Steve Suehring, Tim Converse, and Joyce Park

PHP6 |
and MySQL

Explore PHP syntax,
datatypes, and functions

Create database-driven, P
. . ﬁ"}_\l'.“
dynamic Web sites A
Master server-side Y e |
Web programmin R _

W
/(

The book you neéd o scceed!

PHP 6 and
MySQL® 6
Bible

PHP 6 and
MySQL" 6
Bible

Steve Suehring
Tim Converse

Joyce Park

WILEY
Wiley Publishing, Inc.

PHP 6 and MySQL 6 Bible

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-38450-3

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data

Suehring, Steve.
PHP 6 and MySQL 6 bible / Steve Suehring.
p. cm.
Includes index.
ISBN 978-0-470-38450-3 (pbk.)
1. PHP (Computer program language) 2. MySQL (Electronic resource) I. Title.
QAT76.73.P224594 2009
005.2'762 — dc22
2008048198

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. MySQL is a registered
trademark of MySQL AB in the United States, European Union, and other countries. All other trademarks are the property
of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

www.wiley.com

About the Authors

Steve Suehring is a technology consultant with a diverse business and computing background.
Steve’s extensive experience enables him to work cross-functionally within organizations to help
create computing architectures that fit the business need. Steve has written several books and mag-
azine articles and contributed to many others. Steve has spoken internationally at user groups and
conventions. When he has the chance, Steve plays just about any sport or any musical instrument,
some with better success than others.

Tim Converse has written software to recommend neckties, answer questions about space sta-
tions, pick value stocks, and make simulated breakfast. He has an M.S. in Computer Science from
the University of Chicago, where he taught several programming classes. He is now an engineering
manager in the Web search group at Yahoo!.

Joyce Park has an M.A. in history from the University of Chicago, and has worked for several
Silicon Valley startups including Epinions, KnowNow, and Friendster. She is a co-lead of the
Mod-pubsub Open Source project.

Credits

Acquisitions Editor Vice President and Executive Publisher
Jenny Watson Barry Pruett

Development Editor Associate Publisher

Christopher J. Rivera Jim Minatel

Technical Editor Project Coordinator, Cover

Aaron Saray Lynsey Stanford

Production Editor Compositor

Rachel McConlogue Jeffrey Wilson, Happenstance Type-O-Rama
Copy Editor Proofreader

Foxxe Editorial Services Publication Services, Inc.

Editorial Manager Indexer

Mary Beth Wakefield Ted Laux

Production Manager Cover Illustration

Tim Tate Joyce Haughey

Vice President and Executive Group Publisher ~ Cover Designer
Richard Swadley Michael E. Trent

Acknowledgments

People sometimes ask me how many books I've written. I never have the answer. You see, I've con-
tributed to well over a dozen (maybe two dozen or more) books in one form or another, be it a chap-
ter or two here, a section there, a rewrite of an existing title with much new material, a revision of
another edition where the existing material is already pretty good (as was the case for this book), or
an original, authored work. The short answer is: I don’t know. It’s really somewhat difficult to claim
that I, alone, wrote a book. At best I put some words down into a word processor and several other
people look them over, edit them, change them for both technical and grammatical usage, and the
end result is my name on the cover or somewhere in the book, or sometimes not at all.

This brings me to the difficulty at hand. I've written a sufficient number books that writing
acknowledgments is becoming a bit mundane. Sure, I'll thank my wife, Rebecca, and son, Jakob,
for their patience while I wrote this. I'll thank my family for their continued support. I'll thank
the Tueschers, Heins, Leus, and Guthries. I'll thank Jason Keup and Aaron Saray, too. I'll thank
my agent Neil Salkind at Studio B., Jim Oliva and John Eckendorf, and the 90fm staff along with
Nightmare Squad.

Of course, I'll thank Tim and Rob @ Partners, and Jay, Deb, and Brian, and Andy Hale and Eliot
Irons and the SecAdmin team. Kyle Mac always gets mad if I don’t include him. There are lot of
people at Knob Hill who deserve thanking, and the like. And I'll always thank Mark Little and
meek, Pat Dunn, AJ Prowant, and Andy Berkvam. But it’s the people that I don’t thank that always
find me, asking why their name isn't in this book. With that in mind, I'll stop here and let them
find me and hope that I write another book where I'll remember to include them. Just a hint:
Everyone who was thanked here has paid me.

