to use mysql_real_escape_string to escape characters prior

to sending them to the database.

CAUTION CAUTION

301

 MySQL Gotchas 19

FIGURE 19-4

Unstripped slashes in a form

Broken SQL Statements
In addition to quoting problems, there are a number of easy ways to send a bad query to the data-

base. That query might be syntactically malformed, have the right syntax but refer to tables that do

not exist, or have any of a number of problems that make the database unable to handle it properly.

A typical error message is shown in Figure 19-5.

FIGURE 19-5

A bad SQL statement error

302

 Part II MySQL Database Integration

A MySQL error (such as the one shown in Figure 19-5) is different from a connection or

link error, which looks something like Figure 19-1. A MySQL error is the error returned

from the database when you try to do something that it doesn’t like. It is not automatically echoed to

the screen; you need to call mysql_error() to see any output. A connection error is a message that

PHP is sending to you when an expected connection or link is not present. It is automatically echoed to

the screen if you’re using display_errors and must be silenced by being prepended with an @.

Older versions of PHP used to automatically echo an error statement in these circumstances. Now, if

you wish to find out what the problem is, you must manually call mysql_error() (as we’ve done in

the preceding example) or mysql_errno(). The safest way to capture these errors is to send them

to a log file by using error_log().

A broken or invalid SQL query is not the same thing as a query that returns no rows. You

can write a perfectly fine SQL query like the following:

$query = “select ID from cust where name = ‘nonexistent’“;

You send it to your DB and get back a perfectly valid result set, which happens to contain exactly 0

rows. Among other things, this means that error trapping that catches query failures will not help you

detect the case of zero rows. For MySQLers, a helpful function is mysql_num_rows(), which is called

on the query result ID and returns an integer.

Exactly how a bad SQL problem will present itself in your browser depends on your PHP version,

your database version, your error settings, and how much error-checking code you have incorpo-

rated in your script. Just as with other kinds of malignancy, early detection of a failed query is key.

Your new best friend for making MySQL queries looks like this:

$result = mysql_query($query) or error_log(mysql_error());

Because mysql_query() will return a false value if it fails, the error_log() portion will be

executed only if a failure occurs. The low operator precedence of the or operator ensures that the

error_log() call also plays no role in the assignment statement — if the assignment succeeds,

it is as if the error() portion did not exist. Failure leads to the script exiting just as soon as it

has printed the most informative error message that the MySQL designers could concoct. If your

particular database lacks such an error variable in PHP, you might want to simply call error_
log($query). Often, the problem is obvious after you see the query that is actually being sent.

If you have not incorporated error checking into your query calls, you will get the first bad news

when you try to use the query result ID in subsequent database code. The typical pattern is:

$my_result = mysql_query($bad_query);
$row = mysql_fetch_row($my_result); // error shows up here

The typical error message for MySQL is 0 is not a mysql result identifier in [some row].

This is because, rather than detecting the 0 value that mysql_query() returns when it fails, you

have tried to use that value as if it were a valid identifier for a result set.

CAUTION CAUTION

NOTENOTE

303

 MySQL Gotchas 19

Although a bad query is by far the most common way of producing the 0 is not a

valid result identifier message, it is not the only way. You would also get that

message if you misspelled the name of the result identifier variable (and it was, therefore, unbound) or

if the query statement had never actually executed (with the same result). Again, it is much easier to

distinguish these problems if you trap the errors early on.

If you suspect a broken query is causing your script to fail, liberal use of print and var_dump to

output the actual SQL being executed is almost always helpful. I’ve found that seeing the SQL being

executed will show a blatant error with quoting or an even subtler error. Taking the SQL and run-

ning it manually through the MySQL CLI can also help to reveal errors. I will say more on this, later.

Misspelled names
The sad truth is that for every bug that plumbs the depths of programming esoterica, there are a

gazillion cheap mistakes that seem obvious once you’ve discovered them. The former may break

your brain, but afterward you feel a certain exhilaration at testing your skills against a really hard

nut. The latter just leave you feeling empty and regretful at the time you wasted on something so

trivial.

So let us start with the single most common error: simple misspelling of table, column, and value

names. It doesn’t help that PHP and MySQL are both case-sensitive in Linux environments (but not

on Windows). No force on earth can prevent you from using the wrong case once in a while, and the

error messages will be uninformative at best. What can we say? Remember that even the most expe-

rienced programmers do it, too.

Comma faults
Remember to put the comma outside the single quotation marks within a SQL statement. This will

not work:

$query = “UPDATE book SET title=’$title,’ subtitle=’$subtitle,’
ISBN=’$ISBN’“;

But this will:

$query = “UPDATE book SET title=’$title’, subtitle=’$subtitle’,
ISBN=’$ISBN’“;

Think of the single quotation marks as part of the variable itself rather than following common

American typographical practice, which puts a comma inside the ending quotation mark.

Unquoted string arguments
Any values that should be treated by the database as string data types typically need to be single-

quoted within a SQL statement. For example, this query has the correct syntax:

$query = “SELECT * FROM author WHERE firstname = ‘Daniel’“;

TIPTIP

304

 Part II MySQL Database Integration

By contrast, if we make a mysql_query() call using the following query, we should expect an

error:

$query = “SELECT * FROM author WHERE firstname = Daniel”;

The actual error returned by the database may be deceptive, though — quite likely the complaint

will be about an unknown column named ‘Daniel’. This is because unquoted strings are assumed

to name columns, as in:

$query = “select * from author where firstname = lastname”;

This would be a perfectly acceptable way to search our database for Humbert Humbert and Lisa

Lisa, but it won’t work for people with more ordinary names.

Unbound variables
One of the sneakier ways to break a SQL statement is to interpolate an unbound variable into the

middle of it.

When it works, the automatic splicing of variables into double-quoted strings is a perfect match for a

SQL-based dialog with your database. Your code can determine values, for example, that are used to

restrict the scope of a query made to the DB, as in this snippet:

$customerID = find_customer_id(); //returns int
$result_id = mysql_query(“SELECT * FROM customers
 WHERE ID = $customer_ID”); //BUG
$row = mysql_fetch_row($result_id); //CRASH

Because this code makes no attempt to trap query errors, you will again see a complaint about the

fact that 0 is not a valid MySQL result identifier. It’s possible (for us anyway) to stare at

code like this for quite a while without seeing anything wrong (although the good PHP coders who

habitually crank error reporting up to E_ALL will be rewarded with the cause of the error in a warn-

ing message). The problem, of course, is that we assigned one variable ($customerID) and then

embedded a different one ($customer_ID) in our SQL statement. The latter variable is unbound

and so behaves like an empty string when interpreted by the double-quote parsing. The result is that

the database sees the following query, which is not valid SQL:

SELECT * FROM customers WHERE ID =

This kind of problem is one reason why it is often a good idea to construct your query and assign it

to a variable in a separate statement, like this:

$my_query = “SELECT * FROM customers WHERE ID = $customer_ID”;

Then make a distinct subsequent call to mysql_query($my_query). If you do this, it is very easy

to add printing or logging statements that show you the actual query you are sending.

305

 MySQL Gotchas 19

Too Little Data, Too Much Data
Finally, you may find that your PHP/database script is working apparently without error but is dis-

playing no data from the database or far more than you expected. As a vague and general rule, if

your query function is returning successfully (and your code checks that), your suspicions might

rightly turn to the SQL itself. Recheck the logic, particularly of WHERE clauses. It is easy, for exam-

ple, to write a query like:

“SELECT * FROM families WHERE kidcount = 1 AND kidcount = 2”;

In this query, you are really intending an or rather than an and, with the result that zero rows will

be returned regardless of the contents of your database.

If your script is iterating through database rows and displaying them and you find that you have

far, far too many of those rows, the problem is very often a SQL join that has too few restrictions. As

a general rule, the number of restrictions in a WHERE clause should not be fewer than the number

of tables joined minus one. For example, the following query has three tables but only one joining

restriction:

“SELECT book.title FROM book, author, country
WHERE author.countryID = country.ID”

It is likely to return every possible book/author pair, without reference to whether the author wrote

the book, which is probably not what was intended.

Specific SQL Functions
A few specific functions seem to cause a higher than normal number of problems, especially in the

learning phase. These functions can send even the experienced PHP developer running to the online

manual to check the arguments and returned data types time and time again.

mysql_affected_rows() versus mysql_num_rows()
Both of these functions tell you how many rows of data your last SQL statement touched. However,

mysql_num_rows() works only on SELECT statements, while mysql_affected_rows() works

only on INSERT, UPDATE, and DELETE statements. The way to think about it is that SELECTs do not

affect (meaning change) any data that exists in the database.

Furthermore, mysql_affected_rows() takes an optional link identifier as the argument, whereas

mysql_num_rows() takes a nonoptional result resource. This means that you can only get a valid

result from mysql_affected_rows() until the moment you call another INSERT, UPDATE, or

DELETE. In contrast, if you use different variable names for your result resources, you can use

mysql_num_rows() anytime in the script. This code will help clarify the differences:

$link_id = mysql_connect($host, $user, $pass);

306

 Part II MySQL Database Integration

mysql_select_db($database, $link_id);

$query = “INSERT INTO mytable VALUES(NULL, ‘$myval’)“;
$result_resource = mysql_query($query);
$test_insert = mysql_affected_rows();
// This should work and return 1

$query1 = “SELECT * FROM mytable”;
$result_resource1 = mysql_query($query1);
$test_select = mysql_num_rows($result_resource1);

$query2 = “DELETE FROM mytable”;
$result_resource2 = mysql_query($query2);
$test_select2 = mysql_num_rows($result_resource2);
//Will not work
$test_delete = mysql_affected_rows();
//This will return the number of rows in the table; at this
// point you can no longer get the old result of 1
$test_select_again = mysql_num_rows($result_resource1);
//Should be the same as $test_select

mysql_result()
This function, which returns one value at a time from the database, is now used rather rarely. Unlike

mysql_fetch_row() and mysql_fetch_array(), with mysql_result you need to specify the

row and field of the value you’re fetching as well as the result resource. Thus, you cannot do this:

// This won’t work
while (mysql_result($result_resource)) {
 // Some loop
}

// This will
$firstname = mysql_result($result_resource1, 0, ‘firstname’);

You should really use this function only when you know you’ll be fetching one or two pieces of data

(a user’s first name, for instance). Otherwise, the others are much faster.

OCI_Fetch()
When users of MySQL or SQL Server switch over to Oracle, they often have trouble with the OCI

fetching functions — particularly this one. Unlike most other database row-fetching functions, you

don’t immediately access the result of oci_fetch() via echo or some other PHP function. This

function fetches the result of a SQL statement into a result buffer — where it can be accessed via

OCIResult().

$query = “SELECT * from mytable”;
$stmt = oci_parse($conn, $query);
$exec_result = oci_execute($stmt, OCI_DEFAULT);

307

 MySQL Gotchas 19

$row2buffer = oci_fetch($stmt);
$myval = oci_result($stmt, “MYCOLUMN”);
echo $myval;

This function should probably be thought of as analogous to mysql_result() rather than mysql_
fetch_row(), or at best occupying a middle ground between the two. Similarly, it should only

be used when you are sure you will be fetching very small data sets. Otherwise, use oci_fetch_
array()which returns an array.

Debugging and Sanity Checking
If you are nearing your wit’s end in trying to debug query-related errors and misbehavior, you may

find it extremely useful to compare the results of your PHP-embedded queries with the same queries

made directly to the database. If your technical setup permits actually running a SQL client directly

(for example, the mysql or Oracle command-line clients), as well as cross-program cutting and past-

ing, try this two-step process:

 1. Insert a debugging statement in your PHP script that prints the query itself immediately

before it is actually used in a DB query call (for example, echo $query).

 2. Directly paste that query from your browser output (or the HTML source) into your

SQL client.

Obviously, this advice applies only to code under development, not to code you are run-

ning in production. It might be okay to echo errors to the browser while you’re develop-

ing something for the first time, but when it’s ready to go into production, you should make sure all

your echo() statements are replaced with error_log() functions.

If the query looks reasonable to you, but it breaks both in the SQL program and in PHP, then there

is some syntax or naming error in that SQL statement itself that you are missing, and your PHP code

is not to blame (unless, of course, your code constructed that query in the first place). Similarly, with

a dearth or overabundance of rows — if the behavior is the same in both places — the query is to

blame. If, on the other hand, the behavior in the SQL interpreter looks like what you wanted, then

the query is fine, and your suspicion should turn to your PHP code that actually sends that query

and processes the results.

One final and general tip is to study any error messages very carefully, paying attention to phrases

like link identifier and result resource identifier. In MySQL, the former means an iden-

tifier of a database connection, and the latter identifies the set of rows returned by a particular query.
It is easy to confuse the two, as in the following code:

$my_connection = mysql_connect(‘localhost’, $myname, $mypass);
mysql_select_db(‘MyDB’);
$result = mysql_query($my_query, $my_connection);
while ($row = mysql_fetch_row($my_connection)) {
 // LOOP
}

CAUTION CAUTION

308

 Part II MySQL Database Integration

This code will probably yield an error that contains the words not a valid result identifier.

The problem is that we are using the connection ID where the result ID should be. The resulting

error message is justified yet opaque.

Summary
PHP/database bugs are often not very deep or subtle but can still be difficult to diagnose. In general,

the earlier in a script you can detect trouble, the easier the diagnosis will be. Especially when you

are debugging, every statement that interacts with the database should have an associated error_
log() clause, containing an informative error message.

By far, the most common cause of database-connection problems is incorrect arguments to the con-

nection function (hostname, username, password). The most common causes of failed queries are

quote faults, unbound variables, and simple misspellings.

If you have repeated failures with database queries that seem like they should be working, have your

code print out the query that it is sending to the DB; if possible, try making that very query to the

database directly. If the problem persists when PHP is out of the loop, you can safely restrict your

attention to database design and your understanding of SQL queries.

More PHP

IN THIS PART

Chapter 20
Introducing Object-Oriented PHP

Chapter 21
Advanced Array Functions

Chapter 22
Working with the Filesystem

Chapter 23
Working with Cookies and
Sessions

Chapter 24
Learning PHP Types

Chapter 25
Learning PHP Advanced Functions

Chapter 26
Performing Math with PHP

Chapter 27
Securing PHP

Chapter 28
Learning PHP Configuration

Chapter 29
Handling Exceptions with PHP

Chapter 30
Debugging PHP Programs

Chapter 31
Learning PHP Style

311

T
here are many possible audiences for this chapter, including people

who know basic PHP but nothing about object-oriented program-

ming (OOP), and people who know all about OOP and nothing

about PHP. As usual, we aim to please everyone all at once, but be warned

that you may want to pick and choose from the sections.

We start with a quick and very general introduction to object-oriented

programming for those who are completely unfamiliar with it. If you are

already comfortable with OOP from another language, please skip this

section — it will not enlighten you (and might well enrage you). The sec-

tion “PHP Constructs for OOP” gets into the meat of the basic syntax and

behavior of PHP objects. Later in the chapter, we delve into more extended

examples and cover some of the more obscure issues and gotchas around

objects in PHP. Along the way, we offer a couple of sidebar meta-discus-

sions, about the merits of object-oriented PHP and the extent to which PHP

should be considered to be OOP.

In general in this chapter, we discuss OOP programming con-

structs as they are implemented in PHP5, which uses the new

and significantly improved Zend Engine 2 as its parser.

NOTENOTE

Introducing Object-Oriented
PHP

IN THIS CHAPTER

What is object-oriented

programming?

The basics of PHP OOP

Advanced topics: serialization

and introspection

Troubleshooting and style issues

312

 Part III More PHP

What Is Object-Oriented
Programming?
So what is object-oriented programming (OOP) all about anyway? OOP turns out to be a very simple

idea, which (when taken seriously and built into the structure of programming languages) leads to

all sorts of more complicated elaborations.

The simple idea
The simple idea is this: Rather than creating data structures on the one hand and code on the other,

suppose that we reorganize everything so that associated pieces of code and data are bundled together?

The procedural approach
For example, imagine a conventional procedural (non-object-oriented) program for manipulating per-

sonal calendars, with the capability to display, update, and edit calendars. Somewhere in the code for

such a program, we would find the actual data definitions for representing someone’s appointments

for a particular month; somewhere else we would find code that did the right things to manipulate

that data. Typically, the only connection between the data type definitions and the manipulation code

is that a clever programmer has made sure that they get matched up appropriately.

Now imagine combining our calendar program with a recipe program (say that we want to plan our

meals in detail for an entire year). Again, there will be data structures somewhere that represent the

contents of the calendar, and other data structures that represent the contents of the recipes. The

data structures will use the basic data types of the programming language; for all we know, the top-

level type of a calendar might be an array, and the top-level type of a recipe might also be an array.

Somewhere else in the program there is code for digging into the data structures that represent cal-

endars and recipes and doing the right things with them. What is the connection between the data

structures and the code? Only that a careful programmer has made sure that the arrays that repre-

sent calendars and the arrays that represent recipes get fed to the appropriate manipulation code.

(Otherwise, we might find ourselves trying to schedule an appointment in Beef Stroganoff rather

than in March 2006.)

If we think of procedural code as outlined like a book, the outline for the code we’re talking about

might look like:

Data definitions■■

Data definitions for calendars■■

Data definitions for recipes■■

Data manipulation code■■

Code for calendars■■

Code for recipes■■

313

 Introducing Object-Oriented PHP 20

The object-oriented approach
The most basic version of OOP reorganizes the procedural approach by grouping associated pieces

of code and data together into conceptual units. This means that we replace the outline in the pre-

ceding subsection with:

Calendars■■

Data definitions■■

Manipulation code■■

Recipes■■

Data definitions■■

Manipulation code■■

This organizational inversion is the heart of object-oriented programming.

But so what (we can hear you say)? If we’re just talking about a way to organize code, we could do

that without any special terminology or programming languages. In normal procedural code, we

can organize function definitions and data type definitions in any order we want to. For example,

we could put all the data type definition code into one directory and all the manipulation code into

another (a procedural organization), or we could put all the calendar code into one directory and all

the recipe code into another (an object-oriented organization).

Object-oriented programming begins to be interestingly different from procedural programming,

however, once the programming language itself is set up to make it easy to organize things in an

object-oriented way. (See the sidebar “Do Web-Scripting Languages Really Need OOP?” for a dis-

cussion of how useful this organization is in languages like PHP.) The most basic form this takes is

that data objects can be built out of local functions as well as local data. For example, as we build a

data structure that represents a calendar, we can include the data members that are needed (struc-

tures to represent days, months, years, appointments) but also the functions that will be needed

(new_appointment(), calendar_display(), and so forth). These functions are (in some sense)

stored locally in the object definition itself. A calendar doesn’t have an ingredient list, and a recipe

doesn’t have 31 days; similarly, a calendar object doesn’t have a print_ingredients() function,

and a recipe doesn’t have a new_appointment() function. Finally, of course, the data members in

an object may themselves be objects of a different type.

Bundling code and data together into units is the basic idea, and OOP languages always offer some

support for this kind of bundling. However, most OOP languages take things further and offer one

or more of the following elaborations that give OOP even more leverage. (See the sidebar “How OO

Is PHP?” for a discussion of the extent to which PHP itself has these features.)

Elaboration: objects as data types
In addition to allowing us to store functions in our data, a good OO programming language lets us

define these combinations as genuinely new data types that the language supports like any other type.

314

 Part III More PHP

Do Web-Scripting Languages Really Need OOP?

The object-oriented revolution has not been without controversy. Although many programmers embraced
OOP quickly, others preferred the procedural approach they were used to and wondered aloud if the

extra machinery needed to support OOP wasn’t more trouble than it was worth. Still, there’s no doubt that
the revolution has largely succeeded. Most of the popular programming languages in use today are either
fully object oriented or have object-oriented extensions. Also, at least some of the promises about improved
productivity and increased code reuse seem to have been realized, as design methodologies like the Unified
Modeling Language (UML) and patterns gain greater influence, and as people get more used to subclassing as
a standard way to reuse and extend vendor-supplied libraries.

We feel that the benefits of OOP for “major” (that is, compiled) programming languages like Java and C++ are
clear. On the other hand, we feel that the benefits of OOP for scripting languages (like Perl and PHP) are less
obvious and are most debatable in the case of web-scripting (PHP).

How is web scripting different from other kinds of programming tasks? The most obvious difference is simply
that web scripts typically execute quickly and then go away. In other programming situations, you may have
RAM-resident objects that live for hours or days and undergo complex evolutions of state that affect their
behavior. A typical web script, on the other hand, might execute for half a second, as it serves up a particular
page, and then dies happy. You may knit these scripts together to provide a more extended user experience
(using databases, sessions, cookies), but often such efforts are all about making the experience outlive any
PHP objects that may be created. More generally, scripting languages like PHP and Perl typically have a less
thoroughgoing implementation of OOP than languages like Java, C++, and Smalltalk, and the limitations of
implementation make these OOP extensions less attractive. (For more detail, see the sidebar “How OO is
PHP?” later in this chapter.)

This is not to say that there aren’t still benefits of OOP in PHP. In addition to the conceptual benefits that may
result from structuring code in an object-centered way, there are two good reasons to use PHP objects: 1) It’s
a good way to distribute third-party code for reuse; 2) Many programmers who are used to OO syntax from
other languages won’t feel comfortable unless they can use the same idioms in PHP.

But our main point is that use of PHP constructs for OOP is a very “tradeoffy” and pragmatic decision, which
we have often seen made more on the basis of religion or fashion. If you are comfy with OO, this kind of
syntax is there for you, and if you work in a group that has decided to write in that style, you may want to let
the majority rule. If you decide not to go OO, however, be strong — we urge you not to be swayed by the
moral-superiority arguments you may hear from people who disdain your five-line procedural script in favor
of their ten-line OO script that does exactly the same task.

After such a type is defined, we can create as many such objects as we like, just as we can create as

many integers as we like given the integer type. In object-oriented terminology, the term class is used

to refer to the general type definition, which specifies the data members and member functions that

each instance of that class should have.

The term object (or instance) refers to any individual instance of the type. For example, after we

define a class called Calendar (which specifies the different kinds of data and functions that every

self-respecting calendar should have), we can make any number of Calendar objects (which might

be associated with individual people).

315

 Introducing Object-Oriented PHP 20

Elaboration: Inheritance
After we’ve written a program that uses the class Calendar, we might want to make a more specific

version of the program for a particular purpose. What we would really like to do is copy most of the

code from the Calendar class but change it in just a few places, so that it prints differently or has

a culturally appropriate set of holidays or allows us to schedule appointments to the second rather

than to the hour.

This desire is common enough that OOP offers a mechanism to support it called inheritance. The

basic idea is that you can define a class in terms of another class and then specify only the things

that you want to be different in your own class. If you view the original class as the parent, the

default is that both function definitions and data definitions are inherited by your child class unless

you specify otherwise. This turns out to be a powerful technique for reusing class definitions. (As

you will see in the “Basic PHP Constructs for OOP” section, OOP in PHP supports inheritance.)

Elaboration: Encapsulation
Part of the point of segregating both data and functions into objects is to reduce the complexity

of programming by reducing unnecessary interactions. There is no reason why calendars should

have to know about the internals of cooking recipes, or vice versa. So some OOP languages actu-

ally enforce information barriers between objects — after the programmer has defined which parts

of recipes and calendars are purely internal and private to those classes, the language actually for-

bids code that is external to an object from messing with an object’s internal workings. This kind

of information-hiding is called encapsulation, and although this sounds restrictive, it can be a good

source of clarity. In particular, if the programmer who designed a particular class knows that some

parts of its workings have been designed to be private in this sense, the programmer also knows that

those parts can be redesigned without checking with everyone who might be using that class’s code.

Support for encapsulation existed for the first time in PHP5, which incorporates Zend Engine 2.

You’ll see how to use encapsulation later in this chapter.

Elaboration: Constructors and destructors
After you have defined a class, you can make as many instances of it as you like. Each time you cre-

ate such an instance, your favorite OOP language allocates memory to store the instance in, and

gives you some way to refer to that instance later in the program. There are frequently a number of

initialization steps you want to take every time you make an object of that class. Constructor func-

tions offer a way to build that set of steps into the class definition. The standard way to create a new

instance is to call a constructor function (which usually has the same name as the class and which

you can customize to do all the necessary initialization).

Destructors are the opposite of constructors and specify all the cleanup actions that should happen

when an object is dispensed with.

PHP has offered constructor functions since version 4.2 (which makes sense, because you can’t have

object orientation without having constructors). The language acquired explicitly definable and call-

able destructors only in PHP5 (destruction of classes was handled only in an automatic way before

then). Again, these functions are covered later in this chapter.

316

 Part III More PHP

Terminology
There are some standard terms in OOP parlance for all the concepts we have talked about thus far,

and we will be using them for the rest of the chapter. (Several of these terms have alternate names,

which we include in parentheses.)

Class:■■ This is a programmer-defined data type, which includes local functions as well

as local data. You can think of a class as a template (or mold, or form) for making many

instances of the same kind (or class) of object.

Object:■■ (Also known as object instance, or instance.) An individual instance of the data

structure defined by a class. You define a class once and then make many objects that

belong to it.

Member variable:■■ (Also known as property, attribute, or instance variable.) One of the com-

ponent pieces of data in a class definition.

Member function:■■ (Also known as method.) A member that happens to be a function.

Inheritance:■■ The process of defining a class in terms of another class. The new (child)

class has all the member data and member function definitions from the old (parent) class

by default but may define new members or “override” parent functions and give them new

definitions. We say that class A inherits from class B if class A is defined in terms of class B

in this way.

Parent class■■ (or superclass or base class): A class that is inherited from by another class.

Child class■■ (or subclass or derived class): A class that inherits from another class.

How OO is PHP?

How “object-oriented” is PHP? Your answer to that question probably depends on your particular litmus
tests for object-orientedness. In this sidebar, we offer a whirlwind tour of features that typically show up in

OOP languages and briefly discuss the extent to which PHP supports them. Some of these issues are explored
more broadly in the section “Advanced OOP Features,” later in this chapter. (Note: This sidebar is really only
of interest to developers who are coming to PHP from a different OO language; everyone else may want to
skip this game of buzzword bingo.)

Single inheritance

PHP allows a class definition to inherit from another class, using the extends clause. Both member variables
and member functions are inherited.

Multiple inheritance

PHP offers no support for multiple inheritance as in Java. Each class inherits from, at most, one parent class
(though a class may implement many interfaces).

317

 Introducing Object-Oriented PHP 20

Constructors

Every class can have one constructor function, which in PHP is called __construct(). Note that there are
two underscore characters at the front of that function name. Because prior to PHP5 (under Zend Engine 1),
a class’s constructor function had the same name as the class, PHP still allows (but discourages) that strategy
for purposes of backward compatibility. Constructors of parent classes are not automatically called but must
be invoked explicitly.

Destructors

PHP supports explicit destructor functions as of version 5. The destructor function of a class is always called
__destruct().

Encapsulation/access control

PHP supports public, private, and protected variables and member functions as of version 5.

Polymorphism/overloading

PHP supports polymorphism in the sense of allowing instance of subclasses to be used in place of parent
instances. The correct member function will be dispatched to at runtime. There is no support for method
overloading, where dispatch happens based on the method’s signature — each class only has one member
function of a given name. However, PHP’s weak typing and support for variable numbers of arguments makes
workarounds possible. See the section “Simulating polymorphism” later in this chapter (in the section “Advanced
OOP Features”).

Early versus late binding

Two equally good answers are: (1) The question doesn’t arise, because of PHP being loosely typed, and (2) All
binding is late. In PHP, values are typed but variables are not, so there is no question about what method to
call when the variable is of a different type than the value.

Static (or class) functions

PHP offers static member variables and static methods as of version 5. It is also possible to call member func-
tions via the Classname::function() syntax.

Introspection

PHP offers a wide variety of functions here, including the capability to recover class names, member function
names, and member variable names from an instance. (See the section “Introspection Functions,” later in this
chapter.)

Namespaces

PHP6 offers namespaces; these define the area in which an identifier, such as a variable, is unique. For example,
a variable named $foo inside of a private namespace is different from a global variable $foo.

318

 Part III More PHP

Basic PHP Constructs for OOP
In this section, we cover the basic PHP syntax for OOP from the ground up, with some simple

examples.

Defining classes
The general form for defining a new class in PHP is as follows:

class myclass extends myparent {
 public $var1;
 public $var2 = “constant string”;
 public function myfunc ($arg1, $arg2) {
 [..]
 }
 [..]
}

The form of the syntax is as described, in order, in the following list:

The special form ■■ class, followed by the name of the class that you want to define.

An optional extension clause, consisting of the word ■■ extends and then the name of the

class that should be inherited from.

A set of braces enclosing any number of variable declarations and function definitions. ■■

Variable declarations start with the special form public, private, or protected, which

is followed by a conventional $ variable name; they may also have an initial assignment to

a constant value. Function definitions look much like standalone PHP functions but are

local to the class.

As an example, consider the simple class definition in Listing 20-1, which prints out a box of text

in HTML.

LISTING 20-1

TextBox.php

class TextBoxSimple {
 public $body_text = “my text”;
 function display() {
 print(“<TABLE BORDER=1><TR><TD>$this->body_text”);
 print(“</TD></TR></TABLE>”);
 }
}

319

 Introducing Object-Oriented PHP 20

This is an extremely simple class definition. It has no parent (and, therefore, no extends clause).

It has a single member variable (the variable $body_text) and a single member function (the

function display()). The display function simply prints out the text variable, wrapped up in an

HTML table definition.

Accessing member variables
In general, the way to refer to a member variable from an object is to follow a variable containing the

object with -> and then the name of the member. So if we had a variable $box containing an object

instance of the class TextBox, we could retrieve its body_text variable with an expression like:

$text_of_box = $box->body_text;

However, when we are writing code within a member function, we haven’t yet created the object

instance, and so we have no variable like $box to refer to. The answer is the magic variable $this,

which (when used inside a member function of a class) refers to the object instance itself. Note that this

is how the display() function in Listing 20-1 retrieves the text it displays ($this->body_text).

This syntax can be a little counterintuitive. You might think that we could simply refer to $body_text

in functions within our TextBox class because we have declared it in the class definition, but in fact the

only way to get to members from within a member function definition is via $this. Notice also that the

syntax for this access does not put a $ before the member variable name itself, only the $this variable.

Creating instances
After we have a class definition, the default way to make an instance of that class is by using the new

operator. If we have already defined the class TextBox as in Listing 20-1, we can make an instance

of it, and then use it, like this:

$box = new TextBoxSimple;
$box->display();

The result of evaluating this code will be to print an HTML fragment containing a table definition

enclosing the text my text. (Not especially useful, but it’s a start.)

Constructor functions
One way in which our TextBox class is not very useful is that its instances do not contain any data

when they are created, except for the static initialization of the variable $body_text. The point of

such a class would be to display arbitrary pieces of text, not the same message every time. It’s true that

we could make an instance and then install the right data in the instance’s internal variables, like this:

$box = new TextBoxSimple;
$box->body_text = “custom text”;
$box->display();

But that would be cumbersome and error-prone as we build more complex objects.

320

 Part III More PHP

The correct way to arrange for data to be appropriately initialized is by writing a constructor func-

tion — a special function called __construct(), which will be called automatically whenever a

new instance is created.

Modifying our previous example to include a constructor function gives us Listing 20-2.

LISTING 20-2

TextBox redefined

class TextBox {
 public $body_text = “my text”;
 // Constructor function
 public function __construct($text_in) {
 $this->body_text = $text_in;
 }
 function display() {
 print(“<TABLE BORDER=1><TR><TD>$this->body_text”);
 print(“</TD></TR></TABLE>”);
 }
}
// creating an instance
$box = new TextBox(“custom text”);
$box->display();

As the preceding code is executed, the output is an HTML table enclosing the text custom text.

NOTENOTE There should be only one constructor function per class definition. Defining

more than one such function is syntactically legal, but pointless, as only the defi-

nition that occurs last will be in effect. If you’d like to have different constructors to handle different

numbers and types of input arguments, see the section “Simulating Polymorphism” later in this chapter.

Inheritance
PHP class definitions can optionally inherit from a parent class definition by using the extends

clause. The syntax is:

class Child extends Parent {
 <definition body>
}

The effect of inheritance is that the child class (or subclass or derived class) has the following

characteristics:

Automatically has all the member variable declarations of the parent class (or superclass or ■■

base class)

Automatically has all the same member functions as the parent, which (by default) will ■■

work the same way as those functions do in the parent

321

 Introducing Object-Oriented PHP 20

In addition, the child class can add on any desired variables or functions simply by including them

in the class definition in the usual way.

In Listing 20-2, we defined a class called TextBox; now we’ll define a class called TextBoxHeader

that extends TextBox (see Listing 20-3). TextBoxHeader has two member variables: one ($body_
text) that it receives through inheritance from TextBox, and another ($header_text) that it

defines itself. Like TextBox, it has a constructor function and a function called display. This func-

tion definition overrides the display function in TextBox.

LISTING 20-3

TextBoxHeader

class TextBoxHeader extends TextBox
{
 public $header_text;

 // CONSTRUCTOR
 public function __construct($header_text_in,
 $body_text_in) {
 $this->header_text = $header_text_in;
 $this->body_text = $body_text_in;
 }

 // MAIN DISPLAY FUNCTION
 public function display() {
 $header_html =
 $this->make_header($this->header_text);
 $body_html = $this->make_body($this->body_text);
 print(“<TABLE BORDER=1><TR><TD>\n”);
 print(“$header_html\n”);
 print(“</TD></TR><TR><TD>\n”);
 print(“$body_html\n”);
 print(“</TD></TR></TABLE>\n”);
 }

 // HELPER FUNCTIONS
 public function make_header ($text) {
 return($text);
 }
 public function make_body ($text) {
 return($text);
 }
}

322

 Part III More PHP

Overriding functions
Function definitions in child classes override definitions with the same name in parent classes. This

just means that the overriding definition in the more specific class takes precedence and will be the

one actually executed. In the example in Listing 20-3, the TextBoxHeader class defines a function

called display(), which means that executing the following code:

$text_box_header = new TextBoxHeader(“The Header”, “The Body”);
$text_box_header->display();

will result in a call to TextBoxHeader’s display() function, not the display() function in

TextBox. The resulting HTML output prints a box with a header of The Header and a body of The
Body. The more specific display() function takes total responsibility here; there is no call, either

explicit or implicit, to the display() function defined in the TextBox class. (Although PHP makes

no such implicit calls, it is possible to explicitly call functions that have been defined in a parent

class — see “Calling parent functions” in the “Advanced OOP Features” section later in the chapter.)

The flip side of overriding functions, however, is that whenever a subclass does not override a

parental definition, the parent’s definition will be in effect. Note that the “helper” functions in the

definition of TextBoxHeader don’t really do anything interesting, and you might wonder why we

bothered to separate them out. The answer is that this provides an opportunity for an inheriting

class to do something interesting with those functions by selectively overriding them — or not, as

they see fit.

PHP5 (as a result of Zend Engine 2) introduced the final keyword. If, in the previous example, the

definition of display() in class TextBox had looked like this:

final function display() {
 print(“<TABLE BORDER=1><TR><TD>$this->body_text”);
 print(“</TD></TR></TABLE>”);
 }

then the method could not have been overridden by a definition in TextBoxHeader.

It is possible to declare whole classes final and individual methods, but not individual properties.

Chained subclassing
PHP does not support multiple inheritance but does support chained subclassing. This is a fancy way

of saying that, although each class can have only a single parent, classes can still have a long and

distinguished ancestry (grandparents, great-grandparents, and so on). Also, there’s no restriction on

family size; each parent class can have an arbitrary number of children.

As example, see Listing 20-4, where our definition of TextBoxBoldHeader inherits from

TextBoxHeader, which in turn inherits from TextBox.

323

 Introducing Object-Oriented PHP 20

LISTING 20-4

TextBoxBoldHeader

class TextBoxBoldHeader extends TextBoxHeader {

 // CONSTRUCTOR
 public function __construct($header_text_in,
 $body_text_in) {
 $this->header_text = $header_text_in;
 $this->body_text = $body_text_in;
 }

 // HELPER FUNCTIONS
 // make_header overrides parent
 public function make_header ($text) {
 return(“$text”);
 }
}

This definition of TextBoxBoldHeader is minimal; it defines no new member variables and defines

only one function besides its constructor. That new function (make_header()) overrides the defini-

tion in its parent. Now what happens when we actually use this definition in the usual way?

$text_box_bold_header =
 new TextBoxBoldHeader(“The Header”, “The Body”);
$text_box_bold_header->display();

It’s worth looking in a bit of detail to see exactly what happens when we make these two function calls.

First, when we call the constructor (TextBoxBoldHeader()), the constructor sets variables that

were defined in the grandparent (TextBox) and the parent (TextBoxHeader), respectively, and

returns a new instance of TextBoxBoldHeader.

Second, when we call $text_box_bold_header->display(), the call sequence is:

 1. No display() function is found in TextBoxBoldHeader, so the version from

TextBoxHeader is called.

 2. The first function call in that version of display() is to $this->make_header().

Remember that $this refers to the object instance that we started with, which happens to

be an instance of TextBoxBoldHeader, so PHP looks first of all for a definition from that

class. It finds one and uses it to return the header string wrapped up in the HTML bold

text construct ().

 3. The second function call is to $this->make_body(). This time, though, there is no over-

riding definition in TextBoxBoldHeader, so the version from TextBoxHeader is used.

324

 Part III More PHP

The upshot is that, in defining TextBoxBoldHeader, we mostly exploited the behavior of the par-

ent class but were able to change its behavior slightly by overriding a single member function.

Modifying and assigning objects
Prior to PHP5, when you assigned an object to a variable or passed it to a function, that object was

actually copied, bit for bit, into the variable or function scope. That caused tremendous hassles, and

programmers had to be careful to devise clever workarounds for the problems.

The problem was solved with PHP5, which incorporates Zend Engine 2. Zend Engine 2 copies by

reference, rather than explicitly. That is, several variables can point to the exact same object and

expect changes made via one reference to be reflected in the others.

Scoping issues
Before we move onto the more advanced features of PHP’s version of OOP, it’s important to nail

down issues of scope — that is, which names are meaningful in what way to different parts of our

code. It may seem as though the introduction of classes, instances, and member functions have

made questions of scope much more complicated. Actually, though, there are only a few basic rules

we need to add to make OOP scope sensible within the rest of PHP:

Names of member variables and member functions are never meaningful to calling code ■■

on their own — they must always be reached via the -> construct (or, as we’ll see in the

“Advanced OOP Features” section, the :: construct). This is true both outside the class

definition and inside member functions.

The names visible within member functions are exactly the same as the names visible ■■

within global functions — that is, member functions can refer freely to other global func-

tions but can’t refer to normal global variables unless those variables have been declared

global inside the member function definition.

These rules, together with the usual rules about variable scope in PHP, are respected in the inten-

tionally confusing example in Listing 20-5. What number would you expect that code to print when

executed?

LISTING 20-5

Confusing scope

$my_global = 3;

public function my_function ($my_input) {
 global $my_global;
 return($my_global * $my_input);
}

325

 Introducing Object-Oriented PHP 20

class MyClass {
 protected $my_member;
 function __construct($my_constructor_input) {
 $this->my_member =
 $my_constructor_input;
 }
 public function myMemberFunction ($my_input) {
 global $my_global;
 return($my_global *
 $my_input *
 my_function($this->my_member));
 }
}

$my_instance = new MyClass(4);
print(“The answer is: “ .
 $my_instance->myMemberFunction(5));

The answer is: 180 (or 3 * 5 * (3 * 4)). If any of these numerical variables had been undefined when

multiplied, we would have expected the variable to have a default value of 0, making the answer

have a value of 0 as well. This would have happened if we had:

Left out the global declaration in ■■ my_function()

Left out the global declaration in ■■ myMemberFunction()

Referred to ■■ $my_member rather than $this->my_member

Advanced OOP Features
In the previous section, we presented a minimal subset of PHP’s object-oriented constructs that

let you use the most basic OOP techniques. In this section, we look at some of the slightly more

unusual constructs, techniques, and gotchas that can get you into more trouble. (We defer any

discussion of the functions that give meta-information about classes and objects to the section

“Introspection Functions,” later in this chapter.)

Public, Private, and Protected Members
Unless you specify otherwise, properties and methods of a class are public. That is to say, they may

be accessed in three possible situations:

From outside the class in which it is declared■■

From within the class in which it is declared■■

From within another class that implements the class in which it is declared■■

326

 Part III More PHP

If you wish to limit the accessibility of the members of a class, you should use private or

protected.

Private members
By designating a member private, you limit its accessibility to the class in which it is declared. The

private member cannot be referred to from classes that inherit the class in which it is declared and

cannot be accessed from outside the class.

Making a member private is straightforward:

class MyClass {

private $colorOfSky = “blue”;
$nameOfShip = “Java Star”;

public function __construct($incomingValue) {
// Statements here run every time an instance of the class
// is created.
}

public function myPublicFunction ($my_input) {
 return(“I’m visible!”);
}

private function myPrivateFunction ($my_input) {
 global $my_global;
 return($my_global *
 $my_input *
 my_function($this->my_member));
 }

}

When that class is inherited by another class (using extends), myPublicFunction() will be vis-

ible, as will $nameOfShip. The extending class will not have any awareness of or access to myPri-
vateFunction, because it is declared private.

Protected members
A protected property or method is accessible in the class in which it is declared, as well as in classes

that extend that class. Protected members are not available outside of those two kinds of classes,

however.

Here is a different version of MyClass:

class MyClass {

protected $colorOfSky = “blue”;

327

 Introducing Object-Oriented PHP 20

$nameOfShip = “Java Star”;

public function __construct($incomingValue) {
// Statements here run every time an instance
// of the class is created.
}

public function myPublicFunction ($my_input) {
 return(“I’m visible!”);
}

protected function myProtectedFunction ($my_input) {
 global $my_global;
 return($my_global *
 $my_input *
 my_function($this->my_member));
 }

}

If we had another class that extended MyClass, it would be able to see and use $colorOfSky and

myProtectedFunction(), just as if they were public. It would not, however, be possible to call

MyClass::$colorOfSky. You’ll read more about the :: syntax later in this chapter.

Interfaces
In large object-oriented projects, there is some advantage to be realized in having standard names

for methods that do certain work. For example, if many classes in a software application needed to

be able to send e-mail messages, it would be desirable if they all did the job with methods of the

same name and had the same number and type of arguments.

interface Mail {
public function sendMail();
}

Then, if another class implemented that interface, like this:

class Report implements Mail {
// Definition goes here
}

it would be required to have a method called sendMail. It’s an aid to standardization.

Constants
A constant is somewhat like a variable, in that it holds a value but is really more like a function

because a constant is immutable. Once you declare a constant, it does not change. Declaring one is

easy, as is done in this version of MyClass:

328

 Part III More PHP

class MyClass {

const requiredMargin = 1.3;

function __construct($incomingValue) {
// Statements here run every time an instance of the class
// is created.
}

}

In that class, requiredMargin is a constant. It is declared with the keyword const, and under no

circumstances can it be changed to anything other than 1.3. Note that the constant’s name does not

have a leading $, as variable names do.

Abstract Classes
An abstract class is one that cannot be instantiated, only inherited. You declare an abstract class

with the keyword abstract, like this:

abstract class MyAbstractClass {

abstract function myAbstractFunction() {
}

}

Note that function definitions inside an abstract class must also be preceded by the keyword

abstract. It is not legal to have abstract function definitions inside a nonabstract class.

Simulating class functions
Some other OOP languages make a distinction between instance member variables, on the one hand,

and class or static member variables on the other. Instance variables are those that every instance of a

class has a copy of (and may possibly modify individually); class variables are shared by all instances

of the class. Similarly, instance functions depend on having a particular instance to look at or

modify; class (or static) functions are associated with the class but are independent of any instance

of that class.

In PHP, there are no declarations in a class definition that indicate whether a function is intended

for per-instance or per-class use. But PHP does offer a syntax for getting to functions in a class even

when no instance is handy. The :: syntax operates much like the -> syntax does, except that it

joins class names to member functions rather than instances to members. For example, in the fol-

lowing implementation of an extremely primitive calculator, we have some functions that depend on

being called in a particular instance and one function that does not:

class Calculator

329

 Introducing Object-Oriented PHP 20

{
 public $current = 0;
 public function add($num) {
 $this->current += $num;
 }
 public function subtract($num) {
 $this->current -= $num;
 }
 public function getValue() {
 return($current);
 }
 public function pi() {
 return(M_PI); // the PHP constant
 }
}

We are free to treat the pi() function as either a class function or an instance function and access it

using either syntax:

$calc_instance = new Calculator;
$calc_instance->add(2);
$calc_instance->add(5);
print(“Current value is “ .
 $calc_instance->current .”
”);
print(“Value of pi is “ .
 $calc_instance->pi() . “
”);
print(“Value of pi is “ .
 Calculator::pi() . “
”);

This means that we can use the pi() function even when we don’t have an instance of Calculator

at hand. The Calculator class has to be accessible in either case, though, meaning that it has to

have been imported with a require_once statement, or something similar.

Calling parent functions
Asking an instance to call a function will always result in the most specific version of that function

being called, because of the way overriding works. If the function exists in the instance’s class, the

parent’s version of that function will not be executed.

Sometimes it is handy for code in a subclass to explicitly call functions from the parent class, even if

those names have been overridden. It’s also sometimes useful to define subclass functions in terms

of superclass functions, even when the name is available.

Calling parent constructors
In the section “Inheritance” earlier in this chapter, we showed you code (see Listing 20-3) where

both subclass and superclass had constructors, and both constructors set a variable that was defined

330

 Part III More PHP

by the superclass. This might be stylistically dodgy, but more importantly, we would like to avoid

duplicating work across the two constructors, especially if a lot of code is involved.

Instead of writing an entirely new constructor for the subclass, let’s write it by calling the parent’s

constructor explicitly and then doing whatever is necessary in addition for instantiation of the sub-

class. Here’s a simple example:

class Name
{
 public $_firstName;
 public $_lastName;

 public function __construct($first_name, $last_name)
 {
 $this->_firstName = $first_name;
 $this->_lastName = $last_name;
 }
 public function rename() {
 return($this->_lastName .
 “, “ .
 $this->_firstName);
 }
}

class NameSub1 extends Name
{
 public $_middleInitial;
 public function NameSub1($first_name, $middle_initial,
 $last_name) {
 Name::Name($first_name, $last_name);
 $this->_middleInitial = $middle_initial;
 }
 public function rename() {
 return(Name::rename() . “ “ .
 $this->_middleInitial);
 }
}

In this example, we have a parent class (Name), which has a two-argument constructor, and a sub-

class (NameSub1), which has a three-argument constructor. The constructor of NameSub1 functions

by calling its parent constructor explicitly using the :: syntax (passing two of its arguments along)

and then setting an additional field. Similarly, NameSub1 defines its nonconstructor rename() func-

tion in terms of the parent function that it overrides.

It might seem strange to call Name::Name() here, without reference to $this. The good news is

that both $this and any member variables that are local to the parent are available to a parent func-

tion when invoked from a child instance.

331

 Introducing Object-Oriented PHP 20

Automatic calls to parent constructors
In a sense, constructor functions in a subclass override the constructors in superclasses. (We say “in

a sense” because we usually only say that one function overrides another if the two functions have

the same name; a subclass constructor and a superclass constructor always have different names.)

As you saw in the previous section, if you want both the subclass constructor and the superclass

constructor to be called, you must include code in the subclass to call the superclass code explicitly.

Beginning with PHP4, if a subclass lacks a constructor function and a superclass has one, the super-

class’s constructor will be invoked. The most specific constructor that can be found (if any) will be

called — anything else is up to the programmer.

Simulating method overloading
One neat trick offered by some OOP languages (and not offered by PHP) is automatic overloading

of member functions. This means that you can define several different member functions with the

same name but different signatures (number and types of arguments). The language itself takes care

of matching up calls to those functions with the right version of the function, based on the argu-

ments that are given.

PHP does not offer such a capability, but the loose typing of PHP lets you take care of one half of the

overloading equation — you can define a single function of a given name that behaves differently

based on the number and types of arguments it is called with. The result looks like an overloaded

function to the caller (but not to the definer).

Here’s an example of an apparently overloaded constructor function:

class MyClass
{
public $string_var = “default string”;
public $num_var = 42;

 public function __construct($arg1) {
 if (is_string($arg1)) {
 $this->string_var = $arg1;
 }
 elseif (is_int($arg1) ||
 is_double($arg1)) {
 $this->num_var = $arg1;
 }
 }
}

$instance1 = new MyClass(“new string”);
$instance2 = new MyClass(5);

332

 Part III More PHP

The constructor of this class will look to its caller as though it is overloaded, with different behavior

based on the type of its inputs. You can also vary behavior based on the number of arguments by

testing the number of arguments supplied by the caller.

For information on writing functions with variable numbers of arguments, see Chapter 26.

The techniques work the same way with member functions in classes as they do with stand-

alone user-defined functions.

Serialization
Serialization of data means converting it into a string of bytes in such a way that you can produce

the original data again from the string (via a process known, unsurprisingly, as unserialization). After

you have the ability to serialize/unserialize, you can store your serialized string pretty much any-

where (a system file, a database, and so on) and recreate a copy of the data again when needed.

PHP offers two functions, serialize() and unserialize(), which take a value of any type

(except type resource) and encode the value into string form and decode again, respectively. The

PHP3 implementation of object serialization wasn’t very useful because member function definitions

didn’t survive the serialization/unserialization process; beginning with version 4, however, PHP

robustly recreates all important aspects of the instance from the string, as long as the class definition

is available to the code where unserialize() is called.

Here is a quick example, which we’ll extend later in this section:

class ClassToSerialize {
 public $storedStatement = “data”;
 public function __construct($statement) {
 $this->storedStatement = $statement;
 }
 public function display ()
 {
 print($this->storedStatement . “
”);
 }
}

$instance1 =
 new ClassToSerialize(“You’re objectifying me!”);
$serialization = serialize($instance1);
$instance2 = unserialize($serialization);
$instance2->display();

This class has just one member variable and a couple of member functions, but it’s sufficient to dem-

onstrate that both member variables and member functions can survive serialization. We create an

object, convert it to a serialized string, convert it back to a new instance, and the printed result is

the accurate complaint (You’re objectifying me!).

Of course, there is no point in serializing and unserializing an object in the same script.

Serialization is only worthwhile when we expect the serialized string to outlive the script (and the

CROSS-REFCROSS-REF

333

 Introducing Object-Oriented PHP 20

variable) that it currently lives in and be reincarnated in another execution. This may be because we

store the serialization in a file or a database and read it back in again. It can also happen automati-

cally as a result of PHP’s session mechanism — variables that are registered as belonging to a session

will be serialized and unserialized from page to page.

For more on how the session mechanism uses serialization, see Chapter 26.

Sleeping and waking up
PHP provides a hook mechanism so that objects can specify what should happen just before

serialization and just after unserialization. The special member function __sleep() (that’s two

underscores before the word sleep), if defined in an object that is being serialized, will be called

automatically at serialization time. It is also required to return an array of the names of variables

whose values are to be serialized. This offers a way to not bother serializing member variables that

are not expected to survive serialization anyway (such as database resources) or that are expensive

to store and can be easily recreated. The special function __wakeup() (again, two underscores)

is the flip side — it is called at unserialization time (if defined in the class) and is likely to do the

inverse of whatever is done by __sleep() (restore database connections that were dropped by

__sleep() or recreate variables that __sleep() said not to bother with).

You may wonder why these functions are necessary — couldn’t the code that calls serialize()

also just do whatever is necessary to shut down the object? Actually, it’s very much in keeping with

OOP to include such knowledge in the class definition rather than expecting the code using the

objects to know about their special needs. Also the calling code may have no knowledge of the

object’s internals at all (as in the code that serializes all session objects). The author of the class is

uniquely qualified to say what should happen when an instance is sent away or revived.

As an example of how to use these functions, here is the previous serialization example, augmented

with an extra variable, and the __sleep() and __wakeup() functions:

class ClassToSerialize2 {
 public $storedStatement = “data”;
 public $easilyRecreatable = “data again”;
 public function __construct($statement) {
 $this->storedStatement = $statement;
 $this->easilyRecreatable =
 $this->storedStatement . “ Again!”;
 }
 public function __sleep() {
 // Could include DB cleanup code here
 return array(‘storedStatement’);
 }
 public function __wakeup() {
 // Could include DB restoration code here
 $this->easilyRecreatable =
 $this->storedStatement . “ Again!”;
 }

CROSS-REFCROSS-REF

334

 Part III More PHP

 public function display ()
 {
 print($this->easilyRecreatable . “
”);
 }
}

$instance1 =
 new ClassToSerialize2(“You’re objectifying me!”);
$serialization = serialize($instance1);
$instance2 = unserialize($serialization);
$instance2->display();

The variable called $easilyRecreatable is meant to stand in for a piece of data that is (1) expen-

sive to store and (2) implied by the other data in the class anyway. The definition of __sleep()

does no cleanup itself, but it returns an array that contains only one variable name and does not

include easilyRecreatable. At serialization time, only the value of the variable storedState-
ment is included in the string. When the object is recreated, the __wakeup() function assigns a

value into $this->easilyRecreatable, which is then displayed: You’re objectifying me!

Again!

Serialization gotchas
The serialization mechanism is pretty reliable for objects, but there are still a few things that can trip

you up:

The code that calls ■■ unserialize() must also have loaded the definition of the relevant

class. (This is also true of the code that calls serialize() too, of course, but that will

usually be true because the class definition is needed for object creation in the first place.)

Object instances can be created from the serialized string only if it is really the same string ■■

(or a copy thereof). A number of things can happen to the string along the way, if stored

in a database (make sure that slashes aren’t being added or subtracted in the process), or if

passed as url or form arguments. (Make sure that your URL-encoding/decoding is pre-

serving exactly the same string and that the string is not long enough to be truncated by

length limits.)

If you choose to use ■■ __sleep(), make sure that it returns an array of the variables to

be preserved; otherwise no variable values will be preserved. (If you do not define a __
sleep() function for your class, all values will be preserved.)

Introspection Functions
While PHP lacks some features of full OO languages like Java or C++, it is surprisingly good in the

esoteric area of introspection. (It’s the classes and objects that get introspective here, not the pro-

grammer.) Introspection allows the programmer to ask objects about their classes, ask classes about

335

 Introducing Object-Oriented PHP 20

their parents, and find out all the parts of an object without have to crunch the source code to do it.

Introspection also can help you to write some surprisingly flexible code, as you will see.

Function overview
Most of this section will be example-driven, but we begin by looking at the introspection functions

provided by PHP. Table 20-1 summarizes these functions, what they do, and what version of PHP

introduced them. (This table is essentially a reframing of information from the online manual; we

offer it here mainly because it highlights features that we found somewhat confusing the first time

we studied the manual.)

TABLE 20-1

Class/Object Functions
Function Description Operates

on Class
Names

Operates
on
Instances

As of PHP
Version

get_class() Returns the name of the class an
object belongs to.

No Yes 4.0.0

get_parent_
class()

Returns the name of the parent class
of the given instance or class.

Yes (as
of PHP
v.4.0.5)

Yes 4.0.0,
4.0.5

class_
exists()

Returns TRUE if the string argument is
the name of a class, FALSE otherwise.

Yes No 4.0.0

get_
declared_
classes()

Returns an array of strings
representing names of classes defined
in the current script.

N/A N/A 4.0.0

is_subclass_
of()

Returns TRUE if the class of its first
argument (an object instance) is a
subclass of the second argument (a
class name), FALSE otherwise

No Yes 4.0.0

get_class_
vars()

Returns an associative array of var/
value pairs representing the name
of variables in the class and their
default values. Variables without
default values will not be included.

Yes No 4.0.0

get_object_
vars()

Returns an associative array of var/
value pairs representing the name
of variables in the instance and their
default values. Variables without
values will not be included.

No Yes 4.0.0

continued

336

 Part III More PHP

TABLE 20-1 (continued)

Function Description Operates
on Class
Names

Operates
on
Instances

As of PHP
Version

method_
exists()

Returns TRUE if the first argument
(an instance) has a method named by
the second argument (a string) and
FALSE otherwise.

No Yes 4.0.0

get_class_
methods()

Returns an array of strings
representing the methods in the
object or instance

Yes Yes (as of
v4.0.6)

4.0.0,
4.0.6

call_user_
method_
array()

Same as call_user_
method(), except that it expects
its third argument to be an array
containing the arguments to the
method.

No Yes 4.0.5

These functions break down into the following four broad categories:

Getting information about the class hierarchy■■

Finding out about member variables■■

Finding out about member functions■■

Actually calling member functions■■

The first group of functions (get_class() through instanceof()) deal with discovering what

classes exist, asking an object about its class, and discovering class inheritance relationships. Some

of these functions start with an instance of an object, some start with the class name as a string, and

some are happy with either one. (We’ve included columns in the table to try to clarify this.) Note

that after we have the get_class() function, it’s easy to satisfy functions that require a class as

input; for example, if get_parent_class() insists on a class name, and we want to know the par-

ent class of an object instance, we could just wrap it like this:

$parent_class = get_parent_class(get_class($my_instance));

Bear in mind that as of PHP4.3, the constant __CLASS__ exists. It contains the class name.

Going in the other direction (trying to satisfy a function that wants an instance when all we have is a

class) would be more problematic because you don’t want to instantiate a class just to ask questions of it.

The second group of functions (get_class_vars(), get_object_vars()), return an associative

array containing member variables and their values. The keys of these arrays are the names of the

337

 Introducing Object-Oriented PHP 20

variables as strings (without leading $ symbols), and the array values are the values of those vari-

ables in the object or class. In both cases (for reasons unknown to your authors), only member vari-

ables that actually have a value are returned.

The difference between get_class_vars() and get_object_vars() is subtle, but it’s more than

just a question of what type of input they prefer. The get_class_vars() function returns informa-

tion about variables and default values as they exist in the class definition itself, independent of any

instance; get_object_vars() returns information about the current state of a particular instance.

For example, consider this class definition and use:

class Example {
 public $var1 = “initialized”;
 public $var2 = “initialized”;
 public $var3;
 public $var4;
 public function __construct() {
 $this->var3 = “set”;
 $this->var1 = “changed”;
 }
}

$example = new Example();
print_r(get_class_vars(“Example”));
print_r(get_object_vars($example));

For the first call (to get_class_vars()), we should expect to find var1 and var2 both bound to

“initialized” as in the class definition itself. The second call (to get_object_vars()) should

return bindings of var1, var2, and var3 to “changed”, “initialized”, and “set”, respec-

tively. In neither case will either function retrieve var4.

The third group of functions (method_exists(), get_class_methods()) manipulate member

function names as strings. The first allows you to ask an instance if it contains a given function, and

the second recovers all function names from an instance or class. (Notice that we don’t need two

separate functions as we did with get_class_vars() and get_object_vars(); PHP doesn’t

offer you a way to add or delete member functions from instances on the fly.)

Finally, the fourth group lets you apply method names (presumably recovered using functions from

the third group) to instances. But these are probably best explained by example, so let’s dive in.

Example: Class genealogy
Consider the following, somewhat confusing, class hierarchy.

class Color {}
class Control extends UIelement {}
class Widget extends Control { }
class Button extends Widget {}
class Pulldown extends Widget {}

338

 Part III More PHP

class Clicker extends Button {}
class Blue extends Color {}
class Displayer extends UIelement {}
class UIElement {}
class LightBlue extends Blue {}

Now imagine that we’d like to have a better visualization of this tangle, just for purposes of docu-

mentation. For starters, it’s pretty easy to use the get_parent_class() function to figure out the

classes that a given class descends from:

public function print_ancestry($class_name) {
 print(“Class ancestry: “);
 print_ancestry_aux($class_name);
 print(“
”);
}

public function print_ancestry_aux ($class_name) {
 print(“$class_name”);
 if ($parent = get_parent_class($class_name)) {
 print(“ => “);
 print_ancestry_aux($parent);
 }
}
print_ancestry(“Clicker”);

Which gives us the somewhat informative output:

Class ancestry: Clicker => button => widget => control => uielement

(Notice that our retrieved class names have become lowercase. This happens to user-defined classes,

whereas prior to PHP 6, built-in classes should have their capitalization intact.)

Getting a view of the entire class tree is a little bit harder, because PHP doesn’t offer a straight-

forward way to retrieve child classes given a parent class. Our recourse is the get_declared_
classes function, which tells us all the classes that are defined in the current script — we can then

somewhat inefficiently do paternity tests on all known classes to discover the children of a given

class (see Listing 20-6).

LISTING 20-6

Class genealogy

public function same_class_name ($string1, $string2) {
 return ((strtolower($string1)) ==
 (strtolower($string2)));
}

public function get_child_classes ($parent) {

339

 Introducing Object-Oriented PHP 20

 $all_classes = get_declared_classes();
 $children = array();
 foreach ($all_classes as $candidate) {
 if (same_class_name($parent,
 get_parent_class($candidate)) &&
 !same_class_name($parent, $candidate)) {
 array_push($children, $candidate);
 }
 }
 return($children);
}

public function print_class_tree () {
 $all_classes = get_declared_classes();
 print(“<PRE>”);
 print(“CLASS HIERARCHY:\n”);
 foreach ($all_classes as $candidate) {
 if (!get_parent_class($candidate)) {
 print_class_tree_aux($candidate, 0);
 }
 }
 print(“</PRE>”);
}

public function print_class_tree_aux ($parent, $level) {
 for ($x = 0; $x < $level; $x++) {
 print(“ “);
 }
 print(“$parent
”);
 $children = get_child_classes($parent);
 foreach ($children as $child) {
 print_class_tree_aux($child, $level + 1);
 }
}
print_class_tree();

We start off this listing by defining what it means for two class names to be the same. This may be

overkill, but converting every name to lowercase before comparison lets us stop worrying about

whether we’ll be tripped up by case issues. Then we define a general function to retrieve child

classes (inefficiently, but it should make no difference unless your class hierarchy grows to be very,

very large). The print_class_tree() function essentially recovers all orphans or roots (classes

without parents) and prints each one individually as a tree. The auxiliary function handles printing

a rooted tree — first the parent and then indented children. Finally, we wrap the whole thing in a
<PRE></PRE> construct so we can just use spaces for indenting. The result looks like this:

CLASS HIERARCHY:
stdClass

340

 Part III More PHP

__PHP_Incomplete_Class
OverloadedTestClass
Directory
color
 blue
 lightblue
uielement
 control
 widget
 button
 clicker
 pulldown
 displayer

The first few classes printed are unfamiliar and not defined in your code file. These either belong to

the PHP implementation itself or to auxiliary packages that you have compiled — the precise classes

that you see when you execute this code may vary.

Example: matching variables and DB columns
One frequent use for PHP objects in database-driven systems is as a wrapper around the entire data-

base API. The theory is that the wrapper insulates the code from the specific database system, which

will make it trivial to swap in a different RDBMS when the technical needs change. (We’ve never

seen it work out quite this way in practice, but . . . don’t get us started.) Another use that is almost as

common (and that your authors like better) is to have object instances correspond to database result

rows. In particular, the process of reading in a result row looks like instantiating a new object that

has member variables corresponding to the result columns we care about, with extra functionality

in the member functions. As long as the fields and columns match up (and as long as you can afford

object instantiation for every row), this can be a nice abstraction away from the database.

A repetitive task that arises when writing this kind of code is assigning database column values to

member variables, in individual assignment statements. This feels like it should be unnecessary,

especially when the columns and the corresponding variables have exactly the same names. In this

section, we write a hack to automate this process.

For concreteness, let’s start with an actual database table. Following are the MySQL statements nec-

essary to create a simple table and insert one row into it:

mysql> create table book
 (id int not null primary key auto_increment,
 author varchar(255), title varchar(255),
 publisher varchar(255));
mysql> insert into book (author, title, publisher)
 values (“Robert Zubrin”, “The Case For Mars”,
 “Touchstone”);

Because the id column is auto-incremented, it will happen to have the value 1 for this first row.

341

 Introducing Object-Oriented PHP 20

The code in Listing 20-7 assumes a database called oop with the table created as above, and also

that we have a file called dbconnect_vars that sets $host, $user, and $pass appropriately for

our particular MySQL setup. There is also little or no error checking (the code assumes the connec-

tion works, that the row was retrieved successfully, and so on). The main point we want to highlight

is the hack in the middle of the Book constructor.

LISTING 20-7

Matching variables and columns

<?php
include_once(“dbconnect_vars.php”);

class Book
{
public $id;

// variables corresponding to DB columns
public $author = “DBSET”;
public $title = “DBSET”;
public $publisher = “DBSET”;

 public function __construct($db_connection, $id) {
 $this->id = $id;
 $query = “select * from book “ .
 “where id = $id”;
 $result = mysql_query($query, $db_connection);
 $db_row_array =
 mysql_fetch_array($result);
 $class_var_entries =
 get_class_vars(get_class($this));
 while ($entry = each($class_var_entries)) {
 $var_name = $entry[‘key’];
 $var_value = $entry[‘value’];
 if ($var_value == “DBSET”) {
 $this->$var_name =
 $db_row_array[$var_name];
 }
 }
 }

 public function rename () {
 $return_string = “BOOK
”;
 $class_var_entries =
 get_class_vars(get_class($this));
 while ($entry = each($class_var_entries)) {
 $var_name = $entry[‘key’];
 $var_value = $this->$var_name;

342

 Part III More PHP

 $return_string .=
 “$var_name: $var_value
”;
 }
 return($return_string);
 }
}
$connection =
 mysql_connect($host, $user, $pass)
 or die(“Could not connect to DB”);
mysql_select_db(“oop”);
$book = new Book($connection, 1);
$book_string = $book->rename();
?>
<HTML><HEAD></HEAD><BODY>
<?php echo $book_string ?>
</BODY></HTML>

The database query returns all columns from the book table, and the values are indexed in the

result array by the column names. The constructor then uses get_class_vars() to discover all

the variables that have been set in the object, tests them to see if they have been bound to the string

“DBSET”, and then sets those variables to the value of the column of the same name.

The result is the output:

BOOK
Author: Robert Zubrin
Title: The Case For Mars
Publisher: Touchstone

If we add fields to the database table definition, the only change we will need to make to

Listing 20-7 is to add appropriately named variables to the class definition and initialize them to

“DBSET”. (We use this initialization to be clear about which variables should be overwritten, but

also because we cannot retrieve the variables at all unless they have been initialized.)

Example: Generalized test methods
As a final introspection example, suppose that we are working on a large OOP project, with complex

objects that need to maintain a lot of internal state. Testing is extremely important, because bugs

will creep in and waste our time if we don’t catch them early on.

So let’s adopt some testing conventions for this project. As one of them, let’s agree that any class in

our system can (optionally) define a member function called selfTest(). The point of this func-

tion is to test the object instance it is called on to make sure the data in the object is valid and con-

sistent across the instance. The selfTest() function should always return FALSE if everything is

okay and a diagnostic string if something is wrong. The coders of the objects agree that they will

write these tests in such a way that a test can be applied at any time during execution.

343

 Introducing Object-Oriented PHP 20

If we agree on such a framework, we can write a general object tester. The tester simply calls

selfTest() on any object it is pointed at, if such a method has been defined for that object. To

make it easier to apply, we’ll also make the object tester accept arrays of objects, and test each com-

ponent object individually. Such an object tester is in Listing 20-8, along with some sample class

definitions that have selfTest() defined.

LISTING 20-8

ObjectTester

class Namestring {
 public $name;
 public $nameLength;
 public $checksum;

 public function __construct($string_in) {
 $this->name = $string_in;
 $this->nameLength = strlen($string_in);
 $this->checksum =
 $this->computeChecksum($string_in);
 }

 public function setName ($new_string) {
 $this->name = $new_string;
 $this->nameLength = strlen($new_string);
 $this->checksum =
 $this->computeChecksum($new_string);
 }

 public function computeChecksum ($string) {
 // not a good checksum in practice
 $sum = 0;
 for ($x = 0;
 $x < strlen($string);
 $x++) {
 $sum += ord($string[$x]);
 }
 return($sum % 100);
 }

 public function selfTest () {
 // returns FALSE if everything is OK
 if ($this->nameLength !=
 strlen($this->name)) {
 return(“Name $this->name not of “.
 “length $this->nameLength!”);

344

 Part III More PHP

 }
 elseif
 ($this->checksum !=
 $this->computeChecksum($this->name)) {
 return(“Name $this->name fails checksum!”);
 }
 else {
 return(FALSE);
 }
 }
}

class NonTestingObject {
}

class ObjectTester {
 public function ObjectTester() {
 // empty constructor
 }

 public function test ($thing) {
 if (is_object($thing)) {
 if (method_exists($thing, ‘selfTest’)) {
 $this->handleTest(
 call_user_func(‘selfTest’, $thing));
 }
 }
 elseif (is_array($thing)) {
 foreach ($thing as $component) {
 $this->test($component);
 }
 }
 // ignore if not an array or object
 }
 public function handleTest ($result) {
 if ($result) {
 print(“Warning: $result”);
 }
 }
}

The Namestring object in Listing 20-8 has several pieces of data, which must be kept consistent

with each other. Using the constructor to build an instance of Namestring keeps them consistent,

as does changing the name with setName. Namestring also defines selfTest(), which cross-

checks the name, the length of the name, and a primitive checksum.

345

 Introducing Object-Oriented PHP 20

Now let’s see how to use the ObjectTester class with some sample Namestring data:

$object_list = array();
array_push($object_list, new Namestring(“Jordan”));
array_push($object_list, new Namestring(“Rodman”));
array_push($object_list, new NonTestingObject);
array_push($object_list, new Namestring(“Pippen”));

$tester = new ObjectTester($object_list);

print(“Running test..
”);
$tester->test($object_list);

print(“Changing name..
”);
$current_object = &$object_list[0]; // note reference!
$current_object->setName(“Michael”);
print(“Running test..
”);
$tester->test($object_list);

print(“Changing name..
”);
$current_object = &$object_list[1]; // note reference!
$current_object->name = “Jordan”;

print(“Running test..
”);
$tester->test($object_list);

The results of running this code are:

Running test..
Changing name..
Running test..
Changing name..
Running test..
Warning: Name Jordan fails checksum!

This warning resulted because we messed with the object’s data directly the second time, rather

than using the approved method for changing the name.

We’ve used toy self-testing classes here, but the basic approach extends easily to more complex

classes. Among possible extensions is more interesting handling of the warning messages (and pos-

sibly interrupting execution). Another extension would be to use introspection on member variables

themselves, as well as array components, to find contained objects and test those. This would mean

defining the test runner recursively so that a thing passes a selfTest() if (1) its own selfTest()

method (if it exists) finds no problem, and (2) any components (member variables, array slots) also

pass selfTest(). (Watch out for circularities though! If the tester is ever called on objects that

mutually refer to each other, it would have to be rewritten to track the identities of previously seen

objects and would only test each object once.)

346

 Part III More PHP

Extended Example: HTML Forms
All the OOP code you’ve seen so far in this chapter has been fairly short, so in this chapter we pres-

ent an extended piece of code for your enjoyment, shown in Listing 20-9.

The point of this class is to semiautomate the production of HTML forms, which one of your authors

has always found to be a bit of a pain to generate. The top-level class represents a form, while other

classes represent inputs, text areas, and hidden variables (just the ones that your author uses most

frequently). The idea is that you can make a form by adding input fields to an existing object and

display the form upon request. The resulting form will be not be especially pretty (every element

is displayed sequentially down the left-hand side of the page), but it’s good enough for situations

where, say, you want to enter some information into your own database yourself.

LISTING 20-9

form_printer.php

<?php

// ---- The form class itself ---

class HtmlForm {

 // suitable for generating quick & dirtyforms

 public $actionTarget; // path to receiving page
 private $inputForms; // array of HtmlFormInput
 public $hiddenVariables; // associative name/val

 // CONSTRUCTOR
 public function __construct($action_target) {
 $this->actionTarget = $action_target;
 $this->inputForms = array();
 $this->hiddenVariables = array();
 }

 // PUBLIC METHODS
 public function rename () {
 $return_string = “”;
 $return_string .=
 “<FORM METHOD=\“POST\“ “.
 “ACTION=\“$this->actionTarget\“>\n”;
 $return_string .= $this->inputFormsString();
 $return_string .= $this->hiddenVariablesString();
 $return_string .= “
\n”;
 $return_string .= $this->submitButtonString();
 $return_string .= “</FORM>”;

347

 Introducing Object-Oriented PHP 20

 return($return_string);
 }

 // adding elements to form

 public function addInputForm ($input_form) {
 if (!isSet($input_form) ||
 !is_object($input_form) ||
 !is_subclass_of($input_form,
 ‘htmlforminput’)){
 die(“Argument to HtmlForm::addInputForm “.
 “must be instance of HtmlFormInput.”.
 “ Given argument is of class “ .
 get_class($input_form));
 }
 else {
 array_push($this->inputForms, $input_form);
 }
 }

 public function addInputButton ($input_button) {
 if (!isSet($input_button) ||
 !isObject($input_button) ||
 !is_a($input_button, ‘HtmlInputButton’)){
 die(“Argument to HtmlForm::addInputButton “.
 “must be instance of HtmlInputButton”);
 }
 else {
 array_push($this->inputButtons, $input_button);
 }
 }

 public function addHiddenVariable ($name, $value) {
 if (!isSet($value)) {
 die(“HtmlForm::addHiddenVariable requires “.
 “two arguments (name and value)“);
 }
 else {
 $this->hiddenVariables[$name] = $value;
 }
 }

 public function inputFormsString () {
 $return_string = “”;
 $form_array = $this->inputForms;
 foreach ($form_array as $input_form) {
 $return_string .=
 “$input_form->heading”;
 if ($this->headingElementBreak()) {

348

 Part III More PHP

 $return_string .= “
”;
 }
 $return_string .= $input_form->rename();
 $return_string .= “
\n”;
 }
 return($return_string);
 }

 public function hiddenVariablesString () {
 $return_string = “”;
 while ($hidden_var =
 each($this->hiddenVariables)) {
 $var_name = $hidden_var[‘key’];
 $var_value = $hidden_var[‘value’];
 $return_string .=
 “<INPUT TYPE=HIDDEN “ .
 “NAME=$var_name “.
 “VALUE=$var_value >”;
 $return_string .= “\n”;
 }
 return($return_string);
 }

 public function headingElementBreak () {
 // override to disable breaks after headings,
 // or to do more complicate layout
 return(TRUE);
 }

 public function submitButtonString () {
 $return_string = “<INPUT TYPE=Submit “ .
 “ VALUE=Submit >\n”;
 return($return_string);
 }
}

// ---- Classes for parts of a form ----

abstract class HtmlFormInput {
 public $name; // The variable name for form submission
 public $heading; // The visible label on form
 function __construct() {
 die(“Class HtmlFormInput intended only “ .
 “to be subclassed”);
 }
 function rename () {
 die(“Subclass of HtmlFormInput missing “ .
 “definition of rename()“);
 }
}

349

 Introducing Object-Oriented PHP 20

class HtmlFormSelect extends HtmlFormInput
{
 public $_valueArray = array();
 public $_selectedValue;

 public function __construct ($name, $heading,
 $value_array,
 $selected_value=NULL) {
 if (!isSet($value_array)) {
 die(“HtmlFormSelect needs a minimum of two “ .
 “arguments: a name, and value array”);
 }
 elseif (!is_array($value_array)) {
 die(“Third argument to HtmlFormSelect()“ .
 “should be array where keys are values “.
 “submitted, and values are display values”);
 }
 else {
 // actual initialization
 $this->name = $name;
 $this->heading = $heading;
 $this->_valueArray = $value_array;
 $this->_selected_value = $selected_value;
 }
 }

 public function rename () {
 $return_string = “”;
 $return_string .=
 “<SELECT NAME=\“$this->name\“>”;
 while ($var_entry =
 each($this->_valueArray)) {
 $submit_value = $var_entry[‘key’];
 $display_value = $var_entry[‘value’];
 if ($submit_value == $this->_selected_value) {
 $return_string .=
 “<OPTION VALUE=${submit_value} SELECTED >”;
 }
 else {
 $return_string .= “<OPTION VALUE=${submit_value}>”;
 }
 $return_string .= $display_value;
 }
 $return_string .=
 “</SELECT>”;
 return($return_string);
 }
}

class HtmlFormText extends HtmlFormInput

350

 Part III More PHP

{
 public $initial_value;

 public function __construct ($name,
 $heading,
 $initial_value=”“)
 {
 // Initialization of member vars
 if (!isSet($name) ||
 !isSet($heading)) {
 die(“HtmlFormText constructor needs “ .
 “at least two arguments (name, heading)“);
 }
 $this->name = $name; // name defined in parent
 $this->heading = $heading; // defined in parent
 $this->initial_value = $initial_value;
 }

 public function rename () {
 $return_string = “”;
 $return_string .= “<INPUT TYPE=TEXT “;
 $return_string .= “NAME=\“$this->name\“ “;
 $return_string .=
 “VALUE=\“$this->initial_value\“ “;
 $return_string .= “ >”;
 return($return_string);
 }
}

class HtmlFormTextArea extends HtmlFormInput {
 public $initial_value;
 public $rows;
 public $cols;
 public $wrapType;

 public function __construct ($name,
 $heading,
 // optional args:
 $initial_value=”“,
 $rows=1, $cols=60,
 $wrapType=”VIRTUAL”)
 {
 // Initialization of member vars
 if (!isSet($name)) {
 die(“HtmlFormTextArea constructor needs “ .
 “at least two arguments (name, heading)“);
 }
 $this->name = $name; // name defined in parent
 $this->heading = $heading; // name defined in parent
 $this->initial_value = $initial_value;

351

 Introducing Object-Oriented PHP 20

 $this->rows = $rows;
 $this->cols = $cols;
 $this->wrapType = $wrapType;
 }

 public function rename ()
 {
 $return_string = “”;
 $return_string .= “<TEXTAREA “;
 $return_string .= “NAME=\“$this->name\“ “;
 $return_string .= “ROWS=$this->rows “;
 $return_string .= “COLS=$this->cols “;
 $return_string .= “WRAP=$this->wrapType “;
 $return_string .= $this->additionalAttributes();
 $return_string .= “>”;
 $return_string .= $this->initial_value;
 $return_string .= “</TEXTAREA>”;
 return($return_string);
 }

 public function additionalAttributes () {
 // OVERRIDE THIS to return a string with
 // TextArea attributes other than
 // NAME, ROWS, COLS, and WRAP
 return(“”);
 }
}
?>

The basic design for all these objects includes a constructor function with default arguments and

a rename() method that returns HTML for the form or piece thereof. Forms store pieces of input

(which might conceivably be reordered or laid out by a more sophisticated version), and recursively

call rename() on these pieces. The HTML form elements that are supported are: TEXTAREA, TEXT,

and SELECT.

Here is an example of calling this code to generate a simple form page:

<HTML><HEAD></HEAD><BODY>
<?php include(“form_printer.php”);
$my_form = new HtmlForm($PHP_SELF);
$my_form->addInputForm(
 new HtmlFormText(“firstname”,
 “First Name”));
$my_form->addInputForm(
 new HtmlFormText(“lastname”,
 “Last Name”));
$my_form->addInputForm(
 new HtmlFormSelect(
 “age”,
 “Age”,

352

 Part III More PHP

 array(0 => “0 - 9”,
 1 => “10 - 19”,
 2 => “20 - 29”,
 3 => “Senior citizen”),
 2));
$my_form->addInputForm(
 new HtmlFormTextArea(
 “feedback”,
 “What’s on your mind?”,
 “[Please fill in your own personal rant]“,
 5));
print($my_form->rename());
?>
</BODY>
</HTML>

Much of the form-producing code is straightforward and is concerned with churning out various

kinds of HTML syntax. There are two interesting things to notice from the point of view of OOP-in-

PHP, however.

The first is that the HtmlFormInput class is designated abstract. That is, it exists not to be instan-

tiated but only to be inherited from. The second point of interest is that the HtmlForm class has an

array that is intended to hold HtmlFormInput objects. Of course, because PHP is loosely typed, we

cannot enforce that in any way at compile time, although the manufacturer-approved way to insert

new forms (addInputForm()) does some type-checking on insertion. If users of this class rely only

on this method, we can be assured that everything that ends up in that array will be an instance of

HtmlFormInput (or subclass thereof) and so should be a well-behaved form element when display

time comes around. The private designation guarantees that the array cannot be manipulated

from outside the class at runtime.

Gotchas and Troubleshooting
In the spirit of Chapter 10, we offer in the following sections the top-two most likely symptoms of

problematic OOP code, along with the most likely cause.

Symptom: Member variable has no value in
member function
This could have many causes, of course, but the most common is simply a confusion about the right

way to refer to member variables. The syntax is:

$this->member_name

353

 Introducing Object-Oriented PHP 20

If, instead, your function simply refers to $member_name, that will usually be an unbound variable

and, at any rate, will never succeed in referring to the member variable. Similarly, if your function

refers to $this->$member_name, you are asking for the field named by the string in the variable

$member_name (which is probably unbound).

Symptom: Parse error, expecting T_VARIABLE . . .
There are of course many ways to munge a class definition so that PHP will complain when it tries to

parse it. One of the most common errors again has to do with placement of those $ symbols. A class

declaration like the following:

class MyClass {
 public my_var; // WRONG
}

inevitably gives you a parse error of some sort because the syntax requires a $ before my_var.

OOP Style in PHP
The topic of OOP programming style is a huge one (because it includes OOP design!) and is well

beyond the scope of this book. In the spirit of Chapter 32, however, we offer in the following sec-

tions some brief notes on writing readable, maintainable PHP OOP code.

Naming conventions
In this section, we simply pass along the parts of the PEAR coding style that pertain to objects.

For more information on the PEAR project and the PEAR coding style, see Appendix E or

the PEAR web site (at http://pear.php.net).

PEAR recommends that class names begin with an uppercase letter and (if in a PEAR-approved

directory hierarchy of packages) have that inclusion path in the class name, separated by under-

scores. So your class that counts words, and that belongs to a PEAR package called TextUtils,

might be called TextUtils_WordCounter. If building large OOP packages, you may want to emu-

late this underscore convention with your own package names; otherwise, you can simply give your

classes names like WordCounter.

Member variables and member function names should have their first real letter be lowercase and

have word boundaries be delineated by capitalization. In addition, names that are intended to be

private to the class (that is, they are used only within the class, and not by outside code) should

start with an underscore. So the variable in your WordCounter class that holds the count of words

might be called wordCount (if intended to be messed with from the outside) or _wordCount (if it is

intended to be private to the class).

CROSS-REFCROSS-REF

354

 Part III More PHP

Accessor functions
Another style of documenting your intent about use of internal variables is to have your variables

marked as private, in general, and provide “getter” and “setter” functions to outside callers. For

example, we might define a class like this:

class Customer
{
 private var _name;
 private var _creditCardNumber;
 private var _rating;

 function getName ()
 {
 return($this->_name);
 }

 function getRating ()
 {
 return($this->_rating);
 }

 function setRating($rating)
 {
 $this->_rating = $rating;
 }
 [... more functions]
}

This class definition has three private variables: one (_creditCardNumber) that should neither be

set nor retrieved from outside code, another (_name) that outside code should be able to retrieve but

not set, and a third (_rating) that outside code should feel free to both get and set.

Although PHP class syntax lets you interleave variables with function definitions, it’s a good idea, in

general, to organize your code so that similar items with similar usage intent are located together in

the class definition. For example, you might develop the habit of laying out class functions like this:

class myClass
{
// Public variables:
..
// Private variables
..
// Constructor

// Public functions
..
// Private functions
..
}

355

 Introducing Object-Oriented PHP 20

Designing for inheritance
The question of exactly how to design a class hierarchy is, as we’ve said, a vast area of study unto

itself, and we’re not about to try to contribute to it here. Just as a stylistic matter, though, it’s worth

thinking about whether you intend your class to be inherited from, and then try to indicate your

decision, either with comments or in the structure of the definition.

For example, you may intend that your class should never breed, in which case you might just

indicate that in comments, and then stop worrying about inheritance issues. (There is currently

no way in PHP to enforce that a class cannot be inherited from.) At the other end of the spectrum,

you might have all or part of your class intended only for inheritance. You can indicate this in

comments, or you can use the trick we used in the definition of HtmlFormInput in Listing 20-9:

Provide methods that die informatively when called directly in the base class. Finally, of course, you

may have some methods that can be called directly in the base class but are especially intended for

overriding. You may want to group these “hook” methods together in a clearly marked section of

your class definition, so that the later writer of a derived class can quickly figure out what options

are available for specializing the class’s behavior. (Remember that the clueless coder of the future

that you are helping may well be yourself.)

Summary
PHP provides the basics to support object-oriented programming. Among other things, the OOP

syntax in PHP allows for programmer-defined classes with member variables and member data and

offers single inheritance, constructor functions, object serialization, and functions for introspection.

Nothing in PHP requires that you write in an object-oriented style, but if you prefer that style you

can write almost all your code that way. PHP was not originally intended to be an object-oriented

language, and developers with OOP experience will miss some aspects of more mature OOP lan-

guages. On the other hand, the OOP extension is usable, fairly mature, pretty stable, and widely

used. It provides an extra layer of organization that can be helpful when maintaining complex code

and offers a nice way to package code for distribution and reuse.

357

I
n Chapter 8 we introduced you to arrays, their uses, and some handy

functions for working with them. In some subsequent chapters, we saw

how PHP returns many of its results as arrays, particular when work-

ing with database function sets. This chapter will look at some of the more

advanced functions for working with PHP arrays.

Transformations of Arrays
PHP offers a host of functions for manipulating your data once you have it

nicely stored in an array. What the functions in this section have in com-

mon is that they take your array, do something with it, and return the

results in another array. (We will defer the array-sorting functions until a

later section.)

Not covered in this chapter are explode() and implode(),

which convert strings into arrays and vice versa. We cover these

very handy functions in Chapter 22.

In Chapter 8, we incrementally developed a function to print out the

entire contents of an array, and in this section we will use the last of these

CROSS-REFCROSS-REF

Advanced Array Functions

IN THIS CHAPTER

Transformations of arrays

Stacks and queues

Translating between variables

and arrays

Sorting

358

 Part III More PHP

(print_keys_and_values_each()) to show the arrays that are being returned in examples. We’ll

list this function again here, in a more generic form:

function print_keys_and_values_each($array_to_test)
{ // reliably prints everything in array
 reset($array_to_test);
 while ($array_cell = each($array_to_test))
 {
 $current_value = $array_cell[‘value’];
 $current_key = $array_cell[‘key’];
 print(“Key: $current_key; Value: $current_value
”);
 }
}

Retrieving keys and values
The array_keys() function returns the keys of its input array in the form of a new array where the

keys are the stored values. The keys of the new array are the usual automatically incremented inte-

gers, starting from 0. The array_values() function does exactly the same thing, except the stored

values are the values from the original array. If we start with an array like the following:

$pizza_requests = array(‘Alice’ => ‘pepperoni’,
 ‘Bob’ => ‘mushrooms’,
 ‘Carl’ => ‘sausage’,
 ‘Dennis’ => ‘mushrooms’);

and then we print the arrays resulting from calls to the these two functions:

print(“Array keys:
”);
print_keys_and_values_each(array_keys($pizza_requests));
print(“Array values:
”);
print_keys_and_values_each(array_values($pizza_requests));

we get output like this:

Array keys:
Key: 0; Value: Alice
Key: 1; Value: Bob
Key: 2; Value: Carl
Key: 3; Value: Dennis
Array values:
Key: 0; Value: pepperoni
Key: 1; Value: mushrooms
Key: 2; Value: sausage
Key: 3; Value: mushrooms

The second of these (array_values()) may seem uninteresting because we have essentially taken

our old array and produced a new one with the keys renamed to successive numbers.

359

 Advanced Array Functions 21

We can do something slightly more useful (and more helpful for ordering) with the function array_
count_values(). This takes an array and returns a new array, where the old values are now the

new keys and the new values are the number of times each old value occurs in the original array.

print_keys_and_values_each(
 array_count_values($pizza_requests));

gives us:

Key: pepperoni; Value: 1
Key: mushrooms; Value: 2
Key: sausage; Value: 1

Flipping, reversing, and shuffling
A function that is even more odd is array_flip(), which changes the keys of an array into the val-

ues, and vice versa. For example:

print_keys_and_values_each(array_flip($pizza_requests));

gives us:

Key: pepperoni; Value: Alice
Key: mushrooms; Value: Dennis // what happened to Bob?
Key: sausage; Value Carl

Notice that, although array keys are guaranteed to be unique, array values are not — because of this,

any duplicate values in the original array become the same key in the new array. Only one of the

original keys will survive to become the corresponding new value.

Reversing an array is more simple: array_reverse() returns a new array with the key/value pairs

in reverse order. So, with the usual printing test:

print_keys_and_values_each(array_reverse($pizza_requests));

we get the result:

Key: Dennis; Value: mushrooms
Key: Carl; Value: sausage
Key: Bob; Value: mushrooms
Key: Alice; Value: pepperoni

In this case, although the internal order has been reversed, all the key/value pairs end up being

the same. However, this function (like several other PHP array functions) treats integer keys some-

what special. It assumes that the ordering of integer keys on those key/value pairs should also

be reversed for the later use of code that pays attention to the ordering of keys, rather than using

360

 Part III More PHP

the internal linked-list ordering. So, array_reverse() swaps integer keys to make the new key

ordering match the internal list. Dennis, in other words, is now actually at position 0.

If you need some extra randomness in your life, the shuffle() function can give it to you —

shuffle() takes an array argument and pseudo-randomizes the order of the elements in the array.

It uses rand(), a function that generates successive pseudo-random numbers. Before you use

shuffle(), you need to have seeded the random-number generator with a call to srand(). (See

the discussion of random-number generation in Chapter 9.) A reasonable calling sequence looks

like this:

srand((double)microtime() * 1000000); // for random # gen
shuffle($pizza_requests);
print_keys_and_values_each(array_flip($pizza_requests));

which might give us output like:

Key: Carl; Value: sausage
Key: Bob; Value: mushrooms
Key: Dennis; Value: mushrooms
Key: Alice; Value: pepperoni

Unlike many of the array functions in this chapter, shuffle() is destructive, meaning

that it operates directly on its array argument and changes it, rather than returning a

newly created array. (Functions that return a new thing without disturbing their arguments might be

called constructive, or just nondestructive.) Among other things, this means that the correct way to call

the shuffle function is not:

$my_new_array = shuffle($my_old_array); //WRONG!

especially because the shuffle() function does not return a value. Instead, the right call is:

shuffle($my_array); // change the array itself

Merging, padding, slicing, and splicing
If we want to combine two arrays for a more complete list, the function to use is array_merge().

This function takes two or more arrays as arguments and returns a renumbered new array that is the

second array tacked onto the end of the first. If we create a new array containing some additional

pizza requests like this:

$more_pizza_requests = array(‘Ted’ => ‘anchovies’,
 ‘MrWilson’ => ‘pineapple’,
 ‘Dagwood’ => ‘ham’);

then we can use array merge(); as:

$all_requests = array_merge($pizza_requests, $more_requests);

CAUTION CAUTION

361

 Advanced Array Functions 21

and then use our handy array inspecting function:

print_keys_and_values_each($all_requests);

We should see:

Key: Alice; Value: pepperoni
Key: Bob; Value: mushrooms
Key: Carl; Value: sausage
Key: Dennis; Value: mushrooms
Key: Ted; Value: anchovies
Key: MrWilson; Value: pineapple
Key: Dagwood; Value: ham

The array_pad() function is used to create some leading or following key/value pairs increas-

ing the size of an array. It takes an input array as its first argument, then a number of elements to

increase the array to, and then a value to assign to the added elements. A positive integer in the sec-

ond argument will pad the end of the array; a negative integer will pad the beginning. If the second

argument is smaller than the size of the array, no padding is performed.

$requests = array_pad($pizza_requests, 10, ‘mushrooms’)
//do we have any mushroom fans in the audience tonight?

With our function, we’d get:

Key: Alice; Value: pepperoni
Key: Bob; Value: mushrooms
Key: Carl; Value: sausage
Key: Dennis; Value: mushrooms
Key: 0; Value: mushrooms
Key: 1; Value: mushrooms
Key: 2; Value: mushrooms
Key: 3; Value: mushrooms
Key: 4; Value: mushrooms
Key: 5; Value: mushrooms

If we make the second argument negative, the new elements appear at the beginning of the array.

Note that the automatically assigned keys start at 0, even though they are in the fifth position.

Somewhat more complicated are the array_slice() and array_splice() functions. The first of

these returns a subset of an input array by accepting an offset and a length as its second and third

arguments, respectively:

$subset = array_slice($pizza_requests, 1, 2);
// returns mushrooms and sausage

362

 Part III More PHP

The array_splice() function is similar, but it accepts a fourth argument, which can be an array

of any length, to splice into the input array, again returning an all new array:

$super_set = array_splice($pizza_requests, 2, 0,
$more_requests);

which will return an array like:

Key: Alice; Value: pepperoni
Key: Bob; Value: mushrooms
Key: Ted; Value: anchovies
Key: MrWilson; Value: pineapple
Key: Dagwood; Value: ham
Key: Carl; Value: sausage
Key: Dennis; Value: mushrooms

These array-manipulating functions are summarized in Table 21-1.

TABLE 21-1

Array Transformation Functions
Function Behavior

array_
keys()

Takes a single array argument and returns a new array where the new values are the
keys of the input array, and the new keys are the integers incremented from zero.

array_
values()

Takes a single array argument and returns a new array where the new values are the
original values of the input array, and the new keys are the integers incremented from zero.

array_
count_
values()

Takes a single array argument and returns a new array where the new keys are the old
array’s values, and the new values are a count of how many times that original value
occurred in the input array.

array_
flip()

Takes a single array argument and changes that array so that the keys are now the values
and vice versa.

array_
reverse()

Takes a single array argument and changes the internal ordering of the key/value pairs to
reverse order. Numerical keys will also be renumbered.

shuffle() Takes a single array argument and randomizes the internal ordering of key/value pairs.
Also renumbers integer keys to match the new ordering. This function itself uses the
random-number generator rand(), so srand() must be called to seed the generator
before the call to shuffle().

array_
merge()

Takes two array arguments, merges them, and returns the new array, which has (in
order) the first array’s elements and then the second array’s elements. (Note: This is most
useful for arrays that are being used for simple linked lists rather than for their associative
keys, because keys that appear in both arrays will have one of the values overwritten.
Also, numerical keys will be renumbered from 0 to reflect the new ordering.)

363

 Advanced Array Functions 21

Function Behavior

array_pad() Takes three arguments: an input array, a pad size, and a value to pad with. Returns a
new array that is “padded” by the following rules: If the pad size is greater than the
length of the input array, the array is lengthened with the pad value to the pad size, as
though by successive assignments like $my_array[] = $pad_value. A negative
pad size will act the same way with the absolute value of that pad size, except that
the padding will occur at the beginning of the array rather than the end. If the array is
already longer than the (absolute value of) the pad size, the function has no effect.

array_
slice()

Takes three arguments: an input array, an integer offset, and an (optional) integer length.
Returns a new array that is a “slice” of the old one — a subsequence of its list of key/
value pairs. The starting and stopping points of the slice are determined by the offset
and length. A positive offset means that the starting point is that number of elements
after the beginning; a negative offset means that it is that many elements before the end.
The optional length argument specifies how long the resulting slice is (if positive) or how
many elements before the end it should stop (if negative). If the length argument is not
present, the slice continues to the end of the array.

array_
splice()

Removes a chunk (or a slice) of an array and replaces it with the contents of another
array. Takes four arguments: an input array, an offset, an optional integer length, and an
optional replacement array. Returns a new array containing the slice that was removed
from the input array.

The rules for using the offset and length arguments to determine the slice that is
removed are the same as in the previous array_slice() function.

If no replacement array is supplied, this function simply (destructively) removes a slice
of the input array and returns it. If there is a replacement array, the elements of that array
are inserted in place of the removed slice.

Stacks and Queues
Stacks and queues are abstract data structures, frequently used in computer science, that enforce

a certain kind of access discipline on the objects they contain, without necessarily committing to

what those objects are. PHP arrays are well suited to imitating other kinds of data structures, and

the loose typing of PHP array elements makes it easy for them to imitate stacks and queues. PHP

provides some array functions specifically for this purpose — if you use them exclusively, you can

forget that arrays are involved at all.

A stack is a container that stores values and supports last-in–first-out (LIFO) behavior. This means

that the stack maintains an order on the values you store, and the only way you can get a value back

is by retrieving (and removing) the most recently stored value. The usual analogy is a stack of caf-

eteria trays in one of those dispensers that keeps the top tray at a constant level. You can push new

trays down on top of the old ones, and you can take trays off the top, but you can’t grab an older tray

without taking the newer ones first. The act of adding into the stack is called pushing a value onto

364

 Part III More PHP

the stack, whereas the act of taking off the top is called popping the stack. Another analogy is the way

some web browsers store the pages you have visited for use by the Back button; visiting a new page

pushes a new URL onto that stack, and using the Back button pops the stack.

A queue is similar to a stack, but its behavior is first in, first out (FIFO). The usual analogy here is

what the British call a queue and what Americans call a line, where people line up in order to wait for

something. The rule is that whoever has been in the queue the longest is the next to be served.

The stack functions are array_push() and array_pop(). The array_push() function takes an

initial array argument and then any number of elements to push onto the stack. The elements will

be inserted at the end of the array, in order from left to right. The array_pop() function takes such

an array and removes the element at the end, returning it. Take the following fragment:

$my_stack = array(); // needed--array_push() will not create
array_push($my_stack, “the first”, “the middle”);
array_push($my_stack, “the last”);
while ($popped = array_pop($my_stack))
 print(“Popped the stack and got: $popped
”);

This will produce the browser output:

Popped the stack and got: the last
Popped the stack and got: the middle
Popped the stack and got: the first

PHP also offers functions that behave exactly the same way as array_push() and array_pop(),

except that they work at the other end, adding to and removing from the beginning of the array. The

array_unshift() function is analogous to array_push(), and array_shift() is like array_
pop(). If you choose one function from column A and one from column B, you can get the behavior

of a queue. For example, we can rewrite our previous example to push into the beginning of the

array (using array_unshift()) and pop from the end (using array_pop(), as before):

$my_queue = array();// needed--array_unshift() will not create
array_unshift($my_queue, “the first”);
array_unshift($my_queue,”the middle”);
array_unshift($my_queue, “the last”);
while ($popped = array_pop($my_queue))
 print(“Popped the queue and got: $popped
”);

It produces the output:

Popped the queue and got: the first
Popped the queue and got: the middle
Popped the queue and got: the last

365

 Advanced Array Functions 21

The array_unshift() and array_shift() functions are somewhat different from

array_push() and array_pop() in that the former do some renumbering of the array

indices if the indices are integers. The idea is that some people may be relying on the numerical indi-

ces to order the array contents, so using array_unshift() to insert a new element at the beginning

should assign an index of 0 to the new element, and renumber those above. Similarly, popping an ele-

ment from the beginning with array_shift() causes integral indices of other elements to be reduced.

(This is not an issue with array_push and array_pop, because changes are at the end, and no renum-

bering is needed.) If you are using string indices exclusively, this renumbering has no effect. This is a

general pattern with PHP array functions: Some of them treat integer indices like any other associative

indexes, whereas others assume that integers imply order, and redo them if the order has changed.

The stack and queue functions are summarized in Table 21-2.

TABLE 21-2

Stack and Queue Functions
Function Arguments Side Effect Returns

array_
push()

An initial array
argument, then any
number of values to be
pushed onto the stack.

Modifies the array by
adding the elements in
order to the end of the
array.

Returns the number of
elements in the array after
the push.

array_pop() A single array argument. Removes the element at
the end of the array.

Returns the last (removed)
value, or a false value if the
array is empty.

array_
unshift()

An initial array
argument, then any
number of values to be
pushed onto the front of
the array.

Modifies the array by
adding the successive
elements to the
beginning. (The last
argument will be at the
beginning of the array.)

Returns the number of
elements in the array after
the new elements are
added.

array_
shift()

A single array argument. Removes the element
at the beginning of the
array.

Returns the first (removed)
value or a false value if the
array is empty.

Translating between Variables and Arrays
PHP offers a couple of unusual functions for mapping between the name/value pairs of regular vari-

able bindings and the key/value pairs of an array. The compact() function translates from variable

bindings to an array, and the extract() function goes in the opposite direction. These are summa-

rized briefly in Table 21-3.

CAUTION CAUTION

366

 Part III More PHP

TABLE 21-3

Array/Variable-Binding Functions
Function Behavior

compact() Takes a specified set of strings, looks up bound variables (if any) in the current
environment that are named by those strings, and returns an array where the keys are
the variable names, and the values are the corresponding values of those variables.

This function takes any number of arguments, each of which is either a string or an
array that contains strings at some level of index depth. The entire set of strings that are
included in the argument(s) is used as the candidate set of variable names. Strings that
do not correspond to bound variables are ignored.

extract() Takes an array (plus two optional arguments explained in the next paragraph) and
imports the key/value pairs into the current variable-binding context. The array keys
become the variable names, and the corresponding array values become the values
of the variables. Any keys that do not correspond to a legal variable name will not
produce an assignment.

The optional arguments are an integer (intended to receive one of a small set of
constants) and a prefix string. The point of these arguments is to specify what should
happen in the case of a collision between the name of an existing variable and one
that would be created from an array key.

The intended possible constants for the optional integer arguments include (1) EXTR_
OVERWRITE, (2) EXTR_SKIP, (3) EXTR_PREFIX_SAME, and (4) EXTR_PREFIX_
ALL. The corresponding behaviors are (1) go ahead and overwrite existing variables,
(2) skip any new assignments that would require overwriting, (3) use the optional
prefix string to distinguish the new variable from the old one, or (4) prefix all the
new variables with the string. For example, extract(array(‘my_var’ => 4),
EXTR_PREFIX_SAME, ‘diff_‘); would cause $my_var to be 4 if $my_var
were not already bound; otherwise, it would assign the value 4 to $diff_my_var.
Other constants exist, though are less commonly used. See http://php.net/
extract for more information.

Sorting
Finally, PHP offers a host of functions for sorting arrays. As you saw earlier, a tension sometimes

arises between respecting the key/value associations in an array and treating numerical keys as

ordering info that should be changed when the order changes. Luckily, PHP offers variants of the

sorting functions for each of these behaviors and also allows sorting in ascending or descending

order and by user-supplied ordering functions. The function names are terse, but each letter (other

than the sort part) has its meaning. The decoder ring is something like:

An initial ■■ a means that the function sorts by value but maintains the association between

key/value pairs the way it was.

367

 Advanced Array Functions 21

An initial ■■ k means that it sorts by key but maintains the key/value associations.

A lack of that initial ■■ a or k means that it sorts by value but doesn’t maintain the key/value

association. In particular, numerical keys will be renumbered to reflect the new ordering.

An ■■ r before the sort means that the sorting order will be reversed.

An initial ■■ u means that a second argument is expected: the name of a user-defined function

that specifies the ordering of any two elements that are being sorted. (See the description

in Table 21-4.)

TABLE 21-4

Array Sorting Functions
Function Behavior

asort() Takes a single array argument. Sorts the key/value pairs by value but keeps the key/value
mapping the same. Good for associative arrays.

arsort() Same as asort(), but sorts in descending order.

ksort() Takes a single array argument. Sorts the key/value pairs by key but maintain the key/value
associations the same.

krsort() Same as ksort(), but sorts in descending order.

sort() Takes a single array argument. Sorts the key/value pairs of an array by their values. Keys
may be renumbered to reflect the new ordering of the values.

rsort() Same as sort(), but sorts in descending order.

uasort() Sorts key/value pairs by value using a comparison function. Similar to asort(), except
the actual ordering of the values is determined by the second argument, which is the
name of a user-defined ordering function. That function should return a negative number
if its first argument is before the second (according to the comparison function), a positive
number if the first argument comes after the second, and zero if the elements are the
same.

uksort() Sorts key/value pairs by key, using a comparison function. Similar to uasort(), except
that the ordering is by key, rather than by value.

usort() Sorts an array by value using a supplied comparison function. Similar to uasort(),
except that (as in sort()), the key/value associations are not maintained.

Printing Functions for Visualizing Arrays
Before we leave this subject entirely, we should mention a couple of printing functions that are very

useful for visualizing and debugging arrays, especially multidimensional arrays.

368

 Part III More PHP

The first function is print_r(), which is short for print recursive. This takes an argument of any

type and prints it out, which includes printing all its parts recursively. For a simple value (a number

or string), this means simply that the value is printed; for compound types like arrays and objects

it means that all elements (and all parts of those elements) are printed. The layout that makes the

compound structure clear involves spaces, so it’s best to wrap its output in an HTML <pre></pre>

construct so that the spaces are printed literally.

For more detail on the var_dump function and other ways to visualize data structures,

see Chapter 31 on debugging.

The var_dump() function is similar, except that it prints additional information about the size

and type of the values it discovers. An example is worth a thousand words here, so we will create a

simple multidimensional array and print it using both functions:

<?php

$my_array = array(“key1” => “value1”,
 “key2” => array(“subkey1” => “value2”));

print(“The result of print_r:
<pre>”);
print_r($my_array);
print(“</pre>
”);
print(“The result of var_dump:
<pre>”);
var_dump($my_array);
print(“</pre>
”);
?>

The resulting output from this sample looks like this:

The result of print_r:
Array
(
 [key1] => value1
 [key2] => Array
 (
 [subkey1] => value2
)

)

The result of var_dump:
array(2) {
 [“key1”]=>
 string(6) “value1”
 [“key2”]=>
 array(1) {
 [“subkey1”]=>
 string(6) “value2”
 }
}
?>

CROSS-REFCROSS-REF

369

 Advanced Array Functions 21

Summary
The transformation functions are designed to do interesting things to your arrays. With the excep-

tion of shuffle(), these functions return their results as a newly created array. To treat an array as

a stack is to give it a last-in–first-out property. You can treat an array as a stack by using the array_
push() and array_pop() functions in tandem. Alternatively, array_unshift() and array
shift() used in tandem will have a similar effect, though they work on the opposite end of the

array. By choosing one function from each pair, you can effectively cause an array to act like a queue.

The compact() function maps variable names and values onto array keys and values, while

extract() reverses the process, even if the array was not created with compact. Finally, a variety

of functions in two major classes will sort and reorder arrays. The first major class will do it without

reordering integral keys; the second will reorder your integral keys according to the new sorted order.

371

I
n Chapter 7 we covered PHP strings — how to create them, print them,

and (to some extent) how to examine and modify them. In this chapter,

we delve into more advanced string-manipulation techniques, starting

off with functions to split up (or tokenize) strings into parts. We’ll soon run

into limitations of the basic tokenization functions, which show the need

for regular expressions.

Finally, we’ll cover some of the more advanced string functions that enhance

the effectiveness of regular expressions and the use of strings in general.

Tokenizing and Parsing Functions
Sometimes you need to take strings apart at the seams, and you have your

own notions of what should count as a seam. The process of breaking up a

long string into words is called tokenizing, and among other things it is part of

the internals of interpreting or compiling any computer program, including

PHP. PHP offers a special function for this purpose, called strtok().

The strtok() function takes two arguments: the string to be broken up

into tokens and a string containing all the delimiters (characters that count

as boundaries between tokens). On the first call, both arguments are used,

and the string value returned is the first token. To retrieve subsequent

tokens, make the same call, but omit the source string argument. It will be

remembered as the current string, and the function will remember where it

left off. For example:

$token = strtok(
 “open-source HTML-embedded server-side Web
scripting”,
 “ “);

Examining
Regular Expressions

IN THIS CHAPTER

Tokenizing and parsing

Regular expression functions

Example: A simple link scraper

HTML functions

Hashing functions

Strings as character collections

String similarity functions

372

 Part III More PHP

while($token){
 print($token . “
”);
 $token = strtok(“ “);
}

produces the browser output:

open-source
HTML-embedded
server-side
Web
scripting

The original string would be broken at each space. At our discretion, we could change the delimiter

set, like this:

$token = strtok(
 “open-source HTML-embedded server-side Web scripting”,
 “-“);
while($token){
 print($token . “
”);
 $token = strtok(“-“);
}

This gives us (less sensibly):

Open
source HTML
embedded server
side Web scripting

Finally, we can break the string at all these places at once by giving it a delimiter string like “ -“,

containing both a space and a dash. The code:

$token = strtok(
 “open-source HTML-embedded server-side Web scripting”,
 “ -“);
while($token){
 print($token . “
”);
 $token = strtok(“ -“);
}

prints this output:

open
source
HTML
embedded
server
side
Web
scripting

373

 Examining Regular Expressions 22

Notice that in every case the delimiter characters do not show up anywhere in the retrieved tokens.

The strtok() function doles out its tokens one by one. You can also use the explode() function

to do something similar, except that it stores the tokens all at once in an array. After the tokens are

in the array, you can do anything you like with them, including sort them.

The explode() function takes two arguments: a separator string and the string to be separated. It

returns an array where each element is a substring between instances of the separator in the string

to be separated. For example:

$explode_result = explode(“AND”, “one AND a two AND a three”);

results in the array $explode_result having three elements, each of which is a string: “one “, “ a

two “, and “ a three”. In this particular example, there would be no capital letters anywhere in the

strings contained in the array, because the AND separator does not show up in the result.

The separator string in explode() is significantly different from the delimiter string used in

strtok(). The separator is a full-fledged string, and all its characters must be found in the right

order for an instance of the separator to be detected. The delimiter string of strtok() specifies a

set of single characters, any one of which will count as a delimiter. This makes explode() both

more precise and more brittle — if you leave out a space or a newline character from a long string,

the entire function will be broken.

Because the entire separator string disappears into the ether when explode() is used, this function

can be the basis for many useful effects. The examples given in most PHP documentation use short

strings for convenience, but remember that a string can be almost any length — and explode() is

especially useful with longer strings that might be tedious to parse some other way. For instance,

you can use it to count how many times a particular string appears within a text file by turning

the file into a string and using explode() on it, as in this example (which uses some functions we

haven’t explained yet, but we hope make sense in context).

<?php
//First, turn a text file into a string called $filestring.
$filename = “complex_layout.html”;
$fd = fopen($filename, “r”);
$filestring = fread($fd, filesize($filename));
fclose ($fd);

//Explode on the beginning of the <TABLE> HTML tag
$tables = explode(“<TABLE”, $filestring); // assumes uppercase
//Count the number of pieces
$num_tables = count($tables);

//Subtract one to get the number of <TABLE> tags, and echo
echo ($num_tables - 1);
?>

374

 Part III More PHP

The explode() function has an inverse function, implode(), which takes two arguments: a “glue”

string (analogous to the separator string in explode()) and an array of strings like that returned by

explode(). It returns a string created by inserting the glue string between each string element in

the array.

You can use the two functions together to replace every instance of a particular string within a text file.

Remember that the separator string will vanish into the ether when you perform an explode() — if

you want it to appear in the final file, you have to replace it by hand. In this example, we’re changing

the font tags on a web page.

<?php
//Turn text file into string
$filename = “someoldpage.html”;
$fd = fopen($filename, “r”);
$filestring = fread($fd, filesize($filename));
fclose ($fd);
$parts = explode(“arial, sans-serif”, $filestring);
$whole = implode(“arial, verdana, sans-serif”, $parts);

//Overwrite the original file
$fd = fopen($filename, “w”);
fwrite($fd, $whole);
fclose ($fd);
?>

Why Regular Expressions?
The string-comparison and substring-finding functions we saw here and in Chapter 7 are fine as far

as they go, but they are on the literal-minded side. As an example of their weakness, let’s say that

you want to test strings to see if they are a particular kind of web hostname: addresses that start

with www. and end with .com, and have one lowercase alphabetic word in the middle. For example,

these are strings we want:

‘www.ibm.com’
‘www.zend.com’

And the following are not:

‘java.sun.com’
‘www.java.sun.com’
‘www.php.net’
‘www.IBM.com’
‘www.Web addresses can’t have spaces.com’

With a little thought, it’s obvious that there is no convenient way to simply use string and substring

comparison to build the test that we want. We can test for the presence of www. and .com, but it is dif-

ficult to enforce what should be happening between them. This is what regular expressions are good for.

375

 Examining Regular Expressions 22

Regex in PHP
Regular expressions (or regex, pronounced with a soft g by your authors, but with no consensus pro-

nunciation) are patterns for string matching, with special wildcards that can match entire portions

of the target string. There are two broad classes of regular expression that PHP works with: POSIX

(extended) regex and Perl-compatible regex. The differences mostly have to do with syntax, although

there are some functional differences, too.

POSIX-style regular expressions are ultimately descended from the regex pattern-matching machin-

ery used in Unix command-line shells; Perl-compatible regex is a more direct imitation of regular

expressions in Perl. We’ve already waxed poetic about the utility of arrays. We’re about to do it again

with regex. If you’re planning on doing any substantial coding in a web environment, sooner or later

you will bump up against regex.

Note that for PHP6, the ereg functions are no longer included.

An example of POSIX-style regex
Here are a few of the rules for POSIX-style regular expressions, simplified:

Characters that are not ■■ special are matched literally. The letter a in a pattern, for example,

matches the same letter in a target string.

The special character ■■ ^ matches the beginning of a string only, and the special character $

matches the end of a string only.

The special character ■■ . matches any character.

The special character ■■ * matches zero or more instances of the previous regular expression,

and + matches one or more instances of the previous expression.

A set of characters enclosed in square brackets matches any of those characters — the pat-■■

tern [ab] matches either a or b. You can also specify a range of characters in brackets by

using a hyphen — the pattern [a-c] matches a, b, or c.

Special characters that are escaped with a backslash (■■ \) lose their special meaning and are

matched literally.

We can use the preceding rules to construct an expression that matches the kind of web address we

want in the section “Why Regular Expressions?” earlier in this chapter. Our chosen expression is:

^www\.[a-z]+\.com$

In this expression we have the ‘̂ ‘ symbol, which says that the www portion must start at the begin-

ning of the string. Then comes a dot (.), preceded by a backslash that says we really want a dot, not

the special . wildcard character. Then we have a bracket-enclosed range of all the lowercase alpha-

betic letters. The following + indicates that we are willing to match any number of these lowercase

letters in a row, as long as we have at least one of them. Then another literal ., the com, and the spe-

cial $ that says that com is the end of it.

NOTENOTE

376

 Part III More PHP

Now let’s use that expression as an argument to the function ereg(), which takes as arguments a

pattern string and a string to match against. We can use an ereg() call to build a test function for

our kind of web address.

function simple_dot_com ($url)
{
 return(ereg(‘^www\\.[a-z]+\\.com$’, $url));
}

Confusingly, we have to put two backslashes in the pattern string, because PHP treats the first slash

as an escape character for the second backslash. (You can get away with just one backslash, but that

behavior is not guaranteed to continue in future versions of PHP.) The second backslash (escaped by

the first), in turn, is a regex escape character for the following character.

This function will return TRUE or FALSE, depending on whether it successfully matches our pattern.

Now we can use our function to test some of the addresses listed earlier.

$urls_to_test =
 array(‘www.ibm.com’, ‘www.java.sun.com’,
 ‘www.zend.com’, ‘java.sun.com’,
 ‘www.java.sun.com’, ‘www.php.net’,
 ‘www.IBM.com’,
 ‘www.Web addresses can\‘t have spaces.com’);
while($test = array_pop($urls_to_test)){
 if (simple_dot_com($test))
 print(“\“$test\“ is a simple dot-com
”);
 else
 print(“\“$test\“ is NOT a simple dot-com
”);

}

The results of our tests are:

“www.Web addresses can’t have spaces.com” is NOT a simple dot-com
“www.IBM.com” is NOT a simple dot-com
“www.php.net” is NOT a simple dot-com
“www.java.sun.com” is NOT a simple dot-com
“java.sun.com” is NOT a simple dot-com
“www.zend.com” is a simple dot-com
“www.java.sun.com” is NOT a simple dot-com
“www.ibm.com” is a simple dot-com

This is the kind of discriminating behavior we are looking for.

On many Unix systems, typing man 7 regex will lead you to a guide to POSIX regular

expressions. If that does not work, try man regex and follow any pointers to related pages.TIPTIP

377

 Examining Regular Expressions 22

Regular expression functions
The POSIX-style regular expression functions in PHP are summarized in Table 22-1. These are

included for legacy applications where you might find them still being used. These functions are

no longer in PHP6 and have been replaced with preg functions, discussed later in this chapter.

If you find yourself using a regular expression function with a pattern that has no special

characters, you are probably using an expensive tool where a cheap one would do. If you

are trying to match a simple string to a simple string, you need only one of the more basic (and faster)

functions that we cover earlier in this chapter and in Chapter 7.

TABLE 22-1

POSIX Regular Expression Functions

Function Behavior

ereg() Takes two string arguments and an optional third-array argument. The first
string is the POSIX-style regular expression pattern, and the second string is the
target string that is being matched. The function returns TRUE if the match was
successful and FALSE otherwise. In addition, if an array argument is supplied
and portions of the pattern are enclosed in parentheses, the parts of the target
string that match successive parenthesized portions will be copied into successive
elements of the array.

ereg_replace() Takes three arguments: a POSIX regular expression pattern, a string to do
replacement with, and a string to replace into. The function scans the third
argument for portions that match the pattern and replaces them with the second
argument. The modified string is returned.