INETOAUCTION ... XXXV

Part I: IntroducingPHPo 1
Chapter 1: Why PHP and MySQL? ..ot 3
Chapter 2: Server-Side SCTIPUNE OVETVIEWoiiiiiiiiiiii ittt
Chapter 3: Getting Started with PHP

Chapter 4: Learning PHP Syntax and Variables
Chapter 5: Learning PHP Control Structures and Functions
Chapter 6: Passing Information with PHP...............i e
Chapter 7: Learning PHP String Handling
Chapter 8: Learning ATTAYS.......c.coviiiiiiiiiitii ottt
Chapter 9: Learning PHP Number Handling
Chapter 10: PHP Gotchas

Part Il: MySQL Database Integration 183

Chapter 11: Introducing Databases and MySQL.............cocooiiiiiiiiiiii e 185
Chapter 12: Installing MySQL........c.ooiiiiiiiiiiii e 189
Chapter 13: Learning Structured Query Language (SQL)ccocooiiiiiiiniiiiiiiiiieeee 193
Chapter 14: Learning Database Administration and Design ..o 207
Chapter 15: Integrating PHP and MySQL..........cccoiiiiiiiiiiie e 219
Chapter 16: Performing Database QUETIESoocuiiiiiiiiiiiiiii e 237
Chapter 17: Integrating Web Forms and Databases.................ccoocioiiiiiiiiiiii 253
Chapter 18: Improving Database Efficiencycoccooooiiiiiiiii e 279
Chapter 19: MySQL GOLCRASoviiiiiii it 295

Partlll: MorePHP oot 309
Chapter 20: Introducing Object-Oriented PHP
Chapter 21: Advanced Array FUNCHONSoviiiiiiiiiit i
Chapter 22: Examining Regular Expressions
Chapter 23: Working with the FileSyStemm............ccocioiiiiiiiiiiii e,
Chapter 24: Working with Cookies and Sessions
Chapter 25: Learning PHP TYPESooiiiiiiiiiiiiiii oo
Chapter 26: Learning PHP Advanced Functions
Chapter 27: Performing Math with PHP...................
Chapter 28: Securing PHP..............cooii
Chapter 29: Learning PHP Configuration

Contents at a Glance

Chapter 30: Handing Exceptions with PHP ... 497
Chapter 31: Debugging PHP Programs.............cccccciiiiiiiiiiiiiiioii e 511
Chapter 32: Learning PHP Style..........ccoiiiiiiiiiiiiiiii e 525

PartIV:OtherDatabasescoivviveeeeeen.. 549

Chapter 33: Connecting PHP and PostgreSQLcoocooiiiiiiiiii i 551
Chapter 34: Using PEAR DB with PHP ... 567
Chapter 35: An Overview of OTaCleooiiiiiiii e 575
Chapter 36: An Introduction to SQLILEooiiiiiiiiiiiiii e 605

Part V: ConnectionS . . . oo v v i v it itieeeneneneenenseesss. 011

Chapter 37: Sending E-Mail with PHP ... 613
Chapter 38: Integrating PHP and Java............c.ccoiiiiiiiiiiiii e 619
Chapter 39: Integrating PHP and JavaSCriptccocioiiiiiiiiiiiiiiiii e 631
Chapter 40: Integrating PHP and XMLcocoiiiiiiiiii e 647
Chapter 41: Creating and Consuming Web Services with PHP..................ii 675
Chapter 42: Creating Graphics with PHP ... 689

Part VI: Case Studiescvviiiiirirnennnneenesa. 713

Chapter 43: Developing a Weblog with PHP ... 715
Chapter 44: A Trivia GAINEcoociiiiiiiiiiiii i 727
Chapter 45: Data Visualization with Venn Diagramscocooiiiiiiiiiniiiiic e 771
Appendix A: PHP for C PrOZIAMITIETSouiiiiiiieiiiec et 795
Appendix B: PHP for Perl Hackers...........ocooooiiiiiiiiiiii i 801
Appendix C: PHP for HTML COAETSoiiiiiiiiiiici et 809
Appendix D: PHP RESOUTICES ..ottt 817
APPendix E: PEAR ..ottt 829

INtroduction. . . .o vttt it et it ettt XXXV

Part I: Introducing PHP 1
Chapter 1: Why PHPand MySQL?o, 3
WHaL IS PHP? Lo 3
WHhat IS MySQL2 ... 4
Deciding on a Web Application Platform..............cocoiiiiiiiiii e 4
OB 4
ES@ O USE.....viit et 5
HTML-embeddednesscoooiiiiiiii e
Cross-platform compatibility
SEADTLILY ..o
MaANY EXLETISIOTIS ...ttt
Fast feature development.....................
NOU PrOPrietaryc.ceeeeeiiiieiiiieaiiieeene
Strong user communities......................
SUIIIIIIATY ¢ttt ettt

Chapter 2: Server-Side Scripting Overviewocoo... . 11

Static HTML Lo 11
Client-Side TeChNOIOZIESouiiiii i 13
SeTVeT-SIAe SCTIPUIILE ... ittt 15
What Is Server-Side Scripting Good FOI? ..o 17
SUIIIIIIATY . .ottt 18
Chapter 3: Getting Started withPHP19
INStAlling PHP ..o
Installation ProCEAUIESouiiii it
Installing PHP on CentOS...........
Installing PHP on Debian.............
Installing PHP from source............c.ocococoviiiin.
Microsoft Windows and Apache
OLher Web SETVETS ..ottt
Development LOOLSiiiiiiiiiii et
WHRAE'S 10 COTIE? ... 27
Your HTML Is Already PHP-Compliant!...............c.oooiiiiiiiiiiiiieee 27

Contents

Escaping from HTML ... 28
Canonical PHP tagsc.oooiiiiiiiiiiii e 28
Hello WOTTd ..o, 28
Jumping in and out of PHP modecooooiiiiiiiiiiii 30
INCIUAING fILES ..t 30
SUIMIMIATY ... 32
Chapter 4: Learning PHP Syntax and Variables
PHP IS FOTZIVINE ..o
HTML Is Not PHP ...
PHP’s Syntax Is C-Like ...

PHP is whitespace INSeNSItiVeccooviiiiiiiiiiic i
PHP is sometimes case SENSILIVEooouiiiiiiiiiiiiiiii e
Statements are expressions terminated by semicolons
Expressions are combinations of tokens
Expressions are evaluatedcoociiiiiiiiii i
Precedence, associativity, and evaluation order
Expressions and types
Assignment expressions

Reasons for expressions and statements
Braces make blocks
COMIMCTIES ...
C-style multiline COMMENLS.ooiiiiiiiiiii i,
Single-line comments: # and //
VaTTADIES ...
PHP variables are Perl-like ...
Declaring variables (or not)
ASSIgNING vaTIables ..ot
Reassigning variables
Unassigned variables
Default values ..o
Checking assignment with isset
Variable SCOPE..........c.ocoviiiiiiiiiii
Functions and variable scope
You can switch modes if you want
COMSTANILS. ...
Types in PHP: Don’t Worry, Be Happy ...,
No variable type declarationsccooiiiiiiiiiiiii i
AUtomatic tyPe COMVETSIONottt
Types assigned by contextccoccooeiiiiiciine
Type Summary
The Simple Typesc..........
IIEEERTS ..
Read formats

xii

Contents

DOUDIES. . 47
Read fOTTNATS ..o 48

BOOICATIS ... 49
BOOLEAN COMSTATITS ... 49
Interpreting other types as Booleans...............cocoooiiiiiioiiiiiii 49
EXamplesoooooiiiiiiii

SEHNGS coovviiiii
Singly quoted SLTINESooiiiiiiiiii e
Doubly quoted strings
Single versus double quotation marks..............ccocoooiiiiiiiiii 53
Variable interpolation
INEWIINES 111 SITIILES ...
LIIMIIES e

Variables and strings
HTML and linebreaks
SUIMIITIATY .

Chapter 5: Learning PHP Control Structures and Functions.............. 59

BOO0lean EXPIESSIOTIS. ...ttt 60
BOOlEAM COMSLATILS ...ttt 60
LOGICAL OPETALOTS ...t 60

Precedence of logical OpPeratorscoocooiiiiiiiiiiii 61
Logical operators ShOTt-CITCUIL ... 62
ComPATiSON OPETALOTS ...ttt
Operator precedence
String comparison...............
The ternary operator.....................

Branching..........coccocooiiiiiiniiin.

LIS -
Else attaChment............cooooiiii e
ELSeif

SWILCR ..

LLOOPITIZ ..
Bounded loops versus unbounded loops

LOOPING @XATIIPLES ...ttt
A bounded for 100D ..o
An unbounded while l0Op ..ot
Break and CONUNUEooiiiiiiiii e

Contents

A note on INANIE LOOPSouviiiiiiii e
Alternate CONLIOl SYNTAXES ...ttt
Terminating EXecution ...
Using FUNCHONS ...