If there are parenthesized portions of the pattern (as with ereg()), the
replacement string may contain special substrings of the form \\digit (that is,
two backslashes followed by a single-digit number), which will themselves be
replaced with the corresponding piece of the target string.

eregi() Identical to ereg(), except that letters in regular expressions are matched in a
case-independent way.

eregi_replace() Identical to ereg_replace(), except that letters in regular expressions are
matched in a case-independent way.

split() Takes a pattern, a target string, and an optional limit on the number of portions
to split the string into. Returns an array of strings created by splitting the target
string into chunks delimited by substrings that match the regular expression. (Note
that this is analogous to the explode() function, except that it splits on regular
expressions rather than literal strings.)

spliti() Case-independent version of split().

TIPTIP

378

 Part III More PHP

Perl-Compatible Regular Expressions
Perl-compatible regex in PHP has a completely distinct set of functions and a slightly different set of

rules for patterns.

Perl-compatible regex patterns are always bookended by one particular character, which must be

the same at beginning and end, indicating the beginning and end of the pattern. By convention, this

is most often the / character, although you can use a different character if you so desire. The Perl-

compatible pattern:

/pattern/

matches any string that has the string (or substring) pattern in it. To make things slightly more

complicated, these patterns are typically strings, and PHP needs its own quotes to recognize such

strings. So if you are putting a pattern into a variable for later use, you might well do this:

$my_pattern = ‘/pattern/‘;

This variable would now be suitable for passing off to a Perl-compatible regex function that expects

a pattern as argument.

Although we don’t have time or space to cover Perl-compatible regex patterns in detail, Table 22-2

shows a list of the most commonly used constructs.

TABLE 22-2

Common Perl-Compatible Pattern Constructs
Construct Interpretation

Simple literal
character matches

If the character involved is not special, Perl will match characters in sequence. The
example pattern /abc/ matches any string that has the substring ‘abc‘ in it.

Character class
matches: [<list of

characters>]

Will match a single instance of any of the characters between the brackets. For
example, /[xyz]/ matches a single character, as long as that character is either x,
y, or z. A sequence of characters (in ASCII order) is indicated by a hyphen, so that
a class matching all digits is [0-9].

Predefined character
class abbreviations

The patterns \d will match a single digit (from the character class [0-9]), and the
pattern \s matches any whitespace character.

Multiplier patterns Any pattern followed by * means: “Match this pattern 0 or more times.”

Any pattern followed by ? means: “Match this pattern exactly once.”

Any pattern followed by + means: “Match this pattern 1 or more times.”

379

 Examining Regular Expressions 22

Construct Interpretation

Anchoring characters The caret character ^ at the beginning of a pattern means that the pattern must
start at the beginning of the string; the $ character at the end of a pattern means
that the pattern must end at the end of the string. The caret character at the
beginning of a character class [^abc] means that the set is the complement of the
characters listed (that is, any character that is not in the list).

Escape character ‘\‘ Any character that has a special meaning to regex can be treated as a simple
matching character by preceding it with a backslash. The special characters that
might need this treatment are:

. \ + * ? [] ^ $ () { } = ! < > | :

Parentheses A parenthesis grouping around a portion of any pattern means: “Add the substring
that matches this pattern to the list of substring matches.”

Take, as an example, the following pattern:

/phone number\s+(\d\d\d\d\d\d\d)/

It matches any string that contains the literal phrase phone number, followed by some number of

spaces (but at least one), followed by exactly seven digits (no spaces, no dash). In addition, because

of the parentheses, the seven-digit number is saved and returned in an array containing substring

matches if it is called from a function that returns such things.

The Perl-compatible functions are summarized in Table 22-3.

The most widely used of these functions are probably preg_match() and preg_match_all().

The first is best for simply answering whether a pattern matches a string, and the latter is best for

either counting matches or collecting portions that match.

The optional fourth argument to preg_match_all() requires a little more explanation. The array

that contains the returned matches is going to be two levels deep, with one level being the iteration

of the match (the first match, the second, and so on) and the other level being the position of the

match in the pattern. (The entire match is always first, followed by any parenthesized subpatterns

in order.) The question is: Which level is on top? Will the array be a list of positions, each of which

contains a list of iterations, or the other way around? If the argument is PREG_PATTERN_ORDER,

the first element will contain all matches of the entire pattern, the second element will contain all

matches of the first parenthesized pattern, and so forth. If the argument is PREG_SET_ORDER, the

first argument will be all the substrings from the first match (first the total match, then parenthe-

sized bits in order), the second element will contain all the substrings from the second match, and

so on. (See the following example to clarify.)

380

 Part III More PHP

TABLE 22-3

Perl-Compatible Regular Expression Functions
Function Behavior

preg_match() Takes a regex pattern as first argument, a string to match against as second
argument, and an optional array variable for returned matches. Returns 0 if no
matches are found, and 1 if a match is found. If a match is successful, the array
variable contains the entire matching substring as its first element, and subsequent
elements contain portions matching parenthesized portions of the pattern. As of
PHP 4.3.0, an optional flag of PREG_OFFSET_CAPTURE is also available. This
flag causes preg match to return into the specified array a two-element array for
each match, consisting of the match itself and the offset where the match occurs.

preg_match_all() Like preg_match(), except that it makes all possible successive matches of
the pattern in the string, rather than just the first. The return value is the number
of matches successfully made. The array of matches is not optional (If you want
a true/false answer, use preg_match()).

The structure of the array returned depends on the optional fourth argument
(either the constant PREG_PATTERN_ORDER, or PREG_SET_ORDER, defaulting
to the former). (See further discussion following the table.) PREG_OFFSET_
CAPTURE is also available with this function.

preg_split() Takes a pattern as first argument and a string to match as second argument.
Returns an array containing the string divided into substrings, split along
boundary strings matching the pattern. (Analogous to the POSIX-style function
split().) An optional third argument (limit) controls how many elements to
split before returning the list; -1 means no limit. An optional flag in the fourth
position can be PREG_SPLIT_NO_EMPTY causing the function to return only
nonempty pieces, PREG_SPLIT_DELIM_CAPTURE causing any parenthesized
expression in the delimiter pattern to be returned, or PREG_SPLIT_OFFSET_
CAPTURE, which does the same as PREG_OFFSET_CAPTURE.

preg_replace() Takes a pattern, a replacement string, and a string to modify. Returns the
result of replacing every matching portion of the modifiable string with
the replacement string. An optional limit argument determines how many
replacements will occur (as in preg_split()).

preg_replace_
callback()

Like preg_replace(), except that the second argument is the name of a
callback function, rather than a replacement string. This function should return
the string that is to be used as a replacement.

preg_grep() Takes a pattern and an array and returns an array of the elements of the input
array that matched the pattern. Surviving values of the new array have the same
keys as in the input array.

preg_quote() A special-purpose function for inserting escape characters into strings that
are intended for use as regex patterns. The only required argument is a string
to escape; the return value is that string with every special regex character
preceded by a backslash.

381

 Examining Regular Expressions 22

Example: A simple link-scraper
As an example of what regex can do for us, let’s write a simple function to grab and print links

from an arbitrary web page. The input will be a URL for the page we’re interested in analyzing;

the output will be a printed list of the links on the page, split into the target URL for the link

and the descriptive text that appears in the link (the anchortext). We will do this using Perl-

compatible regex functions.

Such a function might be the very first step in writing a web crawler for a search engine. Search

engines download the contents of web pages to analyze and index them, but they also need to dis-

cover links to other pages, if only to discover new content.

The regular expression
The heart of our little function will be the regular expression itself. What we need to do is design an

expression that will match HTML links (and nothing else) and that is suitable for using to extract

pieces of such links.

HTML links generally look something like this:

My cool page on my cool
site

That is, an anchor tag that has an HREF attribute, and which encloses the anchortext between the

start tag (<A>) and the end tag (). We’ll construct a pattern to match this simplified view of

an anchortext element. (This won’t capture everything that the HTML spec permits as legal anchor

links — in particular, you are allowed attributes in anchors other than HREFs, but we will ignore

that for our purposes.)

Now, regular expressions are famously unreadable when considered all at once. So we will grow this

one in several drafts as we explain what’s going on.

First, let’s start with a minimal expression to catch a beginning anchor tag. Our first draft looks

like this:

/<A\sHREF=”[^”]+”>/
// first draft of a pattern to match anchor links

(Note that this is not yet intended to be working PHP code; we’re drafting an expression that we’ll

plug into PHP code later.)

In English, our first-draft definition of an anchor tag is left angle bracket, followed by A, followed

by a space, followed by the string HREF=, followed by a double-quotation mark, followed by any

number of characters that are not quotation marks, followed by a closing quotation mark, followed

by a right angle bracket. Then the whole expression is enclosed in a pair of slashes, indicating to the

regex engine the start and end of the expression.

382

 Part III More PHP

The [^”]+ construction in the middle of this expression breaks down like this: The brackets indi-

cate a character set, and the caret (̂) immediately after the left bracket indicates that we are negating

the set — that the set contains every character that is not in the subsequent list. Finally, the + after

that bracketed class means that we expect at least one nonquote character.

As we’ve said, we’re not trying to capture the precise syntax prescribed by the HTML specification.

But there are a couple of ways that we can make this expression less strict. For one thing, as far as

we know, there may be spaces between the initial < character and the A tag. Similarly, there may be

an arbitrary number of spaces between the A and the HREF or the closing double-quote and the right

angle bracket. Adding these, the expression becomes:

/<A\s+HREF=”[^”]+”\s*>/
// second draft, allowing more spaces

Here, \s+ means one or more spaces.

Now we add the anchortext itself and the closing tag:

/<A\s+HREF=”[^\“]+”\s*>[^>]*<\/A>/
 // third draft, with text and close tag

We are allowing the anchortext to be anything up until a closing anchor tag, so we make an any-

thing-but-right-angle-bracket character class ([^>]) and indicate that it can repeat zero or more

times. Finally, we add the subpattern to match the closing anchor tag (<\/A>).

This is fine as far as it goes, but it will only match anchors where the tag name (A) and attribute

(HREF) are in uppercase. Lowercase tags should be legal as well, so we add an i modifier after the

entire expression, to specify case-independent matching.

/<A\s+HREF=”[^\“]+”\s*>[^>]*<\/A>/i
// fourth draft, case-independent

This draft is nearly final and could be used to give true/false answers to the question of whether

a page contains the kind of links we like. But we want to go further and extract certain portions

of any string that does match. We signify this by adding parentheses to enclose the portions we’re

interested in:

/<A\s+HREF=”([^\“])+”\s*>([^>]*)<\/A>/i
// final draft, extracts portions

They may be hard to see by this point, but we’ve added a pair of parentheses to enclose the target

of the HREF (between the quotes) and another pair around the anchortext area (between the tags).

These parentheses tell the calling function to save the string portion that matches the enclosed area,

so that it can be added to the return array.

383

 Examining Regular Expressions 22

Using the expression in a function
With an anchor-tag-matching expression in hand, our goal now is to write a function to scrape links

from an HTML page. We’ll need to:

Take a URL as argument■■

Open up an HTTP connection to the URL and grab its contents as a string■■

Iterate through the string, applying our regex pattern wherever we can, saving what matches■■

Print the extracted portions (target URL and anchortext)■■

Such a function is shown in Listing 22-1.

LISTING 22-1

A print_links function

<?php

function print_links ($url)
{
 $fp = fopen($url, “r”)
 or die(“Could not contact $url”);
 $page_contents = “”;
 while ($new_text = fread($fp, 100)) {
 $page_contents .= $new_text;
 }
 $match_result =
 preg_match_all(‘/<A\s+HREF=”([^\“]+)“\s*>([^>]*)<\/A>/i’,
 $page_contents,
 $match_array,
 PREG_SET_ORDER);

 foreach ($match_array as $entry) {
 $href = $entry[1];
 $anchortext = $entry[2];
 print(“HREF: $href;
 ANCHORTEXT: $anchortext
”);
 }
}

?>

This function is easier to write than you might expect because PHP takes care of several parts of it

for us. We do not need to write anything special to make an HTTP connection to download a web

page because fopen() will accept a URL as argument and do the right thing. All we need to do after

384

 Part III More PHP

calling fopen() on the URL is to read characters until we are out of them, appending what we get

onto a constructed string.

The iteration through the HTML page’s contents is taken care of by preg_match_all(), which

applies the regex pattern as many times as possible, starting from the previous match each time, and

saving the matches in $match_array. We chose to have the array arranged by PREG_SET_ORDER,

meaning that each entry in the top-level array is the portion from a particular match in the iteration,

rather than across matches.

Applying the function
The only argument the function requires is a URL. In testing the function before including it in the

book, we pointed it at link-rich, top-level pages like http://slashdot.org, www.cnn.com, and

www.php.net. Those results would be fun to display, but all of those sites have copyright notices,

and publishers are understandably wary of allowing authors to put other people’s copyrighted mate-

rial into their copyrighted book without permission. So, instead, we pointed it at the top-level place-

holder page for our own vanity site (www.troutworks.com), like this:

print_links(“http://www.troutworks.com/“);

You get the following result (approximately):

HREF: http://www.mysteryguide.com; ANCHORTEXT: MysteryGuide
HREF: http://www.sciencebookguide.com; ANCHORTEXT:
ScienceBookGuide
HREF: /Joycelog/joycelog.php; ANCHORTEXT: Troutgirl weblog
HREF: /Timlog/timlog.php; ANCHORTEXT: Timboy weblog
HREF: http://www.troutworks.com/phpbook; ANCHORTEXT: code
download site
HREF: http://www.amazon.com/exec/obidos/tg/detail/-/0764549553/;
HREF: http://www.mysteryguide.com; ANCHORTEXT: MysteryGuide
HREF: http://www.sciencebookguide.com; ANCHORTEXT:
ScienceBookGuide
ANCHORTEXT: PHP Bible
HREF: http://www.troutworks.com/phpbook; ANCHORTEXT: code
download site

Just because we didn’t feel that we could print the results of the links from those more interesting

sites doesn’t mean that you can’t apply this code to them (however, see the warnings in the sidebar

“Writing Well-Behaved Spiders”).

Extending the code
As we’ve said, code like Listing 22-1 is the very beginning of writing a web search spider. If you

want to make it more real, you could:

Convert the relative links to absolute (■■ http://) links by remembering the URL that you

are scraping and splicing that base URL appropriately with the relative path

385

 Examining Regular Expressions 22

Add a more graceful way to bounce back from an unreachable site rather than immedi-■■

ately dying

Expand the regex pattern to match HREFs that have quotation marks around the URL as ■■

well as HREFs that do not

Add capability for recursive calls so that, rather than simply printing a child link, you ■■

apply the same function again to it and explore its own links

Writing Well-Behaved Spiders

A note of caution, however (informed by the experience of one of your authors in the search engine busi-
ness). There are two rules that you should observe, though, before writing any kind of spider that does

more automated crawling. When you crawl any site, you should:

Check to see if there is a ■■ robots.txt file (at http://sitename/robots.txt). If there is no
such file, the site owners are implicitly saying the site is okay to crawl. If there is such a file, you
should either not crawl the site or, if you do, you should make sure that you are not crawling pages
that match the patterns laid out in that file. (For more on this, do a web search for “robot exclusion
standard”.)

Make sure that you don’t request files from any particular site too frequently. A decent interval to wait ■■

between requests is 10 seconds or so. (You can implement this delay on a per-site basis, or simply by
sleeping for 10 seconds between every request.) It is not OK to simply create a recursive version of
the preceding code and then unleash it on a large site, grabbing new links and pages as fast as your
code can loop. Remember: One man’s search engine is another’s denial-of-service attack.

Advanced String Functions
We have now covered the most basic things to do with strings, as well some more sophisticated

means of working with them via regular expressions. Now, we’ll delve into some more exotic string

functions, which we’ve categorized by type and/or purpose. These are the sort of functions that

might only be relevant to you if you’re working on a particular kind of project. Some of these sec-

tions might make you want to say, “Why would anyone want to do that?” If so, please ignore them

until you the day that you suddenly realize that you need to do that thing exactly.

HTML functions
PHP offers a number of web-specific functions for string manipulation, which are summarized in

Table 22-4.

386

 Part III More PHP

TABLE 22-4

HTML-Specific String Functions
Function Behavior

htmlspecialchars() Takes a string as argument and returns the string with replacements for four
characters that have special meaning in HTML. Each of these characters is
replaced with the corresponding HTML entity, so that it will look like the
original when rendered by a browser. The & character is replaced by & “”
(the double-quote character) is replaced by "; < is replaced by <; >
is replaced by >.

htmlentities() Goes further than htmlspecialchars(), in that it replaces all characters that
have a corresponding HTML entity with that HTML entity.

get_html_
translation_
table()

Takes one of two special constants (HTML_SPECIAL_CHARS and HTML_
ENTITIES), and returns the translation table used by htmlspecialchars()
and htmlentities(), respectively. The translation table is an array where keys
are the character strings and the corresponding values are their replacements.

nl2br() Takes a string as argument and returns that string with
 inserted before all
new lines (\n, \r or \r\n). This is helpful, for example, in maintaining the
apparent line length of text paragraphs when they are displayed in a browser.

strip_tags() Takes a string as argument and does its best to return that string stripped of all
HTML tags and all PHP tags.

Hashing using MD5
MD5 is a string-processing algorithm that is used to produce a digest or signature of whatever string

it is given. The algorithm boils its input string down into a fixed-length string of 32 hexadecimal

values (0,1,2, . . . 9,a,b, . . . f). MD5 has some very useful properties:

MD5 always produces the same output string for any given input string, so it is not appro-■■

priate to use MD5 to store passwords.

The fixed-length results of applying MD5 are very evenly spread over the range of ■■

possible values.

It may be possible produce an input string corresponding to a given MD5 output string or ■■

to produce two inputs that yield the same output.

PHP’s implementation of MD5 is available in the function md5(), which takes a string as input and

produces the 32-character digest as output. For example, evaluating this:

print(“md5 of ‘Tim’ is “ . md5(‘Tim’) . “
”);
print(“md5 of ‘tim’ is “ . md5(‘tim’) . “
”);
print(“md5 of ‘time’ is “ . md5(‘time’) . “
”);

387

 Examining Regular Expressions 22

gives us the browser output:

md5 of Tim is dc2054afd537ddc98afd9347136494ac
md5 of tim is b15d47e99831ee63e3f47cf3d4478e9a
md5 of time is 07cc694b9b3fc636710fa08b6922c42b

Although the input strings seem close to each other in some sense, there is no apparent similarity in

the output strings. And since the range of possible output values is so huge (16 to the 32nd power), the

chances that any two distinct strings will collide by producing the same MD5 value is vanishingly small.

The characteristics of MD5 make it useful for a wide variety of tasks, including:

Checksumming a message or file■■ : If you are worried about errors that might happen in

transfer, you can transmit an MD5 digest, along with the message, and run the message

through MD5 again after transfer. If the two versions of the digest do not match, then

something is amiss.

Detecting if a file’s contents have changed■■ : Similar to checksumming, MD5 is often used

in this way by search engines as a check on whether a web page has changed, making re-

indexing necessary. It is cheaper to store the MD5 digest than the entire original file.

Splitting strings or files into buckets■■ : If you want to divide a set of strings into N ran-

domly dispersed sets, you can MD5 the strings, take the first few hex characters, translate

them into a number, and take that number modulo the number of bins you want.

In addition to the md5() function, PHP offers md5_file(), which takes a filename as argument and

returns an MD5 hash of the file’s contents.

Strings as character collections
PHP offers some pretty specialized functions that treat strings more as collections of characters than

as sequences.

The first is strspn(), which you can use to see what portion of a string is composed only of a given

set of characters. For example:

$twister = “Peter Piper picked a peck of pickled peppers”;
$charset = “Peter picked a”;
print(“The segment matching ‘$charset’ is “ .
 strspn($twister, $charset) . “ characters long”);

gives us:

The segment matching ‘Peter picked a’ is 26 characters long

because the first character not found in $charset is the o in of, and there are 26 characters that

precede it.

388

 Part III More PHP

The strcspn() function (where that internal c stands for complement) does the same thing, except

that it accepts characters that are not in the character set argument. For example, the statement:

echo(strcspn($twister, “abcd”));

prints the number 14, because it accepts a 14-character sequence with the last character being the c

in picked.

Finally, hark back to Chapter 8 on arrays and check out the following for an acute analysis of

alliteration:

$twister = “Peter Piper picked a peck of pickled peppers”;
print(“$twister
”);
$letter_array = count_chars($twister, 1);
while ($cell = each($letter_array)){
 $letter = chr($cell[‘key’]);
 $frequency = $cell[‘value’];
 print(“Character: ‘$letter’; frequency: $frequency
”);
}

This gives the browser output:

Peter Piper picked a peck of pickled peppers
Character: ‘ ‘; frequency: 7
Character: ‘P’; frequency: 2
Character: ‘a’; frequency: 1
Character: ‘c’; frequency: 3
Character: ‘d’; frequency: 2
Character: ‘e’; frequency: 8
Character: ‘f’; frequency: 1
Character: ‘i’; frequency: 3
Character: ‘k’; frequency: 3
Character: ‘l’; frequency: 1
Character: ‘o’; frequency: 1
Character: ‘p’; frequency: 7
Character: ‘r’; frequency: 3
Character: ‘s’; frequency: 1
Character: ‘t’; frequency: 1

The count_chars() function returns a report on the occurrences of characters in its string argu-

ment, packaged as an array where the keys are the ASCII values of characters, and the values are

the frequencies of those characters in the string. The second argument to count_chars() is an

integer that determines which of several modes the results should be returned in. In mode 0, an

array of key/value pairs is returned, where the keys are every ASCII value from 0 to 255, and the

corresponding values are the frequencies of each character in the string. Modes 1 and 2 are variants

that include only ASCII values that occurred in the string (mode 1) or that did not occur (mode 2).

389

 Examining Regular Expressions 22

Finally, modes 3 and 4 return a string instead of an array, where the string contains all characters

that occur (mode 3) or do not occur (mode 4).

These functions are summarized in Table 22-5.

For an explanation of how to take apart array formats like that returned by count_
chars(), see Chapter 8. The chr() function used in the preceding example, which

maps from ASCII numbers to the corresponding characters, is covered in Chapter 5.

TABLE 22-5

Functions for Examining Character Contents
Function Behavior

count_chars() Takes a single string argument and an integer mode argument from 0 to 4. Returns
a report about frequencies of characters in the string argument, as either an array
or a string. (See the preceding text for more detail.)

strspn() Takes two string arguments and returns the length of the initial substring of the first
argument that is composed entirely of characters found in its second argument.

strcspn() Takes two string arguments and returns the length of the initial substring of the first
argument that is composed entirely of characters that are not found in its second
argument.

String similarity functions
How similar is this string to that string? Well, it depends what you mean by similar, right?

If the kind of similarity you want is similarity of spelling, consider the Levenshtein metric. The

levenshtein() function takes two strings and returns the minimum number of additions, dele-

tions, and replacements of letters needed to transform one into the other. For example:

levenshtein(‘Tim’,■■ ‘Time’) returns 1.

levenshtein(‘boy’,■■ ‘chefboyardee’) returns 9.

levenshtein(‘never’,■■ ‘clever’) returns 2.

If the similarity you are interested in is phonetic, consider the functions soundex() and meta-
phone(). Both of them take an input string and return a key string representing the pronunciation

category of the word (in English). If two input word strings map to exactly the same output key, they

most likely have a similar pronunciation.

CROSS-REFCROSS-REF

390

 Part III More PHP

Summary
PHP has a wealth of built-in functions for handling strings — functions to create them, stick them

together, chop them up, and do various kinds of analysis. The simplest of these were covered in

Chapter 7, and in this chapter we saw functions for tokenizing, hashing, character counting, and

determining similarity, as well as HTML-specific functions.

Simple string matching is all very well, but when you need industrial-strength pattern matching,

nothing less than regex will do. PHP6 removes the ereg functions, preferring instead the preg func-

tions for pattern matching.

391

T
his chapter contains information on the multiplicity of system

functions built into PHP. Many of these functions duplicate system

functions via HTTP. Among the most useful are file-reading and

-writing functions and those that return dates or times.

Many of the functions in this chapter have serious security

implications. You are inviting bad news if you use them without

thinking pretty hard about the consequences! We’ll try to point out the scari-

est ones as we go, but nothing that allows the system to be altered via HTTP

should be undertaken lightly.

Some of these functions are Unix-only. The Windows system is deliberately

made less available to users, especially to non-administrator users, and lacks

many utilities that Unix-heads take for granted. If you’re having problems and

you run on Windows, make sure the function is enabled on your platform.

Understanding PHP File
Permissions
Many PHP users, who have a developer orientation rather than any sysad-

min experience, unfortunately do not take the time to understand Unix

filesystem permissions. You really need to have a firm grasp of the basics to

make good decisions about using many of the functions in this section. If

you already do, feel free to skip the rest of this section.

CAUTION CAUTION

Working with
the Filesystem

IN THIS CHAPTER

Understanding PHP file

permissions

File reading and writing

functions

Filesystem and directory

functions

Network functions

Date and time functions

Calendar conversion functions

392

 Part III More PHP

Unfortunately, most explanations of the subject are quite general and user’s eyes can easily glaze

over in a hail of rwxes and three-digit numbers. So we’re going to break it down for you into two

simple default rules specifically for PHP users.

Unless you have a good reason to do otherwise, the PHP files that you wish to make public ■■

should all be set to 644 (rw-r--r--).

Unless you have a good reason to do otherwise, the PHP-enabled directories that you wish ■■

to make public should all be set to 751 (rwxr-x--x).

For some reason, many users seem to believe that PHP files need to be executable. This is only true

for files that you write with the intention of their being called on the command line (for example, ./
myscript.php). Files that will be run through a web server only need to be readable by the web

server user (usually Nobody, or some other user with very limited permissions). It’s rather inconve-

nient to make the files not writable by you (and doesn’t really matter if you own the parent direc-

tory), which is why our default recommendation is 644 (rw-r--r--) rather than 444 (r--r--r--),

but this is a matter of convenience only.

Directory permissions are also very often misunderstood. Many users seem to believe that directo-

ries need to be readable for files to run. Actually the read directory permission means a user can list

the contents of that directory (via the ls command, for instance). The execute directory permission

is closer to what we think of as readable. For your PHP scripts to run, the directory needs only to

be world-executable (751 or rwxr-x--x). Do not make the directory writable by others unless you

know what you’re doing.

File Reading and Writing Functions
This is a supremely useful set of functions, particularly for data sets too small or scattered to merit

the use of a database. File reading is pretty safe unless you keep unencrypted passwords lying

around, but file writing can be quite unsafe.

Remember that although the web server (and client-side languages such as JavaScript)

can only act on files located under the document root, unless the open_basedir value

or another chroot mechanism is set, PHP can access files at any location in the file system — including

those above or entirely outside the web server document root — as long as the file permissions and

include_path are set correctly. For instance, if your web server document root is located at /usr/
local/apache/htdocs, Apache will be able to serve only files from this directory and its subdirecto-

ries, but PHP can open, read, and write to files in /usr/local, /home/php, /export/home/httpd

or any other directory that you make readable and includable by the PHP and/or web server user.

A file manipulation session might involve the following steps:

 1. Open the file for read/write.

 2. Read in the file.

 3. Close the file (may happen later).

TIPTIP

393

 Working with the Filesystem 23

 4. Perform operations on the file contents.

 5. Write the results out.

Each step has a corresponding PHP filesystem function.

This archetypal example illustrates some subtleties of the syntax for manipulating file contents:

$fd = fopen($filename, “r+”)
 or die(“Can’t open file $filename”);
$fstring = fread($fd, filesize($filename));
$fout = fwrite($fd, $fstring);
fclose($fd);

The effect of this particular example will be to double the file — in other words, the end result will

be a file with the original contents of the file written out twice. This function will not overwrite the

file, as you might expect. In the following sections, we walk you through this archetypal file manip-

ulation session, step by step.

File open
It’s essentially mandatory to assign the result of fopen() to a variable (traditionally $fd for file
descriptor, or $fp for file pointer).

Note that fopen() does not return an integer on success. In fact, it returns a resource

that says Resource id #n, where n is the number of the currently opened stream. Do not

attempt to test the success of your file open by using is_int() or is_numeric(). Use die() instead.

If it’s successful in opening the file, PHP will return a resource ID, which it requires for further oper-

ations such as fread or fwrite. Otherwise, the value will be false.

The system makes only a certain number of file descriptors available, which is a good

argument for closing files as soon as you can. If you anticipate a large demand and have

access to system settings, you may increase the number. However, if you fail to close a file descriptor,

PHP will do it for you when the script ends.

Files may be opened in any of six modes (similar to permissions levels). If you try to do mode-

inappropriate things, you will be denied. The modes are:

Read-only (■■ “r”).

Read and write if the file exists already (■■ “r+”): will write to the beginning of the file,

doubling the original contents of the file if you read the file in as a string, edit it, and then

write the string out to the file.

Write-only (■■ “w”) will create a file of this name, if one doesn’t already exist, and will erase

the contents of any file of this name before writing! You cannot use this mode to read a file,

only to write one.

CAUTION CAUTION

CAUTION CAUTION

394

 Part III More PHP

Write and read even if the file doesn’t exist already (■■ “w+”) will create a file of this name, if

one doesn’t already exist, and will erase the contents of any file of this name before writing!

Write-only to the end of a file whether it exists or not (■■ “a”).

Read and write to the end of a file whether it exists or not (■■ “a+”), “doubling” original contents

of the file if you read the file in as a string, edit it, and then write the string out to the file.

You need to be very sure you have read in the contents of any preexisting file before using w or w+

on it. Your chances of losing data with the other modes is much less.

There are several types of file connections that can be opened, including HTTP(S), FTP(S), standard

I/O, filesystem, and others as shown at http://php.net/manual/en/wrappers.php.

Some users have reported problems with the “+“ modes. Many of these problems actually

appear to be caused by slightly faulty understanding of the six modes. When in doubt, try

opening in separate read and write modes. See the section on file writing later in this chapter.

HTTP fopen
An HTTP fopen() tries to open an HTTP 1.0 connection to a file of a type 0 that would normally

be served by a web server (such as HTML, PHP, ASP, and so on). PHP actually fakes out the web

server so that it thinks the request is coming from a normal web browser surfing the ‘Net rather

than a file-open operation.

You should be able to use forward slashes like this on either Unix or Windows, since the addresses

are URLs rather than filepaths:

$fd = fopen(“http://www.example.com/openfile.html/“, “r”);

Remember that technically a URL without a trailing slash is malformed, but through incorrect usage

most web servers will automatically rewrite the URL with the slash and try redirecting it. Versions

of PHP before 4.0.5 did not support redirects, so all HTTP fopen() requests would fail without the

trailing slash. After 4.0.5, the trailing slash became optional.

Remember that you need not necessarily use an HTTP connection just because you’re looking at an

HTML file. If you have filesystem access, you can open from the filesystem instead and treat the file

as a text file. The HTTP fopen() alternative is mostly useful for getting HTML pages from remote

web servers — as when you try to “scrape” data from an HTML page. The effect will be much like

viewing an HTML page and saving the source code.

PHP versions older than 4.3.0 were unable to make HTTPS fopens. Now, you can accomplish this

simply by using “https://“ rather than “http://“.

HTTP fopen()s are read-only. You will not be able to write to a remote HTML file using this type

of file manipulation.

TIPTIP

395

 Working with the Filesystem 23

FTP fopen
An FTP fopen() attempts to establish an FTP connection to a remote server by pretending to be an

FTP client. This is the trickiest of the four options because you need to use an FTP username and

password in addition to the hostname and path.

$fd = fopen(“ftp://username:password@example.com/openfile.txt/“,
“r”);

The FTP server must support passive mode for this method to work correctly. Also, FTP file opens

can only be read or write, not both at once, and writes can only be to new files, not to existing ones.

PHP has many specific FTP functions, sufficient to implement a complete FTP client in PHP. If you

want to do anything except a simple FTP file download, you should probably use them instead. See

the PHP manual at www.php.net/manual/en/ref.ftp.php.

Standard I/O fopen

Standard I/O read/writes are indicated by php://stdin, php://stdout, or php://stderr

(depending on the desired stream). The standard I/O fopen() comes into play mostly when PHP is

used on the command line or as a system scripting language, à la Perl, because standard I/O is usu-

ally associated with terminal windows.

A command-line script using a standard I/O fopen looks like this:

#! /usr/local/bin/php
<?php
$fp = fopen(“php://stdin”, “r”);
while (!feof($fp)) {
 echo fgets($fp, 4096);
}
echo “\n”;
?>

You would run it like this from a Linux/Unix command line (Windows would require the PHP

interpreter to be called from the command prompt itself).

echo “goo goo ga ga” | ./stdin_test.php

Filesystem fopen

The most common and useful way to use fopen() is from the filesystem. Unless specifically

directed otherwise, PHP will attempt to open from the filesystem.

On Windows systems, you can choose to use the Windows format with backslashes if desired — but

remember to escape them:

$fp = fopen(“c:\\php\\phpdocs\\navbar.inc”, “r”);

396

 Part III More PHP

You can use forward slashes from both Windows and Unix. You should not use a trailing slash for

filesystem fopen() calls.

Remember that your files, and potentially your directories, need to be readable or writ-

able by the PHP (or web server, if module) process UID rather than by you as a system

user. If you share a server, this means any of the other legitimate PHP users may be able to read and/or

write to your files.

File read
The fread() function takes a file-pointer identifier and a file size in bytes as its arguments. If the

file size given is not sufficient to read in the whole file, you will have mysterious problems (unless

you’re passing in a smaller file size on purpose, which is useful when reading huge files in chunks).

Unless you have a reason to do otherwise (such as a huge, unwieldy file), it’s best just to let PHP fill

in the file size itself, by using the filesize() function with the name of the file (or a variable) as

the argument:

$fstring = fread($fd, filesize($filename));

A common error is to type filesize($fd) rather than filesize($filename). You may not

remember this from the initial example, because in the intervening paragraphs, we’ve called the

used fopen() with an actual filename rather than a variable to which that name has been assigned,

as in the first example.

This is an extremely useful function because it allows you to turn any file into a string, which can

then be manipulated with PHP’s large variety of useful string functions. Any string can also be bro-

ken up into an array through use of a function like file() or explode(), which gives you access

to the large arsenal of PHP array-manipulation functions. PHP gives you more slicing and dicing

functions than a whole set of Ginsu knives!

If you wish to send the entire contents of a file to standard output (meaning, for most PHP installa-

tions, echoing it to the web browser window), use readfile() instead. This function has file open-

ing built in, so you need not use a separate function to open the file first. The readfile() function

is equivalent to the combination of fopen() and fpassthru().

Beginning with PHP 4.3.0, a new function called file_get_contents() was made available. This

function returns the entire contents of a file as a string, including the fopen(). It is equivalent to

fopen() and fread(), or to readfile() except returning the contents as a string rather than

straight to standard output.

If you wish to read in and perform operations on a file line by line, you can use fgets() instead

of fread(). Beginning in PHP 4.2.0, if you do not specify a line length as the second argument to

fgets(), the function will default to 1024 bytes per line.

$fd = fopen(“samplefile.inc”, “r”) or die(‘Cannot find file’);
while (!feof($fd)) {
 $line = fgets($fd, 4096);

TIPTIP

397

 Working with the Filesystem 23

 if ($line === $targetline)
 {echo “A match was found!”;}
}
fclose($fd);

If you would rather read the file in as an array, you can use the function file() instead. You might

want to do this if you’re reading one of the many types of data files that use newlines to indicate

rows — such as a spreadsheet saved to tab-delimited text format. This creates an array, each element

of which is a line from the original file, including an ending newline character. The function file()

does not require a separate file open or file close step. A single operation using file(), such as:

$line_array = file($filename);

is the equivalent of this:

$fd = fopen($filename, “r”) or die(“Can’t open file $filename”);
$fstring = fread($fd, filesize($filename));
$line_array = explode(“\n”, $fstring);

The file() function will work correctly only when PHP recognizes newlines. Hopefully,

PHP will handle newlines from other operating systems correctly — current Windows

and Unix versions of PHP seem to identify newline characters from the other operating system — but

we cannot guarantee that this will be true of every case.

Finally, if you’d like to read in a file character by character, you can use the fgetc() function. This

will return a character from the file pointer, until the end-of-file. In practice, this function is not

used very much, because it’s so inefficient to read in a file one character at a time. You’d probably

use fgetc() only in situations where you wanted to test the first or second character in the file.

Constructing file downloads by using fpassthru()
Besides reading in a file for manipulation by PHP, you can use fpassthru() in combination with

the PHP header() construct to assemble and send file downloads. For instance, let’s say you keep

lots of tab-delimited data lying around in files, and occasionally you need to let someone download

some data from them. Your users are typical businesspeople, not techies, so you know they use IE

and would prefer the data as an Excel spreadsheet. So you give the user an HTML form that he or

she can use to ask for the data from a particular day, and when it submits you assemble a download

and send it like so:

<?php

// This example assumes there is one data file per day,
// and your form lets the user specify the date they want to
// see.

$file = $_POST[‘date’].’.txt’;
$fp = $fopen($file, “r”);
header(“Content-Type:application/xls”);

CAUTION CAUTION

398

 Part III More PHP

header(“Content-Disposition:attachment;
filename=$_POST[‘date’].xls”);
// Notice we changed the file name and type
header(“Content-Transfer-Encoding:binary”);
fpassthru($fp);
?>

File downloads in PHP are surprisingly tricky because every browser implements the file

download behavior differently — even different versions of the same browser can have

different behaviors. The preceding method works fine in IE 6.0, but in Mozilla 1.0 the file will claim to

be of type application.xls but will download as 20020526.xls.php. Most of the methods neces-

sary to get a perfect file download are hacks and involve tricking the browser into thinking it’s down-

loading the file directly — for instance by tacking /$_POST[‘data’].xls onto the end of the URL

(for example, http://example.com/sample.php/20020526.xls). Also, if you saved the script

above as data.xls, and jiggered your web server into parsing .xls files as PHP, you could get a great

download in just about every browser. No single perfect method exists for every browser, but this is

one situation where you can’t just go by what you read in the PHP online manual.

File write
For file writing via PHP, directory permissions must be set to at least 703.

File writing is pretty straightforward if you’ve successfully opened in the correct mode

for your intended purpose. The function fwrite() takes arguments of a file pointer and a string,

with an optional length in bytes, which should not be used unless you have a specific reason to do

so. It returns the number of characters written.

$fout = fwrite($fp, $fstring);
if ($fout != strlen($fstring)){
 echo “file write failed!”;
}

The function fputs() is identical to fwrite() in every way. They are simply aliases for one

another, but fputs() is the C-style function name.

Keep in mind that opening a file in w or w+ modes will result in the complete and utter obliteration

of any file contents. These modes are meant for clean overwrites only. If you want to write to the

beginning or end of a file, use r+ or a+, respectively.

Probably the most common error with PHP file writing modes involves using a web interface (in

other words, an HTML form) to edit a text file. If you want to open a file, read in and view the con-

tents, then write an edited version to the same filename, you cannot depend on w+ mode. The w

modes erase the contents of the file immediately upon opening it — thus, although you can fread()

from a w+ file, there will be no text to read until after you write to it. To get around this issue, you

need to open once in read mode and once in write mode, as in the following example:

<?php
if (IsSet($_POST[‘submitted’])) {

CAUTION CAUTION

NOTENOTE

399

 Working with the Filesystem 23

 $fd = fopen($filename, “w+”)
 or die(“Can’t open file $filename”);
 $fout = fwrite($fd, $_POST[‘newstring’]);
 fclose($fd);
}
$fd = fopen($filename, “r”) or die(“Can’t open file $filename”);
$initstring = fread($fd, filesize($filename));
fclose($fd);
echo “<HTML>”;
echo “<FORM METHOD=’POST’ ACTION=\“$_SERVER[‘PHP_SELF’]\“>”;
echo “<INPUT TYPE=’text’ SIZE=50 NAME=’newstring’
VALUE=\“$initstring\“>”;
echo “<INPUT TYPE=’HIDDEN’ NAME=’submitted’ VALUE=1>”;
echo “<INPUT TYPE=’SUBMIT’>”;
echo “</FORM>”;
echo “</HTML>”;
?>

Let us reiterate that file writing is not at all a good idea unless you can control your environment

very tightly! In other words, a well-hardened intranet server might be appropriate, but file writing

on a production web site can be a security risk. For more information, see Chapter 28.

As we explain in Chapter 29, in PHP there is now a very easy mechanism to disable the capability

to file write. This is a great idea especially if your site is entirely database-driven, in which case you

don’t have any legitimate need to write to the filesystem with PHP anyway. To disable file writing,

simply add fwrite to the list of disabled functions in php.ini:

disabled_functions = “fwrite”

If you don’t use php.ini and need to set this value in Apache httpd.conf, remember that it

requires a php_admin_value flag (rather than php_value):

php_admin_value disabled_functions=”fwrite”;

File close
File closing is straightforward:

fclose($fd);

Unlike fopen(), the result of fclose() does not need to be assigned to a variable. File closing may

seem like a waste of time, but your system has only so many file descriptors available, and you may

run out if you do not close your files. On the other hand, PHP will close all open files when your

script ends, and at least one version of PHP3 had a buggy fclose() function, which would crash

the server. You know your own setup best, and you can make the call.

400

 Part III More PHP

Filesystem and Directory Functions
Most of these functions will be quite familiar to Unix users, as they closely replicate common system

commands.

Many of the functions in this section are dangerous. Because they duplicate func-

tions that can and should be performed from the local system, they can be a cracker’s

bonanza without providing much value to legitimate users. Strongly consider disabling them using

PHP’s disable_functions directive (as discussed in the preceding section on file writing)!

The one piece of good news is that some of these functions will only work if the PHP process is run-

ning as the superuser. Because this is not the default case in the web browser, presumably these

functions are intended to be used by the scripting version of PHP, and only trusted users who know

what they’re doing are even in a position to shoot themselves in the foot this way. Of course, if you

are foolish enough to run your web server as root, you are doubly screwed.

The most common and safest functions are listed first in the following sections; the less common

and less safe are listed in Table 23-1.

feof
The feof function tests for end-of-file on a file pointer and takes a filename as argument. It’s used

mostly in a while loop to perform the same function on each line in a file:

while (!feof($fd)) {
 $line = fgets($fd, 4096);
 echo $line;
}

file_exists
The file_exists function is a simple function you will use again and again if you use filesystem

functions at all. It simply checks the local filesystem for a file of the specified name.

if (!file_exists(“testfile.php”)) {
 $fd = fopen(“testfile.php”, “w+”);
}

The function returns true if the file exists, false if not found. The results of this test are stored in

a cache, which may be cleared by use of the function clearstatcache().

filesize
Another simple but useful function is filesize, which returns and caches the size of a file in bytes.

We use it in all the fread() examples earlier in this chapter. Never pass in a filesize as an integer if

you can do it by using filesize() instead.

CAUTION CAUTION

401

 Working with the Filesystem 23

TABLE 23-1

Filesystem Functions
Function Description

basename (filepath,
[suffix])

Returns the filename portion of a stated path.

chgrp(file, group) Changes file to any group to which the PHP process belongs. Inoperative
on Windows systems.

chmod(file, mode) Changes to the stated octal mode. Inoperative on Windows systems.

chown(file, user) If executed by the superuser, changes file owner to stated owner.
Inoperative but returns true on Windows systems.

clearstatcache Clears cache of file status info.

copy(file,
destination)

Copies file to stated destination.

delete(file) See “unlink.”

dirname(path) Returns the directory portion of a stated path.

disk_free_space(
“/dir”)

Returns the number of free bytes in a given directory.

fgetcsv(fp, length,
delimiter [,
enclosure])

Reads in a line and parses it for CSV format.

fgetss(fp, length [,
allowable_tags])

Gets a file line (delimited by a newline character) and strips all HTML and
PHP tags except those specifically allowed.

fileatime(file) Returns (and caches) last time of access.

filectime(file) Returns (and caches) last time of inode change.

filegroup(file) Returns (and caches) file group ID number. Names can be determined by
using posix_getgrgid().

fileinode(file) Returns (and caches) file inode.

filemtime(file) Returns (and caches) last time of modification.

fileowner(file) Returns (and caches) owner ID number. Names can be determined by
using posix_getpwuid().

fileperms(file) Returns (and caches) file permissions level.

continued

402

 Part III More PHP

TABLE 23-1 (continued)

Filesystem Functions
Function Description

filetype(file) Returns (and caches) one of: fifo, char, dir, block, link, file,
unknown.

flock(file,
operation
[,&wouldblock])

Advisory file locking. Operation value must be LOCK_SH (shared),
LOCK_EX (exclusive), LOCK_UN (release), or LOCK_NB (don’t block while
locking). The optional third parameter is set to true if enforcing the lock
would block existing access.

fpassthru(fp) Standard output of all data from file pointer to EOF.

fseek(fp, offset,
whence)

Moves file pointer offset number of bytes into file stream from the position
indicated by whence.

ftell(fp) Returns offset position into file stream.

stream_set_write_
buffer(fp [,
buffersize])

Sets a buffer for file writing; the default is 8K.

Is_dir(directory) Returns (and caches) true if named directory exists.

Is_executable(file) Returns (and caches) true if named file is executable.

Is_file(file) Returns (and caches) true if named file is a regular file.

Is_link(file) Returns (and caches) true if named file is a symlink.

Is_readable(file) Returns (and caches) true if named file is readable by PHP.

is_writable (file/
directory)

Returns (and caches) true if named file or directory is writable by PHP.

link(target, link) Creates hard link. Inoperative on Windows systems.

linkinfo(path) Confirms existence of link. Inoperative on Windows systems.

mkdir(path, mode) Makes directory at location path with the given permissions in octal mode.

pclose(fp) Closes process file pointer opened by popen().

popen(command, mode) Opens process file pointer.

readlink(link) Returns target of a symlink. Inoperative on Windows systems.

rename(oldname,
newname)

Renames file.

403

 Working with the Filesystem 23

Function Description

rewind(fp) Resets file pointer to beginning of file stream.

rmdir(directory) Removes an empty directory.

stat(file) Returns a selection of info about file.

lstat(file) Returns a selection of info about file or symlink.

symlink(target,
link)

Creates a symlink from target to link. Inoperative on Windows systems.

touch(file, [time]) Sets modification time; creates file if it does not exist.

umask(mask) Returns umask, and sets to mask & 0777. With no argument passed, it
simply returns the umask.

unlink(file) Deletes file.

Network Functions
The network functions are a bunch of relatively little used functions that provide network informa-

tion or connections. Many of these may be more useful from the command line than the web page,

unless you’re writing some kind of monitoring tool.

Syslog functions
The syslog functions allow you to open the system log for a program, generate a message, and close

it again.

openlog([ident],■■ option, facility) is entirely optional when used with syslog().

The ident value is generated automatically.

syslog(priority,■■ message) generates a system log entry.

closelog()■■ is entirely optional when used with syslog(). It takes no arguments.

DNS functions
PHP offers some very slick DNS-querying functions, outlined in the Table 23-2. These functions

allow PHP scripts to do some jiggering between IP address (which is available via the Apache

REMOTE_ADDR variable, for instance) and hostname, or vice versa.

404

 Part III More PHP

TABLE 23-2

DNS Functions
Function Description

checkdnsrr($host, [$type]) Checks for existence of DNS records. Default is MX; other types
are A, ANY, CNAME, NS, SOA, PTR and AAAA. Doesn’t exist on
Windows.

gethostbyaddr($Ipaddress) Gets hostname corresponding to address.

gethostbyname($hostname) Gets address corresponding to hostname.

gethostbynamel($hostname) Gets list of addresses corresponding to hostname.

getmxrr($hostname, [mxhosts
array], [weight])

Checks for existence of MX records corresponding to hostname,
places in mxhosts array, fills in weight info. This function doesn’t
exist on Windows.

Socket functions
A socket is a kind of dedicated connection that allows different programs (which may be on different

machines) to communicate by sending text back and forth. PHP socket functions allow scripts to

establish such connections to socket-based servers. For instance, web and database servers commu-

nicate via fsockopen() — so you could theoretically write your own web server in PHP using this

function, if you had lost all contact with reality. The connection can then be read from or written to

with the standard file-writing functions (fputs(), fgets(), and so on.)

The standard socket-opening function is fsockopen(). The pfsockopen() function is identical

except that sockets are not destroyed when your script exits; instead, the connection is pooled for

later use. The blocking behavior of socket connections can be toggled with set_socket_block-
ing(). When blocking is enabled, functions that read from sockets will hang until there is some

input to return; when it is disabled, such functions will return immediately if there is no input.

These functions are summarized in Table 23-3.

TABLE 23-3

Socket Functions
Function Description

fsockopen($hostname, $port,
[error number], [error string],
[timeout in seconds])

Opens the socket connection to specified port on the host,
and returns a file pointer suitable for use by functions like
fgets().

405

 Working with the Filesystem 23

Function Description

getservbyname($service,
$protocol)

Returns the port number of the specified service.

getservbyport($port, $protocol) Returns service name on port.

pfsockopen($hostname, $port,
[error number], [error string],
[timeout in seconds])

Opens the specified persistent socket connection.

stream_set_blocking($socket
descriptor, $mode)

TRUE for blocking mode, FALSE for nonblocking. Default
is nonblocking.

Date and Time Functions
These functions are basic tools used in many self-defined functions. You may use them simply to out-

put the date or time, to keep track of microtime for a PHP performance-tracking utility, or to initiate a

function over a particular date range (such as putting a Happy Holidays message on your site dur-

ing holiday seasons).

These are pretty straightforward to use if you understand the Unix timestamp. They fall into three

main categories: functions that return date or time, functions that format date or time, and functions

that validate date.

The Unix timestamp measures time as a number of seconds since the beginning of the

Unix epoch (midnight Greenwich Mean Time on January 1, 1970). Despite the name,

these functions mostly work on Windows also.

If you don’t know either date or time
The fastest way to get a time is to use the function time(). This will return the Unix timestamp

for your locale, which will look something like 101906652. If you plan to pass this timestamp to

another function or program, this is the best format. Alternatively, you can then use one of the

functions in the next section to format the timestamp into something a bit more human-readable.

You could also use microtime() to return the current time in seconds and microseconds since the

Unix epoch. This can be supremely helpful for utilities that are designed to measure performance. The

format is 0.74321900 961906846, where the first part is microseconds and the second is the Unix

timestamp. If you’re trying to (for instance) measure the performance of different parts of your web

page, you really just want the microseconds part, which can be cut out like this:

<?php
$stampmebaby = microtime();
$chunks = explode(“ “, $stampmebaby);

TIPTIP

406

 Part III More PHP

$microseconds = $chunks[0];
echo $microseconds;
?>

A function used to return date information is getdate($timestamp). When used with the argu-

ment time(), as in getdate(time()), it returns an associative array with the following numeric

elements derived from the Unix timestamp:

Seconds■■

Minutes■■

Hours■■

Mday (day of the month, for example ■■ 1–31)

Wday (day of the week, for example ■■ 1–7)

Mon (month, for example ■■ 1–12)

Year (numeric, for example ■■ 1984)

Yday (day of the year, for example ■■ 1–365)

Weekday (day of the week, for example ■■ Sunday–Saturday)

Month (for example ■■ January–December)

You can also use the getdate() function with a Unix timestamp other than that representing the

current time.

If you want to get the time and format it in one step, you can use date() instead of getdate(). In

the absence of a Unix timestamp argument, date() will default to the current local date. This has

the advantage of allowing nicer formatting, as we will explain in the next subsection. The function

strftime() will also format the current Unix timestamp for you (as we explain in the next subsec-

tion) unless another is specified.

If you’ve already determined the
date/time/timestamp
The functions in this section come into play if you already have a timestamp and merely wish to

format the information more finely. For instance, you may like to express your dates European style

(2000.20.04) rather than American (4/20/2000).

The main method to format a timestamp is using date($format...$formatn[, $timestamp]).

You pass a series of codes indicating your formatting preferences, plus an optional timestamp. For

instance:

date(‘Y-m-d’);

407

 Working with the Filesystem 23

returns a string like 2002-05-27. You can choose a date with two-zero day identifiers or strictly

numeric date identifiers, 12- or 24-hour format, or abbreviated month name. (See the PHP manual

for all the options.) An analogous function is gmdate($format...$formatn [, $timestamp]),

which will return a Greenwich Mean Date.

The function strftime($format...$formatn[, $timestamp]) is similar but specializes in

formatting the time rather than the date; gmstrftime($format...$formatn [, $timestamp])

returns the time in formatted Greenwich Mean Time.

The function mktime() allows you to convert any date into a timestamp. It’s subtly different in the

order of arguments from the Unix command of the same name, so pay attention. The function gmm-
ktime() gives the Greenwich alternative to your own time zone.

Finally, checkdate($month, $day, $year) allows you to quickly ensure that a particular date is

a valid one. This is great for leap-year questions.

Calendar Conversion Functions
Finally, we have some optional calendar conversion routines, which are now available as an extension.

Many new users have made the mistake of thinking calendar functions mean date func-

tions. Not so. These functions strictly convert between different (largely historical) cal-

endar systems. See “Date and Time Functions” earlier in this chapter if you feel you have entered this

section in error.

If you happen to be a French historian, you’ll be happy to know that PHP can automatically convert

between the French Revolutionary calendar and the Gregorian calendar with but a couple of com-

mands. What can we say to that but: Bon Thermidor, citoyens et citoyennes!

Seriously, these functions have real uses — particularly on the global Internet. (And not to be

ungrateful or anti-Judeo-Christian-centric . . . but Joyce is patiently and lazily waiting for someone

to add the Chinese lunar calendar to PHP, so she can always know when Chinese New Year celebra-

tions will occur.)

Conversion between systems is made possible because all the calendar functions share a universal

referent, the so-called “Julian Day Number” (aka “Julian Day Count”). This is an integer that repre-

sents the days since noon on the first of January, 4713 BC by the Julian calendar (which wasn’t in

use at the time, but why nitpick?). This date would be the 14th of January in the Gregorian calendar,

which is commonly used in secular societies today. The so-called “Julian Date” is a double that rep-

resents the days and hours since Julian Day Zero — but PHP does not allow this level of specificity;

we’re just mentioning it here in case anyone is looking for this information.

Remember that the Julian day changes at noon rather than midnight, which is the con-

vention today.

TIPTIP

TIPTIP

408

 Part III More PHP

PHP’s calendar conversion functions translate a date in some calendar into or out of Julian Day

Count. To convert between two calendars, you will need to use two separate functions: one to give

the date from one calendar as a Julian Day Number, and the other to convert JD into another cal-

endar’s date. In this example, we are converting a Gregorian date into its equivalent in the Jewish

calendar.

$jd_no = gregoriantojd(8, 11, 1945);
$hebrew = jdtojewish($jd_no);
echo $hebrew;

This will return a date of 2, 6 [Elul], 5705. Conversion to the Jewish calendar is somewhat

complicated by the fact that it uses lunar months and its days begin at sunset rather than midnight.

The calendars offered at the moment are:

French Republican■■

Gregorian■■

Jewish■■

Julian■■

Unixian■■

Each of these calendars has associated “JDToX” and an “XToJD” functions.

Finally, there are two other pairs of miscellaneous calendar functions. JDMonthName() and

JDDayofWeek() return the month and day of week of any Julian Day Number in any of the sup-

ported calendars, whereas easter_date() and easter_days() will tell you when (Western

or Catholic, as opposed to Eastern or Orthodox) Easter falls/fell/will fall in any given year. eas-
ter_date() is the more straightforward method but can only be used within a Unix date range

(1970–2037). It returns the Unix timestamp of Easter midnight in the specified year.

Summary
PHP has numerous filesystem and system functions built in, which can be extremely handy,

although sometimes potentially insecure. A large number of PHP functions duplicate Unix systems

utilities, such as chmod() and copy(). PHP can also boast some extra-clever functions such as

those for DNS querying. Although we recommend turning off some of these functions, others can be

useful in trusted hands and a well-planned environment.

PHP’s file opening, reading, and writing functions are extremely powerful tools. Most problems with

these functions result from a slightly incorrect understanding of the file-opening modes. In addition

to filesystem fopen(), PHP supports very slick HTTP, HTTPS, FTP, and standard I/O file opening.

Finally, PHP offers a plethora of time, date, and calendar functions so you always know what time it is.

409

T
his chapter might as well have been called “Keeping Track,” because

its theme throughout is the problem of tracking interactions with

users over longer periods of time than it takes to generate a single

web page. We explain the extent of PHP support for extended user sessions

and for setting and checking cookies, and then cover a couple of related

techniques involving directly sending HTTP headers.

Sessions and cookies are closely allied concepts in PHP and in web program-

ming more generally, largely because the best way to actually implement ses-

sions is by using cookies. Sessions are a higher-level concept than cookies,

and for this chapter we plan to start at the top and work our way down.

What’s a Session?
What do we mean by a session? Informally, a session of web browsing is a

period of time during which a particular person, while sitting at a particu-

lar machine, views a number of different web pages in his or her browser

program and then calls it quits, either for the night or because the person

in question actually has a life. If you run a web site that this person visits

during that time, for your purposes the session runs from that person’s

first download of a page from your site through the last. For example, a

Caribbean hotel’s web site might enjoy a session of five pages duration in

the middle of a real user’s session that began with a travel portal and ended

with that user booking his or her vacation with a competitor.

Working with
Cookies and Sessions

IN THIS CHAPTER

Why do you need sessions?

How PHP sessions are

implemented

Cookies and their use

Sending HTTP headers with PHP

410

 Part III More PHP

So what’s the problem?
Why is the idea of a session tricky enough that we’re just talking about it now, even though PHP is

at version 6 already? It’s because the HTTP protocol by which browsers talk to web servers is state-
less, with the result that your web server has less long-term memory than your housecat. That is,

your web server reacts independently to each individual request it receives and has no way to link

requests together even if it is logging requests. If I sit at my computer in Chicago, and you sit at

yours in Monterey, and we both ask for page one and then page two of the Caribbean hotelier’s site,

the HTTP protocol offers no help toward figuring out that two people looked at two pages each —

what it sees is four individual requests for pages, with various information attached to each request.

Not only does this information not identify you personally (by name, e-mail address, phone number,

or any other traceable identification); it offers nothing reliable to identify your two page requests as

being from the same person.

Why should you care?
If our web site’s only mission in life is to offer various pages to various users, we may, in fact, not

care at all where sessions begin and end. On the other hand, there are a number of reasons why we

might in fact care. For example:

We want to customize our users’ experiences as they move through the site, in a way that ■■

depends on which (or how many) pages they have already seen.

We want to display advertisements to the user, but we do not want to display a given ad ■■

more than once per session.

We want the session to accumulate information about users’ actions as they progress — as ■■

in an adventure game’s tracking of points and weapons accumulated or an e-commerce

site’s shopping cart.

We are interested in tracking how people navigate through our site in general — when they ■■

visit that interior page, is it because they bookmarked it, or did they get there all the way

from the front page?

For all of these purposes, we need to be able to match up page requests with the sessions they are

part of, and for some purposes it would be nice to store some information in association with the

session as it progresses. PHP sessions solve both of these problems for us.

Home-grown Alternatives
Before we look at PHP’s treatment of sessions, let’s look at a few alternative ways the problem can be

handled. As you’ll see, the PHP treatment combines a couple of these techniques.

411

 Working with Cookies and Sessions 24

IP address
Web servers usually know either the Internet hostname or the IP address of the client that is requesting

a page. In many configurations of PHP, these show up for free as variables — $_SERVER[‘REMOTE_
HOST’] and $_SERVER[‘REMOTE_ADDR’], respectively. Now you might think that the identity of the

machine at the other end is a reasonable stand-in for the person at the other end, at least over the short

term. If you get two requests in quick succession from the same IP address, your code can safely con-

clude that the same person followed a link or form from one of your site’s pages to another.

Unfortunately, the IP address your browser knows about may not belong to the machine your user

is browsing from. In particular, AOL and other large operations employ proxy servers, which act as

intermediaries. Your user’s browser actually requests a URL from the proxy server, which in turn

requests the page from your server and then forwards back the page to the user. The result is that

many different AOL users might be browsing your site simultaneously, all apparently from the same

address. IP addresses are not unique enough to form a basis for session tracking.

Hidden variables
Every HTTP request is dealt with independently, but each time your user moves from page to page

within your site, it is usually via either a link or a form submission. If the very first page a user vis-

its can somehow generate a unique label for that visit, every subsequent “handoff” of one page to

another can pass that unique identifier along.

For example, here is a hypothetical code fragment that you might include near the top of every page

on your site:

if (!IsSet($_GET[‘my_s_id’]))
 $my_session_id = generate_session_id();
 // warning! hypothetical function

This fragment checks to see if the $_GET[‘my_s_id’] variable is bound — if it is, we assume that

it has been already set and we are in the middle of a session. If it is not, we assume that we are the

first page of a new session, and we call a hypothetical function called generate_session_id() to

create a unique identifier.

After we have included the preceding code, we assume that we have a unique identifier for the ses-

sion, and our only remaining responsibility is to pass it along to any page we link or submit to.

Every link from our page should include the $my_s_id as a GET argument, as in:

<A HREF=”next.php?my_s_id=<?php echo $_GET[‘my_s_id’];?>”>Next

And every form submission should have a hidden POST argument embedded in it, like this:

<FORM ACTION=next.php METHOD=POST>
body of form
<INPUT TYPE=HIDDEN NAME=my_s_id
 VALUE=”<?php echo $_GET[‘my_s_id’];?>” >
</FORM>

412

 Part III More PHP

What’s wrong with this technique? Nothing. It works just fine as a way to keep different sessions

straight (as long as you can generate unique identifiers). And once we have unique labels for the

sessions, we can use a variety of techniques to associate other kinds of information with each ses-

sion, such as using the session ID as a key for database storage. However, this approach to sessions

is a pain to maintain — you must make sure that every link and form submission propagates the

information as described, or the session identifier will be dropped. Also, if you send the information

as GET arguments, your session-tracking machinery will be visible in the web-address box of your

user’s browser, and such arguments are easily edited by the user. Passing around unique identifiers

in GET requests is probably the least secure method of maintaining state in web development, as well

as possibly causing problems when your users try to cut and paste links — for instance, if they want

to send a link to their friends via e-mail.

Cookie-based home-grown sessions
Another approach to session tracking is to use a unique session identifier as in the previous section

but perform the handoff by setting or checking a cookie.

A cookie is a special kind of file, located in the filesystem of your user’s browsing computer, that

web servers can read from and write to. Rather than checking for a passed GET/POST variable (and

assigning a new identifier if none is found), your script checks the user’s machine for a previously

written cookie file and stores a new identifier in a new cookie file if none is found or if the old cookie

has expired. This method has some benefits over using hidden variables: The mechanism works

behind the scenes (typically, not showing any trace of its activity in the browser window), and the

code that checks or sets the cookie can be centralized (rather than affecting every form and link).

What’s the drawback? Some very old browsers do not support cookies at all, and more recent brows-

ers allow users to deny cookie-setting privileges to web servers. So, although cookies make for a

smooth solution, we can’t assume that they are always available.

There is a subtle difference in the “coverage” of cookie-based sessions and that of sessions

based on GET/POST variables. A variable-based session will only maintain its identity as

long as your user stays within your site, following intrasite links or form postings. However, there are any

number of ways that a user might go away and come back again within a short period of time — by visit-

ing a site that your site links to, which in turn links back or by wandering away and then finding your site

again with a search engine. Cookie-based approaches will treat returns from these little detours as a con-

tinuation of the same session, whereas variable-propagation approaches have to treat them as new visits.

We cover cookies in more detail in the “Cookies” section later in the chapter.

How Sessions Work in PHP
Good session support takes care of the following two things:

Session tracking (that is, detecting whether two separate script invocations are, in fact, part ■■

of the same user session).

Storing information in association with a session.■■

NOTENOTE

413

 Working with Cookies and Sessions 24

Obviously, you need the first capability before you can hope to have the second.

PHP session tracking works by a combination of the hidden-variables method and the cookie

method described in the preceding section. Because of the advantages of cookies, PHP will use them

when the user’s browser supports them and, otherwise, will have recourse to stashing the session

ID in GET and POST arguments. Fortunately, though, the session functions themselves operate at a

more abstract level and take care of checking for cookie support all by themselves. If your version of

PHP has been appropriately configured for sessions, you should be able to use the session functions

without worrying which method is being used.

If you want PHP to transparently handle passing session variables for you when cookies

are not available, you need to have configured PHP with both the --enable-trans-
sid and --enable-track-vars options. If PHP is not handling this for you, you must arrange to

pass a GET or POST argument, of the form session_name=session_id, in all your links and forms.

When a session is active, PHP provides a special constant, SID, which contains the right argument/value

pair. Following is an example of including this constant in a link:

<A HREF=”my_next_page.php?<?php echo(SID);?>”>Next page

Making PHP aware of your session
The first step in a script that uses the session feature is to let PHP know that a session may already

be in progress so that it can hook up to it and recover any associated information. This is done

by calling the function session_start(), which takes no arguments. (If you want every script

invocation to look for a session without having to call this function, set the variable session.
auto_start to 1 in your php.ini file, rather than the usual default of 0.) Also, any call to ses-
sion_register() causes an implicit initial call to session_start().

The effect of session_start() depends on whether PHP can locate a previous session identifier,

as supplied either by HTTP arguments or in a cookie. If one is found, the values of any previously

registered session variables are recovered. If one is not found, then PHP assumes that we are in the

first page of a new session, and generates a new session ID.

Propagating session variables
Changes in PHP’s treatment of global and external variables starting with version 4.1 have made cer-

tain things more inconvenient. In our view, though, these changes will also remove a lot of potential

confusion about sessions. Accordingly, we’ll list two approaches to propagating variables in sessions:

one, which is simple and works in PHP version 4.1 or later, and another which is more complicated

and works only in PHP version 4.1 or earlier (unless you reenable the register_globals setting in

php.ini). (You can guess which one we recommend.)

The simple approach (using $_SESSION)
The simple approach is this: Assuming that you’ve made a call to session_start() (as early in

your script as possible), use the $_SESSION superglobal array as your suitcase for storing any-

thing that you want to retrieve again from a later page in the same session. Assume that any other

NOTENOTE

414

 Part III More PHP

variables will be left behind when you leave this page and that everything in that suitcase will be

there when you arrive at the next page.

So, session code to propagate a single numerical variable can be as simple as this:

<?php
session_start();

$temporary_number = 45;
$save_this_one = 19;
$another_temporary = 33;

$_SESSION[‘save_this’] = $save_this_one;
?>

The receiving code can be as simple as the following example:

<?php
session_start();
$saved_from_prev_page = $_SESSION[‘save_this’];
[..]
$temporary_number = 45;
$another_temporary = 33;
[..]
?>

That’s all there is to it. Assignment into the $_SESSION superglobal array implicitly does any regis-

tration necessary for the new value to be carried forward to the next page.

Note that we could have given the same name to both the variable ($save_this_one) and the cor-

responding $_SESSION index (save_this), because the two have nothing to do with one another.

For this simple approach, we assume that register_globals has been turned off (as it is by default in

versions 4.2 and later), so that no session variables are being automatically promoted into global variables.

Or, more precisely, we don’t care whether it is turned on or not; the code will work in either situation.

The $_SESSION array is one of the superglobal variables introduced in PHP4.1. The

superglobal adjective means that it can be referenced anywhere in PHP code, even

within functions, without first being declared global.

Where is the data really stored?
There are two things that the session mechanism must hang onto: the session ID itself and any asso-

ciated variable bindings.

As you have seen, either the session ID is stored as a cookie on the browser’s machine, or it is incor-

porated into the GET/POST arguments submitted with page requests. In the latter case, there is really

no storage happening — the ID is submitted as part of a request and is returned folded into HTML

code for links and forms, which may generate the next request. The browser and server pass this vital

information back and forth like a hot potato, and the session is effectively over if either side drops it.

NOTENOTE

415

 Working with Cookies and Sessions 24

By default, the contents of session variables are stored in special files on the server, one file per

session ID. (It’s already slightly rude to store the session ID as a client-side cookie — it would be

even more rude to store session variable data on the client disk when it’s not necessary.) Doing this

kind of storage requires the session code to serialize the data, which means turning it into a linear

sequence of bytes that can be written to a file and read back to recreate the data.

Obviously, storing session data on the server like this will cause problems in most clusters since

each web server will be writing to files on its own (presumably unshared) disk. Unless your cluster-

management scheme enforces all page views per session to be served from a particular host — which

is uncommon, since in most cases that conflicts with the goals of load management and seamless

failover — a new session will be started every time a page request is routed to a different server.

There are three main methods to solve this issue, none of them easy or foolproof to implement.

First, a company can write its own custom session-data-sharing layer. In this case, PHP will think

it’s making normal session-registration calls, but instead of writing to disk, a custom server will

intercept the requests and centralize the data. However, developing and maintaining such a server

and the customized version of PHP required is not cheap. Second, it’s possible to direct PHP to write

session data not to the normal local disk location (that is, /tmp) but to some other share which

could be mounted by all web servers (such as /shared/session). This is the fastest solution if you

have good sysadmins, since it requires only a change to the session.save_path setting in php.
ini. Finally, it’s possible to configure PHP to store the contents of session variables in a server-side

database, rather than in files. This is probably the most common solution to the problem, although

it should be kept in mind that this strategy will increase the impact of database failures. For more

information, see the section “Configuration Issues” later in this chapter.

In the first edition of this book, we warned you that serialization support for objects was

still problematic, and so we didn’t recommend trying to store object variables in sessions.

Fortunately, in PHP version 4.1 and later, session serialization seems to be stable. See Chapter 20 for

more about object.

Sample Session Code
In Listing 24-1, we show a short code file, which really has a dual purpose. The first purpose is to

provide an example of a full (short) script that successfully uses session functions; the second is to

provide a test script that you can use to make sure that you have session support and that it is doing

what you expect.

In this listing, we perform the following tasks:

Initiate a session (or pick up an existing one) by using ■■ session_start().

Check for the existence of a preexisting entry in ■■ $_SESSION. If one is not present, we

assume that the session is new.

Increment a counter that tracks how many times that the user has visited this page.■■

Store the incremented counter back in ■■ $_SESSION.

Provide a link back to the page itself, embedding the session ID as an argument if it is found.■■

CROSS-REFCROSS-REF

416

 Part III More PHP

LISTING 24-1

Test script using $_SESSION

<?php
session_start();
?>

<HTML><HEAD><TITLE>Greetings</TITLE></HEAD>
<BODY>
<H2>Welcome to the Center for Content-free Hospitality</H2>
<?php

if (!IsSet($_SESSION[‘visit_count’])) {
 echo “Hello, you must have just arrived.
Welcome!
”;
 $_SESSION[‘visit_count’] = 1;
}
else {
 $visit_count = $_SESSION[‘visit_count’] + 1;
 echo “Back again are ya? That makes $visit_count times now “.
 “(not that anyone’s counting)
”;
 $_SESSION[‘visit_count’] = $visit_count;
}

$self_url = $_SERVER[‘PHP_SELF’];
$session_id = SID;
if (IsSet($session_id) &&
 $session_id) {
 $href = “$self_url?$session_id”;
}
else {
 $href = $self_url;
}
echo “
Visit us again sometime”;
?>
</BODY></HTML>

This code should be available at www.troutworks.com/phpbook and is suitable for your use in

testing your session support if you are using PHP4.1 or later. (See Listing 24-2, a little later in this

section, if you are using a pre-4.1 version or if you prefer the register_globals style of using ses-

sions.) After obtaining the code, you should first simply test that it loads without errors. The page

you see should look something like that shown in Figure 24-1. After that, to see if cookie-based ses-

sion support is working, try simply reloading or refreshing the page in your browser. You should see

a page that looks something like Figure 24-2.

417

 Working with Cookies and Sessions 24

FIGURE 24-1

Session test page

FIGURE 24-2

Session test page, second visit

If the result of your second visit is Figure 24-2, cookie-based session support is working. If instead

it still looks like Figure 24-1, then PHP did not detect your session. Make sure that the browser

you are testing with is configured to accept cookies and take a look at the section “Gotchas and

Troubleshooting” at the end of this chapter.

The second half of Listing 24-1 is about constructing a self-link that will propagate session informa-

tion even without cookie support. You can test it by turning off cookies in your test browser. (This is

usually an Advanced or Security option in your browser’s preferences or options.) After cookies have

been turned off, you should be treated as a first-time visitor when you reload the page. However,

with cookies off, the SID constant should now contain the session ID name and value, which our

code embeds in the link’s URL as a GET argument. Clicking on this link should increment the visit

418

 Part III More PHP

count appropriately, and thereafter either clicking the link or reloading should increment it again

(because the session ID should now be in the URL that is being reloaded).

This embedding of the session ID in the URL is exactly what should be unnecessary if PHP has been

compiled with --enable-trans-sid. In this case, you should be able to add another self-link to

this page, without embedding anything extra in the URL, and PHP should take care of it for you.

Listing 24-2 shows the same test script as in Listing 24-1, except that it does not use superglobal

variables and assumes that the register_globals directive has been turned on. It’s appropriate if

you happen to be using PHP version 4.0.x, or if you prefer the register_globals style. Remember

that code you write using register_globals will not be portable to many other PHP servers.

LISTING 24-2

Test script assuming register_globals

<?php
session_start();
session_register(‘visit_count’);
?>

<HTML><HEAD><TITLE>Greetings</TITLE></HEAD>
<BODY>
<H2>Welcome to the Center for Content-free Hospitality</H2>
<?php
if (!IsSet($visit_count)) {
 echo “Hello, you must have just arrived.
Welcome!
”;
 $visit_count = 1;
}
else {
 $visit_count++;
 echo “Back again are ya? That makes $visit_count times now “.
 “(not that anyone’s counting)
”;
}

$self_url = $_SERVER[‘PHP_SELF’];
$session_id = SID;
if (IsSet($session_id) &&
 $session_id) {
 $href = “$self_url?$session_id”;
}
else {
 $href = $self_url;
}
echo “
Visit us again sometime”;
?>
</BODY></HTML>

419

 Working with Cookies and Sessions 24

Session Functions
Table 24-1 lists the most important session-related functions, with descriptions of what they do.

Note that in some cases the behavior of these functions depends on configuration options that we

detail in the “Configuration Issues” section.

TABLE 24-1

Session Function Summary
Function Behavior

session_
start()

Takes no arguments and causes PHP either to notice a session ID that has been passed
to it (via a cookie or GET/POST) or to create a new session ID if none is found.

If an old session ID is found, PHP retrieves the assignments of all variables that
have been registered and makes those assigned variables available as regular global
variables.

session_
register()

Takes a string as argument and registers the variable named by the string — for
example, session_register(‘username’). (Note: The variable-name string
should not include the leading $.) It can also be passed an array of string arguments
to register multiple variables at once. Unnecessary if using $_SESSION or $HTTP_
SESSION_VARS.

The effect of registering a variable is that subsequent assignments to that variable will
be preserved for future sessions. (After a script completes, the registered variables and
their values are serialized and propagated in such a way that later calls to session_
start() can recreate the bindings.)

If session_start() has not yet been called, session_register will implicitly
call it before executing.

session_
unregister()

Takes a string variable name as argument and unregisters the corresponding variable
from the session. As a result, the variable binding will no longer be serialized and
propagated to later pages. (The variable-name string should not include the leading $.)
Unnecessary if using $_SESSION or $HTTP_SESSION_VARS.

session_is_
registered()

Takes a variable-name string and tests whether a variable with a given variable name is
registered in the current session, returning TRUE if so and FALSE if not. Unnecessary if
using $_SESSION or $HTTP_SESSION_VARS, use isset() instead.

session_
destroy()

Calling this function gets rid of all session variable information that has been stored.
(Note: A browser’s session ID may still be the same after this function call.) It does not
unset any variables in the current script or the session cookie.

session_
unset()

Takes no arguments, and frees all variables in the session. Dangerous if using $_
SESSION or $HTTP_SESSION_VARS; use unset() instead.

continued

420

 Part III More PHP

TABLE 24-1 (continued)

Session Function Summary
Function Behavior

session_
write_
close()

Manually close session and release write lock on data file. Useful with frames, some
clustering situations, and if you do something that might cause PHP to not realize the
session has terminated (such as redirection).

session_
name()

When called with no arguments, returns the current session-name string. This is
usually ‘PHPSESSID’ by default.

When called with one string argument, session_name() sets the current session
name to that string. This name is used as a key to find the session ID in cookies and
GET/POST arguments — for successful retrieval, the session name must be the same
as it was when the values were serialized and stored. Note that there is no reason
to change the session name unless you have some need to distinguish session types
that are being served by the same web server (such as in the case of multiple sites
that each track sessions). The session name is reset to the default whenever a script
executes, so any name change must happen in every script that uses the name, and
before any other session functions are called.

session_
module_
name()

If given no arguments, returns the name of the module that is responsible for handling
session data. This name currently defaults to ‘files’, meaning that session bindings
are serialized and then written to files in the directory named by the function
session_save_path().

If given a string argument, changes the module name to that string. (This could
presumably be, for example, ‘user’ for a user-defined session database, but it should
not be changed unless you know what you are doing.)

session_
save_path()

Returns (or sets, if given an argument) the pathname of the directory to which session
variable-binding files will be written (which typically defaults to /tmp on Unix
systems). This directory needs to exist and have appropriate permissions for PHP to
write files to it. On Windows systems, you must change this value to a valid path
before using sessions!

session_id() Takes no arguments and returns a string, which is the unique key corresponding to a
particular session. If given a string argument, will set the session ID to that string.

session_
regenerate_
id()

Takes no arguments and sets a new session ID, setting a new cookie if necessary and
returning TRUE on success or FALSE on failure. Unlike session_id(), it does not
return a string with the actual new ID.

session_
encode()

Returns a string encoding of the state of the current session, suitable for use by
string_decode(). This can be used for saving a session for revival at some later
time, such as by writing the encoded string to a file or database.

session_
decode()

Takes a string encoding as produced by session_encode() and reestablishes the
session state, turning session bindings into page bindings as session_start() does.

421

 Working with Cookies and Sessions 24

Function Behavior

session_
get_cookie_
params()

Returns an array with current session cookie data: lifetime (in seconds till
expiration, or 0 for no expiration), path (for which the cookie is valid), domain (for
which the cookie is valid), secure (whether or not the cookie will only be sent over
SSL connections). These parameters are normally set in the php.ini file, but can be
changed for a single script through the session_set_cookie_params() function.

session_
set_cookie_
params()

Takes four arguments: int lifetime (in seconds till expiration, or 0 for no expiration),
string path (for which the cookie is valid), string domain (for which the cookie
is valid), boolean secure (whether or not the cookie will only be sent over SSL
connections). Be sure to include a trailing slash on the path argument.

Configuration Issues
The variables in Table 24-2 can be set in the php.ini file and viewable by calling phpinfo(). We

offer descriptions and the typical default values. (Some defaults are platform-dependent.)

TABLE 24-2

Session Configuration Variables
Php.ini Variable Typical Value Description

session.
save_path

/tmp under Unix
systems

Pathname for the server-side directory where session datafiles
will be written. Must be changed for Windows systems!

session.
auto_start

0 When 1, sessions will initialize automatically every time a
script loads. When 0, no session data will be available unless
there is an explicit call to either session_start() or
session_register().

session.
save_handler

‘files’, ‘user’ String that determines underlying method for saving session
variable information. Changing this is not recommended for
the casual user.

session.
cookie_
lifetime

0 Specifies how long session cookies take to expire and,
consequently, the lifetime of a session. The default of 0
means that sessions last until the browser is closed — any
other value indicates the number of seconds the session is
allowed to live.

session.use_
cookies

1 If 1, the session mechanism will attempt to propagate the
session ID by setting/checking a cookie. (If the browser
refuses the cookie, then GET/POST vars may be used.) If this
variable is 0, no attempt to use cookies is made.

422

 Part III More PHP

 Cookies
Many uses of cookies amount to session tracking — keeping track of some piece of infor-

mation as a single user navigates through your site. If you are tempted to use cookies for

a purpose like this, and you are using PHP4, you might want to consider simply using the built-in ses-

sion functions that are covered in the section “Cookie-based home-grown sessions” earlier in this chap-

ter. Not only do they offer a nicer level of abstraction, but they also have a built-in fallback mechanism

that deals with refusal of cookies by propagating the information via GET/POST arguments instead.

A cookie is a small piece of information that is retained on the client machine, either in the browser’s

application memory or as a small file written to the user’s hard disk. It contains a name/value pair —

setting a cookie means associating a value with a name and storing that pairing on the client side. Getting

or reading a cookie means using the name to retrieve the value. (See the sidebar “Cookies and Privacy,” a

little later in this chapter, for a summary of the controversy surrounding the use of cookies.)

As a general rule, you want to store information only in a client-side cookie when storing it

on the server is not an option. This is partly simple politeness — try accepting cookies man-

ually for a week, and you’ll see some extreme abuses of the technique — but it is also because there are

constraints that prevent server abuses of the client’s hard disk. In particular, each browser will typically

accept only 20 cookies from each domain before it starts popping old cookie values off the stack. If you

need to store a lot of info, consider developing a scheme where the cookie file contains an ID that enables

you to look up the rest of that information on the server — in other words, some form of sessions.

In PHP, cookies are set using the setcookie() function, and cookies are read nearly automati-

cally. In PHP4.1 and later, names and values of cookie variables show up in the superglobal array

$_COOKIES, with the cookie name as an index, and the value as the value it indexes.

The setcookie() function
There is just one cookie-related function, called setcookie(). Table 24-3 shows its arguments, in

order, all but the first of which are optional.

TABLE 24-3

Arguments to setcookie()
Argument Name Expected Type Meaning

name string The name of your cookie (analogous to the name of a variable).

value string The value you want to store in the cookie (analogous to the value
you would assign to a variable). If this argument is not supplied, the
cookie named by the first argument is deleted.

expire int Specifies when this cookie should expire. A value of 0 (the default)
means that it should last until the browser is closed. Any other
integer is interpreted as an absolute time (as returned by the
function mktime()) when the cookie should expire.

CROSS-REFCROSS-REF

NOTENOTE

423

 Working with Cookies and Sessions 24

Argument Name Expected Type Meaning

path string In the default case, any page within the web root folder would
see (and be able to set) this named cookie. Setting the path to a
subdirectory (for example, “/forum/”) allows distinguishing cookies
that have the same name but are set by different sites or subareas of
the web server (in this example, the cookie will only be valid in the
forum area). Be sure to include a trailing slash in the path.

httponly boolean Cookies set with this flag are only sent through HTTP requests.
Default is FALSE.

domain string In the default case, no check is made against the domain
requested by the client. If this argument is nonempty, then the
domain must match. For example, If the same server serves www.
mysteryguide.com and forum.mysteryguide.com, one site’s
code can ensure that the other site does not read (or set) its cookies
by including this argument as “forum.mysteryguide.com.”

secure boolean
(TRUE (1) or
FALSE (0))

Defaults to 0 (FALSE). If this argument is 1 or TRUE, the
cookie will only be sent over a secure socket (aka SSL or HTTPS)
connection. Note that a secure connection must already be running
for such a cookie to be set in the first place.

For details about the representation of time used by the expire argument, see Chapter

23 — specifically, the discussions of the functions time() and mktime()
.

Calling setcookie() results in sending HTTP header information, which cannot be

done after you have already sent some regular PHP output (even if that output consists of

a single space or blank line!).

Examples
This section provides some example calls to setcookie(), along with comments, such as the

following:

setcookie(‘membername’, ‘timboy’);

This sets a cookie called membername, with a value of timboy. Because there are no arguments

except for the first two, the cookie will persist only until the current browser program is closed,

and it will be read on subsequent page requests from this browser to this server, regardless of the

domain name in the request or from where in the web root file hierarchy the page is served. The

cookie will also be read regardless of whether the web connection is secure. For example, consider

the following call:

setcookie(‘membername’, ‘troutgirl’, time() + (60 * 60 * 24),
 “/“, “www.troutworks.com”, 1);

CROSS-REFCROSS-REF

CAUTION CAUTION

424

 Part III More PHP

This sets the cookie to have the value ‘troutgirl’ and would overwrite the previous example’s

value if it had been set by a previous page. The expiration time is set to 86,400 seconds (or 1 day)

after the current time. The path argument is given the most inclusive path possible (“/“), so this

cookie will still be read regardless of where it is in the web directory hierarchy. The host argument is

set to ‘www.troutworks.com’, which means that subsequent page views will not cause the cookie

to be read unless the user actually is making a request of that host. Finally, the last argument speci-

fies that this cookie will only be read or written over a secure socket connection. (If the very con-

nection used by this page is not secure, presumably the cookie will not be set at all.)

If you want to specify later arguments to setcookie() while leaving the earlier ones

with their default values, it is best to give the empty string (“”) for the domain argument,

a string containing a slash character (“/“) for the path argument, and 0 for the expiration.

Multiple calls to setcookie() will typically be interpreted in the opposite order that

they appear in your PHP script, although not every browser version does this. The best

rule is to never send two different values for the same cookie from a single page execution. (Sending

more than one is pointless anyway because one of them will always overwrite the other.)

Cookies and Privacy

Cookies have always been controversial from a privacy point of view, and that controversy heats up again
periodically. As we wrote the first edition, DoubleClick (an Internet advertising agency) was being flamed for

its announcement that it planned to cross-correlate cookie information with a very large database of consumer
names, addresses, and buying habits (in an apparent reversal of earlier promises about such behavior).

The worry was that, after a consumer reveals his or her identity on a site by filling out a form and accepting
a cookie, any other site that compares notes with the original site could conceivably know the true identity
of the user (and lots of other information as well). If this practice became widespread, every e-commerce site
you visit might be able to figure out not only your name, address, and buying habits, but also a list of other
pages you have visited on the web.

So, cookies worry some people, but at the same time they are also a reasonable and benign workaround to the
statelessness of the HTTP protocol. There are plenty of good reasons to want a web client/server interaction to
coherently span a few page requests in a row, rather than covering just a single request. As a web developer,
you might well decide to use cookies for such a purpose, comfortable in the knowledge that there is no sub-
stantive invasion of privacy occurring.

Your comfort is not the same as the user’s comfort, however, and many users have set up their browsers to
refuse all cookies, as is their right. (Remember that what is at issue here is not only the user’s privacy but also
the use of his or her own personal hard disk!) Any server-side code you write should gracefully handle a cookie
refusal from the client side, and any web sites you design should have easily found privacy policies, so that
your users know what they are getting into. This does not mean, though, that you are obligated to provide the
same level of service to users that refuse cookies; there are some kinds of functionality that are just too painful
to write without them, and deciding that cookie cooperation is a prerequisite to using a privately provided site
seems perfectly legitimate.

NOTENOTE

CAUTION CAUTION

425

 Working with Cookies and Sessions 24

Deleting cookies
Deleting a cookie is easy. Simply call setcookie(), with the exact same arguments as when you

set it, except the value, which should be set to an empty string. This does not set the cookie’s value

to an empty string — it actually removes the cookie. Remember: If you used the path or domain

arguments to set the cookie, you need to use them to unset the cookie too. Another method to clear

cookies is to set the expiration time in the past.

Reading cookies
Cookies that have been successfully set in a browser or user’s machine will automatically be read on

the next request from that browser. This has the following effects:

In PHP4.1 and later, the cookie’s name/value pair will be added to the superglobal array ■■

$_COOKIE, as though we had evaluated $_COOKIE[‘name’] = value.

If the ■■ register_globals directive is turned on (for versions earlier than PHP6), a regular

page-level global variable will be set to the cookie’s value, named the same as the cookie’s

name. Because register_globals is turned off by default starting with PHP4.2, this

feature is not available in 4.2 or later, unless either you or your ISP’s administrator has

changed the configuration.

So, for example, you can set a cookie as follows:

setcookie(‘membername’, ‘timboy’);

This means that, on a later page access, you might be able to print the value again as easily as this:

$membername = $_COOKIE[‘membername’];
print(“The member name is $membername
”);

And, if register_globals has been turned on, the later page’s use of the cookie becomes

even simpler:

print(“The member name is $membername
”);

If you set a cookie in a given script, it won’t be set on the client until that page (and

its HTTP headers) are sent off to the client, which is too late for you to be able to take

advantage of it in that very script. This means that the corresponding global variable won’t be available

to you until the next page request.

The following code typically does not work as you might expect:

setcookie(‘membername’, ‘timboy’);
print(“I set a cookie! Now I will grab the value
”);
// (WRONG - the following membername will most likely be blank)
$membername = $_COOKIE[‘membername’];
print(“The member name is $membername
”);

NOTENOTE

426

 Part III More PHP

This is because, as the preceding note points out, the cookie will not be set until the current page’s

worth of HTTP headers arrives at the client. Because that has not yet happened in this example, and

the variable $membername has not been otherwise set, that variable will probably produce an empty

string in the preceding print statement.

The following code gets it right:

$cookievalue = ‘timboy’;
setcookie(‘membername’, $cookievalue);
print(“I set a cookie for the benefit of future pages
”);
// (RIGHT - only print variables that this page actually set)
print(“Its name is membername, its value is $cookievalue
”);

Any subsequent scripts that are loaded into the same browser can now refer to $membername.

We have already noted some privacy risks to users of accepting cookies from servers.

It’s worth noting that there are risks that go the other way as well. If you write scripts

that depend on the integrity of data that you include in cookies, you should remember that a clever

end user can edit those cookies and install arbitrary values in them. See Chapter 28 for techniques for

encrypting sensitive data, even inside cookies.

Cookie pitfalls
It is hard to do much wrong with cookies purely at the PHP level. After all, setting a cookie involves

only one function (set_cookie()), and reading cookies involves no functions at all. What could be

easier than that? The problems that typically arise are those imposed by the HTTP protocol itself.

Sending something else first
The single most common error in using cookies is trying to set a cookie after some regular HTML

content has already been generated. (We may be repeating ourselves here, but we will also repeat it

in the “Sending HTTP Headers” section later in the chapter, because this fact applies to other direct

HTTP protocol manipulations in addition to cookies and is the cause of a great deal of debugging

confusion.)

The reason this doesn’t work is that the HTTP protocol requires headers to be sent before the con-

tent of the HTML page itself — they can’t be intermixed. As soon as any regular content is gener-

ated, PHP figures that it must already know about all headers of interest, and so it sends them off

and then begins the transmission of HTML content. If it encounters a cookie (or other header infor-

mation) later on, it is too late, and an error is generated.

It’s surprisingly easy to write code that violates this prohibition. Consider the following:

 <?php /* A subtle, insidious cookie error */
setcookie(‘mycookie’, ‘myvalue’);
?>
<HTML><HEAD>
<TITLE>A seemingly benign cookie-setting page</TITLE>

CROSS-REFCROSS-REF

427

 Working with Cookies and Sessions 24

</HEAD><BODY>
 <H3>This page is so simple it absolutely must be right</H3>
</BODY></HTML>

When we load this script, we get browser output indicating cannot add header information.

The culprit is the very first character in the file: the space before <?php. Because PHP files start off

in HTML mode by default, this file causes one space’s worth of generated content to be sent to the

client before PHP mode kicks in, and the attempt is made to set the cookie.

A similar way to accidentally send header information too early is to include() or require() a file

that includes blank lines at the end after the closing PHP tag. Finally, of course, you can violate the

prohibition entirely in PHP mode, but only if you include something like a print or echo statement.

If you ever run into this kind of error, it is relatively easy to debug if you are methodical about it. Try

moving HTTP-related code toward the beginning of the script file first — if you still get the error

after that, then trace backward from the offending line toward the beginning of the file. Somewhere

between the beginning and the failing statement you either have some characters that are being

interpreted in HTML mode, or else you have a PHP printing construct. If you have any included

PHP files before the offending statement, make sure that there are no characters at all before the start

tags or after the end tags.

Reverse-order interpretation
As with most HTTP commands, calls to setcookie() may actually be executed in the opposite

order from the way that they appear in your PHP script, but this depends on the particular browser

your user is running and the version of PHP you’re using. This means that a pair of successive state-

ments like the following probably have the counterintutive result of leaving the “mycookie” cookie

with no value, because the unsetting statement is executed second.

setcookie(“mycookie”);// get rid of the old value (WRONG)
setcookie(“mycookie”, “newvalue”);// set the new value (WRONG)

There is no need to remove a cookie before setting it to a different value — simply set

it to the desired new value. Among other things, this means that the confusing reverse

order of interpretation of setcookie() calls should not usually matter — if the effect depends on the

order, it may mean that you are doing something wrong (or at least something unnecessary).

Cookie refusal
Finally, be aware that setcookie() makes no guarantees that any cookie data will, in fact, be

accepted by the client browser — setcookie() just agrees to try, by sending off the appropriate

HTTP headers. What happens after that is up to the client, and the client may be an older browser

that does not accept cookies or a browser whose user has intentionally disabled cookies.

The setcookie() function does not even return a value that indicates acceptance or refusal of

the cookie. If you think about it, this is imposed by the timing of the script execution and the

HTTP protocol. First, the script executes (including the setcookie() call), with the result that a

page complete with HTTP headers is sent to the client machine. At this point, the client browser

TIPTIP

428

 Part III More PHP

decides how to react to the cookie-setting attempt. Not until the client generates another request

can the server receive the cookie’s value and detect whether the cookie-setting attempt was success-

ful. The implication of this for scripting is that you must always ensure that something reasonable

happens, even in cases where setcookie() is called without success. One common technique

is to set a test cookie with the name CookiesOn and then check on a subsequent page load if the

$_COOKIE[‘CookiesOn’] variable has been set.

Sending HTTP Headers
The setcookie() call provides a wrapper around a particular usage of HTTP headers. In addition,

PHP offers the header() function, which you can use to send raw, arbitrary HTTP headers. You can

use this function to roll your own cookie function if you like, but you can also use it to take advan-

tage of any other kind of header-controlled functionality.

The syntax of header() is as simple as it can be: It takes a single string argument, which is the

header to be sent.

All the cautions from earlier in this chapter (about sending HTTP before any real page

content) apply to the header() function as well.

Example: Redirection
One useful kind of HTTP header is “Location:”, which can act as a redirector. Simply put a fully

qualified URL after the “Location:” string, and the browser will start over again with the new

address instead. Here’s an example:

<?php
 if (IsSet($_GET[‘gender’]) && ($_GET[‘gender’] == “female”))
 {
 header(
“Location: http://www.example.com/secret.php”);
 exit;
 }
?>
<HTML><HEAD><TITLE>The inclusive page</TITLE></HEAD></HTML>
<BODY>
<H3>Welcome!</H3>
We welcome anyone to this page, even men! Talk amongst yourselves.
</BODY></HTML>

If we simply enter the URL for this page (www.example.com/inclusive.php), we will see the

rendering of the HTML at the bottom of the script. On the other hand, if we include the right GET

argument (www.example.com/inclusive.php?gender=female), we find ourselves redirected to

a different page entirely. Note that this is significantly different from selectively importing contents

with the include() statement — we actually end up browsing a different URL than the one we

typed in, and that new web address is what shows up in the Location or Address bar of your browser.

CAUTION CAUTION

429

 Working with Cookies and Sessions 24

This kind of redirection can be useful when you want the structure of your web site to conditionally

branch without having to make the user explicitly choose different links.

Example: HTTP authentication
Another useful thing you can do with HTTP is ask the browser to ask the user for a username and

password, via a pop-up window. This is done with the WWW-Authenticate header, as in the follow-

ing example:

<?php
 $the_right_user = ‘user’; // example only! not recommended
 $the_right_password = ‘password’; // example only!

 if(!isset($_SERVER[‘PHP_AUTH_USER’])) {
 Header(“WWW-Authenticate: Basic realm=\“PHP book\“”);
 Header(“HTTP/1.0 401 Unauthorized”);
 echo “Canceled by user\n”;
 exit;
 } else {
 if (($_SERVER[‘PHP_AUTH_USER’] == ‘user’) &&
 ($_SERVER[‘PHP_AUTH_PW’] == ‘password’)) //see caution below
 print(“The realm is yours
”);
 else
 print(“We don’t need your kind
”);
 }
?>

If we visit this script for the first time (and are using the appropriate browser and server versions),

we will get a pop-up window. After the user enters the information into the pop-up box, the script

is automatically called again with new variables $_SERVER[‘PHP_AUTH_USER’] (set to the user

string entered), $_SERVER[‘PHP_AUTH_PASSWD’] (set to the password string entered), and $_
SERVER[‘PHP_AUTH_TYPE’] (which will be Basic until such time as another type of authentication

is supported). The nice thing about this is that these variables will continue to be set by the browser

on each request, and you do not need to do anything in your scripts to propagate them — one verifi-

cation of identity per session should suffice.

The preceding code is the bare minimum necessary to demonstrate the HTTP authentica-

tion mechanism and is not a model for how user/password combinations should really

be verified! Our code fragment simply compares the values of the variables delivered to hardcoded

strings, which is a bad idea for several reasons. To make this part of a real verification system, you

probably want to compare the result of encrypting the password to a similarly encrypted version in a

database or password file. See Chapter 28 for more on encryption and real security measures.

In addition to redirection and authentication, the capability to send real HTTP headers offers finer

control of many aspects of the HTTP client/server relationship, which usually are set by default. For

example, you can explicitly set the expiration and caching behavior of your page, or send return

status codes that tell the client whether whatever is returned should be considered a success or not.

CAUTION CAUTION

430

 Part III More PHP

Because PHP is just acting as a channel to the underlying HTTP protocol, most of these techniques

are beyond the scope of PHP documentation and this book.

The WWW-Authenticate mechanism works only under the Apache Web Server, with

PHP as a module. It does not currently work in the CGI version or under IIS/PWS.

Header gotchas
As we have said innumerable times by now, the header() function is subject to the same restric-

tion as the setcookie() function: No headers may be sent after regular page content is generated,

unless you are using a release of PHP that has output buffering enabled.

More generally, be aware that using the header capability requires not only some knowledge of the

HTTP protocols but also some knowledge of the extent to which different browser versions conform

to them. Unless you are writing for a known population of users that all use the same browser, you

will probably need to do more cross-browser testing than with vanilla HTML-generating scripts.

Most browsers can be set to warn you whenever they are about to accept a cookie.

Although this can be annoying when viewing benign yet cookie-intensive sites, it can also

be a great debugging tool when writing your own cookie-setting code. Mozilla browsers also feature a

tool called Cookie Manager that lists cookies from each site and allows you to manually delete them,

which is also handy for debugging.

Gotchas and Troubleshooting
If you are having trouble with sessions, first make sure that your session support exists and is doing

what you think it is. Try downloading the sample session code from www.troutworks.com/
phpbook and debugging it from the earliest error, if any.

If sessions are not working or are giving errors, check the pathname returned by session_save_
path(), and make sure that it exists and is PHP writable. If not, you should either make it so or

change the value of ‘session.save_path’ in php.ini.

Remember that session functions that have variable names as arguments do not expect a leading $

in the name.

If you ever run into a complaint that refers to already having sent HTTP headers, it may be that your

script is sending some text (even blank lines) before the session_start() or session_regis-
ter() functions. Scrutinize any included files for blank lines or move the session functions to the

very beginning of your file.

When testing session-related code, remember to try it out both with a browser that accepts cook-

ies and with a browser that is set up to refuse them. If you see no session name in the URL of a link

(such as, ‘PHPSESSID’) with a cookie-refusing browser, then either sessions are not working or

your version of PHP is not configured to transparently pass session IDs in the GET/POST arguments.

It’s also informative to try session and cookie code with a browser that is configured to alert the user

whenever it is setting a cookie.

NOTENOTE

TIPTIP

431

 Working with Cookies and Sessions 24

Summary
Sessions are useful for tracking a user’s behavior over interactions that last longer than one script

execution or page download. If what you present to the user depends on which previous pages he

or she has seen or interacted with, your code must store or propagate that information in a way that

distinguishes one user from another. Because the HTTP protocol is stateless, this inevitably entails

some kind of workaround technique — usually either hidden variables (which impose maintenance

headaches) or cookies (which are not universally supported by client browsers).

The PHP implementation of sessions encapsulates these messy issues and presents a clean layer of

abstraction to the scripter. Unique session identifiers are automatically created and propagated, and

variables can be passed from page to page by storing them in the superglobal $_SESSION array.

Aside from one’s having to connect to a session initially and store (or register) the variables that

should persist beyond the current page, session use is virtually transparent to the programmer.

PHP offers several ways to use the capabilities of the HTTP protocol, in addition to the obvious one

of constructing HTML pages that are transmitted via HTTP. The setcookie() function allows you

to set and delete cookies in your user’s browser, the values of which show up in subsequent page

views as ordinary global variables.

The header() function allows you to send arbitrary HTTP headers. Among other things, header()

can be useful for authentication and page-level redirection.

The HTTP functions in PHP are very simple, and the main complexities that arise are a consequence

of the HTTP protocol itself. One such complication is the fact that that HTTP requires all headers

to be sent before any page content is sent. Remember that any use of header-manipulating functions

must happen before even a blank space is sent to the browser.

433

I
n Chapter 4, we covered PHP types in basic terms, outlining the dif-

ferent types and how they might best be used in your programs. Our

first purpose in this chapter is to review those types and elaborate a

little more on resources. (Another type, objects, was covered fully in Chapter

20.) We’ll also look at some type-testing techniques, and finally, type

conversion.

Type Round-up
You should remember from earlier chapters that unlike many other lan-

guages, PHP does not require explicit type declarations. PHP is fairly intui-

tive about the purpose of your various variables and can often infer your

intent from the context in which those variables are used. PHP, for example,

understands that the statement:

$my_value = 4.50;

refers to a float, that is, a floating-point number. But if you subsequently

create a string, such as:

$my_string = “I paid \$$my_value for a box of
twinkies.”;

PHP understands that it needs to convert the variable $my_value into

a string for purposes of concatenating the larger string assigned to

Learning PHP Types

IN THIS CHAPTER

Type round-up

Type testing

Type conversions

434

 Part III More PHP

the variable $my_string. However, this conversion should in no way prevent you from later

doing something like:

$my_tax = .065;
$my_total = round($my_value + ($my_value * $my_tax));
$my_string .= “However; if I lived in a state where
Twinkies are not considered a food item, the same box
would have cost
\$$my_total”;

The eight basic PHP types are listed here. If you need more of a reminder, refer to Chapter 4. The

more complex types are treated in their own chapters: strings in Chapter 7, arrays in Chapter 8, and

objects in Chapter 20.

Integers■■ are whole numbers, without a decimal point, like 495.

Floats■■ (aka doubles) are floating-point numbers, like 3.14159, or 49.0.

Booleans■■ have only two possible values: TRUE and FALSE.

NULL■■ is a special type that has only one value: NULL.

Strings■■ are sequences of characters, like ‘PHP4.0 supports string operations’.

Arrays■■ are named and indexed collections of other values.

Objects■■ are instances of programmer-defined classes, which can package up both other

kinds of values and functions that are specific to the class.

Resources■■ are special variables that hold references to resources external to PHP (such as

database connections).

Resources
As previous chapters provided in-depth coverage of the first seven types, let’s have a look at the

eighth. Resources are special values that refer to memory or state information that is external to the

PHP language itself. You don’t have to know too much about resources for casual PHP program-

ming — we’ll briefly explain what resources are all about, but feel free to skip to the section “How to

handle resources.”

What are resources?
The resource type is needed when PHP communicates with some external program (which may be a

database or a graphics program) that allocates memory in response to requests from PHP. In general,

PHP programmers do not have to worry about freeing memory within PHP — if you create a string

in a PHP script (which will take up some space in memory), you can forget all about it and let your

435

 Learning PHP Types 25

script run until the end. PHP (or the web server it is attached to) will reclaim all memory associated

with your script when your script is done, if not earlier.

External programs (databases, and so on.) might not be smart enough to do this deallocation. You

might have space reserved in your database’s memory for your script long after your script has gone

to script heaven. The way this problem gets handled in PHP is that all special functions that request

memory from such external programs return resources, which PHP tracks to see if your script can

still get to them. If nobody can reach the resource, PHP makes sure that the external program does

the right kind of cleanup. PHP does this by counting references to the resource — if the reference

count goes to zero, then the resource can be freed.

How to handle resources
In general, PHP programmers do not create resources by themselves — they call special func-

tions that return values of the resource type, and then pass them on to other functions that require

resources. For example, you might call the function mysql_connect() (which returns a resource

value that refers to a connection to a MySQL database), save the result in a variable, and then pass it

on to mysql_query() (which uses the connection resource to query the database).

Essentially, all you have to do with this connection resource is store it in a variable and pass that

variable to functions that require it. You can depend on PHP to clean up the resource after your

script is done. If, for whatever reason, you feel that the resource is tying up enough memory during

script execution that you want the memory freed before the script is done, you can usually do some-

thing like this:

$my_resource = mysql_connect(); // stores variable
// .. code that uses the connection resource ..
$my_resource = NULL; // variable no longer refers to resource

The reassignment of $my_resource should cause PHP to check that no other piece of code is using

the MySQL resource and then free it. Alternatively, most resource-opening functions have resource

closing counterparts such as mysql_close(), covered in Chapter 15, or fclose(), which we used

in Chapter 23.

Type Testing
Especially because variables can change types because of reassignment, it is sometimes necessary to

find out the type of a value at program execution time. PHP offers both a general type-testing func-

tion (gettype()) and individual Boolean functions for each of the five types. These functions, some

of which have alternate names, are summarized in Table 25-1.

436

 Part III More PHP

TABLE 25-1

Functions for Type Testing
Function Behavior

gettype(arg) Returns a string representing the type of arg: either integer, float, string, array,
object, or unknown type

is_int(arg)

is_integer(arg)

is_long(arg)

Returns TRUE if arg is an integer, and FALSE if not

is_double(arg)

is_float(arg)

is_real(arg)

Returns TRUE if arg is a float, and FALSE if not

is_bool(arg) Returns TRUE if arg is a Boolean value (TRUE or FALSE), and FALSE if not

is_null(arg) Returns TRUE if arg is of the NULL type, and FALSE if not

is_string(arg) Returns TRUE if arg is a string, and FALSE if not

is_array(arg) Returns TRUE if arg is an array, and FALSE if not

is_object(arg) Returns TRUE if arg is an object, and FALSE if not

is_resource(arg) Returns TRUE if arg is a resource, and FALSE if not

is_binary(arg) Returns TRUE is arg is a binary string, and FALSE if not

is_buffer(arg) Returns TRUE is arg is a Unicode or binary string, and FALSE if not

is_scalar(arg) Returns TRUE is arg is a scalar variable, and FALSE if not

is_unicode(arg) Returns TRUE is arg is a Unicode string, and FALSE if not

is_numeric(arg) Returns TRUE is arg is numeric, and FALSE if not

Assignment and Coercion
As we have said, PHP often automatically converts from one type to another when the context

demands it, and as it turns out, the PHP programmer can also force some of these conversions to

happen. In either situation, the programmer should know what to expect.

Type conversion behavior
Here are some general rules for PHP’s conversion from one type to another:

Integer to float:■■ The exact corresponding float is created (for example, the int 4 becomes

the float 4.0).

437

 Learning PHP Types 25

Float to integer:■■ The fractional part is dropped, truncating the number toward zero.

Number to Boolean:■■ FALSE if exactly equal to 0, TRUE otherwise.

Number to string:■■ A string is created that looks exactly the way the number would print.

Integers are printed as a sequence of digits, and floats are printed with the minimum preci-

sion needed. Extreme float values will be converted to scientific notation.

Boolean to number:■■ 1 if TRUE, 0 if FALSE.

Boolean to string:■■ ‘1’ if TRUE, the empty string if FALSE.

Null to number: ■■ 0.

Null to boolean:■■ FALSE.

String to number:■■ Equivalent to reading a number from the string, then making a conver-

sion to the given type. If a number cannot be read, the value is zero. Not all of the string

needs to be read for the reading to be considered a success.

String to Boolean:■■ FALSE if it is an empty string or the string is ‘0’, TRUE otherwise.

Simple type (number or string) to array:■■ Equivalent to creating a new array with the

simple value assigned to index zero.

Array to number:■■ Undefined (see following note).

Array to Boolean:■■ FALSE if the array has no elements, TRUE otherwise.

Array to string:■■ ‘Array’.

Object to number: ■■ Undefined (see note below).

Object to boolean:■■ TRUE if the object contains any member variables that have a value,

and FALSE otherwise.

Object to string:■■ ‘Object’.

Resource to Boolean:■■ FALSE.

Resource to number:■■ Undefined (see note below).

Resource to string:■■ Something like ‘Resource id #1’ (but this should not be relied upon).

In the preceding list, we noted that some types have an undefined result when converted to numeri-

cal values. In this context, undefined simply means that the PHP developers are not making a com-

mitment as to what kind of behavior you’ll get in future versions of PHP, so it would be a bad idea

to depend on a particular behavior in your code. You may find that these types can be converted to

numbers in expressions in your particular version of PHP, but that may not work in the next version.

Explicit conversions
PHP offers three different ways for the programmer to manipulate types: conversion functions, type

casts (as in the C language), and calling settype() on variables:

The functions ■■ intval(), floatval(), and strval() will convert their arguments to

an integer, a float, or a string, respectively. (At this writing, there does not seem to be a

boolval() function.)

438

 Part III More PHP

Any expression can be preceded by a type cast (the name of the type in parentheses), ■■

which converts the expression result to the desired type.

Any variable can be given as a first argument to ■■ settype(), which will change the type of

that variable to the type named in the second string argument.

For example, each of the following approaches will put the correct count of canines (101) into the

integer variable $dog_count by the end of the code snippet:

Version #1:

$dog_count = intval (strval (floatval(“101 Dalmatians”)));

Version #2:

$dog_count = (int) (string) (float) “101 Dalmatians”;

Version #3:

settype($dog_count, “float”);
settype($dog_count, “string”);
settype($dog_count, “int”);

Of course, each approach in the example takes an indirect route, converting needlessly

to string and float types — it would suffice to convert immediately to the integer type.

Six of the basic type names (integer, float, boolean, string, array, and object) are valid in casts and

are valid string arguments to settype(). In addition, certain alternate names are valid in casts:

(int) instead of (integer), (double) or (real) instead of (float), and (bool) instead of (bool-
ean). It is not valid to cast to type resource, and casting to type NULL is pointless. (Because the

result can only be the value NULL, you might as well simply assign instead.)

Conversion examples
Listing 25-1 shows some PHP code that displays various type conversions in an HTML table, with

the resulting table shown in Figure 25-1. (This code is not intended as a style example, and it uses

several constructs that have not yet been covered — feel free to just look at the output.)

LISTING 25-1

Type conversions

$type_examples[0] = 123; // an integer
$type_examples[1] = 3.14159; // a float
$type_examples[2] = “a non-numeric string”;
$type_examples[3] = “49.990 (begins with number)“;
$type_examples[4] = array(90,80,70);

print(“<TABLE BORDER=1><TR>”);
print(“<TH>Original</<TH>”);

TIPTIP

439

 Learning PHP Types 25

print(“<TH>(int)</<TH>”);
print(“<TH>(float)</<TH>”);
print(“<TH>(string)</<TH>”);
print(“<TH>(array)</<TH></TR>”);

for ($index = 0; $index < 5; $index++)
 {
 print(“<TR><TD>$type_examples[$index]</TD>”);
 $converted_var =
 (int) $type_examples[$index];
 print(“<TD>$converted_var</TD>”);
 $converted_var =
 (float) $type_examples[$index];
 print(“<TD>$converted_var</TD>”);
 $converted_var =
 (string) $type_examples[$index];
 print(“<TD>$converted_var</TD>”);
 $converted_var =
 (array) $type_examples[$index];
 print(“<TD>$converted_var</TD></TR>”);
 }
print(“</TABLE>”);

FIGURE 25-1

Type conversion examples

440

 Part III More PHP

Other useful type conversions
The functions listed in Table 25-2 do not exactly convert types, but they return a different type from

their main argument in a useful way.

TABLE 25-2

Other Type Conversion Functions
From\To Integer String Array

Integer ord()

Float ceil(), floor(),
round()

String chr() explode()

Array implode()

The function ceil() takes a float and returns the integer greater than or equal to that float.

For example:

$my_float = 4.7;
$my_int = ceil($my_float); // $my_int is equal to 5
$my_float = -4.7;
$my_int = ceil($my_float); // $my_int is equal to -4

The floor() function is the opposite of ceil(). (We’ll drop the intermediate assignment to $my_
float now.)

$my_int = floor(4.7); // $my_int is equal to 4
$my_int = floor(-4.7); // $my_int is equal to –5

The round() function takes a float and returns the nearest integer. If the fractional part of the float

is exactly one half, the rounding is to the highest absolute number.

$my_int = round(4.7); // $my_int is equal to 5
$my_int = round(-4.7); // $my_int is equal to –5
$my_int = round(-4.5); // $my_int is equal to –5

If you’re looking for a truncate function (simply dropping the fractional part and, therefore,

rounding toward zero), notice that this is the behavior you get simply from typecasting

from float to int.

TIPTIP

441

 Learning PHP Types 25

The function chr() takes an integer and returns a one-character string with that ASCII value,

whereas ord() reverses this, returning the ASCII value of the first character in a string.

Finally, implode() and explode() allow a certain kind of conversion between strings and arrays.

implode() creates a string from the array it is given as second argument, separating the elements

with the string that is its first argument. For example:

$words[0] = “My”;
$words[1] = “short”;
$words[2] = “sentence.”;
$sentence = implode(“ “, $words);
print(“$sentence
”);

produces the browser output:

My short sentence.

explode() reverses the process, creating an array from a string:

$words = explode(“ “, “My short sentence.”);

Integer overflow
One clever automatic type conversion built into PHP relatively recently is that when integer values

overflow (that is, they are assigned a value larger than they can hold), they become floats. This makes

some sense, because floats can accommodate larger magnitudes than integers can. For example:

$toobig = 111;
for ($count = 0; $count < 5; $count++)
 {
 $too_big = 1000 * $too_big;
 print(“Is $too_big still an integer?
”);
 }

produces the following browser output:

Is 111000 still an integer?
Is 111000000 still an integer?
Is 111000000000 still an integer?
Is 1.11E+14 still an integer?
Is 1.11E+17 still an integer?

The shift you see in this example from literal integers to scientific notation reflects a change of

$too_big’s type from integer to float. Of course, this may lose some information, because the preci-

sion of floats is limited, but it is in keeping with the PHP philosophy of doing the best it can in pref-

erence to causing an error.

442

 Part III More PHP

Finding the largest integer
If you need to know the largest integer your PHP will support and, for some reason, you believe that

it is not the usual 231 – 1, here’s a handy function (which uses concepts not yet covered):

function maxint()
{ /* quick-and-dirty function for PHP int size —
 assumes largest integer is of form 2^n - 1 */
 $to_test = 2;
 while(1)
 {
 $last = $to_test;
 $to_test = 2 * $to_test;
 if (($to_test < $last) || (!is_int($to_test)))
 return($last + ($last - 1));
 }
}
/* sample use */
$maxint = maxint();
print(“Maxint is $maxint
”);

Summary
PHP6 has eight types: integer, float, boolean, NULL, string, array, object, and resource. Five of these

are simple types: Integers are whole numbers, floats are floating-point numbers, booleans are true-

or-false values, NULL has just one value (NULL), and strings are sequences of characters. Arrays are

a compound type that holds other PHP values, indexed either by integers or by strings. Objects are

instances of programmer-defined classes, which can contain both member variables and member

functions, and which can inherit functions and data type from other classes. Finally, resources are

special references to memory allocated from external programs, which memory PHP frees automati-

cally when they are no longer needed.

Only values are typed in PHP — variables have no inherent type other than the value of their most

recent assignment. PHP automatically converts value types as demanded by the context in which the

value is used. The programmer can also explicitly control types by means of both conversion func-

tions and type casts.

443

I
n Chapter 5 we presented the basic features for user-defined functions

in PHP. In this chapter, we move on to some exotic properties of func-

tions, including ways to use variable numbers of arguments, ways to

have functions actually modify the variables they are passed, and (cooler

still) using functions as data.

Variable Numbers of Arguments
It’s often useful to have the number of actual arguments that are passed to a

function depend on the situation in which it is called. There are three pos-

sible ways to handle this in PHP:

Define the function with default arguments — any that are miss-■■

ing in the function call will have the default value, and no warn-

ing will be printed.

Use an array argument to hold the values — it is the responsibility ■■

of the calling code to package up the array, and the function body

must appropriately take it apart.

Use the variable-argument functions (■■ func_num_args(),

func_get_arg(), and func_get_args()).

The following sections address each of these possibilities.

Learning PHP
Advanced Functions

IN THIS CHAPTER

Variable numbers of arguments

Call-by-value

Call-by-reference

Variable function names

Example: A cipher code

444

 Part III More PHP

Default arguments
To define a function with default arguments, simply turn the formal parameter name into an assign-

ment expression. If the actual call has fewer parameters than the definition has formal parameters,

PHP will match actual with formal until the actual parameters are exhausted and then will use the

default assignments to fill in the rest.

For example, the following function has all its variables defined with defaults:

function tour_guide($city = “Gotham City”,
 $desc = “vast metropolis”,
 $how_many = “dozens”,
 $of_what = “costumed villains”)
{
 print(“$city is a $desc filled with
 $how_many of $of_what.
”);
}
tour_guide();
tour_guide(“Chicago”);
tour_guide(“Chicago”, “wonderful city”);
tour_guide(“Chicago”, “wonderful city”,
 “teeming millions”);
tour_guide(“Chicago”, “wonderful city”,
 “teeming millions”,
 “gruff people with hearts of
 gold and hard-luck stories to tell”);

The browser output is something like this, with the intrasentence line breaks, of course, determined

by your browser:

Gotham City is a great metropolis filled with dozens of costumed
villains.
Chicago is a great metropolis filled with dozens of costumed
villains.
Chicago is a wonderful city filled with dozens of costumed
villains.
Chicago is a wonderful city filled with teeming millions of
costumed villains.
Chicago is a wonderful city filled with teeming millions of
gruff people with hearts of gold and hard-luck stories to tell.