Return values versus side effects............cooiiiiiiiiiii e,
Function Documentation..........................

Headers in documentation..............

Finding function documentation....
Defining Your OWI FUNCHOMS.iiiiiiii it

What is @ FUNCHON? ... 86

Function definition SYTAXoioiiiiiiiii it

Function definition eXample.............ocoooiiiiiiiii e

Formal parameters versus actual parameters

Argument number MiSmMatChes. ..o

TOO feW arGUIMENES.o.iiiiii e
TOO MANY ATZUIMIETIS ...ttt
Functions and Variable Scope

Global versus local..........

Static variables...............

EXCEPTIONS ...
FUNCHOM SCOPE.....iiiiiiiii e

Include and TeQUITE ...

Including only OMNCeoooiiiiiiii i
The include path.........oocoiiiiii

RECUTSION ...t e

SUITIIIIATY ¢ttt ettt ettt

Chapter 6: Passing Information withPHP

HTTP IS STALELESS. ...ttt
GET Arguments........ccccooevviieoiionicinien,
A Better Use for GET-Style URLs
POST ATGUIMIETILS ...t
Formatting Form Variables...............ccoiiiiiiiiiiii e
Consolidating forms and form handlers ...
PHP Superglobal ATTAYSooiiiiiiiiiiii i
SUIMITIATY ..o

Chapter 7: Learning PHP String Handling.

Strings in PHP ...
Interpolation with curly braces................cooi
Characters and string indeXesccoooiiiiiiiii
SN OPETALOTS ...
Concatenation and assignment
The heredoc syntax..........cccceeeenne

String Functions.........ccccoocvvviiiiciiicenn.

INSPECUNE SITITIES ...t

Xiv

Contents

Finding characters and substrings..............ccccocoiiiiiiiiii 118
Comparison and searching.............ccocoiiiiiiiiiiiii i 120
SEATCHING ...t 120
SUbSLIING SEIECHION. ...t 121
String cleanup fUNCHONSoiiiiii e 123
String replacement
Case functionsccocccveierernnn.
strtolower() .o
strtoupper()
UCHITSEO) 1
UCWOTAS() .
ESCaping fUNCUOMS ..ot 127
Printing and OULPULo.iiioii oo 128
SUIIIIIIATY ¢ttt 130

Chapter 8: Learning Arrays.o vtiiitn it i enenns 131

The Uses Of ATTAYS.......iiiiiiiit i 131
WHhat Are PHP ATTAYS? L..oiiiiiiii e 132
CIEALTILZ ATTAYS ...ttt
Direct assignment.........................
The array() construct....................
Specifying indices using array() ...
Functions returning arrays ..o
Retrieving Values.o
Retrieving by indexX...........oooiiii i
The TiSt() CONSIIUCT ..o
Multidimensional ATTAYSooiiiiiii i
INSPECHIIE ATTAYS ...ttt ettt
Deleting fTOM ATTAYSouiiiiiit it
TETATIONY ...
Support for iteration
Using iteration functions
Our favorite iteration method: foreach.......................
Iterating with current() and next()ocooiiiiiiiiii e
Starting over With TeSet()o.ooiiiiiiiiii e
Reverse order with end() and prev() ..o
Extracting keys with key ().
Empty values and the each() function ...
Walking with array_walk().............ooo
SUIMIMIATY ...

Chapter 9: Learning PHP Number Handling

INUMETICAL TYPES -ttt
Mathematical Operators...............c.c.......
Arithmetic operators.....................
Arithmetic operators and types

XV

XVi

Contents

INCTEMENTING OPETALOTS.tviiiii ettt
ASSIZNIMENT OPETALOTS ...ttt
COMPATISON OPETALOTS ...ttt
Precedence and parenthesesocooooiiiiiiii
Simple Mathematical FUNCHONSooiiiiiiii e
Randomness...........ccoocooiviiiiiiii
Seeding the generator ..o
Example: Making a random selection..........................
SUITIITIATY .ttt

Chapter 10: PHP Gotchas. it

Installation-Related Problems. ...
Symptom: Text of file displayed in browser window
Symptom: PHP blocks showing up as text under HTTP or browser prompts you to save

FLLE 166
Symptom: Server or host not found/Page cannot be displayed 166

Rendering PTODIEIMSioviiii e
Symptom: Totally blank page..............ocoiioiiiiiii
Symptom: PHP code showing up in Web browser

Failures to Load Page.............ccooiiiviiiiiiiee
Symptom: Page cannot be found
Symptom: Failed opening [file] for inclusion

Parse ETTOTS ...
Symptom: PArsSe eITOT TNESSAZEe.vevrvirieiiiieieiiiet ettt
The missing SeMICOLONoooiiiiiiiiii i
INO dOIIAT STZIIS. ...
MOME ISSUES ...
Unescaped quotation marks ...
Unterminated SUIITIES .. .o.oiiiiiioii oo
OLher PArSe TTOT CAUSESuiiiiiiiieit ettt

Missing INCludes.oooooiiiiiiiiii
Symptom: Include warningccococooniioo.

Unbound Variables..........c.ccocociiiiiiiiiiiii e,

Symptom: Variable not showing up in print string.............c.occoeeverioiiin
Symptom: Numerical variable unexpectedly zero..............ccoooviiiniiiii
Causes of unbound variables................ccooiiiiiii
Case PIODIEINIS. ...t
SCOPING PTODIEIIIS. ...

FUNCtion PTODIEmMS ..o
Symptom: Call to undefined function my_function()..
Symptom: Call to undefined function ()c..cccooe.e.
Symptom: Call to undefined function array(Q)..............
Symptom: Cannot redeclare my_function()............cocooioiiiiiiiiiiii
Symptom: Wrong parameter COUNL.........cuuiiiiitiiiiiiieeiiiei e

Contents

Math Problems, 178
Symptom: Division-by-zero Warning............cccocooioiiiiiiiiiiniiiiieee 178
Symptom: Unexpected arithmetic result ... 178
Symptom: NaN (0 NAN) ... 178

TAMEOULS ..o 179

SUITIITIATY .. 180

Part Il: MySQL Database Integration 183
Chapter 11: Introducing Databasesand MySQL. 185

WHhat Is @ DAtabase?..........oouiiiiiiiiiii e 185

WHhY @ DAtaDASE? ...t 186
Maintainability and scalability ... 186
POTTADIIILY ... 186
Avoiding awkward programmingoceceiiiiiiiiii i 187
SEATCHING ...t 187

PHP-Supported Databasesccooiiiiiiiiiiiiiiii i 187

Our Focus: MySQL.. ..o 188

SUIMIMIATY ... 188

Chapter 12: Installing MySQL.ottt 189

Obtaining MySQLooiiiiiiiiii i 189

Installing MySQL 01N LINUX ..ot 189
Installing MySQL Server on Debian and Ubuntu ... 190

Installing MySQL on Microsoft WIindowsccoooiiiiiiiiiiii e 191
Installing MySQL 0n WINAOWS.c..oiiiiiiiiiiiiii e 191

SUTIIIIIATY ¢ttt ettt ettt 191

Chapter 13: Learning Structured Query Language (SQL) 193

Relational Databases and SQLoooiiiii e 193

SQL SANAATAS. ... 194

The Workhorses of SQL...... ..o 194
SELECT Lo 195

Selecting Certain ReCOTASocioiiiiiiii e 195
JOITIS L 196
SUDSELECLS. ...t 199
INSERT ..o 200
UPDATE L. 200
DELETE 200

Database DEeSIZIL.......c.viuiiiiiiiiiii it 201

Privileges and SECUTILYooiiiiiiiiii i 204
Setting database Permissions.............occiiiiiiiiiiii e 204
Keep database passwords outside the web area ... 205
Learn to make DaCKUPS........oviiiiii it 206

SUIMIIIIATY - .ottt 2006

Contents

Chapter 14: Learning Database Administration and Design............. 207
Basic MySQL Client COmMANS.ccoooiiiiiiiiiiiii oot 208
MySQL User AdMINISITATIONc.viitiieit oot 209

Local developIment.........co.oiiiiiiii oo 211
Standalone Web SILecoiiiiiiiiiiii i 211
Shared-hosting Web SIte.............ooiiiiiiiii e 211
BACKUPS - 212
REPHCATIOL. ... 214
RECOVETY ..o 217
MyISAMCHK ... 217
MYSALCNECK ... 218
SUIMIITIATY ..o 218