The main limitation of default arguments is that the matching of actual to formal parameters is

determined by the ordering of both — it’s first-come, first-served. This means that there is abso-

lutely no way to use the default-argument mechanism to tell someone about hard-luck stories in

Gotham City.

445

 Learning PHP Advanced Functions 26

Arrays as multiple-argument substitutes
If you are dissatisfied with the flexibility of multiple arguments, you can bypass the whole argument-

counting issue by using an array as your communication channel.

The following example uses this strategy and, in addition, uses a few tricks like the ternary operator

(introduced in Chapter 5) and the associative array (covered in Chapters 8 and 21):

function tour_brochure($info_array)
{
$city =
 IsSet($info_array[‘city’]) ?
 $info_array[‘city’] : “Gotham City”;
$desc =
 IsSet($info_array[‘desc’]) ?
 $info_array[‘desc’] : “great metropolis”;
$how_many =
 IsSet($info_array[‘how_many’]) ?
 $info_array[‘how_many’] : “dozens”;
$of_what =
 IsSet($info_array[‘of_what’]) ?
 $info_array[‘of_what’] : “costumed villains”;

print(“$city is a $desc filled with
 $how_many of $of_what.
”);
}

This function checks the single incoming array argument for four different values associated with

particular strings. Using the ternary conditional operator ?, local variables are assigned to either the

incoming value (if it has been stored in the array) or to our comic book defaults. Now, let’s try call-

ing this function with a couple of different arrays:

tour_brochure(array()); // empty array
$tour_info =
 array(‘city’ => ‘Cozumel’,
 ‘desc’ => ‘destination getaway’,
 ‘of_what’ => ‘sandy beaches’);
tour_brochure($tour_info);

In this example, we call tour_brochure first with an empty array (corresponding to no arguments)

and then with an array that has three of the four possible associative values stored in it. The browser

output we get is:

Gotham City is a great metropolis filled with dozens of costumed
 villains.
Cozumel is a destination getaway filled with dozens of sandy
 beaches.

In both cases, the dozens amount is defaulted, because neither array had anything stored under the

how_many association.

446

 Part III More PHP

Multiple arguments in PHP4 and above
Beginning with version 4, PHP offers some functions that can be used inside function bodies to

recover the number and values of arguments. They are:

func_num_args()■■ : Takes no arguments and returns the number of arguments that passed

to the function it is called from.

func_get_arg()■■ : Takes an integer argument n and returns the nth argument to the func-

tion it is called from. Arguments are numbered starting from zero.

func_get_args()■■ : Takes no arguments and returns an array containing all the argu-

ments in the function it is called from, with array indices starting from zero.

All three of these functions will produce a warning if called outside a function body, and func_
get_arg() will give a warning if it is called with an index higher than the index of the final argu-

ment that was passed.

If your function is going to handle the decoding of arguments using these functions, you can take

advantage of the fact that PHP doesn’t complain about function calls that have more arguments than

formal parameters in the definition. Simply define your function to take no arguments, and then use

the functions to catch any that are actually passed.

As an example, consider the following two functions, both of which return an array of the argu-

ments they are given:

function args_as_array_1 ()
{
$arg_count = func_num_args();
$counter = 0;
$local_array = array();
while ($counter < $arg_count)
 {
 $local_array[$counter] =
 func_get_arg($counter);
 $counter = $counter + 1;
 }
return($local_array);
}

function args_as_array_2 ()
{
 return(func_get_args());
}

The first cumbersome function uses func_get_arg() to retrieve the individual arguments and

bounds the loop using the result of func_num_args(), so that no attempt is made to retrieve more

arguments than were actually passed. Each argument is individually stored in an array, which is

447

 Learning PHP Advanced Functions 26

then returned. Packaging up the arguments like this is already done for free by func_get_args(),

so the second version of the function is extremely short.

As another example, let’s rewrite our earlier tour_guide() function to use the multiple-argument

functions instead of default arguments:

function tour_guide_2()
{
$num_args = func_num_args();
$city = $num_args > 0 ?
 func_get_arg(0) : “Gotham City”;
$desc = $num_args > 1 ?
 func_get_arg(1) : “great metropolis”;
$how_many = $num_args > 2 ?
 func_get_arg(2) : “dozens”;
$of_what = $num_args > 3 ?
 func_get_arg(3) : “costumed villains”;

print(“$city is a $desc filled with
 $how_many of $of_what.
”);
}
tour_guide_2();

This has exactly the same behavior as the default-argument version and is subject to the same limita-

tion. The arguments are passed in by position, so there is no way to replace “costumed villains”

with something else while leaving “Gotham City” as the default.

Unfortunately, no better solution presents itself in PHP6; the array solution is, if somewhat more

code-intensive, still the most flexible.

Call-by-value
The default behavior for user-defined functions in PHP is call-by-value. This means that when you

pass variables to a function call, PHP makes copies of the variable values to pass on to the function.

So, whatever the function does, it is not able to change the actual variables that appear in the func-

tion call. This behavior can be good or bad. It’s a nice reassurance if you only want to use a function

for its returned value, but it can also be a source of confusion and frustration if changing the passed

variable is actually your goal.

One of the most important differences introduced with the previous version of PHP,

version 5, and its predecessors, is that object instances are always effectively passed by

reference, even if a value of another type would be passed by value. This is the result of the fact that

object variables store object handles rather than the objects themselves — the handles actually are

copied in a pass-by-value situation, but the underlying objects are not. (We dealt with this issue in

more detail in Chapter 20.)

CAUTION CAUTION

448

 Part III More PHP

Let’s demonstrate call-by-value with a fragile and extremely inefficient implementation of

subtraction:

function my_subtract ($num1, $num2)
{
 if ($num1 < $num2)
 die(“Negative numbers are imaginary”);
 $return_result = 0;
 while($num1 > $num2)
 {
 $num1 = $num1 - 1;
 $return_result = $return_result + 1;
 }
 return($return_result);
}
$first_op = 493;
$second_op = 355;
$result1 = my_subtract($first_op, $second_op);
print(“result1 is $result1
”);
$result2 = my_subtract($first_op, $second_op);
print(“result2 is $result2
”);

Reassuringly, we find that our result is the same both times we perform the same subtraction:

result1 is 138
result2 is 138

This is true even though my_subtract changes the value of its formal parameter $num1 — that

variable only holds a copy of the value that was in the actual parameter $first_op, and so

$first_op cannot be affected.

Call-by-reference
PHP offers two different ways to have functions actually modify their arguments: in the function

definition and in the function call.

If you want to define a function to operate directly on a passed variable, simply put an ampersand in

front of the formal parameter in the definition, like this:

function my_subtract_ref (&$num1, &$num2)
{
 if ($num1 < $num2)
 die(“Negative numbers are imaginary”);
 $return_result = 0;
 while($num1 > $num2)
 {
 $num1 = $num1 - 1;

449

 Learning PHP Advanced Functions 26

 $return_result = $return_result + 1;
 }
 return($return_result);
}
$first_op = 493;
$second_op = 355;
$result1 = my_subtract_ref($first_op, $second_op);
print(“result1 is $result1
”);
$result2 = my_subtract_ref($first_op, $second_op);
print(“result2 is $result2
”);

Now, if we perform exactly the same subtraction calls as we did the first time, we get the output:

result1 is 138
result1 is 0

This is because the formal parameter $num1 refers to the same thing as the actual parameter

$first_op — changing one means changing the other.

You can also force a function to take arguments by reference by prepending the actual parameters with

ampersands (although this is a deprecated capability and may disappear in future PHP versions — in

fact, it causes an E_STRICT level error in PHP6). That is, we can use our original call-by-value function

and get the by-reference behavior, like this:

$first_op = 493;
$second_op = 355;
$result1 = my_subtract(&$first_op, &$second_op);
print(“result1 is $result1
”);
$result2 = my_subtract(&$first_op, &$second_op);
print(“result2 is $result2
”);

producing, once again:

result1 is 138
result1 is 0

As of PHP4, variable references can be used outside of function calls as well. In general, assigning a

variable reference (&$varname) to a variable will make the two variables aliases of each other rather

than distinct variables with the same value. For example:

$name_1 = “Manfred von Richtofen”;
$name_2 = “Percy Blakeney”;
$alias_1 = $name_1; // vars have same value
$alias_2 = &$name_2; // vars are the same

$alias_1 = “The Red Baron”; // doesn’t change real name
$alias_2 = “The Scarlet Pimpernel”; // anonymous forever

print(“$alias_1 is $name_1
”);
print(“$alias_2 is $name_2
”);

450

 Part III More PHP

gives the browser output:

The Red Baron is Manfred von Richtofen
The Scarlet Pimpernel is The Scarlet Pimpernel

As we noted in the “Call-by-value” section, in PHP6 it is not necessary to explicitly make

references to object instances. Objects are always effectively passed by reference.

Variable function names
One of the neater tricks you can do in PHP is to use variables in place of the names of user-defined

functions. That is, rather than typing a literal function name into your code, you type a dollar-sign

variable — the function that is actually called at runtime will depend on the string that that variable

has been assigned to. In some sense, this allows us to use functions as data. This kind of trick will

be familiar to advanced C programmers and to even beginning users of any kind of Lisp language

(for example, Scheme or Common Lisp).

For example, the following two function calls are exactly equivalent:

function customized_greeting ()
{
 print(“You are being greeted in a customized way!
”);
}
customized_greeting();
$my_greeting = ‘customized_greeting’;
$my_greeting();

and produce the same output:

You are being greeted in a customized way!
You are being greeted in a customized way!

Because function names are just strings, they can also be used as arguments to functions or be

returned as a function’s result.

An extended example
Just for fun, let’s see what kinds of trouble we can get into by using some of the more advanced fea-

tures of functions, including using function names as function arguments.

Listing 26-1 shows an extended example of functions that implement a substitution cipher — a

rudimentary kind of cryptography that scrambles messages by substituting one letter of the alphabet

for another.

CAUTION CAUTION

451

 Learning PHP Advanced Functions 26

LISTING 26-1

A substitution cipher

/* Part 1 – cipher algorithm and utility functions */
function add_1 ($num)
{
 return(($num + 1) % 26);
}

function sub_1 ($num)
{
 return(($num + 25) % 26);
}

function swap_2 ($num)
{
 if ($num % 2 == 0)
 return($num + 1);
 else
 return($num - 1);
}

function swap_26 ($num)
{
 return(25 - $num);
}

function lower_letter($char_string)
{
 return ((ord($char_string) >= ord(‘a’)) &&
 (ord($char_string) <= ord(‘z’)));
}

function upper_letter($char_string)
{
 return ((ord($char_string) >= ord(‘A’)) &&
 (ord($char_string) <= ord(‘Z’)));
}

/* Part 2 – the letter_cipher function */
function letter_cipher ($char_string, $code_func)
{
 if (!(upper_letter($char_string) ||
 lower_letter($char_string)))
 return($char_string);
 if (upper_letter($char_string))
 $base_num = ord(‘A’);
 else

452

 Part III More PHP

 $base_num = ord(‘a’);
 $char_num = ord($char_string) -
 $base_num;
 return(chr($base_num +
 ($code_func($char_num)
 % 26)));
}

/* Part 3 – the main string_cipher function */
function string_cipher($message, $cipher_func)
{
 $coded_message = “”;
 $message_length = strlen($message);
 for ($index = 0;
 $index < $message_length;
 $index++)
 $coded_message .=
 letter_cipher($message[$index], $cipher_func);
 return($coded_message);
}

Listing 26-1 is in three parts. In the first part, we define a few functions that do simple math on the

numbers from 0 through 25, which will represent the letters A–Z in our cipher codes. Function add_1

simply adds 1 to the number it is given, modulo 26 (which just means that numbers that are 26 and

larger “wrap around” to start from zero again). 0 + 1 is 1, 1 + 1 is 2, . . . and 25 + 1 is 0. Sub_1 shifts

numbers in the other direction, by adding 25 (which in this modular arithmetic is equivalent to sub-

tracting 1). 25 + 25 is 24, 24 + 25 is 23, . . . and 0 + 25 is 25. Swap_2 trades the places of pairs of num-

bers (0 to 1, 1 to 0, 2 to 3, 3 to 2, . . .). Swap_26 trades high numbers for low numbers (25 to 0, 0 to 25,

24 to 1, 1 to 24, . . .). Each one of these functions will be the basis of a simple cipher code. Finally, we

have a couple of utility functions that test whether a character is an uppercase or lowercase letter.

Part 2 is a single function called letter_cipher(), whose job is to take a math function, like the

ones in Part 1, and apply it to encode a single letter. First, it tests whether the string it is handed

(which should be a single character) is an alphabetic letter; if not, it returns it as is. If the character is a

letter, it is transformed into a number using ord(), and the appropriate letter (a or A) is subtracted to

bring the number into the 0–25 range. When it is in that range, we apply the cipher function whose

name was passed in as a string, and then we convert the number back into a letter and return it.

Finally, Part 3 is the single string_cipher() function, which takes a string message and a cipher

function and returns a new string that is the message encoded via the function. It does this by

building a new string, letter by letter, from the message string, where each new letter is the result of

applying $cipher_func to the numerical representation of the old letter.

Now let’s write some code to try out string_cipher():

$original = “My secret message is ABCDEFG”;
print(“Original message is: $original
”);

453

 Learning PHP Advanced Functions 26

$coding_array = array(‘add_1’,
 ‘sub_1’,
 ‘swap_2’,
 ‘swap_26’);
for ($count = 0;
 $count < sizeof($coding_array);
 $count++)
{
 $code = $coding_array[$count];
 $coded_message =
 string_cipher($original, $code);
 print(“$code encoding is: $coded_message
”);
}

This testing code takes our four predefined letter-encoding functions, stashes them in an array, and

then loops through the array, encoding the $original message and printing out the encoded version.

The browser output looks like the following:

Original message is: My secret message is ABCDEFG
add_1 encoding is: Nz tfdsfu nfttbhf jt BCDEFGH
sub_1 encoding is: Lx rdbqds ldrrzfd hr ZABCDEF
swap_2 encoding is: Nz tfdqfs nfttbhf jt BADCFEH
swap_26 encoding is: Nb hvxivg nvhhztv rh ZYXWVUT

We can take this function-as-data approach one step further and write a function that applies more

than one cipher to a message in sequence. This function also uses the variable-argument capability

we discussed earlier in the chapter.

function chained_code ($message)
{
 /* takes a message, then an arbitrary number of
 cipher-code function names. Returns
 result of applying each code to the previous
 result. */
 $argc = func_num_args();
 $coded = $message;
 for ($count = 1; $count < $argc; $count++)
 {
 $function_name = func_get_arg($count);
 $coded =
 string_cipher($coded,
 $function_name);
 }
 return($coded);
}

The first argument to chained_code() should be a message string, followed by any number of

names corresponding to cipher functions. The coded message is the result of applying the first coding

454

 Part III More PHP

function to the message, then applying the second coding function to the result, and so on. We can

test it with various combinations of our predefined letter-coding functions, as follows:

$tricky =
 chained_code($original,
 ‘add_1’, ‘swap_26’,
 ‘add_1’, ‘swap_2’);
print(“Tricky encoded version is $tricky
”);

$easy =
 chained_code($original,
 ‘add_1’, ‘swap_26’,
 ‘swap_2’, ‘sub_1’,
 ‘add_1’, ‘swap_2’,
 ‘swap_26’, ‘sub_1’);
print(“Easy encoded version is $easy
”);

with these results:

Tricky encoded version is Ma guwjuh muggysu qg YZWXUVS
Easy encoded version is My secret message is ABCDEFG

As you can see, the tricky encoding of our message is a combination of our previous codes that

doesn’t correspond exactly to any of those single coding functions. And the “easy” coding is an

even more complicated combination of those functions that produces . . . our original message

unchanged! (No, it’s not that our cipher code doesn’t work — we’ll leave it to you to figure out why

that particular sequence of coding functions brings us around to our starting message again.)

The moral of our little cryptographic scripting story is that, although the cipher code was mildly

complicated, it was made considerably simpler by PHP’s support for using function names as func-

tion arguments.

Summary
The default behavior for user-defined functions is call-by-value, meaning that functions work on cop-

ies of their arguments and so cannot modify the original variables in the function call. You can force

call-by-reference behavior by preceding parameters with &, on either the definition side or the calling

side. PHP offers more than one way to let functions take a variable number of arguments. Finally,

the functions to be called can be determined at runtime, by substituting a string variable for the lit-

eral name of the user-defined function — this allows functions to be treated as data and passed back

and forth between other functions.

455

I
n Chapter 9, we covered the most basic aspects of mathematics in

PHP: the numerical types, the basic arithmetic operators, a small set of

arithmetic functions, and (because it is so widely used in web script-

ing) pseudo-random number generation. In this chapter, we round out this

coverage by enumerating the built-in mathematical constants; exploring

trigonometric, logarithmic, and base conversion functions, and explaining

PHP’s bc module for arbitrary-precision arithmetic.

Mathematical Constants
When we wrote the first edition of this book (around the release of PHP

version 4.0), there was only one documented math constant: M_PI (the

value of pi as a double). However, many new constants were introduced

with PHP v4.0.2. Most of these new constants had to do with pi (or mul-

tiples thereof), e (or multiples thereof), or square roots, with a few odd-

balls thrown in. The list has since shrunk back down to a slightly smaller

number of predefined mathematical constants, for a variety of reasons.

Those that remain are listed in Table 27-1. The general naming scheme

is M_<constant-name>. In cases where the constant is a ratio (x/y), the

name is M_X_Y, and in cases where there is an operation on a number, the

name is M_OPERNUM (for example, M_SQRT2).

Performing Math with PHP

IN THIS CHAPTER

Mathematical constants

Tests on numbers

Base conversion

Exponents and logarithms

Trigonometry

Arbitrary precision arithmetic

456

 Part III More PHP

TABLE 27-1

Mathematical Constants
Constant Description

M_PI Pi

M_PI_2 pi/2

M_PI_4 pi/4

M_1_PI 1/pi

M_2_PI 2/pi

M_2_SQRTPI 2/sqrt(pi)

M_E the constant e

M_SQRT2 sqrt(2)

M_SQRT1_2 1/sqrt(2)

M_LOG2E log
2
(e)

M_LOG10E log
10

(e)

M_LN2 log
e
(2)

M_LN10 log
e
(10)

Tests on Numbers
PHP offers a handful of functions for doing tests on numbers. Despite PHP’s type looseness, it’s a good

idea to employ some of these tests in your code to help anticipate what sorts of results you will get,

and how best to handle them.

The first and simplest test is is_numeric(). Like most of these tests, is_numeric returns a

Boolean result, True if the supplied parameter is any type of number (signed or unsigned, integer or

float) or a mathematical expression that returns a valid number:

is_numeric(4) // True
is numeric(4-4) // True
is_numeric(4*4) // True

Some caution is warranted, because even if you intend to test a string, a string that could be seen as

an algebraic expression by PHP might also return a True value:

is_numeric(bells/4) // True

457

 Performing Math with PHP 27

Finally, remember not to inadvertently put quotation marks around a mathematical expression, as

the result will be forced to False by the string indicators, even though quoting a simple number or

double will not cause this behavior:

is_numeric(‘M_PI * 3’) // False
is_numeric(‘123456’) // True

In cases like the preceding code snippet, it may be desirable to test with a higher degree of specificity,

that is to say, for one of PHP’s numeric subtypes, using is_int() or is_float(). Neither of these

tests is substantively different from is_numeric() in their mode of operation. They simply test for a

particular numeric type. Here are more usage examples and what you might expect from each:

is_int(4) // True
is_int(4.2) // False, it’s a float or double
is_int(‘4’) // False, this test is stricter than is numeric
is_int(4 * 2) // True, this expression yields an integer

You might also occasionally see the test is_long(). This test simply maps to the is_int() func-

tion. The other numeric type in PHP can be tested for using is_float(), which is aliased by

is_double(). Again, usage is not exactly tricky or even complex.

is_float(4) // False, but you knew that already
is_float(4.212) // True, but you knew that as well
is_float(4 / 3) // True
is_float(M_PI) // True, maybe you knew that, maybe you didn’t

Two more tests are slightly more obscure: is_finite() and is_infinite() test for exactly what

their names suggest, although strictly speaking, their range is governed not by actual infinity (how

would you test that?) but by the boundaries of the float value that your system allows.

Finally, we have is_nan(), which we covered in Chapter 9. You might be tempted to use is_nan()

to test for any non-numeric value. You’ll be unpleasantly surprised if you rely on this functionality.

The more appropriate use of this function is to test for an unreasonable or improbable mathematical

expression such as acos(2).

Base Conversion
The default base in PHP for reading in or printing out numbers is 10. In addition, you can instruct

PHP to read octal numbers in base 8 (by starting the number with a leading 0) or hexadecimal num-

bers in base 16 (by starting the number with a 0x).

For more on read formats of numbers, including octal and hexadecimal notation, see

Chapter 54.
CAUTION CAUTION

458

 Part III More PHP

A Glimpse behind the Curtain

How are built-in PHP functions really implemented? This is likely to be of interest only to C programmers
and/or those who care about the inner workings of PHP, but we thought that it might be revealing to see

why so many PHP functions work just like their C counterparts.

What follows is the actual implementation for the PHP function ceil, which is intended to convert a double
to the smallest integer that is greater than or equal to it.

PHP_FUNCTION(ceil)
{
 zval **value;

 if (ARG_COUNT(ht)!=1||getParametersEx(1,&value)==FAILURE) {
 WRONG_PARAM_COUNT;
 }
 convert_scalar_to_number_ex(value);

 if ((*value)->type == IS_DOUBLE) {
 RETURN_LONG((long)ceil((*value)->value.dval));
 } else if ((*value)->type == IS_LONG) {
 RETURN_LONG((*value)->value.lval);
 }
 RETURN_FALSE;
}

Although the capitalized portions (including the PHP_FUNCTION declaration) are macros specific to the PHP
framework, much of the body of this code is straight C. The code might look dense and confusing at first,
but most of the action has to do with PHP’s special treatment of types. Here is roughly what is happening, in
order:

 1. The arguments that ceil() was called with are retrieved and counted — if the count is anything
other than 1, the function call returns with an error.

 2. The single argument is converted to a number if it is a scalar type other than a number — this
handles the possibility of string arguments, as in ceil(“5.4”).

 3. Now the numerical argument is tested to see whether it is a PHP long (aka integer) or a PHP dou-
ble. If it turns out to be a long, the value as a long is returned.

 4. The interesting case is if the value is a PHP double. If so, the C double value is extracted, it is run
through the C function ceil, the result is converted to a C long, then that value is wrapped up and
returned as a PHP long.

In other words, the PHP implementation of ceil is simply the C function ceil, wrapped up in a lot of type
conversion and argument checking. This is the case with many of PHP’s functions that have exact analogues
in C.

459

 Performing Math with PHP 27

Once numbers are read in, of course, they are represented in binary format in memory, and all the

basic arithmetic and mathematical calculations are carried out internally in base 2. PHP also has a

number of functions for translating between different bases, which are summarized in Table 27-2.

TABLE 27-2

Base Conversion Functions
Function Behavior

BinDec() Takes a single string argument representing a binary (base 2) integer and returns a
string representation of that number in base 10.

DecBin() Like BinDec(), but converts from base 10 to base 2.

OctDec() Like BinDec(), but converts from base 8 to base 10.

DecOct() Like BinDec(), but converts from base 10 to base 8.

HexDec() Like BinDec(), but converts from base 16 to base 10.

DecHex() Like BinDec(), but converts from base 10 to base 16.

baseconvert() Takes a string argument (the integer to be converted) and two integer arguments
(the original base, and the desired base). Returns a string representing the converted
number — digits higher than 9 (from 10 to 35) are represented by the letters a–z.
Both the original and desired bases must be in the range 2–36.

All the base-conversion functions are special-purpose, converting from one particular base to

another, except for base_convert(), which accepts an arbitrary start base and destination base.

Here’s an example of base_convert() in action:

function display_bases($start_string, $start_base)
{
 for ($new_base = 2; $new_base <= 36; $new_base++)
 {
 $converted =
 base_convert($start_string, $start_base, $new_base);
 print(“$start_string in base $start_base
 is $converted in base $new_base
”);
 }
}

display_bases(“1jj”, 20);

This code yields the browser output:

1jj in base 20 is 1100011111 in base 2
1jj in base 20 is 1002121 in base 3
1jj in base 20 is 30133 in base 4

460

 Part III More PHP

1jj in base 20 is 11144 in base 5
1jj in base 20 is 3411 in base 6
1jj in base 20 is 2221 in base 7
1jj in base 20 is 1437 in base 8
1jj in base 20 is 1077 in base 9
1jj in base 20 is 799 in base 10
1jj in base 20 is 667 in base 11
1jj in base 20 is 567 in base 12
1jj in base 20 is 496 in base 13
1jj in base 20 is 411 in base 14
1jj in base 20 is 384 in base 15
1jj in base 20 is 31f in base 16
1jj in base 20 is 2d0 in base 17
1jj in base 20 is 287 in base 18
1jj in base 20 is 241 in base 19
1jj in base 20 is 1jj in base 20
1jj in base 20 is 1h1 in base 21
1jj in base 20 is 1e7 in base 22
1jj in base 20 is 1bh in base 23
1jj in base 20 is 197 in base 24
1jj in base 20 is 16o in base 25
1jj in base 20 is 14j in base 26
1jj in base 20 is 12g in base 27
1jj in base 20 is 10f in base 28
1jj in base 20 is rg in base 29
1jj in base 20 is qj in base 30
1jj in base 20 is po in base 31
1jj in base 20 is ov in base 32
1jj in base 20 is o7 in base 33
1jj in base 20 is nh in base 34
1jj in base 20 is mt in base 35
1jj in base 20 is m7 in base 36

Notice that although all the base-conversion functions take string arguments and return string val-

ues, you can use decimal numerical arguments and rely on PHP’s type conversion (but see the cau-

tionary note that follows). In other words, both DecBin(“1234”) and DecBin(1234) will yield the

same result.

Don’t confuse the read formats of numbers with their representations as strings for the

purposes of base conversion. For example, although 10 in base 16 is the number 16 in

base 10, the expression HexDec(0x10) evaluates to the string “22”. Why? There are really three con-

versions happening: when 0x10 is read (converts from hex to internal binary), when the argument is

auto-converted (from internal binary number to the decimal string “16”), and in the operation of the

function (from assumed base 16 to decimal “22”). If you want just one conversion, the desired expres-

sion is HexDec(“10”).

The base conversion functions expect their string arguments to be integers, not floating-

point numbers. That means you can’t use these functions to convert a binary 10.1 to a

decimal 2.5.

CAUTION CAUTION

CAUTION CAUTION

461

 Performing Math with PHP 27

Exponents and Logarithms
PHP includes the standard exponential and logarithmic functions, in both base 10 and base e variet-

ies (shown in Table 27-3).

TABLE 27-3

Exponential Functions
Function Behavior

pow() Takes two numerical arguments and returns the first argument raised to the power of
the second. The value of pow($x, $y) is xy.

exp() Takes a single argument and raises e to that power. The value of exp($x) is ex.

log() The “natural log” function. Takes a single argument and returns its base e logarithm. If
ey = x, then the value of log($x) is y.

log10() Takes a single argument and returns its base-10 logarithm. If 10y = x, then the value of
log10($x) is y.

Unlike with exp() and the base e, there is no single-argument function to raise 10 to a given power,

but in its place you can use the two-argument function pow() with 10 as the first argument.

You can verify that exponential and power functions of the same base are inverses of each other, by

testing an identity like this:

$test_449 = 449.0;
$test_449 = pow(10, exp(log(log10($test_449))));
print(“test_449 is $test_449
”);

which gives the browser output:

test_449 is 449

Trigonometry
Although explaining the math behind the PHP functions in this chapter is beyond the scope of this

book, we’ve made an exception just this once. (See the sidebar “Trigonometry in One Paragraph.”

Anyone who doesn’t already know trigonometry will, of course, find the sidebar completely impen-

etrable, but we hope that those who know trig will at least be amused by how short it is.)

PHP offers the standard set of basic trigonometric functions as well as the constant M_PI, an approx-

imation of pi as a double that prints as 3.1415926535898. This constant can be used anywhere you

462

 Part III More PHP

would use the literal number itself, and it is also interchangeable with the pi() function. (For other

constants derived from pi, see the “Mathematical Constants” section at the beginning of this chap-

ter.) Both of the following statements have the same result:

$my_pi = M_PI;
$my_pi = pi();

The basic trig functions are summarized in Table 27-4.

TABLE 27-4

Trigonometric Functions
Function Behavior

pi() Takes no arguments and returns an approximation of pi (3.1415926535898). Can be
used interchangeably with the constant M_PI.

Sin() Takes a numerical argument in radians and returns the sine of the argument as a
double.

Cos() Takes a numerical argument in radians and returns the cosine of the argument as
a double.

Tan() Takes a numerical argument in radians and returns the tangent of the argument as
a double.

Asin() Takes a numerical argument and returns the arcsine of the argument in radians.
Inputs must be between –1.0 and 1.0 [inputs outside that range will return a result of
NAN (for “not a number”)]. Results are in the range –pi / 2 to pi / 2.

Acos() Takes a numerical argument and returns the arccosine of the argument in radians.
Inputs must be between –1.0 and 1.0 [inputs outside that range will return a result of
NAN (for “not a number”)]. Results are in the range 0 to pi.

Atan() Takes a numerical argument and returns the arctangent of the argument in radians.
Results are in the range –pi / 2 to pi / 2.

Atan2() A variant of atan() that takes two arguments. Atan($y, $x) is identical to
atan($y/$x) when $x is positive, but the quadrant of atan2’s result depends on
the signs of both $y and $x. Range of the result is from –pi to pi.

Rather than writing down a table of sample function results, let’s resort to our usual trick of writing

code that automatically displays examples as an HTML table. Listing 27-1 shows both a generalized

function for displaying a set of one-argument functions applied to a set of numerical arguments and

then the result of using this display function to make trigonometric example tables. The results are

displayed in Figure 27-1.

463

 Performing Math with PHP 27

Trigonometry in One Paragraph

Imagine a circle with a radius of 1, centered at 0,0 in the coordinate plane. Start at the right-hand edge (at
position (1,0)), and trace a certain distance along the circle counterclockwise. For example, a distance of 2

pi would take you once around the circle and back to your starting point. Clockwise travel counts as a negative
distance. For any such distance, the sine function tells you the y-value of the coordinate you arrive at, the cosine
function tells you the x-value of that coordinate, and the tangent function is a ratio of the two, from which you
can infer the slope of the line tangent to the circle at that point. The functions arccosine, arcsine, and arctangent
are in some sense inverses of their corresponding functions — they map back from an x, y, or y/x ratio to the
distance of a circular trip that would arrive at that x-coordinate, y-coordinate, or ratio thereof. Because adding
a multiple of 2 pi to any distance brings you around to the same point again, these inverse functions might
have an infinite number of answers per input, making them ill-defined — instead, they are restricted to a range
corresponding to one particular trip around half of the circle and so have well-defined results.

LISTING 27-1

Displaying trigonometric function results

<?php

function display_func_results($func_array, $input_array)
{
/* print a function header */
print(“<TABLE BORDER=1><TR><TH>INPUT\\FUNCTION</TH>”);
for($y = 0;
 $y < count($func_array);
 $y++)
 print(“<TH>$func_array[$y]</TH>”);
print(“</TR><TR>”);
/* print the rest of the table */
for($x = 0;
 $x < count($input_array);
 $x++)
 {
 /* print column entries for inputs */
 print(“<TH>”.
 sprintf(“%.4f”, $input_array[$x])
 .”</TH>”);
 for($y = 0;
 $y < count($func_array);
 $y++)
 {
 $func_name = $func_array[$y];
 $input = $input_array[$x];

464

 Part III More PHP

 print(“<TD>”);
 printf(“%4.4f”, $func_name($input));
 print(“</TD>”);
 }
 print(“</TR><TR>”);
 }
print(“</TR></TABLE>”);
}
?>

<HTML>
<HEAD>
<TITLE>Trigonometric Function Examples</TITLE>
</HEAD>
<BODY>

<?php
/* using the function displayer */
print(“<H3>Trigonometric function examples</H3>”);
display_func_results(array(“sin”, “cos”, “tan”),
 array(-1.25 * pi(),
 -1.0 * pi(),
 -0.75 * pi(),
 -0.5 * pi(),
 -0.25 * pi(),
 0,
 0.25 * pi(),
 0.5 * pi(),
 0.75 * pi(),
 pi(),
 1.25 * pi()));

?>
</BODY>
</HTML>

The display_func_results() function of Listing 27-1 uses several tricks we’ve seen

in previous chapters: using a string variable as the name of a function to call (covered

near the end of Chapter 26) and using the string concatenation operator (.) to pull together a print

string in the middle of a print statement (covered in Chapter 7).

Figure 27-1 shows the basic trigonometric functions over an input range of -5/4 pi to 5/4 pi and

the basic inverse trigonometric function over inputs from -1.0 to 1.0. The very large tangent values

are due to denominators that should theoretically be zero but instead differ slightly from zero due to

rounding error.

CAUTION CAUTION

465

 Performing Math with PHP 27

FIGURE 27-1

Trigonometric function examples

Arbitrary Precision (BC)
The integer and double types are fine for most of the mathematical tasks that arise in web scripting,

but each instance of these types is stored in a fixed amount of computer memory, and so the size

and precision of the numbers these types can represent is inherently limited. Although the exact

range of these types may depend on the architecture of your server machine, integers typically range

from –231 – 1 to 231 – 1, and doubles can represent about 13 to 14 decimal digits of precision. For

tasks that require greater range or precision, PHP offers the arbitrary-precision math functions (also

known as BC functions, from the name of the Unix-based, arbitrary-precision calculating utility).

Especially if you compiled PHP yourself, the arbitrary-precision functions may not have

been included in the compilation — you need to have included the flag --enable-
bcmath at configuration time. To check whether the functions are present, try evaluating bcadd(“1”,

“1”) — if you get an unbound function error, you will have to reconfigure and recompile PHP.

Instead of using the fixed-length numerical types, the BC functions have strings as arguments and

return values. Because strings in PHP are limited only by available memory, numbers can be as

long as you like. The underlying computations are performed in decimal and are done much as you

would do them with pen and paper (if you were very fast and very patient). When operating with

CAUTION CAUTION

466

 Part III More PHP

integers, the BC functions are exact and use as many digits as needed; when operating with floating-

point numbers, computations are done to as many decimal places as you specify. The BC functions

are summarized in Table 27-5.

Most of the functions take an optional scale factor (an integer) as a final argument, which determines

how many decimal places will be in the result. If such an argument is not supplied, the scale is the

default scale, which, in turn, can be set by calling bcscale(). The default for the default value (that

is, if bcscale() has never been called) can also be set in the initialization file php.ini.

TABLE 27-5

Arbitrary-Precision (BC) Math Functions
Function Behavior

bcadd() Takes two string arguments representing numbers, and an optional integer scale
parameter. Returns the sum of the first two arguments as a string, with the number of
decimal places in the result determined by the scale parameter. If no scale parameter is
supplied, the default scale is used (which is settable by bcscale()).

bcsub() Similar to bcadd(), except that it returns the subtraction of the second argument from
the first.

bcmul() Similar to bcadd() but returns the product of its arguments.

bcdiv() Similar to bcadd() but returns the result of dividing the first argument by the second.

bcmod() Returns the modulus (remainder) of the first argument as divided by the second.
Because the return type is “integral,” no scale argument is taken.

bcpow() Raises the first argument to the power of the second argument. The number of decimal
places in the result is set by the scale factor if supplied.

bcsqrt() Returns the square root of its argument, with number of decimal places set by the
optional scale factor.

bcscale() Sets the default scale factor for subsequent BC function calls.

An arbitrary-precision example
Here’s an example of using the arbitrary-precision functions for exact integer arithmetic. The

following code:

for ($x = 1; $x < 25; $x++) {
 print(“$x raised to the power of $x is “ . bcpow($x, $x) . “
”);
}

467

 Performing Math with PHP 27

will print like this:

1 raised to the power of 1 is 1
2 raised to the power of 2 is 4
3 raised to the power of 3 is 27
4 raised to the power of 4 is 256
5 raised to the power of 5 is 3125
6 raised to the power of 6 is 46656
7 raised to the power of 7 is 823543
8 raised to the power of 8 is 16777216
9 raised to the power of 9 is 387420489
10 raised to the power of 10 is 10000000000
11 raised to the power of 11 is 285311670611
12 raised to the power of 12 is 8916100448256
13 raised to the power of 13 is 302875106592253
14 raised to the power of 14 is 11112006825558016
15 raised to the power of 15 is 437893890380859375
16 raised to the power of 16 is 18446744073709551616
17 raised to the power of 17 is 827240261886336764177
18 raised to the power of 18 is 39346408075296537575424
19 raised to the power of 19 is 1978419655660313589123979
20 raised to the power of 20 is 104857600000000000000000000
21 raised to the power of 21 is 5842587018385982521381124421
22 raised to the power of 22 is 341427877364219557396646723584
23 raised to the power of 23 is 20880467999847912034355032910567
24 raised to the power of 24 is 1333735776850284124449081472843776
25 raised to the power of 25 is 88817841970012523233890533447265625

If we had used the regular PHP integer type for this computation, the integers would have overflowed

well before the end, and the rest of the loop would have been calculated in approximate floating point.

Converting code to arbitrary-precision
Let’s see what it’s like to take an existing piece of mathematical code and retrofit it to use the arbi-

trary-precision functions.

The following function approximates pi, using the series approximation:

 sqrt (12 - (12/22) + (12/32) - (12/42) + (12/52) - ...)

(As we’ll see, this series does not converge fast enough for our purposes, but it has the virtue of

being a simple formula.)

function pi_approx($iterations, $print_frequency)
{
 $squared_approx = 12;
 $next_sign = -1;
 $denom = 2;

468

 Part III More PHP

 for ($iter = 0; $iter < $iterations; $iter++)
 {
 $squared_approx += $next_sign * 12/(pow($denom,2));
 $denom++;
 $next_sign = - $next_sign;
 if ($denom % $print_frequency == 0)
 {
 $estimate = sqrt($squared_approx);
 print(“$denom iterations: $estimate
”);
 }
 }
}

In addition to performing the calculation itself, this code periodically prints its current estimate

of pi, so we can see how we are doing. We can call it as follows and then print PHP’s value for

comparison:

pi_approx(10000, 1000);
print(“PHP value: “ . pi() . “
”);

The result looks like:

1000 iterations: 3.1415936094742
2000 iterations: 3.1415928924416
3000 iterations: 3.1415927597285
4000 iterations: 3.1415927132878
5000 iterations: 3.1415926917946
6000 iterations: 3.14159268012
7000 iterations: 3.141592673081
8000 iterations: 3.1415926685124
9000 iterations: 3.1415926653804
10000 iterations: 3.1415926631401
PHP value: 3.1415926535898

Now, not only are we not that close, but we can’t hope to be more accurate than PHP’s value for pi,

because that already uses all the precision available in the double type.

To convert this to an arbitrary-precision version, we must replace all the math functions and opera-

tors that need precision with their BC counterparts, like this:

function pi_approx_bc($iterations, $print_frequency, $scale)
{
 $squared_approx = “12”;
 $next_sign = -1;
 $denom = 2;
 for ($iter = 0; $iter < $iterations; $iter++)
 {
 $squared_approx
 = bcadd(

469

 Performing Math with PHP 27

 $squared_approx,
 bcmul($next_sign,
 bcdiv(12,
 bcpow($denom,
 2,
 $scale),
 $scale),
 $scale),
 $scale);
 $denom++;
 $next_sign = - $next_sign;
 if ($denom % $print_frequency == 0)
 {
 $estimate = bcsqrt($squared_approx,$scale);
 print(“$denom iterations: $estimate
”);
 }
 }
}

Notice that although the BC functions want string arguments, we can, as always, use regular num-

bers in their places and rely on PHP to convert the arguments to strings for us. Also notice that we

did not bother making the numerical computations that do not require great precision into BC com-

putations (for instance, we still have $denom++ rather than bcadd($denom, 1). Finally, we added a

scale argument to the entire function, which turns the decimal precision of each BC function it calls.

Unfortunately, both your authors and our browsers ran out of patience with this series before it

even got to the level of precision of PHP’s value. Here are some late results of calling pi_approx_
bc(1250000, 50000, 50):

50000 iterations: 3.14159265397177274129723551068347726371297686926596
100000 iterations: 3.14159265368528715924598769254390594927146205337113
150000 iterations: 3.14159265363223483956231649503922204272933217538202
[..]
1150000 iterations: 3.14159265359051530310455255409602580003265549955003
1200000 iterations: 3.14159265359045638461148087403458918944405547147211
1250000 iterations: 3.14159265359040439393304018710072157703501022388304

The correct digits in the preceding output are about one digit shy of the PHP value. This is the fault

of the series we chose rather than the arbitrary-precision libraries — with a more sophisticated and

speedier approximation series, you too can serve up millions of digits of pi to your eager audience.

Somewhat more satisfyingly, evaluating:

print(“The square root of two is “ . bcsqrt(2, 40));

gives us many more digits of precision than we could get using doubles:

The square root of two is 1.4142135623730950488016887242096980785696

470

 Part III More PHP

Summary
Although the primary purpose of PHP is not to do mathematics, it has a pretty comprehensive set of

mathematical functions covering basic arithmetic, pseudo-random number generation, base conversion,

trigonometry, exponents and logarithms, and a built-in module for doing arbitrary-precision arithmetic.

We covered the numerical types and the most basic functions in Chapter 9, and covered the remain-

ing topics in this chapter. Table 27-6 is a tabular summary of the operators and functions discussed

both in Chapter 9 and this chapter.

TABLE 27-6

Summary of PHP Math Operators and Functions
Category Description

Arithmetic
operators

Operators +, -, *, /, % perform basic arithmetic on integers and doubles.

Incrementing
operators

The ++ and -- operators change the values of numerical variables, increasing them
by one or decreasing them by one (respectively). The value of the postincrement
form ($var++) is the same as the variable’s value before the change; the value of the
preincrement form (++$var) is the variable’s value after the change.

Assignment
operators

Each arithmetic operator (like +) has a corresponding assignment operator (+=). The
expression $count += 5 is equivalent to $count = $count + 5.

Comparison
operators

These operators (<, <=, >, >=, ==, !=) compare two numbers and return either true or
false. The === operator is true if and only if its arguments are equal and of the same type.

Basic math
functions

floor(), ceil(), and round() convert doubles to integers, min() and max() take
the minimum and maximum of their numerical arguments, and abs() is the absolute
value function.

Base
conversion
functions

Special-purpose functions (OctDec(), DecOct(), BinDec(), DecBin(), HexDec(),
DecHex()) convert between particular pairs of bases, whereas base_convert()
translates between arbitrary bases.

Exponential
functions

Functions having to do with raising numbers to powers or the inverse: log() (natural
log), log10() (base-10 log), exp() (e raised to the power of the argument), and pow()
(first argument to the power of the second).

Trigonometric
functions

Functions having to do with angular measures: pi() (and the equivalent constant
M_PI), sin(), cos(), tan(), acos(), asin(), atan(), and atan2() (a two-
argument version of atan()).

Arbitrary-
precision (BC)
functions

Functions that do arithmetic on arbitrary-length strings representing decimal integers
and floating-point numbers: bdadd(), bcsub(), bcmult(), bcdiv(), bcmod(),
bcpow(), bcsqrt(). Most of these functions take an optional scale parameter
specifying the number of decimal points of precision desired — the default for that
parameter is settable using bcscale().

471

“S
ecurity is not a joking matter,” proclaim signs at airports every-

where. The same sign should be posted near your PHP server.

Anyone connecting a server to the Internet must take proper

security measures or risk loss of data or even money to the keystrokes of

malicious crackers.

The mantra of the security-conscious site designer is: Don’t trust the net-
work. If you’re worried about the security of your site, chant this mantra as

you code your pages. Any information transmitted to your server via the

network — be it a URL, data from an HTML form, or data on some other

network port — should be treated as potentially hazardous. This chapter

suggests several techniques for sanitizing incoming information. You should

apply these techniques and spend some time trying to discover other

potential hazards and ways to prevent them.

The second rule of thumb for a secure site is: Minimize the damage. What if

the program you just wrote, which you are sure is secure, is actually vul-

nerable? Just to be on the safe side, limit the damage an intruder can cause

after he or she has taken advantage of the vulnerability.

When visitors come to your site, they trust that it contains valid informa-

tion, that it is not harmful to them or to their computers, and that any

information they provide to it is handled properly. Interacting with a site,

whether an e-business, recreational, or informational site, involves certain

security risks for a visitor. As a site designer, it is your responsibility to pro-

tect visitors from these risks. Besides being sure their information is safe on

your server, this means you should take measures to safeguard their infor-

mation while it is in transit from their computers to your server.

Securing PHP

IN THIS CHAPTER

Possible attacks

472

 Part III More PHP

But all this should not scare you away from putting your e-business online. The first section of this

chapter describes some possible attacks against your server and ways to avoid them. We then discuss

cryptographic techniques for protecting your data. At the end of this chapter, we list some web sites

that contain up-to-the-minute information on the latest cracker techniques. By watching these sites,

you may learn of possible security vulnerabilities before an attacker does and, thereby, avoid disaster.

Possible Attacks
Connecting your server to the Internet is like setting up a storefront on a busy street. You’re likely

to have quite a few visitors, but if you’re not careful, some less than desirable visitors may take

advantage of you.

Crackers, script-kiddies, and other fiends

The term hacker is commonly used to describe individuals more correctly labeled crackers. Within the
computer community, crackers are those who, through luck or skill, break into computer systems and

cause damage. Hackers are those who can hack — read and write efficient (and often obscure) code in many
languages. To a programmer, being labeled a hacker is an honor, whereas being labeled a cracker probably
means he or she should start reading the Help Wanted section.

As if the term cracker were not sufficiently derogatory, young crackers who use tools and scripts they find on the
web are called script-kiddies. These budding lawbreakers often have little understanding of what they are actually
doing. They are usually the culprits behind low-tech attacks such as site defacement. A fairly good indicator of
the work of a script-kiddie is the excessive use of misspelling and capitalization, as in W3 R KOOL D00Dz.

Site defacement
Often more embarrassing than harmful, site defacements are fairly common because the cracker has

an opportunity to publicize his or her exploitation. Site defacements are sometimes left as calling

cards by a cracker who entered a system by more complicated means.

It is possible to deface a badly designed web site using only a web browser. Take, for instance, the

following program:

<?php if (IsSet($_POST[‘visitor’])) {
 $visitor = $_POST[‘visitor’];
 $fp = fopen(“database”, “a”);
 fwrite($fp, “$visitor\n”);
 fclose($fp); } ?>
<HTML>
<HEAD></HEAD>

473

 Securing PHP 28

<BODY>
<H1>Visitors to this site:</H1>

<?php $fp = fopen(“database”, “r”);
 print(fread($fp, filesize(“database”)));
 fclose($fp) ?>

<HR>
<FORM><INPUT TYPE=”TEXT” NAME=”visitor”>
<INPUT TYPE=”SUBMIT” NAME=”submit” VALUE=”Sign in!”>
</FORM>
</BODY>
</HTML>

This program implements a very rudimentary guest book. In reading this code, however, you should

feel a bit uneasy. Don’t trust the network. This program accepts form data that we expect to contain

the visitor’s name (in the variable $visitor) and stores it in a text file for display to subsequent

visitors. For the inputs we expect, there is no trouble.

Now put on your script-kiddie hat for a moment and imagine what would happen if the input con-

tained HTML tags. This simple program would blindly insert those tags into the pages it generates,

and other visitors’ browsers would interpret them as usual. One particularly malicious tag is the
<SCRIPT> tag. A cracker wishing to deface this web page could duplicate the page’s appearance on

his or her own server (www.example.com) and then sign into the guestbook with the name:

<SCRIPT LANGUAGE=”JavaScript”>
window.location=”http://www.example.com/“</SCRIPT>

When visitors load the guest book, their browsers receive this tag and immediately begin loading

the hacked site. With a little ingenuity, the cracker could then take advantage of the visitors’ trust of

your site to extract personal information such as passwords or credit card numbers.

The solution to this problem is to sanitize the input data. In this case, we want any characters that

have special meaning to a browser to be translated into something harmless. Luckily, PHP provides

a way to perform just such a translation. The function htmlspecialchars() converts the charac-

ters <, >, “, and & to their representations as HTML entities (such as <). We change the first part

of our program to use this new function as follows:

<?php if (IsSet($_POST[‘visitor’])) {
 $visitor = $_POST[‘visitor’];
 $fp = fopen(“database”, “a”);
 $clean_visitor = htmlspecialchars($visitor);
 fwrite($fp, “$clean_visitor\n”);
 fclose($fp); } ?>

And we have patched a very significant security hole in our site.

474

 Part III More PHP

Accessing source code
Even if your PHP source code isn’t a trade secret, you should still protect it from exposure to the net-

work. If an intruder can read your source code, then he or she need not experiment to find a weak-

ness. Instead, the intruder can simply analyze the code, looking for common mistakes and other

security holes. In general, the more helpful information you provide to potential intruders, the more

likely an intrusion. By hiding such tidbits as source code, directory names, or usernames from the

network, you can reduce the likelihood of an attack.

One handy feature of PHP, error reporting to the browser, is great for development

because it helps pinpoint problems — but it can be bad for security, because it can also

give directory paths, filenames, usernames, and potentially database names on error. Minimize the risk

by turning off error reporting to the browser in production systems, via the display_errors direc-

tive in php.ini. You can still use error reporting to the browser on development systems if you wish,

although it’s safer to use the error_log() function to write error messages to a log.

When PHP is used as a web server module, there is little risk of source code being released by the

web server, as any file with the proper extension is parsed by the PHP module. If PHP is installed as

a CGI program, however, things are not so simple.

If you cannot run PHP as a server module, the next most secure setup is to run it as an interpreter

for CGI scripts, just as you would Perl or Python.

Place all your PHP programs in the cgi-bin directory for your server or your account and arrange

for the PHP interpreter to be invoked when they are executed. On Unix, this is done by adding a line

similar to the following as the first line of every script:

#! /usr/local/bin/php

To use this setup, you must compile PHP with the --enable-discard-path configuration option.

This setup has the disadvantage that the URLs for most of your pages contain /cgi-bin/.

The next most secure setup is a bit more complicated and is actually counter to the recommenda-

tions of CERT, a respected authority on computer security: We place the PHP interpreter itself in the
cgi-bin directory. It is usually inadvisable to put an interpreter in the cgi-bin directory, because

the rules for invoking CGI programs would allow any file on the server to be parsed as a program.

PHP is written to operate safely from the cgi-bin directory, however, if configured correctly. If

you intend to use this setup, first carefully read the security and configuration sections of the PHP

manual, as they may contain important information not available as this book went to press.

This setup relies upon the web server to redirect URLs of the form:

http://your.server/program.php

to URLs of the form:

http://your.server/cgi-bin/php/program.php

CAUTION CAUTION

475

 Securing PHP 28

The precise directives that will cause your web server to do this vary. For Apache they are:

Action php-script /cgi-bin/php
AddType php-script .php

If you are using Apache, be sure to compile PHP with the --enable-force-cgi-redirect con-

figuration option. This option utilizes a feature specific to Apache to prevent PHP from executing

when invoked by URLs of the second form. Your setup is complete.

If you are using any other server software, you must compile PHP with the --disable-force-
cgi-redirect configuration option. PHP cannot distinguish the two types of URLs and serves

a document of either type. This allows a visitor to view files without regard for web-server-based

access restrictions. Assume, for example, that the URL www.example.com/top/secret/hush
.php has access restrictions placed on it. A cracker could use the URL www.example.com/
cgi-bin/php/top/secret/hush.php to read the file anyway.

In this case, the web server is giving PHP the path name /top/secret/hush.php. PHP deter-

mines the location of the program file by prepending the configuration value doc_root to the

given path name. By default, this value is the same as the web server’s document root (the directory

corresponding to www.example.com/). Setting doc_root to another directory will limit PHP to

programs in that directory and its subdirectories instead of the entire collection of web server docu-

ments. Any visitor may access any of the PHP programs by the method just described, however,

without regard for web-server-based access controls. Be careful!

Reading arbitrary files
A few common PHP programming mistakes can make it easy for a hacker to read almost any file on

the server. Study the following page:

<HTML>
<HEAD></HEAD>
<BODY>
<?php if (IsSet($_POST[‘poem’])) {
 $poem = $_POST[‘poem’];
 $fp = fopen($poem, “r”);
 print (fread($fp, filesize($poem)));
 fclose($fp);
 } ?>
<HR><FORM>Pick a poem:
<SELECT NAME=”poem”><OPTION VALUE=”jabb.html”>Jabberwocky
<OPTION VALUE=”graves.html”>Cat-Goddesses</SELECT>
<INPUT TYPE=”SUBMIT” VALUE=”Show Me”></FORM>
</BODY>
</HTML>

This simple program displays a number of poems, selectable from a pop-up menu given in the form

near the end. Invoke the security mantra: Don’t trust the network. Clicking Show Me on this page

476

 Part III More PHP

results in URLs such as poetry.php?poem=graves.html. A cracker may substitute the filename

of some more sensitive file, such as poetry.php?poem=/etc/passwd. The program, as given,

would dutifully serve up the Unix password file, possibly enabling the cracker to break into a visitor

account and do further damage.

The following is an appropriate solution to this problem:

<?php if (IsSet($_POST[‘poem’])) {
 $poem = $_POST[‘poem’];
 switch ($poem) {
 case “jabb”:
 $poem_file = “jabb.html”;
 break;
 case “graves”:
 $poem_file = “graves.html”;
 break;
 }
 if (IsSet($_POST[‘poem_file’])) {
 $poem_file = $_POST[‘poem_file’];
 $fp = fopen($poem_file, “r”);
 print (fread($fp, filesize($poem_file)));
 fclose($fp);
 }
 } ?>

The advantage of this method is that it explicitly lists the acceptable inputs and gracefully handles

unacceptable inputs. If there were more poems to be processed, the switch statement could be

replaced with a database query, where failure of the query indicates invalid input.

This is not a good solution:

<?php if (IsSet($_POST[‘poem’])) {
 $poem = $_POST[‘poem’];
 if (!strstr($poem, “/“) && !strstr($poem, “\\“)) {
 $fp = fopen($poem, “r”);
 print (fread($fp, filesize($poem)));
 fclose($fp);
 }
 } ?>

The second conditional in this code segment checks for pathname separators in the given filename.

This program explicitly describes a set of unacceptable inputs and considers anything else accept-

able. It depends on the programmer imagining and checking for every possible undesired input. In

this case, the programmer has missed something by making the implicit assumption that no sensi-

tive files are stored in the same directory as the script.

What if a file that should be private escapes your server anyway? There is a chance that some mis-

configuration (perhaps by someone else) or an unnoticed security hole will render some or all of

your server’s files publicly accessible.

477

 Securing PHP 28

PHP allows you to explicitly specify the set of directories in which files can be opened with the con-

figuration value open_basedir. See Chapter 29 for more information on the PHP configuration file.

This configuration value can be useful to prevent access to entire directories and is a good way to

minimize the damage.

Many sensitive files, however, must be opened from PHP programs as visitors access the site. A

common example is a password file. Access to such a file cannot be blocked with open_basedir,

but the sensitive information it contains can be encrypted to render it useless to anyone who may

steal it.

A password-protected site must verify the password given by a visitor wishing to gain access. One

way to do this would be to store a password for safekeeping in encrypted form and then decrypt it

when we need to compare it to the user-supplied password. The problem is that if we can decrypt

the password, others may be able to decrypt it too. Also, we would have to make sure that no one

could see the password after we decrypted it for comparison. Instead, we can use an encryption

function that only goes one way and is easy to use for encryption, but that can’t be decrypted.

Rather than decrypt a stored password and compare the decrypted versions, we encrypt the given
password and compare the encrypted passwords. Unix uses this strategy with its own password

file, /etc/passwd, and PHP allows programmers to use the same encryption function for their own

password files.

The function crypt(password, salt) encrypts the given password. The salt adds an extra bit of

chance and should be chosen randomly when the password is first recorded. (PHP chooses a random

salt if this parameter is omitted.) The function returns the concatenation of the salt value and the

encrypted version of the password. The following function will create a new password for a visitor:

function new_pw($given) {
 return crypt($given)
}

And this function will compare a password given by a visitor with a stored, encrypted password:

function verify_pw($given, $stored) {
 $salt = substr($stored, 0, CRYPT_SALT_LENGTH);
 $given_encrypted = crypt($given, $salt);
 return ($stored == $given_encrypted);
}

Running arbitrary programs
It’s every system administrator’s worst nightmare. The server’s running more slowly than usual. A

look at the running programs on the server reveals that a program entitled crack is burning 98

percent of the processor’s time. Most likely, this program has been placed here by a cracker who is

using it to decrypt (crack) passwords. The administrator logs in to kill the offending program but

finds that his password is incorrect. His server has been root compromised, and there is no telling

how much damage has been done.

478

 Part III More PHP

Social Engineering

Social engineering is an often overlooked part of cracking. Sometimes it’s easier for crackers to extract infor-
mation (particularly passwords) from human beings than from computers:

Cracker: Hi, John, this is Gary in the IT department. When was the last time you used your company
account?

John: Well, I entered a few new purchase orders about an hour ago.

Cracker: Well, John, I’m afraid your account has been compromised. Some of the information in it may
have been lost. This could cost the company millions if we don’t catch the intruder quickly. We need
to open your account and assess the damage immediately. Can you give me your password?

John: Sure, it’s . . .

Worse yet, sometimes forgetful visitors note their passwords on scraps of paper in their desks! A determined
cracker can easily find a job as a night janitor and look for such notes. Many famous crackers were more notable
for their social engineering and research skills than their ability to write code to compromise systems.

In a compromise such as this, an intruder gains interactive access to the server, usually via a Unix

shell or MS-DOS command line. Clearly, this is the most difficult type of heist to pull off, but it also

bears the greatest reward. Once inside a server, the cracker has virtually unlimited power to bring

down the server, steal or modify information, or make use of the server’s computational power for

further wrongdoing. Worse yet, a truly skilled cracker can conceal his or her steps by editing log

files and erasing any temporary files he or she has created.

PHP has several program execution functions: system(), exec(), popen(), passthru(), and the

back-tick (̀) operator. As an example of the use of one of these functions, the following page returns

the Unix finger information for a visitor specified through an HTML form:

<HTML>
<HEAD></HEAD>
<BODY>
<FORM>Get information on <INPUT TYPE=”TEXT” NAME=”username”>,
<INPUT TYPE=”SUBMIT” VALUE=”Please”></FORM>
<?php if (IsSet($_POST[‘username’])) { ?>
 <H1>Results for <?php echo $_POST[‘username’]; ?></H1>
 <pre><?php system(“finger “ . $_POST[‘username’]); ?></pre>
<?php } ?>
</BODY>
</HTML>

The program, as given, takes a username from the HTML form and executes the Unix program finger

to look up information about that user. You should hear Don’t trust the network repeating loudly in your

head. Unix commands are separated by a semicolon, so anything following a semicolon in the string

passed to system() is treated as a new command. This new command is executed with all the permis-

sions of the user under which the web server is running.

479

 Securing PHP 28

Under Unix, the command “rm -rf /“ will delete all files on the server. Imagine the damage if an

ill-intentioned visitor typed “; rm -rf /“ into the form and clicked Please.

The best solution to this problem is to filter out everything but valid usernames before invok-

ing finger. This requires specific knowledge about username formats on your server, so we

do not present an example here. PHP presents a solution that is almost as good. The function

escapeshellcmd() will sanitize a string for use in a program execution command, rendering

harmless any special characters such as the semicolon. We replace the line invoking system() in

the preceding code snippet with:

<pre><?php
 system(escapeshellcmd(“finger “ . $_POST[‘username’]));
?></pre>

Magically, no value the visitor may enter can result in arbitrary programs being executed. This does

not, however, prevent the visitor from providing unexpected input to finger. Although finger

does no harm if given incorrect input, other programs may not be so forgiving. If in doubt, err on

the side of caution!

To minimize the damage of a compromise of this sort, most modern web servers run as a dummy user

(often called nobody on Unix systems). This user has only the permissions required to run the web

server (and any PHP scripts) and read and write the necessary files. But remember, any databases

or files that your scripts can modify are modifiable by this user, and thus they are vulnerable if an

attacker can run arbitrary programs.

Viruses and other e-critters
Visitors trust software coming from a trusted site. If your site allows visitors to download files

uploaded by other visitors, you should warn your visitors to check files for viruses before running

them, and you should consider periodically scanning the files on your server for viruses as well.

This is a hard problem to solve, particularly with the possibility of embedding viruses in such seem-

ingly harmless files as word processor documents. Indeed, Microsoft was caught in this very bind

when it inadvertently released a CD-ROM with a Word document containing the Melissa virus.

See the section “Site defacement” at the beginning of this chapter for other ways that

your visitor may inadvertently receive malicious code.

FYI: Security Web Sites
If you are losing sleep after reading this chapter, fear not. Every administrator and site designer

around the world is grappling with the same issues, and there is a strong feeling of solidarity among

computer security professionals. Many web sites are devoted to computer security, and almost all

of them contain full descriptions of recent security incidents and ways to protect your system from

duplicate attacks. Some are designed for security professionals, whereas others have the cracker in

mind. Either way, the information they provide is useful and often very interesting.

CROSS-REFCROSS-REF

480

 Part III More PHP

System Administrators

System administrators, also called sysadmins, are the folks who make sure the computers we all use keep on
computing and that the Internet keeps on networking. Their jobs are shrouded in mystery: They hold the

keys to the mysterious “machine room” where all the critical servers are stored. It’s not unusual to see them
hurrying into the office at midnight, surely to avert some crisis that could bring the company to its knees.

Sysadmins are also a very cautious lot. They tend to program their servers to report any unusual activity imme-
diately (often to the large-screen alphanumeric pager they carry at all times) and to take swift, decisive action
against anything they deem improper or unsafe.

A professor in a Computer Science department once asked his students, as homework, to break into his Linux
desktop. To make things a little easier, he gave the encrypted text of his password (see the description of
crypt() in the section “Reading arbitrary files”). In a testament to the security of the Unix crypt() func-
tion, none of the students cracked his desktop. Several of his students were denied access to their campus
accounts, however, and questioned by university officials because they were running computationally expensive
programs named crack!

If you aren’t your own system administrator, but you are concerned about the security of your site, it is probably
a good idea to befriend your local sysadmin. He or she can sometimes suggest ways to make your site more
secure and can also be an enormous help in recovering from an incident.

Begin your explorations by checking out these sites.

Computer Emergency Response Team■■ (CERT) (www.cert.org): CERT is one of the

most popular repositories of official descriptions of security incidents. It publishes adviso-

ries on all sorts of security issues, including very clear descriptions of the problem, vulner-

able systems, and possible solutions.

Security-focus.com■■ (www.securityfocus.com): Security-focus.com provides a great

deal of information on all aspects of computer security, from the legal and political to the

technical. It also hosts the well-known security mailing list, BugTraq (which can be found

under Forums).

Insecure.Org■■ (http://insecure.org): Insecure.Org is a fairly well-established site that

is not afraid to make cracking tools available and to discuss the nitty-gritty details of many

“exploits.” This site can be extremely useful if you want to try to break into your own site.

Summary
For any significant web site, security is a crucial part of the site’s implementation. You should take

extreme care to secure your server from attack and also be sure to protect your visitors’ private

information from prying eyes. In a time of enormous growth for online businesses, publication of a

481

 Securing PHP 28

story about a major security breach can destroy visitors’ confidence in your site, driving them to the

competition and possibly leaving your site to evaporate as quickly as it appeared.

In this chapter, we’ve driven home three basic lessons.

 1. Don’t trust the network. Every byte of data that comes from the Internet should be treated as

potentially hazardous. Be as restrictive as possible in defining the inputs you allow. Prefer

the solution that lists the acceptable inputs to the one that lists the unacceptable inputs. Be

sure that your web server configuration does not allow clients to view your source code or

to work around your access restrictions.

 2. Minimize the damage. Wherever possible, make sure that the damage possible from a par-

ticular type of security breach is minimal. Encrypt sensitive data. If you run your own web

server, make sure it is running as a dummy user.

 3. Finally, if you run your own server, spend some time breaking into it. If you’re successful, then

you’ve identified a vulnerability that you can patch before an intruder finds it. If you’re

unsuccessful, you’ve learned something about your server, and your security precautions

have weathered a good test. If you don’t run your server, find out who does, and see what

he or she can tell you about your site’s security.

483

I
n this chapter, we discuss the many configuration options available

with PHP, particularly the Unix Apache module version, in some detail.

The goal is for you to better understand the tradeoffs of each capability

you may enable or disable and the capabilities that may affect each other.

We also touch on ways you can measure and improve the performance of

your PHP scripts.

Viewing Environment Variables
To see any of the settings discussed in the following section, you have only

to use the phpinfo() function in a valid PHP script. This function begins

with a quick recap of the PHP version, your platform, date of build, and

compile-time options; it then moves methodically through your PHP set-

tings. You will also see some information about your web server settings

and environment variables.

The output of the phpinfo() function is a potential bonanza for crack-

ers, so you shouldn’t leave it sitting around on a production server. With

the release of 5.2.1, phpinfo() includes a META tag for robots that causes

a web spider honoring the robots protocol not to index a phpinfo() file.

Nevertheless, because there’s nothing that requires adherence to the robots

protocol, this should not be relied on as a security measure.

Learning PHP
Configuration

IN THIS CHAPTER

Viewing environment variables

Understanding PHP

configuration

Improving PHP performance

484

 Part III More PHP

Understanding PHP Configuration
Like most of the best open source software packages, PHP is highly configurable. It’s left up to you,

the individual PHP user, to find your own balance among the competing virtues of power, flexibil-

ity, safety, and ease of use.

Configuration is difficult to describe fully because there are so many possible combinations of

options. In some cases, there is an obvious conflict between two configuration directives — you

simply have to choose one or the other, end of story. In other cases, you can have both but may need

to remember some workarounds. We try to point out as many of these implications as we can, but

no one can honestly claim to have tested every possible combination.

The Windows version of PHP now ships with the most popular extensions (for example, MySQL)

compiled in and a startling number of shared libraries (.dlls) bundled with PHP itself. Many of

these libraries have to be built from Unix source, so this effort represents a truly amazing amount of

unremunerated, thankless work from the PHP build team.

The truth is that the PHP build for Windows (the so-called manual installation, not the installer

version) now offers almost all the functionality of Unix builds with much less effort. Windows users

only need to worry about the variables that can be set with the php.ini file — not all of which are

applicable to Windows versions of PHP anyway. If you only use PHP on Windows, feel free to skip

down to the “The php.ini file” section of this chapter, with a glance at the “Apache configuration

files” section if you run on Apache.

Unix users have a more specific palette of options. To take full advantage of this power, you need to

clearly understand the various means by which you can analyze and control your PHP installation.

The three most important on the Unix side are:

Compile-time options■■

Web server configuration files■■

The ■■ php.ini file

A few things can also be controlled with runtime options, system settings, or the presence/absence/

configuration of other software packages.

Compile-time options
During the configure/make process, PHP allows you to specify a number of specific flags. This

causes the appropriate extensions to be built into your custom version of the PHP module or binary.

None of the information in this section is relevant if you are running a precompiled binary (for

example, Windows, Mac OS X, or RPM build).

It’s important to understand that most compile-time options are merely necessary preconditions

for using a particular function set — but that this capability can still be turned on or off, or impor-

tant configuration options set, in the php.ini file. The compilation step and the configuration file

485

 Learning PHP Configuration 29

work together. Think of it this way: You must compile with the flag to use the functionality, but you

needn’t use the functionality just because you compiled with the flag.

If you fail to employ the appropriate compile-time option, you get an undefined-function

fatal error. This error is almost never seen outside of user-defined functions for any other

reason, so it should be considered a red flashing light that you need to check your compilation options.

Thankfully, you can retrieve your previous options with phpinfo() and then simply add the new fea-

tures you want, should a recompile ever be necessary.

Most compile-time options are pretty self-explanatory. You merely install the required libraries,

build PHP with the --with-[library][=DIR] flag and, in some cases, set a configuration option

in php.ini. In the following sections, we will mention only common cases that require special

treatment of some kind.

Remember that all third-party servers and libraries that you plan to use with PHP must be

downloaded and installed before you attempt to build PHP. This means the web server, a

database server, mail, and LDAP servers, XML, encryption, graphics, and bcmath libraries must all be

in place before PHP.

--with-apache[=DIR] or --with-apache2=[DIR]
This flag causes PHP to be built as a static Apache module. You must use --with-apache2 if you’ve

ventured into the newest Apache series. Even though the Apache module version is now by far the

most popular build, the PHP developers have chosen to leave the CGI build as the default choice. If

you forget this (or the --with-apxs) flag when trying to make a static Apache module, you will end

up with the CGI version.

You almost certainly want to set the Apache base directory parameter because make may default

to some unexpected location. Remember that Apache installs in different default directories in the

source versus RPM builds — so if you’ve previously installed an httpd via RPM (perhaps as part of

a Red Hat Linux installation), you should uninstall the package and leave a clean background for the

source build you need now.

A static Apache build will have to be recompiled every time you change PHP versions. Apache

server, at this point, changes rather slowly, whereas PHP adds new extensions and releases patches

rather frequently, so this may be a significant factor in choosing the apxs build instead.

--with-apxs[=DIR] or --with-apxs2[=DIR]
This flag specifies that the PHP module be built as a dynamic Apache module. This saves disk space

for Apache, and some people claim the build is easier. The main value of the apxs build is that you

will be able to swap PHP modules (while upgrading, for instance) without recompiling Apache. If

you upgrade frequently, or if you enjoy trying out experimental builds, this is the best option.

Remember that you can build PHP with either the --with-apache or --with-apxs

flags, not both.

TIPTIP

TIPTIP

CAUTION CAUTION

486

 Part III More PHP

--with-[database][=DIR]
All the databases supported by PHP use a similar compile-time flag. The directory need only be

specified if it is not the default installation directory. For more information on choosing a database

for use with PHP, see Chapter 11. The specific flags and default directories are listed in Table 29-1.

TABLE 29-1

Database Compile-Time Information
Database Name Default Directory Flag Syntax

Adabas D* /usr/local --with-adabas[=DIR]

DBase bundled --enable-dbase

Filepro bundled --enable-filepro

IBM DB2 /home/db2inst1/sqllib --with-ibm-db2[=DIR]

Informix no default --with-informix[=DIR]

iODBC* /usr/local --with-iodbc[=DIR]

mSql /usr/local/Hughes --with-msql[=DIR]

MySQL < 4.1 /usr/local/mysql --with-mysql[=DIR]

MySQL 4.1 and
above

/usr/local/mysql --with-mysqli[=DIR]

Oracle ORACLE_HOME --with-oci8[=DIR]

PostgreSQL /usr/local/pgsql --with-pgsql[=DIR]

SAP DB /usr/local --with-sapdb[=DIR]

Solid* /usr/local/solid --with-solid[=DIR]

Sybase /home/sybase --with-sybase[=DIR]

Sybase-CT /home/sybase --with-sybase-ct[=DIR]

SQLite Bundled --with-sqlite

The databases marked with an asterisk use ODBC-based interfaces. These ODBC choices are mutu-

ally exclusive — you must limit yourself to a maximum of one.

Each database mandates slightly different configuration options in php.ini or other configura-

tion files. Oracle, for example, has its own environment variables that obviate PHP settings. Sybase,

Oracle, and some other databases escape single quotation marks with single quotation marks, which

requires the magic_quotes_sybase option in php.ini. MySQL allows you to specify a default

487

 Learning PHP Configuration 29

hostname, username, and password — not at all a good idea unless you understand the security

implications! Most of these options are standard and self-explanatory, however, and they have little

effect on other parts of PHP.

--with-mcrypt[=DIR]
This flag builds in the mcrypt library, which includes many of the most popular open cipher algo-

rithms. mcrypt is available for download at http://mcrypt.sourceforge.net.

There is no documented default directory, although PHP can probably find the one mentioned in the

libmcrypt documentation. libmcrypt must be compiled with the --disable-posix-threads

option. See Chapter 28 for more information on using PHP’s cryptography capabilities.

--with-java[=DIR]
This flag builds Java support into PHP. The DIR path should be set to the location of your JDK, and

the Java settings in php.ini must all be set correctly. This extension cannot be used with a static web

server build (for example, --with-apache), and this flag will probably not work correctly with Solaris

versions of PHP and Java. Please see the Java extension README in /php_[build_directory]/ext/
java for more information.

There is an alternate method of accessing Java from PHP: integrating PHP into a Java servlet environ-

ment using a SAPI module. You might want to do this if you use Java extensively, as it is the more

efficient method. If you choose the servlet integration method, you do not need this extension. See

Chapter 38 for more on using Java with PHP.

--with-xmlrpc
This flag builds Dan Libby’s XML-RPC and SOAP implementation into PHP. The XML-RPC package

now comes bundled with PHP, so you do not need to specify a directory.

To learn more about XML-based Web services and PHP, see Chapter 41.

--with-dom[=DIR]
This flag builds with DOM XML support, using the GNOME XML library (a.k.a. libxml, gnome-xml).

The DIR path should point to your libxml installation; if you don’t set this value, it defaults to /usr.

You can download and learn more about GNOME xml from www.xmlsoft.org.

Very common shared libraries, such as libjpeg, can cause fatal problems at PHP

compile time even if you correctly set the directory paths in all the compile-time flags.

Common issues include PHP looking for the files in the wrong place, incorrect versions of these librar-

ies already being installed on your machine, or libraries having been built in a form inaccessible to PHP.

The solution to most of these problems is to upgrade all such shared libraries to the latest version.

However, if your client applications are old, this may break them. A possible workaround is to tempo-

rarily rename the installed versions of your shared libraries, so they cannot be found by PHP; compile

the new versions in different locations; compile PHP using these directory paths, then rename your old

versions to their original names. Take good notes if you try this!

CROSS-REFCROSS-REF

TIPTIP

488

 Part III More PHP

--enable-bcmath
This option builds support for arbitrary-precision mathematics from a bundled library. You can set

the number of decimal places in php.ini.

--enable-calendar
This option builds support for calendar conversion functions (for example, Jewish to Julian) from a

bundled library.

--with-config-file-path=DIR
This option allows you to specify the location of your php.ini file. You need to use it only if you’ve

deliberately moved it away from the default location, /usr/local/lib.

--enable-url-includes
This option allows you to include or require and execute files from remote HTTP or FTP servers, like

this: include(http://remotehost/include.php). This functionality should be carefully con-

sidered, as it has horrible security implications. If you merely want to read in HTML files from other

servers, you do not need this flag.

--disable-url-fopen-wrapper
This flag turns off the default capability to open files on remote HTTP and FTP servers, like this:

fopen(http://remotehost/include.php).

CGI compile-time options
All compile-time options just described are available for the CGI version, except for the module-

specific flags (for example, --with-apache, --with-apxs).

Most users today who use PHP’s CGI mode are interested in using it as a standalone binary, similar

to Perl, rather than for web development. If this is the case, safe mode is probably beside the point.

--with-exec-dir[=DIR]
Another compile-time option relating to safe mode is --with-exec-dir. This option sets the

default safe-mode execution directory to /usr/local/bin, but that can be changed with the

safe_mode_exec directive in php.ini. Remember you can only run programs from this single

directory under safe mode.

--enable-discard-path
If you’d like to place the CGI version of PHP outside the web tree and call it as you would a Perl CGI

script (such as with #!/usr/local/bin/php as the first line of each script), you need to specify

this compile-time flag. You must also make all PHP CGI scripts executable.

489

 Learning PHP Configuration 29

--enable-force-cgi-redirect
This flag is a security must for the CGI module. It prevents browser users from calling CGI-bin files

directly, thereby bypassing Apache security settings. This is an Apache-specific configuration directive;

don’t bother trying to enable it if you are running on a different web server or as a standalone binary.

Apache configuration files
If PHP is used with Apache as a module or with CGI, much of PHP’s basic file-serving capability is

determined by Apache’s configuration files. The main ones from recent versions of Apache Server

are the httpd.conf file for global settings, and the .htaccess file for per-directory access settings.

Older versions of Apache split up httpd.conf into three files (access.conf, httpd.conf, and

srm.conf), and some users still prefer this arrangement.

In PHP3, there were specific Apache configuration directives that could substitute for almost

every php.ini setting. For example, instead of setting Engine = On in the first substantive line of

php.ini, you could put php3_engine on in an .htaccess file for a similar effect. As the num-

ber of PHP configuration directives increased, however, people decided that too many flags were

cluttering up Apache’s namespace. The naming scheme has been generalized, therefore, to encom-

pass these four basic, configurable directives:

php_value name value■■ : Sets value of variable.

php_flag name on|off■■ : Sets Boolean.

php_admin_value name value■■ : Sets value of variable. Can only be used in main Apache

configuration file(s) rather than .htaccess.

php_admin_flag name on|off■■ : Sets Boolean. Can be used only in main Apache con-

figuration file(s) rather than .htaccess.

An example would be magic quotes for GET, POST, and COOKIE variables. You can use php_flag

with the name of the variable, like this:

php_flag magic_quotes_gpc off

If this is all too confusing, don’t worry: The new-style Apache configuration directive naming only

applies to settings you can change in php.ini anyway.

Apache server has a very powerful, but slightly complex, configuration system of its own. Learn

more about it at the Apache web site: www.apache.org.

The following headings describe settings in httpd.conf that affect PHP directly and cannot be set

elsewhere.

Timeout
This value sets the default number of seconds before any HTTP request will time out. If you set

PHP’s max_execution_time to longer than this value, PHP will keep grinding away but the user

490

 Part III More PHP

may see a 404 error. In safe mode, this value will be ignored; you must use the timeout value in

php.ini instead.

DocumentRoot
DocumentRoot designates the root directory for all HTTP processes on that server. It looks some-

thing like this on Unix:

DocumentRoot “/usr/local/apache_1.3.6/htdocs”

It looks like this on Windows:

DocumentRoot “C:/Program Files/Apache/htdocs/“

The document root can be almost any directory — it needn’t be in the Apache installation directory.

You can specify a subdirectory of this as the PHP document root, using the doc_root setting in

php.ini. In this case, HTML files would be served out of the Apache document root and its subdi-

rectories, but PHP would be parsed only in the specified PHP directory and its subdirectories.

AddType
The PHP MIME type needs to be set here for PHP files to be parsed.

Remember that you can associate any file extension with PHP; many administrators set the .php3

and .html types for backward compatibility — but if you wanted to, you could have PHP parse files

called filename.asp or filename.jsp. You can also add multiple types for different versions

of PHP. The following are sample AddType lines; the first one is the most common for PHP4 and

above, but you can add as many of the others as you wish.

AddType application/x-httpd-php .php
AddType application/x-httpd-phps .phps
AddType application/x-httpd-php3 .php3 .phtml
AddType application/x-httpd-php .html

You can also set this on a per-directory basis with .htaccess, simply by adding type lines to

.htaccess files. PHP files are then parsed only in one directory of your site (for instance, in a

forum folder). Alternatively, you can set up a directory with archived versions of files that may

have old extensions — so just in that directory, Apache allow files with the .phtml extension to

be parsed.

Action
You must set this line for the CGI version of PHP with Apache, generally used with Windows. You

do not need to set this line for the module version of PHP.

Action application/x-httpd-php4 “/php/php.exe”

491

 Learning PHP Configuration 29

LoadModule
You must uncomment this line for the Windows apxs module version of Apache with shared object

support:

LoadModule php4_module modules/php4apache.dll

or on Unix flavors:

LoadModule php4_module modules/mod_php.so

AddModule
You must uncomment this line for the static module version of Apache.

AddModule mod_php4.c

The php.ini file
The PHP configuration file, php.ini, is the final and most immediate way to affect PHP’s function-

ality. Important changes are frequently made in the structure of this file, so if you haven’t bothered

to really look at every line recently, now may be a good time.

The php.ini file is read each time PHP is initialized — in other words, whenever httpd is

restarted for the module version or with each script execution for the CGI version. If your change

isn’t showing up, remember to stop and restart httpd. If it still isn’t showing up, use phpinfo()

to check the path to php.ini (near the top of the file); if necessary, recompile the code with the

--with-config-file-path flag or just move php.ini to wherever PHP expects to find it.

What happens if PHP can’t find php.ini? Under Windows, right up until the formal

release of PHP4, you used to get an “unable to parse configuration file” fatal error. Under

Unix and now under Windows as an ISAPI module, interestingly enough, you get no warnings or errors

— PHP carries on with default settings, which are the same as if you had not changed any settings in

php.ini-dist. You need to install php.ini only if you want to change the default settings.

The configuration file is well commented and thorough. Keys are case-sensitive, keyword values are

not; whitespace, and lines beginning with semicolons are ignored. Booleans can be represented by

1/0, Yes/No, On/Off, or True/False. The default values in php.ini-dist will result in a rea-

sonable PHP installation that can be tweaked later.

What follows are notes explaining the settings in php.ini that are not completely documented in

the file or the PHP manual’s configuration.html page.

short_open_tag = Off
Short open tags look like this: <? ?>. This option must be set to Off if you want to use XML

functions.

CAUTION CAUTION

492

 Part III More PHP

disable_functions = [function1, function2, function3 . . . functionn]
A welcome addition to PHP4 configuration and one perpetuated in PHP6 is the ability to disable

selected functions for security reasons. Previously, this necessitated hand-editing the C code from

which PHP was made. Filesystem, system, and network functions should probably be the first to go

because allowing the capability to write files and alter the system over HTTP is never such a safe idea.

max_execution_time = 30
The function set_time_limit() won’t work in safe mode, so this is the main way to make a script

time out in safe mode. In Windows, you have to abort based on maximum memory consumed

rather than time. You can also use the Apache timeout setting to timeout if you use Apache, but that

will apply to non-PHP files on the site, too.

error_reporting = E_ALL & ~E_NOTICE
The default value is E_ALL & ~E_NOTICE, all errors except notices. Development servers should be

set to at least the default; only production servers should even consider a lesser value.

error_prepend_string = [“”]
With its bookend, error_append_string, this setting allows you to make error messages a dif-

ferent color than other text, or what have you. We recommend setting the value to “<blink>” (and

error_append_string to “</blink>”, of course) for a special treat! The default values result in

a red error message. Remember to uncomment these if you want to use them — they’re commented

out by default.

warn_plus_overloading = Off
This setting issues a warning if the + operator is used with strings, as in a form value.

variables_order = EGPCS
This configuration setting supersedes gpc_order. Both are now deprecated along with register_
globals. It sets the order of the different variables: Environment, GET, POST, COOKIE, and SERVER

(aka Built-in). You can change this order around. Variables will be overwritten successively in

left-to-right order, with the rightmost one winning the hand every time. This means if you left the

default setting and happened to use the same name for an environment variable, a POST variable,

and a COOKIE variable, the COOKIE variable would own that name at the end of the process. In real

life, this doesn’t happen much.

gpc_order = GPC
Deprecated.

auto-prepend-file = [path/to/file]
If a path is specified here, PHP must automatically include() it at the beginning of every PHP file.

Include path restrictions do apply.

493

 Learning PHP Configuration 29

auto-append-file = [path/to/file]
If a path is specified here, PHP must automatically include() it at the end of every PHP file —

unless you escape by using the exit() function. Include path restrictions do apply.

include_path = [DIR]
If you set this value, you will only be allowed to include or require files from these directories. The

include directory is generally under your document root; this is mandatory if you’re running in

safe mode. Set this to . in order to include files from the same directory your script is in. Multiple

directories are separated by colons: .:/usr/local/apache/htdocs:/usr/local/lib.

doc_root = [DIR]
If you’re using Apache, you’ve already set a document root for this server or virtual host in httpd
.conf. Set this value here if you’re using safe mode or if you want to enable PHP only on a portion

of your site (for example, only in one subdirectory of your web root).

upload_tmp_dir = [DIR]
Do not uncomment this line unless you understand the implications of HTTP uploads!

session.save-handler = files
See Chapter 24 for details on this setting. Except in rare circumstances, you will not want to change

this setting.

ignore_user_abort = [On/Off]
This setting controls what happens if a site visitor clicks the browser’s Stop button. The default is On,

which means that the script continues to run to completion or timeout. If the setting is changed to

Off, the script will abort. This setting only works in module mode, not CGI.

Improving PHP Performance
There are two schools of thought about web performance. The first is that PHP script performance,

theoretical web server speed, chip clock speed, server RAM, and almost everything else is made

irrelevant by throughput issues — so why sweat the small stuff? The other is that there’s no thrill

quite like that of shaving a few microseconds off your script execution time. This section is basically

useless for proponents of the former view.

Before you can improve your performance, you have to measure it. We use the time-honored pro-

gramming performance metric: measuring microseconds. Whip up a little function like this:

function exec_time()
{
 $mtime = explode(“ “, microtime());
 $msec = (double)$mtime[0];

494

 Part III More PHP

 $sec = (double)$mtime[1];
 return $sec + $msec;
}

This function just reformats microtime output into a double for easier subtraction. Paste or include it

at the top of the script you’d like to measure. Now divide the main body of your script into sections

and scatter calls to exec_time() at strategic points, like this:

<?php
$start_db_call = exec_time();
$db = mysql_select_db(“test”);
$result = mysql_query(“SELECT * FROM user
 WHERE ID=1”);
while ($testrow = mysql_fetch_array($result)) {
 echo $testrow[0];
}
$end_db_call = exec_time();
$runtime = $end_db_call - $start_db_call;
echo “Database call and echo took $runtime seconds”;
?>

The next time you hit the web page, voilà! A self-timing PHP script, at your service.

Using microtime() to measure PHP tells you only what happens between the time PHP

begins working on the first measured line of code and the time it finishes working on

the last measured line of code. It does not tell you how long your web server is taking to spawn a child

process or your CGI to start up, how much latency your server is suffering from, what traffic conditions

at your web farm are like, or a lot of other things that affect real-world performance at least as much if

not more than actual PHP processing time. To find out that kind of thing, you need measuring tools far

beyond PHP. A good start for Apache on Unix is the program called ab (aka Apache Benchmark tool),

which ships with Apache.

Now that you know how long the various parts of your script are taking, you can take steps to

improve performance. Actually, a little logic should tell you that functions that touch other files or

call other daemons should take longer than those that are self-contained within a discrete file. So

database calls, include and require statements, objects with inheritance, and XML parsing are

just going to take longer than simple arithmetic or echoing a string. But because these advanced

functionalities are the best part of PHP, obviously it would be pointless to get rid of them for the

sake of squeezing out a few more microseconds.

What you can and should do instead is hunt and destroy gross programming errors that cause

unnecessary latency. Infinite loops, you know, are never very stylish. If you can notice a script run-

ning slowly with the naked eye, especially on a localhost, it’s cause for concern — whip out the

microtime and find out where it’s going wrong. Pay special attention to known bottlenecks such as:

using regex instead of the faster, built-in functions such as explode() in a tight loop; object-ori-

ented programming where it’s not needed; bad use of SQL; including multiple instances of the same

files; and long loops.

CAUTION CAUTION

495

 Learning PHP Configuration 29

Although it would be better to eliminate all errors in the code itself, you can also help matters by set-

ting the Apache or PHP timeout and max-memory configuration variables as low as possible. Come

on — no web page should need a 300-second timeout and you know it. Another configuration set-

ting that may have a good effect on extremely slow scripts is ignore_user_abort in php.ini.

Recent distributions of PHP have also offered an optimized php.ini that sets variables for maxi-

mum speed at the possible expense of other virtues. If you choose to use this file, please take the

time to understand the effects of its changes, as the changes may affect legacy scripts that expect

HTTP_* variables and other globals.

Optimizers and Caches

Until recently, speed-shavers had few options but homemade metrics like the microtime() func-
tion just described. But now, intriguing tools are beginning to become widely used to increase PHP

performance.

One that is available without cost is the Zend Optimizer. This tool makes multiple passes over a PHP script and
replaces slower constructs with faster ones that have the same effect. However, the Zend Optimizer is rumored
to mostly help inexperienced coders: If you already write tight PHP, it may not be able to add much value.

Another Zend product that promises to affect performance positively is the Zend Accelerator. This product
apparently compiles and stores a version of each page in memory, reducing disk reads and redundant compi-
lation and thus speeding Web service. Reliable reports claim that the Accelerator can deliver from two to ten
times improvement in number of requests handled. Both the Zend Accelerator and the Zend Optimizer are
available at the Zend web site, www.zend.com.

There are also optimizing and caching products available without cost. Two popular choices are Nick Lindridge’s
PHP Accelerator (www.php-accelerator.co.uk) and APC (http://apc.communityconnect.com).
These may be included in PHP 6 or in subsequent point releases, following the initial PHP 6 release. At the
time of this writing, the final decision hadn’t been made.

Summary
The good thing and the bad thing about PHP configuration are the same: There are a whole heck of a

lot of options and more than one way to set many of them. The Unix Apache module is particularly

rich in choices, but the development team has labored long and hard to make PHP as customizable

as possible.

There are three main ways to configure PHP. The first is via build-time flags, which are only avail-

able to those who build from source. Many of these directives are only necessary preconditions,

meaning they set default conditions that need to be confirmed or can be reversed elsewhere. The

496

 Part III More PHP

second is via Apache configuration files (httpd.conf and .htaccess), which are only available to

users of Apache server. The third is via the php.ini file, which comes with every PHP distribution.

The php.ini file experienced a few significant changes with PHP4, but hopefully has stabilized

somewhat with PHP6 One of the most important is the capability to disable functions on an indi-

vidual basis. Certain features of PHP3 and PHP2 are beginning to be deprecated in this file, such as
register_globals. And the php.ini is no longer an absolute necessity on Windows — versions

of PHP now recognize default values even without the file being present in the Windows path.

After you’ve run PHP for a while, you may wish to tune its performance. Beginning with PHP 5 and

continuing into PHP 6, execution times are considerably faster at the same tasks than earlier ver-

sions, and in general script execution time isn’t the bottleneck to total performance — but you may

want to maximize the efficiency of your PHP-enabled server anyway. The main tool available to

measure performance is simply echoing microtime() at intervals throughout a script. With this

simple method, you can try to narrow down and improve the parts of your scripts that are taking

the most time. This does not measure anything outside PHP that may affect its performance; for

that, you need external tools such as ab (Apache Benchmark).

Tools to help speed up PHP are becoming widely available. One of the most intriguing is Zend’s

Accelerator, which promises at a minimum to double pages served on the same hardware. There are

also alternatives available without cost.

497

U
ntil now, programmers have been very creative in figuring out how

to deal with error cases within PHP, whether setting and printing

error strings or using and abusing the limited error reporting system.

Despite its many useful features, PHP has not contained a good system for

comprehensively dealing with errors. Fortunately, this changed with PHP5.

Error Handling in PHP
If you are familiar with structured programming languages, such as C and

Java, you have probably grown accustomed to the various built-in objects

that allow you to handle errors and exceptions. If so, you’ll be happy to

note that PHP5 now includes, for the first time, an exception-handling

object, and that the syntax is very similar to existing languages like Java.

In fact, once you learn a bit of syntax you can begin handling errors and

exceptions much as you have been with other object-oriented languages.

However, if you have been primarily using PHP, and are unfamiliar with

other languages, the idea of exception handling may be new to you.

Exception handling is a powerful tool that you will come to appreciate once

you understand the concept and put it to good use in your code. This new

built-in function will enable you to debug error conditions, recover from

unexpected situations, and present a clean interface to your end users with-

out printing errors to the screen.

Errors and exceptions
It is helpful to think of an exception not merely as an error. An exception,

as the name implies, is any condition experienced by your program that is

Handing Exceptions
with PHP

IN THIS CHAPTER

Error handling in PHP

The Exception class

The try/catch block

Throwing an exception

Other methods of error

handling

Logging and debugging

498

 Part III More PHP

unexpected or not handled within the normal scope of your code. Generally, an exception is not a

fatal error that should halt program execution, but a condition that can be detected and dealt with in

order to continue properly.

Exceptions, when properly used, can greatly increase the reliability of your application, and cut

down on debugging headaches. However, poorly handled or ill-defined exceptions can create more

problems than they solve by obscuring the source of an error. Plan on taking the time to properly

determine and execute your exception-handling method, and you will be amply rewarded.

Take a look at some sample code that contains some error detection as it might be handled in PHP4

or earlier. We are retrieving a POST variable containing a user’s ID, which must be at least nine char-

acters in length and begin with the “usr” prefix. Once the variable is checked for these conditions,

we pass it to a function that will verify the existence of the user within the site database.

LISTING 30-1

Error-handling without exceptions

<?php

 // include the file which will validate the user ID
 require_once(‘includes/usr_functions.php’);

 // retrieve the user ID to validate
 $user_id = $_POST[‘user_id’];

 // set the display message based on whether or not the
 // user ID is valid
 if (!is_valid_user($user_id)) {
 $msg = “Sorry, $user_id is not a valid user ID.”;
 } else {
 $msg = “$user_id is a valid user ID.”;
 }

 function is_valid_user($user_id) {

 // return false if the user ID does not begin with “usr”
 $pre_str = “usr”;
 if ((strpos($user_id, $pre_str) === false) ||
 (strpos($user_id, $pre_str) != 0)) {
 return false;
 }

 // return false if the user ID is not the proper length
 if ((strlen($user_id) < 9)) {
 return false;
 }

499

 Handing Exceptions with PHP 30

 if (validate($user_id)) {
 // user ID was found in the database
 return true;
 } else {
 // the specified user ID does not exist in the database
 return false;
 }

}
?>

As you can see, any number of conditions might cause the is_valid_user() function to return a

value of false, only one of which actually pertains to the question of whether the user exists in the

database. Using exceptions, you can more easily distinguish among types of errors and deal with

them according to the nature of each error.

The Exception class
The new Exception class was built into PHP5 and ready for use with any code on a PHP5 or later

server. Rather than using Boolean functions as in the preceding example, an instance of Exception

can be created or thrown within the code.

Listing 30-2 shows what Listing 30-1 might look like after rewriting to use exception handling.

LISTING 30-2

Error-handling using exceptions

<?php

// include the file which will validate the user ID
require_once(‘includes/usr_functions.php’);

// retrieve the user ID to validate
$user_id = $_POST[‘user_id’];

try {

 // set the display message based on whether or not
 // user ID is valid
 if (!is_valid_user($user_id)) {
 $msg = “Sorry, $user_id is not a valid user ID.”;
 } else {
 $msg = “$user_id is a valid user ID.”;

} catch(Exception $ex) {
 // retrieve the message from the exception object

500

 Part III More PHP

 $msg = ($ex->getMessage());

}

function is_valid_user ($user_id) {

 // throw an exception if the user ID does not begin
 // with “usr”
 $pre_str = “usr”;
 if ((strpos($user_id, $pre_str) === false) ||
 (strpos($user_id, $pre_str) != 0)) {
 throw new
 Exception(‘$user_id does not contain the proper prefix.’);
 }

 // throw an exception if the user ID is not the proper length
 if ((strlen($user_id) < 9)) {
 throw new Exception(‘$user_id is less than the
 required length’);
 }

 if (validate($user_id)) {
 // user ID was found in the database
 return true;
 }
 else
 // the specified user ID does not exist in the database
 return false;
 }

}

?>

Don’t be thrown by the use of the word throw. In this case, it is used to create a new Exception

object. Now errors that have nothing to do with normal flow are handled as separate exceptions

rather than mingling with the rest of the application.

The try/catch block
Exceptions are caught and handled using a try/catch control construct. You will want to include any

code that may generate an error or exception within the try() construction. Whenever any excep-

tion is thrown by the code, the try() block execution is terminated, and the remaining code within

the try() construction is not executed. The catch() block is then consulted to find the proper

501

 Handing Exceptions with PHP 30

type of exception, and the exception is then dealt with according to the code within that particular

catch block. We now have different conditions based upon the type of exception that was thrown,

rather than one general, nonspecific error.

Throwing an exception
One of the nice things about using exceptions is the ability to display as much — or as little —

information as you need. There are several methods available for use with an Exception object,

which you can use to create your own error messages or to deal with conditions accordingly.

The following code shows how you might throw and immediately catch a generic exception, and

then take apart the Exception object to recover the message, the error code, and the originating file

and line number.

<?php

try {

 throw new Exception(‘Syntax error’);

} catch(Exception $ex) {

 // the input string passed to the object
 $msg = ($ex->getMessage());
 // customizable error code
 $code = ($ex->getCode());
 // name of the file that threw the exception
 $file = ($ex->getFile());
 // line number containing the exception
 $line = ($ex->getLine());

 echo “Error no. $code: $msg in file $file on line $line”;
}

?>

Here, a standard, PHP style error message is displayed. However, you as the programmer can display

anything that you like or can even change application behavior based on the specific error.

Note that, although in this example the code that throws the exception is the only thing in the try

block, we could have had arbitrarily complex code that calls a function defined in a different file,

which throws an exception only some of the time. Whenever an exception is thrown, control will

revert to the catch block associated with the try.

Multiple catch blocks can be used to deal successfully with more than one type of exception. We’ll

look at an example in the following section.

502

 Part III More PHP

Defining your own Exception subclasses
PHP also allows you to define your own classes that inherit from the Exception class. Now you no

longer have to rely on the getMessage() function for information on the specific type of error that

was generated. Subclasses can be defined as in the following example:

<?php

class CustomException extends Exception {
 public function __construct($message) {
 parent::Exception($message);
 }
}

?>

Let’s look at the example covered in Listing 30-3 and consider using custom exceptions. People sign-

ing in using this code may forget to include the “usr” prefix in their username, so if it’s missing you

might want to try adding it and validating again rather than immediately halting the program.

LISTING 30-3

Recovering using custom exceptions

<?php

// include the file which will validate the user ID
require_once(‘includes/usr_functions.php’);

// retrieve the user ID to validate
$user_id = $_POST[‘user_id’];

try {

 // set the display message based on whether or not
 // user ID is valid
 if (!is_valid_user($user_id)) {
 $msg = “Sorry, $user_id is not a valid user ID.”;
 } else {
 $msg = “$user_id is a valid user ID.”;
 }

} catch(PrefixException $ex) {

 // if prefix is missing, try again with proper prefix
 $user_pre = “usr” . $user_pre;
 if (!is_valid_user($user_pre)) {
 // second attempt has failed, retrieve message
 $msg = ($ex->getMessage());

503

 Handing Exceptions with PHP 30

 }

}

//define custom exception classes

class PrefixException extends Exception {
 public function __construct($message) {
 parent::Exception($message);
 }
}

class LengthException extends Exception {
 function __construct($message) {
 parent::Exception($message);
 }
}

echo $msg;

function is_valid_user ($user_id) {

 // throw an exception if the user ID does not begin
 // with “usr”
 $pre_str = “usr”;
 if ((strpos($user_id, $pre_str) === false) ||
 (strpos($user_id, $pre_str) != 0)) {
 throw new
PrefixException(‘$user_id does not contain the proper prefix.’);
 }

 // throw an exception if the user ID is not the proper length
 if ((strlen($user_id) < 9)) {
 throw new
 LengthException(‘$user_id is less than the required length’);
 }

 if (validate($user_id)) {
 // user ID was found in the database
 return true;
 }
 else
 // the specified user ID does not exist in the database
 return false;
 }

}

?>

504

 Part III More PHP

Note that we attempted to recover from the missing prefix error condition. You can easily deal with

individual types of errors now that they have been defined separately.

Limitations of Exceptions in PHP
The Exception object is completely new in PHP5 and as such is still in the rough stages of develop-

ment. As of this writing, PHP does not support the use of finally() or throws() methods as do

Java and other languages. Also, unlike other languages, native PHP errors — including errors, which

are normally printed to the client-side browser — are not yet mapped to exceptions. Because of this,

for example, a SQL statement error within a try/catch block will not automatically throw an excep-

tion that can be caught and dealt with. This handy functionality will most likely be included in a

future version of PHP, so it’s worth mentioning and keeping an eye out for. Some of these errors can

be dealt with using techniques described in the next section.

Other Methods of Error Handling
If you’re still using PHP4 or an older version, or are not comfortable dealing with classes and objects,

there are several error-handling functions that have been available in PHP for some time, including

native PHP errors, defining an error handler, and triggering a user error.

Native PHP errors
PHP generates several types of errors, depending on severity. Here are three common types. You can

find more information at www.php.net/error_reporting.

Notice:■■ These errors are not serious and do not create a serious problem. By default they

are suppressed, unless the logging level is changed in the php.ini file.

Warning:■■ Failed code has created an error, but does not terminate execution. Usually the

error is displayed, but the script continues to run. (See Figure 30-1.)

Fatal error:■■ A serious error condition has rendered the script unable to run. A fatal error

terminates the script. (See Figure 30-2.)

Each type of error is also represented by a constant that can be referred to within your code: E_
USER_NOTICE, E_USER_WARNING, and E_USER_ERROR. The error-reporting level can be manually

defined within a script, as in these examples:

//report only fatal errors
error_reporting(E_USER_ERROR);

//report warnings and fatal errors
error_reporting(E_USER_WARNING | E_USER_ERROR);

//report all errors, including notices and E_STRICT
error_reporting(E_ALL);

505

 Handing Exceptions with PHP 30

FIGURE 30-1

Native PHP Warning allows the page to finish rendering

FIGURE 30-2

Native PHP Fatal error terminates execution of the page

506

 Part III More PHP

Suppressing error reporting to avoid printed errors can lead to hair loss during the

debugging process! You will instead want to deal with an error handler, for the most part.

Because notices never make it to the client, and don’t impair functionality, you’re almost always safe

in disregarding them for error-handling purposes. Conversely, the custom error handler cannot han-

dle fatal errors; PHP considers them serious enough to terminate the script, no questions asked. So

the usefulness of the custom error-handling function is generally limited to warnings. The primary

use of this function is to avoid printing program-ese error messages for the end user and disrupting

the flow of the application.

Defining an error handler
There’s an important question to ask at this point: What information do you want displayed to the

user when an error occurs? Usually, it’s not important, or even preferable, to display details of the

inner workings of your application to an end user; not to mention that errors look ugly on a web

page. By creating a function that designs a custom error message, then setting that function as the

default error handler, you can avoid the awkward and unprofessional display of errors to a user.

First, let’s create a function and determine what information we would like to provide. We will need

to accept as input parameters the error type, message, filename, and line number.

<?php
 function error_msg($err_type, $err_msg, $err_file, $err_line)
 (
 echo “<div class=’errorMsg’>”;
 echo “Error:”;
 echo “<p>”;
 echo “We’re sorry, but an error has occurred “ .
 “in this page. “;
 echo “Please access the Help” .
 “ page, “;
 echo “or try again later.”;
 echo “</div>”;
 echo “<div class=’finePrint’>”;
 echo “Error type: $err_type: $err_msg in $err_file “ .
 “at line $err_line”;
 echo “</div>”;
 }
?>

We have elected, in this case, to provide information on the specific error and where it occurred.

Depending on the situation, we may want to provide very little information to the user other than

the fact that an error has occurred and provide information on what to try next.

Now that we have defined our custom error handler, we simply need to refer to the function within

the code using the set_error_handler() function:

set_error_handler(“error_msg”);

CAUTION CAUTION

507

 Handing Exceptions with PHP 30

FIGURE 30-3

A custom error handler preserves the interface

With this code in place, all errors that are enabled by the error-reporting level will direct through

our custom function, with the unfortunate exception of a fatal error. See Figure 30-3 for an example

of such an error being displayed.

Triggering a user error
PHP4 can be used to trigger a user error, which is roughly equivalent to throwing an exception in

PHP5. An error of any type can be thrown by passing an error message and an optional error-level

constant:

<?php

 // trigger a user error if the user id is not valid
 if (!is_valid_user($user_id)) {
 trigger_error(“Invalid user ID”, E_USER_WARNING);
 }

?>

508

 Part III More PHP

The triggered error is best used in conjunction with a custom error handler. Once this error is

thrown, your defined error handler will be used to provide a formatted error message to the user.

Note that the error-level constant defaults to E_USER_NOTICE, which is ignored unless you have

specifically set error reporting otherwise.

Logging and Debugging
As mentioned earlier, exception handling and error reporting can turn your debugging efforts into

a nightmare if not executed with care. An error that is difficult to track down can become almost

impossible when it has been suppressed or rerouted carelessly. With a bit of planning, however,

exceptions and error handlers can greatly simplify maintenance of an application.

Previously, we have examined the process of dealing with errors primarily as a means of avoiding

disruption for the user. The same process can also be applied to enable logging and debugging for

the programmer. Within your catch() control block, include a call to a built-in function such as

error_log(), with any relevant information that might aid in the debugging process. Note that

you might want to explore the use of the getTraceAsString() function which can be helpful

for logging.

} catch(Exception $ex) {

 // the input string passed to the object
 $msg = ($ex->getMessage());
 // customizable error code
 $code = ($ex->getCode());
 // name of the file that threw the exception
 $file = ($ex->getFile());
 // line number containing the exception
 $line = ($ex->getLine());

 // write to error log
 $log_msg = “Error $code in $file at line $line: $msg : “ .
 time();
 error_log ($log_msg, 3, “/var/tmp/php_error.log”);

 //print to screen
echo “Error no. $code: $msg in file $file on line $line”;

}

The process is similar when using a custom error handler (as is the aforementioned

getTraceAsString()):

<?php
 function error_msg($type, $msg, $file, $line) (

509

 Handing Exceptions with PHP 30

 // write to error log
 $log_msg = “Error $type in $file at line $line: $msg : “ .
 time();
 $log_path = “/var/tmp/php_error.log”);
 error_log ($log_msg, 3, $log_path);

 //print to screen
 echo “Error type: $err_type: $err_msg in $err_file “ .
 “at line $err_line”;

 }
?>

error_log() accepts one of four integers as the second parameter, which sets the message type in

conjunction with the third, or location, parameter:

0: uses the operating system’s system logging mechanism

1: sends the error to a specified e-mail address (extra headers may be added as a

fourth parameter)

2: sends the error through PHP’s debugging connection (remote debugging must

be enabled)

3: error message is appended to a destination error log file

Summary
Error handling continues to become easier and more uniform with the ongoing development of PHP.

The Exception class provides a means of separating error conditions, or exceptions, from the flow

of the application. Using the try/catch block and custom-defined Exception subclasses, errors can

be intercepted and even recovered.

Previous versions of PHP also provide a measure of error handling and reporting. User errors can be

triggered as an alternative to throwing an exception, and custom error handlers can provide a better

user experience as well as useful debugging information. Logging and debugging are crucial to suc-

cessful exception and error handling.

511

D
ebugging — finding and eliminating errors — is part of software

development. As a PHP programmer, you should be aware of all

the tools available to you as you seek to eliminate malfunctioning

elements in your software systems.

There are many such tools, not least because PHP applications usually rely

on the capabilities of several servers (such as an HTTP server and a data-

base management server), each of which typically comes equipped with its

own logging and reporting capabilities with which it keeps its users hip to

what’s happening. Plus, PHP has a considerable error-reporting facility of

its own (you can choose to have error messages printed alongside normal

output or logged to a file for more discreet analysis). The language also has

a number of functions with which you can have your programs generate

custom error reports, and at the very least you can use conditional print

statements to monitor the activity of programs (and the values of variables

within them) as they execute.

On top of the built-in error-reporting capabilities of PHP and its supporting

technologies, PHP programmers now have access to the sorts of debugging

tools that programmers working with other languages have had for years.

Chief among these is the Zend debugging environment, which allows you to

monitor variable values, set breakpoints, and step through programs at any

pace you like. Though the Zend debugging environment won’t be covered in

this chapter, you can find out more information about it at www.zend.com.

This chapter aims to introduce you to the tools and techniques available to

you as you work to perfect your PHP software.

Debugging PHP Programs

TIN THIS CHAPTER

Using web server logs

PHP error reporting

Error-reporting functions

Diagnostic print statements

512

 Part III More PHP

 General Troubleshooting Strategies
The two basic elements of a debugging effort are figuring out what’s wrong, and then fixing it

(without breaking something else as a side effect of your solution). It doesn’t matter whether you’re

diagnosing a PHP program, a telephone switch, an electronic circuit, or a Buick — certain principles

apply regardless. Bear these ideas in mind as you try to figure out what ails your software.

Change one thing at a time
It’s a basic rule of experimentation: You can’t be sure what caused a given effect if there are multiple

variables. Make a single change, then examine the output and see if the unwanted behavior is fixed.

If not, try one more change (possibly changing the first one back to the way it was).

Try to isolate the problem
If you can narrow the problem down to a single library or function, you’ve made significant progress

in locating the cause. Use special var_dump(), echo(), and print_r() calls to output trace infor-

mation frequently. This will allow you to see when troublesome changes are taking place and when

variables stop holding the values you think they’re holding.

You can also use a visual debugger (like Zend Studio) to monitor programs and their members as

they execute.

Simplify, then build up
It sounds obvious, but if you’re having trouble with a given function or feature, cut it out (either

literally or with comments) and make sure that everything runs without it. Then replace dynamic

data with static data (replace a database query with simple variable assignment statements). Get it

working right under simple conditions, and add complexity in stages, testing all the way to see when

errors appear.

Check the obvious
We’ve all heard the story about the call to tech support in which the customer complains that he

can’t see his mouse pointer move, and after lots of diagnostics it turns out that the machine isn’t

plugged in. It’s probably apocryphal, but in any case make sure your that web server is work-

ing properly on its own, and that a basic “Hello, World” script renders properly. You can also add
phpinfo() to the end of a simple test script to get a lot of information about your PHP interpreter’s

version and environment details.

Speaking of version, make sure that you’re not trying to do something that requires register_
globals (the infamous setting in php.ini) to be on. That setting is set to no by default, as of

PHP4.2, and it’s tripped up more than one programmer.

513

 Debugging PHP Programs 31

Document your solution
It’s extraordinarily common: You struggle with an error condition for hours (or longer) and finally

reach a solution. At that point, don’t immediately head out to celebrate. Take a minute to document

what happened and what the solution was. That way, you’ll be ready when the same problem pops

up again — and it will.

After fixing, retest
It’s not unusual to fix a problem and in doing so break something else. That’s why it’s important to

retest your system beyond the scope of the bug you were originally after. This also points out why

it’s important to isolate bugs as much as possible — it limits the scope of retesting you have to do.

A Menagerie of Bugs
A number of different kinds of bugs plague programmers. Some bugs are both simple in nature and

easily found (as is the case with syntax errors and spelling mistakes). Others are significantly more

difficult to catch, which is why this chapter is here.

Compile-time bugs
PHP is a compiled language — it’s compiled just before it executes, so the compilation isn’t as obvi-

ous as it is in C or Java.

A compile-time bug is obvious to the Zend Engine, which does the compiling. The compiler will

raise an objection, often with a line number, and you can go fix the problem. Examples of compile-

time errors are mistyped variable names, forgotten semicolons, and mismatched parentheses.

Runtime bugs
A runtime bug doesn’t appear until after your program is under way, and may result from some

outside condition, such as unexpected input from a user or unanticipated behavior by a database.

These have to be tested for, as they usually won’t make themselves evident to programmers under all

conditions.

Logical bugs
Logical bugs are perhaps the most difficult of all to spot and can be very difficult to fix if they result

from an error in thinking.

Say that you wanted to launch a space probe and have it enter orbit around Mars. However, because

your navigation algorithm didn’t allow for metric input from those pesky Europeans, your space

probe crashed into the Martian surface. The software did exactly as it was told, which, strictly

speaking, was to drive the rocket into Mars. That’s a logical error.

514

 Part III More PHP

The point: Make sure that your programs not only generate output, but generate the correct output.

Get out the calculator and make sure that the program’s results are right, or compare its results to

values known to be good. And don’t use PHP to program spacecraft, just to be safe.

For a guide to the most common symptoms of the most common compile-time and run-

time bugs, see Chapter 10.

Using Web Server Logs
Because most PHP programs result in some sort of HTML page, which is in turn served by an HTTP

server such as Apache or Microsoft Internet Information Server (IIS), it is possible for errors to be

introduced by the web server software. For that reason, it is important to be familiar with the way in

which your web server manages error reporting and logging and to know how to access and inter-

pret the logs you need.

Apache
The Apache HTTP Server maintains two log files in plain-text format. They are:

Apache/logs/access.log■■ : Notes every HTTP request for a file, including its date, time,

and result (success or failure, as indicated by a numeric status code). The access log also

records the IP address from which each request came.

Apache/logs/error.log■■ : Records error conditions only.

The Common Log Format
By default, entries in the Apache error.log file use the standardized Common Log Format. Entries in

this format each correspond to a single instance of request/response activity (requests and responses

are, after all, what HTTP servers handle). For example, one line might correspond to a request for

an HTML page (and its subsequent service by Apache). The next line might correspond to the (auto-

matic) request for and service of a JPEG file embedded in that HTML document.

In any case, Common Log Format entries look like this (in a single line):

192.168.100.1 - david [10/Nov/2003:18:00:30 -1100]
“GET /index.html HTTP/1.0” 200 6590

The most important elements of that line are:

192.168.100.1■■ : The IP address of the client making the HTTP request

david■■ : The username of the authenticated user making the request

[10/Nov/2003:18:00:30 -1100]■■ : The date, time, and UTC offset of the request

GET■■ : The nature of the HTTP request: GET or POST

CROSS-REFCROSS-REF

515

 Debugging PHP Programs 31

index.html■■ : The requested file

HTTP/1.0■■ : Version of the HTTP protocol used for the request

200■■ : Response code describing the result of the request (more on this later in this section)

6590■■ : The number of bytes served out in HTTP response corresponding to this request

You’ll find a more complete treatment of Apache log files, including the more obscure elements of

the Common Log Format, at http://httpd.apache.org/docs/logs.html#errorlog.

HTTP response codes
Though there are many HTTP response codes (the most famous being the “404 Not Found” error),

they exhibit a pattern that aids rapid decoding. In a nutshell:

200-series codes indicate success■■

300-series codes indicate a redirection■■

400-series codes indicate a client-side error (like a request for a nonexistent document)■■

500-series codes indicate a server-side error■■

You’ll find a full list of HTTP response codes at www.w3.org/Protocols/rfc2616/
rfc2616-sec10.html.

Monitoring Apache logs with tail
Under Unix (including Linux), you usually have access to the GNU text utility suite. When it’s time

to monitor log files, one of the most useful of these tools is tail.

In its default behavior, tail will return the last (that is, most recent) 10 lines of a specified file. You

can use it like this:

tail access.log

and get 10 lines of Common Log Format output (assuming that 10 loggable events have taken place).

More usefully, though, you can use tail in its follow (--follow) mode. In follow mode, tail returns

the 10 newest lines of a specified file, then goes into an infinite loop in which it watches for changes

in the file and displays them when they happen. It’s a simple way to monitor log files, and lots of

administrators dedicate several terminals to the purpose of running tail --f sessions on various log

files. The syntax is simple:

tail --follow=name --retry error.log

That results in a constantly updated display of the contents of error.log. By specifying

--follow=name and --retry, the command guarantees that tail watches the file itself, not the file

descriptor.

516

 Part III More PHP

IIS
The Microsoft HTTP server handles logging differently. Rather than logging to a file, IIS records its

status and error-reporting information so that it is available for examination in the Event Viewer,

which is one of the Administrative Tools on a Windows 2000 or XP system.

You’ll find IIS errors in the System Log portion of the Event Viewer window, with a source name of

W3SVC.

Microsoft offers advice on troubleshooting IIS errors at http://technet.microsoft.com/
en-us/library/cc739055.aspx?ppud=4.

PHP Error Reporting and Logging
PHP can itself be a tremendous help in spotting errors. Straight out of the box, PHP will report error

messages with output — right into the browser window, complete with line numbers. This is as far

as most people get with PHP’s debugging aids, but it’s important to know about the details of config-

uring error-reporting behavior in order to get the most out of it.

While PHP will show you the line number on which it has detected an error, you have to be aware

that that is not always the line to which you should go in order to make a repair. A forgotten closing

quotation mark or neglected semicolon sometimes is not picked up by the interpreter until several

lines later, so you should be prepared to go back a bit to look for syntax errors of that kind.

Error reporting
When the PHP interpreter places an error message in a program’s output (most often resulting in the

error message being displayed in a browser window), it’s engaging in error reporting. Error reporting

is a useful diagnostic tool that’s turned on by default but that should be disabled on any PHP inter-

preter associated with a production server.

Error reporting is turned on and off in php.ini. The key value is display_errors. If you want

errors to be rendered as part of your output, this line should appear in php.ini:

display_errors=On

If you do not want errors to be displayed (and you shouldn’t want them displayed on any publicly

accessible machine), the line should read like this:

display_errors=Off

If left on in a production server environment, error reporting can result in important details of your

software being inadvertently displayed to users. For example, an unexpected condition could cause

the name of a variable or a database table to appear in an unsecured browser window. An attacker

could use this information to exploit the production server. Figure 31-1 shows an error reported as

part of the regular output to a browser window.

517

 Debugging PHP Programs 31

FIGURE 31-1

Error reporting in browser output

Error logging
Similar in function to error reporting, error logging causes error events to be recorded to a text file,

rather than to the screen. It’s a more secure option, and because log files should be kept in a directory

with limited access, it’s the error-recording technique that’s preferred for production HTTP servers.

As is the case with error reporting, error logging is turned on and off in php.ini. To turn it on, use

this option:

log_errors=On

Alternately, use this:

log_errors=Off

By default, error logging is disabled in php.ini.

For more detail on error reporting and logging, see Chapter 30.