Chapter 15: Integrating PHPand MySQLooiiiiiats. 219
Connecting to MySQL ... 219
Making MySQL QUETIESc.iiiiiiiiiii i 221
FetChing Data SEUSiiiiiii i 222
Getting Data about Datacoooiiiiii i 225
Multiple COMMECTIONIS ... it 226
Building in Error CheCkingoooiiiiiii i 227
Creating MySQL Databases with PHPccccoiiiiiiiie 229

MYSQL AR LYPES ..o 230
MYSQL FUNCHOTIS .. .o 232
SUIIIIIIATY ..ot 235

Chapter 16: Performing Database Queries.oou... 237

HTML Tables and Database Tables..............cccoiiiiiiiiiii e 238
OnNe-t0-0NE TAPPIILE ...ttt 238
Example: A single-table displayer..............cococoiiiiiiiiiii 238
The sample tablesoooiiiii e 240
Improving the displayer.............ooioiiiiiiii i 241

Displaying column headers..............ccccocooiiiiiiiiiiiiii 242
Error checking ... 242
COSIMELIC ISSULS ...ttt 242
Displaying arbitrary qUETIEsccociiiiiiiiiiiiiiiiii e 242

ComPlex MapPPIIZS. ..ottt 245
Multiple queries versus complex printing..............cccocooiiiiiiiiiiii 245
A multiple-query example ... 246
A complex printing eXample............oooiiiiiiiiii 248

Creating the Sample Tablesoooiiiiiiiii e 250

SUITIIIIATY ¢t 252

Chapter 17: Integrating Web Forms and Databases 253
HITIML FOTIIIS . 253
Basic Form Submission to @ Database.............ccoooiiiiiiiiiiiiiiiiii e 254

Xviii

Contents

Self-SUDIMISSION ... 257
Editing Data with an HTML FOTT ..ot 264
TEXT and TEXTAREA ..o 264
CHECKBOX ..o 267
RADIO . 269
SELECT Lo 274

Chapter 18: Improving Database Efficiency......................... 279

Connections — Reduce, Reuse, Recycle ..., 279
A bad example: one connection per StatemMent............oeevvreiieiiiiiiieie e, 280
Multiple results don’t need multiple connections.occooevviiiiiiiiniiiie 281
Persistent CONMECTIONSiiiiiiiii i 282

Indexing and Table Desi@N.........cooiiiiiiiiiiie e 282
TIUAEXITIE .o 282

What 15 an INAEX?ooiiiiiii e 282
Indexing tradeoffs............oooiiiiiiii i 283
PrIMATY KEYS. ..ottt 284
Everything including the kitchen sink ... 285
Other types of indexes............cccoccooiiiiiiiiiii.
Table design...........cccocooiiiiiniin.
Making the Database Work for You.........
It's probably faster than you are
A bad example: looping, NOt TeSLICUNGc.ooiiiiiiiiiiiiii e, 288
Sorting and ag@regatingccooviiiiiiiiiiiiiiiic e 289
Where possible, use MIN or MAX rather than sorting.....................c..coo... 289
Creating date and time flelds...........ccocooiiiiiiii e 290
Finding the last iNSerted TOWcoiiiiiiiiii i 291
SUIMIMIATY ..o 293
Chapter 19: MySQL Gotchaso, 295

INO COMIMECTIOM ...

Problems with Privileges

Unescaped QUOLeS............ccoovviiinrenne.

Broken SQL STALEINENTSooiii it
Misspelled names
Comma faULLS ..o
Unquoted SITNgG aTGUINETIESouioiiiiioe oottt 303
Unbound variables ..o 304

Too Little Data, Too Much Data...........coooiiiii e 305

Specific SQL FUNCHOMS. ...ttt 305
mysql_affected_rows() versus mysql_num_rows() 305
mysql_resultQ) ... 306
OCI_Fetch(Q) .ooovioiiiiiiiie 306