Choosing which errors to report or log
Whether you choose to use error reporting (on screen) or error logging (to a file), you can specify

which errors are considered serious enough to record. In php.ini, the error_reporting value

defines your logging preference. By default, error_reporting is set like this:

error_reporting=E_ALL & ~E_NOTICE

That setting specifies that all errors and warnings are to be reported (a fact denoted by E_ALL), and

(&) that runtime notices are not to be reported (denoted by ~E_NOTICE — the ~ indicates NOT). Other

possible values are included and documented in the numerous comment lines of php.ini itself.

The level of reporting defined by error_reporting affects the behavior of error logging (as

enabled by log_errors=On) and error reporting (as enabled by display_errors=On) or both

simultaneously if both are enabled.

CROSS-REFCROSS-REF

518

 Part III More PHP

Error-Reporting Functions
PHP, benevolent language that it is, comes equipped with a variety of functions programmers can

use to help locate problems and generally report on aspects of their programs’ status. These range

from ordinary output-generating statements — print(), echo, and the like — used in contexts

that reveal details of variable values, to specialized functions that write to operating systems’ logging

mechanisms.

This section introduces some PHP functions you can use to spot problems and report on your pro-

grams’ condition.

Diagnostic print statements
The simplest troubleshooting technique involves placing echo and print statements in your code

at key locations, so that the output contains information about the progress of execution through

various functions and the values of key variables at different points. This is sort of a poor man’s

debugger — you can trace variables during execution and see if (and if so, when) they change to

some unexpected value.

Here’s a simple program that uses echo statements for tracing purposes:

<html>

<head>
<title>Test</title>
</head>

<?php

function innerFunction($value) {

 echo “
In innerFunction() now...”;
 $returnValue = $value . “ things
”;
 echo ‘
$returnValue = ‘;
 echo $returnValue;
 return $returnValue;
}

function outerFunction() {

 echo “
In outerFunction() now...”;
 $returnValue = “many”;
 echo ‘
$returnValue = ‘;
 echo $returnValue;

 return innerFunction($returnValue);
}

519

 Debugging PHP Programs 31

echo “<P>The time has come, the Walrus said, to talk of “;
echo outerFunction() . “.”;

?>
</html>

Using var_dump()
The usual printing functions are handy, but more specialized ones can prove more useful for debug-

ging purposes.

Chief among these is var_dump(), an extraordinarily clever function that, among other things, will

automatically render the contents of an array in a way that’s comprehensible to a human reader.

Recall that this code:

$stateCaps =
 array(‘New South Wales’ => ‘Sydney’,
 ‘Victoria’ => ‘Melbourne’,
 ‘South Australia’ => ‘Adelaide’);
echo $stateCaps;

will result in some pretty useless output. It will say simply:

Array

Not too handy. In contrast, the same array definition, followed by this line:

var_dump($stateCaps);

results in much more useful output:

array(3) { [u”New South Wales”]=> unicode(6) “Sydney” [u”Victoria”]=>
unicode(9) “Melbourne” [u”South Australia”]=> unicode(8) “Adelaide” }

It’s immediately obvious to the person doing the debugging what the contents (keys and values) of

the array are.

Using syslog()
PHP provides a function, syslog(), with which you can write directly into the log of the operating

system running your PHP environment. It’s a handy function, useful if you want to log all system

problems to a standard location or if you want to alert a system administrator who might not be

directly involved in PHP development.

Simply put, syslog() allows you to specify the degree of severity associated with the event to

be logged and to specify a message describing it. Those values are then written out as an aid to

diagnostics.

520

 Part III More PHP

This code illustrates all possible syslog() severity options:

<?php

$logOptions =array(LOG_DEBUG,
 LOG_INFO,
 LOG_NOTICE,
 LOG_WARNING,
 LOG_ERR,
 LOG_CRIT,
 LOG_ALERT,
 LOG_EMERG);

$exclamations = array(‘Look!’,
 ‘Take note!’,
 ‘Hey!’,
 ‘Uh-oh!’,
 ‘Oops!’,
 ‘Oh No!’,
 ‘Look out!’,
 ‘AIYEEEEEE!’);

foreach ($logOptions as $key => $value) {

syslog($value, $exclamations[$key]);

}

?>

That code results in eight errors being written to the system log.

In a Unix system, PHP syslog() is functionally the same as syslog(3) — refer to its man page

(man 3 syslog) — and on a Microsoft Windows system, PHP syslog() writes to the Event Log

(specifically, to its Application Log portion).

The error-defining codes, in order of increasing severity, are:

LOG_DEBUG■■

LOG_INFO■■

LOG_NOTICE■■

LOG_WARNING■■

LOG_ERR■■

LOG_CRIT■■

LOG_ALERT■■

LOG_EMERG■■

521

 Debugging PHP Programs 31

In Microsoft Windows, the first three of those (LOG_DEBUG through LOG_NOTICE) are consid-

ered informational; the fourth and fifth are considered warnings, and the final three are noted in the

Event Viewer as Alerts. All of them are shown with a source value of c-client, which corresponds

to an ancillary process of the Apache server.

The Event Viewer shown in Figure 31-2 reflects the results of the preceding listing.

FIGURE 31-2

Errors at various severity levels

Logging to a custom location
Under Linux, you can use this procedure to write log messages to a file of your choosing. Modify

your /etc/syslog.conf file to include this line:

local0.debug /var/log/php.log

Then restart the syslog daemon:

/etc/init.d/syslog restart

With that done, you can refer to LOG_LOCAL0 as part of an openlog() call, as is done here:

<?php
define_syslog_variables();
openlog(“CustomLog”, LOG_PID, LOG_LOCAL0);
$errorMessage = “Aiyeee! Dying now.”;
syslog(LOG_EMERG, $errorMessage);
closelog();
?>

The LOG_PID argument that supplements openlog() states that the process ID of the offending

thread should be recorded in the log file with the other details.

522

 Part III More PHP

Using error_log()
You can use error_log() to send an error message almost anywhere , including to an electronic

mail address. It’s an easy and convenient way to report on unexpected conditions that crop up in

your PHP software, yet few developers bother to use it.

The basic syntax for error_log() is:

error_log(message, type [,destination])

In that syntax, type has one of four possible values:

0: The message is handled according to the setting of error_log in php.ini.

1: The message is sent by SMTP electronic mail to the address specified by the destination

parameter.

2: The message is referred to a remote debugger.

3: The message is added to the end of the file specified by the destination parameter.

The following code shows several possible uses for error_log():

<?php

// Writes message as specified by error_log in php.ini.
error_log(“Goodness me!”, 0);

// Writes message to e-mail address.
error_log(“This is not spam.”, 1, “webmaster@wiley.com”);

// Writes message to a remote debugger:
error_log(“Problem!”, 3);

// Writes message to a file:
error_log(“Save me!”, 4, “/log/php.log”);

?>

In php.ini, error_log is normally not set to anything — it’s commented out by default. If you want to

use the 0 option to do anything, you’ll have to modify the error_log setting to something like this:

error_log = syslog

which causes error_log() to be the equivalent of syslog(3) on Linux (and thus also the PHP

syslog() function) and to write events to the Event Viewer under Microsoft Windows. Alternately,

the error_log value can equal a filename:

error_log = c:\logs\php.log

523

 Debugging PHP Programs 31

Summary
This chapter attempted to show you where bugs come from and how to catch them when they find

their way into your PHP programs. You saw that there are a number of resources available to you

as you attempt to track down problems — many of them native to the PHP language or otherwise

freely available.

First among your bug-catching tools is the bug-reporting capability of PHP itself. If you configure
php.ini correctly — and this chapter showed you how — you can get precise reports of the line

numbers on which the interpreter is running into trouble. Depending on your security require-

ments, you can have the troubleshooting information conveniently displayed with the rest of the

output (typically in the browser window), recorded in a log file, or both. You also can keep an eye

on the HTTP logs maintained by your web server. These will help you monitor GET request data and

spot requests for nonexistent files.

Additionally, you should use PHP language constructs that make your programs more self-diagnos-

tic and troubleshooter-friendly. Functions like openlog() and syslog() will record event infor-

mation when problems occur and can really help with tracking down problems. In an even simpler

strategy, you can use carefully placed print() and (especially) print_r() statements to reveal

what’s going on in your code as it executes.

Troubleshooting PHP is not everyone’s favorite activity, but with the right tools and (more impor-

tant) the correct attitude, it can be fun.

525

T
his chapter is about the major points of PHP style and how it can

enhance the functionality, maintainability, and attractiveness of

your code. This discussion is intended to help new PHP developers

make the main stylistic decisions, most of which are common to all pro-

gramming languages.

We also hope this chapter may help new PHPers decipher other people’s

code. It can be very alarming to someone just learning scripting to read

three different tutorials, which appear totally incongruent but lack any

explanation of the discrepancies. The information in this chapter will help

you tease out the functionally important bits of code from the mere stylistic

quirks and thus gain a better understanding of what you’re seeing.

The Uses of Style
The primary goal of a program is, of course, functionality. After all, if your

PHP script chokes, who’s even going to care how good it looks? Error mes-

sages are never all that stylin’. But there is a vast difference between simply

whipping up something that will work and writing well-formed code that

can be clearly understood by others.

PHP programmers confront all the same style issues that other program-

mers do, including:

Readability:■■ Sure, you understood it when you wrote it, but what

about the next person who reads it? What if the next person is you?

Maintainability:■■ What happens when your health-advice site finally

makes that conversion from Fahrenheit to Celsius? (A wrong answer:

Replacing 790 occurrences of the string 98.6 in your source code.)

Learning PHP Style

IN THIS CHAPTER

How to earn style points

Commenting code

Writing maintainable PHP code

Mixing HTML and PHP

Separating function from design

526

 Part III More PHP

Robustness:■■ Your web site works fine when it’s getting the inputs you expect. What about

when it gets the inputs you don’t expect?

Conciseness and efficiency: ■■ Fast code is better than slow code, and (others things equal)

code using fewer keystrokes is better than code with more keystrokes (but other things are

almost never equal).

This chapter will give a quick overview of some strategies for achieving these goals in PHP, before

moving on to some code organization issues that are unique to PHP.

Readability
Before a PHP script can aspire to be maintainable or elegant, it has to be human-readable. The

human eye likes clear patterns, logical organization, and meaningful repetition. It also helps to have

the most significant word or character at the beginning of a line, instead of buried in the middle.

If you develop HTML mostly through use of a WYSIWYG tool, your notions of legibility may be very

odd indeed. These programs are notorious for writing badly structured graphics-oriented HTML,

filled with invisible GIFs and absolute sizing and other little horrors.

Trying to add PHP directly to HTML files like this is an exercise in frustration, like trying to dance with

someone who has no rhythm. If you insist on doing so, remember: It’s not PHP’s fault, so please direct

your abuse to the other vendor. However, in lieu of yet another moralistic Unix-centric anti-WYSIWYG

lecture, we’ll now try to make a concrete suggestion or two for those who can’t totally avoid such tools.

Probably the single most effective step you can take to increase legibility is to run all machine-

produced HTML through a utility that will make it more human-readable. It doesn’t take very

long at all and will improve matters substantially. A good one is HTML Tidy, freely available from

tidy.sourceforge.net.

This utility will also clean up common errors in your HTML source, such as missing end tags.

Furthermore, it has some (admittedly limited at this point) capability to cope with PHP, if you’ve

used the standard <?php ... ?> tags — so you can also try cleaning up those “I’m in such a hurry,

so just this once I’ll save a Microsoft Office document in HTML format and then stick in a couple of

PHP tags’ situations.”

A somewhat more labor-intensive approach that gives you finer control is to run the code through an

HTML validator. This is a utility (many are web-delivered) that lists all the specific points at which

a page is not in compliance with HTML standards. However, unlike HTML Tidy, it does not actually

rewrite the source code; you can choose to make changes on a point-by-point basis.

Comments
Putting comments in code is just like flossing your teeth: important for health and hygiene, the object

of many good intentions, all too often skipped “just this once,” and long regretted later if undone.

527

 Learning PHP Style 32

The problem is that there’s no immediate glory to be had from commenting — all the benefits are

longer term and diffuse. Let’s face it: You rarely hear hackers oohing and aahing over the beautiful

commenting of the guy in the next cubicle, and few web sites’ go-live dates are allowed to slip so

that the programmers can put the finishing touches on their comments. Commenting comes into its

own later, when your team leader quits (in the middle of a major site redesign) to join a neo-Luddite

community, and the rest of you are sitting around scratching your heads and thinking “Huh?” in

unison, as you desperately try to write up some documentation in time for the scheduled release. So

what kinds of things should you comment? We feel you must explain:

Anything with future “what the heck was I thinking?” potential (usually due to extreme ■■

cleverness or extreme ugliness)

Anything you suspect might be a temporary expedient■■

Anything that will lead to dire consequences if tampered with by someone less experienced.■■

Things that ideally should be noted include:

The date the file was originally created and the name of the creator■■

The date the file was most recently altered, the name of the alterer, and possibly an expla-■■

nation of the rationale behind the alteration

Any other files or programs that depend on the existence of this file■■

The intended purpose of the file and of its constituent parts■■

Things you might want to mention in documentation you’re planning to write later■■

The reason you want to save something that isn’t being used (alternate versions, archive ■■

copies, and so on), conditions under which it might become okay to throw it away, or your

plans for what to do with it

Obviously, you’re in a better position than we to decide whether these items are strictly necessary. If

you’re using PHP for a very small, purely personal site, maybe commenting would be superfluous,

but the bigger and more complex the site, the more you need to annotate your own work. In theory,

it’s possible to overcomment, but, in practice, few programmers are guilty of this offense.

As we detailed in Chapter 4, there are several styles of PHP comments. Remember that

none of these will be visible from the client machine, even when HTML source is viewed.

If you want client-readable hidden text, you must use HTML comments.

PHPDoc
For very large and complex programs, code-embedded comments are not sufficient. You want sepa-

rate documentation that someone can read without delving into the code itself. The problem with

documentation like this, however, is not just how anyone gets the time to write it (since that is often

low priority), but how it stays in sync with the code (which is even lower priority). When starting a

new day job, we have more than once confronted a very common choice: Should we get to know the

code by reading the current code itself or by consulting some very nicely written documentation of

the code as it was two years ago?

TIPTIP

528

 Part III More PHP

One approach, used with some languages, is to employ a tool that produces documentation by

extracting specially formatted, embedded comments from the code. For example, if you have fol-

lowed a given commenting convention, you can point the javadoc tool at your Java code and it will

extract class and method comments into a set of HTML pages documenting the API. This is not a

magic solution for the problem of keeping docs in sync with code. (It will break down, for example,

if people begin writing new methods by copying old methods, and leaving the original comments in

place.) But at least developers have to write only one description of a given method rather than two.

There is an analogous phpdoc tool that uses PHP (naturally) to scan PHP code for special com-

ments, producing HTML output. If you are doing a large-team project, though, especially one

making heavy use of object-oriented PHP, you might find phpdoc to be helpful. For more on

phpdoc, see www.phpdoc.org.

File and variable names
Some people act like thinking up variable names is equivalent to being forced to write an epic

poem — they go into a kind of writer’s block and become creatively incapacitated. For instance, we

once had an intern who was apparently unable to think up a single name or even a halfway decent

scheme for doing so. This person’s habit was to name every new file according to simple sequential

order: file16.html, file17.html, file18.html, and so forth. Each variable on a web page was

called var1, var2, and so on. This story would be a lot funnier if it had happened to someone else.

Because PHP generally requires a lot more variables than HTML, you need a robust naming scheme

for all occasions. The following sections include a few tips.

Long versus short
Longer is generally better because it’s more informative. You can break up long names with under-

scores or capitalization if necessary.

Even though most filesystems technically allow for long filenames, the results are not pretty when

viewed as icons — so GUI users may be consciously or unconsciously averse to using long file-

names. Icon labels are usually quite short and, thus, naturally lend themselves to very concise file-

names. Try giving a file a long, complex name (like PoachedPeachesRecipe.php) and putting it

on your desktop — the result is just viscerally displeasing.

Most GUI-oriented filesystems allow and even encourage filenames with spaces in them

(for example, My Document.doc). Unix systems do in theory, but in practice it’s not

such a good idea. PHP will try to cope gracefully with such filenames, but it may not be able to do so in

all situations.

One benefit of using PHP for dynamic content generation is that you can use shorter filenames that

will be expanded and differentiated by GET-style query strings. For example, a static site might use

this style of filename to uniquely identify each page:

FeatureHitchcockBirds.html
MiniseriesIrvinSpy.html

CAUTION CAUTION

529

 Learning PHP Style 32

A dynamic site, on the other hand might identify the same pages like this:

feature.php?ID=1
miniseries.php?ID=2

In this situation, you can have the best of both worlds: short filename plus unique identifier. (The

only downside of this is that some search engines still discriminate against pages with dynamic

arguments, under the theory that the contents are likely to change with every page view and, there-

fore, won’t be worth indexing.)

PHP sets no particular limit on the length of variable names. So feel free to invent lengthy but infor-

mative variables like $AddressOfClientCompanyInSasketchewan. Hey, it’s your script — we’re

just living in it. You only need to be careful if you plan to use a lot of long-name variables as part of

a GET-method form.

Underscores versus camelcaps
There are two typical ways to break up long variable and file names in Unix. Underscores look like this:

$name_of_favorite_beer

whereas camelcaps look like this, with the internal capital letters giving the name a humped profile:

$NameOfFavoriteBeer

It’s a purely personal preference, which style you use (unless you have agreed on a particular style

with your colleagues). PHP itself uses underscores ($PHP_SELF), but this usage by PHP could be

construed as an argument in favor of either scheme for PHP programmers. Just remember you can’t

use dashes and should be careful with dots.

Unix filenames are case sensitive all the time. Filenames in other OSes, such as

Windows, are not case sensitive. If you might be in a position to move PHP files

between OSes, be careful.

The main thing to strive for here is consistency. It’s frustrating to spend a lot of time trying to figure

out why $My_Number was never assigned, only to find out that it’s because you called it $MyNumber

when you assigned it.

Reassigning variables
Situations arise in which you deliberately want to keep using the same variable name over and over

rather than coming up with new names. This happens when you need to be certain only one vari-

able of a particular type will be valid at any given time. For instance, you might want to be sure

there can be no confusion about which of two database queries will be used for an operation, which

you can ensure by using the same name for both (for example, $query). PHP will overwrite the for-

mer with the latter, and your variable will always be minty fresh.

CAUTION CAUTION

530

 Part III More PHP

Uniformity of style
Although we have talked in a very free-and-easy way about how all these stylistic choices are up to

you, there are situations where it is actually good to have a consensus on what code should look like

and then enforce that. This is particularly true when many programmers will contribute code to a

project. The reasons that are usually advanced for a uniform style are:

It makes it easier to read code from multiple programmers, because you don’t have to get ■■

used to a new indenting or layout style every time you see new code.

It makes life easier for version control software (like CVS). If I change a code file that you ■■

created and my editor changes the indentation, there will be a lot of apparent but spurious

differences.

The closest thing PHP has to a consensus style is the coding standard developed by the maintainers

of the PEAR project. See Appendix E for a discussion of both PEAR and this coding style.

Maintainability
Many seasoned programming veterans, especially those who are also managers, tout the importance

of maintainability above that of any other virtue.

The problem is, of course, that maintainability is in direct conflict with all the other goals — espe-

cially speed. When Internet Time gets into the ring with Hypothetical Future Code Maintenance by

Someone Probably Not Myself, everyone knows how the story is going to end. Still, the main mental

mantras of maintainability are worth keeping in mind:

The things that are most likely to be changed should be the easiest to find.■■

Changing those things should not have unpredictable effects.■■

Each change should have to be made in only one place.■■

Avoid magic numbers
A magic number is a numerical value that might someday have to be changed but is buried deep in

code, often in multiple places. Imagine, for example, these lines of code found in your bank’s hypo-

thetical PHP-based web site:

print(“The interest rate on your CD can be as high as
 5.5%!
”);
$sample_gains = 5000 * 1.055;
print(“After a year, a \$5000 investment could grow to
 \$$sample_gains!
”);

531

 Learning PHP Style 32

Now, when times get tighter and the rate goes down to 5.0 percent, someone has to find and change

every instance of the rate. So, someone does a text search for 5.5, which misses the 1.055 in the

second line here, and now your bank is engaging in false advertising.

For simple sites, a better alternative can be as easy as using an $interest_rate variable, which is

assigned very visibly at the top of a script — a change in rate means a change only to that assign-

ment statement. More complex sites might produce their pages as function calls, with variables

like $interest_rate being passed in as an actual parameter. Finally, some sites will go so far as

to have all their content imported from a database, so that no piece of information has to ever be

changed directly in code.

Functions
Having tried to maintain a complex site using a web-scripting language that did not support func-

tions, we can say from our own experience that functions are crucial to maintenance. The art of pro-

cedural abstraction via functions needs a book in itself, but here’s some brief advice:

Always look for opportunities to bundle naked PHP code into a function, especially in ■■

cases where it might be reused.

Try to keep function definitions short — if a definition gets too long, break it up into mul-■■

tiple functions.

Always load all your function definitions before any code that calls any functions.■■

Include files
One of the great benefits of dynamic web page generation over static HTML is the opportunity to

fight redundancy. Anyone who has ever managed a static site of any size knows how much of each

file is boilerplate — and even editing a single character on each page isn’t a picnic if your site has

200 pages.

PHP makes it very easy to drop anything into your scripts, from one character to a whole separate

program, by using the built-in include or require functions. The syntax is simply:

<?php include(“filename.ext”); ?>

You can also use a variable filename, like this:

<?php
$LastName = “Park”;
include(“$LastName.inc”);
?>

which will result in the contents of the file Park.inc being spliced in at the location of the include

statement.

532

 Part III More PHP

You can use any extension you want for the included file. Popular choices include .txt, .inc, and

even .html to remind yourself that the file will show up in HTML mode.

A few things to remember:

PHP will drop the entire text of the file into your PHP script ■■ in HTML mode (as explained in

Chapter 4). If the included file is itself meant to be parsed as PHP, you must use valid PHP

tags at the beginning and end. If any part of the file is meant to be parsed as PHP, you must

use valid PHP tags around that section.

Recall the difference between ■■ include/require and include_once/require_once. In

general, if what you are including or requiring is a set of function or class definitions, you

should use the once variant. If it is straight PHP or HTML, then which variant you load

depends on whether you would ever want that literal block to repeat in your output; if not,

then the once version is probably still what you want.

include■■ can also be used to assemble complex web pages from text files instead of from a

database. In some cases, this can even be faster — usually when the included data is just a

sizable text file(s). However, after you go to the trouble to make a database connection for

any reason, it’s probably just as fast to store your big chunks of text there, too.

Object wrappers
Although we haven’t covered PHP’s object system in detail yet, it’s worth noting that consistent use

of objects can make code more maintainable, much as functions do. For example, some developers

of database-enabled PHP sites are disciplined enough to wrap up all of their database-specific func-

tionality in the methods of an object, so that the rest of their code doesn’t even know what kind of

database is supporting the site. In theory, then, if they decide to move from a mySQL database to an

Oracle database, only the object-level code will have to be changed.

For details on PHP’s support for object-oriented programming, see Chapter 20.

Consider using version control
For large multiprogrammer projects in industrial settings, version control isn’t “something to con-

sider” — it’s a must. Similarly, large decentralized open-source projects could not survive without

CVS (Concurrent Versions System) or SVN (Subversion). Even if you are working by yourself or with

one other person on a hobby project, using version control can free you to do more experimentation,

secure in the knowledge that you can get to the older versions of your code if something goes awry.

See www.cvshome.org for more information on CVS. SourceForge also offers free web-based CVS

project hosting for open source projects (www.sourceforge.net).

CROSS-REFCROSS-REF

533

 Learning PHP Style 32

Robustness
The two commandments of robustness are:

Code should detect unexpected situations and respond gracefully rather than dying.■■

If code must die, better that it die informatively.■■

Writing robust code is at first a difficult task of imagination, where the programmer tries to think

ahead to all the things that might go wrong and to cover those cases. The ideal situation is for that

habit of mind to become a habit of code, so that the coder has a standard set of tests that wrap

around the standard potential problems. Although most of the robustness issues in PHP are the

same as in any language, there are two kinds of situations to cover that are more specific to PHP:

problems with an external service, and problems having to do with variable type.

Unavailability of service
PHP is in part a “glue” language, offering a single environment where a variety of different code

libraries and external services can be invoked. Any given PHP page might open a file, connect to

a database, query an LDAP server, send an HTTP header, or send mail via an SMTP server. The

important habit to develop is covering cases where for some external reason a service is unavailable,

or times out, or behaves oddly, or gets interrupted in the middle.

Often, such services have error states that can be retrieved and printed if the only option left is to infor-

matively die. For example, a reasonable construct for making a connection to a mySQL database is:

$connection = mysql_connect([arguments]) or
 die(“Connection failed: $php_errormsg
”);

This is preferable to the weird and unexpected errors you would see if your code went happily ahead

assuming that it had a live database connection. An alternative that is better from a security point of

view is:

$connection = mysql_connect(...) or error_log($php_errormsg);
if (!$connection){
 die(“Connection Failed”);
}

because this will avoid displaying interesting facts about your PHP and database configuration to

the user’s browser.

Even better style is to use the exception-handling facility introduced in PHP5, rather than simply

failing with die(). Exceptions can be thrown whenever a problematic condition is encountered,

and recovered from, at a single point in the code (if you so choose). If it is possible to recover from

the problem, exceptions make it easy to structure your code to support that. If the script must die

534

 Part III More PHP

anyway, exceptions make it easy to propagate the negative information and display it at the right

time, rather than just aborting execution.

Exceptions and exception handling are covered in detail in Chapter 30.

Unexpected variable types
Although the type-looseness of PHP is for the most part a good thing, it leaves a little bit of uncer-

tainty for the programmer about exactly what type a variable or value will turn out to be. Unless

you come to know all the type conversion rules very well, it can be surprising to have code that

is accustomed to strings suddenly run across a value that is a number, all because some PHP con-

struct decided that any string composed only of numerical digits must really be a number at heart.

One interesting robustness check is to use a text editor to search your code for $ (thereby finding

every variable) and ask yourself for each one what would happen if the type turned out to be sur-

prisingly different.

Efficiency and Conciseness
Efficiency and conciseness are not the same thing. Efficient code runs using a small amount of exe-

cution time or computer memory, while concise code accomplishes a given task in a small number

of lines or keystrokes. In this section, we give some quick tips toward writing efficient and concise

PHP code, along with our extremely opinionated commentary about in what senses these goals are

worth striving for.

Efficiency: only the algorithm matters
There was a time when computer memory and computer cycles were so precious that it was worth a

lot of effort to boil down your code to the smallest number of resulting machine instructions possi-

ble. This is still true in certain areas of software development (kernel programming, graphics librar-

ies), but for most development tasks, saving a few instructions or a few K is not worth backing off

on any other goal. This is especially true for web scripting, where there is always going to be some

overhead of purely Internet-related execution delay. If it takes half a second for a user to fetch your

page, regardless of how your page is produced, then an extra five milliseconds on the server side will

be lost in the noise.

With that said, there’s one variety of efficiency that matters and will probably always matter: the

broad algorithm or approach that your code uses for a task. For example, if your code locates a name

in a database by querying the database for all names and then doing a string comparison for each

name to see if it’s the one you want, you’ll soon find out how much efficiency can matter.

Efficiency optimization tips
Here are some quick mantras to repeat as you code.

CROSS-REFCROSS-REF

535

 Learning PHP Style 32

Don’t reinvent the wheel
It’s usually a bad idea to write code that duplicates a language-level facility, unless it’s for purposes of

fun or education. For example, any programmer worth his or her salt should write sorting routines at

some point in their education, but no programmer should have to keep writing them (unless it is actu-

ally in their job description). Most high-level programming languages offer some kind of sorting capa-

bility (either as part of the language or in a library), and it’s very likely that the programmer who wrote

them did a better job than you will. PHP is no exception here — the array type supports several types

of sorting, and most of the databases supported by PHP have sorting options built into the query lan-

guage. Either of these options will be faster and more reliable than what you get by rolling your own.

Discover the bottleneck
Although it’s good to try to use efficient algorithms from the beginning, it’s often not worth doing

other kinds of optimization until you find out that too much of some resource is being used. At that

point, you want to tighten things up, and you’ll get the most reward for your effort if you focus on

the piggiest parts of your code. Most code follows the 90/10 rule: 90 percent of the time is spent in

10 percent of the code, and you want to locate that 10 percent.

One technique that programmers often use to locate that 10 percent is called profiling. A profiler is

a utility that tracks code as it runs, noting the time spent in every function call, and producing a

neat summary of the results. Unfortunately, at this writing, there is no good general profiling utility

for PHP (although you may want to look at XDEBUG with Kcachegrind). So the best bet for now is

the poor man’s profiling technique: printing the value of the function call microtime() in various

places in your script to see where the time is going. If the 90/10 rule is in effect, the time sink will

usually be glaringly obvious.

Focus on database queries
Although we cover database efficiency in more detail in Chapter 18, you should be aware that data-

base queries are usually the biggest time sink for PHP sites that have database backends. Especially

if your database-enabled site doesn’t do a lot of other computationally intensive work, your first sus-

picious glance should be at the queries, and your next task should be to try to identify a query that

is particularly time-consuming. After you’ve identified a guilty query, there are a host of techniques

available to speed that query up, many of which don’t have anything to do with PHP.

For details on optimizing database-enabled PHP code, see Chapter 18.

Focus on the innermost loop
Let’s say that you have a page with embedded looping constructs, like the following:

for ($x = 0; $x < 100; $x++)
{
 do_X();
 for ($y = 0; $y < 100; $y++)
 {
 do_XY();

CROSS-REFCROSS-REF

536

 Part III More PHP

 for ($z = 0; $z < 100; $z++)
 {
 do_XYZ();
 }
 }

}

Unless you have a really good reason to think otherwise, your optimization focus should be on the

function do_XYZ() (which will execute 1,000,000 times) rather than on the other two functions

(10,000 times and 100 times).

Conciseness: the downside
Before we get into how to write more concise code, let us say that we think conciseness is an over-

rated virtue, for the following reasons.

Conciseness rarely implies efficiency
Although it’s true that somewhere in the guts of the PHP engine, the characters of the code you

write are being consumed one by one (and so, in theory, more code takes more time), in practice,

the Zend-based parsing engine of PHP is so zippy that the number of characters just doesn’t matter.

Ditto for the time or space consumed in extra variable assignments or the overhead of extra function

calls.

You should generally strive to reuse code whenever possible. This means thinking through the

design of your code and using functions where it makes sense rather than repeating code.

Conciseness trades off with readability
Remember that every keystroke you omit might be the keystroke that would have let someone figure

out what the heck you were thinking when you wrote the code. For example, take a look at the fol-

lowing admirably concise function:

function sieve($n) {
 for ($i = 2; $i <= sqrt($n); $i++)
 for ($j = $i, $ind = $i * $j; $ind <= $n;
 $j++, $ind = $i * $j)
 $carray[$ind] = 1;
 for ($i = $n, $plist = array(); $i > 1; $i--)
 if (!$carray[$i]) array_push($plist,$i);
 return($plist);
 }

Obviously, this implements the Sieve of Erasthones, and $plist is a list of all the prime numbers

less than $n. Obviously.

537

 Learning PHP Style 32

So why do programmers strive for conciseness? The first reason is that it saves them time (but only

at the time of actual code writing). The second reason (and we’re only half-joking) is that they’re

afraid some other programmer (probably one trained in C) will come along later, laugh at them, and

point out that their code could have been written in only half the space.

Conciseness tips
If you must write code that fits in less space, try some of the following techniques.

Use return values and side effects at the same time
It’s a very common trick to exploit the fact that the value of an assignment is the value assigned, as

in the following pseudocode:

while ($next = GetNextOne())
 DoSomethingWith($next);

where GetNextOne() is some function that returns useful values in sequence and then returns a

false value when it runs out of them. When a false value is returned, $next is false, and the while

loop terminates.

Use incrementing and assignment operators
The incrementing operators (++ and --) shorten statements that involve adding or subtracting one

from a variable, and the combined assignment operators (+=, *=, .=, and so on) make certain kinds

of assignments more concise.

The incrementing operators and the arithmetic assignment operators are covered in

Chapter 9, and the combined string assignment operator (.=) is covered in Chapter 7.

Often these operators are used in combination with the previous trick, as in:

while ($count--)
 DoSomethingWith($count);

which (assuming that $count starts as a positive integer) would call its function for the very last

time on the value 1.

Reuse functions
This is one case where conciseness is good, because functions are good. If you can identify any

stretches of code that get duplicated in your pages, try to replace each one with a call to a single

function that packages up that code. Your code will be shorter by the amount of the duplication and

also easier to maintain.

CROSS-REFCROSS-REF

538

 Part III More PHP

There’s nothing wrong with Boolean
Beginning programmers often have an odd distrust of Boolean values, not realizing that they can be

passed around as freely as any other kind of value. This leads to code that wastes a lot of space, like

the following:

function DivisibleByBad($num1, $num2)
{
 if ($num1 % $num2 == 0)
 return(TRUE);
 else
 return(FALSE);
}
/* using the function */
if (DivisibleByBad(9, 3))
 $divisible_result = TRUE;
else
 $divisible_result = FALSE;
if ($divisible_result == TRUE)
 print(“It’s divisible!
”);
else
 if ($divisible_result == FALSE)
 print(“It’s not divisible!
”);

A more concise version would look like:

function DivisibleByBetter($num1, $num2)
{
 return ($num1 % $num2 == 0);
}
/* using the function */
if (DivisibleByBetter(9,3))
 print(“It’s divisible!
”);
else
 print(“It’s not divisible!
”);

You could obviously take this one step further and get rid of the function itself, like this:

if (9 % 3 == 0)
 print(“It’s divisible!
”);
else
 print(“It’s not divisible!
”);

But (once again) Functions Are Good — an explanatory function name is a little piece of documenta-

tion in itself, and any function you write gives you a chance to reuse it later, which, in turn, makes

your code more maintainable.

539

 Learning PHP Style 32

Use short-circuiting Boolean expressions
Certain kinds of Boolean tests aren’t safe to apply until you’ve done other tests. It’s tempting to deal

with this by insulating the problematic tests with if constructs. For example, imagine that you

want to print the ratio of two variables that are bound to integers, but only if they are bound to inte-

gers and only if the ratio is greater than two. Also, you want to avoid a division-by-zero warning.

You might overcautiously write:

if (IsSet($x))
 {
 if (IsSet($y))
 {
 if (Is_Integer($x))
 {
 if (Is_Integer($y))
 {
 if ($y != 0)
 {
 if ($x / $y > 2)
 print(“Ratio is “ . ($x / $y));
 }
 }
 }
 }
 }

You can be equally overcautious and still type a little less, as in:

if (IsSet($x) && IsSet($y) && Is_Integer($x) &&
 Is_Integer($y) && $y != 0 && $x / $y > 2)
 print(“Ratio is “ . ($x / $y));

The tests will be applied in left-to-right order, and if any test fails, the tests to the right of it will not

be evaluated.

HTML Mode or PHP Mode?
There’s a spectrum of ways to combine PHP and HTML, functionally all pretty much the same. Your

choice will depend on extrinsic factors such as your particular team’s workflow.

The easiest way to demonstrate all this is to simply write the same script in minimal PHP, maximal

PHP, and medium PHP styles. We will also include a version using the heredoc construct (discussed

in Chapter 7). Remember, these are equally correct and return much the same result. The stylis-

tic decision is just a matter of preference and consistency, and (sometimes) slight differences in

functionality.

540

 Part III More PHP

Minimal PHP
The code in Listing 32-1 shows a simple self-submitting form, which returns some simple information

about days of the week. First, it tells you what day it is today and then gives you a chance to ask it what

day it will be in a few days (using a form with a pull-down list). The typical text output looks like this:

4 days from this moment it will be Thursday
Today is Sunday
Please choose a number of days, and we’ll tell you what day it will be
that many days from now

It is written using a minimal PHP style, meaning simply that, as much as possible, the code is pure

HTML, dropping into PHP mode only when dynamic data must be displayed (such as the current

day of the week or an answer that depends on submitted data).

LISTING 32-1

calendar.php - An example with minimal PHP

<HTML><HEAD TITLE=”Calendar Server”></HEAD><BODY>
<H2>Welcome to the Calendar Server</H2>

<?php if (IsSet($_POST[‘DAYS’])) { ?>
 <P> <?php echo $_POST[‘DAYS’];?>
 days from this moment it will be
 <?php $date = getdate(time() +
 ($_POST[‘DAYS’] * 86400));
 echo($date[‘weekday’]);
}?>

<P>Today is <?php $date = getdate();
 echo($date[‘weekday’]); ?>
<P>Please choose a number of days, and we’ll
tell you what day it will be that many days from now:

<FORM METHOD=POST ACTION=”calendar.php” >
<SELECT NAME=DAYS>
 <OPTION VALUE=1>1<OPTION VALUE=2>2<OPTION VALUE=3>3
 <OPTION VALUE=4>4<OPTION VALUE=5>5<OPTION VALUE=6>6
</SELECT>
<INPUT TYPE=SUBMIT NAME=SUBMIT VALUE=SUBMIT>
</FORM>
</BODY></HTML>

This code takes the minimal style to an extreme — note the funny business with the if statement

near the top, where some straight HTML text (days from this moment) is included conditionally,

based on the results of the PHP statement that precedes it.

541

 Learning PHP Style 32

As we have said, this is a matter of taste, but we don’t like this version very much. It’s a bit hard to

see exactly what is being produced by the PHP snippets that are spliced into the page.

Maximal PHP
At the opposite extreme, consider the code in Listing 32-2. This version is in PHP mode all the time

and simply prints all the HTML it needs to as it goes.

LISTING 32-2

calendar.php An example with maximum PHP

<?php
print(“<HTML><HEAD TITLE=\“Calendar Server\“></HEAD><BODY>”);
print(“<H2>Welcome to the Calendar Server</H2>”);

if (IsSet($_POST[‘DAYS’])) {
 print(“<P>” .$_POST[‘DAYS’] .
 “ days from this moment it will be “);
 $date = getdate(time() +
 ($_POST[‘DAYS’] * 86400));
 print($date[‘weekday’]);
}

$date = getdate();
$day_of_week = $date[‘weekday’];
print(“<P>Today is $day_of_week”);
print(“<P>Please choose a number of days, and we’ll
tell you what day it will be that many days from now:”);

print(“<FORM METHOD=POST ACTION=\“calendar.php\“ >”);
print(“<SELECT NAME=DAYS>”);
for ($i = 1; $i < 7; $i++) {
 print(“<OPTION VALUE=$i>$i”);
}
print(“</SELECT>”);
print(“<INPUT TYPE=SUBMIT NAME=SUBMIT VALUE=SUBMIT>”);
print(“</FORM></BODY></HTML>”);
?>

Another term for maximal PHP might be CGI-style, because we are not taking advantage of the

HTML-embeddedness of PHP at all, and might as well be writing a CGI script in C or Perl (and who

wants to do that?). Again, a matter of taste, but it’s a little bit hard to visualize the structure of the

HTML page that will result from running this.

542

 Part III More PHP

Medium PHP
An intermediate version that better exploits functions is shown in Listing 32-3. It spends about half its

text in PHP mode, defining functions, before dropping back to a minimal style for the rest of the script.

LISTING 32-3

calendar.php - An example with medium PHP

<?php
function maybe_print_answer_date () {
 $seconds_in_day = 60 * 60 * 24;
 if (IsSet($_POST[‘DAYS’])) {
 print(“<P>” .$_POST[‘DAYS’] .
 “ days from this moment it will be “);
 $date = getdate(time() +
 ($_POST[‘DAYS’] * $seconds_in_day));
 print($date[‘weekday’]);
 }
}

function print_day_options () {
 for ($i = 1; $i < 7; $i++) {
 print(“<OPTION VALUE=$i>$i”);
 }
}

function get_day_of_week($time) {
 $date = getdate($time);
 return($date[‘weekday’]);
}

?>
<HTML><HEAD TITLE=”Calendar Server”></HEAD><BODY>
<H2>Welcome to the Calendar Server</H2>
<?php maybe_print_answer_date(); ?>
<P>Today is <?php echo get_day_of_week(time());?>
<P>Please choose a number of days, and we’ll
tell you what day it will be that many days from now:

<FORM METHOD=POST ACTION=”calendar.php”>
<SELECT NAME=DAYS>
 <?php print_day_options(); ?>
</SELECT>
<INPUT TYPE=SUBMIT NAME=SUBMIT VALUE=SUBMIT>
</FORM>
</BODY></HTML>

543

 Learning PHP Style 32

Maybe the medium style is a little bit more verbose, but to our eyes, it’s also a little easier to read and

modify than the minimal and maximal styles.

The heredoc style
Listing 32-4 shows a rewrite of the medium style, using the heredoc syntax for constructing strings.

LISTING 32-4

Heredoc style

<?php
function answer_string ($days) {
 $seconds_in_day = 60 * 60 * 24;
 $return_string = “”;
 $day_string =
 day_of_week_string(time() + $days *
 $seconds_in_day);

 $return_string .=
 $_POST[‘DAYS’] .
 “ days from this moment it will be “ .
 $day_string;
 return($return_string);

}

function day_of_week_string($time) {
 $date = getdate($time);
 return($date[‘weekday’]);
}

function calendar_form_string () {
 $option_string = “”;
 for ($i = 1; $i < 7; $i++) {
 $option_string .= “<OPTION VALUE=$i>$i”;
 }
 $self_string = “thisfile.php”; $return_string=<<<EOT
<FORM METHOD=POST ACTION=”$self_string” >
<SELECT NAME=DAYS>$option_string</SELECT>
<INPUT TYPE=SUBMIT NAME=SUBMIT VALUE=SUBMIT>
</FORM>
EOT;
 return($return_string);
}

// set up string variables
$answer_string = IsSet($_POST[‘DAYS’]) ?

544

 Part III More PHP

 answer_string($_POST[‘DAYS’]) :
 “”;
$day_of_week = day_of_week_string(time());
$form_string = calendar_form_string();

// set up page string
$page_string=<<<EOT
<HTML><HEAD TITLE=”Calendar Server”></HEAD><BODY>
<H2>Welcome to the Calendar Server</H2>
<P>$answer_string
<P>Today is $day_of_week
<P>Please choose a number of days, and we’ll
tell you what day it will be that many days from now:
$form_string
</BODY></HTML>
EOT;

echo($page_string);
?>

Tim Perdue of SourceForge has made the stylistic argument that it’s a bad idea for functions to

print output to the browser. The heredoc example follows this advice and uses functions only for

calculations and for building strings that are returned. The heredoc construct is used twice, first to

build a string corresponding to the form that will be displayed and then (using the form string) to

build the string corresponding to the entire page. The last act of the script is to echo out the string

it has constructed.

This is the most verbose of the four, but the heredoc syntax has the advantage (over the maximal

style) that we never have to do any escaping of quotes. Another advantage (over the minimal style) is

that we can simply include variables in our page template without dropping out of HTML mode to

do so. It is probably the best version of the four at separating logic from page structure.

Separating Code from Design
Many of the topics in this chapter have obvious implications for the separation of code and design.

Here are a few additional techniques we should mention.

Functions
As you can see from our Medium PHP example in Listing 32-3, using self-defined functions can be a

very flexible and powerful formatting tool, as well as one of the things that make PHP better than a

tag-based scripting language.

545

 Learning PHP Style 32

Cascading style sheets in PHP
As you doubtless already know, there are four generally accepted ways to apply styles to your web pages:

By applying CSS formatting to individual tags.■■

By using ■■ <STYLE> tags (optionally inside a pair of HTML comment tags).

By using ■■ <LINK> tags.

By using ■■ @import.

In this book, we’ve typically used the <STYLE> tag in each code sample rather than an

external style sheet. This is solely so you, Dear Reader, can see the style declarations we

used to get the results we display in the figures. There is absolutely no PHP-intrinsic reason for this usage.

In PHP, you could also use the include function to apply styles in a nonstandard way, although it’s

not clear how much of a gain this would be. For instance, you could include a text file containing

everything between the <STYLE> tags, instead of linking to an external style sheet.

We should also mention the anti-style sheet, a practice almost as long-deprecated as it is common:

using outdated HTML tags such as FONT, BGCOLOR, and ALINK. Although you shouldn’t do it at all,

PHP can help you do it more efficiently if for some reason you must. This usage, for instance:

<FONT FACE=”<?php include(“fontlist.txt”); ?>” SIZE=+2>

would at least allow the poor, overworked web developer to change the fonts throughout the whole

site with a single edit of the text file. Not that we can condone this kind of thing! Only slightly less

kludgy would be this alternative:

<P STYLE=”font-family: <?php include(“fontlist.txt”); ?>”>Text here</P>

Templates and page consistency
As you can now imagine, PHP allows a wide variety of approaches to site design, which you can fit

to your particular style and the organization of the people who work on the site. If your techies can’t

talk to your artists, you may want to set things up so that they never touch the same files; if you’re a

tech artist, you may express yourself by the very intermingling of code and graphics. If your site has

a large number of pages or is very content rich, you may find (as we have) that it’s helpful to choose

a particular kind of file organization or template, and stick to it across the site. One simplified

example follows, which is similar to templates we have used on www.mysteryguide.com and

www.sciencebookguide.com.

<?php
/* load general functions */
include(“general-functions.inc”);
/* load functions specific to this page */

NOTENOTE

546

 Part III More PHP

include(“renaissance-functions.inc”);
/* page-wide variables */
$PageTitle = “Painters of the Renaissance”;
$db_connection = make_database_connection();
?>

<HTML>
<HEAD>
<TITLE>
 <?php print(“$PageTitle”); ?>
</TITLE>
</HEAD>
<BODY>
<H3>
 <?php print(“$PageTitle”); ?>
</H3>
<TABLE>
<TR><TD>
 <?php print_left_side($db_connection); ?>
</TD><TD>
 <?php print_right_side($db_connection); ?>
</TD></TR>
</TABLE>
 <?php print_footer($db_connection); ?>
</BODY><HTML>

In this example, every page loads the same file of sitewide utility functions, then loads a file of

functions specific to that page, then defines variables that will be global for the page, and finally

intersperses PHP commands in some boilerplate HTML. The content is in columns, and the actual

content displayed depends on the particular page’s functions, which always have the same names,

but with definitions varying for each page. Changing what’s displayed in the columns means either

changing the per-page functions or (more likely) modifying the database contents. It would be possi-

ble for a nonprogrammer to do some limited design on this page by operating directly on the HTML

and being careful to leave the PHP alone.

The preceding example is just one simplified possibility from a range of ways to divide up the labor

of displaying a PHP page. Another that we like even better is the heredoc technique that we discuss

in the section, “The heredoc style,” earlier in the chapter. Your particular strategy will depend on the

type of site, the size of the site, and the styles of the people contributing.

Finally, note that all these strategies really just adopt a convention about separating logic and display

in PHP. If you need an even stronger distinction, there are PHP-based templating systems available

that further insulate the display people from the innards of program logic. One example is YATS

(Yet Another Template System), available at http://yats.sourceforge.net.

547

 Learning PHP Style 32

Summary
Most of the elements of PHP style are desirable in any programming language. You want to write

readable code, with appropriately abstracted functions, consistent indentation, and explanatory

comments. You want to stay away from magic numbers, “cloned” code repetition, overuse of global

variables, and cryptically clever tricks. Your program should work on the inputs you expect, do

something reasonable with inputs you didn’t expect, and have the grace to die informatively in situ-

ations you really didn’t expect.

Some of the PHP-specific style issues have to do with organizing file inclusions, how intimately you

mix your PHP with your HTML, and more generally the separation of code from design. A wide

range of styles are okay here, but you should strive for page-level and sitewide consistency.

IN THIS PART

Chapter 33
Connecting PHP and PostgreSQL

Chapter 34
Using PEAR DB with PHP

Chapter 35
An Oracle Overview

Chapter 36
An Introduction to SQLite

Other Databases

551

Y
ou might find that MySQL or even simple text files meet all your data

storage and retrieval requirements. Nothing about a simple flat data

structure in a small quantity demands a relational database model.

However, as we mentioned earlier in this book, you do have choices when

it comes to databases. In the next chapter, we’ll look at a commercial offer-

ing, Oracle. In this chapter, we’ll look at what is possibly the granddaddy of

the free/open source database alternatives, PostgreSQL (pronounced “post-

gress-q-l” or sometimes “Postgrey”).

Why Choose PostgreSQL?
This is the part where the open source purists start waving their hands

in the air and yelling with uncontrolled excitement! And the excitement

is easy to understand — PostgreSQL is a true open source database,

made available under the simple and portable BSD license. You can read

the almost vanishingly short text of the license at www.postgres.org/
licence.html.

Are you back yet? See, we told you it was short. So reason number one is

not so much the license itself as the freedom from an 85 page EULA laced

with sneaky provisions that nobody alive really understands, and that,

in many cases, you can’t even see until you get the box open. By then it’s

too late — all the money’s gone. Which brings us to reason number two:

PostgreSQL is free. We don’t mean “free on Mondays, Wednesdays, Fridays,

and the vernal equinox,” nor do we mean “free to the right people,” nor

even the more conventional and arguably understandable “free for noncom-

mercial use.” PostgreSQL is completely and totally free (unless the develop-

ers change their minds).

Connecting PHP
and PostgreSQL

IN THIS CHAPTER

Why PostgreSQL

Administration

PostgreSQL

552

 Part IV Other Databases

The term free applies to more than just the cost. As with the GNU General Public License, you can

alter, repackage, and redistribute PostgreSQL as a standalone product or with your own applications.

Arguably better than the GPL for businesses, using and distributing PostgreSQL will not “infect” all

your code with the copyleft.

Finally, PostgreSQL supports some nifty special features and elements of the ANSI SQL92 and

SQL99 standards that simply aren’t available or fully developed in other databases, as well as the

ability to work with object and hierarchical data.

Of course, there are some disadvantages as well. First, consider PostgreSQL’s ability to work

with object and hierarchical data. Wait a minute; didn’t we just sell that one as a feature? To the

PostgreSQL lovers in the audience, it may seem odd to sell these “features” as disadvantages. Don’t

flame us yet. We’re just taking a moment to expound on the Keep It Simple Stupid (KISS) philoso-

phy. You don’t need a sledgehammer to drive in a picture nail, and you don’t need an object rela-

tional database to store addresses and phone numbers.

Some folks will debate this point, but simply put, PostgreSQL is not as fast as MySQL under low-

load circumstances. At some point, PostgreSQL’s more robust design will offer performance advan-

tages in really large data sets, but on average, MySQL is just that little bit perkier for lots of reads.

Again, if you have simpler data storage and retrieval needs, there’s no need for you to go swimming

around in the PostgreSQL waters.

Finally, PostgreSQL is more complicated. Permissions management, for one, is not as clear-cut as it is

with MySQL. PostgreSQL also offers some features that may cause the novice’s eyes to glaze over —

schemas and stored procedures, while useful, aren’t strictly necessary and you may find them to be clut-

ter. Some people work much better when there are no nonessentials on their desks; the same principle

may hold true here.

All these things said, on balance PostgreSQL is a great tool — a superlative tool even — for many

jobs. Its user base may be smaller than MySQL’s, but its devotees tend to be very loyal. We can’t

cover it very comprehensively and still stay within the focus of this book, but if you’ve gotten this

far, weighed all the benefits and disadvantages, and you choose PostgreSQL, the rest of this chapter

should set you off in the right direction.

Why Object-Relational Anyway?
Object relational databases (ORDBMS) are a relatively new class of product compared to the rela-

tional database model that was developed in the early 1970s. In addition to implementing the rela-

tional model discussed in Chapter 13, ORDBMS borrow from pure object databases, which excel at

handling media objects, spatial, and series style data. An ORDBMS implements object properties on

the components of a relational database in order to have the benefit of both worlds. This, in turn,

facilitates interaction with the object features of PHP. Because PHP’s object model is significantly

more powerful since version 5, there’s never been a better time to use these two tools together.

553

 Connecting PHP and PostgreSQL 33

This means that choosing PostgreSQL potentially offers the developer greater extensibility. It’s fairly

easy to define and add custom data types, operators, functions, and indexing methods. This has far

reaching implications for fine-tuning performance; especially when working with particularly com-

plicated data structures.

At the data structure level, PostgreSQL tables and objects can benefit from either static or dynamic

inheritance. That is to say, a child object created from its parent can be made to adopt characteristics

identical to those of the parent — either just once when it is created, or perpetually (as changes are

made to the parent, they are passed on to the children).

This chapter assumes that you have PostgreSQL installed already. If not, please consult the

PostGreSQL web site at http://www.postgresql.org for more information. The web site con-

tains the most current information on installation and versions for several platforms.

But is it a database yet?
Not quite. Like MySQL, Postgres features some command-line utilities in addition to a unified

interactive client for working with PostgreSQL databases. In this section, we’ll use some of the

command-line utilities stored in the Postgres binary directory to get started. Let’s start by inspecting

what’s already there by using the following command, which you need to run as the Postgres user

(or a user with authority), typically user “postgres” on most newly installed systems.

psql –l

It should return something like the following.

 List of databases
 Name | Owner | Encoding
-- -- -- -- -- -- +---- -- -- -+-- -- -- -- -- -
 template0 | pgsql | SQL_ASCII
 template1 | pgsql | SQL_ASCII
(2 rows)

Because a database is a mandatory argument to the interactive client and we don’t want to work

directly on one of our template databases, we’ll start by creating a single database that we’ll use for

the rest of this chapter.

createdb sample

That’s all there is to creating a new database, but of course, this is just a blank slate at this point — a

minimalist canvas based on the template database and on which we will paint a structure to our

exacting specifications.

Now we can use the interactive client to work with our database:

psql sample

554

 Part IV Other Databases

This will open a copy of sample and drop us at a prompt along with some instructions. The prompt

inside the interactive client is different from the shell prompt, which can help you distinguish where

you are exactly. This is especially useful on a Linux system where multiple shells open at one time is

an everyday occurrence. The prompt will take the form <databasename>=#, such that our prompt

will look like:

sample=#

If you issue the \? command from this prompt, you’ll get a very long list of everything you can do

from this prompt, exclusive of SQL specifics, which of course are also supported here. We can’t offer

exhaustive coverage here, but a few key commands are worth exploring:

The ■■ \h command lists available help for all of the supported SQL constructs such as

SELECT, DELETE, GRANT, and so on.

The ■■ \d command, along with one of its accepted parameters, will display information

about your database or specific objects in it. Of specific interest are \dt, which will list all

tables in the current database, and \d <tablename>, which will show the structure of the

specified table.

\H■■ turns on HTML output, which is handy for exporting data quickly to the web. In con-

junction with the \T command you can customize the html output somewhat, and you can

use \o to send it all to a file.

Incidentally, you can call all of these options on the command line when starting psql. Simply sub-

stitute a hyphen for the slash, and psql will execute the commands in sequence and then exit. For

even greater utility, you can group these commands in a text file and read them in from the com-

mand line.

Down to Real Work
Let’s build a simple structure inside our sample database. This example is necessarily abbreviated,

but it is designed to give you a quick but useful familiarity with the Postgres and its SQL syntax. If

you have already exited from our previous example, get back in to the sample database:

psql sample

Let’s start by defining a simple table to hold the names of some cartoons we really like:

CREATE TABLE cartoons(id serial, cartoon varchar(30));

The following command allows us to check our result:

\d cartoons

 Table “public.cartoons”

555

 Connecting PHP and PostgreSQL 33

 Column | Type | Modifiers
-- -- -- -- -+-- -- -- -- -- -- -- -- -- -- -- -+-- -- -- -- -- -
 id | integer |
 cartoon | character varying(30) |

Just so we can say we did something relational, we’ll create a second table to hold the names of some

of the characters in these cartoons.

CREATE TABLE characters(id int4, character varchar(15));

Postgres offers an astonishing 47 data types, so obviously our example barely even scratches the surface.

To be clear, some of these types are really other types with increasing data specificity built in. (You may

already be familiar with this concept, commonly called an input mask in other database tools.)

Now we’ll use some SQL to insert a record into the cartoons table. Note that because the serial type

is just an integer with an auto-increment flag attached, we do not need to specify anything for ID:

INSERT INTO cartoons (cartoon) values(‘Adventures of Scoobiro’);

The absence of an error message suggests that our efforts have met with success, but it’s a good idea

to check this with a SELECT statement anyway, first to be sure and second because, after a number

of records have been entered, we may mentally lose track of where the auto-increment value stands.

We’ll need the number to define a relationship with our characters table.

SELECT * from cartoons;
 id | cartoon
-- -- +---- -- -- -- --
 1 | Scooby
(1 row)

Of course, we’d be in pretty bad shape if we managed to mess that one up. Let’s also put in a charac-

ter or two into the characters table.

INSERT INTO characters(id, character) VALUES(1, ‘Shaggy’);
INSERT INTO characters(id, character) VALUES(2, ‘Daphne’);

So we’ve built a database, created a couple of tables, and added a couple of records, just to make sure

things are going well. Before we make a web application out of this, however, we need to create a

minimally privileged user — one who can access the tables in our sample database, write to them,

and read from them, but not modify them or investigate any other aspect of the system.

In MySQL, users that did not already exist were implicitly created by the GRANT command. While

Postgres also uses the GRANT syntax, we must explicitly create a user first:

CREATE USER cartoonfan PASSWORD ‘secretword’;

After creating the user, we must give cartoonfan some privileges:

GRANT SELECT, INSERT, UPDATE, DELETE on cartoons to cartoonfan;

556

 Part IV Other Databases

GRANT SELECT, INSERT, UPDATE, DELETE
on characters to cartoonfan;
GRANT SELECT, INSERT, UPDATE, DELETE
on cartoons_id_seq to cartoonfan;

Note that we must issue this command at the table level. For security reasons, the wildcard charac-

ter does not function in this context. The last command given is necessary for the serial field type

we selected in the cartoons table.

PHP and PostgreSQL
Table 33-1 itemizes the PHP functions for working with PostgreSQL databases. There are many more

functions than we can possibly elaborate on here. Many of them will make sense only after you have

gained more familiarity with Postgres. Also, many of the function names for Postgres changed with

PHP version 4.2. Because this is a PHP6 book, we’re going to concentrate on the new names rather

than the old.

TABLE 33-1

Common PostgreSQL Functions in PHP
Function Behavior

pg_connect() and

pg_pconnect()

Takes a single connection string as an argument, enumerating connection
parameters such as host, database, port, user and password. pg_pconnect()
is the persistent version. Returns a connection resource. See the listings below
for usage examples.

pg_query() This is the standard pass-through mechanism for sending basic SQL to the
server. In earlier versions, it was called pg_exec(), but this name has been
deprecated. Although optional, pg_query() likes to see a connection
resource, followed by a comma before the actual SQL.

pg_fetch_row()

pg_fetch_assoc()

pg_fetch_array()

pg_fetch_object()

pg_fetch_result()

pg_fetch_all()

Each of these functions takes at least a query-result resource as an argument
and returns varying results depending on the function chosen and how it is
called. Each of these except pg_fetch_all() used to require a counter
argument if you wished to iterate through the returned rows. This argument
is still available but is not necessary. These functions differ primarily in
the results they return, which in the same order as they are listed are: (1) a
numerically indexed array starting at an offset of 0, (2) an associative array
with field names as indices, (3) returns both a numeric and an associative
array, (4) returns the rows and values in object notation, (5) returns a specific
row and column offset, and (6) returns a multidimensional array of the entire
result set.

pg_affected_rows() Returns the number of tuples (rows) affected by an INSERT, UPDATE, or
DELETE query.

557

 Connecting PHP and PostgreSQL 33

Function Behavior

pg_free_result() Frees the memory used by a query result.

pg_num_fields() Returns the number of fields in a query result. Use with SELECT statements.

pg_num_rows() Returns the number of rows in a query result. Use with SELECT statements.

pg_close() Closes the PostgreSQL Connection. Takes a connection resource as an
argument.

The Cartoons Database
We’d like to be able to add some cartoons and characters to our database using a handy web-entry

system. We’ve deliberately oversimplified our example to get through the key concepts quickly, so it

should be fairly easy to put together a system that allows us to achieve this task. Listing 33-1 shows

a welcoming page to our Cartoons database.

LISTING 33-1

index.php

<html>
<head>
<title>Cartoons Database</title>
</head>

<body>

<h1>Cartoons and Characters Database</h1>

<p>Welcome to the cartoons and characters database. Existing
entries are provided below. Use the provided functions to get
more details and to edit, add or delete entries.</p>

<?php
$connect_parameters = “host=localhost dbname=sample
user=cartoonfan password=secretword”;
if ($link = pg_connect($connect_parameters)) {
 $sSql = “select * from cartoons”;
 $sResult = pg_query($link, $sSql);
 if (pg_num_rows($sResult) > 0) {
 print(“<table border=\“1\“>”);
 print(“<tr><th>ID</th><th>Cartoon</th>
 <th>Characters</th></tr>”);
 while ($sRow = pg_fetch_object($sResult)) {
 print(“<tr><th>$sRow->id</th>

558

 Part IV Other Databases

 <td>$sRow->cartoon</td>”);
 $tSql = “select * from characters where
 id = ‘$sRow->id’“;
 $tResult = pg_query($tSql);
 print(“<td>”);
 while ($tRow = pg_fetch_object($tResult)) {
 print(“$tRow->character “);
 }
 print(“</td></tr>”);
 }
 print(“</table>”);
 } else {
 print(“<p>There are not currently any records in the
 cartoon database.</p>”);
 }
} else {
 print(“<p>Connection to the cartoons database has
failed</p>”);
}
?>

</body>
</html>

Notice how different our connect parameters are from what we’d use with MySQL. They aren’t even

comma separated! This function is even insensitive to the order in which they are supplied — you

simply have to use the appropriate parameter name and supply the corresponding value. Additional

recognized parameters for this function are options, tty, and port.

The rest of this script reads much like a similar script would for MySQL. A query is defined, we get

the results of that as an object, issue a second query to get the character data, and use the ubiquitous

print statement to put it all into a nice HTML table.

This is fine as far as it goes, but we don’t yet have a way to insert, edit, and delete records. In

Listing 33-2, we create a new form for the purpose of inserting records.

LISTING 33-2

insert.php

<html>
<head>
<title>Cartoons Database</title>
</head>

<body>

559

 Connecting PHP and PostgreSQL 33

<h1>Cartoons and Characters Database</h1>
<?php
if ($_POST[‘action’] == “Insert”) {
 $connect_parameters = “host=localhost dbname=sample
 user=cartoonfan password=secretword”;
 $link = pg_connect($connect_parameters);
 $escCartoon = pg_escape_string($_POST[‘cartoon’]);
 $iSql = “insert into cartoons(cartoon)
 values(‘{$escCartoon}‘)“;
 if (pg_query($link, $iSql)) {
 $jSql = “select currval(‘cartoons_id_seq’) as oid”;
 $jResult = pg_query($jSql);
 $j_id = pg_fetch_result($jResult, 0, ‘oid’);
 $characters_array = explode(“\n”, $_POST[‘characters’]);
 for($i=0;$i<count($characters_array);$i++) {
 $char = trim($characters_array[$i]);
 $escChar = pg_escape_string($char);
 $cSql = “insert into characters(id, character)
 values($j_id, ‘{$escChar}‘)“;
 pg_query($cSql);
 }
 print(“<p>Your submission was successfully inserted.
 You can submit another, if you wish</p>”);
 } else {
 print(“<p>We were unable to insert the records as
 submitted. You can try again, if you wish</p>”);
 }
} else {
print(“<p>Welcome to the cartoons and characters database.
Enter the”);
print(“name of your favorite cartoon below, and choose
submit.</p>”);
}

?>

<form action=”insert.php” method=”post”>
<p>Enter the name of a favorite cartoon

<input type=”text” name=”cartoon”></p>
<p>Enter the name of some characters from the cartoon.
(You can enter more later). Use a hard return to
separate each name.

<textarea cols=”15” rows=”8” name=”characters”>
</textarea></p>
<input type=”submit” name=”action” value=”Insert”>
</form>
<p>Return to the main page.</p>
</body>
</html>

560

 Part IV Other Databases

This script is doing a lot, so let’s review it. Note first the separation of the PHP and HTML elements.

All of the conditional code appears at the top, and the conditional display requirements are set up

such that we don’t have to weave in and out of PHP to get the job done. We’re going to display a

form even if a submission has just been made so that the user can submit entries one right after the

other without an intermediate step. The first conditional, at the top of the page, checks to see if the

page is being called from the form. If not, we print a simple instruction set. If the page is the result

of a form submission, the fun begins.

We start with a connection to our database. This item is not tested as we just connected on our

index page, so we will, perhaps perilously, assume a valid connection. The next step is to generate

the SQL for the cartoon table from the POST data and insert a new record into the database. The

next bit is designed to get the insert ID of the inserted cartoon. Actually, PHP offers pg_last_
oid() for this purpose, but as of this writing, it did not yield the desired result and is currently

deemed unreliable.

Once we have the correct ID, we do some manipulation on the contents of the textarea that contains

our characters. Refer to Chapter 21 on arrays for more on explode(). Basically, we’re splitting

the field each place we find a line break and popping the resulting elements into an array. Next we

call trim() to get rid of the superfluous space character left behind by explode(). This is done

because Windows systems submit an additional \r wherever a line break occurs. If we explode on

this as a separator, explode will fail when the form is submitted from Linux, for example, because

the character is not there.

Finally, we iterate through the resulting array, putting each character into the characters table with

its own insert query, and we return a message of success or failure.

When we went back to test our results, we found a few problems with index.php and so we present

a revised version in Listing 33-3. We could have just changed the original listing, but this so nicely

illustrates the debugging process that we’ve included it this way to point out the improvements.

LISTING 33-3

index.php (improved)

<html>
<head>
<title>Cartoons Database</title>
</head>

<body>

<h1>Cartoons and Characters Database</h1>
<?php
if ($_POST[‘action’] == “Insert”) {
 $connect_parameters = “host=localhost dbname=sample
user=cartoonfan password=secretword”;
 $link = pg_connect($connect_parameters);

561

 Connecting PHP and PostgreSQL 33

 $escCartoon = pg_escape_string($_POST[‘cartoon’]);
 $iSql = “insert into cartoons(cartoon)
 values(‘{$escCartoon}‘)“;
 if (pg_query($link, $iSql)) {
 $jSql = “select currval(‘cartoons_id_seq’) as oid”;
 $jResult = pg_query($jSql);
 $j_id = pg_fetch_result($jResult, 0, ‘oid’);
 $characters_array = explode(“\n”, $_POST[‘characters’]);
 for($i=0;$i<count($characters_array);$i++) {
 $char = trim($characters_array[$i]);
 $escChar = pg_escape_string($char);
 $cSql = “insert into characters(id, character)
 values($j_id, ‘{$escChar}‘)“;
 pg_query($cSql);
 }
 print(“<p>Your submission was successfully inserted.
 You can submit another, if you wish</p>”);
 } else {
 print(“<p>We were unable to insert the records as submitted.
 You can try again, if you wish</p>”);
 }
} else {
 print(“<p>Welcome to the cartoons and characters database.
Enter the”);
 print(“name of your favorite cartoon below, and choose
submit.</p>”);
}

?>

<form action=”insert.php” method=”post”>
<p>Enter the name of a favorite cartoon

<input type=”text” name=”cartoon”></p>
<p>Enter the name of some characters from the cartoon.
(You can enter more later). Use a hard return to
separate each name.

<textarea cols=”15” rows=”8” name=”characters”>
</textarea></p>
<input type=”submit” name=”action” value=”Insert”>
</form>
<p>Return to the main page.</p>
</body>
</html>

First, we added a link to our now finished insert form. Second, we are now passing the action

parameter via our submit button, purely for the sake of orderliness. We also encountered a prob-

lem with our characters display. When we submitted a character with a space in its name (okay, we

admit, we were trying to submit Wonder Woman), it was unclear where one character ends and the

562

 Part IV Other Databases

next one begins. Using a little regex and string concatenation, we’ve now caused this to display as a

comma-separated list.

Now we need a form for editing records. Listing 33-4 is what we’ve come up with.

LISTING 33-4

edit.php

<html>
<head>
<title>Cartoons Database</title>
</head>
<body>
<h1>Cartoons and Characters Database</h1>
<?php
$connect_parameters = “host=localhost dbname=sample
user=cartoonfan password=secretword”;
$link = pg_connect($connect_parameters);
if ($_POST[‘action’] == “Update”) {
$escCartoon = pg_escape_string($_POST[‘cartoon’]);
$escId = pg_escape_string($_POST[‘f’]);
$sSql = “update cartoons set cartoon = ‘{$escCartoon}‘
 where id = ‘{$escId}“;
 if (pg_query($sSql)) {
 $dSql = “delete from characters where id = ‘{$escId}‘“;
 pg_query($dSql);
 $characters_array = explode(“\n”, $_POST[‘characters’]);
 for($i=0;$i<count($characters_array);$i++) {
 $char = trim($characters_array[$i]);
 $escChar = pg_escape_string($char);
 if($char <> ‘’) {
 $cSql = “insert into characters
 (id, character)
 values({$escId}, ‘{$escChar}‘)“;
 pg_query($cSql);
 }
 }
 print(“<p>Your edits were successfully posted.</p>”);
 } else {
 print(“<p>Update of record $_POST[f] failed.</p>”);
 }
 print(“<p>Return to the main
 page.</p>”);
} else {
 $escId = pg_escape_string($_GET[‘f’]);
 $sSql = “select * from cartoons where id = {$escId}“;
 $sResult = pg_query($sSql);

563

 Connecting PHP and PostgreSQL 33

 $sRow = pg_fetch_object($sResult);
 print(“<form action=\“edit.php\“ method=\“post\“>”);
 print(“<p>Edit the name of a favorite cartoon
”);
 print(“<input type=\“hidden\“ name=\“f\“
 value=\“$_GET[f]\“>”);
 print(“<input type=\“text\“ name=\“cartoon\“
 value=\“$sRow->cartoon\“></p>”);
 print(“<p>Edit the name of some characters from
 the cartoon. “);
 print(“(You can enter more later). Use a hard return to “);
 print(“separate each name.
”);
 print(“<textarea cols=\“15\“ rows=\“8\“
 name=\“characters\“>”);
 $escId = pg_escape_string($_GET[‘f’]);
 $cSql = “select * from characters where id = {$escId}“;
 $cResult = pg_query($cSql);
 while ($cRow = pg_fetch_object($cResult)) {
 print(“$cRow->character\r\n”);
 }
 print(“</textarea></p>”);
 print(“<input type=\“submit\“ name=\“action\“
 value=\“Update\“>”);
 print(“</form>”);
 print(“<p>Return to the main
 page.</p>”);
}
?>
</body>
</html>

Like insert.php, edit.php is a recursive action form. The form post is sent to the same script and

the action taken depends, essentially, on the contents of a hidden variable, $action. In the absence

of this variable, we just retrieve the records from the cartoons and character tables and drop them

back in the form much as they appeared in the original insert form. To parse the characters back

into their original positions, note that we have essentially reversed the explode function we used in
insert.php, but we’ll shift it back into forward when we go to post the updates.

One thing you might find strange is that before we post the updates to the characters table, we delete

all the entries. This is because we haven’t created a unique key for each character, so there isn’t a

way to conveniently refer to an individual record unambiguously. Yes, this is a design flaw. In a big-

ger project, it would be a substantial design flaw. But there are some advantages to the way we’ve

done this. A form to update both characters and cartoons in the same action is much easier to do in

this scenario. It would be quite a bit more code intensive, though certainly feasible, to add a serial ID

to the characters table, retrieve all three fields, set up a multidimensional array in our form, retrieve

it, and process it in our script such that multiple records are updated in a single operation. You get

the idea. Sometimes it’s okay to opt for simplicity.

564

 Part IV Other Databases

Finally, we’ve made a few changes to index.php, which we’re going to show you in Listing 33-5. All

we’ve done is added a way to get at the edit functions and a simple routine for deleting a record, par-

ent and children, in one operation.

LISTING 33-5

index.php (final)

<html>
<head>
<title>Cartoons Database</title>
</head>

<body>

<h1>Cartoons and Characters Database</h1>

<p>Welcome to the cartoons and characters database. Existing
entries are provided below. Use the provided functions to get
more details and to edit, add or delete entries.</p>

<?php
$connect_parameters = “host=localhost dbname=sample
user=cartoonfan password=secretword”;
if ($link = pg_connect($connect_parameters)) {
 if($_GET[‘action’] == “d”) {
 $escId = pg_escape_string($_GET[‘f’]);
 $dSql = “delete from characters where id = ‘{$escId}‘“;
 pg_query($dSql);
 $dSql = “delete from cartoons where id = ‘{$escId}‘“;
 pg_query($dSql);
 }
 $sSql = “select * from cartoons”;
 $sResult = pg_query($link, $sSql);
 if (pg_num_rows($sResult) > 0) {
 print(“<table border=\“1\“>”);
 print(“<tr><th>ID</th><th>Cartoon</th>
 <th>Characters</th><th></th></tr>”);
 while ($sRow = pg_fetch_object($sResult)) {
 print(“<tr><th>$sRow->id</th>
 <td>$sRow->cartoon</td>”);
 $tSql = “select * from characters where id = ‘$sRow->id’“;
 $tResult = pg_query($tSql);
 print(“<td>”);
 $character_string = “”;
 while ($tRow = pg_fetch_object($tResult)) {
 $character_string .= “$tRow->character, “;
 }

565

 Connecting PHP and PostgreSQL 33

 $new_character_string = ereg_replace(“(,)$”, “”,
 $character_string);
 print(“$new_character_string</td>”);
 print(“<td>id\“>Edit |”);
 print(“ id&action=d\“>
 Delete</td></tr>”);
 }
 print(“</table>”);
 } else {
 print(“<p>There are not currently any records in the
 cartoon database.</p>”);
 }
 print(“<p>Add a Record</p>”);
} else {
 print(“<p>Connection to the cartoons database has
failed</p>”);
}
?>

</body>
</html>

Summary
PostgreSQL is an interesting and powerful database tool. Although we did not comprehensively

cover all of its utility here, we have shown you enough basics to get started with it. Check the PHP

documentation at www.php.net/pgsql for a comprehensive listing of PostgreSQL functions.

567

P
EAR DB is one of several wrappers around PHP’s database exten-

sions that seek to generalize the concept of a database connection.

PEAR DB is fully object oriented. With PEAR DB implemented in

your software, you’ll find it easier to allow your application’s users to select

from several databases (the list of supported databases includes all the

majors, and plenty of second-string players as well). You may also find it

easier than before to handle errors and react to unexpected occurrences

that take place during connections and queries.

This chapter aims to explain what PEAR DB is all about. It’s not hard, but it

is important that you understand PEAR DB in theory and practice, because

there are substantial pros and cons to its use. We start with a general dis-

cussion of the benefits and costs of a database abstraction layer; then we

explain the basics of using the PEAR DB package.

For reference, examples, and further explanations of concepts, have a look

at the PEAR DB web site at http://pear.php.net/package/DB.

For general information on PEAR and instructions on how to

locate and install PEAR libraries, see Appendix E.
CROSS-REFCROSS-REF

Using PEAR DB with PHP

IN THIS CHAPTER

Pear DB concepts

Pear DB functions

568

 Part IV Other Databases

Pear DB Concepts
There are a number of concepts in PEAR DB that you must understand to work with the class effec-

tively. These include:

Data Source Names (DSNs)■■

Connection■■

Query■■

Row retrieval■■

Disconnection■■

The following subsections explain each of these items in turn.

Data Source Names (DSNs)
A Data Source Name (DSN) is simply a text string that describes where a database is and how to

access it. A DSN is very much like a URL for a database. Because databases almost always have user-

level access control, DSNs specify usernames and passwords. Note that DSNs specify the database to

which your program is connecting, not the table within the database.

In order to form a DSN, you have to come up with a number of values:

The type of database you’re connecting to (FrontBase, MySQL, Oracle, or whatever you ■■

fancy)

The hostname or IP address of the machine running the database server■■

The database name■■

The username you want the software to use■■

The corresponding password■■

Very often, you’ll need to access these values in order to create DSNs in several different but related

PHP programs. For that reason, it often makes sense to assign the literal values to variables in a spe-

cial program that’s imported elsewhere. Such a program might look like this (call it dbSpecs.php):

<?php
$phptype = ‘mysql’;
$dbHost = ‘spock’;
$database = ‘inventory’;
$username = ‘phpUser’;
$password = ‘sesame’;
?>

569

 Using PEAR DB with PHP 34

The only odd bit there is the value for $phptype. Its value is a standard string that corresponds to a

specific database (MySQL, in this example). The related sidebar shows all valid options for the data-

base identifier.

Valid Database Identifiers for DSNs

Here’s a list of all the database management servers supported by PEAR DB, complete with the strings you
should use to identify them in DSNs.

FrontBase (■■ fbsql)

InterBase (■■ ibase)

Informix (■■ ifx)

Mini SQL (■■ msql)

Microsoft SQL Server (■■ mssql)

MySQL (■■ mysql)

Oracle 7/8/8i (■■ oci8)

ODBC (■■ odbc)

PostgreSQL (■■ pgsql)

SyBase (■■ Sybase)

Having defined your variables in a simple library, when you want to create a DSN, you can import

dbSpecs.php and have access to its values. The advantage is that if the values in dbSpecs.php

ever change, you need to modify them in just one place. The import statement is simple:

require_once(‘dbSpecs.php’);

With that imported, you can use the values defined in dbSpecs.php to create a DSN. Remember,

though, that you need to register the variables if you create your DSN inside a function (this is a

standard characteristic of PHP variable scoping):

global $phptype;
global $hostspec;
global $database;
global $username;
global $password;

Once you have the values available, stringing them together into a properly formatted DSN is pretty

simple. The standard format looks like this:

$dsn = “$phptype://$username:$password@$hostspec/$database”;

570

 Part IV Other Databases

There are more obscure options available for use in defining DSNs. They’re described in detail at

http://pear.php.net/manual/en/package.database.db.intro-dsn.php.

As always, we recommend storing database connection variables outside the web tree for

greater security.

Connection
When you have a valid DSN, it’s a simple matter to tell PEAR DB to establish a connection to the

database the DSN describes. The line of code you need looks like this:

$db = DB::connect($dsn);

If the connection attempt succeeds, everything’s great — $db contains an object representing a con-

nection to the database, and you can run queries against that object (among other amusing and educa-

tional activities). Because you’re a good programmer, though, you should allow for errors. Here’s how:

if (DB::isError($db)) {

 die($db->getMessage());
}

The isError() method returns true if the database object — $db in this case — represents a con-

nectivity error, and false if not (meaning, if the connection succeeded). In this case, the code aborts

if the database connection wasn’t successfully established.

Query
Building on the successful database connection, you’ll typically want to run a query against the

database. That’s accomplished with Structured Query Language (SQL), which is described in detail

in Chapter 13.

The customary procedure is to write your SQL query as a string and stuff that string into a variable

called $sql or $query:

$sql = “SELECT cityName FROM cities ORDER BY cityName”;

Then use that variable as a parameter for the query() method of your database object (in other words,

of the variable that represents the connection to the database), and assign the results to another variable:

$result = $db->query($sql);

Once again, allow for the possibility of error:

if (DB::isError($result))
 $errorMessage = $result->getMessage();
 die($errorMessage);
}

TIPTIP

571

 Using PEAR DB with PHP 34

Row retrieval
As a result of the query() operation, $result contains a result set. A result set is some number of

rows (possibly zero).

To extract values from the result set, use a while loop like this one:

$i=0;
while ($row = $result->fetchRow()) {
 $returnArray[$i] = $row[0];
 ++$i;
}

This loop exists to use the fetchRow() function against every row in the result object, thus extracting

it. Because we know the result set has only one column (the SQL statement requested only cityName),

we can take the first element of every row array ($row[0] — the only element) and put it into another

array, $returnArray. Presumably, we’ll do something useful with $returnArray later, but that’s not

anything to do with PEAR DB directly.

Disconnection
When a database connection has served its purpose, use the disconnect() method of the database

object to free the resources associated with the connection:

$db->disconnect();

It’s important to remember to do this; otherwise, the connection remains active until it times out

(a long time). This means that the database server, in an active environment, could become over-

whelmed with zombie connections.

A complete example
It may be beneficial to have a look at a complete function that performs database access operations

by way of the PEAR DB class.

The role of this function, which we’ll call getItems.php, is to extract all items from a Microsoft

SQL Server database called INVENTORY_item. To return all items, we need a SELECT statement that

draws all columns out of the INVENTORY _item table. Because INVENTORY _item has no foreign

keys (an assumption made for the purposes of this illustration), extracting its data involves only

sending a straightforward SELECT statement to the database server via a PEAR DB connection.

Let’s examine getItems.php line by line to see how this is done.

<?php
require_once (‘DB.php’);
require_once (‘dbSpecs.php’);

572

 Part IV Other Databases

First, we must import the PEAR DB classes and dbSpecs.php, which contains information about

the database server and security credentials for it (it’s listed earlier in this chapter).

function getItems()
{
 global $phptype;
 global $hostspec;
 global $database;
 global $username;
 global $password;

In the function, the five global variables (from dbSpecs.php) must be declared for them to be

accessible.

$dsn = “$phptype://$username:$password@$hostspec/$database”;
$db = DB::connect($dsn);
if (DB::isError($db)) {
 die($db->getMessage());
}

Using the PEAR DB procedure discussed earlier in this chapter, the program connects to the data-

base server. The program checks for an error condition and aborts if one is found to exist as a result

of the connection attempt.

The program then defines the SQL statement to be run against the database to which a connection

has been established:

$sql = “select id, desc, weight, packageQty, unit, supplierID,
cost from INVENTORY_item”;

That’s the SQL query that is to be sent to the database server. Note that we specify the columns,

even though we want all of them. That way we know what order the columns will be in when results

come back.

$result = $db->query($sql);
if (DB::isError($result)) {
 $errorMessage = $result->getMessage();
 die($errorMessage);
}

The program sends the query to the database and checks to see if an error message comes back.

$returnArray = array();
while ($row = $result->fetchRow()) {
 $id = $row[0];
 $desc = $row[1];
 $weight = $row[2];
 $packageQty = $row[3];
 $unit = $row[4];

573

 Using PEAR DB with PHP 34

 $supplierID = $row[5];
 $cost= $row[6];
 $returnArray[] =
 array(‘id’ => $id, ‘desc’ => $desc, ‘weight’ => $weight,
 ‘packageQty’ => $packageQty, ‘unit’ => $unit,
 ‘supplierID’ => $supplierID, ‘cost’ => $cost);
}
$db->disconnect();
return $returnArray;
}
?>

The remainder of the program involves setting up an array called $returnArray. It is filled with

a series of subarrays, making it a two-dimensional array. The subarrays are associative arrays;

their keys correspond to column names in the database, and their values come from each row of
$result.

PEAR DB Functions
The PEAR DB class is fairly extensive, with members far more numerous than the widely used ones

covered already in this chapter’s examples. Most of the other members are specialized, and as such

come in handy only under particular circumstances.

This section summarizes some of the most useful members of the PEAR DB class but is not compre-

hensive. Be sure to refer to http://pear.php.net/manual/en/package.database.php for the

official list and documentation.

Members of the DB class
The DB class itself is the main PEAR DB class, and is used to represent a connection to a database (or

an attempt to create one). Methods include:

DB::connect()■■ : Uses a DSN to connect to a database

DB::isWarning()■■ : Returns true if a connection attempt yielded a warning

DB::isError()■■ : Returns true if a connection attempt yielded an error

Members of the DB_Common class
The methods of the DB_Common class may be invoked on a database connection for such purposes as

executing queries and getting information from the database. Methods include:

DB_Common::affectedRows()■■ : Returns the number of rows affected by a query.

DB_Common::disconnect()■■ : Disconnects a database connection.

574

 Part IV Other Databases

DB_Common::getAll()■■ : Returns all rows returned by a query.

DB_Common::getAssoc()■■ : Returns all rows as an associative array.

DB_Common::getCol()■■ : Returns all rows in a specified column.

DB_Common::getOne()■■ : Returns the value in the first column of the first row.

DB_Common::getRow()■■ : Returns the first row.

DB_Common::nextId()■■ : Allows you to exercise extra control over the establishment of

unique id values, as in a primary key column.

DB_Common::query()■■ : Sends an SQL query string.

Members of the DB_Result class
The members of the DB_Result class may be invoked on a result set, which is what exists after a

query is run on a database.

DB_Result::fetchInto()■■ : Extracts a row into a specified variable

DB_Result::fetchRow()■■ : Extracts the next row

DB_Result::free()■■ : Destroys the result set

DB_Result::numCols()■■ : Returns the number of columns in a result set

DB_Result::numRows()■■ : Returns the number of rows in a result set

Summary
This chapter introduced PEAR DB, the class with which PHP makes database connectivity more

generic. You saw that PEAR DB is designed to make the task of switching from one database server

to another extremely easy and that it generally succeeds in this design goal. In many cases, switch-

ing connectivity from one database server to another requires the modification of only one word in a

whole database-enabled program.

The process of connecting to a database via PEAR DB involves establishing a DSN, which is essen-

tially a URL for a database. The DSN specifies the hostname of the database server, as well as the

database name, and the username and password required to gain access to the database. With a

valid DSN, it’s possible to establish a connection, run a query, and extract rows of values from the

query’s results before disconnecting. PEAR DB also includes methods — which you should take care

to use — for detecting error and warning conditions.

Much more information on Pear DB can be found at its official web site http://pear.php.net/
package/DB.

575

O
racle databases are extremely powerful, reliable, and fast for cer-

tain kinds of queries. They are also a testament to the power of

marketing, as they enjoy a mystique unmatched by any other data

storage product. In this chapter, we try to cut through the hype and give

you a practical foundation in using Oracle with PHP.

Much of the information in this chapter is also applicable to

IBM DB2, which PHP connects to using the ODBC interface,

InterBase, and similar products. Much of Oracle’s functionality is also dupli-

cated by PostgreSQL, although this open source database unfortunately has a

considerably different API than any other database. The point of this chapter

is not to push Oracle over another product; it is to introduce a market-leading

commercial database to those who want to learn how to use it. Feel free to

mentally substitute DB2 or PostgreSQL for every instance of Oracle in the

following section.

When Do You Need Oracle?
We have never had a prospective employer or client for a PHP job who

did not at least mention the possibility of using Oracle. Ironically, the one

organization that really needed this type of functionality was very slow

to adopt it, whereas everyone else didn’t need Oracle at all but wanted to

architect current development around the theoretical possibility that they

might need it later. In an anecdotal way, this experience testifies to the

niche Oracle Corporation has managed to carve out in the minds of the

entire software industry.

TIPTIP

An Overview of Oracle

IN THIS CHAPTER

When do you need Oracle?

Oracle and web architecture

Using Oracle functions

Project: Point editor

Project: Batch editor

576

 Part IV Other Databases

Through a powerful marketing machine (and, of course, a fine product), Oracle has managed to

make its name synonymous with size, scale, and (by implication) success. Therefore, every busi-

nessperson who dreams of making it big in any business having to do with data has a fantasy

that someday he or she will need and be able to afford an Oracle installation. When the humble

PHP developer says, “You don’t need Oracle,” this is too often taken as equivalent to saying,

“You’re never going to amount to anything” — in other words, a big splash of cold water right in

the face of the entrepreneur or manager. This does not tend to endear the humble PHP developer

to the person writing the checks, even if your motivation is to save money and trouble for the

boss. Sometimes reality cannot compete with fantasy, even in the supposedly hard-headed world

of business.

So how do you realistically decide whether you need Oracle (or a workalike) or not? Certain well-

understood factors are tripwires. If you are in one of these situations, your pondering is done. If not,

the chances are very high that your needs could be met perfectly well — perhaps even better — by a

cheaper, easier-to-use database.

Money
If you keep track of money or anything that can be converted to money (credit card charges, equi-

ties, airline miles, royalty payments, vacation time), you need the transactional model. Done, end of

story, move on to the next thing. Not only are these things important to track end to end, but people

tend to get very annoyed when you fail to do this correctly. You do not want to be matching up

failed charge attempts or stock purchases programmatically.

The only exception is if you do not handle the financial part of the transaction yourself. It’s fairly

common these days for even pretty large web sites to route their fulfillment transactions through

some third party. If you are willing to send a customer off to your fulfillment partner, and then take

its word on whether the transaction was completed successfully or not, you can offload the transac-

tional database requirements onto your partner.

Other rivalrous resources
If you track other kinds of rivalrous resources on a large scale — airline tickets, concert tickets,

inventory — you very likely need a transactional database. Note that the operative term is large scale.
This feature applies only if you are in imminent danger of having colliding writes, meaning that the

chances are good that, between the time you check whether a resource is available and the time you

write it into another table, someone else may have claimed it. In other words, this stricture applies

to computer-scale time. If you run a web site that takes a couple hundred new registrations a day,

you are not going to run into this kind of problem except as a rare fluke.

Huge data sets
Again, huge is the key. Millions of rows is not huge. If you will never realistically get past tens of mil-

lions of rows, you don’t need Oracle for sheer scalability.

577

 An Overview of Oracle 35

Lots of big formulaic writes or data munging
Oracle’s stored procedures can increase speed immensely in situations where you have the same kind

of big write or data processing happening all the time. Stored procedures amount to moving part of

the code into the database itself. Processes that use these stored procedures will get done faster than

processes that don’t, because you’ve already told the database exactly what to do in a certain situation.

Databases without stored procedures require all instructions to come from the PHP program, which

is far slower in loops than simply handing off the input data and letting the database run with it.

For instance, if you run an e-commerce site that just takes inputs from one kind of order form and

nothing else, you’ll get increased overall speed from a stored procedure. The database will not have

to finish one step and then wait for the program to tell it the next step or to feed it the next bit of

data. PHP will simply open up the connection, shovel some data down the pipe as fast as it can, kick

off the stored procedure, and possibly wait for a response.

Stored procedures obviously add value in cases where there is massive data munging happening on

the database side. For instance, if you have a big data warehouse that takes a described data set and

performs lots of analytical operations on it, then returns the results of those operations, you will

very likely get much improved performance from a stored procedure.

Remember that stored procedures don’t help you in cases where there is variability in the process.

For instance, if you make ad hoc queries on a data warehouse all the time, those queries will be

extremely slow compared to a query that you make every day using a stored procedure. Also, you

have to use stored procedures pretty often to choose a database on this basis. A whole infrastruc-

ture needs to be in place for you to derive benefits from stored procedures, and you need to decide

whether it’s worth the very real costs to build this infrastructure.

Triggers
Triggers are just what they sound like: The database keeps track of state; when some kind of trig-

gering event happens, it kicks off one or more stored procedures. You need triggers if you need to

respond to certain well-defined data events in real time and are willing to give up global performance

to do it. If your changes do not have to occur instantly — if, for instance, they can happen once an

hour — you are probably better off without triggers as you can schedule stored procedures to run

periodically. On the other hand, if you have to detect changes every second or so, triggers will be

much more efficient than cronjobs or other alternatives. This is a pretty rare feature for a web archi-

tecture, so think hard about whether you need triggers.

Legal liability
Finally, there are nontechnical reasons why you might need Oracle — one of which is legal liability.

Imagine that you run a business that is in some kind of personal information space — credit reports

or medical records, perhaps. If somehow two records get mixed up, you would face significant legal

liability for this most private type of information. One line of defense is to assert that you followed

industry standard practices to safeguard data integrity, including use of the industry-leading database

system. The tens of thousands of dollars you spend on an Oracle installation may seem cheap in this

circumstance.

578

 Part IV Other Databases

Bottom line: two-year outlook
Even if you don’t need any of these features now, it behooves you to think whether you might need

them sometime in the foreseeable future. But don’t try to build a web architecture for the ages —

new things happen so fast on the Internet that cathedral-builders are made fools of daily.

In general it seems like a two-year window is about right unless your needs are changing exception-

ally quickly or slowly. If you don’t see any of the preceding conditions looming on your horizon

within two years or so, don’t worry too much about switching to Oracle.

On the other hand, if you meet any of the preceding criteria, don’t waste time — you need Oracle or

one of its functional competitors.

Oracle and Web Architecture
Having an Oracle database on your backend implies certain things about your architecture and

your web development team. Do not think you can finesse these issues. If you’re not ready to accept

them, you’re not ready for Oracle.

Specialized team members
The minute you have an Oracle installation, you need at a minimum a DBA and a PL/SQL program-

mer. Do not think that it’s at all reasonable to expect web developers or binary programmers to take

over any of the tasks of these positions, as they often are expected to do with simpler data stores.

Database tasks such as installation, tuning, refreshing, setting indexes, maintaining hot backups,

and writing complex stored procedures are very highly specialized skills, which require specialized

training and probably certification.

One of us once worked in a situation where (mercifully briefly) a team of programmers tried to get a

database installed and running with help from a couple of contractors rather than full-time Oracle

professionals. This was an indescribably miserable experience for everyone concerned, with data

corruption and bizarre server issues on a daily basis. The minute a real DBA and PL/SQL program-

mer came in, the situation improved immeasurably — 10-second queries became half-second que-

ries, and so on. There’s a reason that these professionals make the big bucks, and we can assure you

that you don’t want to learn why the hard way.

Shared development databases
Due to the cost and complexity of the database, you will almost certainly need to limit the number

of separate development instances in the office. This means that if all your developers are working

against one development database that gets corrupted or otherwise goes down, the whole team will

be out of commission until the problem can be resolved. On the other hand, MySQL and SQL Server

make it easy for every developer to run a local instance if necessary.

579

 An Overview of Oracle 35

And don’t even think about cheating on your licenses — an Oracle software license audit is nothing

you want to experience.

Limited schema changes
Lighter-weight databases make it possible to make schema changes on the fly — even in production.

In Oracle, this is not a good idea. It’s more difficult to add new database-driven features quickly

because of the time and planning necessary to successfully create schema changes. With Oracle, you

really need to design the entire schema in advance (as you’re supposed to do but never quite take the

time to complete).

Tools (or lack thereof)
Be prepared to invest significantly in tools. Almost no tools are available on the market to help you

with Oracle from a PHP platform specifically. More generally, Oracle is not interested in data sets

smaller than a few tens of thousands of records, and many of the tools available are not really worth

running on data sets smaller than that.

Replication and failover
Some database servers, like MySQL, work best in clusters with one master handling writes while a

bunch of slaves serve up reads. This means that, for maximum efficiency, MySQL code should be

written to take advantage of multiple connections on a single page — each MySQL function specify-

ing a particular resource handle, for instance.

Oracle, however, works best in a single monolithic instance. Remember that eBay grew to be one of

the biggest sites on the web, and suffered many costly site failures, before even beginning to move

away from a monolithic database instance. This tends to create a single point of failure model that

affects all aspects of deployment — after all, what’s the point in having massive redundancy in web

servers when all of them could be struck down by a single hardware problem on the database server?

Most important for PHP developers, writing code for Oracle will not require you to juggle multiple

connections on a per-page basis, as there is little to be gained by this practice.

Data caching
One piece of good news is that Oracle can be configured to cache data. This means that if you make

the same query over and over for a while — for instance, you validate the user against the database

on every page load — the database will only actually perform the query the first time. On subse-

quent requests, it will just serve up the result from some cache memory, for a much faster result.

This means that you will not have to implement a custom data-caching scheme of your own, which

is a very expensive and tricky task.

However, we should mention that lighter-weight databases are rapidly catching up to Oracle’s data

caching capabilities for small queries. Microsoft SQL Server is reported to have excellent data cach-

ing, and MySQL implemented it for the first time in version 4.0.1.

580

 Part IV Other Databases

Using OCI8 Functions
The remainder of this chapter explains how to use PHP’s Oracle functions. If you have no

familiarity with Oracle at all, and especially if you do not have extensive experience with

other SQL databases, you will probably also need to consult an Oracle reference such as Oracle 11g

For Dummies (Zeis and Ruel, Wiley, 2009).

PHP has two Oracle extensions: Oracle and OCI8. The Oracle extension is deprecated for versions of

Oracle after 7 and should be avoided if at all possible. The OCI8 extension is literally dozens to hun-

dreds of times faster at most queries, and also allows much better handling of cursors. We will not

be describing the Oracle extension at all; use OCI8 from the beginning.

Although Oracle is currently in version 11, the OCI8 extension is still the one you want.

Apparently the PHP team has simply decided not to change the name with every update.

If you walk through a couple of typical Oracle queries step by step, you can see that the procedure is

a bit different from that for MySQL or SQL Server:

$name = str_replace(“‘“, “‘’“, $name);
$query = “SELECT product_id FROM product
 WHERE product_name = ‘$name’“;
$stmt = OCIParse($conn, $query);
OCIExecute($stmt, OCI_DEFAULT);
$err_array = OCIError($stmt);
if ($err_array) {
 $err_message = $err_array[‘message’];
 $$error_str = $err_message;
 OCIFreeStatement($stmt);
} else {
 OCIFetchStatement($stmt, $res, OCI_RETURN_NULLS);
 OCIFreeStatement($stmt);
}
$product_id = $res[‘PRODUCT_ID’][0];

Right away you will notice differences such as string escaping, parsing and executing, memory

management, and fetching data sets. We explain these differences in more detail in the sections

that follow. Please refer to the preceding code block for all references that do not have their own

code examples.

Escaping strings
Remember that Oracle uses Sybase-style string escaping — in other words, it escapes single quota-

tion marks with a single quotation mark, not with a backslash. This means that you will have to

manually escape every string, since magic_quotes has the wrong effect, or you have to set Sybase-

style magic quotes in your php.ini file.

CAUTION CAUTION

TIPTIP

581

 An Overview of Oracle 35

Parsing and executing
In most other databases, you send a SQL query over the pipe, and it returns either a value or an

error message. In Oracle, you have an intermediate step in which you must parse the query for cor-

rectness. If your SQL is bad, the query will never be sent to the database. An invalid SQL query will

return an Oracle error code via OCIError().

In most cases, the query will be fine and you’ll move right to executing the query. This is your

opportunity to specify a mode for your query, either OCI_COMMIT_ON_SUCCESS or OCI_DEFAULT,

which does not auto-commit. We generally do not auto-commit because we like to know when a

rollback is necessary, but this is largely a matter of preference. Of course, for SELECT statements it

doesn’t matter which mode you choose because no commitment or rollback is happening anyway.

See the section on transactionality later in this chapter.

Error reporting
Oracle error reporting is also unique. For one thing, you can specify whether you’re asking for a

global-, connection-, or statement-level error. A global error is a failure to get a connection. A con-

nection error is an invalid SQL statement that chokes at the parse stage — remember, it isn’t a

statement yet, so it can’t be a statement-level error. A statement error involves a problem with a

properly parsed statement.

The product of OCIError() is an associative array, where code is the error code and message is a

text string.

Memory management
In Oracle, you are expected to do some memory management manually. In particular, it’s a good

idea to free statement memory when you’re done with the statement handle, and cursor memory

when you’re done with the cursors. Theoretically, all the memory will be reclaimed at the end of

every script, but if your scripts are big you might want to free memory as you go.

Ask for nulls
If you want null values in your data set, you have to ask for them in the fetch function. Otherwise,

Oracle will not return the field name as part of its associative array, and thus an array member you

expect to see will not exist. Many other databases will automatically return the null values.

Fetching entire data sets
Oracle has four fetching functions: OCIResult, OCIFetch, OCIFetchInto, and OCIFetchStatement.

The first three correspond fairly straightforwardly to the single-column-, row-, and array-fetching func-

tions enjoyed by all other PHP database extensions — but the last is unique to Oracle. It fetches the

entire result set into one big array. This can mean less looping and faster access to your data. Of course,

582

 Part IV Other Databases

you should make sure that you are returning a reasonably small result set; otherwise, you can bring

PHP to its knees.

All caps
Oracle column names, which become associative array indices, are in all capital letters. You can ask

for the field in lowercase, but by the time it comes back from the database it will be in all caps, as

shown in the following code:

$query = “SELECT product_name, modified, created
 FROM product
 WHERE product_id = 1”;
$stmt = OCIParse($conn, $query);
OCIExecute($stmt, OCI_DEFAULT);
$err_array = OCIError($stmt);
if ($err_array) {
 $err_message = $err_array[‘message’];
 $error_str = $err_message;
 OCIFreeStatement($stmt);

} else {
 OCIFetchStatement($stmt, $res)
 OCIFreeStatement($stmt);
 $product_name = $res[‘PRODUCT_NAME’][0];
 $modified = $res[‘MODIFIED’][0];
 $created = $res[‘CREATED’][0];
}

Transactionality
Oracle’s famous transactionality implies that all INSERT, UPDATE, and DELETE statements must

be committed or rolled back before they will really be stored in the database. You can commit

automatically during the OCIExecute() step, but if you really want an entire string of queries to

succeed or fail together — the essence of transactionality — it’s better to commit by hand when

all of them are complete.

$query = “DELETE FROM product
 WHERE product_name = ‘$product_name’“;
$stmt = OCIParse($conn, $query);
OCIExecute($stmt, OCI_DEFAULT);
$err_array = OCIError($stmt);
if ($err_array) {
 $err_message = $err_array[‘message’];
 $error_str = $err_message;
 OCIFreeStatement($stmt);
 OCIRollback($conn);
} else {
 OCIFreeStatement($stmt);
}

583

 An Overview of Oracle 35

$query = “INSERT INTO product (product_name, modified, created)
 VALUES (‘$product_name’, SYSDATE, SYSDATE)“;
$stmt = OCIParse($conn, $query);
OCIExecute($stmt, OCI_DEFAULT);
$err_array = OCIError($stmt);
if ($err_array) {
 $err_message = $err_array[‘message’];
 $error_str = $err_message;
 OCIFreeStatement($stmt);
 OCIRollback($conn);
 exit;
} else {
 OCIFreeStatement($stmt);
}
OCICommit($conn);

The net effect of this code block will be to ensure that there is only, at most, one row in the database

for each product name. If either the DELETE or the INSERT fails, the state of the database will not be

changed. You should never have a situation where you have zero or two rows with the same product

name. Note the second argument to OCIExecute() is OCI_DEFAULT, which means that statements

will not be auto-committed and must, therefore, be committed by hand.

It’s very important to remember that commits and rollbacks occur on a connection, not

on a statement. Everything since the last commit or rollback will be entered into the data-

base when you call OCICommit() or OCIRollback(). You may call it as many times during a script

as you like, but generally all the parts of a transaction are committed or rolled back together.

Stored procedures and cursors
Stored procedures are programs that execute on the database. They move some of the program-

ming into the database layer rather than the PHP layer. PHP merely sends data to the function and

handles any returned values.

Because you are connecting to a particular compiled program on the database server, you need to

establish a more specific kind of connection to the stored procedure. This connection is called a cur-
sor, and the process of designating variables for use by the stored procedure is called binding to a cursor.
Basically you are taking a PHP variable and transforming it into a variable on the Oracle side, or creat-

ing a PHP variable in which to store data returned from Oracle. Cursors must be executed separately

from ordinary Oracle statements.

The code block that follows shows a simple example of stored procedure being called from PHP. In

this case, we are executing the stored procedure named get_categories(), which takes no inputs

and returns one output, OUT1, which we are binding to the PHP variable name $cursor1.

// Call stored procedure get_categories
$request = “begin DEV.get_categories(:OUT1); end;”;
$cursor1 = OCINewCursor($conn);
$stmt = OCIParse($conn, $request);
OCIBindByName($stmt, “:OUT1”, &$cursor1, -1, OCI_B_CURSOR);

CAUTION CAUTION

584

 Part IV Other Databases

OCIExecute($stmt);
OCIExecute($cursor1);
$err_array = OCIError($conn);
if ($err_array) {
 $err_message = $err_array[‘message’];
 echo $err_message;
 OCIFreeCursor($cursor1);
 OCIFreeStatement($stmt);
 OCILogoff($conn);
 exit;
}
while (OCIFetchInto($cursor1, &$cat_array)) {
 $opt_str .= “<OPTION VALUE=\””
 .$cat_array[0]
 .”\“>”
 .$cat_array[1]
 .”</OPTION>\n”;
}
OCIFreeCursor($cursor1);
OCIFreeStatement($stmt);
OCILogoff($conn);

It’s possible to kick off a stored procedure or Oracle function and walk away, but more often you will be

waiting for a result. This result will come on one or more cursors. These cursors, and possibly any other

variables that come back to PHP, need to be created by OCINewCursor() and bound to PHP variables

using OCIBindByName(). They are not immediately available to PHP otherwise. After that, they can be

treated much like statements — their contents can be fetched, and their memory must be freed.

Project: Point Editor
The product point editor is a very simple Oracle tool that allows you to edit the data associated with a

single item in a product catalog (for instance, for an e-commerce site). Not only does it fetch informa-

tion that all products share, such as product name and SKU, but it automatically sweeps up variable

product attribute data for editing. This is data associated with each item, such as price, manufacturer,

size, color, and so forth; it differs for items depending on what kind of thing they are — cars will have

a color but not a gender, clothing might have a gender but not a type of transmission.

Because the attribute information you wish to save for each product varies with the product cat-

egory — for books you might want to know the author and number of pages, whereas for toys you

might want to know recommended age — you cannot simply save this information in the product

table, even if it would normally be one-to-one data. To maintain flexibility, each product category

(books, toys, and so on) has a number of attributes associated with it, and then each product is

associated with a number of attribute values. The relationships look schematically like this:

Category
 category_id
 category_name

585

 An Overview of Oracle 35

Product
 product_id
 product_name
 category_id

Attribute
 attribute_id
 attribute_name
 category_id

Attribute_value
 attrib_val_id
 attrib_val
 attribute_id

Product_attribute
 product_id
 attrib_val_id

The product point editor will query the database for all attributes associated with this product and

construct a series of pull-down menus with all possible attribute values neatly laid out for the editor

to select from. If an attribute value is already associated with this product, that value will be prese-

lected in the HTML form field.

Listing 35-1 is a file of functions that are used in both the product point editor and the product

batch editor in the next section. This file should be saved under the name oci8_funcs.php.

LISTING 35-1

Common Oracle functions (oci8_funcs.php)

<?php

/************************************
 * Functions for Oracle-based tools *
 ************************************/

putenv(“ORACLE_HOME=/tools/oracle”);

// Use when fetching data from the db
function unescape_quotes($str)
{
 $esc_str = str_replace(“‘’“, “‘“, $str);
 $esc2_str = str_replace(“\“\“”, “\“”, $esc_str);
 return $esc2_str;
}

586

 Part IV Other Databases

// Use when inserting data into the db
function escape_sq($str)
{
 $esc_str = str_replace(“‘“, “‘’“, $str);
 return $esc_str;
}

function escape_html($str)
{
 $gt_str = str_replace(“>”, “>;”, $str);
 $lt_str = str_replace(“<”, “<”, $gt_str);
 $dq_str = str_replace(“"”, “\“”, $lt_str);
 $esc_str = str_replace(“&”, “&“, $dq_str);
 return $esc_str;
}

// Use this one for INSERTs, UPDATEs, and DELETEs
function parse_exec_free($conn, $query, &$error_str)
{
 $stmt = OCIParse($conn, $query);
 OCIExecute($stmt, OCI_DEFAULT);
 $err_array = OCIError($stmt);
 if ($err_array) {
 $err_message = $err_array[‘message’];
 $$error_str = $err_message;
 OCIFreeStatement($stmt);
 $stmt = FALSE;
 } else {
 OCIFreeStatement($stmt);
 $stmt = TRUE;
 }
 return $stmt;
}

// Use this one for SELECTs
function parse_exec_fetch($conn, $query, &$error_str, &$res,
$nulls=0)
{
 $stmt = OCIParse($conn, $query);
 OCIExecute($stmt, OCI_DEFAULT);
 $err_array = OCIError($stmt);
 if ($err_array) {
 $err_message = $err_array[‘message’];
 $$error_str = $err_message;
 OCIFreeStatement($stmt);
 $stmt = FALSE;

587

 An Overview of Oracle 35

 } else {
 if ($nulls == 1) {
 OCIFetchStatement($stmt, $res, OCI_RETURN_NULLS);
 } else {
 OCIFetchStatement($stmt, $res);
 }
 }
 return $stmt;
}

// For batch_upload.php, which writes a separate error log
function choke_and_die($conn, $fp, $error_str)
{
 OCIRollback($conn);
 OCILogoff($conn);
 $error_line = $error_str.”
\n”;
 echo $error_line;
 fwrite($fp, $error_line);
 fwrite($fp, “</HTML>\n”);
 fclose($fp);
 exit;
}

// For all nonlogwriting uses (which is most of them)
function die_silently($conn, $error_str)
{
 OCIRollback($conn);
 OCILogoff($conn);
 // You can uncomment these when debugging
 //$error_line = $error_str.”
\n”;
 //echo $error_line;
 exit;
}

// Excel sometimes adds random quotes around field contents
function unquote($str)
{
 $pos = strpos($str, “\“”);
 if ($pos === 0) {
 $qstr = substr($str, 1, -1);
 return trim($qstr);
 } else {
 return trim($str);
 }
}

588

 Part IV Other Databases

// Excel sometimes doubles double-quotes in an attempt to close
// them
function strip_db($str)
{
 $esc_str = str_replace(“\“\“”, “\“”, $str);
 return $esc_str;
}

?>

Listing 35-2 is the actual product point editor itself.

LISTING 35-2

Product point editor (prod_point.php)

<?php

/***
 * This is the product point editor. *
 * The purpose of this tool is to edit all the data *
 * associated with a single product. It will mostly *
 * be used for trivial fixes (e.g., spelling errors) *
 ***/

include(“oci8_funcs.php”); //common functions
$thisDB = “dev”;
$thisDBuser = “oci_user”;
$thisDBpassword = “sesame”;

// -----------------
// EDIT PRODUCT DATA
// -----------------
if($_POST[‘submit’] == “Submit”) {
 // Get a timestamp
 $begin_time = time();
 // Open the pipe
 $conn = OCILogon($thisDBuser, $thisDBpassword, $thisDB)
 or die(“Can’t get a database connection.”);

 // UPDATE PRODUCT TABLE
 $product_id = $_POST[‘product_id’];
 $product_name = escape_sq($_POST[‘product_name’]);
 $sku = escape_sq($_POST[‘sku’]);
 $itemurl = escape_sq($_POST[‘itemurl’]);
 $itemimage = escape_sq($_POST[‘itemimage’]);

589

 An Overview of Oracle 35

 $desc_text = escape_sq($_POST[‘desc_text’]);

 $query = “UPDATE product
 SET product_name = ‘$product_name’,
 sku = ‘$sku’,
 itemurl = ‘$itemurl’,
 itemimage = ‘$itemimage’,
 desc_text = ‘$desc_text’,
 modified = SYSDATE
 WHERE product_id = $product_id”;
 $stmt = parse_exec_free($conn, $query, &$error_str);
 if (!$stmt) {
 die_silently($conn, $error_str);
 }

 // UPDATE PRODUCT_ATTRIB_VAL TABLE
 // First blow away all existing rows for this product
 $query = “DELETE FROM product_attrib_val
 WHERE product_id = $product_id”;
 $stmt = parse_exec_free($conn, $query, &$error_str);
 if (!$stmt) {
 die_silently($conn, $error_str);
 }
 if (is_array($_POST[‘attrib’]) &&
 count($_POST[‘attrib’]) > 0) {
 foreach ($_POST[‘attrib’] as $attrib_id=>$av_id_array) {
 if (is_array($av_id_array) && count($av_id_array) > 0) {
 foreach ($av_id_array as $attrib_val_id) {
 // If attrib value is not Delete All,
 // add new rows
 if ($attrib_val_id != -1) {
 $query =
 “INSERT INTO product_attrib_val
 (attrib_val_id, product_id, modified, created)
 VALUES($attrib_val_id, $product_id,
 SYSDATE, SYSDATE)“;
 $stmt =
 parse_exec_free($conn, $query, &$error_str);
 if (!$stmt) {
 die_silently($conn, $error_str);
 }
 }
 }
 }
 }
 }

 OCICommit($conn);
 OCILogoff($conn);

590

 Part IV Other Databases

 /*
 // Uncomment this block for debugging
 // Get a second timestamp, and do the math
 $end_time = time();
 echo “DONE! This operation took “
 .($end_time - $begin_time)
 .” seconds to complete.”;
 exit;
 */

 // Redisplay the form
 header(“Location: $PHP_SELF?url=$prod_url”);
}

// ---------
// SHOW FORM
// ---------
elseif (!isSet($_POST[‘submit’]) ||
 $_POST[‘submit’] != “Submit”) {
 set_time_limit(0);
 // Get a timestamp
 $begin_time = time();
 // Open the pipe
 $conn = OCILogon($thisDBuser, $thisDBpassword, $thisDB)
 or die(“Can’t get a database connection.”);

 // Get the product data based on a unique URL
 //passed in the GET vars
 $url = $_GET[‘url’];
 if ($url == “”) {
 // If a URL isn’t passed, spit out a message and quit
 echo “<HTML>\n<BODY>”;
 echo ‘<P>You need to designate a product to edit by
 passing a url like this:
 http://localhost/tools/prod_point.php’.
 ‘?url=book_PHP5_Bible.</P>’;
 echo “</BODY>\n</HTML>”;
 exit;
 }
 $query = “SELECT product_id, name, sku, itemurl, itemimage,
 desc_text, category_id
 FROM product
 WHERE url = ‘$url’“;
 $stmt = parse_exec_fetch($conn, $query, &$error_str, &$res);
 if (!$stmt) {
 die_silently($conn, $error_str);
 } else {
 OCIFreeStatement($stmt);

591

 An Overview of Oracle 35

 $product_id = $res[‘PRODUCT_ID’][0];
 $product_name = $res[‘PRODUCT_NAME’][0];
 $sku = $res[‘SKU’][0];
 $itemurl = $res[‘ITEMURL’][0];
 $itemimage = $res[‘ITEMIMAGE’][0];
 $desc_text = $res[‘DESC_TEXT’][0];
 $category_id = $res[‘CATEGORY_ID’][0];
 }

 // Get attributes for all products in this category
 $query = “SELECT attribute_id, attribute_name
 FROM attribute
 WHERE category_id = $category_id”;
 $stmt = parse_exec_fetch($conn, $query, &$error_str, &$res1);
 if (!$stmt) {
 die_silently($conn, $error_str);
 exit;
 } else {
 OCIFreeStatement($stmt);
 }
 if (is_array($res1[‘ATTRIBUTE_ID’]) &&
 count($res1[‘ATTRIBUTE_ID’]) > 0) {
 foreach ($res1[‘ATTRIBUTE_ID’] as $key=>$attrib_id) {
 $attrib_name = $res1[‘ATTRIBUTE_NAME’][$key];
 // Get attrib values for this product
 $query = “SELECT product_attrib_val.attrib_val_id
 FROM product_attrib_val, attrib_val
 WHERE product_attrib_val.attrib_val_id =
attrib_val.attrib_val_id
 AND attrib_val.attrib_id = $attrib_id
 AND product_attrib_val.product_id =
$product_id”;
 $stmt = parse_exec_fetch($conn, $query, &$error_str,
&$res2);
 if (!$stmt) {
 die_silently($conn, $error_str);
 } else {
 OCIFreeStatement($stmt);
 // Get all possible attribute values
 //for this attribute
 // and construct nice pulldown lists
 $query = “SELECT attrib_val_id, name
 FROM attrib_val
 WHERE attrib_id = $attrib_id
 ORDER BY name”;
 $stmt = parse_exec_fetch($conn, $query,
&$error_str, &$res3);
 if (!$stmt) {

592

 Part IV Other Databases

 die_silently($conn, $error_str);
 } else {
 OCIFreeStatement($stmt);
 // This stuff is for Case 2 below
 $is_vals = $res2[‘ATTRIB_VAL_ID’];
 $num_is_vals = count($is_vals);
 $poss_vals = $res3[‘ATTRIB_VAL_ID’];
 $num_poss_vals = count($poss_vals);
 $nonmatching = array_diff($poss_vals, $is_vals);

 if ($num_poss_vals > 0) {
 foreach ($poss_vals as
 $av_key=>$avalue_id) {
 $av_name = $res3[‘NAME’][$av_key];
 // Existing values are selected in
 // this list.
 // Case 0: if no existing value
 // then don’t highlight any
 if (!is_array($is_vals) ||
 $num_is_vals == 0) {
 $av_str .= “<OPTION
 VALUE=\“$avalue_id\“>$av_name</OPTION>\n”;
 }
 // Case 1: single attrib value
 elseif ($num_is_vals == 1) {
 if ($is_vals[0] == $avalue_id) {
 $av_str .= “<OPTION VALUE=\“$avalue_id\“
 SELECTED>$av_name</OPTION>\n”;
 } else {
 $av_str .=
 “<OPTION VALUE=\“$avalue_id\“>$av_name</OPTION>\n”;
 }
 }
 // Case 2: multiple attrib values
 // A bit messy because I have to avoid
 // multiple nonmatching options
 elseif ($num_is_vals > 1) {
 foreach ($is_vals as $avid) {
 if ($avid == $avalue_id) {
 $av_array[] =
 “<OPTION VALUE=\“$avalue_id\“ SELECTED>$av_name</OPTION>”;
 }
 }
 if (count($nonmatching) > 0) {
 foreach ($nonmatching as $avid){
 if ($avid == $avalue_id) {
 $av_array[] =
 “<OPTION VALUE=\“$avalue_id\“>$av_name</OPTION>”;
 }

593

 An Overview of Oracle 35

 }
 }
 $av_str = implode(“\n”, $av_array);
 }
 }
 }
 }
 $attrib_str .= “$attrib_name ($num_is_vals): <SELECT
 NAME=\“attrib[$attrib_id][]\“
 SIZE=5 MULTIPLE>\n<OPTION VALUE=’-1’>Delete All</OPTION>
 \n$av_str</SELECT>

\n”;
 unset($av_array);
 unset($av_str);
 }
 }
 }
 OCILogoff($conn);

 // ------------
 // DISPLAY FORM
 // ------------
 $php_self = $_SERVER[‘PHP_SELF’];
 // Superglobals don’t work with heredoc
$form_str = <<< EOFORMSTR
<HTML>
<HEAD>
<TITLE>Product Point Editor</TITLE>
<STYLE>
<!--
.header {font-family: verdana, arial, sans-serif;
font-size: 14pt; font-weight: bold; color: #000000;
text-align: left}
.subheader {font-family: verdana, arial, sans-serif;
font-size: 12pt; font-weight: bold; color: #000000;
background: #ebeef1; text-align: left}
-->
</STYLE>
</HEAD>

<BODY BGCOLOR=”#FFFFFF”>
<P class=”header”>Product point editor</P>

<P>The database is $thisDB</P>

<P>PRODUCT DATA</P>
<FORM ACTION=”$php_self” METHOD=”post”>
<INPUT TYPE=HIDDEN NAME=”product_id” VALUE=”$product_id”>
Name: <INPUT TYPE=TEXT NAME=”product_name” SIZE=30

594

 Part IV Other Databases

VALUE=”$product_name”>

SKU #: <INPUT TYPE=TEXT NAME=”sku” SIZE=70
VALUE=”$sku”>

Item URL: <INPUT TYPE=TEXT NAME=”itemurl” SIZE=70
VALUE=”$itemurl”>

Item Image: <INPUT TYPE=TEXT NAME=”itemimage” SIZE=70
VALUE=”$itemimage”>

Description: <TEXTAREA NAME=”desc_text” COLS=50
ROWS=5>$desc_text</TEXTAREA>

<P>ATTRIBUTES</P>
$attrib_str
<INPUT TYPE=SUBMIT NAME=”submit” VALUE=”Submit”>
</FORM>
</BODY>
</HTML>
EOFORMSTR;
 echo $form_str;

 // Get a second timestamp, and do the math
 $end_time = time();
 echo “DONE! This operation took “.
 ($end_time - $begin_time)
 .” seconds to complete.
\n”;
}

?>

For single-product editing, a PHP form that makes a direct connection to the Oracle database is not

noticeably slower than one that employs a stored procedure. This tool also has the advantage that

it can be altered by a PHP developer alone, whereas use of a stored procedure usually also requires

time from a PL/SQL programmer.