Debugging and Sanity Checking 307

SUIMMIATY .. 308

Xix

Contents

Part l1l: More PHP 309

Chapter 20: Introducing Object-Oriented PHP 311

What Is Object-Oriented Programmming?coocooioiiiiiiiiiiiiii 312
The SIMPle T A......o.iiiiiii e
The procedural approachccoocoiiiiiii i
The object-oriented approachccooiviiiiiii
Elaboration: objects as data tyPeSooiruiiiiiiiieiee e
Elaboration: INheritanceo.oociiiiiiiii e
Elaboration: Encapsulation ..o
Elaboration: Constructors and destructors
Terminologycooooiiiiiiiiii e
Basic PHP Constructs for OOP.................
DefiNING CLASSES ...t
Accessing member variables ...
CTeAtINE IMSLATICES ...ttt
COnStIruCtOr fUNCHONS. ...t
INRETILATICE L.
Overriding fUNCHOMNS ..o
Chained subclassing.............cccocooioiiiiiiiii,
Modifying and assigning objectsc..ccocoorerenn.n.
Scoping iSSUES......vveviviiiiiiiiciie
Advanced OOP Features
Public, Private, and Protected Members
Private MembeTsocoiiiiiiiii e
Protected MeMDBETS ..ot
INEETTACES ...
COTISTATIES ...
ADSITACT ClASSES ...
Simulating class FUNCHONS ..o
Calling parent functions................
Calling parent constructorsccoceeveerrennenn
Automatic calls to parent constructors
Simulating method overloading...............cocoiiiiiiiiiiii
SETTALIZALIOTL. ...
Sleeping and Waking UP ..ot
Serialization gOtChasooiiiiiii e
INtrospection FUNCHIONSo.iiiiii e
Function OVeIVIEW ...
Example: Class enealogy............coociiiiiiiiiiiiiiiii i
Example: matching variables and DB columns
Example: Generalized test methods......................o....
Extended Example: HTML FOTTIS ..ot

Contents

Gotchas and TroubleshOOtNE.c.ooiiiiiii e 352
Symptom: Member variable has no value in member function............................... 352
Symptom: Parse error, expecting T_VARIABLE 353

OOP Style i PHP ...t
NaMING CONVETTIOTIS ...ttt
Accessor functions........................

Designing for inheritance
SUIMMIATY ..

Chapter 21: Advanced Array Functions 357

Transformations Of ATTAYSooiiiiiiiii oo 357
Retrieving keys and values..................ooi 358
Flipping, reversing, and shuffling....................... 359
Merging, padding, slicing, and splicingccccooiiiiiiiiiiii 360

Stacks and QUETESooii i 363

Translating between Variables and ATTaYS............ccociiiiiiiiiiii e 365

SOTTITIZ 1o 366

Printing Functions for Visualizing ATTaysccocoiiiiiiiiiiii e 367

SUIIIIIIATY ¢ttt 369

Chapter 22: Examining Regular Expressions. 371

Tokenizing and Parsing FUNCHONSoooiiiiiii i

Why Regular Expressions?

Regexin PHP ...

An example of POSIX-style regexccccocovrein.n.

Regular expression [UNCHONS. ..ot
Perl-Compatible Regular EXPressions.ccoocoiiiiiiiiiiiiiiiiiiiioi e
Example: A simple link-SCraper...........ccoooiiiiiiiiiiiii e

The regular eXPreSSIONocoiiiiiii i

Using the expression in @ fUnctionocociiiiiiiiiii e, 383

Applying the funCtion ..o 384
Extending the code

Advanced String Functions

HTML functionsc.ccccoeveenee

Hashing using MD5ooiiiiiiii oo

Strings as character ColleCtionSocooiiiiiii i 387

String similarity fUnCHONS ..ot 389
SUIIIIIATY ¢ttt ettt 390

Chapter 23: Working with the Filesystem........................ ... 391

Understanding PHP File PermiSSIONSccoooiiiiiiiiiiiiii et 391

File Reading and Writing FUNCHONS.ooiiiiiiiiie e 392
FALE OPOI1. oo 393

HTTP fOPEN ..o 394
FTP LOPOI . 395

Xxi

Contents

FALe TEA ..o 396
Constructing file downloads by using fpassthru()................ccoooo 397
FLE WTIEE e
FALE CLOSE ...

file_exiStS......cevvvvveeini.
filesize......coovvviieeiii,
NetWOrK FUNCUOTIS ...
SYSIOZ FUNCHONS ...
DINS TUNCUOTIS ..o e
SOCKE TUNCUOTIS ..o
Date and Time Functions
If you don’t know either date Or time.............cocoeiiiiiiiiii e 405
If you've already determined the date/time/timestamp..............cocoocveriiiiininn, 406
Calendar Conversion FUNCUONSooiiiiiiei e 407
SUIMIMATY ... 408