Project: Batch Editor
To edit data for more than one product at a time, you might want to use stored procedures. This tool,

the product batch editor, has two main parts. A script called header_download.php downloads the

attributes for a particular category to a spreadsheet. A corresponding script called batch_upload_
new.php allows the user to upload data from a spreadsheet to the server, where it is loaded into the

database. This is the simplest use of stored procedures.

Listing 35-3 is the first stored procedure called in header_download.php. It is called get_
categories.sql, and it merely downloads a complete list of all the product categories in this

schema.

595

 An Overview of Oracle 35

LISTING 35-3

Stored procedure (get_categories.sql)

CREATE OR REPLACE PROCEDURE get_categories(
 category_list_out OUT pack.my_targets)
IS

BEGIN
 OPEN category_list_out FOR
 SELECT category_id, category_url
 FROM CATEGORY
 ORDER BY category_url;
END;
/
show errors

After you use the form to select a category, header_download.php calls the stored procedure

called get_cat_header shown in Listing 35-4. This takes the category ID as an input and returns

two cursors: one consisting of some common product fields, and the other consisting of attribute

types associated with this category.

LISTING 35-4

A second stored procedure (header_download.php)

create or replace procedure get_cat_header(
 category_id_in INTEGER,
 cat_header_out OUT pack.my_targets,
 cat_attrib_out OUT pack.my_targets,
IS
 v_action VARCHAR2(2) := ‘01’;
BEGIN
 IF category_id_in is NULL THEN
 OPEN cat_header_out for select NULL from DUAL;
 OPEN cat_attrib_out for select NULL from DUAL;
 END IF;

 open cat_header_out for
 SELECT
 column_name,
 column_display_name,
 column_order
 FROM
 event_table_columns
 WHERE
 table_name = ‘product’
 ORDER BY column_order;

596

 Part IV Other Databases

 open cat_attrib_out for
 SELECT attribute_id, attribute_name
 FROM attribute
 WHERE category_id = category_id_in;
END;
/
show errors

Listing 35-5 is header_download.php, which shows the form to call both stored procedures.

LISTING 35-5

New product form (header_download.php)

<?php

/***
 * New product download attributes script. *
 * The purpose of this tool is to download *
 * a spreadsheet with the product data *
 * header. Editors will use this to add *
 * new items to a category. Use script *
 * batch_upload_new.php to upload data. *
 ***/

include(“oci8_funcs.php”); //common functions for Oracle tools
$thisDB = “dev”;
$thisDBuser = “oci_user”;
$thisDBpassword = “sesame”;

// Open the pipe
$conn = OCILogon($thisDBuser, $thisDBpassword, $thisDB);

// -----------------------
// GET THE CATEGORY HEADER
// -----------------------
if ($_POST[‘submit’] == “Add”) {
 // Call stored procedure for this category
 $cat_id_in = $_POST[‘cat_id’];
 $request = “begin DEV.get_cat_header($cat_id_in,
:OUT1, :OUT2); end;”;
 $cursor1 = OCINewCursor($conn);
 $cursor2 = OCINewCursor($conn);
 $stmt = OCIParse($conn, $request);
 OCIBindByName($stmt, “:OUT1”, &$cursor1, -1, OCI_B_CURSOR);
 OCIBindByName($stmt, “:OUT2”, &$cursor2, -1, OCI_B_CURSOR);
 OCIExecute($stmt);

597

 An Overview of Oracle 35

 OCIExecute($cursor1);
 OCIExecute($cursor2);
 $err_array = OCIError($conn);
 if ($err_array) {
 $err_message = $err_array[‘message’];
 echo $err_message;
 OCIFreeCursor($cursor1);
 OCIFreeCursor($cursor2);
 OCIFreeStatement($stmt);
 OCILogoff($conn);
 exit;
 }
 while (OCIFetchInto($cursor1,&$data1)) {
 $p_array[] = $data1[1];
 }
 while (OCIFetchInto($cursor2,&$data2)) {
 $a_array[] = $data2[1].”|”.$data2[0];
 }
 OCIFreeCursor($cursor1);
 OCIFreeCursor($cursor2);
 OCIFreeStatement($stmt);
 OCILogoff($conn);
 // ASSEMBLE THE DOWNLOAD
 $init_p_str = implode(“\t”, $p_array);
 $p_str = str_replace(“CATEGORY_ID”, $cat_id_in, $init_p_str);
 if (count($a_array) > 0) {
 $a_str = implode(“\t”, $a_array);
 }
 $full_header = implode(“\t”, array($p_str, $a_str));

 // SEND THE FILE
 $header_file = ‘header.xls.Z’;
 $zp = gzopen($header_file, “w+”);
 gzwrite($zp, $full_header);
 gzclose($fp);
 header(“Location: header.xls.Z”);
 // For IE5.x, this is the correct way to trigger a download
 //--by simply directing the browser to download a file type
 // that the browser cannot open
}

// -----------------
// CHOOSE A CATEGORY
// -----------------
elseif (!isSet($_POST[‘submit’])) {
 // Call stored procedure get_categories
 $request = “begin DEV.get_categories(:OUT1); end;”;
 $cursor1 = OCINewCursor($conn);
 $stmt = OCIParse($conn, $request);

598

 Part IV Other Databases

 OCIBindByName($stmt, “:OUT1”, &$cursor1, -1, OCI_B_CURSOR);
 OCIExecute($stmt);
 OCIExecute($cursor1);
 $err_array = OCIError($conn);
 if ($err_array) {
 $err_message = $err_array[‘message’];
 echo $err_message;
 OCIFreeCursor($cursor1);
 OCIFreeStatement($stmt);
 OCILogoff($conn);
 exit;
 }
 while (OCIFetchInto($cursor1, &$cat_array)) {
 $opt_str .= “<OPTION VALUE=\“”
 .$cat_array[0].”\“>”
 .$cat_array[1].”</OPTION>\n”;
 }
 OCIFreeCursor($cursor1);
 OCIFreeStatement($stmt);
 OCILogoff($conn);

 // CHOOSE CATEGORY FORM
 $php_self = $_SERVER[‘PHP_SELF’];
 // Superglobals don’t work with heredoc
 $form_str = <<< EOFORMSTR
<HTML>
<HEAD>
<TITLE>Batch Editor New: Download</TITLE>
<STYLE>
<!--
.header {font-family: verdana, arial, sans-serif
font-size: 14pt; font-weight: bold; color: #000000;
text-align: left}
.subheader {font-family: verdana, arial, sans-serif;
font-size: 12pt; font-weight: bold; color: #000000;
background: #ebeef1; text-align: left}
.ftrnote {font-family: verdana, arial, sans-serif;
font-size: 8pt; color: #000000; text-align: left}
LI {line-height:200%}
-->
</STYLE>
</HEAD>

<BODY BGCOLOR=”#FFFFFF”>
<P class=”header”>Batch editor new: download</P>

<P>The database is $thisDB</P>

599

 An Overview of Oracle 35

<FORM ACTION=”$php_self” METHOD=”POST”>
<SELECT NAME=”cat_id” SIZE=1>
<OPTION VALUE=”-1” SELECTED>Choose one</OPTION>
$opt_str
</SELECT>

<INPUT TYPE=SUBMIT NAME=”submit” VALUE=”Add”>
</FORM>
</BODY>
</HTML>
EOFORMSTR;

 echo $form_str;
}
?>

The result of header_download.php is a zipped spreadsheet with one row. It resembles the first

row of the image in Figure 35-1.

FIGURE 35-1

Category header with some data filled in

600

 Part IV Other Databases

We have filled in some data in the preceding figure, using the header row as a guide.

Note that the attributes at the top have names like “Price|376”. The number is the attribute ID,

which will be used when we upload data with Listing 35-6, batch_upload_new.php. This script

enables the user to upload a spreadsheet to the server, using the normal HTML file upload capabil-

ity of his browser. The server will then convert the spreadsheet into rows of data, which are inserted

into the database.

LISTING 35-6

Spreadsheet upload script (batch_upload_new.php)

<?php

/**
 * New product batch upload script. The *
 * purpose of this tool is to upload a *
 * spreadsheet with new product data. *
 * Editors will use this to add new items *
 * to a category. Use script *
 * header_download.php to get attributes. *
 **/

include(“oci8_funcs.php”); //common functions for Oracle tools
$thisDB = “dev”;
$thisDBuser = “oci_user”;
$thisDBpassword = “sesame”;

// HEADER
$header_str = <<< ENDOFHEADER
<HTML>
<HEAD>
<TITLE>Batch Editor New: Upload</TITLE>
<STYLE>
<!--
.header {font-family: verdana, arial, sans-serif;
font-size: 14pt; font-weight: bold; color: #000000;
text-align: left}
.subheader {font-family: verdana, arial, sans-serif;
font-size: 12pt; font-weight: bold; color: #000000;
background: #ebeef1; text-align: left}
-->
</STYLE>
</HEAD>

<BODY BGCOLOR=”#FFFFFF”>
<P class=”header”>Batch editor new: upload</P>

601

 An Overview of Oracle 35

<P>The database is $thisDB</P>
ENDOFHEADER;
echo $header_str;

// ADD NEW PRODUCTS
if($_POST[‘submit’] == “Upload”) {
 set_time_limit(0);
 echo “<P>Check the error log
 (<A HREF\“upload_log.html\“>upload_log.html)
 for problems.</P>”;

 // Copy uploaded file to a specific directory
 $tempfile = $HTTP_POST_FILES[file][tmp_name];
 $localfile = $HTTP_POST_FILES[file][name];
 if(!copy($tempfile, “/tmp/$localfile”)) {
 echo “<P>Error writing file to upload directory.
 Quitting.</P>\n”;
 exit;
 }

 // Start an error log
 $error_log = ‘upload_log.html’;
 $fp = fopen($error_log, “w+”) or die(“Can’t open error log.”);
 fwrite($fp, “<HTML>\n”);

 // Open the pipe
 $conn = OCILogon($thisDBuser, $thisDBpassword, $thisDB)
 or die(“Can’t get a database connection.”);

 // Get a timestamp
 $begin_time = time();

 // Read in the data file as an array
 $uarray = file(“/tmp/$localfile”);

 // Parse the header for cat_id and attributes
 $header = array_shift($uarray);
 $harray = explode(“\t”, $header);
 $num_ha = count($harray);
 $cat_id = $harray[0];
 $attrib_array = array();
 for($i = 6; $i <= ($num_ha - 1); $i++) {
 $a_array = explode(“|”, $harray[$i]);
 $attrib_array[] = $a_array[1];
 }
 $num_attribs = count($attrib_array);

602

 Part IV Other Databases

 $error_str = “”;
 $res = array();
 // Get all the attrib values and stick them in a
 // multidimensional array
 foreach($attrib_array as $attrib) {
 $query = “SELECT attrib_value_id, name
 FROM attrib_value
 WHERE attrib_id = $attrib”;
 $stmt =
 parse_exec_fetch($conn, $query, &$error_str, &$res);
 if (!$stmt) {
 choke_and_die($conn, $fp, $error_str);
 } else {
 foreach($res[‘NAME’] as $key => $val) {
 $ava[$attrib][$val] = $res[‘ATTRIB_VALUE_ID’][$key];
 }
 OCIFreeStatement($stmt);
 }
 }
 reset($attrib_array);

 // Shove the data down the pipe.
 foreach ($uarray as $valrow) {
 // Get a fresh product id from Oracle
 $query = “begin :new_id := newid(‘product’); end;”;
 $sth = OCIParse($conn, $query);
 OCIBindByName($sth, “:new_id”, &$new_id, 200);
 OCIExecute($sth);
 if (!$sth) {
 choke_and_die($conn, $fp, $error_str);
 } else {
 $rowid = $new_id;
 OCIFreeStatement($sth);
 }

 // Format new product data.
 $val_array = explode(“\t”, $valrow);
 $prod_name = unquote($val_array[1]);
 $prod_name = strip_db($prod_name);
 $prod_name = escape_sq($prod_name);
 echo “Working on $prod_name
\n”;
 $sku = unquote($val_array[2]);
 $itemurl = unquote($val_array[3]);
 $itemimage = unquote($val_array[4]);
 $desc = unquote($val_array[5]);
 $desc = escape_sq($desc);

 // PRODUCT
 $query = “INSERT INTO product (

603

 An Overview of Oracle 35

 product_id, name, sku, itemurl, itemimage,
 desc, created, modified, category_id)
 VALUES (
 $rowid, ‘$prod_name’, ‘$sku’, ‘$itemurl’,
 ‘$itemimage’, ‘$desc’, SYSDATE, SYSDATE,
 $cat_id)“;
 $stmt = parse_exec_free($conn, $query, &$error_str);
 if (!$stmt) {
 choke_and_die($conn, $fp, $error_str);
 }

 // PRODUCT_ATTRIB_VALUE
 for ($i = 6; $i <= (6 + $num_attribs - 1); $i++) {
 $av = unquote($val_array[$i]);
 if($av != “”) {
 $temp_q = explode(“|”, $av);
 foreach($temp_q as $av) {
 $av = unasterisk($av);
 $av = escape_sq($av);
 $akey = $i - 6;
 $attrib_id = $attrib_array[$akey];
 if($ava[$attrib_id][$av]) {
 $pav = $ava[$attrib_id][$av];
 $query = “INSERT INTO product_attrib_value (
 attrib_value_id, product_id, created,
 modified)
 VALUES(
 $pav, $rowid, SYSDATE, SYSDATE)“;
 $stmt =
 parse_exec_free($conn, $query, &$error_str);
 if (!$stmt) {
 choke_and_die($conn, $fp, $error_str);
 }
 }
 }
 } else {
 //echo “Null attrib value.
\n”;
 }
 }
 }

 // Get a second timestamp, and do the math
 $end_time = time();
 echo “DONE! This operation took “
 .($end_time - $begin_time)
 .” seconds to complete.”;

 OCICommit($conn);
 OCILogoff($conn);

604

 Part IV Other Databases

 fwrite($fp, “</HTML>\n”);
 fclose($fp);
}

// SHOW FILE UPLOAD FORM
elseif($_POST[‘submit’] != “Upload”) {
 $upload_str = <<< ENDOFUPLOAD
<P>Upload new product data:</P>
<FORM ACTION=”$PHP_SELF” METHOD=”post”
ENCTYPE=”multipart/form-data”>
<INPUT TYPE=HIDDEN NAME=”max_file_size” VALUE=”1000000”>
<INPUT TYPE=FILE NAME=”file” SIZE=50>

<INPUT TYPE=SUBMIT NAME=”submit” VALUE=”Upload”>
</FORM>
ENDOFUPLOAD;
 echo $upload_str;
}

?>
</BODY>
</HTML>

Notice particularly in this script how we call for a new product ID using Oracle’s incrementor

(search for the comment // Get a fresh product id from Oracle). This is in marked contrast to,

for instance, MySQL, where the auto-incrementor is generally built into a column’s definition and

can be kicked off by merely entering a null value in that column.

Summary
Oracle is one of the biggest names in enterprise databases. The PHP OCI8 extension is quite fast and

powerful, offering some functionality not found in most other database extensions. However, the use

of Oracle has many implications and should not be undertaken lightly.

There are significant differences between the syntax of Oracle functions and those of lighter-weight

databases. These differences include so-called Sybase-style string escaping, separate parsing and

execution steps, manual memory management, cursors, transactionality, and the capability to fetch

data sets into one big array. We demonstrated the use of all these Oracle features in two examples: a

single-product data editor and a mass data entry tool.

605

W
hen coding PHP, you may sometimes find that you want a data-

base that’s both easy to use and lightweight, without having

the complexity of a larger RDBMS like MySQL or Oracle. Small

applications, written for one-off solutions, lend themselves to these types of

databases, as do applications that just need a powerful query functionality.

Enter SQLite. SQLite is a lightweight database system that’s bundled with

PHP by default. As you’ll see in this chapter, SQLite is a lightweight data-

base system appropriate for many uses in PHP (and other languages, too).

An Introduction to SQLite
SQLite is a database engine that operates without the use of a database

server. You may find yourself reading that sentence again, but it’s true.

SQLite has no server component, but rather directly interacts with its

data through files or directly in memory. SQLite works well with small (to

medium) data sets or in low-volume transactions, but because the stor-

age medium is usually disk, accessing the data can be slower than a more

robust and traditional RDBMS like MySQL.

SQLite doesn’t have a privilege system in the way that MySQL does. This

means that it isn’t possible to limit who has access to certain databases or

tables within a given database. The files holding data in SQLite are typi-

cally owned and readable by the user under which the web server is run-

ning. With these issues in mind, it’s not appropriate to use SQLite to store

sensitive data.

This chapter gives a brief introduction to the most basic usage of SQLite. More

information can be found in the online manual at www.php.net/sqlite.

An Introduction to SQLite

IN THIS CHAPTER

An introduction to SQLite

Using SQLite-related functions

606

 Part IV Other Databases

Using SQLite-related Functions
SQLite is simple to use. So much so that working with SQLite may confuse those readers who are

accustomed to some level of complexity when working with databases.

Creating Databases
SQLite databases are created simply by calling the sqlite_open() function, like this:

$sqldb = sqlite_open(“mydatabase.sqlite”);

Alternately, an object-oriented interface is also available to create new databases:

$sqldb = new SQLiteDatabase(“mydatabase.sqlite”);

You will concentrate on the object-oriented interface to SQLite in this chapter. More information on

the functional interface can be found in the online PHP manual for SQLite at http://us2.php.
net/sqlite.

Running Queries
In the realm of SQLite, queries, including most interactions with the database such as SELECT,

INSERT, UPDATE, and DELETE operations, take place through the query() method. For example:

$sqldb->query(“SELECT * FROM foo”);

This section examines the query() method as it is used to create tables and insert, and retrieve data.

SQLite also has a method called exec(), which can be used for statements that return no results,

such as statements that create tables and the like. Examining SQLite code “in the wild,” it’s much

more common to see the query() method used, for better or worse, than it is to see exec(); there-

fore, it’s query() that you’ll concentrate on in this section.

Creating Tables
SQLite stores its data as strings regardless of the type specified in the table creation statement. This

means that SQLite can be slow when sorting data.

Automatically incremented columns, like those frequently used for identifier columns, are created

by SQLite without need for an additional keyword such as auto_increment, simply by specifying

that an integer column is the primary key.

Here’s an example that creates a table to store the geopolitical states of the union in the United

States. In this example, it is assumed that the $sqldb handle has been created.

$sqldb->query(“CREATE TABLE mytable (id integer primary key, stateabb
char(2), state char(50))“);

607

 An Introduction to SQLite 36

Table creation need only take place once. Attempting to create a table that already exists causes a

PHP warning, like the one shown in Figure 36-1.

FIGURE 36-1

Attempting to create a table that already exists results in a warning

Therefore, it’s up to you either to ignore the warning or comment out code that creates tables if they

already exist. One method for ignoring the error (though we definitely do not recommend ignoring

errors) would be to precede the call to the query() method with an “at” sign, @.

@$sqldb->query(“CREATE TABLE mytable (id integer primary key, stateabb
char(2), state char(50))“);

Another method available in newer versions of SQLite is to use the ‘if not exists’ syntax

when creating a table. Using ‘if not exists’ tells SQLite to create the table only if the table isn’t

already there. It is preferred to use this syntax rather than ignoring the error using the @ method

shown previously.

608

 Part IV Other Databases

Inserting Data
Like other statements, inserting data into an SQLite database is also accomplished using the

query() method. Going back to the example table created in the last section, you could insert some

states and their respective abbreviation with these statements:

$sqldb->query(“INSERT INTO mytable (stateabb,state) VALUES
(‘WI’,’Wisconsin’)“);
$sqldb->query(“INSERT INTO mytable (stateabb,state) VALUES
(‘CA’,’California’)“);
$sqldb->query(“INSERT INTO mytable (stateabb,state) VALUES
(‘IL’,’Illinois’)“);
$sqldb->query(“INSERT INTO mytable (stateabb,state) VALUES
(‘OR’,’Oregon’)“);
$sqldb->query(“INSERT INTO mytable (stateabb,state) VALUES
(‘MN’,’Minnesota’)“);
$sqldb->query(“INSERT INTO mytable (stateabb,state) VALUES
(‘AL’,’Alabama’)“);
$sqldb->query(“INSERT INTO mytable (stateabb,state) VALUES
(‘WA’,’Washington’)“);

Whenever you’re working with input from the web, as you frequently are in PHP, it’s critical to make

sure that the data has been checked to ensure that it contains valid and acceptable values. For SQLite,

this means using the sqlite_escape_string() function on any input from outside of your program,

such as $_POST and $_GET, but also from cookies or even server and environment variables in a shared

hosting environment.

Assume that you’re accepting a POST from a web form containing the elements username and pass-

word. This code would take those input values and make them safe to use in SQLite statements:

$safe_user = sqlite_escape_string($_POST[‘username’]);
$safe_pass = sqlite_escape_string($_POST[‘password’]);

Now instead of using $_POST[‘username’] within your SQL statement, you would use $safe_
user instead.

Fetching Data
While there are several means by which data can be retrieved from SQLite tables, the simplest

method for retrieving data from SQLite is accomplished by using the fetch() method. The

fetch() method is an alias for sqlite_fetch_array, which means that data retrieved by this

method will be placed into an array.

Going back to the state example from earlier, the data could be retrieved simply with the following

statement:

$result = $sqldb->query(“SELECT * from mytable”);

609

 An Introduction to SQLite 36

Then the result is iterated by looping through the result set with the fetch() method.

while ($row = $result->fetch()) {
 print_r($row);
}

The output from this is shown in Figure 36-2, again assuming the inserts from earlier were executed

in order to insert some sample data.

FIGURE 36-2

Printing data from an SQLite table using the fetch() method

Another method for retrieval of data from SQLite is the fetchAll() method. Fetchall() differs

from fetch() in that with fetchAll(), all data is brought back immediately. This is appropriate

for smaller data sets where you want to grab everything and then work with it as necessary in your

program. The implication of fetching an entire data set, if that data set is large, is that it may con-

sume unnecessary resources versus simply looping through the results with fetch(). The fetch-
All() method retrieves data as an array of arrays.

Other methods also exist for retrieving data from SQLite. These additional methods won’t be cov-

ered here but you can find them online at www.php.net/sqlite.

610

 Part IV Other Databases

More on SQLite
You may find that you’ll never encounter a need for SQLite in your PHP projects, especially with the

ubiquity and ease of use of MySQL. If you do, however, there is much more to SQLite than we’ve

covered here, in a book on PHP and MySQL. If you’re going to use SQLite, please visit the SQLite

section of the PHP manual for more information, www.php.net/sqlite.

Summary
This chapter gave a brief overview of SQLite and its basic usage in PHP. We looked at creation of

databases in SQLite using PHP, how to create a table, insert data, and how to select data from that

table. SQLite isn’t appropriate for all usages of database systems, however. For example, SQLite

doesn’t contain a privilege system, so anyone that has access to the file containing your data has

access to all of the data.

More information on SQLite and PHP can be found in the online manual at www.php.net/
sqlite.

Connections

IN THIS PART

Chapter 37
Sending E-Mail with PHP

Chapter 38
Integrating PHP and Java

Chapter 39
Integrating PHP and JavaScript

Chapter 40
Integrating PHP and XML

Chapter 41
Creating and Consuming Web
Services with PHP

Chapter 42
Creating Graphics with PHP

613

T
his chapter is all about using PHP (and, in some cases, databases) to

send e-mail. If you’re looking to receive e-mail with PHP, by using a

protocol such as POP3 or IMAP, please refer to the PHP manual for

those functions.

Sending E-Mail with PHP
Sending mail is where PHP really comes into its own. But before you can send

any mail from your server, you need to tweak the configuration file a little.

Windows configuration
In Windows, you need to set two variables in the php.ini file:

SMTP■■ : A string containing the DNS name or IP address of an

SMTP server that relays for the Windows machine on which PHP

is installed. If it is on the PHP server, specify localhost.

sendmail_from■■ : A string containing the e-mail address of your

default PHP mail sender (for example, mailbot@example.com).

IIS4+ has an SMTP server built in, which is lighter than

Exchange Server, if you don’t need the power of the latter.TIPTIP

Sending E-Mail with PHP

IN THIS CHAPTER

Sending e-mail with PHP

Sending e-mail from a form

614

 Part V Connections

Linux configuration
You need to check and possibly change one variable in the php.ini file if you’re using Unix:

sendmail_path, a string containing the full path to your sendmail program (usually /usr/
sbin/sendmail or /usr/lib/sendmail), a replacement, or a wrapper (such as /var/qmail/
bin/sendmail).

The mail function
The mail() function is the primary function used to send mail with PHP. This function, which

returns a Boolean, attempts to send one message using the data within the parentheses. The simplest

use of this function (keeping in mind that this is a dummy address and should not be used for test-

ing purposes) is:

<?php
mail(‘receiver@example.com’, ‘A Sample Subject Line’,
“Body of e-mail\r\nwith lines separated by the newline
character.”);
?>

This is the default and minimum format: address of recipient, subject line, and body. In this case,

PHP will automatically add a From: me@sendhost line to each message header.

You can also, as always, use variables instead of hardcoded values:

<?php
$address = ‘santa@example.com’;
$subject = ‘All I want for Christmas’;
$body = “Is my two front teeth.\r\nSincerely, Joey”;
$mailsend = mail($address, $subject, $body);
echo $mailsend;
?>

Multiple recipients all go into the address field, with commas separating them (this feature is not

supported by all MTAs; if you want to be sure, use cc: instead):

<?php
$address1 = ‘receiver@receipthost’;
$address2 = ‘jane@example.com’;
$address3 = ‘john@example.org’;
$all_addresses = “$address1, $address2, $address3”;
$subject = ‘A Sample Subject Line’;
$body = “Body of e-mail\r\nwith lines separated by the
newline character.”;

$mailsend = mail($addresses, $subject, $body);
echo $mailsend;
?>

615

 Sending E-Mail with PHP 37

Remember to ensure that the multiple addresses are one string, as in the preceding code lines. You

do not want to do this:

<?php
$address1 = ‘receiver@receipthost’;
$address2 = ‘jane@example.com’;
$address3 = ‘john@example.org’;
$subject = ‘A Sample Subject Line’;
$body = “Body of e-mail\r\nwith lines separated by the newline
character.”;

// This is wrong, don’t do it!
$mailsend = mail($address1, $address2, $address3, $subject,
$body);
echo $mailsend;
?>

Most people would like more control over the addresses, appearance, and format of their e-mails.

You can do that by putting an additional header after the three default headers.

<?php
$address = ‘receiver@receipthost’;
$subject = ‘A Sample Subject Line’;
$body = “Body of e-mail\r\nwith lines separated by the newline
character.”;
$extra_header_str = “From: me@sendhost\n\nbcc:
phb@sendhost\r\nContent-type: text/plain\r\nX-mailer: PHP/“
. phpversion();

$mailsend = mail($address, $subject, $body, $extra_header_str);
echo $mailsend;
?>

This “additional header” field is somewhat odd because it crams in several types of information that

would normally be given their own fields. Ours is not to wonder why; ours is but to explain the

kinds of things you might want to put in this field.

Your name■■

The To: address■■

Your e-mail address■■

A reply-to or bounce-to address■■

X-mailer and version number■■

MIME version■■

Content-type■■

Charset (which uses a ■■ = to assign a value and not a : like the other headers)

616

 Part V Connections

Content-transfer-encoding■■

Carbon-Copy (cc:) and blind carboncopy (bcc:) recipients■■

The mail() function returns 1 (TRUE) when PHP believes it has successfully sent mail.

This has no relationship to any mail actually being sent or received. There are still an

endless number of things that can go wrong: bad e-mail address, SMTP daemon incorrectly designated

or configured, local Internet conditions, and so on. Think of 1 as a message meaning no more than

“PHP has applied the function to the inputs successfully.”

Sending Mail from a Form
Sending mail from a form is quite likely the single most popular application of PHP’s mail() func-

tion. It’s a far more functional alternative than HTML’s mailto link tag, which of course results in

e-mail being sent from the client machine’s mail program.

Listing 37-1 is a simple example form of the type that often sends e-mail.

LISTING 37-1

e-mail form (titlehelp.html)

<html>
<head>
<title>titlehelp.html</title>
</head>

<body>
<center>
<table width=”550”>
<tr bgcolor= #FF9933><td align=”center”>

<H3>The Thriller

“What was the name of that thriller?”

Form</H3></td></tr>
<tr><td>
Did you once read an unforgettable thriller, but now you can’t
remember the name? Fill out as many of the fields below as you
can, press the button to submit, and we’ll search our sources
and e-mail you back.
</td></tr></table>
</center>

<FORM METHOD=post ACTION=”titlehelp.php”>
<P>First name: <input type=”text” size=30 name=”FirstName”>
<P>Last name: <input type=”text” size=30 name=”LastName”>
<P>Your Email Address: <input type=”text” size=30 name=”Email”>
<P>In approximately what year did the action of the book occur?

CAUTION CAUTION

617

 Sending E-Mail with PHP 37

<input type=”text” size=4 name=”Year”>
<P>Can you remember any settings from the book?
<input type=”text” size=30 name=”Setting”>
<P>The gender of the protagonist(s) was:

<input TYPE=”radio” NAME=”Gender” VALUE=1>Female

<input TYPE=”radio” NAME=”Gender” VALUE=2>Male

<input TYPE=”radio” NAME=”Gender” VALUE=3>One of each

<input TYPE=”radio” NAME=”Gender” VALUE=4>Two males

<input TYPE=”radio” NAME=”Gender” VALUE=5>Two females

<P>When the book first came out, it was:

<input TYPE=”radio” NAME=”Status” VALUE=1>A bestseller

<input TYPE=”radio” NAME=”Status” VALUE=2>A critic’s darling

<input TYPE=”radio” NAME=”Status” VALUE=3>Neither

<input TYPE=”radio” NAME=”Status” VALUE=4>I don’t know

<P>Please tell us anything else you can remember about this
title (plot, characters, settings, cover, movie versions,
etc.):

<textarea NAME=”Other” ROWS=6 COLS=50></textarea>
<P><input type=”submit” name=”Submit”>
</body>
</html>

Listing 37-1 submits to a form handler, shown in Listing 37-2.

LISTING 37-2

E-mail form handler (titlehelp.php)

<html><head>
<title>titlehelp.php</title>
</head>

<body>
<?php
// If you wished, you could also save this information to
// a database
$LastName = $_POST[‘LastName’];
$FirstName = $_POST[‘FirstName’];
$Year = $_POST[‘Year’];
$Setting = $_POST[‘Setting’];
$Gender = $_POST[‘Gender’];
$Status = $_POST[‘Status’];
$Other = $_POST[‘Other’];

618

 Part V Connections

$formsent = mail(‘help@example.com’,
 ‘What was the name of that thriller?’,
 “Request from: $LastName $FirstName\r\n
 Year: $Year\r\n
 Setting(s): $Setting\r\n
 Protagonist gender: $Gender\r\n
 Book status: $Status\r\n
 Other identifying characteristics: $Other”,
 “From: help@example.com”);
if ($formsent) {
 echo “<P>Hi, $FirstName. We have received your request for
help, and will try to respond within 24 hours. Thanks for
visiting!”;
} else {
 echo “I’m sorry, there’s a problem with your form. Please try
again.”;
}
?>
</body>
</html>

There are security implications for using any $_POST variables when sending mail. Spammers

may use this form for sending spam. A spammer would be able to craft a message into the value of

$FirstName and have it sent out. One solution is to validate the input and accept only single words

for first names and then only of a certain length.

Summary
E-mail is one of the most useful and attractive functions of the Internet. PHP gives you the ability to

both send and receive e-mail from a web page. One of the most common uses of PHP’s mail func-

tion is to send an e-mail (often to yourself) with values generated from a Web form.

619

T
he relationship between PHP and Java has changed significantly

with each new release. Unsurprisingly, given the source code, PHP

initially had much more in common with C. PHP4 supported inte-

gration of PHP and Java using a Java servlet environment or, more experi-

mentally, directly into PHP. Finally, with the overhaul of the object model

in PHP5, there was a distinctly Java feel to the PHP approach to object-

oriented programming. Java users will find the improved object model in

PHP6 very familiar, although there are important differences.

Given these changes, as PHP takes on a more Java-like cast, there are two

possibilities for which a discussion of PHP and Java might be pertinent. You

might need to work on a project that requires PHP and Java or Java Server

Pages (JSP) to work in tandem. Or you may be approaching PHP from a

Java background and want to know about the similarities and differences in

order to learn PHP faster. We will deal with both needs in this chapter.

If you don’t have a need to use Java, or aren’t already familiar with the lan-

guage, this chapter won’t do much for you.

PHP for Java programmers
Most projects won’t require integration of Java and PHP, unless there is

some specific need due to preexisting architecture. The Java programmer

approaching PHP for the first time may still want to know more about how

PHP compares to Java for the purposes of learning PHP scripting.

Integrating PHP and Java

IN THIS CHAPTER

PHP for Java programmers

Java Server Pages (JSP) and PHP

Integrating Java and PHP

The Java extension

The Java object in PHP

Error handling and reporting

620

 Part V Connections

Similarities
In this section, we discuss some ways in which PHP and Java are similar.

Syntax
Though PHP syntax is much closer to C, many conventions used in Java apply to PHP as well. Code

is whitespace-insensitive, statements are terminated with semicolons, function calls have a similar

structure (my_function(expression1, expression2)), and curly braces ({ and }) make state-

ments into blocks. PHP supports C and C++-style comments (/* */ as well as //), which are also

used in Java.

Operators
The assignment operators (=, +=, *=, and so on), the Boolean operators (&&, ||, !), and the basic

arithmetic operators (+, -, *, /, %) all behave as they do in Java. Other operators are similar, with

some syntax differences. The string concatenation operator, for example, in PHP is a period (.)

rather than a plus sign (+) as in Java.

Object model
The Java programmers coming to PHP with version 5 can rejoice! You no longer need to unlearn

your approach to OOP in order to deal with the often crude OOP support in PHP4 and earlier ver-

sions. The PHP5 addition of keywords (such as private, protected, and public) for dealing with

member variables should prove familiar to Java coders. New error-handling methods, including the

built-in Exception class, will also be familiar to Java programmers.

See Chapter 20 for much more detailed information about PHP’s object model.

Memory management
Under normal circumstances, PHP’s garbage-collected environment ensures that you do not need to

explicitly free allocated memory. If you’re used to Java’s mostly automated garbage-collected heap,

you’ll be right at home here.

Packages and libraries
Many web-specific libraries are built into PHP and are available by default or with minor changes.

This works similarly to the standard Java packages that are available through JAR files and

CLASSPATH references.

Differences
Although many of the features of PHP have a Java-like feel, there are plenty of notable exceptions

to the way Java and PHP operate. As a general rule, never assume that a Java feature or concept will

carry over completely into PHP.

CROSS-REFCROSS-REF

621

 Integrating PHP and Java 38

Compiled versus scripting
Unlike Java, PHP is a scripting language. The development cycle is edit-execute rather than edit-com-
pile-execute, as in Java. PHP code is automatically compiled at execution time and does not produce

native standalone executables. As a result, the developer is not subjected to rigorous compile-time

error checking as in Java; many of the errors that you are used to seeing at compile time will not rear

their ugly heads until the code is executed in PHP.

Variable declaration and loose typing
Get used to that leading $. Unlike in Java, all variables in PHP must begin with a $. Variables need

not be declared before use, nor cast to a different type as in Java. Rather than the Java code:

String preamble = new String();
Preamble = “We, the people...”;

or:

String preamble = “We, the people...”;

the corresponding PHP code would be simply:

$preamble = “We, the people...”;

PHP utilizes dynamic typing; the variable has no intrinsic type and can change with each new state-

ment. While the following code is perfectly legal in PHP:

$type = 11;
$type = “11”;

you would need to use separate variables in Java, or attempt to recast the variable as a String, with

potential problems and a resultant performance hit.

Variables can be declared and typed as in Java, but this is not required in PHP.

Java Server Pages and PHP
PHP can fulfill many functions similarly to Java Server Pages (JSP). The JSP servlet engine serves as a

scripting language for use with Java, and, just like PHP, is often used in frontend applications.

Embedded HTML
PHP is more similar to JSP than Java itself in that you are allowed to write HTML directly rather

than using endless print statements. Unlike Java, but like JSP, variables can also be referenced from

within a block of HTML. A simple HTML page using JSP script might look like this:

<%
 String greeting = “Hello, world”;
%>

622

 Part V Connections

<HTML>
<HEAD>
 <TITLE>Fun with JSP</TITLE>
</HEAD>
<BODY>
<H1><%= greeting %></H1>
</BODY>
</HTML>

Similarly, using PHP, you can write:

<?php
 $greeting = “Hello, World”;
?>
<HTML>
<HEAD>
 <TITLE>Fun with PHP</TITLE>
</HEAD>
<BODY>
<H1><?php echo $greeting ?></H1>
</BODY>
</HTML>

Pages can freely alternate between HTML and JSP, just as when you use HTML and PHP.

Choose your scripting language
PHP can actually be used with Java in lieu of JSP, although support is much less robust and subject

to change in future releases. Many of the shortcuts available to JSP are not available through PHP. For

example, many of the standard Java class packages are automatically available as in Java Server Pages

but must be implicitly referenced using PHP Java support.

Don’t let new syntax and structure similarities lull you into believing that PHP is truly like

Java. The forgiving nature of PHP and the loose treatment of variable typing mean that

code must be treated very differently. Those errors that Java demanded you to fix before it would com-

pile may not show up in PHP until they are in an end user’s browser!

Integrating PHP and Java
In the course of your development work, you may run across a situation in which you will be

required to use PHP and Java together, or this combination may prove advantageous for some

reason. You basically have two options to accomplish this tricky undertaking, which are outlined

below. Java environments are inherently complicated and vary according to servlet engine and

server. Since these issues are well beyond the scope of this book, in all further discussions we will

assume that you already have a working web server that supports servlets, an installed Java virtual

machine (JVM), and a working familiarity with Java.

CAUTION CAUTION

623

 Integrating PHP and Java 38

The Java SAPI
The most stable solution is to integrate PHP into a Java servlet environment using the Java Service

Access Point Identifier (SAPI). This allows the PHP processor to run as a servlet and builds on the

PHP Java extension (described following). The servlet will run from within a Java servlet engine,

such as Apache Tomcat.

Installation and setup
As with the Java extension, SAPI module support is not built into PHP by default. You will need to

rebuild PHP with the necessary options (— with-servlet -with java) as well as any options you

may require for other uses. (See Chapter 3 for more information on building and installing PHP.) In

your environment variables, make sure that servlet.jar is included in your CLASSPATH, and add

the PHP directory containing the libphp6.so file to LD_LIBRARY_PATH.

Windows users will need to build the php_java.dll file and copy it into their extension_dir

directory and enable the extension in the php.ini file. Also be sure that servlet.jar is included

in your CLASSPATH, and add the PHP directory containing the PHP DLL files to PATH.

Building the module will also create a JAR file called phpsrvlt.jar, which must also be included in

your CLASSPATH. Additional setup specific to your servlet engine will probably be required. Check

the PHP web site and mailing lists for comments from other users who have successfully configured

your Java servlet engine for use with this module.

Further information
Once you have the module up and running, you should be able to view PHP files normally. Point to

an existing PHP page, or create a test by printing phpinfo() to see if you have succeeded.

Usage of this module is still considered experimental, and there isn’t a lot of documentation. You

probably won’t build or use this module unless you already have a specific need for it. As the mod-

ule is under constant revision, additional useful notes may be found in the README file and other

sources located in your PHP directory under /sapi/servlet. Users also sometimes add comments

to the User Contributed Notes in the online manual, so it’s probably a good idea to check there every

so often. Official notes on Java/PHP integration can be found on the PHP web site at www.php.net/
manual/en/ref.java.php.

The Java extension
If you’re feeling particularly adventurous, you can build Java support directly into PHP, using the

experimental Java extension. Once enabled, the extension allows you to create and call Java objects

and methods from within PHP. The advantages are obvious to those familiar with Java, but use of

this extension is not without some pain upfront and the need for some serious care on your part.

The Java extension for PHP is subject to continuing revision as it is fine-tuned for future

versions. Committing to the use of this feature in your application implies added diligence

to avoid future code breakage. It’s not labeled EXPERIMENTAL in the PHP manual for nothing!

CAUTION CAUTION

624

 Part V Connections

Installation and setup
Use of the Java extension will require some modifications to your PHP installation and environment.

Before rebuilding PHP, it’s a good idea to make sure that you have access to pertinent information on

your Java Development Kit (JDK) environment. Make sure that you know the following information:

The base directory of your JDK installation (typically ■■ /usr/java/j2sdk<version> in

Linux)

The ■■ JAVA_HOME and CLASSPATH environment variables (JAVA_HOME should be set to the

above directory)

Location of the Java library (typically in ■■ JAVA_HOME/jre/lib/i386 on Linux)

Java support is not enabled by default, and you will need to rebuild PHP in order to take advantage

of its features. During the installation, you must specify the option –with-java=(base direc-
tory) in addition to any other options you may require. (See Chapter 3 for more information on

building and installing PHP.)

Modifications are also required to the php.ini configuration file in order to enable the exten-

sion. Open your php.ini file in your favorite editor and search for the [Java] subheading under

Module Settings. Here’s where the information you collected earlier will come in handy. A typical

modification on a Linux server might look something like this:

[java]
java.home = /usr/java/j2sdk1.4.0
java.library = /usr/java/j2sdk1.4.0/jre/lib/i386/libjava.so
java.library.path = /usr/lib/php/extensions/no-debug-non-zts-
20020429
extension_dir = /usr/lib/php/extensions/no-debug-non-zts-
20020429
extension=libphp_java.so

Windows users should also add the following line under Windows Extensions:

extension=php_java.dll

Just to add some confusion for fun, note that the java.library variable pertains to

the Java installation, while java.library.path refers to the PHP extension directory

where the optional PHP support files reside. Most problems with getting the Java extension to work

seem to revolve around successfully editing php.ini.

Remember that these variables must correspond to the settings on your particular server.

Windows users must be sure to enclose the path names in quotation marks.

If all goes well, you should be ready to try calling a Java method from within PHP!

NOTENOTE

CAUTION CAUTION

625

 Integrating PHP and Java 38

Testing
A simple invocation of java.lang.System in a JSP environment would look something like this:

<%
 String version = System.getProperty(“java.version”);
 String os = System.getProperty(“os.name”);
%>
<HTML>
<HEAD>
 <TITLE>Fun with Java and JSP</TITLE>
</HEAD>
<BODY>
<H3>We are running Java version <%= version %> on the
 <%= os %> platform, and it’s working!</H3>
</BODY>
</HTML>

Similar code using PHP would, by necessity, be a bit more involved. Create a new PHP file called

javatest.php and insert the following:

<?php
 $system = new Java(‘java.lang.System’);
 $version = $system->getProperty(‘java.version’);
 $os = $system->getProperty(‘os.name’);
?>
<HTML>
<HEAD>
 <TITLE>Fun with Java and JSP</TITLE>
</HEAD>
<BODY>
<H3>We are running Java version <?php echo $version ?> on the
<?php echo $os ?> platform, and it’s working!</H3>
</BODY>
</HTML>

With luck, your browser will output something like the following when you access javatest.php:

We are running Java version 1.4.0 on the Linux platform, and
it’s working!

If not, it’s time to troubleshoot! Consult the PHP manual or other resources listed in Appendix D for

help and suggestions.

The Java object
The Java object becomes available with installation of the Java extension and is used to instantiate a

Java class within PHP. The format is:

new Java(class, parameters)

626

 Part V Connections

where class is the class being invoked and the parameters are arguments to be passed to that

object’s constructor. Parameters are optional, providing that a default constructor is available.

It’s important to note that no Java packages are available to PHP by default. Although, as

in the previous example, the java.lang.* package is always available to Java and JSP

and therefore does not need to be referenced implicitly, the complete package and class name must

always be specified from within PHP.

The previous example was a simple one, since we provided no arguments to the System class. System

cannot be instantiated in Java and is referenced through static methods just as getProperty() is.

Let’s take a look at a more involved example.

With the deprecation of several Date() constructors, time reporting and formatting grew in com-

plexity in Java. Here’s an example in which we print the current date and time in JSP:

<%
Calendar cr = new Calendar();

String date_time = “yyyy-MM-dd HH:mm:ss”;

java.text.SimpleDateFormat date =
 new java.text.SimpleDateFormat(date_time);

String current = date.format(cr.getTime()));
%>
<HTML>
<HEAD>
 <TITLE>Got the time?</TITLE>
</HEAD>
<BODY>
<H3>The current date and time is: <%= current %>.</H3>
</BODY>
</HTML>

Once again, as written in PHP:

<?php

 $cr = new Java(‘java.lang.Calendar’);

 $date_time = “yyyy-MM-dd HH:mm:ss”;

 $date = new Java(‘java.text.SimpleDateFormat’,$date_time);

 $current = date->format($cr->getTime()));
?>

<HTML>
<HEAD>

NOTENOTE

627

 Integrating PHP and Java 38

 <TITLE>Got the time?</TITLE>
</HEAD>
<BODY>
<H3>The current date and time is: <?php echo $current ?>.</H3>
</BODY>
</HTML>

Errors and exceptions
Because Java is being accessed through PHP, a Java Exception appears as a PHP warning in the

browser. While a reference to a class that is misspelled or not in the classpath might generate an

error such as this within Java (accompanied by a lovely stack trace):

/var/tomcat4/work/webroot/_/test/test$jsp.java:57: Class
org.apache.jsp.SomethingAmiss not found.

when referenced from PHP, it will simply be displayed in the browser:

Warning: java.lang.ClassNotFoundException

While this warning will at least notify you that there is a problem, it doesn’t provide much useful

troubleshooting information. You can suppress the PHP warnings by using an @ prefix with your

method calls, although we recommend against it:

@$trouble = $output->println();

Another method for suppressing errors is to use display_errors and set the value to 0 to cause

errors not to display. This is accomplished within your program with the following statement:

ini_set(‘display_errors’, 0);

When an exception is thrown, it’s also possible to obtain the Exception object from Java for more

pertinent information. To accomplish this, the PHP Java extension provides two functions to retrieve

the last Exception and then to clear it: java_last_exception_get() and java_last_excep-
tion_clear(). Neither function accepts parameters.

With version 5, PHP gained an Exception object of its own! You can use both the Java and PHP

objects in conjunction to provide more helpful error information, as in Java:

// check for a thrown exception in Java
$exception = java_last_exception_get();
if ($exception) {
 $ex_msg = $exception->getMessage();
 // use the Java exception to throw an exception in PHP
 throw new Exception($ex_msg);
 //clear this Java exception
 java_last_exception_clear();
}

628

 Part V Connections

The getMessage() method will provide more information than given in the warning

but still might not be enough. Use toString() if your exceptions are not providing

enough useful information.

By using both the @ prefix and these handy PHP functions, it becomes possible to exert more control

over Java errors within PHP.

Potential gotchas
Expect to run into problems while trying to integrate Java and PHP. Judging from comments on PHP

mailing lists and on various development boards, even seasoned professionals find they must exper-

iment with both installation and implementation in order to achieve what they want. There are a few

problems that seem to crop up most often, and you can learn from the experiences of others.

Installation problems
Assuming a preexisting servlet engine and working environment, most problems in getting the Java

extension to work properly seem to begin and end in php.ini. Your particular servlet engine and/

or platform may require more configuration. Again, check user notes online and in mailing lists and

experiment on your own.

It’s the classpath, stupid
A common error, especially for those not all that familiar with Java, is to neglect to include relevant

packages, libraries, or JAR files within the classpath specified as an environment variable. If you

receive a dread ClassNotDefined error or something similar, check the CLASSPATH first. If not,

then perhaps you misspelled the class name. Hey, it happens.

Here comes that loose typing again
PHP may not care what type your variable is, but Java certainly does. It’s probably a good idea (and

good form, when calling Java methods) to typecast your PHP variables before passing them to a Java

object:

$value = (double) $value;
$sum = (int) $sum;
$name = (String) $name;

Get used to typecasting variables for use with Java. As a worst-case scenario, the code may generate

errors. At best, it may behave unpredictably.

Speed
Excessive referencing of Java objects can sacrifice some of the performance that PHP aficionados

have grown so fond of. Use Java objects and methods only when necessary!

NOTENOTE

629

 Integrating PHP and Java 38

The sky’s the limit
Obviously, the complexity only increases when you begin to create more involved scripts. There’s

a lot of uncharted territory that you can choose to explore. Many creative uses of the Java exten-

sion continue to be uncovered as time passes. You can even use the java.awt.* packages to create

graphical interfaces through PHP, though much of this is limited to CGI mode. If you can dream it

up in Java, there’s a chance you just might be able to get it to work through PHP as well.

Here we enter the realm of experimentation. While managing to exploit the Java extension to its full

potential may prove enjoyable and interesting for the programmer, it often doesn’t make for a very

stable or efficient application. Use it in a production environment at your own risk, and keep abreast

of any changes posted on the PHP site. Meanwhile, load up a development machine and go to town!

Summary
While many similarities in syntax and object models exist between PHP and Java, differences

abound in typing, compilation, and methodology.

Java programmers who are working with PHP for the first time will find server-side scripting much

more intuitive if they have experience using Java Server Pages (JSP). PHP fulfills a similar function

and can be embedded within HTML.

Users seeking to integrate Java and PHP have two options: the Java SAPI module and the Java exten-

sion. Both are optional, and PHP must be rebuilt to support these options. Use of Java assumes a

web server with installed JVM and a servlet engine such as Apache Jakarta Tomcat. Modifications

must be made to environment variables as well as the php.ini configuration file, and are specific to

your particular platform and Java servlet engine.

Objects and methods are called from PHP, instantiating the Java object. Java packages are not

directly available to PHP and must be correctly referenced. Parameters are optional if a default con-

structor is to be used.

Errors generated by Java are reported as PHP warnings but can be suppressed by attaching the @

prefix to your PHP statements, although we strongly recommend against suppressing errors. Java

Exception objects can be accessed through PHP using built-in functions, and they can be used in

conjunction with the PHP Exception object.

Java support in PHP is experimental and, as such, is subject to change in future releases. Those

wishing to integrate Java and PHP should keep track of new releases and potential changes that

could break their code.

631

I
n this chapter, we try to get the best of both client-side and server-side

scripting by combining PHP with JavaScript. We briefly touch on the

question of when to use which scripting language, and stylistic points

that may be helpful when writing the code. Then we move on to pragmatic

examples of the type you might see on a real-world PHP site.

If you’ve never worked with JavaScript before, you won’t learn

how just by reading this chapter. We will only touch on aspects

of JavaScript that materially impinge upon PHP. If you’re wondering what an

onBlur event is, we recommend Danny Goodman’s superlative JavaScript

Bible, Sixth Edition (Wiley, 2007) or Steve Suehring’s JavaScript Step by Step

(Microsoft, 2008).

Outputting JavaScript with PHP
Because PHP is server-side and JavaScript is client-side, you may expect to

have problems using both on the same page. In actuality, it’s this difference

that makes them such a good match.

Although PHP offers plenty of power for creating dynamically generated

web pages, it is strictly a server-side language. There’s a common category

of web site tasks that perhaps don’t require all the processing power of a

server and would best be done quickly — for instance, changing the look

of a button on mouseover. JavaScript, a purely client-side language (there’s a

server-side version, but we’re assuming that you’ve already chosen PHP on

that end), can be easily integrated into PHP to fill in many of these gaps.

On the other hand, client-side JavaScript (aka Javascript, JScript,

ECMAScript) itself has many limitations. For example, because it can’t

TIPTIP

Integrating PHP and
JavaScript

IN THIS CHAPTER

Outputting JavaScript with PHP

PHP as backup for JavaScript

Static versus dynamic JavaScript

Dynamic form generation

632

 Part V Connections

communicate directly with a database, JavaScript cannot update itself with fresh data, depending

on the page. Even worse, it’s impossible to depend on client-side technologies, because they may

not be present in a visitor’s browser or may be disabled. Conscientious client-side web developers

must either decide to code probabilistically (and accept complaints from minority-browser users)

or maintain several versions of a site at the same time. (Nonconscientious developers simply adapt

themselves to the market-leading browser’s full capabilities and damn the torpedoes . . . but that’s

another story.) PHP can help to mitigate the effects of client-side indeterminacy.

Dueling objects
Perhaps the biggest divergence between JavaScript and PHP is in the area of object models. The two

are quite divergent conceptually, and they use different styles of notation. Some people consider

this a good thing, because at least there’s no chance of mixing up objects that look similar (as there

is with, say, ASP and JavaScript). Probably just as many consider it a pain, an incompatibility, or a

design flaw. In any case, there is no chance that you can access the same object with both PHP and

JavaScript — so forget it.

JavaScript is consistently object-oriented from top to bottom. Every statement requires an object and

a method or function to be specified and may also have event handlers. JavaScript uses the so-called

dot object notation (object.method), which is similar to that of other common programming lan-

guages such as Java, Python, and Microsoft’s VBScript.

The downside is that JavaScript’s document object model has been shakily standardized: Although,

in theory, ECMA and the W3C shepherd the international standard, in practice the various browser

manufacturers violate/add to this core at their whim. Proficient JavaScripters spend a good deal of

energy keeping track of incompatibilities and workarounds for various browsers and platforms.

PHP doesn’t care what it outputs
The main thing to keep in mind is that PHP doesn’t know or care what it returns. You can (and peo-

ple do) use PHP to write out plain text, HTML, XHTML, DHTML, JavaScript, XML, MathML, vari-

ous graphical formats, CSS, XSL, or even (for the ironic ironists among us) ASP. No real technical

barrier exists to having PHP output C code, although it’s probably not a usage whose popularity is

going to sweep the nation. Remember, PHP does not always output PHP — its ultimate end product

is usually code that will be run by another application, usually a browser.

There are a couple of ways to write out the JavaScript with PHP. The simplest is to escape from PHP

whenever you get the urge to go client-side. This is accomplished in precisely the same way you

would escape from HTML.

<?php
echo(“Imagine tons of complex PHP code in this block.”);
?>
<script language=”JavaScript”>
<!-- Hide from JavaScript disabled browsers
document.write(“Strict separation of client-side and server-side

633

 Integrating PHP and JavaScript 39

code is a good thing.”)
// end hiding -->
</script>
<?php
echo(“More PHP in this block.”);
?>

Even this example doesn’t show the fullest extent of PHP/JavaScript separation. A lot of JavaScript

is actually defined within the <HEAD> element of an HTML page and simply called in the <BODY>,

whereas PHP is generally used in the latter.

As with HTML, there are occasions when you don’t want to escape from PHP — or this style may

just be your personal preference. In that case, you can use PHP’s echo or print statements to out-

put JavaScript.

<?php
echo(“This is some complex PHP code.”);
echo(“<script language=\“JavaScript\“>\n”);
echo(“<!-- Hide from JavaScript disabled browsers\n”);
echo(“document.write(\“Strict separation of client-side and
server-side code is a good thing.\\n\“)“);
echo(“// end hiding -->\n”);
echo(“</script>\n”);
echo(“More PHP in this block.”);
?>

You may run into trouble if you use script tags (for instance, <script language=”PHP”>)

to delineate PHP chunks — the PHP parser may have a hard time figuring out which

</script> tag goes with what <script> tag. Whenever possible, use the canonical <?php ?> tag.

This style is not at all incorrect, but it can be considerably harder to keep everything straight. Unless

you’re an experienced programmer, you might want to limit this style to occasions in which you

simply call predefined JavaScript functions, such as onSubmit events.

Remember to escape double quotation marks in JavaScript sections if using echo/print

to output code. See line 3 of the preceding snippet.

Where to use JavaScript
Client-side JavaScript doesn’t do heavy lifting, but it is faster at certain tasks and also allows for

some effects that you can’t easily duplicate with PHP. Some places you should definitely consider

replacing or enhancing PHP with JavaScript include:

Simple arithmetic in forms and calculators (such as a shopping-cart running total or a ■■

mortgage calculator)

Simple form validation (such as making sure that e-mail addresses have ■■ @ symbols)

Site navigation (such as pull-down navigation menus)■■

CAUTION CAUTION

TIPTIP

634

 Part V Connections

Pop-ups (alerts, search boxes)■■

Browser events (mouseover, onClick)■■

PHP as a Backup for JavaScript
The flip side of our where to use JavaScript advice is that PHP can help caulk the cracks in JavaScript.

Sometimes you can seamlessly implement both client-side and server-side methods of doing a task. If

a visitor’s browser is JavaScript-enabled, fine — visitors will be able to take advantage of the zippier

method, generally without even noticing that they’ve had a choice. If not, at least you won’t suffer the

ignominy of totally locking them out of your site’s functionality.

A perfect example is the double-barreled pull-down menu for site navigation. JavaScript gives you

an instant redirect, whereas PHP provides the same result after a longer wait for those without

JavaScript-enabled browsers. This trick takes advantage of the fact that JavaScript has event hand-

lers (for example, onChange) that work off the structure of HTML forms without requiring an

actual button-clicking submission. Therefore, the Submit button can be reserved for PHP’s use.

Listing 39-1 shows an HTML page that uses a JavaScript onChange redirect and, if that doesn’t

work, a PHP form handler.

LISTING 39-1

A JavaScript and PHP navigation form (navigation.html)

<html>
<head>
<title>Navigation pulldown</title>
<script language=”JavaScript”>
<!--
function Browse(form, i){
 var site = form.elements[i].selectedIndex;
 if(site > 0){
 top.location = form.elements[i].options[site].value
 }
}
// -->
</script>
</head>

<body>
<form method=”post” action=”redirect.php”>
<select name=”category” onChange=”Browse(this.form,0)“>
<option selected value=0>Choose a Category</option>
<option value=”desktop.php”>Desktops</option>
<option value=”laptop.php”>Laptops</option>

635

 Integrating PHP and JavaScript 39

<option value=”monitor.php”>Monitors</option>
<option value=”input.php”>Input devices</option>
<option value=”storage.php”>Storage devices</option>
</select>
<input type=”submit”>
</form>
</body>
</html>

The PHP form handler file, called redirect.php, need only have two lines:

<?php $category = $_POST[‘category’];
header(“Location: $category”); ?>

You could use a similar division of labor with form validation. If JavaScript is enabled, you can use

it to make sure that zip codes have nine digits, phone numbers have ten digits, and e-mail addresses

have both an @ and a .. If JavaScript is not enabled, you can write a little PHP script that will do the

same things when the form is submitted and return the form with warnings if the values are bad.

JavaScript form validation should be relied on only for quick convenience reminders,

never for data sanitization.

Another kind of form is basically arithmetic — a shopping cart with running totals or a mortgage

payment calculator. Again, you can combine both JavaScript and PHP in an arithmetic form to cover

all the bases.

Finally, there is one use where PHP is so much faster that you might want to replace JavaScript alto-

gether: browser sniffing. This is done to send different versions of a file (for instance, a style sheet)

to a visitor depending on which browser she’s using. Server-side browser sniffing is vastly more

efficient than client-side because no text is sent until the sniff has occurred. A JavaScript browser

sniff can amount to hundreds of lines of JavaScript, which must be sent on every download whether

the correct browser version has been detected or not. Listing 39-2 shows a very simple server-side

browser sniff, though these can be faked by the client’s browser quite easily.

LISTING 39-2

A server-side browser sniff (browsersniff.php)

<?php
if (strpos($HTTP_USER_AGENT, ‘MSIE’) > 0) {
 header(“Location: index_ie.html”);
} elseif (strpos($HTTP_USER_AGENT, ‘Gecko’) > 0) {
 header(“Location: index_moz.html”);
}
?>

CAUTION CAUTION

636

 Part V Connections

Static versus Dynamic JavaScript
Although the static JavaScript-PHP form in Listing 39-1 is handy for many applications, there’s one

big problem with it: You have to maintain it by hand. Every time you decide to add a new page to your

site, you’ll have to remember to manually add it to the drop-down list. Big deal, you’re thinking — but

these are the little things that become time-sucking nightmares when you’re running a huge and high-

traffic site.

With PHP and a database, you can update some of your JavaScript automatically when new data is

stored in the database — or, as we might say, dynamically. You want to take this option whenever

possible, as it will help you save time in the long run. Listing 39-3 is how you’d rewrite the form in

Listing 39-1 for even better client/server integration.

LISTING 39-3

Dynamic JavaScript and PHP form (dyn_navigation.html)

<html>
<head>
<title>Navigation pulldown</title>
<script language=”JavaScript”>
<!--
function Browse(form, i){
 var site = form.elements[i].selectedIndex;
 if(site > 0){
 top.location = form.elements[i].options[site].value
 }
}
// -->
</script>
</head>

<body>
<form method=”post” action=”redirect.php”>
<select name=”category” onChange=”Browse(this.form,0)“>
<option selected value=0>Choose a Category</option>
<?php
mysql_connect(“localhost”, “user”, “password”);
mysql_select_db(“site_db”);
$query = “SELECT filename, my_text
 FROM categories
 WHERE display = 1”;
$result = mysql_query($query);
while (list($filename, $my_text) = mysql_fetch_array($result)) {
 print(“<option value=\“$filename\“> $my_text</option>\n”);
}
?>
</select>

637

 Integrating PHP and JavaScript 39

<input type=”submit”>
</form>
</body>
</html>

You will doubtless have realized by now that a similar technique would be valuable even if you

were making a straight JavaScript form (such as by using the onSubmit event handler rather than

onChange). It would enable you to make a basic JavaScript function more flexible by allowing PHP

to change variable values within the function before it was sent to the browser. So feel free to use

PHP to output straight JavaScript using variables from a data source, if you like.

Dynamically generated forms
You can usefully extend this train of programming thought even further by setting up a series of

dynamic drop-downs that change according to previous form inputs. PHP will fetch all the data

from a database and load it into the HTML page, whereas JavaScript will decide which data set

should be visible under various conditions.

In this example, we want to help users find information on specific cars. The list of the model of

every car made by every manufacturer is dauntingly large, too long for even a well-designed drop-

down list. Furthermore, car names tend to be eerily similar to each other, like the first names of a

large family of sisters in a Swedish farming village — Integra, Sentra, Jetta, Elantra, Sephia, and so

forth. So one way to narrow things down logically is to have the user pick a manufacturer from a

pull-down menu, which would narrow the list to only models made by that company.

The database table we need looks like this (actually it probably doesn’t if you’re using a relational

database — but here we want to focus on the JavaScript part, not the database part):

| make | model |

Audi	A4
Audi	A6
Audi	A8
Audi	Quattro
Chrysler	Cirrus
Chrysler	Concorde
Chrysler	PT Cruiser
Toyota	Camry
Toyota	Corolla
Toyota	Rav4

Using this database table and server-side PHP scripts, you would be limited to two suboptimal

choices. You could opt for one extremely large list (either drop-down or full page) of manufactur-

ers and models, or you could make the visitor go through two sequential forms. But after we add

638

 Part V Connections

JavaScript to the mix, we can start a page with two drop-downs and have the contents of the second

list change, depending on what is selected in the first.

Our double drop-down design is based on Andrew King’s very clever JavaScript code, available

at www.webreference.com under the GNU General Public License. We used PHP simply to

connect to the database and fetch data to populate the two-dimensional arrays from which the

JavaScript works. All of the interesting functionality here is provided by the JavaScript portion (see

Listing 39-4).

LISTING 39-4

A two-dimensional dynamic drop-down (double_drop.html)

<HTML>
<HEAD>
<META NAME=”save” CONTENT=”history”>
<STYLE>
 .saveHistory {behavior:url(#default#savehistory);}
</STYLE>

<SCRIPT LANGUAGE=”JavaScript”>
<!--
var v=false;
//-->
</SCRIPT>

<SCRIPT LANGUAGE=”JavaScript1.1”>
<!--
if (typeof(Option)+”“ != “undefined”) v=true;
//-->
</SCRIPT>

<SCRIPT LANGUAGE=”JavaScript”>
<!--
// Universal Related Select Menus - cascading popdown menus
// by Andrew King. v1.34 19990720
// Copyright (c) 1999 internet.com LLC. All Rights Reserved.
// Modified by Joyce Park 20000703
//
// This program is free software; you can redistribute it
// and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later
// version.
//
// This program is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

639

 Integrating PHP and JavaScript 39

// PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free
// Software Foundation, Inc., 59 Temple Place, Suite 330,
// Boston, MA 02111-1307 USA
//
// Originally published and documented at www.webreference.com
// see www.webreference.com/dev/menus/intro2.html for changelog

if(v){a=new Array(22);}

function getFormNum (formName) {
 var formNum =-1;
 for (i=0;i<document.forms.length;i++){
 var tempForm = document.forms[i];
 if (formName == tempForm) {
 formNum = i;
 break;
 }
 }
 return formNum;
}

function jmp(form, elt) {
// The first parameter is a reference to the form.
 if (form != null) {
 with (form.elements[elt]) {
 if (0 <= selectedIndex)
 var location = options[selectedIndex].value;
 }
 }
}

var catsIndex = -1;
var itemsIndex;

if (v) { // ns 2 fix
function newCat(){
 catsIndex++;
 a[catsIndex] = new Array();
 itemsIndex = 0;
}

// Andrew chose to name this function “O”, presumably standing
// for “Option”. It’s not a zero, here or in the array below!
function O(txt,url) {
 a[catsIndex][itemsIndex]=new myOptions(txt,url);

640

 Part V Connections

 itemsIndex++;
}

function myOptions(text,value){
 this.text = text;
 this.value = value;
}

// fill array
<?php
mysql_connect(“localhost”, “db_user”);
mysql_select_db(“auto_db”);
// Get the makes
$i = 0;
$make_query = “SELECT DISTINCT make FROM cars”;
$make_result = mysql_query($make_query);
while ($make_row = mysql_fetch_array($make_result)) {

 $make[$i] = $make_row[0];
 // Now fill the array with models for each make
 echo “newCat();\n”;
 $model_query = “SELECT model
 FROM cars
 WHERE make = ‘$make[$i]‘
 ORDER BY model”;
 $model_result = mysql_query($model_query);
 while(list($model) = mysql_fetch_array($model_result)) {
 echo “O(\“$model\“, \“/$model.php\“)\n”;
 }
 echo “\n”;
 $i++;
}
?>
} // close if (v)

function relate(formName,elementNum,j) {
if(v){
var formNum = getFormNum(formName);
 if (formNum>=0) {
 formNum++; // reference next form, assume it follows in HTML
 with (document.forms[formNum].elements[elementNum]) {
 for(i=options.length-1;i>0;i--) options[i] = null;
 // null out in reverse order (bug workarnd)
 for(i=0;i<a[j].length;i++){
 options[i] = new Option(a[j][i].text,a[j][i].value);
 }
 options[0].selected = true;
 }
 }
} else {

641

 Integrating PHP and JavaScript 39

 jmp(formName,elementNum);
}
}

// BACK BUTTON FIX for ie4+- or
// MEMORY-CACHE-STORING-ONLY-INDEX-AND-NOT-CONTENT
// see www.webreference.com for full comments
function IEsetup(){
 if(!document.all) return;
 IE5 = navigator.appVersion.indexOf(“5.”)!=-1;
 if(!IE5) {
 for (i=0;i<document.forms.length;i++) {
 document.forms[i].reset();
 }
 }
}

window.onload = IEsetup;

//-->
</SCRIPT>
</HEAD>
<BODY BGCOLOR=”#ffffff”>

<CENTER>
<TABLE BGCOLOR=”#DDCCFF” BORDER=”0” CELLPADDING=”8”
CELLSPACING=”0”>
<TR VALIGN=”TOP”>
<TD>Choose a make:

<FORM NAME=”f1” METHOD=”POST” ACTION=”redirect.php”
onSubmit=”return false;”>
<SELECT NAME=”m1” ID=”m1” CLASS=”saveHistory”
onChange=”relate(this.form,0,this.selectedIndex)“>
<?php
while (list($key, $val) = each($make)) {
 echo “<OPTION VALUE=\“/{$val}.php\“>{$val}</OPTION>\n”;
}
?>
</SELECT>
<INPUT TYPE=SUBMIT VALUE=”Go” onClick=”jmp(this.form,0);”>
</FORM>
</TD>

<TD BGCOLOR=”#FFFFFF” VALIGN=MIDDLE>---></TD>

<TD>Choose a model:

<FORM NAME=”f2” METHOD=”POST” ACTION=”redirect.php”
onSubmit=”return false;”>
<SELECT NAME=”m2” ID=”m2” CLASS=”saveHistory”
onChange=”jmp(this.form,0)“>

642

 Part V Connections

// These are placeholder values for the first time the page is
// loaded. They will not change when the form values change.
// If you delete them, the forms will still work, but the
// second select menu would come up empty until changed.
// These values could be generated dynamically, but we wanted
// to show them in place.
<OPTION VALUE=”/A4.php”>A4</OPTION>
<OPTION VALUE=”/A6.php”>A6</OPTION>
<OPTION VALUE=”/A8.php”>A8</OPTION>
<OPTION VALUE=”/Quattro”>Quattro</OPTION>
</SELECT>
<INPUT TYPE=SUBMIT VALUE=”Go” onClick=”jmp(this.form,0);”>
<INPUT TYPE=”hidden” NAME=”baseurl” VALUE=”http://localhost”>
</FORM>
</TD>
</TR>
</TABLE></CENTER>

</BODY>
</HTML>

If you were to add to or change any of the data in the database, the JavaScript would change

automatically. Dynamic integration of new data makes this a very powerful tool and keeps page

maintenance to a minimum.

Passing data back to PHP from JavaScript
Finally, we close the data loop by passing form values back to PHP with JavaScript. Listings 39-5, 39-6,

and 39-7 use JavaScript to force at least one check box to be checked at all times. In addition, it passes

an array to a PHP script. We’ve chosen to use frames here to maximize the speed of the changes, and we

wrote all values out by hand for clarity, rather than assembling them dynamically from a data source.

LISTING 39-5

Frameset (sandwich_frames.html)

<HTML>
<HEAD>
<FRAMESET ROWS=”50%, 50%“ FRAMEBORDER=”no” BORDER=0>
<FRAME SRC=”sandwichorder.html” NAME=”main” SCROLLING=”auto”>
<FRAME SRC=”results.php” NAME=”results” SCROLLING=”auto”>
</FRAMESET>
</HEAD>
<BODY></BODY>
</HTML>

643

 Integrating PHP and JavaScript 39

LISTING 39-6

Form page (sandwichorder.html)

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
<!--

function deselectAllOthers(boxVals) {
 for (var x = 1; x < boxVals.length; x++) {
 boxVals[x].checked=false;
 }
}

function confirmOne(boxVals) {
 var count = 0;
 for (var x = 1; x < boxVals.length; x++) {
 if (boxVals[x].checked == false) {
 count++;
 }
 }
 if (count == (boxVals.length--1)) {
 boxVals[0].checked = true;
 } else {
 boxVals[0].checked = false;
 }
}

function toArray(boxVals) {
 for (var x = 0; x < boxVals.length; x++) {
 var valArray = boxVals[x].name+”[]“;
 boxVals[x].name = valArray;
 }
}

// -->
</script>
</HEAD>

<BODY BGCOLOR=#FCFCF0 onLoad=”document.selector.submit();”>

<TABLE CELLPADDING=20>
<TR>
<TD VALIGN=”top”>
Order a sandwich with...

<FORM NAME=”selector” TARGET=”results” METHOD=”post”
ACTION=”results.php”>
Fillings (check one or more)

<INPUT TYPE=”checkbox” name=”filling” value=”everything”

644

 Part V Connections

checked onClick=”deselectAllOthers(document.selector.filling);
confirmOne(document.selector.filling);
toArray(document.selector.filling); submit();”> Everything

<INPUT TYPE=”checkbox” name=”filling” value=”turkey”
onClick=”confirmOne(document.selector.filling);
toArray(document.selector.filling); submit();”> Turkey

<INPUT TYPE=”checkbox” name=”filling” value=”roastbeef”
onClick=”confirmOne(document.selector.filling);
toArray(document.selector.filling); submit();”> Roast beef

<INPUT TYPE=”checkbox” name=”filling” value=”pastrami”
onClick=”confirmOne(document.selector.filling);
toArray(document.selector.filling); submit();”> Pastrami

<INPUT TYPE=”checkbox” name=”filling” value=”eggplant”
onClick=”confirmOne(document.selector.filling);
toArray(document.selector.filling); submit();”> Eggplant

</TD>
<TD VALIGN=”top”>

Cheese

<SELECT NAME=”cheese” onChange=”submit();”>
<OPTION VALUE=”none”>None</OPTION>
<OPTION VALUE=”cheddar”>Cheddar</OPTION>
<OPTION VALUE=”swiss”>Swiss</OPTION>
<OPTION VALUE=”camembert”>Camembert</OPTION>
<OPTION VALUE=”bleu”>Blue</OPTION>
<OPTION VALUE=”cottage”>Cottage</OPTION>
</SELECT>

</TD>
<TD VALIGN=”top”>

Bread

<SELECT NAME=”bread” onChange=”submit();”>
<OPTION VALUE=”white”>White</OPTION>
<OPTION VALUE=”wheat”>Wheat</OPTION>
<OPTION VALUE=”rye”>Rye</OPTION>
<OPTION VALUE=”kaiser”>Kaiser roll</OPTION>
<OPTION VALUE=”onion”>Onion roll</OPTION>
<OPTION VALUE=”dutch”>Dutch crunch</OPTION>
</SELECT>
</FORM>

</TD>
</TR></TABLE>
</BODY>
</HTML>

645

 Integrating PHP and JavaScript 39

LISTING 39-7

Results listing (results.php)

<HTML>
<HEAD></HEAD>

<BODY BGCOLOR=#666680 TEXT=#ffffff>
<TABLE CELLPADDING=30><TR><TD>
Da Results

<?php
$filling = $_POST[‘filling’];
$cheese = $_POST[‘cheese’];
$bread = $_POST[‘bread’];

if ($filling) {
 if (is_array($filling)) {
 reset($filling);
 while (list($key, $value) = each($filling)) {
 echo(“$value
\n”);
 }
 } else {
 echo($filling);
 }
}
?>

</TD>
<TD VALIGN=top>

Cheese

<?php echo($cheese); ?>

</TD>
<TD VALIGN=top>

Bread

<?php echo($bread); ?>
</TD></TR>
</TABLE>
</BODY>
</HTML>

This form admittedly doesn’t actually do very much yet — but the point is that it would obviate one

or two trips from client to server and back. It also demonstrates another of the interesting effects

PHP developers can get by experimenting with JavaScript.

646

 Part V Connections

Summary
JavaScript is a client-side scripting language that is highly efficient at many tasks that do not require

server-side processing. Not everyone will want to use JavaScript, which has longstanding usability

and security issues, but for those who do, the combination of client-side and server-side program-

ming languages can provide an attractive variety of functionalities.

PHP and JavaScript have different object notations. JavaScript uses the so-called dot notation,

whereas PHP uses the arrow or C++ style notation. JavaScript is thoroughly object-oriented, whereas

PHP treats objects as an optional feature. The good news is that you’ll never confuse a JavaScript

object for a PHP object, or vice versa. The bad news is that you cannot access the same object from

both languages.

It’s often possible to implement a feature in both a client-side and a server-side way. Users with

JavaScript-enabled browsers can enjoy greater speed and convenience, whereas those without can

still get the functionality. This makes it possible to consider using JavaScript without its greatest

drawback, which is unpredictability leading to alienation of segments of the user base.

Perhaps the greatest service PHP can perform for JavaScript is to enable database connectivity —

resulting in what we might call Dynamic JavaScript. JavaScript, being purely a client-side technology,

cannot query a server-side database for variable data with which to dynamically generate content.

Without a server-side helper like PHP, JavaScripts must be updated by hand whenever variable data

is changed. PHP’s capability to pass in up-to-date variables from a data store can make it consider-

ably less labor-intensive to maintain JavaScript-enabled forms and functions.

647

X
ML is one of the hottest buzzwords in the software business today;

but what does it mean for Joe or Jane Average PHP Developer?

Well, it could very well be the necessary precondition for a better

Internet — one that is faster to develop, more interactive, less junky, and

more accessible to a larger audience. With PHP, you’re already in an excel-

lent position to smoothly integrate XML into your web development arse-

nal as the technology matures.

What Is XML?
XML stands for Extensible Markup Language. XML is a form of SGML, the

Standard Generalized Markup Language, but you don’t need to know any-

thing about SGML to use XML. It defines syntax for structured documents

that both humans and machines can read.

Our explanation of XML will necessarily be extremely brief

(because this is a book about PHP rather than XML). For those

who want to learn more, we highly recommend Elliotte Rusty Harold’s XML

1.1 Bible, Third Edition (Wiley, 2004). Although this book is neither short nor

a specific guide to programming XML-based applications, it will give you a

firm conceptual grasp of XML that should set you up nicely for any particular

XML-based task.

Perhaps the easiest way to understand XML is to think about all the things

HTML can’t do. HTML is also a markup language, but HTML documents

are anything but structured. HTML tags (technically known as elements)

and attributes are just simple identification markers for the browser. For

instance, a pair of matched <H1> and </H1> tags designates a top-level

heading. Browsers interpret this to mean you want heading text to be

NOTENOTE

Integrating PHP and XML

IN THIS CHAPTER

What is XML?

Working with XML

Documents and DTDs

DOM

SAX

648

 Part V Connections

displayed in a really big, bold, possibly italicized font. HTML does not, however, indicate whether

the text between those tags is the title of the page, the name of the author, an invitation to enter the

site, a pertinent quotation, a promise of special sale prices, or what. It’s just some text that happens

to be big.

One implication of HTML’s lack of structure is that search engines have little built-in guidance about

what’s important on each page of your site or what each chunk of text means in relation to the oth-

ers. They use various methods they can use to guess, none of which is foolproof. <META> tags are

notoriously prone to abuse — porn sites often load popular but irrelevant search terms into their

headers to fool unwary web surfers — and spiders can end up giving too much weight to portions of

the page that designers might think are unimportant. If XML becomes ubiquitous, it could eliminate

many of these problems and lead the way to much more meaningful web searching.

Let’s say you work for a content web site that has just signed a major distribution deal with a top-

five portal. After you wake up from the champagne hangover, you’re faced with the hard question

of how you plan to deliver the content. HTML isn’t going to do the job: Obviously the portal’s page

design and web-serving technology are different from your site’s, and they won’t be able to just plug

your HTML into theirs. Just to make things really interesting, let’s assume that you and Big Portal

Company use different programming languages, different data stores, different HTML editors, dif-

ferent style sheets — in short, different everything. The necessary bridge is a data-exchange format

that is easy for you to output with your technical setup, clearly understood by both parties with

their existing software, and equally easy for the Big Portal Company to convert to its own purposes

and designs. XML is that data exchange format.

You could, of course, write a script to dump data from your data store into a tab-delimited file. Then

you could write out the details of your custom data format and send it with the tab-delimited file

to Big Portal Company. There one of its engineers would try to figure out your schema and write

code to transform your data into its format. However, anyone who has actually done this knows how

much fiddly work it requires, how many tests need to be performed, and how much time even the

tiniest error can suck up. On the other hand, you could just output your data in XML, and the Big

Portal Company engineer could write a very short script — perhaps just three functions long — to

transform your XML tags to its corresponding XML tags. Then Big Portal Company could treat the

data just like its own data. XML is an attempt to move toward a common language and set of meth-

ods for performing tasks like these, instead of having data exchange involve a series of custom jobs

each time.

We hope these examples begin to answer the “Why XML?” question. If you forget the hype and

focus on what problems XML might begin to solve, you’ll be in a much better position to assess

whether it can help you today or sometime in the future. In the simplest terms, XML is a flexible

data exchange format that is not dependent on any particular software or domain, can be parsed

easily by both machines and humans, and allows content providers to include information about the

structure of the data along with the data itself.

The next question about XML is typically, “What does XML look like anyway?” Actually, XML looks

a lot like HTML. A simple XML file, such as the one shown in Listing 40-1, is easy for HTML users

to understand.

649

 Integrating PHP and XML 40

LISTING 40-1

A simple XML file

<?xml version=”1.0”?>
<book>
 <publisher>IDG Books</publisher>
 <title>PHP5 Bible</title>
 <chapter title=”PHP and XML”>
 <section title=”What is XML?”>
 <paragraph>
If you know HTML, you’re most of the way to understanding XML.
 </paragraph>
 <paragraph>
They are both markup languages, but XML is more structured
than HTML.
 </paragraph>
 </section>
 </chapter>
</book>

As you can see, XML has tags and attributes and the hierarchical structure that you’re used to see-

ing in HTML. In XML, each pair of tags (<paragraph></paragraph>) is known as an element.
Actually, this is true in HTML, too, but most people strongly prefer the term tag (the construction

that marks an element) over element (the conceptual thing that is being marked by a tag) — we’re

not picky. Use whatever term you want as long as you know what you mean. The biggest difference

is that XML tags are self-defined; they carry absolutely no display directive to the web browser or

other viewing application.

XML makes the following minimal demands:

There must be a single root element that encloses all the other elements, similar to ■■

<HTML></HTML> in HTML documents. This is also sometimes called the document element.

Elements must be hierarchical. That is, ■■ <X> <Y> </Y> </X> is allowed, but <X> <Y> </X>

</Y> is not. In the first example, <X> clearly contains all of <Y>. In the second example,

<X> and <Y> overlap. XML does not allow overlapping tags.

All elements must be deliberately closed (in contrast to HTML, which allows some ■■

unclosed elements such as <OPTION> or). This can be accomplished with a closing

tag (<title></title>) as in HTML or by using an XML feature with no HTML equiva-

lent called a self-closing element (<logo href=”graphic.jpg”/>). A self-closing element is

also known as an empty element.

Elements can contain elements, text, and other data. If an element encloses something that ■■

looks like it might be XML — such as <hello> — but isn’t, or if you don’t want something

parsed, it must be escaped.

650

 Part V Connections

The &, <, >, ‘, and “ characters are all restricted in XML. You can use them in your

data by escaping them — using codes such as & and < — or by putting them in

CDATA sections, which we discuss in the section “Documents and DTDs,” later in this chapter.

In addition to these mandatory requirements for what is called well-formedness, the XML standard

also suggests that XML documents should start with an identifying XML declaration. This is a pro-

cessing instruction giving the MIME type and version number, such as <?xml version=”1.0”?>.

This is not required, but some parsers complain if it isn’t present. Also, XML is case-sensitive; some

variants, such as XHTML, require lowercase tags and attributes. Lowercase tags are not absolutely

required by the XML standard itself, but unless you have a good reason to do otherwise you should

use lowercase tags and attributes.

It’s the XML declaration, and other processing instructions with the same format, that

prevents you from using PHP’s short tags with XML. Because the two tag styles are iden-

tical (<? ?>), it would be unclear whether this character sequence set off a PHP block or an XML pro-

cessing instruction.

XML documents are usually text. They can contain binary data, but they aren’t really meant to. If

you want to put binary data in your XML documents, you have to encode it first and decode it later.

Note that including binary data may break some of the platform-independence of pure XML.

Working with XML
By now you may or may not think XML is the greatest thing since cinnamon toast, but in either case

you’re probably asking yourself, “OK, but what can I actually do with it?” This is actually not such an

easy question to answer. In theory, you can do three main things with XML: manipulate and store

data, pass data around between software applications or between organizations, and display XML

pages in a browser or other application using style sheets to apply display directives.

In practice, almost no one actually uses XML as a primary data store when SQL is so ubiquitous. It’s

possible, although still difficult, to manipulate data using XML — for instance, to edit documents

by creating and manipulating XML nodes rather than straight text — but again many users don’t see

a tremendous amount of extra value to this practice. A great deal of progress has been made in dis-

playing XML in the browser, generally in the form of XHTML, in the last couple of years, but there

are still significant issues with this practice. For more information about displaying XML, see the

sidebar “The Promises and Pitfalls of Displaying XML.”

This leaves one main job for XML right now: exchanging data between applications and organiza-

tions. This happens to be the area in which PHP can have the most immediate impact. For instance,

a C program might perform some operations on data from a data store and then output the results in

XML, which PHP could transform into HTML for display in a browser or other application.

This data flow actually makes sense if substantial amounts of computation need to happen behind

the scenes, because you do not want to have a big program both performing complex operations and

outputting HTML if you can possibly help it.

CAUTION CAUTION

NOTENOTE

651

 Integrating PHP and XML 40

PHP can also read in data from a data store and write XML documents itself. This can be helpful

when transferring content from one web site to another, as in syndicating news stories. You can also

use this functionality to help nontechnical users produce well-formed XML documents with a Web

form frontend. At the moment, writing XML might well be the most common category of XML-

related PHP task.

Finally, data is beginning to be manipulated and exchanged across human and nonhuman endpoints

via the Internet itself. This technology is called Web services, and it is the subject of Chapter 41.

Documents and DTDs
As we explained earlier, the requirements for a well-formed XML document are fairly minimal.

However, XML documents have another possible level of “goodness,” which is called validity. A valid

XML document is one that conforms to certain stated rules that together are known as a document
type definition (DTD).

To get in the mood to understand the value of DTDs, imagine that you are the head of an open

source project that exists to make books and other documents freely available in electronic form on

the Internet. You’re very excited about XML from the moment you learn about it because it seems to

meet your need for a data exchange format that can adapt easily to new display technologies as they

evolve. Your group members vote to encode all the project’s books and documents in XML, and soon

the XMLized documents start to pour in.

But when you look at the first couple of submissions, you get a rude shock. One of them is in the

same format as Listing 40-1, earlier in this chapter, but one of them looks like what you see in

Listing 40-2.

LISTING 40-2

A book in XML format

<?xml version=”1.0”?>
<book title=”PHP5 Bible”>
 <publisher name=”Wiley Publishing”/>
 <chapter number=”40”>
 <chapter_title>PHP and XML</chapter_title>
 <p>
 <sentence>If you know HTML, you’re most of the way to
understanding XML.</sentence>
 <sentence>They are both markup languages, but XML is more
structured than HTML.</sentence>
 </p>
 </chapter>
</book>

652

 Part V Connections

The two XML files express similar, but not identical, hierarchical structures using similar but not

identical tags. This is the potential downside of the self-defined markup tags that XML enables:

random variation that makes it difficult to match up similar kinds of information across files. You

quickly realize that you will need to implement some rules about what kinds of information should

be in a book file and what the relationships between these elements will be. You’ve just realized you

need a DTD.

A DTD describes the structure of a class of XML documents. A DTD is a kind of formal constraint,

guaranteeing that all documents of its type will conform to stated structural rules and naming

conventions. A DTD enables you to specify exactly what elements are allowed, how elements are

related, what type each element is, and a name for each element. DTDs also specify what attributes

are required or optional, and their default values. You could of course just write down these rules in

a text file:

The top-level object of this document is a BOOK
A BOOK has one and only one TABLE OF CONTENTS
A BOOK has one and only one TITLE
A BOOK is composed of multiple CHAPTERS
CHAPTERS have one and only one CHAPTERTITLE
All CHAPTERTITLEs are listed in the TABLE OF CONTENTS
etc.

You could give a copy of the list to anyone who might need it. A DTD is just a more concise, well-

defined, generally agreed upon grammar in which to do the same thing. It’s a useful discipline

to apply to XML documents, which can be chaotic because of their entirely self-defined nature.

Furthermore, if you can get a group of people to agree on a DTD, you are well on the way to having

a standard format for all information of a certain type. Many professions and industries, from math-

ematicians to sheet music publishers to human resources departments, are eager to develop such

domain-specific information formats.

In the previous example, which uses XML to store books electronically, your group members may

have to argue for months before hashing out the details of a DTD that perfectly describes the rela-

tionships between the table of contents, chapters, titles, and headings, indexes, appendices, sections,

paragraphs, forwards, epilogues, and so on. You can, of course, iterate on DTDs as frequently as

necessary.

But after your DTD is finalized, you can enjoy another value-add of XML. You can now run any

XML document through a so-called “validating parser,” which will tell you whether it’s meeting all

the requirements of its DTD. So instead of a human editor having to read each electronic book sub-

mission to see whether it has the required elements and attributes in the correct relationship, you

can just throw them all into a parser and let it do the formal checking. This won’t tell you anything

about the quality of the content in the XML document, but it will tell you whether the form meets

your requirements.

In order to work with XML in PHP, you need to learn about the basic structure of DTDs and the

XML documents they describe whether you choose to validate or not.

653

 Integrating PHP and XML 40

The structure of a DTD
A document type definition is a set of rules that defines the structure of a particular group of XML

documents. A DTD can be either a part of the XML document itself (in which case it is an internal
DTD), or it can be located externally, in another file on the same server or at a publicly available URL

anywhere on the Internet (in which case it is an external DTD).

Although a DTD can be internal (part of the XML document itself), making it external

(a separate file) is usually better. DTDs are meant to define a class of documents, so

separating them from the XML saves you from editing every XML document of that class if you need to

change the DTD later on. Because demonstrating on an internal DTD is easier for readers to follow in a

book format, however, we use both as examples in this chapter.

You can start by looking at a simple XML document with an internal DTD in Listing 40-3.

LISTING 40-3

An XML document with internal DTD (recipe.xml)

<?xml version=”1.0”?>

<!DOCTYPE recipe [
<!ELEMENT recipe (ingredients, directions, servings)>
<!ATTLIST recipe name CDATA #REQUIRED>
<!ELEMENT ingredients (#PCDATA)>
<!ELEMENT directions (#PCDATA)>
<!ELEMENT servings (#PCDATA)>
]>

<recipe name =”Beef Burgundy”>
 <ingredients>Beef</ingredients>
 <ingredients>Burgundy</ingredients>
 <directions>
 Add beef to burgundy. Serve.
 </directions>
 <servings>12</servings>
</recipe>

We’ve divided the XML document into three subsections for easier reading. The first section is the

standard one-line XML declaration that should begin every XML document. The second section is

the internal DTD, marked by lines beginning with the <! sequence. The third section is the XML

itself, strictly speaking. For the moment, we are focusing on the second section, the DTD. In our

example, the stuff outside the square brackets is a document type declaration (not to be confused

with document type definition): <!DOCTYPE recipe [...]>. The document type declaration gives

information about the DTD this document is using. Because this is an internal DTD, we simply

give the name of the root element (recipe) and then include the rest of the definition within

square brackets. If you are using an external DTD, however, you use the document type declaration

NOTENOTE

654

 Part V Connections

to state the type and location of the DTD. Two example document type declarations referring to

external DTDs are:

<!DOCTYPE recipe SYSTEM “recipe.dtd”>
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
 “http://www.w3.org/TR/html4/loose.dtd”>

External document type declarations give a root element name, the type (SYSTEM, meaning on the

server, or PUBLIC, meaning a standardized DTD) and the location where it can be found. You are

doubtless familiar with document type declarations because, without exception, you always include

one, like the preceding example, in every single HTML or XHTML document you write — right?

The DTD proper consists of the lines inside the square brackets. These lay out the elements, element

types, and attributes contained in the XML document.

Element■■ : A start and end tag pair — for example, something — or an empty

element (
). Elements have types and sometimes content and attributes.

Element Type■■ : A constraint on the content and attributes of an element. A type can be

used to specify what kind of data it can contain and to specify what attributes it can have.

Attribute■■ : A name and value pair associated with an element, in the form <element attr
ibutename=“attributevalue”>.

In the example DTD in Listing 40-3, we’ve declared that the root element, recipe, contains three

child elements — ingredients, directions, and servings — and has one required attribute,

name. Each child element is of the parsed character data type, and the attribute is of the character

data type.

If you wanted to split up Listing 40-3 into an XML document and an external DTD, it would look

much the same, except that, instead of providing the definition in square brackets, you would give a

reference to the external DTD file. The result would look like Listings 40-4 and 40-5.

LISTING 40-4

An XML document with external DTD (recipe_ext.xml)

<?xml version=”1.0”?>
<!DOCTYPE recipe SYSTEM “recipe.dtd”>

<recipe name =”Beef Burgundy”>
 <ingredients>Beef</ingredients>
 <ingredients>Burgundy</ingredients>
 <directions>
 Add beef to burgundy. Serve.
 </directions>
 <servings>12</servings>
</recipe>

655

 Integrating PHP and XML 40

LISTING 40-5

An external DTD (recipe.dtd)

<!ELEMENT recipe (ingredients, directions, servings)>
<!ATTLIST recipe name CDATA #REQUIRED>
<!ELEMENT ingredients (#PCDATA)>
<!ELEMENT directions (#PCDATA)>
<!ELEMENT servings (#PCDATA)>

Because the XML used in both examples conforms to the internal and external DTDs, both docu-

ments should be declared valid by a validating parser.

You could learn a lot more about the specifics of DTDs and XML documents, but these basics should

enable you to understand most of PHP’s XML functions.

Validating and nonvalidating parsers
XML parsers come in two flavors: validating and nonvalidating. Nonvalidating parsers care only that

an XML document is well formed — that it obeys all the rules for closing tags, quotation marks, and

so on. Validating parsers require well-formed documents as well, but they also check the XML docu-

ment against a DTD. If the XML document doesn’t conform to its DTD, the validating parser outputs

specific error messages explaining what has gone wrong.

PHP’s SAX parser, libxml2, is nonvalidating (as was the expat parser used in PHP4). That doesn’t

mean that you should ignore DTDs. Going through the process of creating a DTD for each of your

document types is a good design practice. It forces you to think out the document structure very

carefully. And if your documents ever need to go through a validating parser, you’re covered. In fact,

many experts recommend that you put all XML documents through a validating parser even if you

never plan to use one again.

Most validating parsers are written in Java and are a pain to set up and use. The easiest way to vali-

date your XML is to use an online validator. A well-known one is the STG validator at www.stg.
brown.edu/service/xmlvalid.

Actually, using Gnome libxml to validate an XML document is possible — but it takes some work.

Examples of validation using C are on the libxml web site (at www.xmlsoft.org).

SAX versus DOM
There are three common APIs for handling XML and XML documents: SimpleXML, the Document
Object Model (DOM), and the Simple API for XML (SAX). All three modules are now included in all

PHP distributions.

656

 Part V Connections

You can use the DOM, SAX, or SimpleXML API to parse and change an XML document. To create or

extend an XML document entirely through the PHP interface (in other words, without writing any

of it by hand), you must use the DOM. Each API has advantages and disadvantages:

SAX■■ : SAX is much more lightweight and easier to learn, but it basically treats XML as

flowthrough string data. So if, for instance, you want to parse a recipe, you could whip up

a SAX parser in PHP, which might enable you to add boldface to the ingredient list. Adding

a completely new element or attribute would be very difficult, however, and even changing

the value of one particular ingredient would be laborious.

SAX is very good for repetitive tasks that can be applied to all elements of a certain type — ■■

for instance, replacing a particular element tag with HTML tags as a step toward transform-

ing XML into HTML for display. The SAX parser passes through a document once from top

to bottom — so it cannot “go back” and do things based on inputs later in the document.

DOM■■ : PHP’s DOM extension reads in an XML file and creates a walkable object tree in

memory. Starting with a document or an element of a document (called nodes in the DOM)

you can get or set the children, parents, and text content of each part of the tree. You can

save DOM objects to containers as well as write them out as text. DOM XML works best

if you have a complete XML document available. If your XML is streaming in very slowly

or you want to treat many different XML snippets as sections of the same document, you

want to use SAX. Because the DOM extension builds a tree in memory, it can be quite the

resource hog with large documents.

SimpleXML■■ : The SimpleXML API makes it easy to quickly open an XML file, convert some

of the elements found there into native PHP types (variables, objects, and so on) and then

operate on those native types as you would normally. The SimpleXML API saves you the

hassle of making a lot of the extra calls that the SAX and DOM APIs require, uses far less

memory than DOM XML, and often is the simplest way of accessing XML data quickly.

There are limitations, though, including some quirky behavior related to attributes and

deeply nested elements.

DOM
The Document Object Model is a complete API for creating, editing, and parsing XML documents.

The DOM is a recommendation of the World Wide Web Consortium. You can read all about it in the

W3’s inimitable prose at www.w3.org/DOM.

Basically the idea is that every XML document can be viewed as a hierarchy of nodes resembling

leaves on a tree. Starting with the root element, of which all other elements can be expressed as

children, any program should be able to build a representation of the structure of a document.

Attributes and character data can also be attached to elements. This tree can be read into memory

from an XML file, manipulated by PHP, and written out to another XML file or stored in a container.

657

 Integrating PHP and XML 40

The parser behind the scenes in PHP’s DOM extension is gnome-libxml2 (aka Gnome libxml2), which

is supposedly less memory-intensive than others. This is available at www.xmlsoft.org.

DOM XML is the only entirely object-oriented API in PHP, so some familiarity with object-oriented

programming helps when using it. However, there are a limited number of objects and methods, so

you do not need any particularly deep knowledge of object-oriented programming to use DOM XML.

Using DOM XML
How you use the DOM will depend on your goals, but these steps are common:

 1. Open a new DOM XML document, or read one into memory.

 2. Manipulate the document by nodes.

 3. Write out the resulting XML into a string or file. This also frees the memory used by the

parser.

The simple example in Listing 40-6 shows some basic DOM XML functions in use. Make sure that

your server has its file permissions set in such a way that the web server can write a file.

LISTING 40-6

A simple DOM XML example (dom_example.php)

<?php
$doc = new DomDocument(“1.0”);
$root = $doc->createElement(“HTML”);
$root = $doc->appendChild($root);
$body = $doc->createElement(“BODY”);
$body = $root->appendChild($body);
$body->setAttribute(“bgcolor”, “#87CEEB”);
$graff = $doc->createElement(“P”);
$graff = $body->appendChild($graff);
$text = $doc->createTextNode(“This is some text.”);
$text = $graff->appendChild($text);
$doc->save(“test_dom.xml”);
?>

DOM functions
Table 40-1 lists the most common DOM functions. You must call one of these functions before you

can use any of the other DOM XML functions!

658

 Part V Connections

TABLE 40-1

DOM XML Top-Level Function Summary
Function Behavior

domxml_open_
mem(string)

Takes a string containing an XML document as an argument. This function parses
the document and creates a Document object.

domxml_open_
file(filename)

Takes a string containing an XML file as an argument. This function parses the file
and creates a Document object.

domxml_
xmltree(string)

Takes a string containing an XML document as an argument. Creates a tree of PHP
objects and returns a DOM object.
Note: The object tree returned by this function is read-only.

domxml_new_
doc(version)

Creates a new, empty XML document in memory. Returns a Document object.

Table 40-2 lists the most important classes of the DOM API.

TABLE 40-2

XML DOM Class Summary
Class Behavior

DomDocument This class encapsulates an XML document. It contains the root element and a
DTD if any.

DomNode Encapsulates a node, aka an element. A node can be the root element or any
element within it. Nodes can contain other nodes, character data, and attributes.

DomAttr This class encapsulates a node attribute. An attribute is a user-defined quality
of the node.

Table 40-3 lists the most important methods of the DomDocument class.

TABLE 40-3

DomDocument Class Summary
Method Behavior

createElement(name) Creates a new element whose tag is the passed string. You
must append this element to another element using DomNode-
>appendChild().

659

 Integrating PHP and XML 40

Method Behavior

createTextNode
(character_data)

Creates a new text node (DomText object). You must append this
node to another node using DomNode->appendChild().

save(filename) Dumps XML from memory to a designated file.

saveXML([node]) Dumps XML from memory to a string. Optional parameter is a
DomNode object.

Table 40-4 lists the most important methods of the DomNode class.

TABLE 40-4

DomNode Class Summary
Method Behavior

appendChild(newnode) Attaches a node to another node.

removeChild(child) Removes the child node.

Table 40-5 lists the most important methods of the DomAttr class.

TABLE 40-5

DomAttr Class Summary
Method Behavior

name() Returns an attribute name.

value() Returns the value of an attribute.

SAX
The Simple API for XML is widely used to parse XML documents. It is an event-based API, which means

that the parser calls designated functions after it recognizes a certain trigger in the event stream.

SAX has an interesting history, especially in contrast to the DOM. The SAX API is not shepherded

by an official standardizing body. Instead, it was hammered out by a group of programmers on the

XML-DEV mailing list, many of whom had already implemented their own XML parsers (in Java

first!) without a standard API. You can learn more at the web sites of SAX team members, such as
www.saxproject.org.

660

 Part V Connections

SAX works from a number of event hooks supplied by you via PHP. As the parser goes through an XML

document, it recognizes pieces of XML such as elements, character data, and external entities. Each of

these is an event. If you have supplied the parser with a function to call for the particular kind of event,

it pauses to call your function after it reaches that event. The parsed data associated with an event is

made available to the called function. After the event-handling function finishes, the SAX parser con-

tinues through the document, calling functions on events, until it reaches the end. This process is uni-

directional from beginning to end of the document — the parser cannot back up or loop.

A very simple example is an event hook that directs PHP to recognize the XML element <para-
graph></paragraph> and substitute the HTML tags <p></p> around the character data. If you

wrote this event hook, you could not specify a particular paragraph — instead, the function is called

for every instance of this event.

The parser behind the scenes in the PHP SAX extension is libxml2, which you can read about on

its project site at www.xmlsoft.org.

Prior to version 5, PHP used James Clark’s expat, a widely used XML parser toolkit. More informa-

tion about expat can be found on Clark’s web site at www.jclark.com/xml. If you compile with

libxml2, you should be able to use all your PHP4 SAX code in PHP6 without problems.

Unfortunately, the term parser can refer either to a software library such as libxml2, or

to a block of XML-handling functions in PHP. Verbs such as create and call indicate the

latter, more specific meaning. Any PHP XML function that uses the term parser also refers to the latter

meaning.

Using SAX
How you use the SAX will depend on your goals, but these steps are common:

 1. Determine what kinds of events you want to handle.

 2. Write handler functions for each event. You almost certainly want to write a character data

handler, plus start element and end element handlers.

 3. Create a parser by using xml_parser_create() and then call it by using xml_parse().

 4. Free the memory used up by the parser by using xml_parser_free().

The simple example in Listing 40-7 shows all the basic XML functions in use (see recipe.xml from

earlier in the chapter for the XML file used in this example).

LISTING 40-7

A simple XML parser (simpleparser.php)

<?php
$file = “recipe.xml”;

// Call this at the beginning of every element

CAUTION CAUTION

661

 Integrating PHP and XML 40

function startElement($parser, $name, $attrs) {
 print “$name => “;
}

// Call this at the end of every element
function endElement($parser, $name) {
 print “\n”;
}

// Call this whenever there is character data
function characterData($parser, $value) {
 print “$value
”;
}

// Define the parser
$simpleparser = xml_parser_create();
xml_set_element_handler($simpleparser, “startElement”,
“endElement”);
xml_set_character_data_handler($simpleparser, “characterData”);

// Open the XML file for reading
if (!($fp = fopen($file, “r”))) {
 die(“could not open XML input”);
}

// Parse it
while ($data = fread($fp, filesize($file))) {
if (!xml_parse($simpleparser, $data, feof($fp))) {
 die(xml_error_string(xml_get_error_code($simpleparser)));
 }
}

// Free memory
xml_parser_free($simpleparser);
?>

SAX options
The XML parser in the SAX API has two configurable options: one for case folding and the other for

target encoding.

Case folding is the residue of a series of past decisions and may not be relevant now that XML has

been definitely declared case-sensitive. Early versions of SGML and HTML were not case-sensitive

and, therefore, employed case folding (making all characters uppercase or lowercase during pars-

ing) as a means of getting a uniform result to compare. This is how your browser knew to match up

a <P> tag with a </p> tag. Case folding fell out of favor due to problems with internationalization,

so after much debate XML was declared case-sensitive. When case folding is enabled, node names

662

 Part V Connections

passed to event handlers are turned into all uppercase characters. A node named mynode would

be received as MYNODE. When case folding is disabled, a <paragraph> tag will not match a </
PARAGRAPH> closing tag.

Case folding is enabled by default, which violates the XML 1.0 specification. Unless you

disable it by using xml_parser_set_option() as explained in a moment, your event

handlers receive tags in uppercase letters.

Event handlers receive text data from the XML parser in one of three encodings: ISO-8859-1,

US-ASCII, or UTF-8. The default is ISO-8859-1. The encoding of text passed to event handlers is

known as the target encoding. This is, by default, the same encoding as in the source document,

which is known as the source encoding. You can change the target encoding if you need to process the

text in an encoding other than the encoding it was stored in.

PHP and Internationalization

Computer programs store letters as integers, which they convert back to letters according to encodings. Early
programs used English, which conveniently needs only 1 byte (actually only 7 bits) to represent all the

common letters and symbols. This encoding standard was promulgated in 1968 as ASCII (American Standard
Code for Information Interchange).

However, programmers soon found that English has an unusually small number of characters, and thus the only
languages that can be expressed with any completeness in ASCII are Hawaiian, Kiswahili, Latin, and American
English. Ever since then, programmers concerned with internationalization have tried to promote encoding
standards that promise to assign a unique integer to every one of the letters of every one of the world’s alpha-
betical languages. The result of this effort is referred to as Unicode.

The three encodings supported by PHP’s XML extension are ISO-8859-1, US-ASCII, and UTF-8. US-ASCII is
the simplest of these, a slight renaming of the original 7-bit ASCII set. ISO-8859-1 is also known as the Latin1,
Western, or Western European encoding. It can represent almost all western European languages adequately.
UTF-8 allows the use of up to 4 bytes to represent as many of the world’s languages as possible. If your XML
document is written in Han-gul or Zulu, you have no choice but to use UTF-8.

Encoding options are retrieved and set with the functions xml_parser_get_option() and xml_
parser_set_option(). Case folding is controlled by using the constant XML_OPTION_CASE_
FOLDING, and target encoding by using the constant XML_OPTION_TARGET_ENCODING.

In the following example, we create an XML parser that reads in data as ASCII, turns off case fold-

ing, and spits out the output as UTF-8.

$new_parser = xml_parser_create(‘US-ASCII’);
$case_folding = xml_parser_get_option(XML_OPTION_CASE_FOLDING);
echo $case_folding;

NOTENOTE

663

 Integrating PHP and XML 40

$change_folding = xml_parser_set_option($new_parser, XML_OPTION_CASE_
FOLDING,0);

$target_encoding = xml_parser_get_option(XML_TARGET_ENCODING);
echo $target_encoding;
$change_encoding = xml_parser_set_option($new_parser, XML_OPTION_
TARGET_ENCODING, ‘UTF-8’);

SAX functions
Table 40-6 lists the most important SAX functions, with descriptions of what they do.

TABLE 40-6

XML SAX Function Summary
Function Behavior

xml_parser_
create([encoding])

This function creates a new XML parser instance. You may have several distinct
parsers at any time. The return value is an XML parser or false on failure.
Takes one optional argument, a character-encoding identifier (such as UTF-8). If
no encoding is supplied, ISO-8859-1 is assumed.

xml_parser_
free(parser)

Frees the memory associated with a parser created by xml_parser_
create().

xml_parse(parser,
data[, final])

This function starts the XML parser. Its arguments are a parser created by
using xml_parser_create(), a string containing XML, and an optional
finality flag. The finality flag indicates that this is the last piece of data
handled by this parser.

xml_get_error_
code(parser)

If the parser has encountered a problem, its parse fails. Call this function to
find out the error code.

xml_error_
string(errorcode)

Given an error code returned by xml_get_error_code(), it returns a
string containing a description of the error suitable for logging.

xml_set_element_
handler(parser,
start_element_
handler, end_
element_handler)

This function actually sets two handlers, which are simply functions. The first
is a start-of-element handler, which has access to the name of the element
and an associative array of its elements. The second is an end-of-element
handler, at which time the element is fully parsed.

xml_set_character_
data_handler(parser,
cd_handler)

Sets the handler function to call whenever character data is encountered. The
handler function takes a string containing the character data as an argument.

xml_set_default_
handler(parser,
handler)

Sets the default handler. If no handler is specified for an event, the default
handler is called if it is specified.
Takes as arguments the parser and a string containing unhandled data, such
as a notation declaration or an external entity reference.

664

 Part V Connections

SimpleXML API
The SimpleXML API was new in PHP5. Characterized as an object-mapping API, SimpleXML dis-

penses with web standards and absolute flexibility in favor of simplicity and modest memory usage.

If you just need to read some data from an XML document and write some other data back in, the

SimpleXML likely will require the fewest lines of code of all possible approaches to the problem.

Here’s the idea behind SimpleXML: As in the DOM approach, SimpleXML parses an XML docu-

ment and holds the whole thing in memory. However, rather than hold the document as a DOM

object (which you must further manipulate before you can use its contents), its elements are stored

as native PHP variables and so are immediately usable. Because many DOM tasks do not actually

require you to traverse all the children and parents of a document, but rather perform repetitive

tasks on well-defined nodes, SimpleXML ultimately constitutes a PHP-specific compromise between

the SAX and DOM approaches.

Using SimpleXML
When using SimpleXML, you read a passage of XML text — either a string or a file — into a variable

with the function simplexml_load_string() or simplexml_load_file(). You then have a

local object you can refer to directly. Listing 40-8 shows how the SimpleXML API can be used to get

variable values out of an XML file with just a few lines of code.

Listing 40-8 demonstrates a typical use of SimpleXML.

LISTING 40-8

SimpleXML sample (simplexml.php)

<?php

$recipe = simplexml_load_file(“recipe.xml”);

$ingredients = $recipe->ingredients;
$directions = $recipe->directions;
$servings = $recipe->servings;

foreach ($ingredients as $ingredient)
{
print “<P>Ingredient: $ingredient”;
}

print “<P>Directions: $directions”;
print “<P>Serves $servings”;

?>

665

 Integrating PHP and XML 40

SimpleXML functions
Table 40-7 lists the most important SimpleXML functions, with descriptions of what they do.

TABLE 40-7

SimpleXML Function Summary

simplexml_load_
file(file)

Import and parse a file.

simplexml_load_
string(string)

Import and parse a string.

simplexml_import_
dom(DomDocument)

This function allows you to convert a DomDocument object into a
SimpleXML object, and then treat it just like an imported XML file or string.

A Sample XML Application
This series of scripts will write out XML to a file by using data from an HTML form and then will

allow you to edit the values in that file.

Listing 40-9 is an HTML form that can be used by nontechnical users to define forms. (They don’t

care that this data will be formatted and stored in XML.) Listing 40-10 is a script to write out the

XML file.

LISTING 40-9

A form to collect values for an XML file (pollform.php)

<HTML>
<HEAD>
<TITLE>Make-a-poll</TITLE>
</HEAD>

<BODY>
<CENTER><H3>Make-a-poll</H3></CENTER>

<P>Use this form to define a poll:</P>
<FORM METHOD=”post” ACTION=”writepoll.php”>

<P>Give this poll a short name, like Color Poll</
FONT>.

<INPUT TYPE=TEXT NAME=”PollName” SIZE=30>

666

 Part V Connections

</P>

<P>This poll should begin on this date (MM/DD/YYYY):
<INPUT TYPE=TEXT Name=”Poll_Startdate” SIZE=10>
</P>

<P>This poll should end on this date (MM/DD/YYYY):
<INPUT TYPE=TEXT NAME=”Poll_Enddate” SIZE=10>
</P>

<P>This is the poll question (e.g. Why did the chicken
cross the road?):
<INPUT TYPE=TEXT NAME=”Poll_Question”, size=100>
</P>

<P>These are the potential answer choices you want to offer (<FONT
COLOR=”darkgreen”>e.g. Yes, No, Say what?). Fill in only as many as
you need. Keep in mind that brevity is the soul of good poll-making.

<INPUT TYPE=TEXT NAME=”Raw_Poll_Option[]“ SIZE=25>

<INPUT TYPE=TEXT NAME=”Raw_Poll_Option[]“ SIZE=25>

<INPUT TYPE=TEXT NAME=”Raw_Poll_Option[]“ SIZE=25>

<INPUT TYPE=TEXT NAME=”Raw_Poll_Option[]“ SIZE=25>

<INPUT TYPE=TEXT NAME=”Raw_Poll_Option[]“ SIZE=25>

<INPUT TYPE=TEXT NAME=”Raw_Poll_Option[]“ SIZE=25>

</P>

<INPUT TYPE=”submit” NAME=”Submit” VALUE=”Add a poll”>
</FORM>

</BODY>
</HTML>

LISTING 40-10

A script to write out an XML file (writepoll.php)

<html>
<head>
<title>Write an XML file</title>
</head>

<body>
<?php

$pollfile = “poll.xml”;

667

 Integrating PHP and XML 40

// Reading in the xml file as a string
$fd = fopen($pollfile, “r”) or die(“Can’t open file.”);
$fstr = fread($fd, filesize($pollfile)) or die(“Can’t read file, check
permissions.”);
fclose($fd);

// Format response sets.
$PollName = str_replace(“\‘“, “”, $_POST[“PollName”]);
$PollName = str_replace(“ “, “_“, $_POST[“PollName”]);

$RespSet = “”;

for ($r=0; $r<=5; $r++) {
 $currentRawPollOption = $_POST[“Raw_Poll_Option”][$r];
 if (!empty($_POST[“Raw_Poll_Option”][$r])) {
 $Poll_Option[$r] = “$_POST[PollName]-“.str_replace(“‘“, “”,
$currentRawPollOption);
 $Poll_Option[$r] = “$_POST[PollName]-“.str_replace(“ “, “_“,
$currentRawPollOption);
 $currentPollOption = $Poll_Option[$r];

 $RespSet .= “\t<response id=\“$currentPollOption\“>$currentRawPollOption</
response>\n”;
 }

}

//Add new poll data
$separator = “</Poll>”;
$divide = explode($separator, $fstr);
$glue =
“\t<Poll name=\“$_POST[PollName]\“/>
</PollList>

<Poll id=\“$_POST[PollName]\“>
\t<StartDate>$_POST[Poll_Startdate]</StartDate>
\t<EndDate>$_POST[Poll_Enddate]</EndDate>
\t<name>$_POST[PollName]</name>
\t<text>$_POST[Poll_Question]</text>
\t<display type=\“Bar_Graph\“/>
\t<responseSet resource=\“$PollName-responseSet\“/>
</Poll>

<responseSet id=\“$PollName-responseSet\“>
$RespSet</responseSet>
“;

668

 Part V Connections

$newxml = implode($glue, $divide);

//Write to file
$fd = fopen($pollfile, “w”) or die(“Can’t open file for writing; check file
permissions”);
$writestr = fwrite($fd, $newxml);

//Message
echo “Wrote $writestr chars to $pollfile.”;
?>

</body>
</html>

Listing 40-11 shows the XML file where our polls are stored, with one poll already defined for you.

If you add a new poll, it will be appended near the top of this file, and its name will be added to the

PollList.

LISTING 40-11

An XML file (poll.xml)

<?xml version=”1.0”?>
<PollDefs>
<Poll id=”Best_Text_Editor”>
 <StartDate>01/01/2003</StartDate>
 <EndDate>01/31/2004</EndDate>
 <question>Which is the best programmer’s editor?</question>
 <display type=”Bar)Graph”/>
 <responseSet>
 <response id=”Best_Text_Editor-emacs”>emacs</response>
 <response id=”Best_Text_Editor-vim”>vim</response>
 <response id=”Best_Text_Editor-notepad”>notepad</response>
 <response id=”Best_Text_Editor-kate”>kate</response>
 <response resource=”Best_Text_Editor-BBEdit”>BBEdit</response>
 </responseSet>
</Poll>

<Poll id=”Best_Pointer_Device”>
 <StartDate>02/01/2004</StartDate>
 <EndDate>02/29/2004</EndDate>
 <question>Which is the best pointer device?</question>
 <display type=”Bar_Graph”/>
 <responseSet>
 <response id=”Best_Pointer-mouse”>Mouse</response>
 <response id=”Best_Pointer-trackball”>Trackball</response>
 <response id=”Best_Pointer-touchpad”>Touchpad</response>

669

 Integrating PHP and XML 40

 <response id=”Best_Pointer-trackpoint”>TrackPoint</response>
 <response id=”Best_Pointer-pen”>Pen</response>
 <response id=”Best_Pointer-stylus”>Stylus</response>
 </responseSet>
</Poll>

</PollDefs>

Listing 40-12 shows a script that will allow you to edit the XML file in Listing 40-10 using DOM

XML.

LISTING 40-12

XML editor (dom_polledit.php)

<html>
<head>
<title>Poll XML editor</title>
</head>

<body>
<?php

$doc = new DomDocument();
$pollfile = “poll.xml”;

// Handle form submission
if ($_POST[‘stage’] == 1) {
 // Reading in the XML file as a DOM object
 if (!$doc->load($pollfile)) {
 echo “Cannot read XML file.”;
 exit;
 }

 // Once a poll is created, the user will only be able to
 // change the StartDate, EndDate, Question, and response values.

 // Format the data
 $pollname = $_POST[‘poll_name’];
 $startdate = $_POST[‘Poll_Startdate’];
 $enddate = $_POST[‘Poll_Enddate’];
 $question = $_POST[‘Poll_Question’];

 // Replace the values as text nodes
 $poll_list = $doc->getElementsByTagname(“Poll”);
 foreach ($poll_list as $poll_obj) {

670

 Part V Connections

 // Figure out which poll we’re editing, then work on its children
 $pollname_value = $poll_obj->getAttribute(“id”);
 if ($pollname_value == $pollname) {
 $children = $poll_obj->childNodes;
 foreach ($children as $child_obj) {
 $node_name = $child_obj->nodeName;
 $value = $child_obj->nodeValue;
 if ($node_name == “StartDate”) {
 if ($value == $startdate) {
 // Do nothing
 } else {
 $sd_textnode = $child_obj->firstChild;
 $new_startdate = $doc->createTextNode($startdate);
 $child_obj->replaceChild($new_startdate, $sd_textnode);
 }
 }
 if ($node_name == “EndDate”) {
 if ($value == $enddate) {
 // Do nothing
 } else {
 $ed_textnode = $child_obj->firstChild;
 $new_enddate = $doc->createTextNode($enddate);
 $child_obj->replaceChild($new_enddate, $ed_textnode);
 }
 }
 if ($node_name == “question”) {
 if ($value == $enddate) {
 // Do nothing
 } else {
 $q_textnode = $child_obj->firstChild;
 $new_question = $doc->createTextNode($question);
 $child_obj->replaceChild($new_question, $q_textnode);
 }
 }
 if ($node_name == “responseSet”) {
 $old_responses = $child_obj->childNodes;
 $i=0;
 foreach ($old_responses as $delete_responses) {
 if ($delete_responses->nodeName == ‘response’) {
 $r_textnode = $delete_responses->firstChild;
 $new_response = $doc->createTextNode($_POST[‘response’][$i]);
 $delete_responses->replaceChild($new_response, $r_textnode);
 $i++;
 }
 }
 }
 }
 }

671

 Integrating PHP and XML 40

 }

 // Write out the file
 $doc->save($pollfile);

}

// This stuff happens every time, whether a submission
// has occurred or not.

// Reading in the XML file as a DOM object
// Must read fresh every time
if (!$doc->load($pollfile)) {
 echo “Cannot read XML file.”;
 exit;
}

// Get a list of the polls in this XML document
// and then pull out the start date, end date,
// poll question, and possible responses.
$poll_list = $doc->getElementsByTagname(‘Poll’);
foreach ($poll_list as $poll_obj) {
 $id = $poll_obj->getAttribute(“id”);
 $children = $poll_obj->childNodes;
 foreach ($children as $key=>$child_obj) {
 $node_name = $child_obj->nodeName;
 if ($node_name != “#text” && $node_name != ‘responseSet’) {
 $content_str = $child_obj->nodeValue;
 $poll_array[“$node_name”] = $content_str;
 } elseif ($node_name == ‘responseSet’) {
 // Get the responses
 $responselist = $child_obj->childNodes;
 foreach ($responselist as $responses) {
 $response_name = $responses->nodeName;
 if ($response_name != “#text”) {
 $response_array[] = $responses->nodeValue;
 }
 }
 }
 }

 // Arrange all the data nicely
 $poll_startdate = $poll_array[‘StartDate’];
 $poll_enddate = $poll_array[‘EndDate’];
 $poll_name = $poll_array[‘name’];
 $poll_question = $poll_array[‘question’];
 $poll_question = stripslashes($poll_question);

672

 Part V Connections

 foreach ($response_array as $key=>$val) {
 $resp_str .= “Option: <INPUT TYPE=\“text\“ SIZE=25 NAME=\“response[$key]\“
VALUE=\“$val\“>
\n”;
 }

 // Display form with old values
 $php_self = $_SERVER[‘PHP_SELF’];
$form = <<< EOFORM
<FORM METHOD=”post” ACTION=”$php_self”>
Start Date: <INPUT TYPE=”text” SIZE=10 NAME=”Poll_Startdate” VALUE=”$poll_
startdate”>

End date: <INPUT TYPE=”text” SIZE=10 NAME=”Poll_Enddate” VALUE=”$poll_
enddate”>

Poll question: <INPUT TYPE=”text” SIZE=100 NAME=”Poll_Question” VALUE=”$poll_
question”>

$resp_str
<INPUT TYPE=”hidden” NAME=”poll_name” VALUE=”$id”>
<INPUT TYPE=”hidden” NAME=”stage” VALUE=1>

<INPUT TYPE=”submit” VALUE=”Presto-chango”>
</FORM>

EOFORM;
 echo $form;
 unset($resp_str);
 unset($response_array);
}
?>

</body>
</html>

Gotchas and Troubleshooting
The DOM and SAX parsers will only parse a well-formed XML document. If the parser rejects your

XML, make sure that it is well formed. If it looks good to your eye, run it through a different validat-

ing parser or an online XML checker, such as the one at www.xml.com/xml/pub/tools/ruwf/
check.html.

If you cannot read and write XML documents to disk, check that the web server process has permis-

sion to do so.

If the DOM API returns a fatal function not found error, the DOM XML module may not be installed.

Use the phpinfo() function to check for a domxml entry. If it isn’t there, you will have to recompile

PHP with the DOM XML module (on Unix) or uncomment the php_domxml.dll line in php.ini

(on Windows).

673

 Integrating PHP and XML 40

Summary
XML is an application-independent data exchange format that promises to make web development

faster and easier in the future. XML and HTML are both descended from SGML, accounting for their

close resemblance at first glance. Both have tags (more correctly called elements) and attributes,

although XMLs are self-defined and structured whereas HTMLs are defined by the HTML standard

and contain no information about document structure.

XML has only a few minimal requirements for well-formedness. These include closed elements, no

overlapping elements, escaped special characters, and the presence of a single root element for each

document. XML can also be valid, however, in the sense of conforming to a formal declaration of

its structure in a document type definition or DTD. DTDs can be internal or external to the XML

document and even located on another server. They contain declarations of the types, attributes, and

names of the various elements within the XML file.

For the present, few prefabricated tools are available to help you write, edit, and display XML. You

can use one of the three PHP XML APIs — SAX, DOM, and SimpleXML — to write your own tools.

The APIs have different tradeoffs and uses. SAX is an event-based parser, whereas DOM XML creates

an object tree in memory. SimpleXML is easy to use and requires little code, but it is relatively lim-

ited in its capability. It’s mainly useful for quick reads of simple XML files.

At the moment, PHP with the SAX extension can be used to write out well-formed XML from values

entered into a Web form and to edit XML documents. DOM XML can be used to create complete

XML documents programmatically. The SAX parser is also commonly employed to transform XML

into HTML for less problematic display in current web browsers. Another possible task for PHP’s

XML extensions is to pull data from a data store and write it out as XML for exchange with another

organization.

675

W
eb services are an emerging field of programming that seeks to

apply the benefits of the web to bigger problems than merely

displaying data in a browser. PHP, which has already proven

itself as a core glue component of the web, has the opportunity to grab even

more market share in the Web services arena. As is true of other hot tech-

nologies such as XML, however, a world of hype surrounds Web services.

Here we try to cut through the buzzwords and analyst predictions to look

at what Web services mean to the average PHP developer.

The End of Programming as
We Know It
The title of this section is a bit of a joke — one of us works in the Web ser-

vices field and often hears presentations that assert things such as: “In 10

years, we will have no more need for programmers, because Web services

will eliminate duplication of effort.” Many people have thought that program-

ming was about to die out, and all of them have been wrong so far — but

hope springs eternal in the pundit’s breast. Notching down the hyperbole to

manageable levels, we can say that Web services could make some common

but hard tasks in commercial computer programming a lot easier.

The ugly truth about data movement
Joking aside, Web services do solve some problems — at the moment largely

in the realm of moving data around. Later in this chapter, for example, we

offer code for a client to the Amazon REST service. This code enables you to

Creating and Consuming
Web Services with PHP

IN THIS CHAPTER

The promise of Web services

REST, XML-RPC, SOAP

Issues with Web services

Project: a REST client

Project: a SOAP client and

server

676

 Part V Connections

grab the latest data about a given product or group of products — photos, current prices, availability,

and so on — up to once per second via an automatic process.

If you’re a first-time author who has a small informational site with one link to Amazon, this isn’t

really going to help you much. But there are Amazon Associates who link to thousands or even mil-

lions of products. They did so until recently by horrible hacks involving downloading all those web

pages and using some kind of string or XPATH parsing to pick out the three or four pieces of data

they wanted from each page. Furthermore, each client organization did all this work for itself —

because, among other things, this is a totally unauthorized use of Amazon’s copyrighted material, so

they can hardly expect Amazon to help them. Harvesting data from full HTML pages is tremendously

wasteful and expensive for both Amazon and the Associate — so much so that it’s a good way to get

banned from Amazon altogether. Slamming the door on requests from a particular IP block is almost

the only way to control access to a public web server.

Even if an organization wants to give you large amounts of information in a data feed, the mechanics

right now are not very elegant. We are aware of many large and well-respected data-related businesses

that move data around in text files (or spreadsheets) that are downloaded via some mechanism such

as FTP (or e-mail) and parsed on both ends by custom Perl code (or by hand). Often, there is no way

to send only data that has changed — the feeds are dumped out and processed in a dumb way every

so often, rather than updating only if and when changes occur. Obviously, these are all batch pro-

cesses, which have no possibility of working in real time. XML-based Web services promise to offer

a common language, a common transport mechanism, a common authentication and authorization

method, and potentially common code for organizations to access each other’s data.

If Web services were just about moving data around, the idea would be extremely useful but not at

all sexy. What excites everyone about Web services is the promise that they can help solve the hard-

est problems of distributed computing once and for all.

Brutal simplicity
Think back, if you can, to the bad old days before the web. If you can go back far enough, think

back to the days when the Internet itself was a rarity and networking something limited to high-end

universities (it may help to remember that for a long time one of Apple’s selling points in college

computer labs was AppleTalk).

Back in those dark days, my children, things such as operating systems and programming lan-

guages were major barriers to integration — they were little islands in the sea of incompatibility. If

you were going to write an application, you were specifically writing it for a particular platform and

language — sometimes even for a particular version of a compiler. It was very, very hard to make

one program talk to another program. If you wrote a COBOL program on a VAX, that was where it

was going to stay. With a great deal of effort you could get one program to send something simple,

such as ASCII data, to another — but any little thing could mess up your interapp communication.

If you changed anything on one side, it might mean that you had to change a bunch of stuff on the

other side, too. These programs were said to be tightly coupled.

677

 Creating and Consuming Web Services with PHP 41

This meant a lot of duplication of effort. Porting was technically difficult, and the market was frag-

mented. So a team that wrote an application — say, an accounting program — for Minicomputer

X was not necessarily going to have the resources to do the same for Microcomputer Y. Lots of

teams wrote lots of accounting programs, and all the formats were proprietary. None of them could

exchange data with each other, much less share tasks easily.

Slowly, mankind groped toward a way to make programs talk to each other. The blanket term for

this activity was distributed computing. It took until the mid-1990s for these methods to reach the

common programmer, in the form of standards such as DCOM, CORBA, and Java RMI. These stan-

dards enabled all programs that shared a common architecture to call each other’s methods and

send data back and forth. When you are able to embed a spreadsheet inside a word processor docu-

ment, it’s via the magic of DCOM.

These common object models, however, had three major problems. They were still more or less tied

to particular platforms or programming languages; they were considered difficult to learn, and they

reached general usability at the same moment that the web arrived to tantalize us with the possibil-

ity of Internet-scale loosely coupled, distributed computing based on open standards.

The web is the biggest, most open, most loosely coupled — and most successful — distributed archi-

tecture of all time. With few exceptions, no web server cares which web browser is asking it for a

page, or what operating system that browser is running on, or what chip is running the hardware

on which that operating system lives. The application asking for the page doesn’t even need to be a

browser — it may be a spider from a search engine, it may be an fopen() call from a PHP command-

line script, or it may be a cellular phone. The HTML it sends may not render nicely on every device,

but that has nothing to do with whether Apache or IIS is serving up the page.

Applying the lessons of the web to applications, you come up with something quite a lot like Web

services. The beauty of Web services is its brutal simplicity, which squashes everything down to

a lowest common denominator. A Web services architecture doesn’t care about the benefits of any

particular platform, and it doesn’t care about the pitfalls. Those are your problems. All that matters

to the outside world is that a program can send and receive text messages across HTTP or SMTP and

that these text messages can trigger computational actions.

An archetypal Web service would be something like a Japanese-to-English translation service. It

lives somewhere on the Internet, on some unknown platform, and is written in some unknown pro-

gramming language. You don’t need to know or care about that stuff. All you care about is that your

browser or your mail client knows that you only read English — so every time you get a web page or

an e-mail in Japanese, these applications automatically send their contents to this translation service

and then display the translated results to you. You don’t ever see or care that part of the processing

is happening at some remote location — to you, the end user, it just looks as though your applica-

tion is handling it seamlessly. Instead of your web browser using Babelfish to translate Japanese

to English and your mail client having a little built-in dictionary and your local department store’s

inventory management system using a third-party program that runs only on Solaris — all of them

can just call this translation Web service.

678

 Part V Connections

Web services should also enable much easier integration. Say that you work for a university alumni

office that is still using an alumni database written in COBOL on a VAX. (You may laugh, but Y2K

wouldn’t have been such a big deal if there weren’t so many legacy systems lying around.) It works

perfectly well, and you don’t have budget to replace it — but those VAX terminals are getting old. It

would sure be great if you could query your alumni database via an ordinary web browser — but

there’s no way you’re ever going to be able to squeeze a full web server onto that old VAX, even if

someone wrote one. With Web services, if you can get the VAX to understand just a little bit of XML

and spit out its data as XML, you’re all set. You can exchange instructions and data via XML by using

some other machine that does have a web server, and that other machine can communicate with the

rest of the world. Someday when you are ready to replace that VAX with a newer machine and a dif-

ferent programming language, no one need ever know. As long as the service is reachable at the same

address by using the same method invocations, it doesn’t matter whether it’s a VAX or a PC, whether

the application was written in COBOL or whether it’s just a thin shell of PHP on top of a database.

Integration between businesses particularly benefits the smaller parties involved. Web services are

easy to implement because corporate firewalls already have holes punched through them for HTTP

and SMTP and because they can be implemented by using inexpensive software such as PHP. Say

that you run a small business that makes widgets. You want your widgets distributed by a large

retailer, Humongous Widget Depot. Until recently, for you (and the gazillions of other manufactur-

ers who supply goods to Humongous Widget Depot) to provide real-time inventory information to

the retailer entailed tremendous expense as you bought a large software package such as SAP and

integrated it on a private network. Now, in theory, each small manufacturer can merely expose its

inventory information via a Web service, and Humongous Widget Depot’s humongous IT depart-

ment merely points a Web services client at them.

That, in a nutshell, is the dream and the promise of Web services. We are quite a way from the actu-

ality, but the outlines of a solution are firming up.

REST, XML-RPC, SOAP, .NET
For Web services to work, every application and many servers need to speak a common language.

Everyone agrees that the common language is XML, but there are some philosophical differences

about the implementation details. The three main Web services standards are REST, XML-RPC, and

SOAP. One of the biggest backers of SOAP is Microsoft, which uses that standard heavily in its .NET

services architecture.

REST
REST is an acronym for REpresentational State Transfer. The concept is based on a dissertation by

Roy Fielding, and its main point is that we already have everything we need to implement Web ser-

vices — in HTTP itself. For all intents and purposes, a REST service is just an XML page on the web,

although usually not one that is intended to be read by a human being using a browser.

679

 Creating and Consuming Web Services with PHP 41

REST is particularly valuable for content-focused services. You can build an XML document on the fly,

and your users can access it reliably as a URI. In theory, REST should also be easier for lightly technical

users to deal with. On the other hand, REST doesn’t have built-in support for complex types — because

there’s no shared vocabulary, there’s no particular way to designate an array versus a string.

You can learn more about REST at the RESTWiki:

http://rest.blueoxen.net/cgi-bin/wiki.pl

XML-RPC refers to a spec for making remote procedure calls over HTTP by using XML encoding. An

XML-RPC server takes an input that consists of a simple XML encoding of a method call sent as an

HTTP POST. An example is:

POST /xmlrpc-epi/xmlrpc-php-epi/sample/server.php HTTP/1.0
User-Agent: xmlrpc-epi-php/0.2 (PHP)
Host: localhost:80
Content-Type: text/xml
Content-Length: 191

<?xml version=’1.0’ encoding=’iso-8859-1’ ?>
<methodCall>
<methodName>greeting</methodName>
<params>
 <param>
 <value>
 <string>World</string>
 </value>
 </param>
</params>
</methodCall>

Assume that greeting() is a function that takes a string input and returns a string output consist-

ing of the string “Hello, “ prepended to the input string. It returns a response that is formatted in a

similar way. An example is:

<?xml version=’1.0’ encoding=’iso-8859-1’ ?>
<methodResponse>
<params>
 <param>
 <value>
 <array>
 <data>
 <value>
 <string>Hello, World</string>
 </value>
 </data>
 </array>
 </value>

680

 Part V Connections

 </param>
</params>
</methodCall>

Notice that unlike using REST, you are not simply asking for data back — you are calling a specific

function on another machine using specified types. This particular function happens to simply

return data, but that is entirely arbitrary — any method the server owner is willing to expose as a

Web service is fair game. Also unlike REST, XML-RPC supports all PHP native types, except objects

and resources, and also a few that PHP doesn’t have (structs, date-time, base-64 binary).

XML-RPC can be seen as a compromise between the complexity of SOAP and the simplicity of

REST. It is so similar to SOAP, however, that it may simply be absorbed wholesale into the more

vendor-friendly concept. As you will see, the PHP XML-RPC server can also deliver SOAP responses.

Learn more about XML-RPC at www.xmlrpc.org.

SOAP
SOAP may or may not stand for Simple Object Access Protocol — some members of the committee

dispute this — but so many people have said it now that it’s become true through usage. SOAP is

a proposal of the W3C. SOAP, like XML-RPC, sends messages in XML wrappers with a fairly strict

vocabulary that makes extensive use of namespaces. A very simple SOAP request may look like this:

POST /xmlrpc-epi/xmlrpc-php-epi/sample/server.php HTTP/1.0
User-Agent: xmlrpc-epi-php/0.2 (PHP)
Host: localhost:80
Content-Type: text/xml
Content-Length: 530

<?xml version=’1.0’ encoding=’‘iso-8859-1’ ?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/“
 xmlns:xsi=”http://www.w3.org/1999/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/1999/XMLSchema”>
<SOAP-ENV:Header>
...
</SOAP-ENV:Header>
<SOAP-ENV:Body>
 <greeting>
 <xsd:string>World</xsd:string>
 </greeting>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The response may be something like the following:

<?xml version=’1.0’ encoding=’iso-8859-1’ ?>
<SOAP-ENV:Envelope

681

 Creating and Consuming Web Services with PHP 41

 xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/“
 xmlns:xsi=”http://www.w3.org/1999/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/1999/XMLSchema”>
<SOAP-ENV:Header>
...
</SOAP-ENV:Header>
<SOAP-ENV:Body>
 <greetingResponse>
 <SOAP-ENC:Array SOAP-ENC:arrayType=”xsd:string[1]“>
 <xsd:string>Hello, World</xsd:string>
 </SOAP-ENC:Array>
 </greetingResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP offers you even more data types than XML-RPC. You must, however, specify a lot more, too.

Other than that, the two protocols are very similar. Obviously, SOAP also enjoys greater acceptance

from Big Software.

Learn more about SOAP at www.soapware.org/bdg.

Current Issues with Web Services
By now, you’re probably thinking, “Okay, if Web services are so great, why aren’t we using them

everywhere?” Well, there are still many issues to be worked out. Web services are in their infancy,

and it is likely to be years before we live in a totally Web-serviced world.

Large Footprint
Web services can be rather data-intensive and heavy in terms of wrappings and protocol, even for

simple calls. This drives binary programmers especially crazy, accustomed as they are to apps talk-

ing to each other in compact binary formats. To a large extent, people just need to get over this, but

there are still many situations where data storage, memory, and bandwidth are issues — in cellular

phones, for instance.

Potentially heavy load
So far, there is no standard way to cache the results of RPC calls. Even if 80 percent of your clients

are asking for the exact same response and, therefore, you can’t save resources — every request must

handled de novo.

REST enables caching via all the methods by which HTML can be cached.

682

 Part V Connections

Standards
Before Web services can really take off, applications need to handle their results transparently.

Because the Web services standards are still somewhat in flux, and there are multiple candidates

with competing strengths, this has not yet happened. For smallish web applications, it’s not that

big a deal if some service changes one of its API methods — but for a big app like Lotus Notes, it’s a

major investment of resources to transparently deal with SOAP.

The companies that are leading the way in public Web services — Amazon, Salesforce.com, eBay,

and Google — have so far used a mixture of Web service APIs. Many of them maintain multiple

interfaces for developer convenience; Amazon, for instance, offers all its Web services via both REST

and SOAP. While this is extremely developer-friendly of them, in the long run most organizations

long for a single, stable standard to conform to.

Hide and seek
The ultimate goal of Web services is to have the application transparently find all the resources

it needs. Say that you get an e-mail in Japanese — your mail server or client should be smart

enough to find the translation service it needs, get your document translated, and show the final

result to you.

To accomplish this, we need some kind of directory system and a standard way for servers to

describe themselves. WSDL and UDDI are the technologies that can make this possible. WSDL

(Web Services Description Language) describes a Web service interface, while UDDI (Universal

Description, Discovery, and Integration) is a registry for Web services. Learn more about UDDI and

WSDL, respectively, at http://uddi.xml.org and www.w3.org/TR/wsdl.

We are a long way, however, from automatic discovery and communication by applications. In fact,

many businesses that deploy Web services deliberately do so under a veil — for example, FedEx,

which needed to take down its public SOAP server after it was used for fraud by crackers. Web ser-

vices are growing most quickly in the realm of semiprivate transactions — companies set up Web

services that are only meant to be accessed by authenticated and authorized business partners.

Who pays and how?
Ultimately, the biggest question about public Web services is: Who pays for them, and how? So far

most of the Web services that you can access are things such as weblog entries and simple currency

calculators — services for which you normally would not expect to pay. Big Software’s answer is to

create huge private networks of Web services, similar to those of Hailstorm or the Liberty Alliance.

This has serious implications for privacy and open architecture.

Unless and until Web services find a way to pay for themselves, they are likely to continue to be

deployed mostly inside corporate firewalls and in nonprofit situations.

683

 Creating and Consuming Web Services with PHP 41

Project: A REST Client
Listing 41-1 is a basic client script for Amazon’s elegantly simple REST service, which has been avail-

able (with some changes) to Amazon Associates and other developers since spring of 2002. You feed

the script a search string at the top, and it outputs a CSS-formatted box at the end containing infor-

mation about the current edition of the book in question.

This service clearly demonstrates the biggest advantage of REST: You can work with it by using the

HTTP concepts — and the PHP functions — you’re already familiar with. For all intents and pur-

poses, you are simply asking for a web page by using http fopen(). It happens to be well-formed

XML instead of HTML — but that is incidental to the transport mechanism.

We chose to parse the XML by using PHP’s DOM XML extension, which so far has found relatively

few real-world uses (see Chapter 40 for discussion of the DOM). Many other PHP-literate Amazon

developers have produced scripts that use other types of parsing, such as string parsing and regex,

to extract the desired information — but we want to show you the power of using XML itself.

We should warn you, however, that this type of solution does not scale — DOM XML is a notorious

memory hog. (We’ve heard credible reports that a 1,000-line XML document read into the DOM

results in 1MB of memory being appropriated.) However, the Amazon Web services interface will

only return a few items at a time, so DOM XML is an appropriate technology for this purpose.

The DOM extension changed significantly in PHP5. This script will not work at all in ver-

sions of PHP before 5.0.0b2. Obviously, the script will also not work unless you have pre-

viously compiled PHP with the --with-domxml flag and libxml2.

LISTING 41-1

Client for Amazon RESTservice (rest_amazon_client.php)

<?php

// Get the xml
$writefile = ‘mysqlbible.xml’;
$file = “http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService&AWSAcce
ssKeyId=XXXXXXXXXXXXXXXX&Operation=ItemLookup&IdType=ASIN&ItemId=0764549324&Ve
rsion=2008-04-07&ResponseGroup=Medium,OfferFull”;

$fp = fopen($file, “r”);
$xml_array = file($file);
fclose($fp);
$xml_str = implode(“”, $xml_array);
$fp2 = fopen($writefile, “w”);
$fw_return = fwrite($fp2, $xml_str);
fclose($fp2);

$xml = file_get_contents($writefile);

CAUTION CAUTION

684

 Part V Connections

$loaded_xml = simplexml_load_string($xml);

// Load up the xml file into memory
$dom = new DomDocument;
if (!$dom->load($writefile)) {
 echo “Cannot load XML file”;
 exit;
}
// Get an immediately available edition
$asin = $loaded_xml->Items->Item->ASIN;
$url = $loaded_xml->Items->Item->DetailPageURL;
$title = $loaded_xml->Items->Item->ItemAttributes->Title;
$imageurl = $loaded_xml->Items->Item->MediumImage->URL;

// Format a nice box
$box_str = <<< EONICEBOX
<HTML>
<HEAD>
<STYLE>
#content {
 float: left;
 padding: 10px;
 margin: 10px;
 background: #FFFFFF;
 border: 4px solid #008000;
 width: 200px; /* ie5win fudge begins */
 voice-family: “\“}\“”;
 voice-family:inherit;
 width: 200px;
}
html>body #content {
 width: 170px; /* ie5win fudge ends */
 }
p {
 font-family: Verdana, Arial, sans-serif;
 font-size: 12px;
 line-height: 22px;
 margin-top: 3px;
 margin-bottom: 2px;
}

</STYLE>
</HEAD>
<BODY>
<div id=”content”>
<p>

$title
</p>

685

 Creating and Consuming Web Services with PHP 41

</BODY>
</HTML>
EONICEBOX;
echo $box_str;
?>

Those of you who do not have Amazon Associates accounts can use Listing 41-2 for testing, which

you should save as mysqlbible.xml somewhere under your web tree.

LISTING 41-2

XML sample (mysqlbible.xml)

<?xml version=”1.0” ?>
<ItemLookupResponse xmlns=”http://webservices.amazon.com/
AWSECommerceService/2008-04-07”>
<OperationRequest>
<RequestId>15409f90-7eca-4743-90e2-c776913b4e6c</RequestId>
<Arguments>
<Argument Name=”Operation” Value=”ItemLookup”></Argument>
<Argument Name=”Service” Value=”AWSECommerceService”></Argument>
<Argument Name=”Version” Value=”2008-04-07”></Argument>
<Argument Name=”ItemId” Value=”0764549324”></Argument>
<Argument Name=”IdType” Value=”ASIN”></Argument>
<Argument Name=”AWSAccessKeyId” Value=”XXXX”></Argument>
<Argument Name=”ResponseGroup” Value=”Medium,OfferFull”></Argument>
</Arguments>
<RequestProcessingTime>0.0245840000000000</RequestProcessingTime>
</OperationRequest>
<Items>
<Request>
<IsValid>True</IsValid>
<ItemLookupRequest>
<Condition>New</Condition>
<DeliveryMethod>Ship</DeliveryMethod>
<IdType>ASIN</IdType>
<MerchantId>Amazon</MerchantId>
<OfferPage>1</OfferPage>
<ItemId>0764549324</ItemId>
<ResponseGroup>Medium</ResponseGroup>
<ResponseGroup>OfferFull</ResponseGroup>
<ReviewPage>1</ReviewPage>
<ReviewSort>-SubmissionDate</ReviewSort>
<VariationPage>All</VariationPage>
</ItemLookupRequest>

686

 Part V Connections

</Request>
<Item>
<ASIN>0764549324</ASIN>
<DetailPageURL>http://www.amazon.com/MySQL-Bible-CDROM-Steve-Suehring/dp/07645
49324%3FSubscriptionId%3D03S5FBC8SMHRV9HBDWG2%26tag%3Dws%26linkCode%3Dxm2%26ca
mp%3D2025%26creative%3D165953%26creativeASIN%3D0764549324</DetailPageURL>
<SalesRank>780753</SalesRank>
<SmallImage><URL>http://ecx.images-amazon.com/images/I/51WJRNR4ENL._SL75_.
jpg</URL><Height Units=”pixels”>75</Height><Width Units=”pixels”>60</Width></
SmallImage>
<MediumImage><URL>http://ecx.images-amazon.com/images/I/51WJRNR4ENL._SL160_.
jpg</URL><Height Units=”pixels”>160</Height><Width Units=”pixels”>128</
Width></MediumImage>
<LargeImage><URL>http://ecx.images-amazon.com/images/I/51WJRNR4ENL.jpg</
URL><Height Units=”pixels”>475</Height><Width Units=”pixels”>380</Width></
LargeImage>
<ImageSets>
<ImageSet Category=”primary”><SwatchImage><URL>http://ecx.images-amazon.com/
images/I/51WJRNR4ENL._SL30_.jpg</URL><Height Units=”pixels”>30</Height><Width
Units=”pixels”>24</Width></SwatchImage><SmallImage><URL>http://ecx.images-
amazon.com/images/I/51WJRNR4ENL._SL75_.jpg</URL><Height Units=”pixels”>75</
Height><Width Units=”pixels”>60</Width></SmallImage><ThumbnailImage><URL>
http://ecx.images-amazon.com/images/I/51WJRNR4ENL._SL75_.jpg</URL><Height
Units=”pixels”>75</Height><Width Units=”pixels”>60</Width></ThumbnailImage><T
inyImage><URL>http://ecx.images-amazon.com/images/I/51WJRNR4ENL._SL110_.jpg</
URL><Height Units=”pixels”>110</Height><Width Units=”pixels”>88</Width></Tin
yImage><MediumImage><URL>http://ecx.images-amazon.com/images/I/51WJRNR4ENL._
SL160_.jpg</URL><Height Units=”pixels”>160</Height><Width Units=”pixels”>128</
Width></MediumImage><LargeImage><URL>http://ecx.images-amazon.com/
images/I/51WJRNR4ENL.jpg</URL><Height Units=”pixels”>475</Height><Width
Units=”pixels”>380</Width></LargeImage>
</ImageSet>
</ImageSets>
<ItemAttributes>
<Author>Steve Suehring</Author>
<Binding>Paperback</Binding>
<DeweyDecimalNumber>005.7565</DeweyDecimalNumber>
<EAN>9780764549328</EAN>
<Edition>Pap/Cdr</Edition>
<ISBN>0764549324</ISBN>
<Label>Wiley</Label>
<Languages><Language><Name>English</Name><Type>Original Language</Type></Langu
age><Language><Name>English</Name><Type>Unknown</Type></Language><Language><Na
me>English</Name><Type>Published</Type></Language></Languages>
<ListPrice><Amount>4999</Amount><CurrencyCode>USD</CurrencyCode><FormattedPric
e>$49.99</FormattedPrice></ListPrice>
<Manufacturer>Wiley</Manufacturer>
<NumberOfItems>1</NumberOfItems>
<NumberOfPages>775</NumberOfPages>

687

 Creating and Consuming Web Services with PHP 41

<PackageDimensions><Height Units=”hundredths-inches”>170</Height><Length
Units=”hundredths-inches”>920</Length><Weight Units=”hundredths-pounds”>240</
Weight><Width Units=”hundredths-inches”>770</Width></PackageDimensions>
<ProductGroup>Book</ProductGroup>
<ProductTypeName>ABIS_BOOK</ProductTypeName>
<PublicationDate>2002-06-15</PublicationDate>
<Publisher>Wiley</Publisher>
<Studio>Wiley</Studio>
<Title>MySQL Bible with CDROM</Title>
</ItemAttributes></Item></Items></ItemLookupResponse>

The result of the REST client script is shown in Figure 41-1.

FIGURE 41-1

REST client gets XML and outputs HTML.

As you can see from the XML sample, there is a lot of potential data from the Web service that we

didn’t use — suggested price, release date, and so on. This demonstrates how easy it is to pick out

just the data you want from the feed using Simple XML. According to the current Amazon Web ser-

vices rules, you could poll its Web service for fresh XML every second, so you could keep this part

of your information very fresh.

688

 Part V Connections

Summary
Web services is an emerging field of programming. Web services offer immediate payoffs in data

transfer, especially for web applications, and may finally unlock the promise of distributed com-

puting. Although there is a lot of hype and misinformation out there about the technologies, and

although much of the action is happening inside intranets and in semiprivate transactions, you can

start familiarizing yourself with PHP to both create and consume Web services.

The three main Web services standards in discussion now are REST, XML-RPC, and SOAP. REST is

the most lightweight and easy to use but offers the least functionality. SOAP is the most complicated

and, as a consequence, has the most interoperability problems, but large vendors such as Microsoft

and IBM have thrown their support behind it. XML-RPC offers a nice blend of power and simplicity

but lacks big-vendor support.

PHP can be used to create servers and clients in REST, XML-RPC, and SOAP. However, particularly

with SOAP, the syntax is so complex that a third-party package may be highly useful for help with

the serialization, type-shuffling, and request-creation steps required by Web services.

689

I
n this chapter, we delve into how to use PHP to create graphics of

your own and display them to the user. Although we spend a little

bit of time on pure HTML “graphics,” our primary focus is on creat-

ing images on the fly by using the gd library. This library helps you create

images such as PNGs and JPEGs, which you can then link to from dynami-

cally generated HTML pages or send to the user as standalone web pages.

Your Options
Just to see where image creation fits into the web-scripting world, look at

the following spectrum of choices, in order of increasing dynamics:

You can have no graphics at all and display purely textual ■■

information.

You can embed static images in your HTML, whether created by ■■

yourself or by other people.

You can write programmatically generated HTML ■■

pseudographics.

You can embed static image graphics (or even image animations, ■■

if you insist) in your HTML pages, but display different ones

conditionally.

You can use ■■ gd to pre-generate static graphics for all the cases that

may possibly arise from your code, store them in files, and display

them conditionally.

You can create graphic images on demand in response to user input.■■

Creating Graphics with PHP

IN THIS CHAPTER

Overview of images in web

scripting

Creating graphics in HTML

Introduction to the gd image

manipulation library

Troubleshooting image creation

code

690

 Part V Connections

We start off with the third option (HTML graphics) and then devote most of the rest of the chapter

to the last one, which is the most interesting case.

HTML Graphics
You know those horizontal, colored bar graphs you see all over the web, especially in connection

with poll results? It looks as though some graphics are being used in creating these graphs, but in

truth there’re just a couple of canned color images and the magic of image scaling in HTML. This

graphing technique is actually very useful, and we include it here because it’s very easy to create

graphs like this dynamically from PHP.

Before we get into this data visualization technique, we need some data. Listing 42-1 shows a small

sample data set, which we imagine has been produced from a survey of programmers asked about

their favorite languages and operating systems. The data is stored in a MySQL database, in a single

table, with the following definition:

CREATE TABLE programmers (
 id int(11) NOT NULL auto_increment,
 sex char(1) default NULL,
 age int(11) default NULL,
 language varchar(30) default NULL,
 os varchar(30) default NULL,
 country varchar(30) default NULL,
 continent varchar(30) default NULL,
 PRIMARY KEY (id)
);

LISTING 42-1

Sample data set

+--+---+---+----------+---------+-------------+---------------+
|id|sex|age| language | os | country | continent |
+--+---+---+----------+---------+-------------+---------------+
1	F	33	PHP	Linux	USA	North America
2	M	41	Java	Solaris	USA	North America
4	M	31	C++	Solaris	USA	North America
5	M	45	Lisp	MacOS	USA	North America
6	M	25	C	Solaris	Antarctica	Antarctica
7	F	17	PHP	Linux	Denmark	Europe
8	M	21	Perl	Linux	UK	Europe
9	M	14	PHP	Linux	UK	Europe
10	F	21	Perl	Linux	Germany	Europe

691

 Creating Graphics with PHP 42

11	F	38	PHP	Linux	Germany	Europe
12	M	26	C++	Windows	USA	North America
13	M	22	PHP	Windows	France	Europe
14	M	17	PHP	Linux	Japan	Asia
15	F	38	C	Solaris	South Korea	Asia
16	F	19	PHP	Linux	Canada	North America
17	F	32	Perl	Linux	France	Europe
18	M	32	Java	Solaris	Mexico	North America
19	F	23	PHP	Solaris	Brazil	South America
20	F	19	PHP	Linux	Finland	Europe
21	M	21	PHP	Linux	Brazil	South America
22	M	51	Java	Linux	UK	Europe
23	M	29	Java	Linux	Japan	Asia
24	M	29	Java	Solaris	China	Asia
25	M	21	C++	MacOS	Germany	Europe
26	M	21	Perl	Solaris	France	Europe
27	M	27	PHP	Linux	India	Asia
28	M	31	Perl	Linux	India	Asia
29	M	17	C	Linux	Pakistan	Asia
30	M	45	PHP	Windows	USA	North America
31	F	22	Java	Windows	Italy	Europe
32	F	33	C	Linux	Spain	Europe
+--+---+---+----------+---------+-------------+---------------+

So say that our goal is to visualize counts of the distribution of values for different columns — we

want to know not only how many of our respondents list this or that programming language, but

also to see comparisons graphically.

Although our data is in a MySQL database, the display portion of this code need not be tied to that.

We may want to use it for a different purpose entirely. So we break out a separate function that pro-

duces a bar graph from an array in a particular format, and only later hook that up to code that pro-

duces the requisite array via SQL queries. The code to translate an array into a bar graph is shown in

Listing 42-2.

LISTING 42-2

bar_graph.php

<?php

function array_to_bar_graph ($array, $max_width) {
 // expects as input an array where the keys
 // are string labels and the values are
 // numbers. Values must be non-negative

692

 Part V Connections

 // returns an HTML bar graph as a string
 // assumes bar[1-5].gif, located in images/

 foreach ($array as $value) {
 if ((IsSet($max_value) &&
 ($value > $max_value)) ||
 (!IsSet($max_value))) {
 $max_value = $value;
 }
 }
 $pixels_per_value = ((double) $max_width)
 / $max_value;

 $string_to_return = “<TABLE CELLPADDING=5>”;
 $counter = 0;
 foreach ($array as $name => $value) {
 $bar_width = $value * $pixels_per_value;
 $image_no = ($counter % 5) + 1;
 $string_to_return .=
 “<TR><TD>$name ($value)</TD>
 <TD><IMG SRC=\“images/bar$image_no.gif\“
 WIDTH=$bar_width
 HEIGHT=10>
 </TD></TR>”;
 $counter++;
 }
 $string_to_return .= “</TABLE>”;
 return($string_to_return);
}
?>

The bar graph code is extremely simple — it iterates through an array, which is assumed to have

names for keys and quantities for values. It normalizes the maximum value to a fixed-width bar and

calculates the width of all the other bars proportionally. Finally, it displays bars by using the scaling

parameters in the tag to give each variable a fixed height and an appropriate width. It cycles

through a list of five images, which are premade one-color GIFs (which could as well be PNGs) and

could be created by using your favorite graphics program. As long as these images are monocolor,

their size and shape are irrelevant. (If you don’t have any such images handy, you can find the ones

we used at the code download site: www.troutworks.com/phpbook.)

Now that we can display names and associated values in a bar graph, we can hook that up to the

database via a Web form and an SQL query. Code for this is shown in Listing 42-3.

693

 Creating Graphics with PHP 42

LISTING 42-3

bar_graph_form.php

<?php
include_once(“dbconnect.inc”);
include_once(“bar_graph.php”);
mysql_connect($hostname, $user, $password);
mysql_select_db(“c43”);

if (IsSet($_POST[‘COLUMN_NAME’])) {
$column_name = mysql_real_escape_string($_POST[‘COLUMN_NAME’]);
 $query = “select $column_name, count(*)
 from programmers
 group by $column_name”;
 $result = mysql_query($query)
 or die(“Error in database interaction
”.
 mysql_error());
 $array_collection = array();
 while ($row = mysql_fetch_row($result)) {
 $name = $row[0];
 $count = $row[1];
 $array_collection[$name] = $count;
 }
 $bar_graph =
 array_to_bar_graph($array_collection,
 300);
}
else {
 $bar_graph = “”;
}

$self = “bar_graph_form.php”;
$form = <<<EOT
<FORM METHOD=POST ACTION=”$self”>
<H3>Choose a table column for graphing</H3>
<SELECT NAME=COLUMN_NAME>
<OPTION VALUE=os>os
<OPTION VALUE=language>language
<OPTION VALUE=continent>continent
<OPTION VALUE=sex>sex
</SELECT>
<INPUT TYPE=SUBMIT NAME=SUBMIT>
</FORM>
EOT;

$page = <<<EOT
<HTML><HEAD><TITLE>Survey data</TITLE></HEAD>
<BODY>

694

 Part V Connections

$form

$bar_graph
</BODY></HTML>
EOT;

echo $page;
?>

The form is self-submitting and loads a file called dbconnect.inc, which contains the appropriate

login, password, and database name, like this:

<?php
$hostname = “YOURMYSQLHOST”;
$user = “YOURMYSQLUSER”;
$password = “YOURMYSQLPASSWORD”;
?>

All that is supplied by the form submission is the name of the column. Starting with that, the code

submits an SQL statement to count all the distinct values that occur for that column and then cre-

ates an array by using names and the corresponding counts. What remains is to feed the resulting

array to the bar graph code from Listing 42-1 and to do some layout. The results for two different

columns are shown in Figures 42-1 and 42-2. (Since this is a grayscale book, you won’t see interest-

ingly different colors in the diagram, but you should at least see bars of different sizes.)

FIGURE 42-1

HTML bar graph 1

695

 Creating Graphics with PHP 42

FIGURE 42-2

HTML bar graph 2

Creating images using gd
Having mostly exhausted the graphic possibilities afforded by vanilla HTML, let’s turn our attention

to creating real standalone graphics by using the gd library.

What is gd?
What is gd, anyway? The gd toolkit is a C code library for creating and manipulating images, which

was originally created by the kind and clever people at Boutell.com (www.boutell.com). gd is not

a graphics or paint program in and of itself, as it has no standalone application or GUI. Instead, it

provides functions that programs can call to do these manipulations, and any C program that wants

to can link against that library to use the routines. The PHP developers have done this and, in fact,

have written a set of interface functions that make it easy to call gd routines from PHP. But nothing

in gd is specific to PHP, and there are interfaces to it from several other languages and environ-

ments, including Perl, Tcl, Pascal, Haskell, and REXX.

gd lets you call functions to create images (initially blank, like a clean sheet of paper), draw and

paint on those images in various ways, and ultimately convert the image from gd‘s internal image

format to a standard image format, and send it off to its ultimate fate (display in a browser or storage

in a file or database). And because all this is under programmatic control rather than human control,

these created images can be arbitrarily complex, and they can depend on anything in your program

that you would like to have them depend on.

696

 Part V Connections

Image formats and browsers
The gd library can, in principle, import and output images in a wide variety of formats. The three

image formats we talk about at all seriously are GIF, JPEG, and PNG, although for examples we focus

mostly on the last of these.

The GIF and PNG formats essentially exist to describe a grid of colored cells corresponding to pix-

els, with a few complications. The first complication is that the cells may contain actual color values

or they may contain indexes in a table of color values. (The former is more expressive because any

number of different colors may be used, and the latter is more compact.)

Another complication is that, although the conceptual representation of GIFs and PNGs is fairly

simple, in practice they are always read, written, and transferred in compressed form. Compression

is necessary because a grid of cells is a costly thing to specify. A simple 500 × 400 pixel image is

200,000 pixels — if each pixel needs 3 bytes to specify, then we’re over half a megabyte already.

Compression is a large topic, but most compression algorithms take advantage of redundancy in the

image to make it smaller. (There are more concise ways to say that every pixel is green than specify-

ing every pixel’s green color value individually.) Unfortunately, there is a lot more to compression

algorithms than that — enough so that the compression algorithm used for writing GIFs is patented.

Early browsers were written using GIF as the graphics format of choice, and it wasn’t until that practice

had been under way for a while that it became clear that the patent holder was going to insist on going

after people who used the compression algorithm. This left web graphics in a bit of a bind — GIF was

the lingua franca, but you couldn’t legally create such graphics, at least without paying a license fee.

The PNG format has come to the rescue in a sense — recent versions of major browsers support it, and

with that support it plays much the same role as GIF.

Compression is different in the case of JPEGs, as well, although not for legal reasons. Compression

for GIFs and PNGs is lossless, meaning that if you compress and then uncompress an image, you

should have your exact original image back. The JPEG compression, on the other hand, is lossy.

Essentially, if redundancy helps compression, JPEG compression tries to introduce a little bit of extra

redundancy into the image before compression, mostly in ways that the human eye won’t notice.

This is particularly effective with photographic images, but it does mean that sometimes the com-

pression/uncompression cycle doesn’t leave you with exactly what you started with.

Because JPEG is better for photographic images than the kinds of images we’re making, and because

deciding on the export format is a final step anyway, we’ve decided to focus on PNG graphics

exclusively. If you would rather produce JPEGs, it is a simple matter to change the export functions

appropriately.

Installation
Installing gd and getting it to work with PHP is, frankly, a pain. This is not because of any weakness

in either the PHP codebase or the gd codebase but is all about configuration issues: sorting out the

likely and actual locations of the libraries gd depends on and making sure that everything can build

and link appropriately. So the happiest situation possible is to find out that gd is already installed,

697

 Creating Graphics with PHP 42

and PHP already has gd support enabled (whether that’s due to the diligence of your webhost or

because the PHP you installed by yourself had it included).

So the first step in installing gd is: Check to see if it has already been installed. Whether you are

running via a webhost or are in command of your own installation, start off as always by putting the

following into a file and viewing the result in a browser:

<?php
 phpinfo();
?>

After you have the displayed page, just do a text search for gd in the browser window — you may

find a subsection that describes to what extent gd is enabled in your PHP installation. If you only

want to produce certain kinds of images (PNGs, for example) and phpinfo() tells you that sup-

port for that image type is enabled, then you may be good to go. If the gd version includes the word

bundled, you are using the gd that is bundled with PHP.

If this fails, and if you are in control of your PHP installation, you will have to install and configure

gd. (If, instead, your PHP installation is run by a hosting company, your options may be reduced to

asking them to provide gd support, or to switching webhosts.)

Using the PHP-bundled version of gd removes some, but not all, of the hassle of a gd install; if

you use the bundled version itself, you have the gd library but not necessarily the libraries that

gd needs. The gd library itself depends on several other libraries: libpng (for manipulating PNG

images), zlib (used in compression), and jpeg-6b or later (if you want to manipulate JPEG

images). (Only gd, libpng, and zlib are necessary for the examples in this chapter.) These will

be present already in many Linux installations, and if so it may be sufficient to include a with flag

(such as --with-zlib) without specifying the installation directory. If you are configuring PHP

yourself, adding the --with-gd flag will cause the bundled version of gd to be included. Use

--with-gd=path instead if you want to point to an alternate version.

If you find that you lack one or more of the necessary libraries, you will have to build them. The

documentation at www.libgd.org is a good place to start to find the current versions.

gd Concepts
While an image is being constructed or manipulated in the gd toolkit, it is stored in a gd-specific

format that doesn’t correspond to any conventional image type. Images can in theory be exported in

this gd format, but it’s unusual to do so because the resulting image is not compressed and cannot

be displayed in a browser or conventional graphics program.

An image in the gd toolkit has a width, a height, and color information for all the width x height
many pixels. (See the “Colors” section for more detail on how colors are stored.) Usually a program

starts off its interaction with gd by either creating a new blank image (which is drawn and painted

on) or by importing an image from a file. The next steps are typically (1) allocate colors in the image,

698

 Part V Connections

(2) draw, paint, or otherwise transform the image, (3) translate the image to a conventional format

(for example, PNG, JPEG), and send it to output.

Colors
There are two ways of representing colors in gd images: palette-based, which is limited to 256 colors,

and truecolor, which can store an unlimited number of distinct RBG color values. In gd 1.x, palette-

based colors were the only alternative; gd 2.x and the PHP-bundled version of it offers both palette-

based images and truecolor images. Note that a given gd image is either palette-based or truecolor;

there is no notion of adding true colors to a palette-based image.

To get an initial blank palette-based image, you call the function ImageCreate(); to get a truecolor

image, call ImageCreateTrueColor().

Palette-based images

Colors are specified in a red-green-blue (RGB) format, with three numbers between 0 and 255. The

color specified by (255, 0, 0), for example, is bright red; (0, 255, 0) is green; (0, 0, 255) is

blue; (0, 0, 0) is black; (255, 255, 255) is white; and (127, 127, 127) is gray. You can tweak

these values to your heart’s content to design new colors.

Any drawing into an image must be done in a particular color, and colors must be allocated in an

image before they are used. Also, the first color allocated into an image automatically becomes the

background color. So, colors are not optional in any sense, and usually color allocation is the first

thing you do after creating a new blank image.

Colors in palette-based images are created by using imagecolorallocate(), which takes as argu-

ments an (already created) image, and three integers specifying the proportion of red, green, and

blue. The return value is an integer, which specifies the index of the new color in the image’s inter-

nal palette. You must hang on to this return value in a variable, because you need the index value

for any future drawing using that color. Palette-based images can have a maximum of 256 colors. (It

may or may not be obvious what’s going on under the hood here, but every pixel in a palette-based

image is actually a single byte, which stores an index into the 256-color palette.)

Note that the index returned by allocating a color in an image makes sense only for that image. If

you assign an allocated color to the PHP variable $black, it won’t work to use that variable as the

color input for a drawing command called on a different image.

Truecolor

In gd 2.0 and later, you can also create images that are not palette-based, where every pixel stores

an arbitrary RGB color value. In this truecolor format, the number of colors is essentially unlimited.

This can be useful not only for the free range of your artistic expression, but for faithfully represent-

ing truecolor PNGs and JPEG images that have been loaded into gd.

Aside from the initial function to create an image, and the lack of limitation on distinct colors, work-

ing with truecolor images is similar to working with palette-based images. In particular, you still call
ImageColorAllocate() to create new colors, and hang on to the return value for later commands

699

 Creating Graphics with PHP 42

to use; it just so happens that the returned value will be an RGB color rather than an index into a

palette. Also, in truecolor images there is no notion of a background color created as a side effect of

ImageColorAllocate(); all pixels are initialized to black.

Transparency

gd 2.x supports transparency in the form of an alpha value (in addition to the red, green, blue values)

that specifies how transparent the given color is. This allows you, for example, to overlay a shape

onto another one without simply occluding the first shape.

Many of the image functions in PHP have an analog with “alpha” in its name, which indicates that it

deals with a four-value (R,G,B,A) color. For example, while ImageColorAllocate() expects three

arguments, ImageColorAllocateAlpha expects a fourth argument between 0 and 127. A value of

zero indicates that the color is completely opaque; a value of 127 means that the color is completely

transparent.

Drawing coordinates and commands
After you create an image within gd, you have an implicit coordinate system for drawing on it,

determined by the width and height you specified.

In this coordinate system, the origin (0, 0) is at the top-left corner of the image, and the positive

direction for x values is to the right, whereas the positive direction for y values is down. (This is

often true of computer graphics coordinate systems, but you may be more accustomed to a lower-left

origin if you learned analytic geometry in school.)

There are many drawing commands, including but not limited to drawing line segments, rectangles,

arcs, and setting particular pixel values. Note that the end effect of all these painting and drawing

commands is to set the value of pixels. There is no memory retained of the commands that changed

the pixels and, therefore, no way to undo drawing commands or separate out the effects of distinct

commands.

Nothing stops you from drawing outside the bounds of the image you have specified, but such

drawing has no visible effect. A rectangle with coordinate values that are all negative, for example, is

not visible.

Format translation
All this drawing and image manipulation is done on the image in its gd-internal format. After your

script is done, it can use one of the translation-and-output commands (imagetopng, imagetojpeg,

and so on) to translate the image to the desired graphics format and echo it out to the user’s browser

(or to a file).

Freeing resources
After you have sent a translation of your completed gd image off to the user, you are done with the

internal version and should dispose of it. The right way to do this is to call imagedestroy() with

the image as an argument.

700

 Part V Connections

Functions
We are not planning to individually list and describe all the functions in PHP’s gd interface in this

chapter; for that, we refer you to the “Image Processing and Generation” section of the manual at

www.php.net. Here we summarize the most important functions. Most of the gd functions are in

one of the categories shown in Table 42-1. Note that the function names in this table have internal

capital letters at word breaks for clarity, but we may not always observe this when writing code

because PHP function names are not case-sensitive.

TABLE 42-1

Breakdown of gd Functions
Type Examples Notes

Image-creation
functions

ImageCreate(),
ImageCreateTruecolor(),
ImageCreateFromGd(),
ImageCreateFromJpeg()

These functions return a new gd image.
ImageCreate() takes a width and height
as arguments; others take a filepath, URL, or
string containing a preexisting image to load
in and convert to gd.

Color allocation ImageColorAllocate(),
ImageColorAllocateAlpha(),
ImageColorDeallocate()

ImageColorAllocate() takes an
image and the desired red, green, and
blue color values, and returns the color
value to be used for subsequent drawing.
ImageColorAllocateAlpha takes an
additional transparency value (0–127).

Color matching ImageColorClosest(),
ImageColorClosestAlpha(),
ImageColorExact(),
ImageColorExactAlpha()

Return the index of a matching color in a
palette image. The “Closest” functions return
the best-matching color by RGB distance;
the “Exact” functions return a color only if it
is identical, -1 otherwise. “Alpha” functions
operate on 4-value (transparent) colors.

Line-drawing
functions

ImageLine(),
ImageDashedLine(),
ImageRectangle(),
ImagePolygon(),
ImageEllipse(),
ImageArc()

These functions draw lines or curves in the
specified shapes. Usually the first argument
is an image, the last argument is a color,
and the intermediate arguments are x- and
y- coordinates.

Pen-setting
functions for line
drawing

ImageSetStyle(),
ImageSetThickness()

These functions alter settings that affect
the lines created by later line-drawing
commands. (Some of these are available
only with gd 2.0.1 or later.)

701

 Creating Graphics with PHP 42

Type Examples Notes

Painting and
filling functions

ImageFilledRectangle(),
ImageFilledEllipse(),
ImageFilledRectangle(),
ImageFilledPolygon(),
ImageFilledArc(),
ImageFill()

Usually analogous to corresponding line-
drawing functions but with areas filled rather
than outlined. The special ImageFill()
function “flood fills” outward from a
specified x-y-coordinate with a given fill
color. (Some of these functions require gd
2.0.1 or later.)

Text functions ImageString(),
ImageLoadFont()

ImageString takes as arguments an
image, a font number, x- and y-coordinates,
a text string, and a color. If the font number
is between 1 and 5, one of the five built-in
fonts is used to draw the string in the given
color. A number greater than 5 indicates
a result of loading a custom font with
ImageLoadFont().

Exporting
functions

ImagePng(),
ImageJpeg()

These functions convert the internal gd
image to the relevant image format and then
send to output. If only one argument (an
image) is given, the image is echoed to the
user; if an additional path name argument is
given, the destination is a file.

Image-
destruction
function

ImageDestroy() Takes an image argument and frees all
resources associated with the image.

Images and HTTP
Before the user’s browser can display an image appropriately, it has to know that an image is com-

ing, and what the image format is. So it is, unfortunately, not sufficient to simply embed a call to

ImageToPng() in your generated HTML and have an image show up. You essentially have three

choices in regard to intermixing images with PHP-generated HTML.

Full-page images
You can make the entire generated page an image. In this case, you need to send an HTTP header

before the image data, announcing that an image of a certain type is on the way. You may, for exam-

ple, have lines such as the following near the end of your script:

// ... code to create image in $image
header(“Content-type: image/png”); // announcement to browser
imagepng($image); // sending actual PNG-converted image data
imagedestroy($image); // freeing resources

702

 Part V Connections

This approach has the benefit that you can use any kind of information, including POST arguments,

to decide what the image should contain. The downside is that the resulting page can’t contain any

conventional HTML. In fact, you need to be careful that no textual output is sent from your scripts

before the header and image because this causes content to be sent prematurely. In this case, you get

a Headers already sent . . . error.

Embedded images from files
Of course, HTML has had the tag for a long time. This enables you to embed an image by

specifying its file path or URL, like this:

This works with static image files, but there is no reason why the image can’t have been recently cre-

ated. So you can have a script that (1) creates an image, (2) writes the image data to a local file, and

then (3) produces HTML with an appropriate tag referring to the file that you just made.

The only drawbacks to this approach are that you’re introducing file writes, which may be time-

consuming, into the page-generation process, and that you need to figure out what to do with the

files after you are done with them. There is one situation this approach is perfect for, however, which

is creating and caching images that represent a finite set of possibilities. In this case, you have some

way to map from a situation to an image filename. Whenever a display situation arises, you check

to see if you already have the appropriate file — if you do, you simply refer to it by using an

tag, and if not, you create the image, write it out to a file, and then refer to it. Eventually, you should

need to do no more creation.

Embedded images from scripts
Finally, there is no reason why you cannot have a standalone generated image, as in the section

“Full-page images,” but, in turn, embed that URL in a different dynamic page via an tag.

The only difficulty lies in how to communicate necessary data to the dependent page. You may, for

example, have an embedded image tag like this:

where ballpage.php happened to return PNG images of colored balls in various positions in

the image.

There is a gotcha lurking here because both web servers and browsers sometimes pay attention to

the suffix of the served file, and in different ways. You may need the suffix of ballpage to be .php

to let Apache (for example) know that the server-side code should be interpreted as PHP (although

this behavior can be controlled with configuration files). Some broken browsers, however, may insist

that a file that ends in .php cannot be an image despite the headers we are sending. This technique

requires some cross-browser testing to make sure that your intended users are seeing the same thing

you are.

Now it’s high time to move on to an example of using gd to create images.

703

 Creating Graphics with PHP 42

Example: fractal images
There’s a fine tradition of livening up the potentially unexciting topic of line drawing by using frac-

tals as examples, and your authors are not about to mess with tradition. In addition to showing how

you can produce a complex image programmatically, this kind of example is also a good fit for PHP

because its arrays and loose data types make it very easy to build complex data structures corre-

sponding to fractal images, without a lot of declarations.

What’s a fractal? It’s a shape that is self-similar, in that the parts of a fractal have a shape similar to

the shape of the whole, and the parts of those parts have a similar shape, and so on.

In theory, you can keep zooming into ever-smaller pieces of an ideal fractal, and keep finding the

same patterns repeated. In practice, computer-generated fractals bottom out after some limited num-

ber of generations into nonfractal shapes like simple curves and line segments.

An example of the kind of image we’re going to create is shown in Figure 42-3. Although it may not

look like it, this image is simply a lot of small line segments with endpoints connected into a path.

FIGURE 42-3

Fractal 1

Our job is to calculate the endpoints of all those line segments and then display them appropriately

as a PNG image. We’re going to be slightly more ambitious than simply creating a one-off piece of

fractal display code and construct a little framework that makes it easy to vary the fractal parameters

and to generate new kinds of displays.

704

 Part V Connections

To start with, we build some data structures to represent the complex shapes that we are displaying.

We use these data structures both in our intermediate calculations and for drawing the end result.

Let’s say somewhat arbitrarily that:

A coordinate point is a pair of numbers.■■

A path is a list of points.■■

We end up drawing paths by drawing line segments between all the points in a path. If we want to

draw a simple line segment, we draw a path that has two points in it; if we want to draw a rectangle,

then we draw a path that has five points in it (with the starting point repeated to close off the rect-

angle). (We could have made a line segment a primitive entity here, but paths seemed more concise

for our fractal purposes.)

Now, how shall we represent points and paths? The easiest way to make lists of things in PHP is to

use arrays. So we declare that a point is an array that happens to contain two numbers, and a path is

an array that happens to contain a sequence of points. The resulting structures are multidimensional

PHP arrays, but if we define well-named constructor and accessor functions, we can forget about

that and just write code that acts as though these things are genuine data types.

Listing 42-4 shows the code used to create Figure 42-3. The code defines the data types in terms

of functions to create them (starting with make_), functions to access their parts, and functions to

draw them into an image (starting with display_). Points cannot be drawn and have no display

function; paths are drawn by drawing lines between successive pairs of points.

The function transform_path takes an input path as first argument, and as second argument it

takes the name of a function that, in turn, is expected to take a path as argument and return a path

as a result. The third argument to transform_path() is a number of times that the path-to-path

function should be successively applied to create a new path. The reason that this kind of second-

order function is useful is that, otherwise, we may find ourselves writing a new looping function

every time we want to build a new fractal. With this approach, we can bundle the varying part of

the fractal code into a function that we pass into transform_path and avoid duplicating work.

The spike function takes a path as argument and returns a path where every two-point line segment

has been replaced by a five-point line segment with a spike in the middle. The top-hat function

does something similar, except that six points are involved, and the spike is rectangular. We also

include a couple of functions to create rectangular paths of standard sizes, to use as starting points.

After loading all the functions from the included files, the remaining code creates a gd image of spe-

cific height and width and allocates colors into that image. (The background is white, and the lines

are black.)

The fractal creation code starts off by creating a standard rectangular path (containing five points

and, therefore, four [implicit] line segments). It then passes this off to the transform_path func-

tion, asking it to return the path that results from applying the spike() function to the rectangle

four times. The rectangle path starts with four line segments, and every segment is itself replaced by

705

 Creating Graphics with PHP 42

four segments. So the four successive iterations have 16 segments, 64 segments, 256 segments, and

1024 segments, respectively.

Then all that remains is to display the complicated path that we’ve generated. We call our own func-

tion display_path() to draw all the lines into the image, send off an HTTP header announcing a

PNG, call imagepng() for the conversion and output, and then dispense with the internal gd image.

LISTING 42-4

fractal1.php

<?php

// --- points ----

// A point is just a pair of numerical coordinates

function make_point ($x, $y) {
 return(array($x, $y));
}

function point_x ($point) {
 return($point[0]);
}

function point_y ($point) {
 return($point[1]);
}

// --- paths ---

// A path is a list of points

function make_path () {
 return array();
}

function add_point_to_path ($path, $point) {
 $path[] = $point;
 return($path);
}

function display_path ($image, $path, $color) {
 static $line_count = 0;
 $prev_point = NULL;
 foreach ($path as $point) {
 if ($point && $prev_point) {
 $line_count++;

706

 Part V Connections

 imageline($image,
 point_x($prev_point),
 point_y($prev_point),
 point_x($point),
 point_y($point),
 $color);
 }
 $prev_point = $point;
 }
}

function transform_path ($path_input,
 $function_name,
 $iterations) {
 // Expects a path, a path-to-path function
 // and a number of times to apply the
 // function.
 // Returns a path
 $path_to_return = $path_input;
 for ($i = 0; $i < $iterations; $i++) {
 $path_to_return = $function_name($path_to_return);
 }
 return($path_to_return);
}

function spike ($path) {
 // Takes a path and returns a path
 $path_to_return = make_path();
 $prev_point = NULL;
 foreach ($path as $point) {
 if ($point && $prev_point) {
 $path_to_return =
 add_point_to_path($path_to_return,
 $prev_point);
 $path_to_return =
 add_point_to_path($path_to_return,
 point_along_segment($prev_point,
 $point,
 0.25));
 $path_to_return =
 add_point_to_path($path_to_return,
 point_off_segment($prev_point,
 $point,
 0.5, 0.23));
 $path_to_return =
 add_point_to_path($path_to_return,
 point_along_segment($prev_point,
 $point,
 0.75));
 $path_to_return =

707

 Creating Graphics with PHP 42

 add_point_to_path($path_to_return,
 $point);
 }
 $prev_point = $point;
 }
 return($path_to_return);
}

function top_hat ($path) {
 // Takes a path and returns a path
 $path_to_return = make_path();
 $prev_point = NULL;
 foreach ($path as $point) {
 if ($point && $prev_point) {
 $path_to_return =
 add_point_to_path($path_to_return,
 $prev_point);
 $path_to_return =
 add_point_to_path($path_to_return,
 point_along_segment($prev_point,
 $point,
 0.35));
 $path_to_return =
 add_point_to_path($path_to_return,
 point_off_segment($prev_point,
 $point,
 0.35, 0.24));
 $path_to_return =
 add_point_to_path($path_to_return,
 point_off_segment($prev_point,
 $point,
 0.65, 0.24));
 $path_to_return =
 add_point_to_path($path_to_return,
 point_along_segment($prev_point,
 $point,
 0.65));
 $path_to_return =
 add_point_to_path($path_to_return,
 $point);
 }
 $prev_point = $point;
 }
 return($path_to_return);
}

function point_along_segment ($first_point,
 $second_point,
 $proportion)

708

 Part V Connections

{
 $delta_x = (point_x($second_point) -
 point_x($first_point));
 $delta_y = (point_y($second_point) -
 point_y($first_point));
 return(make_point(point_x($first_point) +
 $proportion * $delta_x,
 point_y($first_point) +
 $proportion * $delta_y));
}

function point_off_segment ($first_point,
 $second_point,
 $proportion,
 $proportional_distance)
{
 $delta_x = (point_x($second_point) -
 point_x($first_point));
 $delta_y = (point_y($second_point) -
 point_y($first_point));
 return(make_point(point_x($first_point) +
 $proportion * $delta_x -
 $proportional_distance *
 $delta_y,
 point_y($first_point) +
 $proportion * $delta_y +
 $proportional_distance *
 $delta_x));
}

function make_small_rectangle () {
 $path = make_path();
 $path = add_point_to_path ($path, make_point(75, 275));
 $path = add_point_to_path ($path, make_point(375, 275));
 $path = add_point_to_path ($path, make_point(375, 125));
 $path = add_point_to_path ($path, make_point(75, 125));
 $path = add_point_to_path ($path, make_point(75, 275));
 return($path);
}

function make_large_rectangle () {
 $path = make_path();
 $path = add_point_to_path ($path, make_point(5, 5));
 $path = add_point_to_path ($path, make_point(495, 5));
 $path = add_point_to_path ($path, make_point(495, 395));
 $path = add_point_to_path ($path, make_point(5, 395));
 $path = add_point_to_path ($path, make_point(5, 5));
 return($path);
}

709

 Creating Graphics with PHP 42

$IMAGE_WIDTH = 500;
$IMAGE_HEIGHT = 400;

$image = imagecreate($IMAGE_WIDTH, $IMAGE_HEIGHT)
 or die(“Could not create image”);
$background_color = ImageColorAllocate($image, 255, 255, 255);
$drawing_color = ImageColorAllocate($image, 0, 0, 0);

$path = make_small_rectangle();
$path = transform_path($path, ‘spike’, 4);
display_path($image, $path, $drawing_color);

header(“Content-type: image/png”);
imagepng($image);
imagedestroy($image);

?>

Although we won’t show it as a separate listing, we took a copy of Listing 42-4, changed the function

name argument from spike to top-hat, and renamed the file fractal2.php. The resulting

image is shown in Figure 42-4.

FIGURE 42-4

Fractal 2

710

 Part V Connections

Creating and displaying these images can be time-consuming and the more so the more

line segments are created. Your web server may time out while the creation is happening.

Your options then are to decrease the number of generations in the fractal code or to raise the timeouts

in your web server or PHP configuration files.

Tweaking fractal code is definitely an art, and your humble authors are not particularly good artists.

We wish you luck in improving on our images.

For a much more extended example of producing graphics with gd, see Chapter 45.

Gotchas and Troubleshooting
Code to produce images can be especially difficult to debug, because some of the simplest tricks (for

example, diagnostic print statements) can’t be used as easily. What follows is a list of symptoms you

may encounter in running gd-enabled PHP code and some things you can try to correct them.

Symptom: completely blank image
Sometimes your code runs without incident or apparent error, but the image that results is a blank slate,

although you expected it to be full of graphic wonders. Some things to check (some obvious, some not):

Are you drawing outside the bounds of the image? (If your image is 100 ■■ ¥ 100, a small

circle drawn at (200, 200) cannot be seen.)

Are you drawing infinitesimally small graphics? (A circle with a center in range of the ■■

image with a radius of zero or near-zero may be completely undetectable.)

Are you drawing by using the background color? (White-on-white is the same as white.)■■

Symptom: headers already sent
This problem is almost always due to printing text to output before the header call that announces a

graphic image. Just as with other HTTP headers (such as those setting cookies), you must ruthlessly

root out any printing of text before that call, even if that text is composed of blank lines or spaces.

One common pattern is to see something such as the following in your browser as you test:

Warning: Division by zero in
 /usr/local/apache/htdocs/graphics/fractal1.php on
line 18
Warning: Cannot add header information -
 headers already sent by (output started at
/usr/local/apache/htdocs/graphics/fractal1.php:18) in
/usr/local/apache/htdocs/graphics/fractal1.php on line 19)
PNG
IHDR [trailing off into binary gibberish]

CAUTION CAUTION

CROSS-REFCROSS-REF

711

 Creating Graphics with PHP 42

The binary gibberish is, of course, your image data, which is being printed as text in your browser,

resulting in nonsense characters. The reason you’re seeing it as text is that the image announcement

headers could not be sent, because some text was sent before those headers were encountered. And

that text that was sent, in turn, was probably just (in this case) the text of the division-by-zero warn-

ing itself. Fixing the division-by-zero problem (or whatever the error or warning is in your case) may

eliminate the printed error, which may make the header-sending statement happy, which may mean

a successful image display.

If, instead, the very first thing you see is the warning about headers, you may be sending blank lines

or spaces before the header without being aware of it. Look for any print statements, any included

HTML, and (especially) any space at the beginning or end of files that have been included or

required. If an included PHP file so much as ends with ‘?> ‘ rather than ‘?>‘, you may be sending a

space’s worth of HTML, which would cause text headers to be sent before the image headers are seen.

Symptom: broken image
How exactly this problem displays depends on your browser program — some display a sad, visibly

broken image icon, while Firefox may politely inform you that your image can’t be displayed because

it contains errors. Either way, though, the problem is that your browser cannot read the data in the

image format you said you were sending. Some possible causes are:

The flip side of the previous ■■ Headers already sent problem: You may be printing

random text without being aware of it but, in this case, after the image header has already

been sent rather than before. This text is interfering with the stream of image data.

You have misspelled the variable containing your image — for example ■■ imagepng($imag)

where you meant imagepng($image). You are actually calling the convert-and-send func-

tion on nothing at all.

Your convert-and-send function is actually producing a text error rather than a graphic ■■

image (possibly because you don’t actually have support for that image type compiled

into PHP).

You have actually somehow screwed up your internal ■■ gd image well before trying to send it

off. One very common cause of this is failure to allocate colors in a palette-based image or

to use color indexes that haven’t been allocated.

In our experience, the best way to debug these sorts of problem is simply to comment out the PHP

statement that sends the header announcing an image, and then look at the output as text in your

browser. If everything were working perfectly, you would expect to see your binary image data as

text, which would mean a lot of strange-character gibberish, possibly starting with a short amount

of recognizable text (like PNG). If you see a PHP warning or error instead of the image data or in

addition to the image data, you can proceed to debug that. If you see nearly nothing, not much of an

image is being sent — this may imply problem #2 or #4 above. If you see what looks like a reason-

able amount of pure image data, you may need to look at your code very carefully for small amounts

of text (like spaces) that you may have introduced.

712

 Part V Connections

Summary
If you create on-the-fly graphic images by using PHP, you’re creating something completely different

from the usual HTML that PHP generates — a completely different format, and a completely differ-

ent look. Although there are hassles associated with getting the gd image library working, after you

get past those you have quite a rich set of image-manipulation functions to work with. You can cre-

ate web pages that are all image, or pages that have tags that link to dynamic images, or you

can start building a library of image files for display later on. Either way you go, you have a richer

vocabulary to work with than with pure HTML, and (even if many situations don’t require dynamic

images) you have another type of tool in your kit.

IN THIS PART

Chapter 43
Developing a Weblog with PHP

Chapter 44
A Trivia Game

Chapter 45
Data Visualization with
Venn Diagrams

Case Studies

715

S
mall standalone PHP applications, such as polls and e-mail forms,

are all very useful, but complete content sites are where PHP really

shines. Here we give complete instructions for developing the sim-

plest type of standalone site, which is the weblog.

Why Weblogs?
A weblog is the simplest kind of dynamic site. It can be thought of as a

dynamic version of the personal home page: a content site organized by

chronology with frequently updated posts. Most weblogs do not create all

their own content in the sense of writing full news stories or producing

a trove of artwork; they instead exist to comment on other people’s con-

tent and events of the day or to provide a venue for personal thoughts and

reflections. On the high end of the genre, public weblogs like Slashdot can

become extremely popular meeting places for online communities to chew

the fat of their common interests.

If you are a newcomer to server-side scripting, we encourage you to imme-

diately start a personal weblog as your first major project. Nothing helps

you learn faster than running an actual complete site of your own, where

you can try out a range of new techniques and ideas in context. Especially

because PHP and other open source technologies grow and change so

quickly, it’s well-nigh essential to have a preexisting testbed always avail-

able to doodle around on.

Weblogs are also just fun and therefore, worthwhile even for those who

also use PHP in more serious contexts. There’s no pleasure quite like

that of conducting an intellectual debate, an argument, or a romance by

weblog. Forget movies, pop music, and reality TV — the weblog is the true

medium of the age, baby!

Developing a Weblog
with PHP

IN THIS CHAPTER

Why weblogs?

Building a simple weblog

Adding an HTML editing tool

Changes and additions

716

 Part VI Case Studies

The Simplest Weblog
The main goal of this section is to introduce you to the layout and display aspects of building a

dynamically generated site. In later sections, we will refine our techniques for handling the data-

related aspects. At the end of this chapter, you should have the ability to make and maintain a sim-

ple data-driven site of your own. Conceptually, even the most complicated dynamic content sites are

basically just bigger versions of the concepts you will learn by building a personal weblog.

The easiest weblog is just a PHP template and some included text files. It’s limited to local develop-

ment only — in other words, you won’t be able to make entries via HTTP but only by creating text

files while logged in to the PHP server as a trusted user (or copying text files to the server via some

mechanism like scp (secure copy), which amounts to the same thing). You also won’t be able to

assign different levels of permissions very effectively, so this style of weblog is most appropriate for a

purely personal single-author site.

We decided to use the most basic type of navigation, Previous and Next text links that we’ll main-

tain by hand. This gives you the maximum flexibility to decide how often you want to change the

front page of your weblog — we’ll do it daily, but you may prefer a weekly, monthly, or irregular

changeover, depending on how much you have to write about. We’ll also include an old reliable left-

side navbar with links to standalone pages, such as About Me and Favorite Things information. A

finished weblog page is shown in Figure 43-1.

FIGURE 43-1

A weblog page

717

 Developing a Weblog with PHP 43

It is assembled from these files:

weblog.php■■ : Main display page template

20040101.txt■■ , 20040102.txt: Weblog entries (changed daily)

default.txt■■ : Default text entry for days when there is no new content

favorites.php■■ , links.php, aboutme.php: Semistatic pages (changed infrequently)

header.inc■■ : Header and navigation bar on every page

footer.inc■■ : Footer on every page

style.inc■■ : Internal style sheet

You must change the variable $initial_entry_date in weblog.php to the date of

your first entry, or you may start an infinite loop that will eat up all your server cycles!

You must also check all the paths to included files and change them to real paths.

Listings 43-1 through 43-7 are the code for a simple weblog. Instead of using a database to store

your entries, the data will be stored in text files on your filesystem.

LISTING 43-1

Main weblog template (weblog.php)

<?php

// -------------------------------
// GET YOUR VARIABLES ALL LINED UP
// -------------------------------
// Change this to the date of your first log entry.
$initial_entry_date = 20040101;

// Replace the fake path below with a real one
$DOCUMENT_ROOT = “c:\docs”;

$today = date(‘Ymd’);
if (isSet($_GET[‘date’])) {
 if ($_GET[‘date’] < $initial_entry_date) {
 // Go to first entry if the specified date is earlier
 // than range
 $date = $initial_entry_date;
 } elseif ($_GET[‘date’] > $today) {
 // Go to last entry if specified date is later than range
 $date = $today;
 } else {
 $date = $_GET[‘date’];
 }
} else {
 $date = $today;
}

CAUTION CAUTION

718

 Part VI Case Studies

$title_msg = $date;
$header_msg = “Weblog entry for $date”;

// Assemble the Previous/Next links
$prevdate = $date - 1;
$nextdate = $date + 1;
if ($date == $initial_entry_date) {
 $flipbar = “\n<P CLASS=\“next\“>
Next -->
</P>\n”;
} elseif ($date == $today) {
 $flipbar = “\n<P CLASS=\“previous\“>
<-- Previous
</P>\n”;
} else {
 $flipbar = “\n<TABLE BORDER=0><TR>
<TD WIDTH=\“50%\“ ALIGN=\“left\“>

<-- Previous

</TD><TD WIDTH=\“50%\“ ALIGN=\“right\“>

Next -->

</TD>
</TR></TABLE>\n”;
}

// ---------------------
// NOW ASSEMBLE THE PAGE
// ---------------------
include_once(‘header.inc’);

echo $flipbar;
// Include the specified text file, or a default message
// Replace the fake path below with a real one
if (file_exists($DOCUMENT_ROOT.”/path/to/entries/$date.txt”)) {
 // Replace the fake path below with a real one
 include($DOCUMENT_ROOT.”/path/to/entries/$date.txt”);
} else {
 include(“default.txt”);
}
echo $flipbar;

include_once(‘footer.inc’);
?>

719

 Developing a Weblog with PHP 43

LISTING 43-2

A dated entry (20000101.txt)

<DIV CLASS=”topic”>HOLIDAY</DIV>
<P>Oh, what a holiday season it has been! I am positively
stuffed with fruitcake. </P>

<P>My New Year’s Resolutions are:

Trade in AMC Gremlin.
Contribute to OSS project.
Take full 2 weeks vacation (dude ranch?).
Be less snide.

</P>

LISTING 43-3

Default message (default.txt)

<P>Sorry, nothing new today! Check back tomorrow.</P>

LISTING 43-4

A static page (favorites.php)

<?php
$title_msg = ‘favorites’;
$header_msg = ‘My favorite things’;

include_once(‘header.inc’)
?>

<P>These are a few of my favorite things.</P>

<DIV CLASS=”topic”>BOOKS</DIV>
<DL>
<DT>Cryptonomicon, by Neal Stephenson</DT>
<DD>The techie masterpiece--it’s our life, put in the blender
of a massive inventiveness. Be sure to also download the essay
“In the beginning was the command line” from his site,
www.crytonomicon.com .</DD>
</DL>

720

 Part VI Case Studies

<DIV CLASS=”topic”>MUSIC</DIV>
<DL>
<DT>Raw Power, by The Stooges</DT>
<DD>See who all those neo-punk bands are copying.</DD>
</DL>
<?php include_once(‘footer.inc’); ?>

LISTING 43-5

Included header file (header.inc)

<HTML>
<HEAD>
<TITLE>PHP4 Bible simple weblog:
<?php echo $_GET[‘date’]; ?></TITLE>
<?php include(“style.inc”); ?>
</HEAD>

<BODY BGCOLOR=”#FFFFFF”>
<TABLE BORDER=”0” CELLPADDING=”5” WIDTH=”100%“>
<!-- Title box -->
<TR WIDTH=”100%“ BGCOLOR=”#822222”>
 <TD WIDTH=”100%“ ALIGN=”right” COLSPAN=”2”>
 <H1><?php echo $header_msg; ?></H1>
 </TD>
</TR>
<!-- End Title box -->

<!-- Begin main body -->
<TR WIDTH=”100%“>
 <TD WIDTH=”20%“ VALIGN=”top” BGCOLOR=”#FFFECC”>
 <!-- Navbar -->
 <P CLASS=”sidebar”>Today</P>
 <P CLASS=”sidebar”>Links</P>
 <P CLASS=”sidebar”>Faves</P>
 <P CLASS=”sidebar”>About me</P>
 <P CLASS=”sidebar”>Contact</P>
 <!-- End Navbar -->
 </TD>
 <TD WIDTH=”80%“>

721

 Developing a Weblog with PHP 43

LISTING 43-6

Included footer (footer.inc)

<!-- End of main body -->
</TD></TR>
</TABLE>
<P CLASS=”footer”>Copyright Wiley, Inc. 2000 - 2009</P>
</BODY>
</HTML>

LISTING 43-7

Included stylesheet (style.inc)

<STYLE TYPE=”text/css”>
<!--
BODY, P, LI {font-family: verdana, arial, sans-serif;
font-size: 12pt; color: #000000; text-align: left;
margin-left:10px}
H1 {font-family: verdana, arial, sans-serif;
font-size: 14pt; color: #FFFFFF}
A:link, A:visited {font-family: verdana, arial, sans-serif;
font-size: 12pt; color: #822222; text-decoration:none}
.sidebar {font-family: verdana, arial, sans-serif;
font-size: 12pt; color: #822222; text-align:right;
margin-top:10; margin-right:7}
.topic {font-family: verdana, arial, sans-serif;
font-size: 12pt; font-weight: bold; color: #000000;
background: #FFFECC; text-align: left}
.footer {font-family: verdana, arial, sans-serif;
font-size: 9pt; color: #808080; text-align:right}
.previous {font-family: verdana, arial, sans-serif;
font-size: 12pt; color: #808080; text-align:left;
margin-left:25; margin-right:100}
.next {font-family: verdana, arial, sans-serif;
font-size: 12pt; color: #808080; text-align:right;
margin-left:100; margin-right:25}
-->
</STYLE>

To use the simple weblog, place all the files in a PHP-enabled directory on your web server. Create a

subdirectory for your daily entries (for example, 20000101.txt, 20020504.txt); otherwise, you’ll

quickly end up with dozens of files cluttering up your main directory. The files in this subdirectory

need to be writable by you and readable by all.

722

 Part VI Case Studies

When you’re ready to make an entry, log in to your web server, fire up a text editor such as vi,

and write an HTML-formatted text file for each day you want to post, naming it according to the

date convention we’ve established. Alternatively, instead of logging in to your web server, you can

write up your daily text file on a local client copy and then use scp to upload it to your web server.

Obviously, you can edit this file however many times you like, if you have multiple things to say per

day. As long as the files have the correct names, locations, and permissions, this code should run

smoothly for you. This type of weblog is self-archiving, so you don’t need to do anything special

with old entries — they’ll just stay around forever if you have a big enough hard disk.

If you still use FTP to upload files, please take an hour to learn how to use scp instead.

A fine command-line Windows client called pscp is available for free downloading at

www.chiark.greenend.org.uk/~sgtatham/putty. An even easier GUI Windows client called

WinSCP is available for free downloading at http://winscp.sourceforge.net/eng. FTP should be

used only for file downloading, for example from anonymous FTP servers, because it has caused so many

security problems when uploading files. One of the reasons to avoid the otherwise fine weblog-publishing

applications such as Movable Type and Blogger is that they rely on FTP to write files to your web server.

We promise that scp is just as easy to use, if not easier — instead of typing ftp myserver.mydomain
.com and put myfile.php, you combine both commands into the simple pscp myfile.php me@
myserver.mydomain.com:myfile.php.

If you really can’t make up your mind to learn scp, it might be safer to use an HTTP-based editing tool

as detailed in the next section.

Adding an HTML-Editing Tool
This simple weblog is quite adequate for many purposes, but it has one big disadvantage: You can’t

write up your daily entries using the web itself. Instead, you must create each entry using a text edi-

tor such as emacs or Notepad and save it to your web server’s docroot. This can be a significant

issue over time, especially if you are not allowed ssh/FTP access to your server or aren’t comfortable

with the process. HTTP is the next logical step for many users, and it is probably no less unsafe than

using FTP.

This process has one big problem: You need to give read/write permissions to the HTTP user (usu-

ally Nobody) in a particular directory. This is an inherently insecure process, and we do not recom-

mend it in the long run. We’ll describe the HTTP tools here so that you can become comfortable

with the new aspects before moving on to a better solution, which is using a database instead of

separate include() files for each entry. We’ll also try to keep the security problems to a minimum,

employing a password and letting you send mail to yourself if an unauthorized person tries to log in.

The files you need for an HTML-based file-writing tool are:

login.php■■

logentry.php■■

logentry_handler.php■■

password.inc■■

NOTENOTE

723

 Developing a Weblog with PHP 43

Put password.inc in a directory outside the web tree, such as /home/htmluser. This will ensure

that your passwords cannot be read via the web without being processed by PHP first. The directory

must be world-executable and the document must be readable by the httpd user (Nobody). If you

have root access on this server, you could chown it to belong to the httpd user; if not, you may have

to make the file world-readable, which is a security breach. Be sure to use a password different from

your system user password, just in case it’s compromised.

Listings 43-8 through 43-10 are the files you need for an HTML form to edit weblog entries.

LISTING 43-8

Weblog entry login screen (login.php)

<HTML>
<HEAD>
<TITLE>Weblog login screen</TITLE>
</HEAD>

<P>Supply a username and password.</P>
<FORM METHOD=POST ACTION=”logentry.php”>
<P>USERNAME:
<INPUT TYPE=TEXT NAME=”test_username” SIZE=20></P>
<P>PASSWORD:
<INPUT TYPE=PASSWORD NAME=”test_password” SIZE=20></P>
<P>BLOG ENTRY:

<TEXTAREA NAME=”logtext” COLS=75 ROWS=20WRAP=”VIRTUAL”>
</TEXTAREA></P>
<P><INPUT TYPE=”SUBMIT” VALUE=”SUBMIT”>
</FORM>
</BODY>
</HTML>

LISTING 43-9

Included password file (password.inc)

<?php
$username = “logwriter”;
$password = “logpass”;
?>

724

 Part VI Case Studies

LISTING 43-10

Weblog data entry script (logentry.php)

<?php
$date = date(“Ymd”);
include(“/home/htmluser/password.inc”);

if($_POST[‘test_username’] == $username &&
 $_POST[‘test_password’] == $password) {
 $fp = fopen(“/entries/$date.txt”, “w”);
 $try_entry = fwrite($fp, $_POST[‘logtext’]);
 if ($try_entry > -1) {
 print(“Weblog entry for $date written to disk.”);
 } elseif ($try_entry == -1) {
 print(“Weblog entry write failed.”);
 }
} else {
 mail(“me@localhost”, “Weblog snoop alert”, “Someone from
$REMOTE_ADDR is trying to get into your weblog entry
handler.”);
}
?>

Changes and Additions
Things you might want to immediately change, add, or alter in this codebase include:

Alter colors, styles, layout.■■

Allow database connectivity.■■

Change frequency of expected updating (weekly, monthly).■■

Change to calendar-based navigation rather than Next/Previous links.■■

Change to topic-based rather than date-based navigation.■■

Stop automatic entry changeover by date.■■

Allow future entries in database.■■

Allow multiple authors/editors with different permissions.■■

725

 Developing a Weblog with PHP 43

Besides a personal weblog, you could use this code for any simple, chronological note taking, such as:

A vacation journal■■

A project log■■

The story of your vast weight loss through heroic diet and exercise■■

A chronicle of your pregnancy and your baby’s development■■

Summary
Although it’s handy for small, standalone projects such as polls, PHP’s most impressive use is in

developing complete data-driven content sites. The easiest such site to develop is the personal

weblog. We encourage every PHP user to keep one, if only as a handy testbed for new ideas and

techniques.

If you wish, you can store your data in ordinary text files, using PHP to plug these files into a

template based on a criterion such as date. This will save a certain amount of formatting-related

repetition at the cost of somewhat decreased security. Far better in every way is to keep the data

in a database.

The weblog format is very flexible. It can scale up to a major public site like Slashdot, with tens of

thousands of contributors and a steady stream of new content upon which to comment. Or you can

keep a little secret diary on your own laptop, reading it in a browser window on the sly. The impor-

tant point is that once you’ve made a complete data-driven site with PHP, you’ll never go back to

static web pages.

727

I
n this chapter, we present a full working example of a small PHP appli-

cation: a web-based trivia game with a twist (the “Certainty Quiz”).

The main virtue of the chapter is its completeness: Instead of using

code fragments to illustrate talking points, as we do in most other chapters,

we’re showing everything, soup to nuts. As a result, this is one of the larger

examples in the book, weighing in at more than 1300 lines of PHP code.

Concepts Used in This Chapter
The code in this chapter uses a wide variety of techniques, tricks, and tech-

nologies that we’ve presented elsewhere in the book. In particular:

We make heavy use of the object-oriented features of PHP ■■

(Chapter 20).

We rely on PHP’s session mechanism to propagate game data from ■■

page to page (Chapter 24).

We use a back end database (MySQL) to store questions and high ■■

scores (Part II).

We do some behind-the-scenes mathematics, including approxi-■■

mating nth roots (Chapters 9 and 27).

We use arrays for storing data and for manipulating data returned ■■

from the database (Chapters 8 and 21).

We do a lot of string processing and concatenation to build our ■■

display pages, including the heredoc technique for templating

pages (Chapters 7 and 21).

We use the new exception-handling features of PHP5 to catch ■■

database and session problems (Chapter 31).

A Trivia Game

IN THIS CHAPTER

A guessing game with

approximate answers

The object-oriented

implementation of the game

Database and session support

Design considerations

728

 Part VI Case Studies

We highlight some of these topics in various sections later in the chapter as we delve into the code.

The Game
Several years ago, a friend asked one of us to try a quiz he’d seen somewhere on the Internet. After I

agreed, he told me that he would ask me 10 questions, each of which had a numerical answer (dates,

weights, lengths, counts, and so on). The unusual part was that instead of answering with a number,

I was to give a lower bound and an upper bound on the answer. I could make the ranges as large as I

wanted, and otherwise I had only one instruction: Make sure that you answer nine out of ten ques-

tions correctly.

I answered the questions confidently and was surprised at the end to find that my final score was

six (or was it four?). At any rate, I did surprisingly badly, but my friend said that everyone else he

had tried it on had done even worse. Now, how could anyone lose such an easily winnable game?

After all, when asked when Shakespeare was born, I could have said “Sometime between 30,000

B.C. and A.D. 30,000” and been pretty sure that I would be right. What trips people up seems to be

some combination of pride and overconfidence. The pride prevents you from giving a ridiculously

large range (because then your questioner knows you don’t have the foggiest idea when Shakespeare

was born); the overconfidence makes you willing to narrow the range beyond your real range of cer-

tainty. In the end, the game isn’t testing your knowledge — it’s testing your knowledge of your own

knowledge (or lack of knowledge).

Our version
In this chapter, we implement something like this quiz game, but with some changes to make it

more web-friendly. For one thing, rather than having the player type in numbers freely, we present

a range of choices that the player narrows down further. For another, we don’t rely on pride to make

the ranges narrow (because people may end up playing this over the web in the privacy of their own

home). Instead we add incentives to the scoring system to make people guess narrowly rather than

broadly. Finally, we add some features familiar from online games, such as levels of difficulty and a

list of top scorers.

The upshot is a game that, while it may or may not be fun, is certainly frustrating, which for many

people is nearly as good.

Sample screens
Figure 44-1 shows the game screen as it may look to a new arrival. There is a welcome message to

the right, and a question to the left, with radio buttons for choosing a range of answers.

729

 A Trivia Game 44

FIGURE 44-1

Start screen

Figure 44-2 shows the screen immediately after the player has answered the first question. Another

question is offered on the left, and now the state of the game score is highlighted on the right, show-

ing the correct answers to date, the credit remaining, and the level attained. (See the next section for

an explanation of what these things mean.)

Finally, Figure 44-3 shows “Game Over,” complete with taunting message and a list of high scorers.

(There’s a corresponding “Game Won” screen in the unlikely event that the user survived all the

questions the game could come up with.)

The rules
The basic play cycle is simple: The player is asked a question that requires a numerical answer, and

the player responds by choosing a range of values that should include the answer. The goal is to

answer as many questions correctly as possible, while surviving in the meantime. Survival depends

on credit, which is accumulated by answering questions correctly within a narrow range and is

spent by giving wrong answers or answering questions too broadly.

730

 Part VI Case Studies

FIGURE 44-2

Continuing play

FIGURE 44-3

Game over

731

 A Trivia Game 44

The exact rewards and penalties are easily tweakable in the code, but in this chapter’s version they are:

Correct answers■■ : One point added to credit, minus a penalty for the size of the range

specified. The penalty ranges from zero for answers that use only one step of the possible

range, up to four points for making the range as wide as possible.

Incorrect answers■■ : Four points deducted from credit.

Credit starts at five points and can rise only as high as fifteen points. The game is over when credit

goes below zero.

It is easy to pass by simply submitting your answer without making a choice, since the radio buttons

are set to specify the widest possible answer range unless the player changes them. The penalties are

set up so that passing is costly (a total of 1 - 4 = -3 points), but not as costly as guessing wrong (-4

points). The player is better off narrowing the range as much as possible, while still being sure that

the real answer is still included.

Playing the game yourself
If you just can’t wait to play, we have a playable version of the game available at www.braingia.
org/books/pmb/trivia.

The Code
The code for this example is almost completely written in an object-oriented style (see Chapter 20 for

an introduction to PHP’s version of object-oriented programming). Among the classes we define are:

Question■■ : Each Question object includes the text of the question, the correct answer, the

lower and upper bounds that are presented to the player, and enough information to dis-

play the range of choices that the player can choose from. In addition, Question instances

track whether or not they are answered correctly.

Game■■ : There should be one and only one Game object in existence at a particular time.

Game objects may include up to two question objects (the current question and the previ-

ous one), as well as a GameParameter instance.

GameParameters■■ : Contains all the numerical settings that affect how the game behaves

and manages some globally available resources such as the database connection.

GameDisplay■■ : Contains a Game instance as a component and does all the work of actually

displaying HTML and receiving input. Also contains an instance of GameText.

GameText■■ : A repository for boilerplate HTML that is not dependent on any knowledge of

the state of the game. Only this class and GameDisplay actually have HTML code in them.

732

 Part VI Case Studies

Code files
The code files include definitions for all the classes in the preceding section: question_class.
php, game_class.php, game_parameters_class.php, game_display_class.php, and game_
text_class.php. In addition, there are some code files that don’t define classes:

index.php■■ : The first file loaded, which handles sessions and post arguments and creates

the GameDisplay object.

certainty_utils.php■■ : A grab bag of initialization statements (seeding the random-

number generator, for example) and math utility functions.

entry_form.php■■ : A form for adding new questions to the database.

dbvars.php■■ : The usual file with definitions for username, password, and host for the

database connection.

We now take a tour of the code file listings. Rather than building from the ground up as we sometimes

do, in this chapter we work from the top down: first the very first page that is actually loaded, then

the code that page depends on, and so on until we bottom out in utility functions and database calls.

Finally, at the end of the chapter, we show how to construct the database and populate it with questions.

index.php
Listing 44-1 shows index.php, which is the user’s entry point. The primary job of this file is to deter-

mine where we are in the cycle of play, set up the appropriate PHP objects (either by creating them or

by retrieving them from the user’s session), and echo out the display code that the objects generate.

Where we are in the course of a game is determined by a combination of session and POST informa-

tion; as users arrive for the first time, they find neither a current session nor any POST arguments.

Successive pages, however, should have both an active session and useful information submitted

from the previous page.

LISTING 44-1

index.php

<?php
// Include code files, start up session
include_once(“certainty_utils.php”);
include_once(“game_display_class.php”);
session_start();

// Determine state and handle post arguments

try {

 // CASE 1: Player is submitting name for high score list
 if (get_session_value(‘game’) &&

733

 A Trivia Game 44

 get_post_value(‘HIGHSCORE’)) {
 if (get_session_value(‘game’) &&
 get_post_value(‘HIGHSCORE’)) {
 $game_display =
 new GameDisplay(get_session_value(‘game’));
 $game_display->handleHighScore();
 }
 }

 // CASE 2: Player is in middle of game that we are tracking
 elseif (get_session_value(‘game’) &&
 !get_post_value(‘NEW’)) {
 $lower = get_post_value(‘lower’);
 $upper = get_post_value(‘upper’);
 $game_display =
 new GameDisplay(get_session_value(‘game’));
 $game_display->updateWithAnswer($lower, $upper);
 }

 // CASE 3: Player has either just arrived or has
 // finished a game and asked for a new one.
 elseif (!get_post_value(‘POSTCHECK’) ||
 get_post_value(‘NEW’)) {
 $game_display = new GameDisplay(new Game());
 }

 // CASE 4: Something is wrong.
 // The page is the result of a POST operation,
 // yet we don’t seem to have a live session, so
 // we are not successfully tracking a game.
 // The only thing to do is complain, and ask about
 // cookies.
 else {
 $game_display =
 new GameDisplay(new Game());
 throw (new Exception(“We couldn’t track your game.” .
 “You may have to enable cookies to play”));
 }

 // Construct string that will be displayed as page
 $page_string = $game_display->display();
 // Store game state in session so that next
 // page can pick it up
 set_session_value(‘game’,
 $game_display->_game);

} // end of try block

catch (Exception $exception) {
 // There is a problem somewhere. Create

734

 Part VI Case Studies

 // an error page.
 $exception_msg = $exception->getMessage();
 $display = new GameDisplay(null);
 $page_string =
 $display->makeErrorPage($exception_msg);
 // hope to start fresh next time
 unset_session_value(‘game’);
}

// Actually echo page to browser

 echo($page_string);

?>

The object types that index.php cares about are GameDisplay and Game. The Game object con-

tains all the state information that needs to be preserved from page to page about where the user is

in the game (score, questions asked already, and so on). The GameDisplay object contains a Game

instance and does everything necessary to produce an HTML page from it.

If the user is starting off for the first time, we create a new Game object, relying on the object’s

constructor to initialize it appropriately. For subsequent pages, though we rely on the automatic

object serialization feature of PHP sessions to store the Game object for us. (The actual definitions of

get_session_value() and set_session_value() are in certainty_utils.php, but all that

is happening is that we stash the Game object in a session. PHP takes care of the serialization that is

necessary to read the object into a session and back out again.)

For more on what it means to serialize an object, see Chapter 20; for an explanation of

sessions and their workings, see Chapter 24.

If the user is in the middle of a game, we expect both a Game object stored in the session and a form

submission representing either a guess at the answer or a request to be listed on the High Scores page.

Regardless of whether we create a new Game object or retrieve the one from the last page, we create

a new GameDisplay object around it and then ask that object for a string that represents the entire

HTML page. We store this in a string, ready to echo it out to the browser in the very last code line.

Exceptions

Many things can go wrong with the execution of this game’s code. For one thing, of course, there’s

always a possibility of a code bug that leaves the game in a strange state. In addition, though, the

code relies on at least three external “services,” any of which might misbehave:

The database, which stores the questions and answers■■

The session mechanism, which is in turn probably relying on files on the hard disk■■

Cookies stored on the user’s browser, which may refuse them■■

CROSS-REFCROSS-REF

735

 A Trivia Game 44

If any of these services turn out to be unreliable, the game will not be playable. Our goal in this situ-

ation should be to fail as gracefully as possible.

In a previous edition of this chapter, the code had to catch all the possible failures and propagate an

error up to this page, which would then detect the failure and display an appropriate error string.

This time, though, we can use PHP’s exception mechanism, which makes it much easier to struc-

ture the code. Whenever we encounter a problem that cannot be recovered from, we throw the

problem, along with a descriptive string. The catch statement in index.php is the only one in the

game’s code, and so will receive any of the exceptions that happen as a result of its calls to functions

in other code files. In addition, it will catch the exception thrown in Case 4 of index.php, which

probably indicates that the user’s browser is not accepting cookies.

See Chapter 31 for an introduction to exceptions and error handling.

game_display_class.php
Almost all of the look-and-feel action for this game is in game_display_class.php, as shown in

Listing 44-2.

The code file depends on two other files: game_class.php and game_text_class.php. The for-

mer contains most of the logic for the inner workings of the game, whereas the latter just contains

some boilerplate text. The job of the GameDisplay class is to extract all the information from the

game state necessary to produce actual HTML pages.

The important public functions in the class are:

The constructor function■■

updateWithAnswer()■■ , which is called with data from the user’s submission of a guess

makeErrorPage()■■ , which returns HTML to display if something has gone wrong

display()■■ , which returns HTML to display when everything has gone right

LISTING 44-2

game_display_class.php

<?php
include_once(“game_class.php”);
include_once(“game_text_class.php”);

class GameDisplay
{
 // presentation
 public $_pageTitle = “The Certainty Quiz”;
 public $_blueColor = “#AAAAFF”;
 public $_redColor = “#FFAAAA”;

 // contents

CROSS-REFCROSS-REF

736

 Part VI Case Studies

 public $_game = NULL;
 public $_gameText;
 public $_highScorePosted = FALSE;

 // CONSTRUCTOR

 function __construct ($game) {
 $this->_game = $game;
 $this->_gameText = new GameText();
 }

 // PUBLIC FUNCTIONS
 // accessors
 function getPageTitle() {
 return($this->_pageTitle);
 }
 function getBlueColor() {
 return($this->_blueColor);
 }
 function getRedColor() {
 return($this->_redColor);
 }
 function getGame() {
 return($this->_game);
 }
 function getHighScorePosted() {
 return($this->_highScorePosted);
 }

 function updateWithAnswer ($lower, $upper) {
 $game = $this->getGame();
 $game->updateWithAnswer($lower, $upper);
 }

 function makeErrorPage ($problem_string) {
 // constructs the HTML page to display when
 /// something has gone horribly wrong
 $top_matter_string =
 $this->_makeTopMatter($this->_pageTitle);
 $page_string = <<<EOT
$top_matter_string
</H2></CENTER>
<TABLE BORDER=2>
<TR>
<CENTER>
<H2>We’re sorry, but the game is not available
right now.</H2><H4>($problem_string)</H4>
</CENTER>
</TR></TABLE>

737

 A Trivia Game 44

</BODY></HTML>
EOT;
 return($page_string);
 }

 function display () {
 // returns entire page as string ---
 // backbone structure of page, plus
 // overridable methods to print components

 // sanity checks
 if (!$this->_game ||
 !is_object($this->_game)) {
 throw new
 Exception(“Cannot find valid game object”);
 }
 elseif (!$this->_game->getDbConnection()) {
 throw new
 Exception(“No database connection”);
 }

 // display of apparently valid page
 else {
 $top_matter_string =
 $this->_makeTopMatter($this->_pageTitle);
 $current_question =
 $this->_currentQuestionString();
 $previous_question =
 $this->_previousQuestionString();
 $game_state =
 $this->_gameStateString();
 $introduction =
 $this->_gameText->introduction();
 $rules =
 $this->_gameText->rules();
 if ($this->_game->getGameLost()) {
 $left_side =
 $this->_gameText->gameLostText() .
 $this->_highScoreString();
 }
 elseif ($this->_game->getGameWon()) {
 $left_side =
 $this->_gameText->gameWonText() .
 $this->_highScoreString();
 }
 else {
 $left_side = $current_question;
 }
 if ($this->_game->getPreviousQuestion()) {

738

 Part VI Case Studies

 $right_side =
 “<TABLE><TR><TD>
 $previous_question
 </TD></TR><TR><TD>
 $game_state
 </TD></TR><TR><TD>
 $rules
 </TD></TR></TABLE>”;
 }
 else {
 $right_side =
 “<TABLE><TR><TD>
 $introduction
 </TD></TR>
 <TR><TD>
 $rules
 </TD></TR><TR><TD>
 $game_state
 </TD></TR>
 </TABLE>”;
 }

// actually construct page
$page_string = <<<EOT
$top_matter_string
</H2></CENTER>
<TABLE BORDER=2>
<TR>
<TD VALIGN=TOP WIDTH=40% >$left_side</TD>
<TD VALIGN=TOP WIDTH=60% >$right_side</TD>
</TR></TABLE>
</BODY></HTML>
EOT;
 return($page_string);
 }
 }

 function handleHighScore () {
 // Handles database update for case where player
 // has earned high score, and has submitted
 // a name for the record
 if (!$this->_highScorePosted) {
 $this->_highScorePosted = TRUE;
 if (get_post_value(‘NICKNAME’) &&
 get_post_value(‘ANSWER_COUNT’) &&
 get_post_value(‘CREDIT’) &&
 get_post_value(‘CHECKSUM’) &&
 $this->_checksumChecks(
 get_post_value(‘ANSWER_COUNT’),

739

 A Trivia Game 44

 get_post_value(‘CREDIT’),
 get_post_value(‘CHECKSUM’))) {
 $name = get_post_value(‘NICKNAME’);
 $answer_count = get_post_value(‘ANSWER_COUNT’);
 $credit = get_post_value(‘CREDIT’);
 $connection =
 $this->_game->gameParameters->getDbConnection();
 $safe_name = mysql_real_escape_string($name);
 $safe_ans = mysql_real_escape_string($answer_count);
 $safe_credit = mysql_real_escape_string($credit);
 $query = “insert into high_scores
 (name, answer_count, credit)
 values
 (‘$safe_name’, ‘$safe_ans’, ‘$safe_credit’)“;
 $result = mysql_query($query, $connection);
 }
 else {
 // do nothing--failure to add high score
 // should not be a deal killer
 // really don’t even need the else condition
 // but if you do, here’s where it would go.
 }
 }
 }

 // PRIVATE FUNCTIONS

 private function _makeTopMatter ($title) {
 // returns HTML fragment that heads both
 // regular page and error page, containing
 // HTML head and title
 $return_string = <<<EOT
<HTML><HEAD><TITLE>$title</TITLE></HEAD>
<BODY BGCOLOR=#FFFFFF><CENTER>
<H1>$title

(How sure are you?)
</H1></CENTER>
EOT;
 return($return_string);
 }

 private function _currentQuestionString () {

 return(“<H2>” .
 $this->_game->getCurrentQuestionText() .
 “</H2>” .
 “<FORM METHOD=POST ACTION=\“index.php”>” .
 “<INPUT TYPE=HIDDEN NAME=POSTCHECK VALUE=1>” .

740

 Part VI Case Studies

 $this->_distractorString(
 $this->_game->getCurrentQuestion()) .
 “</FORM>”);
 }

 private function _distractorString ($question) {
 // creates the actual HTML for presentation of
 // radio-button alternatives for guesses.
 // Assumes that the array representing the
 // actual alternatives has been calculated in
 // advance, retrievable from the question using
 // getDistractorArray
 $distractor_array = $question->getDistractorArray();
 $distractor_string = “<TABLE><TR VALIGN=TOP><TD>”;
 $distractor_string .=
 “<TABLE BORDER=1 BGCOLOR=\“#AAAAFF\“><TR><TH>
 </TH><TH>At least</TH><TH>Not more than</TH>”;
 $count = 1; // 1-based labels are preferable,
 // so we can just use if ($label) ...
 $total = count($distractor_array);
 foreach ($distractor_array as $distractor) {
 $lower_selected = ($count == 1) ?
 “CHECKED” : “”;
 $upper_selected = ($count == $total) ?
 “CHECKED” : “”;
 $formatted_distractor =
 ($distractor >= 10000) ?
 number_format($distractor) : $distractor;
 $distractor_string .=
 “<TR><TD>$formatted_distractor</TD>
 <TD><INPUT TYPE=RADIO NAME=\“lower\“
 VALUE=$count
 $lower_selected ></TD>\n” .
 “<TD><INPUT TYPE=RADIO NAME=\“upper\“
 VALUE=$count
 $upper_selected ></TD></TR>\n”;
 $count++;
 }
 $distractor_string .= “</TABLE>”;
 $distractor_string .= “</TD><TD>”;
 $distractor_string .=
 “<INPUT NAME=\“Submit guess\“ VALUE=\“Submit guess\“
 TYPE=SUBMIT>”;
 $distractor_string .= “</TD></TR></TABLE>”;

 return($distractor_string);
 }

741

 A Trivia Game 44

 private function _previousQuestionString () {
 if (!$this->_game->getPreviousQuestion()) {
 $return_string = “”;
 }
 else {
 $return_string =
 $this->_game->previousQuestionCorrect() ?
 $this->_rightString() :
 $this->_wrongString();
 }
 return($return_string);
 }

 function _rightString () {
 return(“<H1>RIGHT!</H1>”);
 }

 function _wrongString () {
 return(“<H1>WRONG!</H1>”);
 }

 private function _highScoreEligible () {
 // takes a game-ending score, and queries the
 // DB to see if the player is eligible for the
 // high score list
 $query = “select name, answer_count, credit
 from high_scores
 order by answer_count desc, credit desc
 limit 10”;
 $connection =
 $this->_game->getDbConnection();
 if ($connection && is_resource($connection)) {
 $result = mysql_query($query, $connection);
 $eligible = false;
 if (mysql_num_rows($result) > 9) {
 while ($row = mysql_fetch_assoc($result)) {
 $answer_count = $row[‘answer_count’];
 $credit = $row[‘credit’];
 if (($this->_game->getCorrectAnswers()
 > $answer_count) ||
 (($this->_game->getCorrectAnswers()
 == $answer_count) &&
 ($this->_game->_credit > $credit))) {
 $eligible = TRUE;
 break;
 }
 }
 }

742

 Part VI Case Studies

 else {
 $eligible = TRUE;
 }
 return($eligible);
 }
 else {
 throw new
 Exception(“Game display has no database connection”);
 }
 }

 // Checksum is calculated when posting a score
 // (comprised of a number of correct answers plus
 // credit remaining) and the checksum is compared with
 // the submitted scores. A first line of defense against
 // spoofing (unless, of course, the checksum scheme is
 // published in a book or something).
 private function _checksumChecks ($answer_count, $credit,
 $checksum) {
 return($checksum ==
 $this->_makeCheckSum($answer_count, $credit));
 }

 private function _makeChecksum ($answer_count, $credit) {
 return ((round($credit)) * 17) *
 ($answer_count * 31);
 }

 private function _postHighScoreString () {
 // The greeting plus HTML form for actually submitting
 // a name to the high scores list
 global $PHP_SELF;
 $answer_count = $this->_game->getCorrectAnswers();
 $credit = $this->_game->getCredit();
 $checksum = $this->_makeChecksum($answer_count, $credit);
 $result_string =
 “<H2>Congratulations! You have a high score</H2>”.
 “Enter your name (or a nickname) for the high “.
 “scores list:”.
 “<FORM METHOD=POST ACTION=\“$PHP_SELF\“ >”.
 “<INPUT NAME=NICKNAME TYPE=TEXT SIZE = 30>”.
 “<INPUT NAME=ANSWER_COUNT TYPE=HIDDEN “.
 “VALUE=$answer_count>”.
 “<INPUT NAME=CREDIT TYPE=HIDDEN “.
 “VALUE=$credit>”.
 “<INPUT NAME=CHECKSUM TYPE=HIDDEN “.
 “VALUE=$checksum>”.
 “<INPUT NAME=Submit TYPE=SUBMIT “.
 “VALUE=Submit >”.

743

 A Trivia Game 44

 “<INPUT TYPE=HIDDEN NAME=POSTCHECK VALUE=1>” .
 “<INPUT TYPE=HIDDEN NAME=HIGHSCORE VALUE=1>” .
 “<FORM>”;
 return($result_string);
 }

 private function _highScoreString () {
 // The table of high scores itself, including
 // the database interaction necessary to retrieve it
 if ($this->_highScoreEligible() &&
 !$this->_highScorePosted) {
 $result_string = $this->_postHighScoreString();
 }
 else {
 $result_string = “”;
 }
 $result_string .=
 “<H2>High scores to date</H2>”.
 “<TABLE BORDER=1><TR><TH>Rank</TH>”.
 “<TH>Name</TH><TH>Correct answers</TH>”.
 “<TH>Credit left at end</TH></TR>”;
 $query = “select name, answer_count, credit
 from high_scores
 order by answer_count desc, credit desc
 limit 10”;
 $connection =
 $this->_game->gameParameters->getDbConnection();
 if ($connection && is_resource($connection)) {
 $result = mysql_query($query, $connection);
 $rank = 1;
 while ($row = mysql_fetch_assoc($result)) {
 $name = $row[‘name’];
 $answer_count = $row[‘answer_count’];
 $credit = (int) ($row[‘credit’]);
 $result_string .=
 “<TR><TH>$rank</TH><TD>$name</TD>”.
 “<TD>$answer_count</TD><TD>$credit</TD></TR>”;
 $rank++;
 }
 $result_string .= “</TABLE>”;
 return($result_string);
 }
 else {
 throw new
 Exception(“Game display has no database connection”);
 }
 }

 private function _gameStateString () {

744

 Part VI Case Studies

 // The HTML table
 $correct_answers = $this->_game->getCorrectAnswers();
 $credit = round_to_digits($this->_game->getCredit(), 2);
 $level = $this->_game->getLevel();
 return(“<TABLE CELLPADDING=10>”.
 “<TR BGCOLOR=$this->_blueColor>”.
 “<TH>Total correct answers:</TH>”.
 “<TD>$correct_answers</TD></TR>”.
 “<TR BGCOLOR=$this->_redColor><TH>Credit remaining:</TH>”.
 “<TD>$credit</TD></TR>”.
 “<TR BGCOLOR=$this->_blueColor>”.
 “<TH>You have reached level:</TH>”.
 “<TD>$level</TD></TR></TABLE>”);
 }
}
?>

Note that in the GameDisplay class we use some object-oriented constructs that were new as of

PHP5. The constructor function is called __construct(), rather than having the same name as

the class. And we have designated the functions that are not intended for external use as private,

which will prevent any such use by other classes.

Most of the class’s private functions involve querying the Game object for information that it then

wraps up in HTML strings. One of the more interesting functions of this type is distractor_
string(), which creates the actual display of alternatives for the answer range. The general divi-

sion of labor here is:

The upper and lower bounds for the answer are specified in the database, as well as how ■■

many choices should be displayed and how they should be scaled.

The ■■ Question object takes this information and creates all the intermediate steps of the

answer range as it is constructed.

The ■■ GameDisplay object queries the game for the current question and then queries that

question to discover the upper and lower bounds and the intermediate steps. It then sim-

ply wraps those values in HTML to present radio button alternatives, with the maximum

answer range preselected.

game_text_class.php
Your humble authors try really hard to make this stuff interesting, but in this case, we must declare

defeat. The GameText class just wraps up some boilerplate HTML into member functions so that the

GameDisplay class can ask for it. Enough said?

The functions use our favorite technique for creating large chunks of boilerplate, which is the

heredoc syntax. (See Chapter 7 for more on the uses of heredoc.) Listing 44-3 shows the game
_text_class.php.

745

 A Trivia Game 44

LISTING 44-3

game_text_class.php

<?php
class GameText
{

function __construct () {
 // no vars, nothing for constructor to do
}

function introduction () {
$intro = <<<EOT
<H2>Welcome to the Certainty Quiz!</H2>
The game that tests
how much you know about how much and how much you
know about how much you know about how much!
<H4>The object</H4> The goal is to answer as many questions
correctly as possible.
Answer questions
(starting with the first one at the left), by choosing
values above and below where you think the right answer lies.
Answers are correct if they include the real answer in the
range.
The narrower your guesses, the longer you’ll survive.
There are ten levels; if you think the questions are
too easy, keep going.
EOT;
 return($intro);
 }

function rules () {
$rules = <<<EOT
<H4>Rules and scoring</H4>
Four points subtracted from your credit for every incorrect
answer.
One point added to your credit for every correct answer,
minus a penalty for the range of your answer. Specifying the
entire range possible subtracts four points (for a total of -3);
specifying a single step of the range subtracts nothing
 (for a total of +1). Intermediate ranges give intermediate re
sults.
Credit is capped at 15.
Whenever your credit falls below zero, the game is over.
EOT;
 return($rules);
}

function gameLostText () {

746

 Part VI Case Studies

global $PHP_SELF;
$game_over = <<<EOT
<H1>Thanks for playing!</H1>
Thanks for taking the certainty quiz, and for being
such a good LOSER!

<FORM METHOD=POST ACTION=”$PHP_SELF”>
<INPUT TYPE=SUBMIT NAME=NEW VALUE=”New Game”>
<INPUT TYPE=HIDDEN NAME=POSTCHECK VALUE=1>
</FORM>
EOT;
return($game_over);
}

function gameWonText () {
global $PHP_SELF;
$game_over = <<<EOT
<H1>You won!</H1>
Thanks for taking the certainty quiz, and for
beating it. We bow to your superior knowledge
of what you know, and what you don’t know.
<FORM METHOD=POST ACTION=”$PHP_SELF”>
<INPUT TYPE=SUBMIT NAME=NEW VALUE=”New Game”>
<INPUT TYPE=HIDDEN NAME=POSTCHECK VALUE=1>
</FORM>
EOT;
return($game_over);
}

}
?>

game_class.php
In this section, we get to the basic logic of the game. The Game object contains everything worth

remembering about the current state of the game, as well as methods for updating it.

Data members

It’s worth listing the important pieces of data that the Game object tracks:

The current question (an instance of class ■■ Question)

The previous question, if any (an instance of class ■■ Question)

The questions that have been asked at this level (an array of database IDs)■■

The questions that could still be asked at this level (an array of database IDs)■■

The game’s numerical defaults (an instance of class ■■ GameParameters)

Numerical variables that track the game’s state (credit, questions answered, and so on)■■

747

 A Trivia Game 44

Public functions

As with the GameDisplay class, let’s list the functions that the Game class exposes to callers:

The constructor function.■■

Various accessor functions for member data.■■

updateWithAnswer()■■ takes the player’s upper and lower guesses and updates the game’s

state accordingly, including both update of scores and setting up the next question to be

asked.

Database interaction

The actual questions and answers that the game displays are retrieved from a backend MySQL data-

base. There are two main types of interaction with that database:

Whenever the player moves to a new level (including the first one), the ■■ Game object

retrieves the IDs of all questions that may be asked at that level and scrambles their order-

ing. This randomized list is propagated along with the Game object from page to page

within a particular level of the game.

Whenever a new question is actually ready to be asked, the ■■ Game object pops its database

ID off the list constructed and then queries the question database to retrieve all the rest of

the question’s information (the text of the question, the correct answer, the range of pos-

sible values to present, and so on).

Listing 44-4 shows game_class.php.

LISTING 44-4

game_class.php

<?php
include_once(“certainty_utils.php”);
include_once(“game_parameters_class.php”);
include_once(“question_class.php”);

class Game
{

 public $currentQuestion = NULL;
 public $previousQuestion = NULL;
 public $gameParameters;

 public $_dbConnection = NULL;
 public $_credit = 0.0;
 public $_level;
 public array($_questionIdsAtLevel); // an array of ids

748

 Part VI Case Studies

 public $_questionsAskedAtLevel = 0; // a count
 public $_totalQuestions = 0;
 public $_correctAnswers = 0;
 public $_gameLost = FALSE;
 public $_gameWon = FALSE;

 // CONSTRUCTOR
 function __construct () {
 $this->gameParameters = new GameParameters();
 $this->_dbConnection =
 $this->gameParameters->getDbConnection();
 if (!$this->_dbConnection) {
 throw new Exception(“No database connection”);
 }
 else {
 $this->_correctAnswers = 0;
 $this->_level =
 $this->gameParameters->getStartingLevel();
 $this->_credit =
 $this->gameParameters->getStartingCredit();
 // make a list of questions to be asked at the
 // starting level
 $this->_setupQuestionIds();
 // actually retrieve the first question
 $this->_installQuestion();
 }
 }

 // PUBLIC FUNCTIONS
 // accessors
 function getGameParameters()
 {return($this->gameParameters);}

 function getCurrentQuestion()
 {return($this->currentQuestion);}

 function getPreviousQuestion()
 {return($this->previousQuestion);}

 function getCredit() {return($this->_credit);}

 function getLevel() {return($this->_level);}

 function getQuestionsAskedAtLevel()
 {return($this->_questionsAskedAtLevel);}

 function getTotalQuestions()
 {return($this->_totalQuestions);}

749

 A Trivia Game 44

 function getCorrectAnswers()
 {return($this->_correctAnswers);}

 function getGameLost()
 {return($this->_gameLost);}

 function getGameWon()
 {return($this->_gameWon);}

 function getCurrentQuestionText() {
 if (!is_object($this->currentQuestion)) {
 print(“What is it?
”);
 print_r($this->currentQuestion);
 }
 else {
 return($this->currentQuestion->getQuestion());
 }
 }

 function previousQuestionCorrect() {
 return($this->previousQuestion->getCorrect());
 }

 function getDbConnection () {
 if (!$this->_dbConnection) {
 $this->_dbConnection =
 $this->gameParameters->getDbConnection();
 }
 return($this->_dbConnection);
 }

 function updateWithAnswer ($lower, $upper) {
 // The main modifying function for a game object.
 // Takes a player’s upper and lower guess, determines
 // correctness, updates scores, determines if the
 // player has graduated to the next level, and
 // swaps in the next question.
 $this->previousQuestion = $this->currentQuestion;
 $this->previousQuestion->updateWithAnswer($lower,
 $upper);
 $this->_updateScores();
 $this->_maybeChangeLevel();
 if (!($this->_gameLost || $this->_gameWon)) {
 $this->_installQuestion();
 }
 }

 // PRIVATE FUNCTIONS
 function _installQuestion () {

750

 Part VI Case Studies

 // actually retrieve a question from the database
 // and create a corresponding instance of Question
 if (count($this->_questionIdsAtLevel) > 0) {
 // pop a question off the randomized list
 $question_id =
 array_pop($this->_questionIdsAtLevel);
 $query =
 “select id, question, answer,
 upper_limit, lower_limit, scaling_type
 from question
 where id = $question_id”;
 if (!$this->_dbConnection) {
 $this->_dbConnection =
 $this->gameParameters->getDbConnection();
 }
 if ($this->_dbConnection &&
 is_resource($this->_dbConnection)) {
 $result = mysql_query($query,
 $this->_dbConnection);
 if ($row = mysql_fetch_assoc($result)) {
 $this->currentQuestion =
 new Question(
 $row[‘id’],
 $row[‘question’],
 $row[‘answer’],
 $row[‘lower_limit’],
 $row[‘upper_limit’],
 10,
 $row[‘scaling_type’]);
 $this->_questionsAskedAtLevel++;
 }
 else {
 throw new
 Exception(“Problem retrieving question from database”);
 }
 }
 else {
 throw new
 Exception(“Problem querying question database”);
 }
 }
 else {
 throw new
 Exception(“Could not find any questions to ask”);
 }
 }

 function _setupQuestionIds () {

751

 A Trivia Game 44

 $this->_questionIdsAtLevel =
 $this->_getQuestionIdsAtLevel($this->_level);
 }

 function _getQuestionIdsAtLevel ($level) {
 // to be used at time of graduation to a new level -
 // retrieves the new ids (only) of all questions at
 // the level, and shuffles them into a random order.
 $return_array = array();
 $query = “select id from question
 where level = $level”;
 $this->getDbConnection();
 if (!$this->_dbConnection) {
 throw new
 Exception(“No database connection”);
 }
 else {
 $result = mysql_query($query,
 $this->_dbConnection);
 while ($row = mysql_fetch_assoc($result)) {
 array_push($return_array, $row[‘id’]);
 }
 }
 // randomize the order of the questions
 $return_array = create_randomized_array($return_array);
 return($return_array);
 }

 public function _updateScores () {
 // Change the current score based both on
 // whether the player got the answer right and on
 // the spread between the player’s upper and lower
 // guess. Calculations depend on settings from
 // the GameParameters class.
 if ($this->previousQuestion->rightAnswer()) {
 $this->_correctAnswers =
 $this->_correctAnswers + 1;
 $this->_credit +=
 $this->gameParameters->getRightAnswerCredit() -
 ($this->previousQuestion->getAnswerSpread() *
 $this->gameParameters->getAnswerSpreadDebit());
 }
 else {
 $new_credit =
 $this->_credit =
 $this->_credit -
 $this->gameParameters->getWrongAnswerDebit();
 }

752

 Part VI Case Studies

 // enforce cap on credit
 $this->_credit =
 min($this->_credit,
 $this->gameParameters->getMaximumCredit());
 }

 function _maybeChangeLevel () {
 if ($this->_credit < 0.0) {
 $this->_gameLost = TRUE;
 }
 else {
 $params = $this->gameParameters;
 $current_level = $this->_level;
 if ($current_level >
 $params->getMaximumLevel()) {
 $this->_gameWon = TRUE;
 }
 else {
 // find out if questions remain to be
 // asked at this level
 if (($this->_questionsAskedAtLevel >=
 $params->getQuestionsPerLevel($current_level)) ||
 (count($this->_questionIdsAtLevel) == 0)) {
 // either we have asked the limit of
 // questions per level, OR we have simply run out
 $this->_level++;
 $this->_questionsAskedAtLevel = 0;
 $this->_setupQuestionIds();
 // note recursive call --- it’s possible
 // that no questions were found, and we have
 // to keep going
 $this->_maybeChangeLevel();
 }
 }
 }
 }

 function __sleep () {
 // make sure to serialize all fields except
 // the database connection (has to be recreated)
 // and the previous question (no point).
 return(array(
 ‘gameParameters’,
 ‘currentQuestion’,
 ‘_credit’,
 ‘_level’,
 ‘_questionIdsAtLevel’,
 ‘_questionsAskedAtLevel’,
 ‘_correctAnswers’,
 ‘_totalQuestions’,

753

 A Trivia Game 44

 ‘_gameLost’,
 ‘_gameWon’));
 }
}
?>

Handling an answer

Here are the steps that a Game object goes through in dealing with a guess range submitted by a

player (in the function updateWithAnswer):

 1. Move the current question object to the previous question slot.

 2. Update the (now previous) question with the upper and lower ranges of the guess (which

are still in terms of step numbers from the form rather than actual values).

 3. Query the previous question to discover the range of the guess and whether the question

was correctly answered. Update all scores (credit, correct answers) appropriately.

 4. Decide whether to promote the player to a new level now. If so, retrieve the database IDs of

all questions that may be asked at that level. Randomize the order of the question list.

 5. If the game has not yet ended, grab a new question ID from the randomized list and use it

to ask the database for a new question. Turn that data into a Question object and make it

the current question.

Serialization and sleep()

The sleep() function is called to do cleanup whenever an object is serialized and also returns a list

of all the member variables that should be recorded in a serialization. The Game class makes use of

only the latter capability — all member variables except the previous question and the database con-

nection itself are retained as the object is stored in the session for the next page’s use.

game_parameters_class.php
The single instance of the GameParameters class, shown in Listing 44-5, packages up all the default

numbers that we may want to customize in making a new version of the game (the penalties and

rewards, the number of levels, the starting and maximum credit, and so on). In addition, this object

manages global access to the database connection.

LISTING 44-5

game_parameters_class.php

<?php
include_once(“certainty_utils.php”);
include_once(“dbvars.php”);

754

 Part VI Case Studies

class GameParameters {

 var $_dbConnection = NULL;
 var $_startingLevel = 1;
 var $_maximumLevel = 10;
 var $_startingCredit = 5.0;
 var $_maximumCredit = 15.0;
 var $_questionsPerLevel = 3;
 var $_rightAnswerCredit = 1.0;
 var $_wrongAnswerDebit = 4.0;
 var $_answerSpreadDebit = 4.0;

 // CONSTRUCTOR
 function GameParameters () {
 // all fields set by default values
 }

 // PUBLIC FUNCTIONS
 // accessors

 function getStartingLevel () {
 return($this->_startingLevel);
 }

 function getMaximumLevel () {
 return($this->_maximumLevel);
 }

 function getStartingCredit () {
 return($this->_startingCredit);
 }

 function getMaximumCredit () {
 return($this->_maximumCredit);
 }

 function getRightAnswerCredit () {
 return($this->_rightAnswerCredit);
 }

 function getWrongAnswerDebit () {
 return($this->_wrongAnswerDebit);
 }

 function getAnswerSpreadDebit () {
 return($this->_answerSpreadDebit);
 }

755

 A Trivia Game 44

 function getQuestionsPerLevel () {
 return($this->_questionsPerLevel);
 }

 function getDbConnection () {
 global $host, $user, $pass, $db; // from dbvars.inc
 if ($this->_dbConnection &&
 is_resource($this->dbConnection)) {
 return($_dbConnection);
 }
 else {
 // suppress warnings about connection,
 // will handle at higher level if failed
 $connection =
 @mysql_connect($host, $user, $pass);
 if ($connection &&
 mysql_select_db($db, $connection)) {
 return($connection);
 }
 else {
 return(FALSE);
 }
 }
 }

 function __sleep () {
 return(array(‘_startingLevel’,
 ‘_startingCredit’,
 ‘_rightAnswerCredit’,
 ‘_wrongAnswerDebit’,
 ‘_answerSpreadDebit’,
 ‘_questionsPerLevel’));
 }
}
?>

certainty_utils.php
This code file, shown in Listing 44-6, is a grab-bag for capabilities and definitions that do not fit

neatly into a particular class and that are used in more than one other code file.

Everything in certainty_utils.php fits into one of a few categories:

Initial declarations (seeding the random number generator, setting the error-reporting level).■■

Abstraction functions for session and post variables.■■

Utility functions for calculating intermediate answer values and for randomizing question lists.■■

756

 Part VI Case Studies

LISTING 44-6

certainty_utils.php

<?php

// Definitions and utility functions for the
// Certainty Quiz game
error_reporting(E_ALL);
// enumeration constants for the scaling of distractors
define(“CERTAINTY_LINEAR”, 1);
define(“CERTAINTY_GEOMETRIC”, 2);

// Seed the random number generator
srand((double) microtime() * 1000000);

// A hack to retrieve the value of POST values
// without explicitly checking PHP versions.
function get_post_value ($var_name) {
 global $HTTP_POST_VARS;
 if (IsSet($_POST) &&
 IsSet($_POST[$var_name])) {
 return($_POST[$var_name]);
 }
 elseif (IsSet($HTTP_POST_VARS) &&
 IsSet($HTTP_POST_VARS[$var_name])) {
 return($HTTP_POST_VARS[$var_name]);
 }
 else {
 return(FALSE);
 }
}

function get_session_value ($var_name) {
 global $HTTP_SESSION_VARS;
 if (IsSet($_SESSION) &&
 IsSet($_SESSION[$var_name])) {
 return($_SESSION[$var_name]);
 }
 elseif (IsSet($HTTP_SESSION_VARS) &&
 IsSet($HTTP_SESSION_VARS[$var_name])) {
 return($HTTP_SESSION_VARS[$var_name]);
 }
 else {
 return(FALSE);
 }
}

function set_session_value ($var_name, $value) {

757

 A Trivia Game 44

 global $HTTP_SESSION_VARS;
 if (IsSet($_SESSION)) {
 $_SESSION[$var_name] = $value;
 $HTTP_SESSION_VARS[$var_name] = $value;
 }
 else {
 $HTTP_SESSION_VARS[$var_name] = $value;
 }
}

function unset_session_value ($var_name) {
 if (IsSet($_SESSION[$var_name])) {
 $_SESSION[$var_name] = ‘’;
 unset($_SESSION[$var_name]);
 }
}

// Numerical functions

function round_to_digits ($number, $digits) {
 if ($number < 0) {
 return(- round_to_digits(- $number, $digits));
 }
 else if ($number == 0) {
 return($number);
 }
 else {
 $tens =
 floor(log10($number));
 $divisor = pow(10, ($tens - $digits));
 $significant = (1.0 * $number) /
 $divisor;
 $rounded = round($significant);
 return($rounded * $divisor);
 }
}

function nth_root_initial($product, $n)
{
 $estimate = sqrt($product);
 $roots = 2;
 while ($roots < $n) {
 $estimate = sqrt($estimate);
 $roots = $roots * 2;
 }
 return($estimate);
}

function nth_root ($product, $n) {

758

 Part VI Case Studies

 if (($product <= 1) ||
 ($n < 2)) {
 die(“Arguments to nth_root should be “.
 “product (greater than 1) and “ .
 “n (greater than 1)“);
 }
 $initial_estimate =
 nth_root_initial($product, $n);
 return(nth_root_aux($product, $n,
 $initial_estimate,
 20000,
 0.0001));
}

function nth_root_aux ($product, $n,
 $guess,
 $iterations_left,
 $desired_difference) {
 if ($iterations_left <= 0) {
 return($guess);
 }
 else {
 $guessed_product = pow($guess, $n);
 if (abs($guessed_product - $product)
 < $desired_difference) {
 return($guess);
 }
 else {
 $new_guess =
 $guess -
 ((pow($guess, $n) - $product) /
 ($n * pow($guess, $n-1)));
 return(nth_root_aux($product, $n,
 $new_guess,
 $iterations_left - 1,
 $desired_difference));
 }
 }
}

function create_randomized_array ($in_array) {
 // Assumes input is simple list, with keys
 // equal to 0,...,n
 // Returns similar list, with keys as in input
 // but values in randomized order
 // Assumes prior call to srand()
 $in_array_length = count($in_array);
 $working_array = array();
 for ($i = 0; $i < $in_array_length; $i++) {
 $rand_value = rand();

759

 A Trivia Game 44

 $working_array[$i] = $rand_value;
 }
 asort($working_array); // orders by random value
 $return_array = array();
 $working_keys = array_keys($working_array);
 foreach ($working_keys as $int_key) {
 array_push($return_array,
 $in_array[$int_key]);
 }
 return($return_array);
}
?>

The functions in certainty_utils.php take care of figuring out all the intermediate guesses

between the lowest value offered to the user and the highest value. In addition, there’s a scaling

option, which determines whether the intermediate values grow linearly or geometrically. (If you

think that the number “between” 10 and 1000 is 100, you are scaling geometrically; if you think the

number between 10 and 1000 is 505, you are scaling linearly.) The functions for finding nth roots

are used in doing the geometric scaling.

The create_randomized_array() function is what we use to scramble the order of questions

within a level.

question_class.php
Finally, we get down to the actual questions that are pulled from our database of questions to ask.

The definition of the Question class is shown in Listing 44-7. The public functions here are:

The constructor, which is given the question, correct answer, the upper and lower bounds, ■■

the number of steps in the guesses, and the type of scaling (linear or geometric).

Various accessor functions, such as ■■ getAnswer(), getQuestion(), getScalingType().

updateWithAnswer()■■ , which bottoms out here by actually translating the Web form’s

step numbers to values for the guesses, comparing those guesses to the real answer.

getAnswerSpread()■■ , which returns a measure of how narrow the guess was.

LISTING 44-7

question_class.php

<?php
include_once(“certainty_utils.php”);

class Question
{
 // PRIVATE VARIABLES
 private $_id; // ID in database

760

 Part VI Case Studies

 private $_question; // text of question
 private $_answer; // correct numeric answer
 private $_lowerLimit; // smallest value in distractors
 private $_upperLimit; // largest value in distractors
 private $_distractorCount; // number of dist. presented
 private $_scalingType; // representing linear vs. geometric
 private $_distractorArray; // contains all dist presented
 private $_lowerGuess = NULL; // player’s lower bound
 private $_upperGuess = NULL; // player’s upper bound
 private $_correct = NULL; // TRUE or FALSE after guess

 // CONSTRUCTOR
 function __construct($id, $question,
 $answer,
 $lower_limit,
 $upper_limit,
 $distractor_count,
 $scaling_type) {
 $this->_id = $id;
 $this->_question = $question;
 $this->_answer = $answer;
 $this->_lowerLimit = $lower_limit;
 $this->_upperLimit = $upper_limit;
 $this->_distractorCount = $distractor_count;
 $this->_scalingType = $scaling_type;
 $this->_distractorArray =
 $this->_makeDistractors($lower_limit,
 $upper_limit,
 $distractor_count,
 $scaling_type);
 }

 // PUBLIC FUNCTIONS

 // accessors

 function getId () {return($this->_id);}
 function getQuestion () {return($this->_question);}
 function getAnswer () {return($this->_answer);}
 function getCorrect() {return($this->_correct);}
 function rightAnswer() {return($this->_correct);}
 function getDistractorCount() {return($this->_correct);}
 function getScalingType() {return($this->_scalingType);}
 function getDistractorArray()
 {return($this->_distractorArray);}
 function getLowerGuess() {return($this->_lowerGuess);}
 function getUpperGuess() {return($this->_upperGuess);}

 function getAnswerSpread () {
 $answer_range = count($this->_distractorArray) - 1;

761

 A Trivia Game 44

 if (IsSet($this->_lowerGuess) &&
 IsSet($this->_upperGuess)) {
 $lower = $this->_lowerGuess;
 $upper = $this->_upperGuess;
 if ($upper < $lower) {
 throw new Exception(“Problem in range of answers”);
 }
 else {
 $spread =
 (max($upper - $lower, 1) - 1)
 / ($answer_range - 1);
 return($spread);
 }
 }
 else {
 throw new Exception(“Answer variables not set”);
 }
 }

 function updateWithAnswer($lower, $upper) {
 // takes a lower and upper guess from player, and
 // determines if the guesses bound the right answer
 $this->_lowerGuess = $lower;
 $this->_upperGuess = $upper;
 $upper_value = NULL;
 $lower_value = NULL;
 $count = 1;
 foreach ($this->_distractorArray as $distractor) {
 if ($count == $lower) {
 $lower_value = $distractor;
 }
 if ($count == $upper) {
 $upper_value = $distractor;
 }
 $count++;
 }
 if (IsSet($lower_value) && IsSet($upper_value)) {
 $answer = $this->_answer;
 $lower_value_lowered = $lower_value -
 max(0.0001, abs($lower_value / 1000000.0));
 $upper_value_raised = $upper_value +
 max(0.0001, abs($upper_value / 1000000.0));
 if (($lower_value_lowered <= $this->_answer) &&
 ($upper_value_raised >= $this->_answer)) {
 $this->_correct = TRUE;
 }
 else {
 $this->_correct = FALSE;
 }
 }

762

 Part VI Case Studies

 else {
 $this->_correct = NULL;
 }
 }

 // PRIVATE FUNCTIONS
 private function _makeDistractors ($lower, $upper,
 $distractor_count,
 $linear_or_geometric)
 // Create the array of intermediate values between
 // the upper bound and the lower bound on guesses
 // that the player can choose from. Depending on
 // a flag in each row of the question database,
 // the scaling of possible answers (“distractors”)
 // can be linear (10, 20, 30 ...) or geometric
 // (10, 20, 40, 80 ...)
 // Code for construction of geometric distractors can
 // blow up for some arguments, so arguments are
 // checked before calls to make_distractors_geometric
 // are allowed. Failures default back to linear.
 {
 if (($linear_or_geometric == CERTAINTY_GEOMETRIC) &&
 ($this->safeGeometricArguments($upper, $lower))) {
 return($this->_makeDistractorsGeometric(
 $lower, $upper, $distractor_count));
 }
 else {
 return($this->_makeDistractorsLinear(
 $lower, $upper, $distractor_count));
 }
 }

 private function safeGeometricArguments ($upper, $lower) {
 // should probably really also include the number
 // of distractors as an argument. Only tested for
 // # of distractors approx 10.
 return (($upper > 0) && ($lower > 0) &&
 ($upper > $lower) &&
 (($upper / $lower) < 10000000000));
 }

 private function _makeDistractorsLinear
 ($lower, $upper, $distractor_count)
 {

 $return_array = array();
 array_push($return_array, round_to_digits($lower, 3));
 $current = $lower;
 $increment = (($upper - $lower) / $distractor_count);
 // add in all the intermediate values

763

 A Trivia Game 44

 for ($x = 1; $x < $distractor_count; $x++) {
 array_push($return_array,
 round_to_digits($lower +
 ($x * $increment),
 3));
 }
 array_push($return_array, round_to_digits($upper, 3));
 return($return_array);
 }

 private function _makeDistractorsGeometric
 ($lower, $upper, $distractor_count)
 {
 if (($lower >= $upper) ||
 ($distractor_count < 2)) {
 die(“Args to _makeDistractorsGeometric should be “ .
 “1) a lower limit, 2) an upper limit, “ .
 “3) a count (>= 2) of divisions between them.
” .
 “Args were 1) $lower, 2) $upper, 3) $distractor_count
”);
 }
 $return_array = array();
 array_push($return_array, round_to_digits($lower, 3));
 $limit_ratio = $upper / $lower;
 $root = nth_root($limit_ratio, $distractor_count);
 $current = $lower;
 // add in the intermediate values
 for ($x = 1; $x < $distractor_count; $x++) {
 $distractor = round_to_digits(
 $lower * pow($root, $x),
 3);
 array_push($return_array,
 $distractor);
 }
 array_push($return_array, round_to_digits($upper, 3));
 return($return_array);
 }
}
?>

dbvars.php
When we actually query the database, we need to have access information. The file shown in

Listing 44-8 is loaded by GameParameters.php and sets up the variables necessary for making a

MySQL connection. Note that the current values are dummies and will not work on your system! You

need to fill in the correct values for your own MySQL configuration. If your web server is connected

to the Internet, it’s also a good idea to move this file somewhere outside the web server document

tree and to change the reference in GameParameters.php to point to its new location.

764

 Part VI Case Studies

LISTING 44-8

dbvars.php

<?php
$host = “YOUR_HOSTNAME”;
$user = “YOUR_MYSQL USERNAME”;
$pass = “YOUR_MYSQL_PASSWORD”;
$db = “certainty”;
?>

Creating the database
The trivia game is fueled by a database of questions. So far, we have said nothing about how to cre-

ate such a database.

Table definitions
Listing 44-9 shows a MySQL dump file of all the table definitions used in the code, along with a few

sample entries. Before loading it, you need to create a database called certainty; after that is done,

you should be able to simply cat or pipe the contents of this file to the mysql command.

Note that the question table includes several fields that are not actually used in the current code.

One of them is attribution, useful for recording the book or web site that served as the authority

for the answer. Another is include, which we intended for filtering out questions in development

that were not ready to be displayed. A third is subjectID, which we use to tag questions accord-

ing to subject area (Science, Geography, History, and so on). although that association is not actually

displayed anywhere. A final as-yet unused column is unitID, which could be used to record the

unit (kilometers, years, furlongs, bushels) of the answer in case the unit affects how guesses should

be displayed.

LISTING 44-9

Table definitions

MySQL dump 7.1
#
Host: [host deleted] Database: certainty
#--
Server version 3.22.32

#
Table structure for table ‘high_scores’
#
CREATE TABLE high_scores (
 id int(11) NOT NULL auto_increment,

765

 A Trivia Game 44

 name varchar(30),
 answer_count int(11),
 credit double(16,4),
 PRIMARY KEY (id)
);

#
Dumping data for table ‘high_scores’
#

INSERT INTO high_scores VALUES (8,’Ben Stein’,15,-3.0000);

#
Table structure for table ‘question’
#
CREATE TABLE question (
 ID int(11) NOT NULL auto_increment,
 answer double(16,4),
 unitID int(11),
 level int(11),
 subjectID int(11),
 include tinyint(4),
 upper_limit double(16,4),
 lower_limit double(16,4),
 scaling_type tinyint(4),
 question varchar(255),
 attribution varchar(255),
 PRIMARY KEY (ID)
);

#
Dumping data for table ‘question’
#

INSERT INTO question VALUES
(1,5283755345.0000,1,1,1,1,200000000000.0000,1000000.0000,2,
‘What was the human population of the world
in the middle of 1990?’,
‘http://www.census.gov/ipc/www/worldpop.html’);
INSERT INTO question VALUES (2,70.0000,1,1,1,1,95.0000,5.0000,1,
‘What percentage of the Earth\‘s surface is covered by water?’,
‘http:/www.sciencenet.org.uk/database/Geography/
Original/g00057d.html’);
INSERT INTO question VALUES
(4,1969.0000,NULL,1,2,NULL,2000.0000,1950.0000,1,
‘In what year did human beings first walk on the moon?’,’‘);
#
Table structure for table ‘subject’
#
CREATE TABLE subject (

766

 Part VI Case Studies

 id int(11) NOT NULL auto_increment,
 subject varchar(255),
 PRIMARY KEY (id)
);

#
Dumping data for table ‘subject’
#

INSERT INTO subject VALUES (1,’Geography’);
INSERT INTO subject VALUES (2,’History’);
INSERT INTO subject VALUES (3,’Science’);
INSERT INTO subject VALUES (4,’Mathematics’);
INSERT INTO subject VALUES (5,’Miscellaneous’);

The MySQL dump includes only three sample questions. You can always add more through a direct

interaction with MySQL, but it’s more convenient to do it via a Web form.

entry_form.php
Listing 44-10 shows a bare-bones Web form for entering more questions into the question database.

This simply takes typed input (except for a pull-down association with the subject table) and trusts

the results. Note that there is neither security nor error-checking here — this is intended for use

only by the game creator, and if misuse is a concern you should probably add password protection

or some other kind of authentication. (See Chapter 44 for more on creating authentication systems.)

LISTING 44-10

entry_form.php

<?php
include_once(“certainty_utils.php”);
include_once(“game_parameters_class.php”);
$params = new GameParameters();
$connection = $params->getDbConnection();

if (get_post_value(‘POSTCHECK’)) {
 handleEntryForm();
}
displayEntryForm();

function handleEntryForm () {
 $question = mysql_real_escape_string(get_post_value(‘QUESTION’));
 $answer = mysql_real_escape_string(get_post_value(‘ANSWER’));
 $lower_limit = mysql_real_escape_string(get_post_value(‘LOWER_LIMIT’));
 $upper_limit = mysql_real_escape_string(get_post_value(‘UPPER_LIMIT’));
 $level = mysql_real_escape_string(get_post_value(‘LEVEL’));

767

 A Trivia Game 44

 $subject = mysql_real_escape_string(get_post_value(‘SUBJECT’));
 $scaling_type = mysql_real_escape_string(get_post_value(‘SCALING_TYPE’));
 $attribution = mysql_real_escape_string(get_post_value(‘ATTRIBUTION’));
 if ($upper_limit > $lower_limit) {
 $query =
 “insert into question
 (question, answer, lower_limit, upper_limit,
 level, subjectID, scaling_type,
 attribution)
 values
 (‘$question’, $answer, $lower_limit, $upper_limit,
 $level, $subject, $scaling_type,
 ‘$attribution’)“;
 $result = mysql_query($query);
 if ($result) {
 print(“Entry was successful
”);
 }
 else {
 print(“Entry was not successful
”);
 }
 }
 else {
 print(“Upper limit must be greater than lower
”);
 }
}

function displayEntryForm () {
global $PHP_SELF;
$linear = CERTAINTY_LINEAR;
$geometric = CERTAINTY_GEOMETRIC;
$subject_string = make_subject_string();
$form_string = <<<EOT
<FORM METHOD=POST TARGET=”entry_form.php” >
Question:
<INPUT TYPE=TEXT NAME=QUESTION SIZE=60 >

Answer:
<INPUT TYPE=TEXT NAME=ANSWER>

Lower:
<INPUT TYPE=TEXT NAME=LOWER_LIMIT>

Upper:
<INPUT TYPE=TEXT NAME=UPPER_LIMIT>

Level:
<INPUT TYPE=TEXT NAME=LEVEL>

Subject:
$subject_string

Scaling type:
<SELECT NAME=SCALING_TYPE>
 <OPTION VALUE=$linear>Linear
 <OPTION VALUE=$geometric>Geometric
</SELECT>

768

 Part VI Case Studies

Attribution:
<INPUT TYPE=TEXT NAME=ATTRIBUTION>

<INPUT TYPE=SUBMIT NAME=SUBMIT VALUE=SUBMIT>
<INPUT TYPE=HIDDEN NAME=POSTCHECK VALUE=1>
</FORM>
EOT;
echo $form_string;
}

function make_subject_string () {
 $result_string = “<SELECT NAME=SUBJECT>”;
 $query = “select id, subject from subject order by id”;
 $result = mysql_query($query);
 while ($row = mysql_fetch_row($result)) {
 $id = $row[0];
 $display = $row[1];
 $result_string .= “<OPTION VALUE=$id>$display”;
 }
 $result_string .= “</SELECT>”;
 return($result_string);
}
?>

General Design Considerations
What follows is a brief list of issues that we were forced to consider while writing the code in this

chapter.

Separation of code and display
The question of separating code and display is a vexing one, especially in situations where you have

different personnel assigned to maintaining logic and appearance. Our own view on this is that per-

fect separation of code and display is like a perfect vacuum — you can get asymptotically closer to

the ideal as you expend infinite effort.

For large web sites employing many people, some pretty good techniques exist for making a strong

separation, including templating systems and database storage of graphics and display text. For this

relatively small and informal example, we were satisfied by simply segregating all HTML into two

display-oriented classes, leaving the remainder of the code focused on logic and data.

Persistence of data
There are several kinds of data in this game that survive longer than the execution time of a page.

We chose to use PHP’s session mechanism for all the data particular to a particular game invocation

and a backend database for everything else (questions, answers, and high score lists).

769

 A Trivia Game 44

For reasons of efficiency, we didn’t want to store too much data via the session mechanism. So we

separated out the most important data (that could not be easily recreated) into the Game class and

stored only an instance of that class. Everything else (question text, boilerplate HTML text, high

scores, and so on) was either embedded in code files or easily retrievable from the database.

Exception handling
We used the new (as of PHP5) exception mechanism to bail out whenever we encountered a prob-

lem that the code could not recover from. Failures to recover session info, failures to find cookies,

and database interaction problems were all grounds for giving up. In general, when we threw an

exception, we sent a string suitable for display to a user and then caught all thrown exceptions at

the point of display. This has the disadvantage of not providing a lot of rich debugging information

(particularly since several different code paths can throw a “No database connection” exception) but

has the advantage that we can tell the user something reasonable and fairly cosmetic, while giving

the developer a hint.

Summary
The Certainty Quiz is a small, simple, self-contained PHP application that you should be able to

install and enjoy in the privacy of your own home (after connecting it to your favorite web server

and a MySQL database, of course). Although small, the code relies on database interaction, OOP

features, use of sessions, string processing, object serialization, exception handling, and nontrivial

arithmetic to achieve its effects. Although PHP has many capabilities that we didn’t come close to

touching on, this chapter uses a fair cross-section of its most popular features — if you understand

everything in this example, you are well on your way to exploiting the power of PHP.

771

I
n this chapter’s case study, we show one way to use PHP to combine

MySQL databases with graphic images. We build a complete system

that starts with a database and uses the gd library to produce a kind of

visualization of the data. The portions of the book we draw on for this are:

Part II■■ : We use PHP to interrogate a MySQL database.

Chapter 42 (Graphics)■■ : Our end product is an image produced

with the gd library.

Chapter 27 (Mathematics)■■ : We need a bit of trigonometry as we

create the images.

Scaled Venn diagrams
The visualization we have in mind is something like the Venn diagram. If

you’ve ever been in an academic setting where set intersection was being

discussed, then you’ve probably seen these diagrams — they’re the circles

that may or may not have overlapping portions representing intersections.

We say “something like” the Venn diagram, because scale has no signifi-

cance in a traditional Venn diagram. If you want to illustrate the fact that

there are people who use both BeOS and Windows, then you might draw

two circles of equal size (representing Windows users and BeOS users) that

happen to have a region of overlap. In our version, which you might call a

scaled or proportional Venn diagram, the sizes of both circles and intersec-

tions matter; the Windows/BeOS example would become one large circle

and one much smaller circle, with an overlap area proportional to the

number of people in both sets. (To see an example of this kind of diagram,

please skip ahead to Figure 45-5.)

Data Visualization with
Venn Diagrams

IN THIS CHAPTER

From database to image

Scaled Venn diagrams

Planning the display

Putting it all together

772

 Part VI Case Studies

The task
The job of our code is to start with a database, provide a way to query that database about sets

and their overlap, and then display the results as a scaled Venn diagram, generated by using the

gd library. As a sample database, we use the pseudosurvey data set that we used in the “HTML

Graphics” section of Chapter 42.

If we’re going to offer a way to query the database, then it may as well be via a Web form. So the end-

to-end view of our task is that we start with a Web form and end up with a picture to display. Let’s

start the design by enumerating the things that need to happen for this to come about. We’ll need to:

 1. Generate (or at least present) the Web form itself.

 2. Receive the submitted form data and transform it into appropriate SQL queries for submis-

sion to the database.

 3. Receive results from the SQL queries.

 4. Use the SQL results to decide on the locations and sizes of all the elements in our graphic.

 5. Actually generate the graphic and send it back to the user.

All of the code in this chapter should work with either PHP5 or PHP6, but it assumes that

your PHP installation has access to the gd image library and is configured to produce

PNG images. Any version of gd later than 1.8, bundled or unbundled, should be OK. (See Chapter 42

for details of configuration and installation of gd.)

Outline of the code
Our system contains the following code files:

visualization_form.php■■ : This is essentially a hardcoded form that enables the user

to choose two different restrictions on the data in our table. The restrictions chosen map

directly to where clauses loaded from an auxiliary file called query_clauses.php.

db_visualization.php■■ : This code handles the form data sent by visualization_
form.php and builds three SQL statements: one with only the first where clause, one

with the second where clause, and a third with both clauses joined by an and. It collects

the resulting three counts and displays the numbers in a graphic by calling functions

loaded from venn.php.

venn.php■■ : This actually produces the Venn diagram graphic and ships it back to the user.

Its primary function takes as input the three amounts (the sizes of the two sets and their

intersection), decides the sizes and locations of corresponding circles, and does all the

drawing and shading necessary. For the complicated case of sets that actually have an over-

lapping area, it uses functions loaded from trig.php to calculate areas.

trig.php■■ : This code actually calculates the intersection area whenever circles overlap.

NOTENOTE

773

 Data Visualization with Venn Diagrams 45

We discuss these code files in reverse order, from the bottom up. By the way, although we like this

example, we don’t want to give the impression that you need to do trigonometry to do computer

graphics in PHP, or even vector graphics in PHP. If you want to understand every bit of this example,

then you need to go through the trig, but we encourage those who don’t care to skip the next section

(“Necessary trigonometry”). The core of the graphics code itself is in venn.php, and that example

code really is important to understand if you want to do gd-based graphics in PHP.

Necessary Trigonometry
Let’s get the math out of the way first. Unavoidably, because we’re talking about circles and areas,

we’re going to be talking about trigonometry. (As we’ve said, though, if you’re not interested and

are willing to trust us that we have code to calculate the area of circle intersections, please do skip

ahead to the section “Planning the display,” later in this chapter.)

The eventual task for our system is to start with three quantities (items in set A, items in set B, and

items in the intersection) and produce a diagram containing two circles, with areas proportional to

the set sizes, and positioned so that the area of overlap is proportional to the size of the intersection.

For this section, we go in the other direction and calculate intersection area from given circles. Our

starting information will be the radii of the two circles and the distance between their centers.

With reference to Figure 45-1, say that our circles have centers at points C and D, respectively, and

that we know the radius of the circle on the left (segment CA or segment CB) and the radius of the

circle on the right (DA or DB). What we’d like to know is the size of that odd lens-shaped object in

the middle.

FIGURE 45-1

Area of intersection

Area of intersecting circles

A

C D

B

774

 Part VI Case Studies

The lens-shaped intersection area is split into two “halves” by segment AB (not quite halves because

the circle sizes may be different), and we can calculate the area of each half independently. The cru-

cial thing to notice is that the area of each of these half-lenses is the area that you get after you sub-

tract the area of a triangle from the area of a pizza-slice-shaped sector of a circle. The right-hand lens

half, for example, has an area equal to the sector of the left-hand circle determined by angle ACB,

minus the area of the triangle ACB.

So if we can calculate the areas of sectors and triangles, we are nearly done. The area of a sector is

straightforward — it’s just the area of the circle multiplied by the fraction of that circle that the angle

of the sector sweeps over.

It takes a little more work and trigonometry to get the areas of the triangles. In our code, we make

the job more straightforward by drawing a line from point C to point D and considering only the

half of the diagram above that line — then at the end, we multiply by two to get the real area. If we

say that the intersection of segments AB and CD is point E, what we eventually care about is the area

of triangles CAE and DAE. We start by calculating the angles of triangle CDA (whose side lengths

are known to us) and, by using that information, determining the lengths of CE, DE, and AE. After

we know these lengths, we know the bases and heights, and the areas of the right triangles CAE and

DAE are just ½ (base × height).

Listing 45-1 shows code to do this kind of area calculation. Its main “public” function is circle
_intersection_area(), which expects as arguments the radii of two circles and the distance

between them. The simplest case is where the distance is greater than the sum of the radii: The

circles do not touch; there is no intersection, and the answer is zero.

LISTING 45-1

trig.php

<?php

function angle_given_sides ($opposite, $other_1, $other_2) {
 if (($opposite <= 0) ||
 ($other_1 <= 0) ||
 ($other_2 <= 0) ||
 ($opposite >= ($other_1 + $other_2)) ||
 ($other_1 >= ($opposite + $other_2)) ||
 ($other_2 >= ($other_1 + $opposite))) {
 die(“Triangle with impossible side lengths in “.
 “angle_given_sides: $opposite, $other_1, $other_2”);
 }
 else {
 $numerator =
 ((($other_1 * $other_1) +
 ($other_2 * $other_2)) -
 ($opposite * $opposite));
 $denominator = 2 * $other_1 * $other_2;
 return(acos($numerator / $denominator));

775

 Data Visualization with Venn Diagrams 45

 }
}

function area_to_radius ($area) {
 return (sqrt ($area / M_PI));
}

function circle_intersection_area ($radius_left,
 $radius_right,
 $distance) {
 if ($radius_right + $radius_left <= $distance) {
 return(0);
 }
 else {
 // first, we find the angle measures of a triangle
 // formed by the two radii and the distance
 // between them
 $left_sector_angle =
 angle_given_sides($radius_right, $radius_left,
 $distance);
 $right_sector_angle =
 angle_given_sides($radius_left, $radius_right,
 $distance);

 // test for obtuseness --- the sector angle can
 // be obtuse, but the triangle angle should not
 // be. Also save the result as a sign for the
 // eventual area calculation

 if ($left_sector_angle < M_PI / 2) {
 $left_triangle_angle = $left_sector_angle;
 $left_triangle_sign = 1;
 }
 else {
 $left_triangle_angle = M_PI - $left_sector_angle;
 $left_triangle_sign = -1;
 }
 if ($right_sector_angle < M_PI / 2) {
 $right_triangle_angle = $right_sector_angle;
 $right_triangle_sign = 1;
 }
 else {
 $right_triangle_angle = M_PI - $right_sector_angle;
 $right_triangle_sign = -1;
 }

 // next, find the height of that triangle, assuming
 // the distance is the base

 $height = ($radius_left / sin(M_PI_2)) *

776

 Part VI Case Studies

 sin($left_triangle_angle);
 $base_left = ($radius_left / sin(M_PI_2)) *
 sin(M_PI_2 - $left_triangle_angle);
 $base_right = ($radius_right / sin(M_PI_2)) *
 sin(M_PI_2 - $right_triangle_angle);

 // finally find triangle and sector areas, and
 // subtract (or add) appropriately to get the
 // intersection area. Multiply by 2 to reflect
 // areas on both sides of the segment connecting
 // the circle centers

 $left_triangle_area = $base_left * $height / 2;
 $right_triangle_area = $base_right * $height / 2;
 $left_sector_area =
 ($left_sector_angle / (2 * M_PI)) *
 (M_PI * $radius_left * $radius_left);
 $right_sector_area =
 ($right_sector_angle / (2 * M_PI)) *
 (M_PI * $radius_right * $radius_right);

 $intersection_area = 2 *
 (($left_sector_area -
 ($left_triangle_sign * $left_triangle_area)) +
 ($right_sector_area -
 ($right_triangle_sign * $right_triangle_area)));

 return($intersection_area);
 }
}

?>

Note that all the angle calculations are in radians, rather than degrees. In radians, a right angle is

pi/2, and a complete revolution around a circle is 2 ¥ pi. We tend to use PHP constants for these val-

ues whenever we can, in particular M_PI (the value of pi), and M_PI_2 (pi/2).

There’s one final wrinkle that we’ve ignored in our discussion so far but that we had to deal with

in the code. The problem is that it’s possible for either angle ACE or angle ADE (as we call them in

Figure 45-1) to be obtuse — that is, more than 90 degrees in size. To see this, look at that diagram

and imagine what happens as you make the circle on the right smaller, and move its center D pro-

gressively closer to C. At some point D actually moves to the left of segment AB. In this case, the

circle intersection area to the left of AB is actually the sum of a sector and a triangle rather than a

difference. The sector determined by DA and DB sweeps out more than half of the circle centered

at D, and the remaining portion we want to include is the area of the triangle ADB. We handle this

in the code by testing if the angles are obtuse and multiplying the triangle areas by either 1 or -1,

depending on the result of the test.

777

 Data Visualization with Venn Diagrams 45

Planning the Display
Now we pop up a couple of levels and think about actually generating a diagram. We assume that

we have as input three numbers (size of set 1, size of set 2, and size of intersection), along with

some textual labels. We want to scale and locate these circles so that everything has the right

area, labels are associated with the right circles, and everything fits within the size of the diagram

we’re creating.

Simplifying assumptions
We start off with some totally arbitrary decisions that, after being made, simplify everything. We

decree that:

All the images that we generate are the same size, and that size is 300 pixels high and 600 ■■

pixels wide.

The centers of the circles are always on the same horizontal line. This means that their ■■

y-coordinate is decided in advance, and we change the area of intersection just by changing

the x-coordinates.

The circles always fit within the top two-thirds of the diagram (reserving the lower third ■■

for labels). So put the y-coordinate of the centers one-third of the way down the image

from the top. And because the circles may not intersect at all, they shouldn’t be larger than

half of the width of the image, so we have room to display two of them. We also make sure

that the circles are no greater than 90 percent of the room available given everything we’ve

said so far, so that they don’t touch the image borders. Finally, we decide that, regardless

of the actual numbers as input, the larger of the two circles is as large as it can be. (Scale is

consistent within the diagram, but not between diagrams.)

Determining size and scale
Now we have nearly all the information needed to create a visualization, and the pieces we are lack-

ing, of course, depend on the input values we are going to receive. We use the sizes of the actual sets

to determine the radii of the circles for display. We want the larger of the two set counts to corre-

spond to the largest circle we can afford to display, and then scale everything else appropriately. (We

do all this in the code in Listing 45-2 [venn.php] — you may want to look ahead to that code as we

lay out what we need to do in it.)

It’s actually easiest for us to calculate the largest radius we can afford: Given the constraints we’ve

already listed, the larger radius should be 90 percent of ¼ of the image width, or 90 percent of 1/3 of

the image height, whichever is smaller. So we calculate this maximum radius, assume that the larger

set size is proportional to the area of a circle with this radius, and come up with a general conversion

for mapping from input numbers to area as measured in pixels. We use this to decide on the areas of

the circles and of the intersection area we want.

778

 Part VI Case Studies

What numbers should we know at this point? We know:

The radius of the bigger circle. (It’s the largest radius that fits our constraints.)■■

The area of the bigger circle (calculated as ■■ πr2).

The radius of the smaller circle (from the ratio of the input set sizes treated as area ratios ■■

and then mapped back to a radius).

The area of the smaller circle (calculated).■■

The area of intersection (scaled the same way as other areas, from the input numbers).■■

The y-coordinate of the circle centers. (We decreed that it be the line that’s one-third of the ■■

way down the image.)

What are we missing before we can display our circles? The only thing that we’re missing is the

x-coordinates of the centers.

The easy cases
Where we decide to put the circle centers depends on the extent to which our sets overlap. There are

some cases that we can dispense with, that don’t need all this trigonometry we’ve been spending our

time on. Those are:

No items are in the intersection■■ : In this case, we don’t want the circles to touch at all. We

simply locate the centers at default locations in the middles of the two halves of the dia-

gram. Because of the way that we limited the maximum radius, the circles are completely

separated.

One set is completely contained in the other — that is, one of the sets has the same ■■

size as the intersection: For this case, we just choose to put the center of the larger circle

in the middle of the diagram and the middle of the other circle offset a bit from it but not

so much that any of the smaller circle is outside the larger one.

The two sets are the same (and all three input numbers are the same)■■ : For this, we just

draw one circle with an x-coordinate right in the middle of the picture.

The hard case
Now the hard one: If the sets only partially overlap, where should we put the circle centers? At this

point, we have some math in our pocket from the “Necessary trigonometry” section: Given two cir-

cles and the distance between their centers, we can figure out the area of overlap. Unfortunately, this

is not the direction we need the calculation go in — we start with the desired area of intersection,

and we must work backwards to the desired locations of the circle centers.

Now if we were good and diligent mathematicians but lazy programmers, we would just invert the

trigonometric equations we used in trig.php, to solve for center distance rather than for intersec-

tion area. As it is, though, we’re enthusiastic programmers, and if we’re any kind of mathematicians

at all we’re definitely the lazy kind. So what we’re going to do instead is search for the answer. The

779

 Data Visualization with Venn Diagrams 45

function find_circle_centers() in Listing 45-2 implements a binary search for the answer: It

starts with a middling distance, asks our trigonometry code what the resulting area would be, and

successively refines the distance to zero in on the desired area. (The rest of the code in Listing 45-2

is discussed in the next section.)

LISTING 45-2

venn.php

<?php
include_once(“trig.php”);

$IMAGE_WIDTH = 600;
$IMAGE_HEIGHT = 300;
$CENTER_FINDING_ITERATIONS = 20;

function imagecircle ($image, $center_x, $center_y,
 $radius, $color)
{
 $diameter = $radius * 2;
 imagearc($image, $center_x, $center_y,
 $diameter, $diameter, 0, 360,
 $color);
}

function venn_visualization
 ($left_amount, $left_name,
 $right_amount, $right_name,
 $intersection_amount)
{
 global $IMAGE_HEIGHT, $IMAGE_WIDTH,
 $CENTER_FINDING_ITERATIONS;
 // --- create the image and allocate colors
 $image = imagecreate($IMAGE_WIDTH, $IMAGE_HEIGHT)
 or die(“Could not create image”);
 $background_color = ImageColorAllocate($image, 255,255,255);
 $left_color = ImageColorAllocate($image, 100, 100, 200);
 $right_color = ImageColorAllocate($image, 200, 100, 100);
 $intersection_color =
 ImageColorAllocate($image, 225, 225, 225);
 $black_color = ImageColorAllocate($image, 0,0,0);

 // --- decide how big the circles should be
 $max_radius = min((($IMAGE_HEIGHT * 0.9) / 3),
 (($IMAGE_WIDTH * 0.9) / 4));
 $center_y = $IMAGE_HEIGHT / 3.0;
 $default_center_x_left = $IMAGE_WIDTH / 4.0;
 $default_center_x_right = (3 * $IMAGE_WIDTH) / 4.0;

780

 Part VI Case Studies

 $middle_x = $IMAGE_WIDTH / 2.0;
 $radius_left_side_raw =
 area_to_radius($left_amount);
 $radius_right_side_raw =
 area_to_radius($right_amount);
 $intersection_radius_raw =
 area_to_radius($intersection_amount);
 $scale_factor = $max_radius /
 (max($radius_left_side_raw,
 $radius_right_side_raw));
 $radius_left_side = $radius_left_side_raw * $scale_factor;
 $radius_right_side = $radius_right_side_raw * $scale_factor;
 // (it’s convenient to pretend that the intersection area
 // has a radius (although it’s not circular) just so we can
 // calculate things the same way as the circles)
 $intersection_radius =
 $intersection_radius_raw * $scale_factor;
 $area_left_side = M_PI *
 $radius_left_side * $radius_left_side;
 $area_right_side = M_PI *
 $radius_right_side * $radius_right_side;
 $intersection_area = M_PI *
 $intersection_radius * $intersection_radius;

 // We now have all necessary info except where to locate the
 // centers of the circles.
 // Four cases:
 // 1) no intersection, 2) partial intersection
 // 3) left is strict subset of right,
 // 4) right is subset of left.

 if ($intersection_amount == 0) {
 // No intersection
 $center_x_left = $default_center_x_left;
 $center_x_right = $default_center_x_right;
 $left_fill_x = $center_x_left;
 $right_fill_x = $center_x_right;
 $intersection_fill_x = -1;
 }
 else if (($intersection_area < $area_left_side) &&
 ($intersection_area < $area_right_side)) {

 // The complicated case --- we must decide where the
 // circle centers should be so that the overlap is
 // proportional to the set intersection
 // First, we call a function that decides how far apart
 // the circle centers need to be.
 $center_distance =
 find_center_distance($radius_left_side,

781

 Data Visualization with Venn Diagrams 45

 $radius_right_side,
 $intersection_area,
 $CENTER_FINDING_ITERATIONS);

 // Once we know the distance, we place the circle centers
 // approximately in the middle of the image
 $center_x_left = $middle_x // left/right middle of image
 - ($center_distance *
 ($radius_left_side /
 ($radius_left_side +
 $radius_right_side)));
 $center_x_right = $middle_x // left/right middle of image
 + ($center_distance *
 ($radius_right_side /
 ($radius_left_side +
 $radius_right_side)));

 // we have decided the sizes and centers of the circles.
 // Now, we must determine good points to start a
 // “flood fill” coloring of the three different regions
 $left_fill_x =
 (($center_x_left - $radius_left_side) +
 ($center_x_right - $radius_right_side))
 / 2.0;
 $right_fill_x =
 (($center_x_left + $radius_left_side) +
 ($center_x_right + $radius_right_side))
 / 2.0;
 $intersection_fill_x =
 (($center_x_right - $radius_right_side) +
 ($center_x_left + $radius_left_side))
 / 2.0;
 }
 else if (($intersection_area == $area_left_side) &&
 ($intersection_area < $area_right_side)) {
 // The right set completely contains the left set
 // We need to place the left circle somewhere
 // inside the right circle.
 $center_x_right = $middle_x;
 $center_x_left = $middle_x -
 ($radius_right_side - $radius_left_side) / 2;
 $left_fill_x = -1;
 $right_fill_x =
 (($center_x_left + $radius_left_side) +
 ($center_x_right + $radius_right_side))
 / 2.0;
 $intersection_fill_x = $center_x_left;
 }
 else if ($intersection_area == $area_right_side) {

782

 Part VI Case Studies

 $center_x_left = $middle_x;
 $center_x_right = $middle_x +
 ($radius_left_side - $radius_right_side) / 2;
 $right_fill_x = -1;
 $left_fill_x =
 (($center_x_left - $radius_left_side) +
 ($center_x_right - $radius_right_side))
 / 2.0;
 $intersection_fill_x = $center_x_right;
 }

 // now, actually draw and fill regions
 imagecircle($image, $center_x_left, $center_y,
 $radius_left_side, $black_color);
 imagecircle($image, $center_x_right, $center_y,
 $radius_right_side, $black_color);
 if ($left_fill_x > 0) {
 imagefill($image, $left_fill_x,
 $center_y, $left_color);
 }
 if ($right_fill_x > 0) {
 imagefill($image, $right_fill_x,
 $center_y, $right_color);
 }
 if ($intersection_fill_x > 0) {
 imagefill($image, $intersection_fill_x,
 $center_y, $intersection_color);
 }
 $left_hand_text = “$left_name ($left_amount)“;
 $right_hand_text = “$right_name ($right_amount)“;
 $intersection_text = “Intersection: $intersection_amount”;
 left_label($image, $left_hand_text, $left_color);
 right_label($image, $right_hand_text, $right_color);
 intersection_label($image, $intersection_text, $black_color);

 // send off the image
 header(“Content-type: image/png”);
 imagepng($image);
 imagedestroy($image);
}

function left_label ($image, $label_string, $color) {
 global $IMAGE_WIDTH, $IMAGE_HEIGHT;
 imagestring($image, 5,
 ($IMAGE_WIDTH / 4.0 -
 (imagefontwidth(5) * strlen($label_string))
 / 2),
 $IMAGE_HEIGHT - 55.0,
 $label_string, $color);

783

 Data Visualization with Venn Diagrams 45

}

function right_label ($image, $label_string, $color) {
 global $IMAGE_WIDTH, $IMAGE_HEIGHT;
 imagestring($image, 5,
 ($IMAGE_WIDTH * 3 / 4.0 -
 (imagefontwidth(5) * strlen($label_string))
 / 2),
 $IMAGE_HEIGHT - 55.0,
 $label_string, $color);
}

function intersection_label ($image, $label_string, $color) {
 global $IMAGE_WIDTH, $IMAGE_HEIGHT;
 imagestring($image, 2,
 ($IMAGE_WIDTH / 2.0 -
 (imagefontwidth(2) * strlen($label_string))
 / 2),
 $IMAGE_HEIGHT - 30.0,
 $label_string, $color);
}

function find_center_distance ($r1, $r2, $desired_area,
 $iterations) {
 // The greatest possible distance is r1 + r2, and
 // the smallest is abs(r1 - r2) Let’s start in the middle.
 $distance_guess = (($r1 + $r2) + abs($r1 - $r2)) / 2.0;
 $distance_increment = (($r1 + $r2) - abs($r1 - $r2)) / 4.0;
 for ($x = 0; $x < $iterations; $x++) {
 $calculated_area =
 circle_intersection_area($r1, $r2, $distance_guess);
 if ($calculated_area < $desired_area) {
 // move centers closer
 $distance_guess -= $distance_increment;
 $distance_increment *= 0.5;
 }
 else if ($calculated_area > $desired_area) {
 // move centers apart
 $distance_guess += $distance_increment;
 $distance_increment *= 0.5;
 }
 else {
 // unlikely, but ya never know
 break;
 }
 }
 return($distance_guess);
}
?>

784

 Part VI Case Studies

Display
Now we know exactly where we want to put our circles, and how large they should be. What

remains is the graphics code to actually make the display happen. This is also in Listing 45-2

(venn.php).

To produce the graphic, we go through the following steps by using the gd library (which is covered

in 42):

 1. We create an image by using ImageCreate(). (At this point, the image is not any particu-

lar image format, such as PNG or JPEG, but just an internal gd image.)

 2. We allocate colors within the image by using ImageColorAllocate(). We care about

five colors: the background color (white), a color for borders and regular text (black), a

color for the interior of the left-hand circle (which we decide is bluish), a color for the inte-

rior of the right-hand circle (reddish), and a color for the intersection (gray). All these col-

ors are specified by using a red-green-blue scale of 0 to 255.

 3. We draw the circles in black by using a function of our own, imagecircle(), that takes

as arguments the image, the radius, the location of the centers, and a color. (See the “Notes

on circles” section about drawing circles in gd.)

 4. Now, we want to fill in the three areas (the intersection and the two non-intersection por-

tions of the circles) with the appropriate colors. We use ImageFill() for this, which

flood-fills outward from a specified point until the fill encounters previously drawn lines.

Choosing the starting points for the fills is somewhat tricky because it depends on the dif-

ferent intersection cases. In general, though, we start with a y-coordinate that is the same

as the circle centers and calculate an x-coordinate that’s right in the middle of the area we

are trying to color.

 5. We use ImageString() to draw the appropriate labels for each circle, centering each one

in the middle of the lower third of the image and in the middle of the appropriate left or

right half. We also create and display a count label for the intersection and display it in the

middle of the image.

 6. Now, we have a complete gd image, and what remains is to ship it off to the user. We

send an HTTP header advising the browser that a PNG image is on the way. Then we use

ImagePng() to convert the gd image to PNG and send it off.

 7. Finally, we call ImageDestroy() to free any resources associated with the temporary

image we created. More recent versions of PHP should be handling this already, assuming

that the image is of type resource, but either way calling ImageDestroy() does no harm.

Notes on circles
One thing that puzzles people sometimes, if confronted with the gd functions, is that there seems

to be no way to draw a circle (or at least there is no function name with circle in its name). This

is because there are at least two functions that generalize circle-drawing: imageellipse() (avail-

able only with gd 2.0.1 and later) and imagearc. The former draws an ellipse (which can be a circle

785

 Data Visualization with Venn Diagrams 45

if the width and height are the same), and the latter draws a circular arc portion (which can be a

circle if you specify a full 360 degrees of arc). In our code, we chose the latter because we wanted to

remain compatible with earlier versions of gd.

Notes on centering text
As we wrote textual labels in the image code, we actually didn’t bother centering the text around any

horizontal axis, but we did do some left-right centering. We simply used a built-in numbered font

from gd, calculated the width of our text as displayed by that font (by using imagefontwidth())

and ensured that the left-hand starting point for the text was our desired center minus half the

width of the text. This was easy, in part because the built-in fonts we used were monospace, and so
imagefontwidth() was able to calculate width by referring only to the length of the string. Things

get slightly more complicated if you’re using a variable-width font — any calculation of string width

then needs to know the actual string that is printed, not just the number of characters in it.

Visualizing a Database
We can now produce these Venn-like diagrams on demand, given some numbers and text to start

with. Our final task is to hook this up appropriately to a database via a Web form.

For this application, we assume exactly the same sample MySQL table (programmers)

as we used in Chapter 42. See Listing 42-1 for a description of the data.

The goal is to let the user choose exactly two restrictions on our database’s table, extract counts cor-

responding to how many rows survive each restriction, count how many rows survive both restric-

tions, and then pass the results off to our diagramming code.

Listing 45-3 shows code for a form designed around our particular database, mostly just hardcoded

HTML. It loads an auxiliary file called query_clauses.php (shown in Listing 45-4), which is

extremely hardcoded. This file lists and numbers all the restrictions that we want to offer to users, in

the form of both an SQL where clause and in an English translation.

LISTING 45-3

visualization_form.php

<HTML><HEAD><TITLE>DB Visualization</TITLE></HEAD>
<BODY>

Choose one from each column, and we’ll
display the intersection from the survey data:

<FORM METHOD=POST ACTION=”db_visualization.php”
 TARGET=_new >
<TABLE>

NOTENOTE

786

 Part VI Case Studies

<?php
include(“query_clauses.php”);
for ($x = 0; $x < count($QUERY_CLAUSES); $x++) {
 print(“<TR><TD><INPUT
 TYPE=RADIO NAME=\“left_clause\“
 VALUE=$x>”.
 $QUERY_DESCRIPTION[$x] .”</TD>
 <TD><INPUT
 TYPE=RADIO NAME=\“right_clause\“
 VALUE=$x>”.
 $QUERY_DESCRIPTION[$x] .”</TD></TR>”);
}
?>

</TABLE>
<INPUT TYPE=HIDDEN NAME=”table” VALUE=”programmers”>
<INPUT TYPE=SUBMIT NAME=SUBMIT>
</FORM>

</BODY>
</HTML>

Notice that this form is not self-submitting. For this example, we’ve chosen to completely separate

PHP-generated HTML pages from PHP-generated PNG pages and avoid the complexity of embedding

images in HTML. We’ve also chosen a _new target type for the form submission so that the image

appears in a new browser window.

LISTING 45-4

query_clauses.php

<?php

$QUERY_CLAUSES = array();
$QUERY_DESCRIPTION = array();

$QUERY_CLAUSES[0] = “sex = ‘F’“;
$QUERY_DESCRIPTION[0] = “Female”;

$QUERY_CLAUSES[1] = “sex = ‘M’“;
$QUERY_DESCRIPTION[1] = “Male”;

$QUERY_CLAUSES[2] = “language = ‘PHP’“;
$QUERY_DESCRIPTION[2] = “likes PHP”;

787

 Data Visualization with Venn Diagrams 45

$QUERY_CLAUSES[3] = “language = ‘Java’“;
$QUERY_DESCRIPTION[3] = “likes Java”;

$QUERY_CLAUSES[4] = “language = ‘Lisp’“;
$QUERY_DESCRIPTION[4] = “likes Lisp”;

$QUERY_CLAUSES[5] = “language = ‘C’“;
$QUERY_DESCRIPTION[5] = “likes C”;

$QUERY_CLAUSES[6] = “language = ‘Perl’“;
$QUERY_DESCRIPTION[6] = “likes Perl”;

$QUERY_CLAUSES[7] = “os = ‘Linux’“;
$QUERY_DESCRIPTION[7] = “uses Linux”;

$QUERY_CLAUSES[8] = “os = ‘Solaris’“;
$QUERY_DESCRIPTION[8] = “uses Solaris”;

$QUERY_CLAUSES[9] = “os = ‘MacOS’“;
$QUERY_DESCRIPTION[9] = “uses MacOS”;

$QUERY_CLAUSES[10] = “os = ‘Windows’“;
$QUERY_DESCRIPTION[10] = “uses Windows”;

$QUERY_CLAUSES[11] = “age < 20”;
$QUERY_DESCRIPTION[11] = “is less than 20 years old”;

$QUERY_CLAUSES[12] = “age > 30”;
$QUERY_DESCRIPTION[12] = “is over 30 years old”;

$QUERY_CLAUSES[13] = “continent = ‘North America’“;
$QUERY_DESCRIPTION[13] = “lives in North America”;

$QUERY_CLAUSES[14] = “continent = ‘South America’“;
$QUERY_DESCRIPTION[14] = “lives in South America”;

$QUERY_CLAUSES[15] = “continent = ‘Antarctica’“;
$QUERY_DESCRIPTION[15] = “lives in Antarctica”;

$QUERY_CLAUSES[16] = “continent = ‘Asia’“;
$QUERY_DESCRIPTION[16] = “lives in Asia”;

$QUERY_CLAUSES[17] = “continent = ‘Europe’“;
$QUERY_DESCRIPTION[17] = “lives in Europe”;
?>

A screenshot of the form itself is shown in Figure 45-2.

788

 Part VI Case Studies

FIGURE 45-2

DB visualization Web form

One last code file and we’re done. We have our image creation code and a form for requesting an

image. The last piece of the puzzle is code to handle the form submission, perform the appropriate

counts on the database, and call the image code. This code is shown in Listing 45-5.

LISTING 45-5

db_visualization.php

<?php
include_once(“dbconnect.php”);
include_once(“query_clauses.php”);
include_once(“venn.php”);

if (IsSet($_POST[‘table’]) &&
 IsSet($_POST[‘left_clause’]) &&
 IsSet($_POST[‘right_clause’])) {
 $table = $_POST[‘table’];
 $left_clause_id = $_POST[‘left_clause’];
 $right_clause_id = $_POST[‘right_clause’];

 $left_clause = $QUERY_CLAUSES[$left_clause_id];

789

 Data Visualization with Venn Diagrams 45

 $right_clause = $QUERY_CLAUSES[$right_clause_id];

 visualize_intersection ($table, $left_clause,
 $right_clause);
}
else {
 print(“Form submission not handled correctly.
”.
 “Did you choose all options?”);
}

function visualize_intersection ($table, $left_clause,
 $right_clause)
{

 $left_query = “select count(*) from $table
 where $left_clause”;
 $right_query = “select count(*) from $table
 where $right_clause”;
 $intersection_query =
 “select count(*) from $table
 where $left_clause and $right_clause”;

 $result = mysql_query($left_query)
 or die(“Query was $left_query:” . mysql_error());
 $row = mysql_fetch_row($result);
 $left_count = $row[0];

 $result = mysql_query($right_query)
 or die(mysql_error());
 $row = mysql_fetch_row($result);
 $right_count = $row[0];

 $result = mysql_query($intersection_query)
 or die(mysql_error());
 $row = mysql_fetch_row($result);
 $intersection_count = $row[0];

 venn_visualization($left_count, $left_clause,
 $right_count, $right_clause,
 $intersection_count);
}
?>

The submission form passes in index numbers of SQL clauses, rather than the clauses themselves, so

we don’t need to worry about escape characters in the submission. The form-handling code includes

the same query_clauses.php file, so the index numbers should always agree. The form handler

collects the two clauses, creates three SQL statements out of them, executes the statements to get

counts, and uses the results as arguments to the venn_visualization() function.

790

 Part VI Case Studies

Note that Listing 45-5 refers to one auxiliary code file we haven’t mentioned yet: dbconnect.php.

We assume that this file contains (or refers to a file containing) your MySQL username and pass-

word, and also makes a call to mysql_connect() to create a global DB connection for the rest of

the script. Something like the following should suffice:

<?php
$user = ‘USER’;
$pass = ‘PASS’;
$db = ‘venn’;
mysql_connect(‘localhost’, $user, $pass)
 or die(“Couldn’t make DB connection:” . mysql_error());
mysql_select_db($db);
?>

This assumes that your username and password are replaced appropriately, and that you have a MySQL

database called venn, which contains a table called programmers, as described in Chapter 42.

Trying it out
Now that our system is complete, let’s give it a spin. Bringing up visualization_form.php, we

choose the first option from the left-hand column (Female), and the second option from the right-

hand column (Male), and submit. The result is shown in Figure 45-3 — two separate circles because,

given the database schema, it’s impossible for anyone to be both male and female. (Please, no e-mails

about the narrowness of our views — it’s just an example!)

FIGURE 45-3

No intersection

791

 Data Visualization with Venn Diagrams 45

On a color monitor the left-hand circle is bluish, while the right-hand circle is reddish. Because this

is a grayscale book, though, you probably see two gray or black circles.

Now a different query: uses Solaris on the left, and lives in Antarctica on the right. (We

chose this deliberately, knowing that our lone South Pole correspondent sees only one kind of Sun

during the winter.)

The result is shown in Figure 45-4: one small gray circle inside a larger blue one, indicating that all

Antarcticans are Solaris users but not vice versa.

FIGURE 45-4

Subset

Finally, for the more typical case, let’s choose likes PHP from the left, and uses Linux from

the right.

The result, in Figure 45-5, is two mostly overlapping circles. (Again, please no letters — we have no

idea if these proportions match the world as it is or just the world as we would like it to be.)

792

 Part VI Case Studies

FIGURE 45-5

Partial intersection

Extensions
This example works nicely, but as always, there are countless ways in which it could be tweaked,

improved, and especially extended. Naturally, there is a lot you could do to change the cosmetics of

the images or to make the look more configurable.

The weakest part right now in our view is the form submission, which is hardcoded to pertain only

to a particular known MySQL table. Much cooler would be code that, armed only with a table (or

view) name and the appropriate login, would quiz the database about column names and types and

the distribution of values, and then develop such a form on its own.

One extension that may immediately occur to you doesn’t work, unfortunately, at least without sub-

stantial changes to the display code. There is no good way to involve a third set (and circle) in the

diagram, cover all the cases, and be assured that all the shapes can still be circular. If you have any

doubt about this, try diagramming the following three sets: people who were born in Europe, people

who currently live in Europe, and people who currently live in a continent different from the one

they were born in.

793

 Data Visualization with Venn Diagrams 45

Summary
We’ve shown you a small but complete system for visualizing data in a MySQL database. It allows

the user to select aspects to compare, makes corresponding SQL queries, and transforms the results

into a scaled Venn diagram, showing how the database records overlap.

In addition to using MySQL techniques from Part II of this book, we drew on the image techniques

from Chapter 42, and as little math as we could get away with from Chapter 27.

795

I
n this appendix, we assume that you have more C (or C++) program-

ming experience than PHP experience and are looking to get up to

speed in PHP quickly. First, we’ll provide a quick overview of PHP

from a C perspective; next, we’ll break down the similarities and differ-

ences, and finally we’ll point out which parts of the book you are likely to

benefit from the most.

The simplest way to think of PHP is as interpreted C that you can embed in

HTML documents. The language itself is a lot like C, except with untyped

variables, a whole lot of web-specific libraries built in, and everything

hooked up directly to your favorite web server. The syntax of statements

and function definitions should be familiar, except that variables are always

preceded by $, and functions do not require separate prototypes.

Similarities
In this section, we offer some notes (by no means exhaustive) on ways in

which PHP can be expected to be C-like.

Syntax
Broadly speaking, PHP syntax is the same as in C: Code is blank-insensitive,

statements are terminated with semicolons, function calls have the same

structure (my_function(expression1, expression2)), and curly

braces ({ and }) make statements into blocks. PHP supports C and C++ style

comments (/* */ as well as //), and also Perl and shell-script-style (#) ones.

PHP for C Programmers

796

 Part VI Appendices

Operators
The assignment operators (=, +=, *=, and so on), the Boolean operators (&&, ||, !), the comparison

operators (<, >, <=, >=, ==, !=), and the basic arithmetic operators (+, -, *, /, %) all behave in PHP

as they do in C.

Control structures
The basic control structures (if, switch, while, for) behave as they do in C, including support-

ing break and continue. One notable difference is that switch in PHP can accept strings as case

identifiers.

Many function names
As you peruse the documentation, you’ll see many function names that seem identical to C functions.

It’s a safe bet that these functions perform the exact same tasks, although they may sometimes take a

slightly different form in terms of arguments or the way results are returned. Most string-modifying

functions, for example, return new strings as the value of the function rather than modifying a string

passed as an argument. Note, however, that function names are not case-sensitive in PHP.

Differences
Although PHP has quite a bit of C ancestry, it also has some other ancestors (Perl, shell scripts), as

well as some unique features not at all C-like.

Those dollar signs
All variables are denoted with a leading $. Variables do not need to be declared in advance of assign-

ment, and they have no intrinsic type — the only type a variable has is the type of the last value

assigned to it. The PHP version of the C code:

double my_number;
my_number = 3.14159;

would simply be:

$my_number = 3.14159;

Types
PHP has only two numerical types: integer (corresponding to a long in C) and double (corresponding

to a double in C).

797

 PHP for C Programmers A

Strings are of arbitrary length. There is no separate character type. (Functions that might take char-

acter arguments in their C analogues typically expect a one-character string in PHP (ord(), for

example.) Beginning with PHP4, there is also a genuine Boolean type (TRUE or FALSE). See the fol-

lowing sections for arrays and objects.

Type conversion
Types are not checked at compile time, and type errors do not typically occur at runtime either.

Instead, variables and values are automatically converted across types as needed. This is somewhat

analogous to the way arithmetic expressions in C will “promote” numerical arguments as needed,

but it is extended to the other types as well. (See Chapter 25 for details of the conversion rules.)

Arrays
Arrays have a syntax superficially similar to C’s array syntax, but they are implemented completely

differently. They are actually associative arrays or hashes (with some additional supporting

machinery), and the “index” can be either a number or a string. They do not need to be declared or

allocated in advance.

No structure type
There is no struct in PHP, partly because the array and object types together make it unnecessary.

The elements of a PHP array need not be of a consistent type.

Objects
PHP4 had a very basic OOP syntax, which allowed definition of classes with member data items and

member functions. PHP5 introduces a much fuller object model, although in approach and syntax it

owes more to Java than to C++. Some highlights: abstract classes, private/protected members, con-

structors/destructors, and interfaces (but no multiple inheritance as in C++).

No pointers
There are no pointers per se in PHP, although the typeless variables play a similar role. PHP does

support variable references. You can also emulate function pointers to some extent, in that function

names can be stored in variables and called by using the variable rather than a literal name.

No prototypes
Functions do not need to be declared before their implementation is defined, as long as the function

definition can be found somewhere in the current code file or included files.

798

 Part VI Appendices

Memory management
The PHP engine is effectively a garbage-collected environment (reference-counted), and in small

scripts there is no need to do any deallocation. You should freely allocate new structures — such as

new strings and object instances — especially because they will reliably go away when your script

terminates. If you need to free memory within a script’s execution, call unset() on the variable that

refers to it, which will release the memory for collection. External resources (such as database result

sets) can also be explicitly freed within a script, but doing so is worth it only if the script would use

an unacceptable amount of the resource before terminating.

In PHP5, it is possible to define destructors for objects, but there is no free or delete. Destructors

are called when the last reference to an object goes away, before the memory is reclaimed.

Compilation and linking
There is no separate compilation step for PHP scripts — the development cycle is simply edit-reload.

Errors and warnings show up in the browser output by default, although there is also an error-

logging capability. Typically, there is no dynamic loading of libraries (although such a capability

exists) — you decide at PHP configuration time which function families to include in your module,

and they are then available to any script.

Permissiveness
As a general matter, PHP is more forgiving than C (especially in its type system) and so will let you

get away with new kinds of mistakes. Unexpected results are more common than errors. In par-

ticular, under the default error-reporting level, PHP does not warn you if you use a variable that has

not yet been assigned (although it does supply reasonable default values rather than garbage). If you

would rather be warned, you can set the error-reporting level by evaluating error_reporting(E_
ALL) early in your script, or set the error-reporting level to E_ALL permanently by editing the php.
ini file.

Guide to the Book
In writing this book, we very intentionally did not assume that the reader had prior knowledge of C.

Because PHP resembles C in many aspects, some of the chapters may cover familiar ground. This is

especially true of Part I, which is essentially a language introduction.

In Table A-1, we label the chapters of Part I according to how familiar they are likely to be to C pro-

grammers. Parts III, IV, and V are more PHP-specific and likely to be novel, but you may also find

portions of Part II to be familiar if you have some experience with SQL databases.

799

 PHP for C Programmers A

TABLE A-1

Guide to Part I for C Programmers
Chapter Chapter Title Verdict? Notes

1 Why PHP? Novel The chapter you need to justify PHP to
your boss.

2 Server-Side Scripting
Overview

Novel Important if you have not seen web-
scripting languages before.

3 Getting Started with
PHP

Novel Installation, hosting, and so on.

4 Learning PHP Syntax
and Variables

Mostly familiar Skimmable until the section on variables
(which really are different in PHP).

5 Learning PHP Control
and Functions

Mostly familiar All the PHP control structures (if, while,
switch, for) work the same way as in
C. Some differences in function behavior,
particularly with scoping of variables.

6 Passing Information
with PHP

Novel Specific to web-scripting.

7 Learning PHP String
Handling

Mostly familiar Doubly quoted strings do automatic
interpolation of variable values.

8 Learning Arrays Novel Deceptively familiar — PHP arrays are
syntactically like C arrays but behave
totally differently.

9 Learning PHP Number
Handling

Familiar Two numerical types, corresponding to the
long and double types. Numerical operators
are as in C.

10 PHP Gotchas Novel Error messages and stumbling blocks do not
have much overlap with C.

A Bonus: Just Look at the Code!
As a final bonus, C programmers are uniquely qualified to benefit from the open source nature of

PHP. Although the combination of this book and the online manual should answer almost all your

questions, if you have the PHP source available you may be able to gain some extra insight by pok-

ing around in it and seeing how things are implemented. Although you would need to be familiar

800

 Part VI Appendices

with lexing/parsing technology to get much out of the parser code itself, many PHP functions are

simple wrappers around their similarly named C counterparts, and some others that have no C

counterparts are at least implemented in clear and simple C.

It’s also easy for C programmers to add new capabilities to the language, whether for their own use

or for eventual use by the PHP community. Most PHP programming tasks are addressed by writing

PHP (often by defining functions in PHP), but you can also pop the hood and add functionality to

the underlying language by adding a new module, written (of course) in C.

801

I
n this appendix, we assume that you know Perl, but not PHP, and are

looking to quickly get up to speed in PHP. The good news is that the

two languages are very similar indeed.

This is by no means a comprehensive guide to how Perl and PHP compare.

Although similar, and sharing some ancestry, they really are distinct lan-

guages with distinct syntaxes and feature sets, and there is no replacement

for getting to know them individually. Our main goal for this appendix is

to save you some time up front — to warn you, for example, that elsif

means nothing in PHP (but that elseif, however, is significant) rather

than letting you debug your way to that realization.

Similarities
In this section, we discuss some ways in which PHP and Perl are similar.

Compiled scripting languages
First, the obvious: Both Perl and PHP are scripting languages. This means

that (unlike compiled languages such as C) they are not used to produce

native standalone executables in advance of execution, which can then be

run without reference to the language they were written in. Instead, Perl or

PHP source files are both fed to an appropriate engine at execution time.

This does not mean, however, that Perl/PHP code is interpreted line by line

at execution time; in both Perl and PHP, scripts are quickly and automati-

cally compiled at execution time and then executed. But it does mean that

the development cycle for PHP/Perl programmers is edit-execute, rather

than edit-compile-execute, as in C.

PHP for Perl Hackers

802

 Part VI Appendices

Syntax
PHP’s basic syntax is very close to Perl’s, and both share a lot of syntactic features in common with

C. Code is insensitive to whitespace, statements are terminated by semicolons, and curly braces

organize multiple statements into a single block. Function calls start with the name of the function,

followed by the actual arguments enclosed in parentheses and separated by commas.

Dollar-sign variables
All variables in PHP look like scalar variables in Perl: a name with a dollar sign ($) in front of it. (See

the “Differences” section for what happened to @ and %.)

No declaration of variables
As in Perl, you don’t need to declare the type of a PHP variable before using it. The following line is

legal in both languages, with no prior mention of the variable called $the_answer:

$the_answer = 42;

Loose typing of variables
As in Perl, variables in PHP have no intrinsic type other than the value they currently hold. This is

different from languages such as C and Java, in which once a variable is declared to be for holding,

say, strings, you get into trouble if you try to use it to store an integer.

The following sequence of two lines is legal in both Perl and PHP:

$the_answer = 42;
$the_answer = “the answer”;

The variable $the_answer is assigned sequentially to an integer and a string. This would not be

legal in more strongly typed languages such as C, Pascal, or Java.

Strings and variable interpolation
Both PHP and Perl do more interpretation of double-quoted strings (“string”) than of single-

quoted strings (‘string’). In particular, the value of $ variables is spliced into double-quoted

strings at the time the strings are read.

The following code fragment is both legal Perl and legal PHP, and it has the same behavior in both

languages.

$the_answer = 42;
$the_statement = “the answer is $the_answer”;

At the end of the second line, the variable $the_statement contains the string:

the answer is 42

803

 PHP for Perl Hackers B

Differences
This section warns you (again, not exhaustively) about some ways that Perl and PHP diverge from

each other.

PHP is HTML-embedded
Although it is possible to use PHP for arbitrary tasks by running it from the command line, it is

more typically connected to a web server and used for producing web pages. The code for these

pages can consist partially (or even completely!) of straight HTML, with fragments of PHP embedded

in them to produce the dynamically generated portions.

If you are used to writing CGI scripts in Perl, the main difference in PHP is that you no longer need

to explicitly print large blocks of static HTML using print or heredoc statements and instead can

simply write the HTML itself (outside of the PHP code block). Also, for typical pages, there is no

need to explicitly send HTTP headers from PHP code.

No @ or % variables
PHP has one only kind of variable, which starts with a dollar sign ($). Any of the datatypes in the

language can be stored in such variables, whether scalar or compound. For example, the expression

$my_array[0] refers to the first element in an array, while $my_array refers to the array itself.

Arrays versus hashes
PHP has a single datatype called an array that plays the role of both hashes and arrays/lists in Perl.

For all the details, see Chapter 9; the short version is that a PHP array acts like a Perl hash when you

supply keys and like a Perl (nonassociative) array when keys are omitted. Values can be extracted by

key (as in Perl hashes) or by iteration through the array (as with Perl arrays).

There is, however, a list() function in PHP. It’s used to extract the contents of an array into a set of

separate variables. The list() function works like this:

$myArray = (‘a’, ‘b’,’c’);
list($var1, $var2, $var3) = $myArray

After that runs, $var1 contains a, $var2 contains b, and $var3 contains c.

Specifying arguments to functions
Function calls in PHP look pretty much like subroutine calls in Perl. Function definitions in PHP, on

the other hand, typically require some kind of list of formal arguments as in C or Java. For example,

although the typical syntax for a two-argument subroutine in Perl might look like:

sub two_arg_sub () {
 my ($first_arg, $second_arg) = @_;

804

 Part VI Appendices

 ...
}

The corresponding PHP function definition would be:

function two_arg_function ($first_arg, $second_arg) {
 ...
}

Although your humble authors try hard not to be partisan, we feel strongly that subroutine argu-

ments in Perl are a bug and that function arguments in PHP are a feature. Two kinds of silliness

common in Perl that don’t usually arise in PHP are: (1) popping the argument stack at various points

in a subroutine (so that it is hard for a reader of the code to figure out what the formal arguments

are supposed to be) and (2) compound arguments bleeding into one another because arguments are

passed as a list of scalars. PHP arguments arrive intact and without confusion regardless of number

and type.

Variable scoping in functions
In Perl, the default scope for variables is global. This means that top-level variables are visible inside

subroutines. Often, this leads to promiscuous use of globals across functions.

In PHP, the scope of variables within function definitions is local by default. This means that (with

some exceptions) the only variables visible within functions are the formal parameters and variables

assigned locally within the function. If you want to refer to a variable from the global context within

a function, you must declare it by name in the function definition itself, using the global keyword.

The exceptions to that rule in PHP are the so-called superglobals, the most popular of which is $_
POST. Representing the variables that arrived at a PHP script as a result of an HTTP POST operation,

$_POST and its contents are accessible anywhere, without the need to use the global keyword.

For example, if we called a PHP script with this URL:

http://localhost/quoteStooges.php?stooge1=Curly&stooge2=Shemp

these calls would be legal anywhere in: quoteStooges.php:

lookupQuote($_GET[‘stooge1’]);
lookupQuote($_GET[‘stooge2’]);

No module system as such
In PHP there is no real distinction between normal code files and code files used as imported

libraries. To import a PHP code file full of function or class definitions, simply use include(),

require(), or require_once(), which have much the same effect as splicing the definitions in at

the point of the statement.

805

 PHP for Perl Hackers B

Break and continue rather than next and last
Perl has some idiosyncratic language keywords, which are not the same as the corresponding C con-

structs. In general, if Perl and C disagree about such a name, you will find that PHP follows C rather

than Perl. In particular, if you want to skip to the end of a for or while iteration, use continue

(not next); if you want to break out of the loop altogether, use break (not last).

No elsif
A minor spelling difference: Perl’s elsif is PHP’s elseif. Also, its use is not mandatory. In PHP,

the following is legal:

if ($boolean_var) {
 # case 1
}
else if ($other_boolean) {
 # case 2
}

In Perl, on the other hand, if you for some reason decline to use elsif, your other alternative is the

more awkward form:

if ($boolean_var) {
 # case 1
}
else {
 if ($other_boolean) {
 # case 2
 }
}

More kinds of comments
Perl people like the phrase “There’s more than one way to do it,” and yet they suffer with a really

impoverished set of options for comments. In addition to Perl-style (#) single-line comments, PHP

offers C-style multiline comments (/* comment */) and Java-style single-line comments (//

comment).

Regular expressions
PHP does not have a built-in syntax specific to regular expressions, but has most of the same func-

tionality in its “Perl-compatible” regular expression functions. See Chapter 22 for the details.

Miscellaneous Tips
Following are answers to a couple of questions that Perl programmers might have on their minds.

806

 Part VI Appendices

What about use of strict “vars”?
Like Perl, PHP allows you to use variables without declaring them or initializing them, and (as

in Perl) this capability is a frequent source of bugs. If you would like a declaration like Perl’s use

strict “vars”, try error_reporting(E_ALL), which will at least warn you about the use of any

unassigned variables.

Where’s CPAN?
PHP doesn’t yet have a code repository as comprehensive as the Comprehensive Perl Archive

Network (CPAN), but the PEAR project provides a reasonable substitute (http://pear.php.net).

Guide to the Book
As in Appendix A (PHP for C Programmers), in this section we offer Perl hackers a quick guide to

Part I of the book to give a sense of which chapters are likely to already be familiar.

TABLE B-1

Guide to Part I for Perl Programmers
Chapter Chapter Title Verdict? Notes

1 Why PHP? Novel The chapter you need to justify PHP to your
boss

2 Server-Side Web
Scripting

Possibly novel Familiar to Perl CGI and mod_perl
programmers; important if you have not seen
web scripting before

3 Getting Started
with PHP

Novel Installation, hosting, and so on

4 Learning PHP
Syntax and
Variables

Novel but easy “Hello world” for PHP

5 Learning PHP
Control and
Functions

Somewhat familiar Basic constructs are similar, with syntactic
differences

6 Passing Information
with PHP

Mostly familiar Specific to web scripting

7 Learning PHP
String Handling

Somewhat familiar Treatment of single-quoted and double-
quoted strings essentially the same; functions
are mostly novel

807

 PHP for Perl Hackers B

Chapter Chapter Title Verdict? Notes

8 Learning Arrays Novel No exactly corresponding data type in Perl

9 Learning PHP
Number Handling

Mostly familiar Novel section on arbitrary-precision (BC)
math functions.

10 PHP Gotchas Novel Same gotchas around unintentionally
unassigned variables; other gotchas specific
to PHP parsing

809

T
his appendix contains specific advice for HTML-only jocks looking

to trade up to something a little more powerful on the server side. If

you already know ASP, JavaScript, or almost any real programming

language, this appendix is not going to help you much.

The Good News
If you’re already proficient at HTML, starting to use PHP is not a huge step.

Because PHP is usually embedded in HTML, extending the functionality

of static web pages with a programming language can be a very natural

progression. There are plenty of reasons to believe that you can learn PHP

fairly quickly, such as the following factors.

You already know HTML
Because PHP is often embedded in HTML, and because PHP generally uses

HTML for display to the browser, you won’t be able to see anything that

your scripts are doing unless you output HTML. In fact, you can think

of PHP as simply adding functionality to web pages — it can do other

things, but lots of people use it mostly for form handling and dynamic page

generation.

You presumably have a lot of practice debugging HTML, which is all to the

good. Many errors occur within the HTML parts of scripts or during the

transitions between modes, so the ability to read and write HTML with

great facility is crucial.

PHP for HTML Coders

810

 Part VI Appendices

If you’re strong on the design side, as are many HTML coders, you have the ability to produce a

good-looking and well-laid-out product. This skill is important for the community because a lot of

early PHP developers were not exactly known for their UI skills (including ourselves, we hasten to

admit). So go out there and show the world that PHP sites don’t need to be ugly, clunky, or, at best,

really plain — you can make us all proud.

PHP is an easy first programming language to learn
Unlike many major programming languages, PHP enables you to do useful stuff from the very

beginning instead of making you play endless games of tic-tac-toe or code up incomprehensible

math problems. The web browser and markup languages, however primitive and clunky they are

now, point the way to the universal I/O, windowing, and multimedia solution that the world has

been waiting for. PHP takes full advantage of the web’s power; plus it has very little overhead and

takes a loose, inclusive approach to issues such as types, variables, and syntax. All the nitpicky angst

that programmers used to put into these areas you can now apply more directly to functionality.

And frankly, PHP enables you to learn just those parts that are useful to you and ignore the rest.

Unlike some programming languages, which pretty much require a firm grasp of all the basic prin-

ciples before you can do anything useful (try telling a C programmer that you just haven’t seen a

need for structs yet if you want a laugh), no one is going to give you a quiz on all the hundreds of

PHP functions before entrusting you with a text editor. So if you don’t need to write some huge math

function right off the bat, go ahead and skip that chapter — we promise not to tell. If you ever need

them, the math capabilities will still be there.

Web development is increasingly prefab anyway
Finally, the web is increasingly making development a matter of altering prefab open source code

rather than hacking it all up yourself. Much of this work is about changing how the page looks

rather than how it functions. Learn to be a smart script shopper, and you’re more than halfway

there.

The Bad News
Before we get too carried away, honesty compels us to admit that you may face a few hurdles before

you become a power PHP user.

If programming were that easy, you’d already
know how
PHP is a real programming language, similar to C (albeit generally web server dwelling), rather than

a tag-based markup concept such as HTML or ColdFusion. This point introduces whole new levels

of complexity. It simply takes time and practice to develop a bag of tricks, work out routines for solv-

ing problems, and just get better at development — and there are no shortcuts for these skills.

811

 PHP for HTML Coders C

So here’s the bottom line: Most of PHP is probably completely new to you. Unlike new PHP develop-

ers who are already proficient with ASP, JavaScript, or C, you can’t expect to pick up any specific

points here that are highly similar to things you already know how to do. Uh, sorry.

However, if you already know some JavaScript or have taken an “Intro to C” class in school — even

if you wouldn’t describe yourself as a JavaScript or C guru — you’re ahead of the curve. Some of the

logic is sure to come back to you as you begin to work with PHP.

Backend servers can add complexity
PHP is mostly useful in conjunction with backend servers, such as database and mail servers, which

have their own syntax and implementation issues that you need to learn about. Because open source

software such as PHP is commonly used in noncorporate settings, most PHP developers probably

don’t have the luxury of a team of database, network, and design experts doing their various things

while they just worry about the middle and front tiers.

If possible, don’t try to learn everything at once. The most important task is to become comfortable

with the web server itself; Apache, in particular, is an extremely powerful but involved piece of soft-

ware that rewards study. (This advice may not be relevant if you have IT staff to install and maintain

the web server for you.) After that, you will almost certainly want to learn SQL if you don’t know it

already. Mail service is also a very rewarding subject. After you master those three, other new serv-

ers should be easier to learn.

Concentrate On . . .
Learning PHP quickly requires a strategy. Here are some things you might want to concentrate on

doing when you’re first learning.

Reading other people’s code
Learning to read other people’s code can be harder than it sounds. One of the best things about PHP

is its loose syntax and inclusive “don’t worry, be happy” design — but that can also mean that differ-

ent scripts can look very different, even if they return similar results. Beginners can be boggled by

stylistic issues and may find it difficult to sort out which parts of a script are functionally irreducible

and which are the products of one individual’s programming quirks. But regardless of difficulty, the

sooner you can parse other people’s PHP and the more code you can look at, the better off you’ll be.

One potentially helpful exercise is to visit the mailing-list archive or a code exchange (see Appendix

D) and print out multiple examples of code that solve the same issue (preferably one you’re inter-

ested in). Then lay the sheets side by side, take a big ol’ red pen and go through it all, circling the

common parts. Give extra brownie points to any scripters who comment their code well (which

doesn’t necessarily mean the most voluminous comments but rather the most useful) and look for

more code from those people. Also look for code that is generally well laid out and logically orga-

nized, even if it isn’t extensively commented.

812

 Part VI Appendices

Working on what interests you
We firmly believe that learning is motivation. If you find tasks that you want to accomplish, you will

automatically be motivated to learn what you need to know to accomplish them. Don’t let anyone tell

you that the right way to learn programming is through some highly structured program of math

problems, games, and stock-market simulations. Wanting to put pictures of your dog on the Internet

is much more important than making sure that you know what’s in every byte of memory your pro-

gram is using.

Thinking about programming
As we said earlier, learning PHP is inevitably going to take time, practice, and lots of example code.

There is just no way around it, and there is not a whole lot more to say on the subject.

One thing that may prove helpful to new developers, particularly those of a narrative rather than

mathematical bent, is the judicious use of pseudocode. For example, you might start out with mostly

pseudocode and gradually add real PHP as we do in the steps that follow:

 1. Write down the tasks that you want this page to accomplish. Being complete is more

important at this stage than being cogent. Following is an example of a script mission

statement:

This page should display a form with any old answers already filled in.
Then you can submit the form to update some of the values if you want
to. And I want the form to be password-protected, so it needs to handle
a User ID passed in from the login screen.

 2. Break the mission statement down into steps and substeps, as in a recipe. Rearrange these

if necessary. Following is an example of this step:

1. Get the User ID that is passed from the login screen; if none,
 don’t display anything.
2. Display the HTML form.
3. Make any old values from the database appear in the form.
a. Connect to the database server.
b. Download data about this item.
c. Put the data into the HTML form’s “value=X” variables.
4. Change the values and put them into the database too.
5. Pass the User ID to the next page.

 3. Pick one of the steps and turn it into actual PHP code. Starting with a core PHP task — such

as sending e-mail or returning something to the screen — is generally easier than beginning

with peripheral tasks, such as connecting to a database. Any time you might want to connect

to a database, use a commented variable, array, or include file for the moment. The following

example illustrates this step:

1. Get the User ID that is passed from the login screen; if none,
 don’t display anything.

813

 PHP for HTML Coders C

<?php
// Dummy UserID pretending to be passed from login.
// Will be superseded later.
$UserID = 1;
?>

2. Display the HTML form.

<HTML><HEAD></HEAD>
<BODY>
<FORM>
First name: <input type=”text” size=30 name=”FirstName”>

Last name: <input type=”text” size=30 name=”LastName”>

E-mail: <input type=”text” size=30 name=”Email”>

3. Make any old values from the database appear in the form.

<?php
// I’m using these variables now, but later I’ll get
// them from the database instead.

$FirstName = “Joyce”;
$LastName = “Park”;
$Email = “root@localhost”
?>
Oh, I think I need to put them in before the form is rendered.

4. Change the values and put them into the database, too.
5. Pass the User ID to the next page.

 4. Gradually fill in more and more of the code, fixing any new issues that arise. You may want

to keep some of the pseudocode, suitably edited, as comments, as shown in the following

example:

/* Pass the User ID to the next page. The best way is to have it
 show up as a hidden input type and PHP variable in the form;
 then HTML can pass it with the rest of the POST values. */

Learning SQL and other protocols
Spending some time interacting with backend servers directly, via whatever interface the server pro-

vides, is generally a good idea before you add the complexity of PHP between you and the server.

You can kill two birds with one stone by using the backend server’s own interface to construct

the database (or whatever), even though there may be nice PHP tools for some of these tasks. For

instance, even though the phpMyAdmin and MySQL Control Center are both very slick and handy

ways to deal with the MySQL database, the newbie database administrator can learn a heck of a lot

more by using MySQL’s deliberately primitive command-line interface.

814

 Part VI Appendices

Beginning with PHP5, a lightweight, embedded database engine called SQLite is included and ready

for you to use. SQLite is rudimentary and not up to the task of replacing MySQL and other database

engines on a production site; however, you may find it an excellent tool for getting your feet wet

before moving on to MySQL.

Making cosmetic changes to prefab PHP applications
One common way to ease into using PHP is to enlist your frontend web development skills to cus-

tomize a preexisting PHP package.

First try just changing the colors — that’s generally pretty safe. If that goes well, try cus-■■

tomizing the buttons. The next safest thing is spacing — table widths, columns, and so

on. You can also add graphics, add links, or play around with style sheets pretty much

without worries.

If the application has include files (especially ■■ header.inc), the cosmetic part is often

in there. Look first in headers and footers for colors, the basis of page layouts, and so on.

Remember to match header changes with corresponding footer changes and vice versa.

Never, ever erase a line beginning with a conjunction (such as ■■ if, while, or for). If

you are not 100 percent sure of what you’re doing, comment out code blocks rather than

deleting them.

Debugging is programming
Few people truly enjoy debugging; as one of our colleagues once observed, “I’d rather implement

new features than eat someone else’s leftovers.” Debugging can turn out to be a useful learning

experience, however, because you can fix things at the edges of a big project instead of jumping into

writing the whole thing from scratch.

One of the most efficient ways to debug is in pairs. If you’re tired or have seen a piece of code too

many times, focusing on every detail can prove difficult. At this point, talking through your logic

becomes very helpful — one of you briefly stating why you’re doing what you’re doing and the other

checking each step off very deliberately. A fresh set of eyes can often find cheap mistakes such as

misspelled variable names or missing brackets more quickly, too. If you get an opportunity to debug

with a more experienced programmer, take it.

Avoid at First . . .
A few things in PHP are extremely unfamiliar to HTML coders and generally are not extremely

necessary to writing functional PHP. Try to avoid the elements that we describe in the following sec-

tions if you can, at least at first.

815

 PHP for HTML Coders C

Maximal PHP style
See Chapter 32 on PHP style. The maximal style is deprecated by Rasmus Lerdorf himself, and only

hardcore C programmers have the slightest excuse to use it, except in very specific, brief instances.

It includes too many single quotation marks, double quotation marks, forward slashes, backslashes,

ASCII line breaks, and HTML line breaks for most coders. Beginners are better off if they don’t waste

their time worrying about stray punctuation when they could be spending the time and effort grasp-

ing larger concepts instead.

Programming large applications from scratch
Why reinvent the wheel? In Open-Source-Land, you don’t need to. Becoming a good customizer and

recycler of other people’s code is often more efficient than trying to become the world’s greatest pro-

grammer from scratch. Learn to shop for what you need.

Consider This . . .
The ideas in the following sections are completely optional but may prove helpful. You may not

agree with them all, but we offer them for what they’re worth.

Reading a book on C programming
Unfortunately, we can’t write a complete programming tutorial. Part I of this book explains pro-

gramming topics but necessarily very briefly. We’ve tried to comment our code samples extensively,

but we can do only so much to explain these techniques in passing.

Mailing-list regulars frequently counsel new PHP developers to buy a book on C programming — but

in a snotty, RTFM way that too often elicits a naturally passive-aggressive response. Nevertheless,

if you separate the suggestion from the unspoken message that you must be a clueless idiot, it’s

good advice and something to seriously consider if you’re having trouble with the programming

aspect of PHP.

A clearly written, brief tutorial book is Patrick Henry Winston’s On to C (Addison-Wesley, 1994). It’s

fewer than 300 pages, and a lot of the PHP-relevant material is right at the beginning. The standard

reference is The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie (Prentice

Hall, 1988), which is quite definitive but more reference-oriented and, therefore, perhaps less appro-

priate for HTML-only coders. A friendlier introduction might be Dan Gookin’s two-volume C For
Dummies (Wiley, 1997), which has cartoons and dry humor.

Minimal PHP style
Of the range of PHP styles, the easiest for the HTML coder to work with at first is the most minimal.

In other words, we suggest that you separate the HTML and PHP sections completely. Not only does

this technique avoid many stylistic difficulties, but by using this method, you avoid mixing PHP and

816

 Part VI Appendices

HTML glitches on the same page, which makes diagnosing problems more than twice as hard. We

discuss this topic thoroughly in Chapter 32.

Perhaps the easiest way to use the minimal style is to finish the HTML pages first, using whatever

tool you’re most enamored of. Take the time to debug your HTML completely and perhaps run it

through a tidying utility. Then, and only then, tackle the PHP parts, secure and comfy in the knowl-

edge that any difficulties you encounter are certainly on the PHP side rather than the HTML side.

One downside of this style is that you can’t have pages pass their variables back to themselves. This

is particularly relevant with forms, so if your site has a lot of forms, you may want to change your

style a bit as your PHP skills improve.

Use the right tools for the job
Finally, you want to consider using a PHP-enabled text editor for the PHP parts of your scripts.

(See Chapter 3 for a discussion of text editors versus WYSIWYG tools.) Some people can do won-

ders with just Notepad or emacs, but a lot of frustrated beginners are certainly using those tools

just because someone told them that’s what the cool programmers do. As Zsa Zsa Gabor said (in a

slightly different context), macho does not mean mucho. If you work more effectively with vim or

Visual SlickEdit, by all means use those tools.

Syntax highlighting (printing different parts of the code in different colors) can help you a lot, as it

will usually make clearer when you have failed to insert a closing parenthesis or double quotation

mark. Some programmer’s text editors will automatically line up your curly braces for you, which

helps you verify that you’ve closed off all of a set of nested cases. We would not even consider using

a text editor without line numbering, since PHP’s built-in error messages always refer to lines in

your code. And last but not least, do not forget the power of “View Source” in the browser — this

will help you verify that the output you are producing is in fact what you intended.

This advice does not apply to WYSIWYG editors, the use of which we deprecate. Sooner

or later, you need to fix up the HTML into a human-readable form, which no WYSIWYG

editor can yet produce. If it’s your choice to use one, fine — but you should in no way think of this tool

as a substitute for understanding and writing clean HTML by hand.

CAUTION CAUTION

817

T
his appendix lays out some basic resources that can help you learn

more about the language. We have also tried to mention specific

resources and products throughout the text.

The PHP Web Site
The URL for the PHP web site (engrave it on your forehead) is www.php.net.

Here you’ll find the latest official news, the freshest downloads, the PHP bug-

tracker, a growing list of PHP users’ groups, and links to PHP-friendly ISPs.

Most important, you’ll find the PHP manual in the Documentation section

of the PHP web site. It’s available in several versions for your universal ref-

erence pleasure, including the following:

Numerous translations — many European languages, Japanese, ■■

Korean, and so on

Several PDF, Windows Help, and HTML download versions (use-■■

ful when you’re traveling; HTML versions are included with the

PHP download)

Two versions for Palm OS■■

A plain HTML online version■■

Links to the PHP-GTK (client-side PHP) and PEAR (PHP code-■■

base) manuals

Information on beta releases that are not yet ready for production use■■

A comprehensive listing of all downloads is available at www.php.net/
download-docs.php.

PHP Resources

818

 Part VI Appendices

The PEAR manual, which used to be a chapter of the general PHP manual, has now been

moved to its own server. You can find it at http://pear.php.net/manual.

But when people talk about “the PHP manual,” they mean the big annotated online version for which

PHP is famous. Users from around the world have added notes and comments to each page. These

additions are often clarifications of points made in the main text, additional insights, and reports of

PHP’s behavior on various platforms.

Navigating the PHP Manual

Our experience suggests that something about the organization of the manual makes it difficult or discour-
aging for many users to quickly find what they’re looking for. To locate information about a function or

construction, you sort of need to know that it‘s there and what kind of thing it is (not always clear from the
headings — for example, date functions versus calendar functions), and often it helps to have an idea of what
the PHP team might have named it. If you can’t accurately guess these three things, you’re likely to spend a
lot of time wandering around looking at not-quite-right function pages. We have nothing comforting to tell
frustrated users, except that PHP has so many functions and configuration options and styles that writing about
and organizing them all in a way that makes sense to an outsider is very difficult. Our hope is that books such as
this one can help introduce you to the main categories (for example, array functions) and the most commonly
used functions — and then you’ll be more prepared to use the riches of the online PHP manual.

One extremely helpful thing we recommend is reading the introductory page for each section of the online
PHP manual. The manual is broken up into sections or chapters, such as “Arrays” and “Regexps”; each section
has a “front page,” which can be accessed via the “Function Reference” part of the online manual’s table of
contents. Usually (although not always) this page will have a lightning-quick introduction to the subject of the
manual chapter, helpful hints, and a list of the functions in that section. By reading through these introductions,
you will have a much better idea of the various things that PHP can do, and greatly increase your chances of
being able to put your finger on just the function you need at any given moment.

The English-language version of the online PHP manual has a cool feature that can save a lot of time for certain
users, particularly those experienced in another programming language. If you type the name of a function as
a top-level URI, the official PHP site automatically forwards you to either the page devoted to that function (if
it exists) or a search page with a completed search for that term (if it doesn’t exist or doesn’t have a discrete
page). So, for instance, if you type http://www.php.net/popen, you’ll be redirected to www.php.net/
manual/en/function.popen.php. This is the same functionality as typing a search term into the search
box in the page header. If you’re looking for a PHP function that is similar to one in C or Perl, this trick can
prove a great timesaver over navigating the manual by hand. It’s also useful in cases where you know the name
of the function but just want to check on the type of variable returned or the order of arguments to pass in.

You may want to keep a couple of points in mind when using this manual:

The canonical manual text is written in a super-terse programmer’s style, and it is orga-■■

nized in a not particularly discursive, notebook-like format.

NOTENOTE

819

 PHP Resources D

The online manual is not the place to ask questions! It’s intended for meaningful com-

ments and observations only. Send e-mail to one of the previous commentators who pro-

vide their addresses — many of them will be happy to help you. Or subscribe to the mailing list or post

to a PHP forum, which is faster anyway. Remember, a stupid question posted to the manual errata will

go down on your (semi)permanent record.

The comments are edited, weeded, and verified only on an episodic (not to say extremely ■■

infrequent) basis. Proceed with extreme caution — there have been numerous instances of

problems actually getting worse because a user uncritically followed the advice in the man-

ual notes. You can write to the person to make sure that the advice is appropriate for you or

even to determine whether the person really knows what he or she is talking about.

The manual may lag behind development by a considerable time period.■■

The PHP Mailing Lists
The “official” PHP community meets and greets on the PHP mailing lists. With the advent of PHP4,

a decision was made to split up the lists into more specific topics. These topics will continue to pro-

liferate with the addition of new features.

Signing up
To subscribe to any of the PHP mailing lists, go to www.php.net/mailing-lists.php.

You should see a large form listing the various mailing lists and options for viewing them. Just

choose the list that you want, specify normal or digest versions, enter your e-mail address, and click

the Subscribe button. You can also unsubscribe from a list here.

The PHP mailing list manager almost instantaneously sends you an e-mail message asking you to

confirm your subscription. You aren’t subscribed until you reply to this e-mail.

You also find links to local (non-English) mailing lists and newsgroups at the bottom of this

page. If you want to discuss PHP in Turkish or Japanese, this page is the place to start!

Users’ lists and developers’ lists
Many of the user-oriented lists are new with PHP4 or later. The following are the most popular PHP

users’ mailing lists:

php.general■■ : Main mailing list — very heavy traffic, 80+ e-mail messages per day

php.windows■■ : Specific mailing list for Windows users

php.install■■ : An installation-related mailing list, mostly for new users

php.db■■ : The database-related issues mailing list

NOTENOTE

TIPTIP

820

 Part VI Appendices

php.i18n■■ : Internationalization and localization mailing list

php.pear■■ : The PEAR users’ list

php.gtk.general■■ : The PHP-GTK users’ list

php.smarty.general■■ : The Smarty templates users’ list

php.bugs■■ : Bug reporting related to PHP itself

php.announce■■ : Announces new releases — very occasional

Lists also are available for popular PHP-based projects such as Midgard and phpNuke; you subscribe

to those lists through the products’ own web sites. We list the URLs of some of these sites in the

“Major PHP Projects” section later in this appendix.

The following four lists are mostly intended for active developers and very early adopters — people

who are going to get down in the C code and battle bugs to the death:

php.dev■■ : The main PHP developers’ list

php.gtk.dev■■ : The PHP-GTK developers’ list

php.pear.dev■■ : The PEAR developers’ list

These lists are low-to-medium volume, meaning approximately 100 to 1,000 messages a month.

They are highly technical and mostly not enlightening unless you’re an active team member. Various

CVS lists for developers are also available, which mail out all CVS commits on a particular branch to

all subscribers; special lists for documentation writers and QA team members also exist.

If you’re comfortable with Internet newsgroups (which many newer users are not), you can access

the PHP mailing lists through the news gateway at news.php.net.

This option has one great advantage: You can send messages to the mailing lists without subscribing

to them. Many new users, however, should think in terms of searching the archives for answers to

old questions before (or rather than) asking new questions anyway.

Most of these mailing lists, and many others on a variety of topics, are archived and searchable at
http://marc.theaimsgroup.com.

This archive dates back to at least 1998, although the older posts are usually less complete.

Trying a quick keyword search on the PHP site, mail archives, and perhaps some of the

other major PHP web sites before contacting the mailing lists is the polite thing to do.

It’s actually faster for you, plus the less time the developers must spend answering the same questions

over and over, the more time they have to implement new features in the language. Actually, searching

the archives is no longer just polite — it’s a necessity. With so many new users, so-called “RTFM” (read

the effing manual) questions are not (politely) answered on the PHP lists anymore. Also, try to ask your

question on a specific list if it exists — especially installation-related questions.

TIPTIP

821

 PHP Resources D

Regular and digest
The main PHP user list is so high-volume that it has a twice-daily digest version. The new special-

ized mailing lists also typically have digest versions. The raw and digested versions each have

advantages and disadvantages.

If you’ve never had 100+ e-mail messages a day pouring into your mailbox, you have no idea how

distracting and time-consuming this experience can be. Just reading-and-deleting can take up a

couple hours, whereas actually answering them can easily become a full-time job. Under no circum-

stance should you request the full user list if your primary mailbox is a web-based free e-mail ser-

vice such as Yahoo! mail or Hotmail.

Setting up a separate mailbox for PHP mail is almost mandatory if you’re subscribing to

the full user mailing list, unless you’ve set up good mail filters. Otherwise, you quickly

start to lose mail from other sources in the flood of similarly named threads.

On the other hand, the digest version makes getting into the flow more difficult. The few brave com-

munity members who get the full user list seem to answer all the questions on the half-volley before

you even get the digest, making participation difficult for the time-stressed community member.

For beginners, we recommend the digest version. You can always trade up later, whenever you’re

ready to stop lurking and participate actively.

Everyone should also consider using one of the PHP forums (see the following section on “Other

PHP Web Sites”) instead of or in addition to the user mailing list. These forums are great for those

who dislike mailing lists. The downside is that PHP developers generally don’t hang out here, so

extremely abstruse infrastructure questions usually go unanswered. The upside is that they tend

to be friendlier, especially to repetitive newbie questions, because the answerers can control the

amount of contact they prefer and go away if they start to become annoyed.

Mailing list etiquette
Open source mailing lists can be intimidating places, and the PHP general-users list is particularly

active and fast-paced. The denizens of the mailing lists are people, and learning about their different

personalities and plans over time can be fun — but they can get annoyed and fed up, too. A little

netiquette can take the user a long way. The following sections offer a few tips to follow.

Remember, the community does all this work for free!
Before you turn on the flamethrower, remind yourself of your last experience with commercial-

software tech support. Did it solve your problem the same day? Did it cost money? How long did it

take? At what point did you get to talk to the developers of the program?

People might be sick of your question
Perhaps you’re trying to install PHP for the first time and can’t get it working as an Apache module —

but we can assure you that tens of thousands of iterations of that question have appeared on the mail-

ing lists over the years. People on the mailing lists are experiencing fatigue at answering questions that

TIPTIP

822

 Part VI Appendices

they and others have answered in a lot of other information sources — the FAQs, the online manual,

the mailing-list archives, and any number of other web sites. If you ask one of these basic questions

on the general mailing list, it proves that you didn’t take seriously the numerous polite requests on

the PHP site to search for an answer to your question before posting. You may get an irritated e-mail

informing you of all the above — or you may get no responses at all. Neither response means that the

PHP community is cold-hearted and unhelpful. Try to see things from the point of view of community

members of longer standing, and avoid these problems by searching for the answer to your question

before you post.

Give detailed descriptions
Say as much as you can about your platform, the problem, and any steps you’ve already tried. Don’t

worry about being concise; you’re far better off meandering on a little than making everyone go back

and forth an extra time.

Code fragments are the very most efficient way to state your problem for debugging by the com-

munity. Many people edit their raw code to make it more anonymous and/or abstract. Remember to

take out any passwords!

Copy and paste your code fragments; don’t retype them. List participants often post per-

fect code, only to be frustrated that nobody can find anything wrong with it — because

they corrected their errors while retyping!

Make sure that you use a specific subject line — the more specific the better. “Subject: PHP Help”

gets you ignored by most of the mailing-list regulars. You want to say something more descriptive

such as, “Subject: mysql_connect arguments not being passed in 4.0.0.”

PHP is international
PHP is developed and used by people literally all over the world. In fact, the active development

team has only a smallish minority of native English speakers on it at any given time.

Native English speakers should feel supremely lucky that theirs is the lingua franca of the Internet

in general and the PHP world specifically. They should feel awed by the linguistic dexterity of all the

citizens of other nations and perhaps slightly abashed that they can’t return the favor in Finnish or

Urdu. In other words, cut people some slack already! Don’t assume that someone is an idiot because

his or her messages aren’t couched in perfectly grammatical and smooth English. Instead, you might

spend the time learning how to write “Thank you” in all the languages of the various PHP commu-

nity members — it makes a nice sig file for your mailing list posts.

If you don’t know English well, you may want to write your question twice — once in

English, once in your native language. This will increase the odds that someone will be

able to decipher your meaning.

There are limits
The mailing list and other resources are meant to help you, but you must prepare to make a good-

faith and even strenuous effort of your own. Help does not mean that someone comes to your office

TIPTIP

TIPTIP

823

 PHP Resources D

and writes your code — this is not a remake of the Disney version of Cinderella, with dancing, sew-

ing, chore-doing mice! Please don’t ask community members to go into your server and debug your

scripts for you.

Every once in a while, someone gets on the mailing list and whines about how PHP doesn’t have pre-

cisely the feature that he or she is looking for — to which the developers very sensibly reply, “Why

don’t you implement it yourself?” Or, if you’re not a good C programmer yourself, you could always

pay someone else to develop your feature and contribute it to the PHP community. At the very least,

you can avoid doing things that may alienate others or cause developers to burn out on the whole

idea of developing open-source software!

Do it yourself
Open source software may be free to use, but you should not consider it free of all responsibilities.

You are technically a “free rider” until you give back — or pay forward — to the community at large.

It’s your task to figure out where and how to best deploy your talents, and then to do that thing as

you can. We don’t mean that every casual PHP user must become a C developer, but you can con-

tribute in many other ways. Answering questions on the PHP mailing lists or web sites is always

a good thing, because it lightens the load on the core developers. If you figure something out that

seemed obscure in the online PHP manual, be sure to post your findings to the User-contributed

notes section of the manual. Use the PHP bug-tracker according to the instructions. Simple steps like

these, in aggregate, contribute to the healthy community that has made PHP so successful.

It’s probably you
If you experience a failure to communicate, you need to ask yourself whether the problem could

possibly lie with you. If you do find yourself in the middle of a flame war, which happens occasion-

ally on any mailing list, people enjoy nothing more than a little public acknowledgment of what a

jerk you’ve (unknowingly) been.

There are now commercial alternatives
If the whole ethos of the PHP mailing lists is driving you crazy, remember that you can now pay to

play instead. Many companies are now staffed by well-known PHP developers who are willing to do

everything from answering single questions to building a custom PHP extension for you. ThinkPHP

(www.thinkphp.de), for example, is a German consultancy, associated with PHP team member

Thies Arntzen, that offers support, training, and performance evaluations. In the United States, the

supremely helpful Richard Lynch of PHP-mailing-list fame takes requests at www.l-i-e.com.

Other PHP Web Sites
Besides the official PHP resources that we mention in the preceding sections, some well-known com-

munity members have put up some extraordinarily helpful web sites. Some of these enjoy a special

relationship with PHP, and are “quasi-official.” The following sections describe some of these sites.

824

 Part VI Appendices

Core scripting engine and tools
The core of PHP is the Zend scripting engine. It is produced by an Israeli company called Zend, and

besides being a free part of PHP, it can be embedded in other applications. Zend also produces vari-

ous PHP tools and add-ons, such as a graphical debugger and a precompiler. You can find informa-

tion on Zend products at www.zend.com.

Zend.com is the home of the core PHP5 scripting engine, as well as a center of PHP commercializa-

tion. Although the company sells support and custom development services to larger companies, the

vast majority of PHP developers are most interested in the add-on products being developer by core

developers Zeev Suraski and Andi Gutmans and their team.

For most PHP users, the most useful product is the Zend Studio IDE, now in 3.0.1 release. (See

Chapters 3 and 32 for more information and screenshots.) This program is the first PHP-specific

development tool available, with many well-designed features for the PHP professional. Because of

Zend’s unique relationship to PHP development, the company understands the language completely

and can design an editing tool that is customized to the needs of hardcore PHP users.

Two other Zend products are primarily of value to companies. PHP consulting firms should find the

Zend Encoder useful, as it enables them to ship their code in a platform-independent, optimized

intermediate representation. Large PHP sites can get a quick return on investment by using the Zend

Accelerator, which boosts performance by optimizing and caching, thereby requiring less capital

investment in hardware.

The Zend site also offers unique content on a regular basis, including biographies of major figures

in the PHP world, a handy weekly newsletter summarizing current issues in the development of

our beloved programming language, and great articles on advanced topics in PHP development.

Zend.com is one of the few web sites that consistently offers articles of interest to corporate PHP

developers and architects, often showcasing the finer points of PHP functionality, such as refer-

ence counting, output buffering, and changes to the include functions. Topics such as these may

seem abstruse at first, but advanced users usually enjoy learning about the underlying structure and

logic of the programming language so that they can write the tightest, cleanest, most secure, best-

 architected, and most well-thought-out PHP code possible. C programmers who want to contribute

to PHP can also find inspiration and information in these articles — because Zeev and Andi are

driving the course of PHP core development, getting a feeling for their aesthetic and decision making

is important if you want to delve into the heart of PHP.

PHP knowledgebase
PHP has a great knowledgebase, something like a FAQ-o-matic but more full-featured, called PHP

Faqts (previously known as E-gineer). It is available at http://php.faqts.com.

PHP Faqts is an interesting and nicely executed concept: an archived knowledgebase of answered

and unanswered questions from real PHP users with a decent search function. For common ques-

tions, this site is much easier to use than the mailing lists or even many forums — and for that rea-

son, we recommend it to new PHP users.

825

 PHP Resources D

The way that Faqts (brainchild of Australian PHP whiz Nathan Wallace) works is that commu-

nity members ask questions in one of several “buckets,” such as Installation and Setup, Common

Problems, Database Backed Sites, and the extremely cool Not Quite PHP. Other community mem-

bers come along and add multiple answers to these questions. They can also associate other ques-

tions (basically other ways of stating the same thing) with that question/answer pair. Everyone can

vote anonymously on whether the question/answer was useful or not. Thus, you get an accretion of

knowledge over time and some way to discern whether a particular answer is good at a glance.

Going to this site, however, is not the fastest way to get your question answered, and it remains to be

seen whether Faqts can scale indefinitely — but it’s a cool idea and definitely a resource to try.

Articles and tutorials
Articles and tutorials take a “teach a man to fish . . .” approach. Often they can’t really walk you

through all the steps involved in building your web site; instead, they attempt to guide you in think-

ing about what to do. Following are two sites that we recommend for such information.

PHPBuilder ■■ (www.phpbuilder.com). Founded by Tim Perdue, the top PHP app developer

responsible for Sourceforge.net and Geocrawler.com, this site has long been one of the most

comprehensive and well-run PHP sites. The specialty of the site is a deep backlog of articles

that focus on the correct architecture of PHP sites, with subjects such as user authentica-

tion, cross-platform development, database abstraction, and documentation and style.

PHPBuilder also boasts one of the most active PHP-related web forums, with excellent

response times to most questions.

One downside to the site is that articles are not dated, so determining whether the advice is ■■

still relevant to current versions of the programming language can prove difficult. Despite

this drawback, PHPBuilder is a must-visit for the more conceptual PHP programmer who

wants to read well-argued position papers on the right way to code PHP.

Devshed ■■ (www.devshed.com/Server_Side/PHP and www.devshed.com/Server_
Side/MySQL). A big commercial site with good tutorials and a forum, Devshed covers all

the scripting languages (ASP, JavaScript, Python, and so on) as well as MySQL, making it

the best one-stop for those still in the shopping phase.

PHP codebases
Codebases take a “give a man a fish . . .” approach, simply offering their donated wares to all takers.

The code quality can vary widely, from first scripts to elegant classes contributed by experts in a

particular area. The following sections describe a few such sites that you can visit.

Although codebases can seem attractive to new developers and do embody the power

of open source, there are reasons to be wary. For one thing, no one is guaranteeing the

quality or safety of this code. If you’re more comfortable cutting and pasting than writing it yourself,

you may not have sufficient skill at reading other people’s PHP to use contributed code in an intelligent

way. Proceed with caution!

CAUTION CAUTION

826

 Part VI Appendices

PHP Classes Repository■■ (www.phpclasses.org): Originally a collection of classes by

Manuel Lemos, this site is now a hotbed of OOP PHP. We would probably not recommend

this site to beginners, both because of the heavy use of object-oriented programming and

the strong leaning toward code in the “Sure you can, but is it a good idea?” category. You

should also possess an understanding of the changes in the object model from PHP4 to

PHP5. If you’re good at intelligently reading other people’s code and adapting it to your

own needs, however, this site can prove instructive.

PX: PHP Code Exchange■■ (http://px.sklar.com): A super-plain and uninformative site

design nonetheless leads to a large variety of scripts — mostly smaller ones. Look here for a

standalone snippet or function in a specialized area, such as graphics or math.

A quick rule of thumb in judging contributed code: If you can’t follow along pretty well

just by reading the comments, take a pass and look for another code sample. It’s pretty

rare for a good commenter to be a bad or malicious programmer.

Major PHP projects
These are the more ambitious standalone projects based on PHP that are becoming well known in

their own right. Even organizations that are not necessarily in love with PHP are beginning to con-

sider these projects as the best-of-breed and/or most cost-effective option in their various categories.

PHPMyAdmin■■ (www.phpmyadmin.net): Originated by Tobias Ratschiller, this program

is a graphical frontend to MySQL that has brought database administration to the ranks of

the command-line phobic. See Chapter 14 for more detailed information on how to use it.

PHP-Nuke■■ (http://phpnuke.org): This site offers a newslog-style content management

system that enables multiple users on an intranet or the web to post stories and comments on

an ongoing basis. You can find lots of add-on packages written by enthusiastic users as well.

PHPSlash■■ (http://phpslash.sourceforge.net): This site also offers a newslog-style

content management system. It was originally a rewrite of Slashcode (the Perl codebase

behind Slashdot) in PHP, although PHPSlash development has now diverged somewhat.

Midgard■■ (www.midgard-project.org): This site offers a highly customizable content

management system, similar to Vignette Story Server. Midgard doesn’t simply enable users

or editors to post short pieces in a constant format on a web page; you can also use the pro-

gram to manage workflow on all kinds of content-rich sites.

phpBB■■ (www.phpbb.com): This is an object-oriented, template-based bulletin-board sys-

tem offering threaded or flat view, skins, avatars, and other attractive display features.

Phorum■■ (www.phorum.org): Phorum is a lighter-weight bulletin-board system with

no graphics. Unlike most other PHP bulletin boards, Phorum displays an outline of the

thread, plus the current message, plus a form to reply to that message on a single page.

SquirrelMail■■ (www.squirrelmail.org): IMAP web mail client.

Serendipity■■ (www.s9y.org): Full-featured blogware, comparable to (commercial and Perl-

based) Movable Type and Blogger. One of the authors of this book is a team member.

TIPTIP

827

 PHP Resources D

PHPWiki■■ (http://phpwiki.sourceforge.net): Popular Wiki system.

PHPGroupware■■ (www.phpgroupware.org): This large integrated suite of PHP programs

offers you web-based group-scheduling and interaction tools, including web mail, a calen-

dar, to-do lists, chat, forums, and more.

Sourceforge.net■■ (http://sourceforge.net/projects/alexandria-dev): This is a

web-based engineering management toolkit that includes a task tracker, a bug tracker, a

CVS frontend, forums, a documentation manager, and news releases. The codebase went

closed source in 2001.

829

T
he PHP Extension and Application Repository (PEAR) is a broad

effort with many component parts, collectively aimed at expanding

the usefulness and reliability of the PHP language. PEAR has been

removed from PHP6 but was previously (and likely will continue to be) an

important part of many developed applications for years to come. For this

reason, while we didn’t include coverage of PEAR in the main section of

the book we’re including it as an appendix in the hope that you’ll get some

value out of the material.

As of late, there has been discussion about how to get PEAR back into the

main PHP source, so it may be back between the time we write this and

the time you read this! That is all the more reason to include some cover-

age of PEAR.

Since PEAR isn’t included in PHP6, some of the installation steps may no

longer be applicable to a PHP6 system. You can find the latest installation

instructions at http://pear.php.net.

With PEAR, developers should be able to write more capable software more

quickly and with greater reliability.

The most useful and best-known element of PEAR, its package manage-

ment system, attempts to reduce the frequency with which PHP developers

reinvent the wheel. Its main part is an online database of code modules,

accessible to anyone via an automated process, that give the PHP language

special capabilities. PEAR modules, for example, enable PHP program-

mers to access LDAP directories and open files in the Ogg Vorbis format

without writing utility classes for those jobs. Programmers using the PEAR

PEAR

830

 Part VI Appendices

packages can focus on the functionality of their creations, rather than wasting time struggling with

nuts-and-bolts problems.

The PEAR initiative also includes a set of rules about how code is to be written — a style guide, if

you like. The PEAR coding style rules are meant to govern modules contributed to the PEAR archive

but in fact apply well to all PHP work. You could do worse than to apply the PEAR coding style rules

to all your PHP programs.

PEAR has a sister project, the PHP Extension Community Library (PECL, pronounced pickle). PECL

modules are extensions to PHP itself, rather than just PHP modules that can be imported into PHP

programs as needed. Together, PEAR and PECL make PHP much more capable and enable many

more people to participate in the development of the language.

What Is PEAR?
There are many common tasks in PHP that require or strongly benefit from libraries of functions.

There are many web sites where PHP community members offer code they’ve written, but how do

you know the code is good, will be maintained and extended, and doesn’t have any odd quirks or

even malicious features? The PEAR project offers a large and growing library of known-good, well-

maintained, well-documented PHP code that has passed many quality inspections — all free for the

taking.

The PEAR project began in 1999, shortly after PHP itself came into being. It’s a community-driven

initiative dedicated to generating open source code that improves PHP. PEAR packages are built on

top of the standard PHP functions, and are often written in an object-oriented style (for example,

classes). You include these modules from your own PHP script with an include() or require()

statement, as you would any other PHP function library or class.

For the most part, PEAR is to PHP as the Comprehensive Perl Archive Network (CPAN) is to Perl. It

has many parts, but the best known and most frequently used is a library of open source PHP code

modules that may be accessed in an automated way. The PEAR module management system makes

it easy for you to keep a server’s PHP installation up to date and outfitted with the elements it needs

to do its job (for example, with the PEAR DB classes for standardized database access and the PEAR

LDAP classes for accessing a corporate directory). You can run the package manager as an automated

routine that checks for updated versions of your installed packages every week, if you like.

Other parts of the PEAR project include:

A set of coding standards that specifically applies to PHP modules distributed by PEAR■■

The PHP Foundation Classes (PFC), which are a few especially worthy PEAR classes dis-■■

tributed with the main PHP package

Various code archives and mailing lists for the people doing PEAR module development work■■

831

 PEAR E

The PHP Extension Community Library (PECL) is a collection of PHP extensions (written in C as all

PHP extensions are) which are relatively rarely used and therefore do not need to be part of the core

PHP distribution (which was threatening to become too large and unwieldy). PECL used to be part

of PEAR, but has been split off for separate management. PECL and PEAR share the same automated

distribution tool, though, and so remain related projects. The key difference between PEAR modules

and PECL modules: PEAR modules are written in PHP and may be included in PHP programs as

required. PECL modules are written in C, and may be incorporated into the PHP engine itself by the

normal process of recompiling.

The PEAR Package System
The PEAR package system is an archive of compressed files (tar files compressed with gzip), each of

which contains a series of PHP files and a manifest file in XML format. Each archive, when incorpo-

rated into a PHP installation on a server (by means of the automated package-management system

that’s discussed later in this chapter), adds to the overall collection of functions and classes a devel-

oper can invoke in his or her code. Widely used packages handle database abstraction, the inter-

pretation of various file formats, the implementation of industry-specific algorithms, and all kinds

of convenience functions. The universe of PEAR packages is large and expanding, and because the

packages are of such high quality, you should make use of them in your own code if you can.

The PEAR homepage is http://pear.php.net.

A sampling of PEAR packages
Here’s a much-abridged list of PEAR packages. The package name generally describes its function:

Auth■■ — User authentication

Benchmark■■ — Performance calibration

DB■■ — Database connectivity

Calendar■■ — Calendar objects and functions

Archive_Tar■■ — Interaction with tar files

Archive_Zip■■ — Interaction with Zip files

HTTP■■ — Manipulation of the HTTP protocol

Image_Barcode■■ — Barcode generation

I18N■■ — Internationalization tools

Log■■ — Logging

Mail■■ — Interaction with POP, IMAP, and SMTP

Oggvorbis■■ — Interpretation of the Ogg Vorbis open-source audio file format

832

 Part VI Appendices

Tree■■ — Tree structures for organizing objects

SOAP■■ — Implementation of the SOAP protocol

Aside from enabling PHP server administrators to incrementally adjust the capabilities of their sys-

tems, the PEAR package system is a way of dividing the labor involved in expanding the capabili-

ties of PHP. Each of the many packages in the system — there are more than 250 as of this writing

— has a separate development team behind it, complete with a project lead and several other con-

tributors. Individual packages have version numbers and (usually) their own supporting documen-

tation. Packages may depend on other packages (meaning that the depended-upon package must be

installed); managing these dependencies is one function of the PEAR package management tool.

How the PEAR database works
The PEAR database serves two purposes: it is by design accessible to human readers as well as to

the PEAR package-management client. You can use an ordinary web browser to navigate around the

HTML documents at the PEAR site (http://pear.php.net), or you can use the package manage-

ment client to interface with it via a Web service interface.

Either way, the PEAR repository is organized as a tree, with related packages grouped into hierar-

chies (though hierarchical relationships do not necessarily indicate dependency relationships among

packages). The PEAR community manages what goes into the tree, determining when development

on a particular package has progressed far enough to warrant a new release into the publicly avail-

able repository.

The Package Manager
If, like most people, you’re planning to use the PEAR repository as a resource rather than as an

entity to which to contribute, your main interaction with it will be through the PEAR Package

Manager. The package manager is a command-line program that interacts with the online repository

and allows you to download, install, and uninstall PEAR packages according to your requirements.

This remainder of this section shows you how to get and use the PEAR Package Manager.

Remember that if you just want to use PEAR’s DB, Net_Socket, Net_SMTP, Mail, XML_
Parser, or phpUnit modules, you do not need to install the PEAR Package Manager or

any packages! These packages, which are collectively referred to as the PEAR Foundation Classes, are

bundled with PHP.

Installing the PEAR Package Manager on Linux
Assuming that PEAR is no longer included in PHP, or if you’re running an older version of PHP

under Linux (really old, older than version 4.3), you’ll need to install the PEAR Package Manager by

means of a two-part command. The command looks like this:

$ lynx -source http://pear.php.net/go-pear | php

TIPTIP

833

 PEAR E

That command opens up the specified URL (which you can examine yourself through an ordinary

web browser) with Lynx, a text-only HTTP client (certain Linux distributions have similarly func-

tional programs with different names, such as links under Red Hat Linux). The URL contains text

that defines a PHP program. The command line pipes that text to the PHP engine, thus allowing it

to be interpreted.

Updating the Package Manager
Later, you may want to go through the go-pear procedure again to update your system and make

sure it’s aware of the latest contents of the PEAR repository. You may want to do this every few

months if you use PEAR packages very frequently or don’t reinstall PHP very often. However, most

people will find that getting a new version of the PEAR Package Manager every time you install a

new version of PHP is frequent enough. The basic procedure is to go to http://go-pear.org and

save the file there — there is only one — as go-pear.php in a directory that’s accessible to your

PHP compiler.

Figure E-1 shows the go-pear web site.

FIGURE E-1

The go-pear web site

834

 Part VI Appendices

After saving go-pear.php, go to the command line and run this command:

php go-pear.php

You should see output similar to the code above. With that done, you’re again ready to make use of

the PEAR Package Manager.

Using the Manager
The PEAR Package Manager has a command-line interface that is common to all versions of PHP.

The instructions in this section apply equally to all Unix variants (including Linux) and to Microsoft

Windows.

The key executable of the PEAR Package Manager is pear. It resides in your PHP home directory,

alongside the PHP interpreter itself.

Automatic package installation
Once you have PEAR installed and updated, you can install any package you’ve downloaded. The

generic syntax for doing an automatic installation of a package is this:

pear install <package>

In that syntax, <package> is the name of a PEAR package. All available packages are listed at

http://pear.php.net/packages.php. You can also run:

pear remote-list

to see what’s available.

Here’s an example of installing the PEAR DB package via the automatic PEAR Package Manager method:

C:\PHP>pear install DB
downloading DB-1.5.0RC2.tgz ...
Starting to download DB-1.5.0RC2.tgz (68,128 bytes)
.................done: 68,128 bytes
install ok: DB 1.5.0RC2

Automatic package removal
Uninstalling a package is just as easy as adding one. The generic syntax looks like this:

pear uninstall <package>

To uninstall the DB package, then, we’d do this:

C:\PHP>pear uninstall DB
Uninstall ok: DB

835

 PEAR E

If you’re not sure what packages are installed locally, run the following command to find out:

pear list

Semiautomatic package installation
If, for some reason, you downloaded a PEAR package in the form of a .tgz file, you can later use the

PEAR Package Manager to install it, even if there’s no connection to the Internet available. You just

point the pear command at the local file, as follows:

pear install HTML_BBCodeParser-1.0.tgz

Using PEAR packages in your scripts
Once you’ve installed the PEAR modules you wish to use, you should make sure the location is

included in the include_path variable of your php.ini file. This location can be tricky — it will

probably be /usr/local/lib/php on Unix servers and whatever you specified during the go-pear

procedure on a Windows server. Once you’ve done that, you can include these libraries from any PHP

script with a normal include directive:

<?php
include_once(‘Mail.php’)

// Your code which uses PEAR Mail functions here

?>

PHP Foundation Classes (PFC)
The PEAR Foundation Classes (PFC) are a subset of the PEAR module repository. The modules

that are part of the PFC are written to an especially high standard of quality, have been extensively

tested, and are considered very stable and reliable. The PFC are distributed with PHP itself, so you

do not have to download or install them separately. As of PHP5, the members of the PFC are these

packages: DB, Net_Socket, Net_SMTP, Mail, XML_Parser, and phpUnit.

In writing modules for the PFC, programmers must aim for broad compatibility. They should avoid

using any resource that’s particular to a specific operating system, and try to take input and give

output in the most generic possible form (for example, in plain text rather than as SOAP-formatted

messages). Programmers also need to keep in mind possible future developments in PHP itself —

information that can be gleaned from mailing lists and other community resources — and write their

software so it is unlikely to break when new releases appear.

836

 Part VI Appendices

PHP Extension Code Library (PECL)
The PHP Extension Community Library (PECL) is conceptually very similar to PEAR, and in fact they

share the PEAR Package Manager infrastructure (that is, PECL modules can be accessed and installed

via the PEAR Package Manager). The main difference is that PECL is concerned with extensions to

PHP itself, in the form of C modules that attach to the PHP engine. As C programs, extensions typically

execute faster and more efficiently than the modules contained in the PEAR repository.

PECL used to be called the PEAR Extension Code Library and was spun off from PEAR in October

2003. The new PECL homepage is http://pecl.php.net.

The PEAR Coding Style
Newspapers (as well as publishers of books!) spend a lot of time and effort establishing style rules

that govern how their writers use language. Are people identified by their last names (as in The
Washington Post) or by their honorifics and last names (as in The Economist and The New York Times)?
It’s a matter of style.

The same sorts of questions arise among programmers, except that the issues at stake are usually

matters of formatting rather than syntax. Where do brackets go, and how is code laid out on a page?

It’s important to have standard (if arbitrary) answers to these questions, because a standard style can

be a real aid to error-spotting and maintainability.

PEAR defines its style rules online at http://pear.php.net/manual/en/standards.php. This

section calls attention to some of the most important ones.

Indenting, whitespace, and line length
Code is much easier to read if you use indentation to indicate the relationship among lines of code

that are tied together in a common functional block, as well as whitespace to logically group ele-

ments. The following code is hard to read, though it will run perfectly fine.

switch ($flag) {
case 1:
doWork();
break;
case 2:
doOtherWork();
break;
default:
doNothing();
break;
}

837

 PEAR E

On the other hand, this code:

switch ($flag) {

case 1:
 doWork();
 break;

case 2:
 doOtherWork();
 break;

default:
 doNothing();
 break;
}

is both functional and more easily understood. Spotting syntax errors is hard enough; don’t make

the job harder by clumping your code together sloppily.

One of the big religious arguments in programming is the number of spaces to indent each new code

block — some people insist that two saves space, others swear by four, and some outliers actually

employ eight-space indents (the horror!). Over time and in groups, four has come to be a standard

compromise position, adopted by many open source projects — including PEAR. If you want your

code to be accepted into PEAR, it must use four-space indents.

Because different editors on different platforms interpret tab characters differently, it’s recommended

that you use groups of four space characters in all places you would, under other circumstances, use

a tab character.

Formatting control structures
Control structures — such as if, if/else, if/elseif, and switch statements — can be confus-

ing if not properly formatted. PEAR has recommended styles for all of these language constructs.

if Statements
A simple two-test if statement should be formatted like this:

if ((condition1) && (condition2)) {
 doSomething();
}

Note that the opening bracket appears on the same line as the conditions (so-called Kernighan and

Ritchie, or K&R, braces), and that there are brackets even though there is only one line of code in

the conditional block. That way, the fact that it’s a block is obvious, and there’s no need to remem-

ber to add them when further lines of code are added in the future. Also note that there should be a

space between a conditional statement and the expression being tested.

838

 Part VI Appendices

if/else Statements
An if/else statement builds on the basic if format:

if ((condition1) && (condition2)) {
 doSomething();
} else {
 doSomethingElse();
}

The else appears on the same line as the closing bracket that terminates the if block.

if/elseif Statements
An if/elseif statement looks just like an if/else statement in terms of formatting:

if ((condition1) && (condition2)) {
 doSomething();
} elseif {
 doSomethingElse();
}

switch Statements
Switch statements rely on whitespace and indentation to make code blocks obvious:

switch ($flag) {

case 1:
 doWork();
 break;

case 2:
 doOtherWork();
 break;

default:
 doNothing();
 break;
}

Formatting functions and function calls
Much of PHP is concerned with defining functions, then making calls to them, and obviously code

libraries like PEAR will be almost all functions. Properly formatting your functions can make it

more obvious what’s going on and can therefore make debugging and maintenance easier.

The PEAR style rules mandate that functions be defined with both their beginning and ending

braces flush with the left margin, like this:

function myFunction()

839

 PEAR E

{

 // Function code goes here.

}

This makes function definitions (which use braces) stand out from conditional blocks (which

also use braces). Furthermore, the standards require that code within the function be indented.

Everything is indented at least four spaces; some segments may be indented further:

function myFunction()
{
 doSomething();
 if ($is) {
 doSomethingMore();
 }
}

If your function takes arguments, be sure to order them so that arguments with default values go at

the end of the list, like this:

function myFunction($a, $b, $c=’Default’)
{
 doSomething();
 if ($is) {
 doSomethingMore();
 }
}

Also note that there should be no spaces between the name of the function and the parentheses

containing arguments. Again, this helps visually distinguish functions (which use parentheses) from

expressions (which also use parentheses).

It is important that functions return something. The return value will either be a value that resulted

from the function’s processing or a Boolean value (true or false) to indicate success or failure.

Summary
In this appendix, you learned about PEAR, a previously included framework for PHP community-

based projects that extend the capabilities of the language. PEAR exists to facilitate the ongoing

development and widespread distribution of handy toolkits.

At the center of PEAR is its repository, an online database that contains the accumulated body

of PEAR packages. This repository has an HTML interface as well as an XML_RPC (Web ser-

vices) interface, which means that you can browse it manually or interact with it via a specialized

command- line program: The PEAR Package Manager. The PEAR Package Manager allows you to

840

 Part VI Appendices

quickly see what’s in the PEAR repository, download what you want, and install some or all of what

you download. Particularly important PEAR packages are part of the PHP Foundation Classes (PFC).

Another element of the PEAR community is a definition of a coding standard, which specifies how

functions should be defined, comments placed, and brackets structured in various parts of PHP pro-

grams. It’s meant to ease readability and make life easier for documentation writers.

PEAR shares its automated package-distribution scheme with PECL, which manages PHP extensions

written in the C language.

PEAR represents an invaluable resource to PHP programmers of all levels. Make sure that the PEAR

Package Manager is installed on your PHP server, and make full use of its resources. When you’re

ready, join the development effort and contribute to the growth of PHP.

841

A
abs function, 155, 159

absolute links from relative links, 384–385

absolute value, 155, 159

abstract classes

declaring, 328

designated, 352

abstract data structures, 363

abstraction, procedural, 60

access

members, 319, 325–327

source code, 474–475

access.conf file, 489

access.log file, 514–515

accessor functions, 354

Acos function, 462

ACTION attribute, 100–101

Action directive, 475, 490

actual parameters, 87–89

add function, 329

add_1 function, 451

add_new_country function, 250

add_point_to_path function, 705

addHiddenVariable function, 347

addInputButton function, 347

addInputForm function, 347, 352

addition, 154

arbitrary-precision function, 466

assignment operator, 156

increment operator, 155–156

additionalAttributes function, 351

AddModule setting, 491

addslashes function, 127–128, 300

AddType directive, 475, 490

affectedRows function, 573

aggregating query results, 289

algorithm efficiency, 534

alignment in format strings, 129

allowed elements in XML documents, 652

alpha value for transparency, 699

ALTER privilege, 209

ALTER TABLE statement

indexes, 286–287

primary keys, 284–285

structure, 204

alternate control syntaxes, 79–80

American Standard Code for Information Interchange

(ASCII) encoding, 662

ampersands (&)

GET method, 101

logical operator, 61

passing arrays by reference, 145

anchor tags for links, 381–382

anchoring characters in regular expressions, 379

anchortext for links, 381–382

and operator, 37, 61

angle_given_sides function, 774–775

answer handling in Certainty Quiz, 753

answer_string function, 543

anti-style sheets, 545

Apache modules, 485

Apache Server, 7

building, 23

in CentOS installations, 21

configuration files, 489–491

extensions setup for, 24

log files, 514–515

RPM versions, 20

on Windows, 25–26

APC Accelerator, 495

appendChild function, 659

application platform considerations, 4

cost, 4

cross-platform compatibility, 7

ease of use, 5

extensions, 8

feature development, 8

HTML-embeddedness, 5–7

proprietary standards, 8–9

stability, 7–8

user communities, 9–10

apt-get command, 190

arbitrary-precision math functions, 465–466

configuration option, 488

converting code to, 467–469

example, 466–467

area of intersecting circles, 773–776

842

 A Index

area_to_radius function, 775

args_as_array_1 function, 446

arguments and parameters, 36, 83

arrays for, 445

default, 444

echo, 56

functions, 86–89

GET method, 100–102

multiple, 445–447

number mismatches, 89–90, 178

Perl, 803–804

POST method, 104–105

print, 56

unquoted, 303–304

variable number of, 443–447

arithmetic operators, 154–155

C language, 796

Java, 620

array construct, 134–135, 138

array_count_values function, 359, 362

array_flip function, 359, 362

array_keys function, 358, 362

array_merge function, 360, 362

array_pad function, 361, 363

array_pop function, 364–365

array_push function, 364–365

array_reverse function, 359–360, 362

array_shift function, 364–365

array_slice function, 361, 363

array_splice function, 361–363

array_to_bar_graph function, 691–692

array_unshift function, 364–365

array_values function, 358, 362

array_walk function, 149

arrays, 131

associative, 132–133

C language, 797

conversions with, 437, 440

creating, 134–136

current and next functions, 143–145

deleting elements, 140

each function, 147–149

fetching, 223

flipping, reversing, and shuffling, 359–360

foreach function, 142–143

functions returning, 136

indices, 135–136

inspecting, 139

iteration support, 140–142

keys extraction, 147

keys retrieval, 358–359

merging, padding, slicing, and splicing, 360–362

multidimensional, 137–139

as multiple-argument substitutes, 445

Perl, 803

printing, 367–368

resetting, 145–146

reverse order, 146

sorting, 366–367

stacks and queues, 363–365

superglobal, 90, 101–102, 110

testing for, 436

transformations, 357–358

translating with variables, 365–366

undefined, 177

uses, 131

value retrieval, 136–137, 358–359

walking, 149

arsort function, 367

articles, 825

ASCII (American Standard Code for Information

Interchange) encoding, 662

Asin function, 462

asort function, 367

assignment

arrays, 134

automatic, 106

conversions in, 436–441

expressions, 37–38

objects, 324

strings, 116

types, 45–46

variables, 41

assignment operators, 156–157

C language, 796

concatenation, 115–116

concise code from, 537

Java, 620

associative arrays, 132–133

associativity of expressions, 36–37

asterisks (*)

assignment operators, 156

multiplication, 154

precedence, 158

regular expressions, 375, 378

at signs (@)

with functions, 220

Java, 627–628

Perl, 803

SQLite, 607

Atan function, 462

Atan2 function, 462

843

 Index B

attacks

reading files, 475–477

running arbitrary programs, 477–479

site defacements, 472–473

source code access, 474–475

attributes

OOP, 316

XML, 649, 654

authentication, 429–430

auto-append-file setting, 493

auto-incremented primary keys, 284

auto-prepend-file setting, 492

auto_start variable, 421

automatic type conversion, 45

automatic variable assignment, 106

availability service, 533–534

average function, 289

awkward programming, avoiding, 187

B
back-tick operator ()̀, 478

backend servers, 811

backslashes (\)

regular expressions, 375–376, 378–379

strings, 52–53, 114–115

backups, database, 206, 212–214

bar_graph.php file, 691–692

bar_graph_form.php, 693–694

base cases in recursive functions, 97

base classes, 315–316

base conversions, 457–460

baseconvert function, 459

basename function, 401

batch editor, 594–604

batch_upload_new.php file, 594, 600–604

BC functions, 465–466

configuration option, 488

converting code to, 467–469

example, 466–467

better_deal function, 87–88

BIGINT data type, 231

BINARY data type, 232

binary numbers, 459–460

binary strings, testing for, 436

BinDec function, 459

binding, 92

to cursors, 583

early vs. late, 317

functions, 366

in sessions, 414

BIT data type, 230

blank images, 710

blank lines, 32

blank pages, 167

BLOB data type, 232

blocks, creating, 38–39

Book class, 341–342

books in XML format, 651–652

BOOL data type, 230

BOOLEAN data type, 230

Boolean values, 49

for conciseness, 538–539

constants, 49, 60

conversions with, 437

doubles as, 50

examples, 50

expressions, 37, 60

Java, 620

MySQL, 230

testing for, 436

boolval function, 437

bottlenecks, 494, 535

bounded loops, 71, 74–75

box_query function, 280–281

 tag, 57

braces ({})

blocks, 38–39

class definitions, 318

functions, 86

if-else structures, 66

interpolation, 114–115

string variables, 115

brackets ([])

arrays, 132

regular expressions, 375, 378

branching, 59

HTML mode, 68–69

if-else, 65–69

switch constructs, 69–70

break statements

in loops, 76–78

Perl, 805

with switch, 69–70

broken images, 711

broken SQL statements, 301–303

Browse function, 634, 636

browsers

for images, 696

PHP code in, 167–168

browsersniff.php file, 635

buckets, splitting strings and files into, 387

buffers, testing for, 436

bug types, 513–514

building Apache server, 23

built-in functions, 84

844

 C Index

C
C language

learning, 815

PHP code, 799–800

PHP differences, 796–798

PHP guide, 798–799

PHP similarities, 34, 795–796

C-style multiline comments, 39

caches

Oracle, 579

products, 495

Calculator class, 328–329

calendar_form_string function, 543

calendar.php file

maximal PHP style, 541

medium PHP style, 542–543

minimal PHP style, 540

calendars

configuration option, 488

conversion functions, 407–408

call-by-reference functions, 448–450

call-by-value functions, 145, 447–448

call_user_method_array function, 336

calling functions

parent constructors, 329–331

parent functions, 329

syntax, 83

camelcaps naming style, 529

canonical PHP tags, 28

capitalization

function names, 87

Oracle, 582

strings, 127

variable names, 528

carets (̂) in regular expressions, 375, 379

carriage-return characters

escape sequence, 53

as white space, 34

Cartoons databases, 557–565

Cascading Style Sheets (CSS), 13–14, 545

case folding, 661–662

case functions, 126–127

case sensitivity, 35

filenames, 529

keys and keywords, 491

problems, 175

SAX, 661–662

substring searches, 118, 121

variables, 106

catch blocks, 93–94, 500

ceil function, 158–159, 440, 458

centering text, 785

CentOS, PHP installation on, 21–22

Certainty Quiz, 727

code, 731–732

certainty_utils.php, 755–759

dbvars.php, 763–764

game_class.php, 746–753

game_display_class.php, 735–744

game_parameters_class.php, 753–755

game_text_class.php, 744–746

index.php, 732–735

question_class.php, 759–763

concepts, 727–728

database, 764–768

design considerations, 768–769

overview, 728

rules, 729, 731

sample screens, 728–729

summary, 769

version, 728

certainty_utils.php file, 732, 734, 755–759

cgi-bin directory, 474

CGI compile-time options, 488–489

CGI-style, 541

chained_code function, 453–454

chained subclassing, 322–324

CHANGE MASTER TO command, 216

changed file contents, checking for, 387

CHAR data type, 232

characterData function, 661

characters, 115. See also strings

finding, 118–119

MySQL, 232

regular expressions, 375, 378–379

CHECKBOX elements, 267–269

checkdate function, 407

checkdnsrr function, 404

_checksumChecks function, 742

checksumming messages and files, 387

chgrp function, 401

child classes, 315–316

chmod function, 401

choke_and_die function, 587

chop function, 123–124

chown function, 401

chr function, 91, 440–441

cipher substitution function, 450–454

circle_intersection_area function, 775–776

circles

drawing, 784–785

intersecting, 773–776

city_by_number function, 143

845

 Index C

__CLASS__ constant, 336

class_exists function, 335

class keyword, 318

classes, 316

abstract

declaring, 328

designated, 352

defining, 318–319

functions, 317, 328–329

genealogy, 337–340

ClassNotDefined error, 628

CLASSPATH setting, 623–624

ClassToSerialize class, 332

ClassToSerialize2 class, 333–334

cleanup functions for strings, 123–124

clearstatcache function, 400–401

client commands in MySQL, 208

client-side technologies, 13–15, 17

client to server communication, 15

clock arithmetic, 155

cloning functions, 95

closelog function, 403

code

reuse, 535, 537

separating from design, 544–546

source, 474–475

codebases, 825–826

coercion, type, 436–441

collisions

strings, 387

writes, 576

colons (:)

else and elseif, 80

OOP syntax, 328, 330

ternary operator, 65

color in images, 698–700

columns

headers, 242

matching to variables, 340–342

SQL databases, 194

tables, 238

command-line PostgreSQL utilities, 553

commas (,)

arguments, 36, 83, 86

in for statements, 73

global variables, 91

problems, 303

comment_edit.php file, 264–267

comments

Perl, 805

readability, 526–527

styles, 39–40

Common Log Format, 514–515

communication in server-side scripting, 15

Community Server edition, 4, 189

compact function, 365–366

comparing strings, 119

comparison operators, 62–63, 157

C language, 796

non-integers, 64

precedence, 63

strings, 63–64

compatibility, platform, 7, 9

compile-time bugs, 513

compile-time options, 484–489

compiling

C language, 798

Java, 621

Perl, 801

complex mapping of tables, 245–249

complex printing example, 248–249

complex variable expressions, 115

compound types, 46

Comprehensive Perl Archive Network (CPAN), 806, 830

compression of images, 696

computeChecksum function, 343

Computer Emergency Response Team (CERT) site, 480

concatenation, 115–116

concatenation operator, 115–116

conciseness

guidelines, 537–539

limitations, 536

Concurrent Versions System (CVS), 532

configuration, 483

Apache files, 489–491

compile-time options, 484–489

environment variables, 483

overview, 484

summary, 495–496

confirmOne function, 643

connect function, 573

connection-level errors, 581

connections

efficiency, 279–282

multiple, 226–227

MySQL, 208, 219–220

PEAR DB, 570–571, 573

problems, 295–297

consolidating forms and form handlers, 109–110

constants, 44

Boolean, 49, 60

math, 455–456

OOP, 327–328

__construct function, 317, 320

846

 D Index

constructive functions, 360

constructors, 315, 317

functions, 319–320

parent, 329–331

continue statements

in loops, 76–78

Perl, 805

control structures, 59–60

alternate, 79–80

Boolean expressions, 60–62

branching, 65–70

C language, 796

comparison operators, 62–64

loops. See loops

PEAR, 837–838

summary, 81–83

terminating execution, 80–81

ternary operator, 65

conversion specifications in format strings, 129

conversions

to arbitrary-precision values, 467–469

base, 457–460

C language, 797

calendar systems, 407–408

numbers, 154

relative links to absolute, 384–385

types, 45, 436–441

$_COOKIE array, 110

cookie-based sessions, 412

cookie_lifetime variable, 421

cookies, 422

deleting, 425

examples, 423–424

HTTP headers, 428–430

pitfalls, 426–428

privacy, 424

reading, 425–426

refusal, 427–428

setting, 422–423

coordinate systems for images, 699

copy function, 401

core scripting engine and tools, 824

Cos function, 462

cosmetic issues for tables, 242

costs, 4

count function, 139, 289

count_chars function, 388–389

count_values function, 359

countdown function, 96–98

CPAN (Comprehensive Perl Archive Network), 806, 830

crack! program, 480

crackers, 472

create definitions, 203

CREATE privilege, 209

create_randomized_array function, 758–759

CREATE TABLE statement, 203, 554–555

CREATE USER statement, 555

createdb command, 553

createElement function, 658

createTextNode function, 659

cross-platform compatibility, 7

crypt function, 477, 480

CSS (cascading style sheets), 13–14, 545

curly braces ({})

blocks, 38–39

class definitions, 318

functions, 86

if-else structures, 66

interpolation, 114–115

string variables, 115

current function, 143–145

current pointer, 141, 148

_currentQuestionString function, 739–740

cursors, 583–584

Customer class, 354

CustomException class, 502

customized_greeting function, 450

CVS (Concurrent Versions System), 532

D
data caching

Oracle, 579

products, 495

data entry script, 723–724

data information functions, 225–226

data manipulation statements, SQL, 195

data movement in Web services, 675–676

data munging, 577

data sets, fetching, 222–225

Data Source Names (DSNs), 568–570

data types. See types

data visualization, Venn diagrams for. See Venn diagrams

databases

administering, 207

backups, 206

Certainty Quiz, 747, 764–768

compile-time information, 486

connectivity, 8

creating, 229–231

design, 201–204

efficiency, 279

connections, 279–282

date and time fields, 290–291

847

 Index D

indexing, 282–287

last inserted row, 291–292

looping, 288–290

table design, 287

forms. See forms and form handlers

multiple connections, 226–227

MySQL. See MySQL databases

Oracle. See Oracle databases

overview, 185–186

passwords, 205–206, 229

PEAR, 832

permissions, 204–205

PostgreSQL. See PostgreSQL databases

purpose, 186–187

queries. See queries

recovery, 217–218

replication, 214–216

SQLite. See SQLite databases

supported, 187–188

tables. See tables

visualizing, 785–790

date_add function, 290–291

DATE data type, 231

date fields, 290–291

date function, 406

date functions, 405–407

date_prefs.php file, 271–274

date_subtract function, 290

DATETIME data type, 230–231

day_of_week_string function, 543

DB_Common class, 573–574

DB_Result class, 574

db_visualization.php file, 772, 788–790

dbSpecs.php file, 569

dbvars.php file, 732, 763–764

deb package, 20

Debian Linux, 20

MySQL Server installation on, 190

PHP installation on, 22

debugging, 307–308, 511

bug types, 513–514

error logging, 517

error reporting, 516–522

with exceptions, 508–509

learning from, 814

strategies, 512–513

summary, 523

web server logs, 514–516

DEC data type, 231

DecBin function, 459

DecHex function, 459

DECIMAL data type, 230–231

decimal format, 47

decimal points (.)

concatenation operator, 115–116

floating-point numbers, 47

format strings, 129

regular expressions, 375

declarations

document type, 653

Perl, 802

types, 45

variables, 40

DecOct function, 459

decrement operators, 155–156

default arguments, 444

default.txt file, 719

default values, 41–42

define function, 44

defining

classes, 318–319

functions, 86–88

delete function, 401

DELETE statements

indexing, 283

working with, 200–201

deleting

array elements, 140

cookies, 425

delimiters, 371

denormalized data, 199

dependent code in control structures, 60

derived classes, 316

deselectAllOthers function, 643

design

Certainty Quiz, 768–769

database, 201–204

separating code from, 544–546

tables, 287

designated abstract classes, 352

__destruct function, 317

destructive functions, 360

destructors, 315, 317

developers’ lists, 819–820

development tools, 26–27

Devshed site, 825

diagnostic print statements, 518–519

dicing strings, 121

die function

in debugging, 167

error checking, 227–228

working with, 80–81

die_silently function, 587

digest mailing lists, 821–823

848

 D Index

direct assignment of arrays, 134

directory permissions, 392

dirname function, 401

—disable-force-cgi-redirect flag, 475

disable_functions directive, 400, 492

—disable-url-fopen-wrapper flag, 488

disabled_functions directive, 399

disconnect function, 571, 573

disk_free_space function, 401

disk space for indexes, 286

disp_func_results function, 463–464

display, Venn diagrams

code, 784–785

planning, 777–783

display_bases function, 459

display_cities function, 246–249

display_db_query function, 243

display_db_table function, 239, 243–244

display_errors directive

blank pages, 167

security, 474

setting, 516

silent mode, 220

display function

ClassToSerialize, 332

ClassToSerialize2, 334

GameDisplay, 737–738

TextBox, 320

TextBoxHeader, 321–322

TextBoxSimple, 318–319

display_path function, 705–706

displayEntryForm function, 767–768

distractor_string function, 744

_distractorString function, 740

distributed computing, 677

DivisibleByBad function, 538

DivisibleByBetter function, 538

division, 154

arbitrary-precision function, 466

assignment operator, 156

division-by-zero warnings

avoiding, 539

handling, 178

division table, 74–75

.dll files, 25

DNS-querying functions, 403–404

do-while loops

summary, 83

syntax, 72

doc_root setting, 493

document elements in XML, 649

Document Object Model (DOM). See DOM (Document

Object Model)

document type declarations, 653

document type definitions (DTDs), 651–655

documentation

in debugging, 513

functions, 84–86

DocumentRoot setting, 490

dollar signs ($)

C language, 796

missing, 170

Perl, 802

regular expressions, 375, 379

strings, 54

variables, 40

DOM (Document Object Model)

functions, 657

overview, 656–657

vs. SAX, 655–656

working with, 657

dom_example.php file, 657

dom_polledit.php file, 669–672

domains for cookies, 423

DomAttr class, 658–659

DomDocument class, 658–659

DomNode class, 658–659

domxml_ functions, 658

dot object notation, 632

dots (.)

concatenation operator, 115–116

floating-point numbers, 47

format strings, 129

regular expressions, 375

DOUBLE data type, 231

double_drop.html page, 638–642

DOUBLE PRECISION data type, 231

double quotes (“) in strings, 52–53, 113–114

double type, 47, 153

as Booleans, 50

C language, 796

equality comparisons, 63

MySQL, 231

read formats, 48–49

testing for, 436

type contagion, 155

doubleval function, 154

download-docs.php file, 817

downloading files, 397–398

drawing coordinates and commands, 699

DROP privilege, 209

DROP statement, 204

dropping tables, 203–204

849

 Index E

DSNs (Data Source Names), 568–570

DTDs (document type definitions), 651–655

dyn_navigation.html page, 636–642

dynamic Apache modules, 485

Dynamic HTML, 13

dynamic JavaScript, 636–642

E
E_ALL constant, 44

e for scientific notation, 48

e-mail

client-side vs. server-side, 17

sending. See sending

each function, 147–149

early binding, 317

ease of use, 5

easter_date function, 408

easter_days function, 408

echo statement

in debugging, 512, 518–519

strings, 56, 128

Eclipse text editor, 27

edit-compile-execute cycle, 621

edit.php file, 562–564

editing with HTML forms, 264

CHECKBOX elements, 267–269

RADIO elements, 269–274

SELECT elements, 274–277

TEXT and TEXTAREA elements, 264–267

editors

batch, 594–604

PHP, 669–672

point, 584–594

text, 27

efficiency, 534–536

vs. conciseness, 536

database. See databases

elements in XML, 649, 654

ellipses, 784–785

else branches, 65–69

Elseif statements, 67, 69

elsif statements, 805

embedded HTML, Java, 621–622

embedded images, 702

empty elements in XML, 649

empty values in array iterations, 147–149

—enable-bcmath flag, 488

—enable-calendar flag, 488

—enable-discard-path flag, 474, 488

—enable-force-cgi-redirect flag, 475, 489

—enable-url-includes flag, 488

encapsulation, 315, 317

encryption

form data, 105

passwords, 205, 429, 477

end function, 145–146

end-of-file tests, 400

end-of-line characters, 57

end tags for links, 381–382

endElement function, 661

endfor statement, 79

endif statement, 79

endswitch statement, 79

endwhile statement, 79

entry_form.php file, 732, 766–768

ENUM data type, 232

$_ENV array, 110

environment variables, 483

equal signs (=)

comparison operators, 62–63, 157

GET method, 101

mistakes using, 63

string comparisons, 119

variable assignment, 41

equality comparisons on doubles, 64

ereg function, 376–377

ereg_replace function, 377

eregi function, 377

eregi_replace function, 377

error_append_string setting, 492

error.log file, 514

error_log function, 167, 228, 302, 474, 508–509, 522

error_msg function, 506, 508–509

error_prepend_string setting, 492

error_reporting function, 44

error_reporting setting

argument number mismatches, 89

default value, 492

report levels, 517

errors and error checking. See also exceptions

handlers

defining, 506–507

functions, 93–94

Java, 627–628

MySQL, 227–228

native, 504–506

Oracle, 581

reporting, 518

debugging, 516

error_log, 522

logging, 517, 521

Oracle, 581

print statements, 518–519

850

 F Index

syslog, 519–521

unassigned variables, 41

var_dump, 519

tables, 242

triggers, 507–508

escape characters and sequences

functions, 127–128

from HTML, 28–32

Oracle, 580

regular expressions, 379

strings, 53, 580

XML, 650

escape_html function, 586

escape_sq function, 586

escapeshellcmd function, 479

/etc/passwd file, 477

etiquette for mailing lists, 821

evaluating expressions, 36–37

event hooks, 660

Event Viewer

error severity levels, 521

IIS logs, 516

Exception class, 94, 499–501

exceptions, 497. See also errors and error checking

Certainty Quiz, 734–735, 769

error handling, 497–499, 506–507

Exception class, 499–500

functions, 93–94

Java, 627–628

limitations, 504

logging and debugging, 508–509

native errors, 504–506

subclass defining, 502–504

summary, 509

throwing, 501

triggering user errors, 507–508

try/catch blocks, 500

exclamation points (!)

comparison operators, 62, 157

logical operators, 61

exec function

PHP, 478

SQLite, 606

exec_time function, 493–494

execute directory permission, 392

execution

Oracle, 581

terminating, 80–81

existence of files, 400

exit construct, 80

exp function, 461

expat parser, 660

expiration date of cookies, 422

explicit types conversions, 437–438

explode function, 373–374

conversions, 396, 440–441

in performance, 494

exponents, 461

exporting functions for images, 701

expressions

assignment, 37–38

Boolean, 37, 60–62

evaluating, 36

evaluation order, 36–37

regular. See regular expressions

tokens in, 35–36

types, 37

extends keyword, 318, 320

Extensible Markup Language. See XML (Extensible Markup

Language)

extension setting, 297

extension_dir setting, 623

extensions

Apache server, 24

PHP, 8

external DTDs, 653–655

extract function, 365–366

extracting array keys, 147

F
failover in Oracle, 579

Faqts, 824–825

fatal errors, 176, 504

favorites.php file, 719–720

fclose function, 399

feature development speed, 8

feof function, 400

fetch method, 608–609

fetchAll method, 609

fetching data

Oracle, 581–582

PHP, 222–225

SQLite, 608–609

fetchInto function, 574

fetchRow function, 571, 574

fgetc function, 397

fgetcsv function, 401

fgets function, 396

fgetss function, 401

fields

date and time, 290–291

offsets, 223

tables, 238

types, 287

851

 Index F

file function, 397

file_exists function, 400

file_get_contents function, 396

FILE privilege in MySQL, 209

fileatime function, 401

filectime function, 401

filegroup function, 401

fileinode function, 401

filemtime function, 401

fileowner function, 401

fileperms function, 401

files and filesystems, 391

checksumming, 387

closing, 399

downloading, 397–398

embedded images from, 702

end-of-file tests, 400

existence tests, 400

functions, 392–393, 400–403

calendar conversion, 407–408

date and time, 405–407

network, 403–405

including, 30–32

names, 528–529

opening, 393–396

permissions, 391–392

reading, 396–397

size, 396, 400

splitting into buckets, 387

writing, 398–399

filesize function, 396, 400

filetype function, 402

filling functions, 701

financial transactions, Oracle for, 576

find_center_distance function, 783

find_circle_centers function, 779

finding. See searches

finger function, 479

first in, first out (FIFO) containers, 364

FIXED data type, 231

Flash animations, 13

flipping arrays, 359–360

FLOAT data type, 231

float types, 47–48, 153

conversions with, 433, 436–437, 440

MySQL, 231

read formats, 48–49

testing for, 436

floatval function, 437

flock function, 402

flood-fills, 784

floor function, 158–159, 440

FLUSH PRIVILEGES command, 211, 298

FLUSH TABLES command, 215

footer.inc file, 720–721

footprints for Web services, 681

fopen function, 383–384, 393–396

for loops, 72–73

example, 74–75

summary, 83

foreach construct, 142–143

form_printer.php file, 346–352

formal parameters, 87–89

format strings, 129

formats

date, 406

doubles, 48–49

images, 696, 699

integers, 47

formatting form variables, 106–108

formhandler.php file, 255–256

forms and form handlers

CHECKBOX elements, 267–269

consolidating, 109–110

database submissions, 254–264

dynamically generated, 637–642

OOP, 346–352

overview, 253–254

RADIO elements, 269–274

SELECT elements, 274–277

sending e-mail from, 616–618

TEXT and TEXTAREA elements, 264–267

variable formatting, 106–108

variable passing, 100

Venn diagrams, 792

XML, 665–666

formulaic writes, 577

fpassthru function, 396–398, 402

fputs function, 398

fractal images, 703–710

fractal1.php file, 705–709

Frameset page, 642

fread function, 396–397

free function, 574

French Revolutionary calendar, 407

fseek function, 402

fsockopen function, 404

ftell function, 402

FTP connections, 395

full-page images, 701–702

full table scans, 283

func_get_arg function, 443, 446

func_get_args function, 443, 446–447

func_num_args function, 443, 446

852

 G Index

function keyword, 86

function names, variables as, 450

function not found error, 672

functions, 60, 83

accessor, 354

arguments. See arguments and parameters

C language, 796

call-by-reference, 448–450

call-by-value, 447–448

cipher substitution example, 450–454

class, 328–329

date and time, 405–407

defined, 86

definition syntax, 86–88

documentation, 84–86

DOM, 657–659

escaping, 127–128

exceptions, 93–94

files, 392–393

filesystems, 400–403

gd, 700–701

implementing, 458

introspection, 334–337

in maintainability, 531

mathematical, 158–159, 470

MySQL, 225–226, 232–234

networks, 403–405

Oracle, 580–584

overriding, 322

parent, 329

PEAR, 573–574, 838–839

Perl, 803–804

PostgreSQL, 556–557

problems, 176–178, 305–307

recursive, 96–98

regular expressions, 377, 383–385

return values vs. side effects, 83–84

returning arrays, 136

reuse, 237, 537

SAX, 663

scope, 95–98

sessions, 419–421

SimpleXML, 665

SQLite, 606–609

strings. See strings

tokenizing and parsing, 371–374

undefined, 177

variable scope, 43, 90–94

fwrite function, 398–399

G
Game class, 746–753

game_class.php file, 735, 746–753

game_display_class.php file, 735–744

game_parameters_class.php file, 753–755

game_text_class.php file, 735, 744–746

GameDisplay class, 735–744

gameLostText function, 746

GameParameters class, 753–755

games. See Certainty Quiz

_gameStateString function, 744

GameText class, 744–746

gameWonText function, 746

gd toolkit, 695

concepts, 697–699

functions, 700–701

image formats and browsers, 696

installation, 696–697

generalized test methods, 342–345

generate_session_id function, 411

$_GET array, 101–102, 110

get_cat_header stored procedure, 595–596

get_categories stored procedure, 583–584

get_categories.sql stored procedure, 594–595

get_child_classes function, 339

get_class function, 335–336

get_class_methods function, 336

get_class_vars function, 335, 337

get_day_of_week function, 542

get_declared_classes function, 335, 338

get_html_translation_table function, 386

GET method, 100–102

get_object_vars function, 335, 337

get_parent_class function, 335–336, 338

get_post_value function, 756

get_session_value function, 734, 756

GET-style URLs, 102–104

getAll function, 574

getAnswer function, 759

getAnswerSpread function, 759

getAnswerSpreadDebit function, 754

getAssoc function, 574

getBlueColor function, 736

getCol function, 574

getCorrectAnswers function, 749

getCredit function, 748

getCurrentQuestion function, 748

getCurrentQuestionText function, 749

getdate function, 290, 406

853

 Index H

getDbConnection function

Game, 749

GameParameters, 755

getFormNum function, 639

getGame function, 736

getGameLost function, 749

getGameParameters function, 748

getGameWon function, 749

getHighScorePosted function, 736

gethostbyaddr function, 404

gethostbyname function, 404

gethostbynamel function, 404

getItems function, 572

getItems.php file, 571–573

getLevel function, 748

getMaximumCredit function, 754

getMaximumLevel function, 754

getMessage method, 628

getmxrr function, 404

getName function, 354

getOne function, 574

getPageTitle function, 736

getPreviousQuestion function, 748

getProperty function, 626

getQuestion function, 759

_getQuestionIdsAtLevel function, 751

getQuestionsAskedAtLevel function, 748

getQuestionsPerLevel function, 755

getrandmax function, 160, 162

getRating function, 354

getRedColor function, 736

getRightAnswerCredit function, 754

getRow function, 574

getScalingType function, 759

getservbyname function, 405

getservbyport function, 405

getStartingCredit function, 754

getStartingLevel function, 754

getter functions, 354

getTotalQuestions function, 748

getTraceAsString function, 508

gettype function, 435–436

getValue function, 329

getWrongAnswerDebit function, 754

GIF format, 696

global Apache settings, 489

global arrays, 110

global-level errors in Oracle, 581

global scope

constants, 44

variables, 43, 90–92

$GLOBALS array, 105

gmdate function, 407

gmmktime function, 407

gmstrftime function, 408

gnome-libxml2 parser, 657

GNOME XML library, 487

go-pear.php command, 834

go-pear web site, 833

gpc_order setting, 492

GRANT statement

MySQL, 209

PostgreSQL, 555–556

GRANT ALL PRIVILEGES statement, 211

GRANT REPLICATE SLAVE statement, 215

graphics, 689

fractal images, 703–710

gd for. See gd toolkit

HTML, 690–694

HTTP, 701–702

options, 689–690

problems, 710–711

summary, 712

greater than signs (>)

anchor tags, 381–382

comparison operators, 62–63, 157

PHP mode, 30, 69

Greenwich Mean Time, 405, 407

Gregorian calendar, 407

GROUP BY construct, 289

H
hackers, 472

handleEntryForm function, 766–767

handleHighScore function, 738–739

handleTest function, 344

hashes

arrays as, 132–133

MD5, 386–387

Perl language, 803

header_download.php file, 594–599

header function, 110, 397, 428, 430

header.inc file, 720

headers

columns, 242

function documentation, 85

images, 710–711

problems, 430

sending, 428–430

headingElementBreak function, 348

Hello World program, 28–29

heredoc style, 55

example, 543–544

syntax, 116–117

854

 I Index

hexadecimal numbers

conversions, 459–460

integers, 47

reading, 457

HexDec function, 459–460

hidden variables, 411–412

hiddenVariablesString function, 348

hierarchical XML structures, 649

_highScoreEligible function, 741–742

_highScoreString function, 743

hosts, missing, 166

HREFs, 381, 385

.htaccess file, 489–490

HTML

escaping from, 28–32

forms. See forms and form handlers

generating, 346–352

graphics, 690–694

linebreaks, 57

PHP code in, 809–811

PHP-compliance, 27

PHP learning strategies, 811–814

static, 11–12

string functions, 385–386

tables. See tables

validators, 526

weblogs, 722–724

vs. XML, 647–650

HTML-embeddedness, 5–7, 803

HTML_ENTITIES constant, 386

HTML mode

branching in, 68–69

included files, 532

vs. PHP mode, 539–544

HTML_SPECIAL_CHARs constant, 386

HTML Tidy utility, 526

HTML validator utility, 526

htmlentities function, 386

HtmlForm class, 346–348

HtmlFormInput class, 348

HtmlFormSelect class, 349

HtmlFormText class, 350

HtmlFormTextArea class, 350–351

htmlspecialchars function, 386, 473

$HTTP_GET_VARS array, 110

$HTTP_POST_VARS array, 106, 110

HTTP protocol

authentication, 429–430

graphics, 701–702

opening files, 394

response codes, 515

sending headers, 428–430

as stateless protocol, 99–100, 410

$HTTP_SERVER_VARS variable, 106

httpd.conf file

file writing, 399

global settings, 489

PHP extensions directive, 24

huge data sets, Oracle for, 577

I
idem-potent usages, 102

identical operator, 63, 157

IEsetup function, 641

if structures

PEAR, 837–838

PHP, 65–69

summary, 81–82

ignore_user_abort setting, 493, 495

IIS log files, 516

imagearc function, 784

imagecircle function, 779, 784

ImageColorAllocate function, 698–699, 784

ImageCreate function, 698, 784

ImageCreateTrueColor function, 698

ImageDestroy function, 699, 784

imageellipse function, 784

ImageFill function, 784

imagefontwidth function, 785

imagePng function, 705, 784

images. See graphics

ImageString function, 784

imagetojpeg function, 699

imagetopng function, 699, 701

 tag, 702

immutable strings, 119

implode function, 374, 440–441

in_array function, 139

in-query functions, 289

include function, 30–31, 95–96, 173–174

include_once function, 30–31, 96

include_path directive, 31, 96, 493

included files

including, 30–32

maintainability, 531–532

missing, 173–174

password, 723

problems, 169

increment operators, 155–156, 537

855

 Index J

indentation in PEAR, 836–837

index.php file

Cartoons databases, 557–558, 560–562, 564–565

Certainty Quiz, 732–735

indexes

array, 135–136

limiting, 285–286

overview, 282–283

primary keys, 284–285

strings, 115

tradeoffs, 283

UNIQUE INDEX clause, 286–287

indivisible tokens, 35

infinite loops, 79, 180

informative variables, 529

inheritance, 315–316, 320–321, 355

ini_set statement, 627

$initial_entry_date variable, 717

initial expressions in for statements, 73

inner joins, 198

INPUT statement, 106

inputFormsString function, 347–348

Insecure.Org site, 480

insert.php file, 558–560

INSERT statement

indexing, 283

PostgreSQL, 555

SQL, 200

inserting data in SQLite, 608

inspecting

arrays, 139

strings, 118

installation

gd toolkit, 696–697

MySQL, 189–191

PHP, 19–20

development tools, 26–27

problems, 165–166

procedures, 20–26

_installQuestion function, 749–750

instances, 314

creating, 319

OOP, 316

INT data type, 230–231

INTEGER data type, 231

integers, 47, 153

C language, 796

conversions with, 436–437, 440

largest, 442

MySQL, 230–231

overflow, 441

primary keys, 284

testing for, 436

type contagion, 155

interfaces, OOP, 327

internal DTDs, 653

international PHP development, 822

internationalization, 662

Internet Information Server (IIS), 7, 25

interpolation

strings, 114–115

variables, 54, 304, 802

intersecting circles area, 773–776

intersection_label function, 783

introduction function, 745

introspection functions, 317, 334–337

intval function, 154, 437

IP addresses for sessions, 411

iptables firewall, 22

is_ functions, 436

is_array function, 139

Is_dir function, 402

Is_executable function, 402

Is_file function, 402

is_finite function, 457

is_float function, 457

is_infinite function, 457

is_int function, 393, 457

Is_link function, 402

is_long function, 457

is_nan function, 179, 457

is_numeric function, 393, 456–457

Is_readable function, 402

is_subclass_of function, 335

is_valid_user function, 498–500, 503

is_writable function, 402

isError function, 570, 573

ISO-8859-1 encodings, 662

isolation in debugging, 512

isset function, 42, 51, 139

isWarning function, 573

iterations

current and next, 143–145

each, 147–149

foreach, 142–143

function summary, 150–151

reset, 145–146

reverse order, 146

support, 140–142

walking, 149

J
java.awt.* packages, 629

Java Development Kit (JDK) environment, 624

856

 K Index

JAVA_HOME setting, 624

java.lang.System file, 625

Java language, 619

applets, 13

configuration option, 487

errors and exceptions, 627–628

extension, 623–625

Java object, 625–627

Java Server Pages, 621–622

PHP differences, 620–621

PHP similarities, 620

problems, 628

SAPI, 623

summary, 629

uses, 629

java_last_exception_clear function, 627

java_last_exception_get function, 627

java.library variable, 624

java.library.path variable, 624

Java object, 625–627

Java Server Pages (JSP), 621–622

javadoc tool, 528

JavaScript language, 631

dynamic, 636–642

outputting, 631–634

passing data to PHP, 642–645

PHP as backup for, 634–635

static, 636

summary, 646

javatest.php file, 625

JDDayofWeek function, 408

JDK (Java Development Kit) environment, 624

JDMonthName function, 408

jmp function, 639

joins, 196–198

jpeg-6b library, 697

JPEG format, 696

Julian Date, 407–408

jumping in and out of PHP mode, 30

K
key function, 147

keys and values in arrays, 132, 134–135

current, 141

empty, 147–149

extracting, 147

retrieving, 358–359

keyword case-sensitivity, 491

knowledgebase, 824–825

krsort function, 367

ksort function, 367

L
labels in heredoc syntax, 116

LAMP stack, 4

largest integer, 442

last-in-first-out (LIFO) containers, 363

last inserted row, finding, 291–292

late binding, 317

Latin1 encoding, 662

left_label function, 782–783

left outer joins, 199

legal liability, Oracle for, 577

length of strings, 55, 115, 118

LengthException class, 503

less than signs (<)

anchor tags, 381

comparisons, 62, 157

heredoc syntax, 116

PHP mode, 30, 69

letter_cipher function, 451–452

levenshtein function, 389

Levenshtein metric, 389

Libby, Dan, 9

libjpeg library, 487

libmcrypt library, 487

libphp6.so file, 623

libpng library, 697

libraries in Java, 620

libxml library, 23

libxml validator, 655

libxml2-devel package, 23

libxml2 parser, 655, 660

line-drawing functions, 700

line length in PEAR, 836–837

line segments in fractal images, 704

linebreaks in HTML, 57

link function, 402

link-scraper example, 381–382

linked-list pointer system, 141

linkinfo function, 402

linking C language, 798

Linux

e-mail configuration, 614

MySQL Server installation on, 190

PEAR Package Manager on, 832–833

PHP installation on, 22

list construct, 136–137, 803

loading page problems, 168–169

LoadModule setting, 491

loads from Web services, 681

local development in MySQL, 211

local variables, 43, 91–92

857

 Index M

location

log files, 521

php.ini file, 488

log_errors setting, 517

log files and logging

debugging, 517

exceptions, 508–509

location, 521

operating systems, 519–521

web server, 514–516

log function, 461

log10 function, 461

logarithms, 461

logentry.php file, 723–724

logical bugs, 513–514

logical operators, 60–62

login.php file, 723

long names for file and variables, 528

long types, 153

MySQL, 232

testing for, 436

LONGBLOB data type, 232

LONGTEXT data type, 232

loop-end-expressions in for statements, 73

loops, 59

through arrays, 142–143

bounded vs. unbounded, 71

break and continue statements, 76–78

do-while, 72

efficiency, 288–290

for, 72–75

infinite, 79, 180

optimizing, 535–536

while, 71–72, 75–76

lower_letter function, 451

lowercase, converting strings to, 126

lstat function, 403

ltrim function, 123

M
M_ constants, 455–456

M_OPERNUM constant, 455

M_PI constant, 455–456, 461–462

M_X_Y constant, 455

magic numbers, 530–531

magic_quotes_sybase option, 486

mail function, 614–616

mailing lists, 819–823

MAILTO links, 17

maintainability, 530

databases for, 186

functions, 531

include files, 531–532

magic numbers, 530–531

object wrappers, 532

version control, 532

make_body function, 321

make_header function

TextBoxBoldHeader, 323

TextBoxHeader, 321

make_large_rectangle function, 708

make_path function, 705

make_point function, 705

make_small_rectangle function, 708

make_subject_string function, 768

_makeChecksum function, 742

_makeDistractors function, 762

_makeDistractorsGeometric function, 763

_makeDistractorsLinear function, 762–763

makeErrorPage function, 736

_makeTopMatter function, 739

Mandrake installations, 20

manuals, 84, 818–819

many-to-many data, 201

many-to-one data, 201

mapping tables, 238, 245–249

master databases, 215–216

matching variables and columns, 340–342

math

arbitrary-precision functions, 465–469

base conversions, 457–460

constants, 455–456

exponents and logarithms, 461

expressions, 37

functions, 158–159, 470

operators, 154

arithmetic, 154–155

assignment, 156–157

comparison, 157

incrementing, 155–156

precedence, 158

problems, 178–179

testing numbers, 456–457

trigonometry, 461–464

max_execution_time setting, 492

max function, 158–159, 289

maximum programming style, 257, 541, 815

maxint function, 442

maybe_print_answer_date function, 542

_maybeChangeLevel function, 752

mcrypt library, 487

md5 function, 386–387

md5_file function, 387

MD5 hashing, 386–387

measuring microseconds, 493–495

858

 M Index

medium programming style, 257, 542–543

MEDIUMBLOB data type, 232

MEDIUMINT data type, 230–231

MEDIUMTEXT data type, 232

Melissa virus, 479

members in OOP, 316

access, 319, 325–327

functions, 316

valueless, 352–353

memory management

C language, 798

Java, 620

Oracle, 581

merging arrays, 360–361

Mersenne Twister, 159

message checksumming, 387

<META> tags, 648

metaphone function, 389

method_exists function, 336

methods

OOP, 316

overloading, 331–332

microseconds, measuring, 493–495

Microsoft Internet Information Server, 7, 25

microtime function, 160, 405, 494–495, 535

Midgard project, 820, 826

MIME type, 490

min function, 158–159, 289

minimal PHP style, 540–541, 815–816

minimizing damage, 471, 477, 479

minimum width number in format strings, 129

minus signs (-)

assignment operators, 156

decrement operators, 155–156

format strings, 129

negative numbers, 47–48

precedence, 158

regular expressions, 375

subtraction, 154

missing includes, 173–174

misspelled names, 303

mkdir function, 402

mktime function, 407

modes

HTML vs. PHP, 539–544

issues, 171–172

safe, 488

switching, 43–44

modifying objects, 324

modules

Apache, 485

Perl, 804

modulus operator, 154–155

arbitrary-precision function, 466

assignment operator, 156

money tracking, Oracle for, 576

monitoring Apache logs, 515

mt_getrandmax function, 160

mt_rand function, 159–160

mt_srand function, 160

multidimensional arrays, 132, 137–139

multiline comments, 39

multiple arguments, 445–447

MULTIPLE attribute, 274

multiple database connections, 226–227

multiple inheritance, 316

multiple queries, 245–247

multiplication, 154

arbitrary-precision function, 466

assignment operator, 156

multiplier patterns in regular expressions, 378

mutually recursive functions, 97

my.cnf file, 215–216

myisamchk tool, 217–218

myOptions function, 640

myslqd function, 297

mysql_affected_rows function, 222, 225, 305–306

mysql_close function, 227, 435

mysql command, 208

mysql_connect function, 219, 225, 282, 435, 790

mysql_create_db function, 229

mysql_data_seek function, 224–225

mysql database, 208

MySQL databases, 4, 188

backups, 212–214

client commands, 208

connecting to, 219–220

creating, 229–231

data information functions, 225–226

data types, 230–231

error checking, 227–228

fetching data sets, 222–225

functions, 232–234

installing, 189–191

multiple connections, 226–227

obtaining, 189

queries, 221

recovery, 217–218

replication, 214–216

user administration, 209–212

mysql_drop_db function, 229

mysql_errno function, 206, 228

mysql_error function, 206, 228, 302

mysql_fetch function, 222

859

 Index O

mysql_fetch_array function, 222–225

mysql_fetch_field function, 222

mysql_fetch_lengths function, 222

mysql_fetch_object function, 222–224

mysql_fetch_row function, 222–224, 240

mysql_field_name function, 242

mysql_field_type function, 225

mysql_insert_id function, 224–225, 287, 292

mysql_num_rows function, 240, 302, 305–306

mysql_pconnect function, 282

mysql_query function, 221–222, 225

description, 229

error checking, 227, 302

resource handling, 435

string arguments, 299–300, 304

mysql_real_escape_string function, 300

mysql_result function, 222, 224, 306–307

mysql_select_db function, 219–220, 225

mysqladmin command, 215

mysqlbible.xml file, 685–687

mysqlcheck tool, 218

mysqld server, 208

mysqldump tool, 212–214, 216

mysqlhotcopy script, 212

mysqli_affected_rows function, 222

mysqli_num_rows function, 222

mysqli_select_db function, 219

N
\n escape sequence, 53, 55

NAME attribute in INPUT statement, 106

Name class, 330

name function in DOM, 659

NAME variable in GET method, 101

names

cookies, 422

directives, 489

files, 528–529

functions, 86–87, 450

misspelled, 303

OOP, 353

Oracle, 582

variables, 40, 176, 528–529

XML elements, 652

namespaces, 317

Namestring class, 343–344

NameSub1 class, 330

NAN (Not a Number) value, 178–179

native errors, 504–506

natural joins, 199

navigation.html page, 634–635

negative numbers, 47–48

nesting

comments, 39

of for loops, 75

network functions, 403–405

“Never Trust Input” rule, 105

new operator, 319

new_pw function, 477

newline characters

escape sequence, 53

in strings, 55

newsletter_signup.html form, 254–255

newsletter_signup.php file, 258–259

next function, 143–145

nextId function, 574

nl2br function, 386

No Connection warning, 295–297

nodes in DOM, 656

nondestructive functions, 360

nonidempotent usages, 104

NonTestingObject class, 344

nonvalidating parsers, 655

Not a Number (NAN) value, 178–179

not operator, 61

not equal operator, 62, 157

not identical to operator, 157

notices, 504

now function, 290

nth_root function, 757–758

nth_root_aux function, 758

nth_root_initial function, 757

Null type, 50–51

conversions, 437

Oracle, 581

primary keys, 284

testing for, 436

numbers, 153. See also math

base conversions, 457–460

random, 159–163

testing, 456–457

types, 153–154

numCols function, 574

NUMERIC data type, 231

numRows function, 574

O
O function, 639–640

object models

Java, 620

JavaScript, 632

object-oriented programming (OOP), 311

chained subclassing, 322–324

classes

860

 O Index

abstract, 328, 352

defining, 318–319

functions, 328–329

genealogy, 337–340

constants, 327–328

constructors, 315, 319–321

destructors, 315

encapsulation, 315

functions

accessor, 354

introspection, 334–337

overrides, 322

parent, 329

generalized test methods, 342–345

HTML forms, 346–352

inheritance, 315–316, 320–321, 355

instances, 319

interfaces, 327

matching variables and columns, 340–342

members, 316

access, 319, 325–327

functions, 316

valueless, 352–353

method overloading, 331–332

names, 353

need for, 314

objects

as data types, 313–314

modifying and assigning, 324

overview, 312–313

problems, 352–353

scoping issues, 324–325

serialization, 332–334

terminology, 316

object relational databases (ORDBMS), 194, 552–554

objects. See also object-oriented programming (OOP)

C language, 797

conversions with, 437

fetching, 223

testing for, 436

wrappers, 532

ObjectTester class, 344–345

OCI_Fetch function, 306–307

oci_fetch_array function, 307

oci8_funcs.php file, 585–588

OCI8 functions, 580–584

OCIBindByName function, 584

OCICommit function, 583

OCIError function, 581

OCIExecute function, 582–583

OCIFetch function, 581

OCIFetchInto function, 581

OCIFetchStatement function, 581

OCINewCursor function, 584

OCIResult function, 306, 581

OCIRollback function, 583

octal numbers

conversions, 457, 459

integers, 47

OctDec function, 459

one-to-many data, 201–202

one-to-one data, 201–202

one-to-one mapping, 238

online manual, 819

OOP. See object-oriented programming (OOP)

opening files, 393–396

openlog function, 403, 521

operating system logs, 519–521

operators

C language, 796

comparison, 62–64, 157

for conciseness, 537

in expressions, 36–37

Java, 620

logical, 60–62

mathematical, 154

arithmetic, 154–155

assignment, 156–157

incrementing, 155–156

precedence, 158

strings, 115–116

optimization, 534–536

optimizers, 495

optout.php file, 268–269

or operator, 37, 61

Oracle databases, 575

batch editor, 594–604

need for, 575–578

OCI8 functions, 580–584

problems, 306–307

product point editor, 584–594

summary, 604

web architecture, 578–579

ord function, 91, 440–441, 452

ORDBMS (object relational databases), 194, 552–554

origins of images, 699

orphans, class, 339

outer joins, 198–199

output, 55

echo, 56

print, 56–57

strings, 128–130

861

 Index P

overflow, 441

overloading methods, 317, 331–332

overriding functions, 322

P
Package Manager, 832–833

packages

Java, 620

PEAR, 831–835

padding

arrays, 361

format strings, 129

pages

consistency, 545–546

display problems, 166

loading problems, 168–169

painting functions, 701

palette-based images, 698

parameters. See arguments and parameters

parent classes, 316

parent constructors, 329–331

parent functions, 329

parentheses ()

arguments, 83

arithmetic operators, 158

in printing, 55

regular expressions, 378–379

types, 154

parse errors, 169–173, 353

parse_exec_fetch function, 586–587

parse_exec_free function, 586

parsers and parsing

functions, 371–374

Oracle, 581

SAX, 660–661

validating and nonvalidating, 652, 655

passing information, 99

consolidating forms and form handlers, 109–110

formatting form variables, 106–108

GET method arguments, 100–102

GET-style URLs, 102–104

POST method arguments, 104–105

stateless protocols, 99–100

passthru function, 478

password.inc file, 722–723

passwords

compromised, 478

databases, 205–206, 229

encryption, 205, 477

errors with, 298

MySQL, 208

mysql_connect, 219

weblogs, 722–723

paths

cookies, 423

fractal images, 704

function inclusion, 96

to php.ini, 491

sessions, 430

pclose function, 402

PDO (PHP Data Objects), 187

PEAR (PHP Extension and Application Repository), 829–

830

coding style, 353, 836–839

manual, 818

overview, 830–831

package system, 831–835

PHP Foundation Classes, 835

summary, 839–840

PEAR DB, 567

connections, 570–571, 573

Data Source Names, 568–570

example, 571–573

functions, 573–574

queries, 570–571

row retrieval, 571

summary, 574

PECL (PHP Extension Community Library), 830–831, 836

pen-setting functions, 700

per-directory access settings, 489

percent signs (%)

assignment operators, 156

format strings, 129

Perl, 803

precedence, 158

remainder operators, 154

performance improvements, 493–495

periods (.)

concatenation operator, 115–116

floating-point numbers, 47

format strings, 129

regular expressions, 375

Perl-compatible regular expressions, 375, 378–380

Perl language, 801

PHP differences, 803–805

PHP guide, 806–807

PHP similarities, 801–802

tips, 805–806

permissions and privileges

databases, 204–205

files, 391–392

MySQL, 209–211

PostgreSQL, 552, 555–556

862

 P Index

problems, 297–298

root directory, 24

permissiveness in C language, 798

persistence

Certainty Quiz data, 768–769

connections, 282

Personal Home Page Tools, 3

PFC (PHP Foundation Classes), 830, 835

pfsockopen function, 404–405

pg_ functions, 556–557

phone numbers in primary fields, 287

Phorum project, 826

PHP Accelerator, 495

php_admin_flag directive, 489

php_admin_value directive, 399, 489

PHP Classes Repository, 826

PHP Code Exchange site, 826

PHP code in Web browser, 167–168

PHP Data Objects (PDO), 187

PHP Extension and Application Repository. See PEAR (PHP

Extension and Application Repository)

PHP Extension Community Library (PECL), 830–831, 836

php_flag directive, 489

PHP Foundation Classes (PFC), 830, 835

php.ini file, 26

installing, 24

problems, 166–167

settings, 491–493

compile-time, 484–489

error logging, 474, 517

error reporting, 516

extension, 297

Java, 624, 628

sending e-mail, 613–614

session, 421

XML, 672

php.ini-dist file, 26, 491

php.ini-recommended file, 26

PHP_INT_MAX constant, 47

php_java.dll file, 623

PHP mode

vs. HTML mode, 539–544

jumping in and out of, 30

PHP-Nuke project, 826

PHP resources

mailing lists, 819–823

web sites, 817–819, 823–827

php_value directive, 489

PHP web site, 817–819

php6ts.dell file, 25

phpBB project, 826

PHPBuilder site, 825

phpdoc tool, 527–528

PHPGroupware project, 827

phpinfo function, 483, 485

in debugging, 512

Java, 623

php.ini path, 491

XML, 672

PHPMyAdmin project, 826

phpNuke project, 820

PHPSlash project, 826

phpsrvlt.jar file, 623

PHPWiki project, 827

pi constant, 455

pi function in Calculator, 329

pi_approx function, 467

pi_approx_bc function, 468–469

pi value in trig functions, 461

planning Venn diagram display, 777–779

platform-independent compatibility, 9

platforms. See application platform considerations

plus signs (+)

addition, 154

assignment operators, 156

file opening modes, 394

increment operators, 155–156

precedence, 158

regular expressions, 375, 378

strings, 116

warning, 492

PNG format, 696

point_along_segment function, 707–708

point editor, 584–594

point_off_segment function, 708

point_x function, 705

point_y function, 705

pointers

arrays, 140–141

C language, 797

fractal images, 704

poll.xml program, 668–669

pollform.php file, 665–666

polymorphism, 317

popen function, 402, 478

popping values from stacks, 364

populate_cities function, 250–251

portability, databases for, 186

porting applications, 677

POSIX-style regex, 375

$_POST array, 102, 110

POST method, 102, 104–105

863

 Index P

PostgreSQL databases, 20, 551

benefits, 551–552

cartoons, 557–565

creating, 553–554

functions, 556–557

structure, 554–556

_postHighScoreString function, 742–743

postincrement operators, 155

pound signs (#) for comments, 39

pow function, 461

power function, 466

<pre></pre> construct, 130, 368

precedence

arithmetic operators, 158

comparison operators, 63

expressions, 36–37

logical operators, 61–62

precision specifier in format strings, 129

PrefixException class, 503

preg_grep function, 380

preg_match function, 379–380

preg_match_all function, 380, 384

preg_quote function, 380

preg_replace function, 380

preg_replace_callback function, 380

preg_split function, 380

preincrement operators, 155

preprocessing, 6

prev function, 145–146

previousQuestionCorrect function, 749

_previousQuestionString function, 741

primary keys

indexing, 284–285

joins, 196

prime numbers program, 77

print function, 56–57

diagnostic, 518–519

exceptions, 93

strings, 53–54, 128

print_all_array_backwards function, 146

print_all_array_reset function, 145–146

print_all_foreach function, 143

print_all_next function, 144–145

print_ancestry function, 338

print_ancestry_aux function, 338

print_better_deal function, 88–89

print_class_tree function, 339

print_class_tree_aux function, 339

print_day_options function, 542

print_first_name_bad function, 288

print_first_name_better function, 289

print_header function, 93–94

print_keys_and_values function, 147

print_keys_and_values_each function, 148, 358–359, 361

print_links function, 383–384

print_r function, 57, 368, 512

print_value_length function, 149

printError function, 228

printf function, 93, 128

printing

arrays, 367–368

complex, 248–249

diagnostics, 518–519

missing variables in, 174

strings, 53–54, 128–130

privacy and cookies, 424

private members, 326

privileges. See permissions and privileges

problems, 165

broken SQL statements, 301–303

commas, 303

connections, 295–297

debugging, 307–308, 512–513

functions, 176–178, 305–307

graphics, 710–711

headers, 430

installation-related, 165–166

Java, 628

math, 178–179

missing includes, 173–174

misspelled names, 303

OOP, 352–353

page loading, 168–169

parse errors, 169–173

privileges, 297–298

rendering, 166–168

sanity checking, 307–308

sessions, 430

summary, 180–182

timeouts, 179–180

too little and too much data returned, 305

unbound variables, 174–176, 304

unescaped quotes, 299–300

unquoted string arguments, 303–304

XML, 672

procedural abstraction, 60

procedural programming approach, 312

PROCESS privilege, 209

prod_point.php file, 588–594

product batch editor, 594–604

product point editor, 584–594

profiling, 535

projects, 826–827

propagating session variables, 413–414

864

 Q Index

properties in OOP, 316

proportional Venn diagram, 771

proprietary standards, 8–9

protected members, 326–327

prototypes in C language, 797

pseudo-random numbers, 159

pseudocode, 812

psql command, 553

public files, 392

public members, 325

pushing values onto stacks, 363–364

Q
qdbconn function, 220

queries, 237

MySQL, 221

optimizing, 535

PEAR DB, 570–571

SQLite, 606–609

tables. See tables

query_clauses.php file, 785–789

query function

PEAR DB, 574

SQLite, 606–608

Question class, 759–763

question_class.php file, 759–763

question marks (?)

GET method, 101

PHP mode, 30, 69

regular expressions, 378

ternary operator, 65

queues, 363–365

quotation marks (‘ “)

doubly quoted strings, 52–53

strings, 113–114

unescaped, 172, 299–300

quotemeta function, 128

R
\r escape sequence, 53

RADIO elements, 269–274

rand function, 159

arguments, 162

description, 160

with shuffle, 360

random_char function, 162

random numbers, 159–163

random selections, 162

random_string function, 162

range function, 136

ranges

integers, 47

in regular expressions, 375

rate_boss.php file, 260–264

read and write files, 393–394

read directory permission, 392

read formats

doubles, 48–49

integers, 47

read-only files, 393

readability, 526

comments, 526–527

vs. conciseness, 536–537

file and variable names, 528–529

phpdoc, 527–528

readable files, 205

readfile function, 396

reading

cookies, 425–426

files, 396–397, 475–477

readlink function, 402

REAL data type, 231

real type

MySQL, 231

testing for, 436

reassigning variables, 41, 529

recipe.dtd file, 655

recipe_ext.xml file, 654

recipe.xml file, 653–654

records, database, 194

recovery of databases, 217–218

recursive action forms, 563

recursive functions, 96–98

recursive printing, 368

red-green-blue (RGB) format, 698

Red Hat installations, 20

redeclaring functions, 177

redirect.php file, 635

redirection of headers, 428–429

refusal of cookies, 427–428

register_global directive, 416, 418

cookies, 425

global variables, 110

problems, 512

session variables, 413–414

variable conflicts, 105

regular expressions, 371

benefits, 374–376

in functions, 383–385

functions for, 377

865

 Index S

link-scraper example, 381–382

Perl, 805

Perl-compatible, 378–380

regular mailing lists, 821

relate function, 640–641

related elements in XML documents, 652

relational databases

object, 552–554

SQL, 193–194

relative links, converting to absolute, 384–385

remainder operator, 154–155

arbitrary-precision function, 466

assignment operator, 156

remote servers configuration, 488

removeChild function, 659

rename function

Book, 341–342

description, 402

HtmlForm, 346

HtmlFormInput, 348

HtmlFormSelect, 349

HtmlFormText, 350

HtmlFormTextArea, 351

Name, 330

NameSub1, 330

rendering problems, 166–168

replacing strings, 124–125

REPLICATE SLAVE privilege, 215

replication

databases, 214–216

Oracle, 579

require function, 30–31, 95–96, 173–174

require_once function, 30–31, 96

reset function, 145–146

resources

conversions with, 437

images, 699

PHP

mailing lists, 819–823

web sites, 817–819, 823–827

testing for, 436

types, 434–435

response codes in HTTP, 515

REST (Representational State Transfer), 678–680, 683–687

rest_amazon_client.php file, 683–685

results.php file, 645

retesting in debugging, 513

retirement_calc.php file, 107–108

retirement savings calculator, 107–108

retrieving

array values, 136–137

keys and values, 358–359

return statement, 88

return values

for conciseness, 537

vs. side effects, 83–84, 88

reuse, code, 237, 535, 537

reverse order

arrays, 146, 359–360

cookie interpretation, 427

REVOKE statement, 209

rewind function, 403

RGB (red-green-blue) format, 698

right_label function, 783

right outer joins, 199

_rightString function, 741

rivalrous resources, Oracle for, 576

rmdir function, 403

robots.txt file, 385

robustness, 533–534

root class recovery, 339

root compromised servers, 477–478

root directory

designating, 490

permissions, 24

root elements in XML, 649

round function, 159, 440

round_to_digits function, 757

rounding errors

Booleans, 50

equality comparisons, 64

row retrieval in PEAR DB, 571

RPM versions, 20

rsort function, 367

rtrim function, 124

rules function, 745

running programs as attacks, 477–479

runtime bugs, 513

S
safe mode configuration, 488

safeGeometricArguments function, 762

same_class_name function, 338

sandwich_frames.html page, 642

sandwichorder.html page, 643–644

sanitizing incoming information, 471

sanity checking, 307–308

SAPI (Service Access Point Identifier), 623

save function, 659

save_handler variable, 421

save_path setting, 415, 421

saveXML function, 659

SAX (Simple API for XML)

vs. DOM, 655–656

functions, 663

866

 S Index

options, 661–663

overview, 659–660

working with, 660–661

SayMyABCs function, 90–91

SayMyABCs2 function, 91–92

SayMyABCs3 function, 92–93

scalability, databases for, 186

scalars, testing for, 436

scale factor in BC functions, 466

scaled Venn diagrams, 771

schema changes in Oracle, 579

scientific notation, 48, 441

scope

constants, 44

functions, 95–98

OOP, 324–325

Perl, 804

problems, 175–176

variables, 43, 90–94

script-kiddies, 472–473

<SCRIPT> tag

JavaScript, 633

security problems, 473

scripts

embedded images from, 702

Java, 621

Perl, 801

server-side. See server-side scripting

searches

characters, 118–119

databases for, 187

function documentation, 85–86

last inserted rows, 291–292

string functions, 120–121

substrings, 118–121

secret_function function, 168

Security-focus.com site, 480

security issues

cookies, 423

MySQL, 209–211

overview, 471–472

permissions, 204–205

POST method, 105

reading files, 475–477

running arbitrary programs, 477–479

site defacements, 472–473

source code access, 474–475

web sites, 479–480

seeding random number generators, 160–162

SELECT statement, 195, 274–277

indexing, 283

joins, 196–198

PostgreSQL, 555

subselects, 199

WHERE clause, 195–196

selecting substrings, 121–123

self-closing elements, 649

self-joins, 199

self-submission of HTML forms, 257–264

selfTest function, 343–344

semicolons (;)

if-else structures, 66

labels, 116

missing, 170

MySQL, 208

statement terminators, 35

sending

e-mail

from forms, 616–618

Linux configuration, 614

mail function, 614–616

Windows configuration, 613

HTTP headers, 428

authentication, 429–430

problems, 430

redirection, 428–429

sendmail_from setting, 613

sendmail_path setting, 614

separation of code and display, 768

separator strings, 373

Serendipity project, 826

serialization, 332–333

Certainty Quiz, 753

problems, 334

sleeping and waking up, 333–334

serialize function, 332, 334

$_SERVER array, 96, 110, 411

server-side browser sniff program, 635

server-side scripting, 11

client-side technologies, 13–15, 17

overview, 15–17

static HTML, 11–12

uses, 17–18

servers

backend, 811

client communication, 15

missing, 166

remote, 488

root compromised, 477–478

Service Access Point Identifier (SAPI), 623

services

availability, 533–534

Web. See Web services

servlet.jar file, 623

867

 Index S

$_SESSION array, 131, 413–414, 416–417

session_decode function, 420

session_destroy function, 419

session_encode function, 420

session_get_cookie_params function, 421

session_id function, 420

session_is_registered function, 419

session_module_name function, 420

session_name function, 413, 420

session_regenerate_id function, 420

session_register function, 413, 419

session.save-handler setting, 493

session_save_path function, 420, 430

session_set_cookie_params function, 421

session_start function, 413, 415, 419

session_unregister function, 419

session_unset function, 419

session_write_close function, 420

sessions

alternatives, 410–411

checking for, 413

configuration settings, 421

cookies. See cookies

data storage, 414–415

functions, 419–421

hidden variables, 411–412

IP addresses, 411

overview, 409–410

problems, 430

sample code, 415–418

tracking, 412–413

variable propagation, 413–414

SET data type, 232

set_error_handler function, 506

set_session_value function, 734, 756–757

set_socket_blocking function, 404

set_time_limit function, 492

setcookie function, 422–425, 427–428, 430

setName function, 343

setRating function, 354

setter functions, 354

settype function, 437–438

_setupQuestionIds function, 750–751

severity levels in system log, 520

SGML (Standard Generalized Markup Language), 647

shared development databases, Oracle for, 578–579

shared-hosting web sites, 211

shared libraries, 487

Shared Object module, 23

short-circuit operators, 62, 539

short_open_tag setting, 491

SHOW COLUMNS command, 208

SHOW MASTER STATUS command, 215

SHOW TABLES command, 208

shuffle function, 360, 362

shuffling arrays, 359–360

SHUTDOWN privilege, 209

side effects

for conciseness, 537

expressions for, 38

vs. return values, 83–84

sieve function, 536–537

sign characters in format strings, 129

silent mode, 220

similarity functions for strings, 389

Simple API for XML. See SAX (Simple API for XML)

simple_dot_com function, 376

Simple Mail Transfer Protocol (SMTP), 17, 613

Simple Object Access Protocol (SOAP), 487, 680–681

simple types, 46

Booleans, 49–50

doubles, 47–48

integers, 47

NULLs, 50–51

strings, 51–55

simpleparser.php file, 660–661

SimpleXML API, 655–656, 664–665

simplexml_import_dom function, 665

simplexml_load_file function, 664–665

simplexml_load_string function, 664–665

simplexml.php file, 664–665

simplicity of Web services, 676–678

simplification in debugging, 512

Sin function, 462

single inheritance, 316

single-line comments, 39–40

site defacements, 472–473

size

files, 396, 400

tables, 287

Venn diagram display, 777–779

sizeof function, 139

skills_profile.php file, 275–277

skip-networking setting, 190

slashes (/)

assignment operators, 156

comments, 39

division, 154

importance, 300

precedence, 158

regular expressions, 378

slave databases, 215–216

868

 S Index

__sleep function

Game, 752–753

GameParameters, 755

serialization, 333–334

slicing

arrays, 361

strings, 121

SMALLINT data type, 230

SMTP (Simple Mail Transfer Protocol), 17, 613

SOAP (Simple Object Access Protocol), 487, 680–681

social engineering, 478

sockets

functions, 404–405

problems, 297

sort function, 367

sorting

arrays, 366–367

query results, 289

routines, 535

soundex function, 389

source code access, 474–475

source encoding, 662

Sourceforge.net toolkit, 827

sources.list file, 190

spaces in variable names, 114

special characters in regular expressions, 375

specialized team members, Oracle for, 578

speed

feature development, 8

Java, 628

tables, 287

spiders, 385

spike function, 704, 706–707

splicing arrays, 361–362

split function, 377

spliti function, 377

splitting strings and files into buckets, 387

spreadsheet upload script, 600–604

sprintf function, 128–129

SQL (Structured Query Language)

broken statements, 301–303

database structure, 194–195

DELETE command, 200–201

INSERT command, 200

PEAR DB, 570

relational databases, 193–194

SELECT command, 195–199

standards, 194

UPDATE command, 200

SQLite databases, 605

creating, 606

information on, 610

introduction, 605–606

queries, 606–609

summary, 610

sqlite_escape_array function, 608

sqlite_escape_string function, 608

sqlite_open function, 606

sqrt function, 76

square brackets ([])

arrays, 132

regular expressions, 375, 378

square root

approximating, 75–76, 467–469

arbitrary-precision function, 466

SquirrelMail project, 826

srand function, 160, 360

srm.conf file, 489

SSL security, 105

stability, 7–8

stacks, 363–365

standalone web sites, 211

Standard Generalized Markup Language (SGML), 647

standard I/O, 395

standards

SQL, 194

Web services, 682

start tags, 381

startElement function, 661

stat function, 403

stateless protocols, 99–100, 410

statement-level errors in Oracle, 581

statements overview, 35–38

static Apache modules, 485

static functions, 317

static HTML, 11–12

static JavaScript, 636

static variables, 92–93, 328

stored procedures

description, 245

Oracle, 577, 583–584

str_repeat function, 125

str_replace function, 124

strcasecmp function, 120

strchr function, 121

strcmp function, 64, 120

strcspn function, 388–389

stream_set_blocking function, 405

stream_set_write_buffer function, 402

strftime function, 406–407

strict vars declarations, 806

string_cipher function, 452

strings, 51–52

assignment, 116

C language, 797

character collections, 387–389

869

 Index S

comparing, 63–64, 119

concatenation, 116

conversions with, 437, 440

expressions, 37

functions, 117

case, 126–127

cleanup, 123–124

comparison, 119

finding characters, 118–119

HTML, 385–386

inspection, 118

printing and output, 128–130

replacement, 124–125

similarity, 389

substring selection, 121–123

substrings, 118–121

hashing, 386–387

heredoc syntax, 116–117

immutable, 119

indexes, 115

interpolation, 54, 114–115

length, 55, 115, 118

newlines in, 55

operators, 115–116

Oracle, 580

overview, 113–114

Perl, 802

singly quoted, 52–53

splitting into buckets, 387

testing for, 436

unescaped quotes, 299–300

unquoted arguments, 303–304

unterminated, 172–173

variables in, 57

strip_db function, 588

strip_tags function, 386

stripslashes function, 128, 264, 300

stristr function, 121

strlen function, 115, 118

strpos function, 118–120, 123

strrev function, 125

strrpos function, 119

strspn function, 387, 389

strstr function, 120–121, 123

strtok function, 371–373

strtolower function, 126

strtoupper function, 127

structure type in C language, 797

Structured Query Language. See SQL (Structured Query

Language)

strval function, 437

style

conciseness, 536–539

efficiency, 534–536

HTML mode vs. PHP mode, 539–544

maintainability, 530–532

readability, 526–530

robustness, 533–534

separating code from design, 544–546

uses, 525–526

style.inc file, 721

style sheets, 13–14, 545, 721

<STYLE> tags, 545

sub_1 function, 451

subclasses

chained, 322–324

defined, 316

exceptions, 502–504

submissions of HTML forms, 254–264

submitButtonString function, 348

subscribers to mailing lists, 819

subselects, 199

substitution cipher function, 450–454

substr function, 45, 85, 121–123

substr_replace function, 124–125

substrings

finding, 118–121

selecting, 121–123

subtract function, 329

subtraction, 154

arbitrary-precision function, 466

assignment operators, 156

calculator, 329

decrement operators, 155–156

Subversion (SVN), 532

sum function, 289

superclasses, 316

superglobal arrays, 90, 101–102, 110

SuSE Linux installations, 20

SVN (Subversion), 532

swap_2 function, 451

swap_26 function, 451

switch constructs, 69–70

PEAR, 838

summary, 82

switching modes, 43–44

symlink function, 403

syslog.conf file, 521

syslog function, 403, 519–521

system administrators, 480

system function, 478

870

 T Index

T
\t escape sequence, 53

tab characters, 53

tables

Certainty Quiz, 764–765

complex mapping, 245–249

creating, 203, 250–252, 554–555

design, 287

displayer example, 238–244

dropping, 203–204

one-to-one mapping, 238

sample, 240–241

SQL, 194

SQLite, 606–607

tags in XML, 649

tail tool, 515

Tan function, 462

target encoding, 662

tautologies, 61

Taylor, Andrew, 194

templates

page consistency, 545–546

weblog, 717–722

terminating execution, 80–81

termination-checks in for statements, 72–73

ternary operator, 65, 81–82, 445

test database, 208

test function, 344

test methods, generalized, 342–345

test parts in control structures, 60

testing

in debugging, 513

Java, 625

numbers, 456–457

types, 435–436

text

centering, 785

displayed in browser window, 166

functions, 701

TEXT and TEXTAREA elements, 264–267

text editors, 27, 722

TextBox class, 319–321

TextBox.php file, 318–319

TextBoxBoldHeader class, 322–323

TextBoxHeader class, 321–322

TextBoxSimple class, 318–319

TextUtils package, 353

$this variable, 319

throw keyword, 500

throwing exceptions, 501

tightly coupled programs, 676

time

fields, 290–291

functions, 405–407

MySQL, 231

TIME data type, 231

time function, 405–406

Timeout setting, 489–490

timeouts

causes, 179–180

HTTP requests, 489–490

TIMESTAMP data type, 230–231

timestamp function, 405

timestamps

functions, 405–406

MySQL, 230–231

TINYBLOB data type, 232

TINYINT data type, 230

TINYTEXT data type, 230, 232

titlehelp.html page, 616–617

titlehelp.php file, 617–618

TLS security, 105

toArray function, 643

tokenizing functions, 371–374

tokens in expression, 35–36

too little and too much data returned, 305

top_hat function, 707

toString method, 628

touch function, 403

tour_brochure function, 445

tour_guide function, 444

tour_guide_2 function, 447

tracking

sessions, 412–413

variables, 518–519

transactionality in Oracle, 582–583

transform_path function, 704, 706

transformations of arrays, 357–363

translating between variables and arrays, 365–366

transparency of images, 699

trees, DOM, 656

trig.php file, 772, 774–776

triggers

Oracle for, 577

user errors, 507–508

trigonometry

functions, 461–464

Venn diagrams, 773–776

trim function, 123

trivia game. See Certainty Quiz

troubleshooting. See problems

true-or-false values. See Boolean values

truecolor format, 698–699

871

 Index V

truncating numbers, 440

try/catch blocks, 93–94, 500

tutorials, 825

two-dimensional dynamic drop-down, 638–642

two-year outlook, 578

20000101.txt file, 719

type contagion, 155

types

arithmetic, 155

arrays, 133

assigning, 45–46

Booleans, 49–50

C language, 796–797

converting, 45, 436–441, 797

declarations, 45

doubles, 47–48

expressions, 37

fields, 287

function documentation, 85

integers, 47

Java, 621, 628

looseness, 456

MySQL, 230–231

NULLs, 50–51

numerical, 153–154

objects as, 313–314

overflow, 441

Perl, 802

resources, 434–435

simple. See simple types

strings, 51–55

summary, 46

testing, 435–436

unexpected, 534

XML elements, 652

U
uasort function, 367

Ubuntu, MySQL Server installation on, 190

ucfirst function, 127

ucwords function, 127

UDDI (Universal Description, Discovery, and Integration),

682

uksort function, 367

umask function, 403

unassigned variables, 41–42, 174

unavailability of service, 533–534

unbound variables, 174–176, 304

unbounded loops, 71, 75–76

undefined functions, 177, 296, 485

undefined types, 437

underscore characters (_) in names, 40, 176, 528–529

unescape_quotes function, 585

unescaped quotation marks, 172, 299–300, 585

unexpected arithmetic results, 178

unexpected variable types, 534

Unicode encoding, 662

Unicode strings, testing for, 436

Uniform Resource Indicators, 100

Uniform Resource Locators (URLs), 100–104

uniformity of style, 530

UNIQUE INDEX clause, 286–287

Universal Description, Discovery, and Integration (UDDI),

682

unlink function, 403

unquote function, 587

unquoted string arguments, 303–304

unserialization, 332

unserialize function, 332, 334

unset function, 42, 140

unset_session_value function, 757

unterminated strings, 172–173

UPDATE statements, 200, 283

_updateScores function, 751–752

updateWithAnswer function

Game, 747, 749, 753

GameDisplay, 736

Question, 759, 761–762

updating PEAR Package Manager, 833–834

upload_tmp_dir setting, 493

upper_letter function, 451

uppercase, converting strings to, 127

URLs (Uniform Resource Locators), 100–104

US-ASCII encoding, 662

USE command, 208

use_cookies variable, 421

user administration in MySQL, 209–212

user communities, 9–10

user errors, triggering, 507–508

usernames, 229

users’ lists, 819–820

usort function, 367

UTF-8 encoding, 662

V
valid XML documents, 651

validating input data, 105

validating parsers, 652, 655

VALUE attribute, 107–108

value function, 659

872

 W Index

values

cookies, 422

default, 41–42

expressions for, 38

vs. side effects, 83–84

var_dump function, 57, 368, 512, 519

VARBINARY data type, 232

VARCHAR data type, 232

variable number of arguments, 443–447

variables, 40

assignment, 41, 106

case sensitivity, 35, 106

declaring, 40

form, formatting, 106–108

as function names, 450

function parameters, 86

GET method, 101

hidden, 411–412

interpolation, 54, 114, 802

Java, 621

matching to columns, 340–342

names, 40, 176, 528–529

Perl, 802, 804

reassigning, 41, 529

scope, 43, 90–94

session, 411–414

in strings, 57

tracing, 518–519

translating with arrays, 365–366

types. See types

unassigned, 41–42, 174

unbound, 174–176, 304

variables_order directive, 105, 492

vector arrays, 132–133

Venn diagrams

code outline, 772–773

database visualization, 785–790

display code, 784–785

display planning, 777–783

extensions, 792

overview, 771–772

summary, 793

trigonometry, 773–776

trying out, 790–792

venn.php file, 772

venn_visualization function, 779–782, 789

verify_pw function, 477

version control, 532

vertical bars (|) as logical operators, 61

Vi text editor, 27

Vi-Enhanced text editor, 27

views, 245

Vim text editor, 27

viruses, 479

visualization_form.php file, 772, 785–790

visualize_intersection function, 789

void return type, 85

W
__wakeup function, 333–334

walkable object trees, 656

walking iterations, 149

WAMP stack, 25

warn_plus_overloading setting, 492

warnings

argument number mismatches, 89

Java, 627

native errors, 504

unassigned variables, 41

Web application platforms, 4–10

web server logs, 514–516

Web services, 651, 675

automatic discovery, 682

data movement, 675–676

issues, 682–683

payments, 682

REST, 678–680, 683–687

simplicity, 676–678

SOAP, 680–681

standards, 682

summary, 688

Web Services Description Language (WSDL), 682

web site security, 479–480

weblog.php file, 717–722

weblogs

feature ideas, 724

HTML-editing tools, 722–724

purpose, 715

simple example, 716–722

summary, 724–725

well-behaved spiders, 385

well-formed XML documents, 650

Western encoding, 662

Western European encoding, 662

WHERE clause

efficiency, 289

for indexes, 286

problems, 305

SELECT, 195–196

while loops, 71–72

summary, 82

unbounded, 75–76

873

 Index Z

whitespace

in expressions, 36

PEAR, 836–837

in statements, 34–35

trimming, 123–124

wildcards

myisamchk, 217

regular expressions, 375

Windows

e-mail configuration, 613

MySQL Server installation on, 191

PHP installation on, 25–26

Windows Firewall, 25

—with-apache flag, 485

—with-apxs flag, 485

—with-config-file-path flag, 488, 491

—with-dom flag, 487

—with-exec-dir flag, 488

—with flag, 485–487

—with-java flag, 487, 623

—with-mcrypt flag, 487

—with-servlet flag, 623

—with-xmlrpc flag, 487

words, tokenizing, 371

wrappers, 532

write and read files, 394

write-only files, 393–394

writepoll.php file, 666–668

writing files, 398–399

writing modes, 398

_wrongString function, 741

WSDL (Web Services Description Language), 682

WWW-Authenticate headers, 429–430

www.php.net site, 84

WWW service, 26

WYSIWYG editors, 27

X
XML (Extensible Markup Language)

DOM, 656–659

DTDs, 651–655

overview, 647–650

parsers, 655

problems, 672

sample application, 665–672

SAX, 659–663

SAX vs. DOM, 655–656

SimpleXML API, 664–665

summary, 673

working with, 650–651

xml_error_string function, 663

xml_get_error_code function, 663

xml_parse function, 660, 663

xml_parser_create function, 660, 663

xml_parser_free function, 660, 663

xml_parser_get_option function, 662

xml_parser_set_option function, 662

XML-RPC

implementation, 487

servers, 679

xml_set_character_data_handler function, 663

xml_set_default_handler function, 663

xml_set_element_handler function, 663

xor operator, 61

Y
YEAR data type, 231

YellowDog Update Manager (yum), 21–23

yum command, 21–23

Z
Zend Accelerator, 495

Zend Encoder, 824

Zend Engine, 513

Zend Engine 2, 324

Zend Optimizer, 495

Zend scripting engine, 824

Zend Studio debugger, 512

Zend Studio IDE, 824

zlib library, 697

Get the most out of the latest software and leading-edge technologies
with a Wiley Bible—your one-stop reference.

The books you
read to succeed.

Available wherever books are sold.

0-471-78886-4
978-0-471-78886-7

0-7645-4256-7
978-0-7645-4256-5

0-470-04030-0
978-0-470-04030-0

0-470-10089-3
978-0-470-10089-9

Wiley and the Wiley logo are registered trademarks of John Wiley & Sons, Inc.
All other trademarks are the property of their respective owners.

Shelving Category:
COMPUTERS / Internet /
Web Page Design

Reader Level:
Beginning to Advanced

$49.99 USA
$59.99 Canada

Harness PHP and MySQL for
robust Web development
Start quickly building dynamic Web applications with
the leading open-source scripting tool, the leading
open-source database, and this comprehensive guide
that shows you exactly how to do it. You’ll learn PHP6
and MySQL inside and out, explore the ups and downs
of using open-source technologies, and discover pages
of tips and techniques that help you get the most out
of this powerful development duo. h is book includes
extensive code examples, full working applications, and
much more.

• Install, develop, debug, and troubleshoot the newest versions of PHP
and MySQL

• Get up to speed on PHP basics, including syntax, datatypes, functions,
and pitfalls

• Review Structured Query Language (SQL) and data administration basics

• Master advanced PHP features, including object-oriented programming
and session handling

• Examine PHP’s interaction with other databases technologies,
such as Oracle®

• Explore advanced topics, such as PHP with e-mail programs, and PHP
and XML

• Learn how to create a game and much more in extended case studies

Steve Suehring
is a technology consultant with a
diverse business and computing
background. He is the former security
editor for LinuxWorld Magazine and
has published several books.

Tim Converse
is a software engineer at Inktomi
Corporation, which is owned by
Yahoo!. He has more than a dozen
years of programming experience
in Lisp, C, C++, Java, and Web
techniques, including PHP.

Joyce Park
is a Web developer in Silicon
Valley. She has worked on PHP
projects of all sizes, including
co-lead of the Mod-pulsub project.

	PHP6 and MySQL Bible
	About the Authors
	Credits
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction
	What Is PHP?
	Why PHP?
	What’s New in This Edition?
	Whom This Book Is For
	This Book Is Not the Manual
	How the Book Is Organized
	Conventions Used in This Book
	What the Icons Mean

	Part I: Introducing PHP
	Chapter 1: Why PHP and MySQL?
	What Is PHP?
	What Is MySQL?
	Deciding on a Web Application Platform
	Summary

	Chapter 2: Server-Side Scripting Overview
	Static HTML
	Client-Side Technologies
	Server-Side Scripting
	What Is Server-Side Scripting Good For?
	Summary

	Chapter 3: Getting Started with PHP
	Installing PHP
	What’s to Come?
	Your HTML Is Already PHP-Compliant!
	Escaping from HTML
	Summary

	Chapter 4: Learning PHP Syntax and Variables
	PHP Is Forgiving
	HTML Is Not PHP
	PHP’s Syntax Is C-Like
	Comments
	Variables
	Types in PHP: Don’t Worry, Be Happy
	Type Summary
	The Simple Types
	Output
	Summary

	Chapter 5: Learning PHP Control Structures and Functions
	Boolean Expressions
	Branching
	Looping
	Alternate Control Syntaxes
	Terminating Execution
	Using Functions
	Function Documentation
	Defining Your Own Functions
	Functions and Variable Scope
	Function Scope
	Summary

	Chapter 6: Passing Information with PHP
	HTTP Is Stateless
	GET Arguments
	A Better Use for GET-Style URLs
	POST Arguments
	Formatting Form Variables
	PHP Superglobal Arrays
	Summary

	Chapter 7: Learning PHP String Handling
	Strings in PHP
	String Functions
	Summary

	Chapter 8: Learning Arrays
	The Uses of Arrays
	What Are PHP Arrays?
	Creating Arrays
	Retrieving Values
	Multidimensional Arrays
	Inspecting Arrays
	Deleting from Arrays
	Iteration
	Summary

	Chapter 9: Learning PHP Number Handling
	Numerical Types
	Mathematical Operators
	Simple Mathematical Functions
	Randomness
	Summary

	Chapter 10: PHP Gotchas
	Installation-Related Problems
	Rendering Problems
	Failures to Load Page
	Parse Errors
	Missing Includes
	Unbound Variables
	Function Problems
	Math Problems
	Timeouts
	Summary

	Part II: MySQL Database Integration
	Chapter 11: Introducing Databases and MySQL
	What Is a Database?
	Why a Database?
	PHP-Supported Databases
	Our Focus: MySQL
	Summary

	Chapter 12: Installing MySQL
	Obtaining MySQL
	Installing MySQL on Linux
	Installing MySQL on Microsoft Windows
	Summary

	Chapter 13: Learning Structured Query Language (SQL)
	Relational Databases and SQL
	SQL Standards
	The Workhorses of SQL
	Database Design
	Privileges and Security
	Summary

	Chapter 14: Learning Database Administration and Design
	Basic MySQL Client Commands
	MySQL User Administration
	Backups
	Replication
	Recovery
	Summary

	Chapter 15: Integrating PHP and MySQL
	Connecting to MySQL
	Making MySQL Queries
	Fetching Data Sets
	Getting Data about Data
	Multiple Connections
	Building in Error Checking
	Creating MySQL Databases with PHP
	MySQL Functions
	Summary

	Chapter 16: Performing Database Queries
	HTML Tables and Database Tables
	Complex Mappings
	Creating the Sample Tables
	Summary

	Chapter 17: Integrating Web Forms and Databases
	HTML Forms
	Basic Form Submission to a Database
	Self-Submission
	Editing Data with an HTML Form
	Summary

	Chapter 18: Improving Database Efficiency
	Connections—Reduce, Reuse, Recycle
	Indexing and Table Design
	Making the Database Work for You
	Summary

	Chapter 19: MySQL Gotchas
	No Connection
	Problems with Privileges
	Unescaped Quotes
	Broken SQL Statements
	Too Little Data, Too Much Data
	Specific SQL Functions
	Debugging and Sanity Checking
	Summary

	Part III: More PHP
	Chapter 20: Introducing Object-Oriented PHP
	What Is Object-Oriented Programming?
	Basic PHP Constructs for OOP
	Advanced OOP Features
	Introspection Functions
	Extended Example: HTML Forms
	Gotchas and Troubleshooting
	OOP Style in PHP
	Summary

	Chapter 21: Advanced Array Functions
	Transformations of Arrays
	Stacks and Queues
	Translating between Variables and Arrays
	Sorting
	Printing Functions for Visualizing Arrays
	Summary

	Chapter 22: Examining Regular Expressions
	Tokenizing and Parsing Functions
	Why Regular Expressions?
	Perl-Compatible Regular Expressions
	Example: A simple link-scraper
	Advanced String Functions
	Summary

	Chapter 23: Working with the Filesystem
	Understanding PHP File Permissions
	File Reading and Writing Functions
	Filesystem and Directory Functions
	Network Functions
	Date and Time Functions
	Calendar Conversion Functions
	Summary

	Chapter 24: Working with Cookies and Sessions
	What’s a Session?
	Home-grown Alternatives
	How Sessions Work in PHP
	Sample Session Code
	Session Functions
	Configuration Issues
	Cookies
	Sending HTTP Headers
	Gotchas and Troubleshooting
	Summary

	Chapter 25: Learning PHP Types
	Type Round-up
	Resources
	Type Testing
	Assignment and Coercion
	Summary

	Chapter 26: Learning PHP Advanced Functions
	Variable Numbers of Arguments
	Call-by-value
	Call-by-reference
	Variable function names
	An extended example
	Summary

	Chapter 27: Performing Math with PHP
	Mathematical Constants
	Tests on Numbers
	Base Conversion
	Exponents and Logarithms
	Trigonometry
	Arbitrary Precision (BC)
	Summary

	Chapter 28: Securing PHP
	Possible Attacks
	FYI: Security Web Sites
	Summary

	Chapter 29: Learning PHP Configuration
	Viewing Environment Variables
	Understanding PHP Configuration
	Improving PHP Performance
	Summary

	Chapter 30: Handing Exceptions with PHP
	Error Handling in PHP
	Other Methods of Error Handling
	Logging and Debugging
	Summary

	Chapter 31: Debugging PHP Programs
	General Troubleshooting Strategies
	A Menagerie of Bugs
	Using Web Server Logs
	PHP Error Reporting and Logging
	Error-Reporting Functions
	Summary
	The Uses of Style

	Chapter 32: Learning PHP Style
	Readability
	Maintainability
	Robustness
	Efficiency and Conciseness
	HTML Mode or PHP Mode?
	Separating Code from Design
	Summary

	Part IV: Other Databases
	Chapter 33: Connecting PHP and PostgreSQL
	Why Choose PostgreSQL?
	Why Object-Relational Anyway?
	Down to Real Work
	PHP and PostgreSQL
	The Cartoons Database
	Summary

	Chapter 34: Using PEAR DB with PHP
	Pear DB Concepts
	PEAR DB Functions
	Summary

	Chapter 35: An Overview of Oracle
	When Do You Need Oracle?
	Oracle and Web Architecture
	Using OCI8 Functions
	Project: Point Editor
	Project: Batch Editor
	Summary

	Chapter 36: An Introduction to SQLite
	An Introduction to SQLite
	Using SQLite-related Functions
	More on SQLite
	Summary

	Part V: Connections
	Chapter 37: Sending E-Mail with PHP
	Sending E-Mail with PHP
	Sending Mail from a Form
	Summary

	Chapter 38: Integrating PHP and Java
	PHP for Java programmers
	Integrating PHP and Java
	Summary

	Chapter 39: Integrating PHP and JavaScript
	Outputting JavaScript with PHP
	PHP as a Backup for JavaScript
	Static versus Dynamic JavaScript
	Summary

	Chapter 40: Integrating PHP and XML
	What Is XML?
	Working with XML
	Documents and DTDs
	SAX versus DOM
	DOM
	SAX
	SimpleXML API
	A Sample XML Application
	Gotchas and Troubleshooting
	Summary

	Chapter 41: Creating and Consuming Web Services with PHP
	The End of Programming as We Know It
	REST, XML-RPC, SOAP, . NET
	Current Issues with Web Services
	Project: A REST Client
	Summary

	Chapter 42: Creating Graphics with PHP
	Your Options
	HTML Graphics
	Creating images using gd
	Gotchas and Troubleshooting
	Summary

	Part VI: Case Studies
	Chapter 43: Developing a Weblog with PHP
	Why Weblogs?
	The Simplest Weblog
	Adding an HTML-Editing Tool
	Changes and Additions
	Summary

	Chapter 44: A Trivia Game
	Concepts Used in This Chapter
	The Game
	The Code
	General Design Considerations
	Summary

	Chapter 45: Data Visualization with Venn Diagrams
	Scaled Venn diagrams
	Outline of the code
	Necessary Trigonometry
	Planning the Display
	Display
	Visualizing a Database
	Extensions
	Summary

	Appendix A: PHP for C Programmers
	Similarities
	Differences
	Guide to the Book
	A Bonus: Just Look at the Code!

	Appendix B: PHP for Perl Hackers
	Similarities
	Differences
	Miscellaneous Tips
	Guide to the Book

	Appendix C: PHP for HTML Coders
	The Good News
	The Bad News
	Concentrate On . . .
	Avoid at First . . .
	Consider This . . .

	Appendix D: PHP Resources
	The PHP Web Site
	The PHP Mailing Lists
	Other PHP Web Sites

	Appendix E: PEAR
	What Is PEAR?
	The PEAR Package System
	PHP Foundation Classes (PFC)
	PHP Extension Code Library (PECL)
	The PEAR Coding Style
	Summary

	Index