Chapter 24: Working with Cookies and Sessions 409

WHRAS @ SESSION? ... 409
So what’s the problem?
Why should you care?....................
Home-grown AIeTNAtIVESoooiiiiiii i
TP address ..o
Hidden variables..............oo i
Cookie-based home-grown sessions
How Sessions Work in PHP ...
Making PHP aware of your session
Propagating session variablescocooiiiiiiiii i
The simple approach (using $_SESSION)cccoooiiiiiiiiiiii e
Where is the data really stored?ococoiiin
Sample Session Code...........c.ocoocovirrnnn.
Session Functions..................ccoooo
CONMAGUIALION ISSUES........euiiii it
COOKILS e
The setcookie() TUNCHONoiii e
EXAIMPLES ...
Deleting COOKIES ...t
Reading COOKIES ..o
Cookie pitfallsoccooiiiiiiiiii
Sending something else first...........................
Reverse-order interpretationcccoceeerenenn
Cookie refusal
Sending HT TP HEAATSooviiiiiiiiii it
Example: Redirection

Contents

Example: HTTP authentication.............cooooiiiiiiioiiie e 429
Header GOLChAS ..ot 430
Gotchas and TroubleshOOUtng.ocooiiiiiiiiiiii e, 430
SUIMIMIATY ... e 431
Chapter 25: Learning PHP Types, 433
TYPE ROUNA-UP e 433
RESOUTCES ... 434
WHRAL QT€ TESOUTCES? ... 434

How to handle TeSOUTCEScooiiiiiiii i 435

Type TeSUNG ..o 435
Assignment and CORTCIONoouiiiiiiiiiiii i 436
Type conversion behavior ..o 436

EXPLICIt CONVETSIONIS ..ot 437

Conversion eXAMPLESooiiiiiiiiiiit e 438

Other useful type CONVETSIONScoooiiiiiiiiiiiiit e 440

INLEZET OVETTIOW ...t 441
Finding the 1argest iNtegerocooiiiiiiiii e 442
SUIIIIIATY ¢ttt ettt 442
Chapter 26: Learning PHP Advanced Functions 443
Variable Numbers of ATGUIMENITSooiiiiiiiiii i 443
Default argUITIEIITS ..ot 444
Arrays as multiple-argument SUDSHIULES.ccoiiiiiiiiii e 445
Multiple arguments in PHP4 and above..............c.ocooiiiiiiii 446
Call-DY-VALIUE ... 447
Call-by-TefeTeICe ..ot 448
Variable function NAMESccooiiii i 450
An extended eXaMIPIEociiiiiiiiiii i 450
SUIMIMATY ... 454
Chapter 27: Performing Math withPHP. 455
Mathematical COMSTATISc.oiiiiiii e 455
Tests 0N NUIMIDETS ..o 456
Base CONVETSION ..ot 457
Exponents and Logarithms ..o 461
TTIGOMOMMEITY ... 461
Arbitrary Precision (BC)ooiiiiiiii oo 465
An arbitrary-precision eXampleocoooiiiiiiii 466
Converting code to arbitTary-preciSIONoociviiiiiiiiiiiiiece e 467
SUIIITLATY .ottt 470
Chapter 28: Securing PHP i, 471
POSSIBIe ALLACKS ... 472
Site defacement........oiiiiiiiii i 472
ACCESSING SOUTCE COUE ..ottt 474

XXiv

Contents

Reading arbitrary flles.............ocoiiiiiiiiiii 475
Running arbitrary Programscoooeiiiiiiiiiiiiiiiei e 477
Viruses and other e-CTItterscooiiiiiiiii i 479

FYI: Security Web SILES ..ot 479
SUIMIMATY ... e 480
Chapter 29: Learning PHP Configuration........................... 483
Viewing Environment Variablesccocoiiiiiiiiiiiiii 483
Understanding PHP Configuration...............cccoiiiiiiiiiiiiii e 484
Compile-time OPLONSooiiiiiiiii i 484
--with-apache[=DIR] or --with-apache2=[DIR] ... 485
--with-apxs[=DIR] or --with-apxs2[=DIR]............cccociviiiiiiiiiii 485
--with-[database][=DIR] ... 486
--With-merypt[=DIR].....oii i 487
—=With-Java=DIR] ..o 487
SeWAR-XMUTPC o 487
--with-dom[=DIR] ... 487
-—enable-bemath. ... 488
——enable-calendar............oooiiiii 488
--with-config-file-path=DIRcccocoiiiiiii 488
-—enable-url-includes. ... 488
--disable-url-fopen-wrapper.............ocooiiiiii 488

CGI compile-time OPLONSccooiiiiiiiiiiiiii i 488
—-with-exec-dir[=DIR] ..o 488
--enable-discard-path ... 488
--enable-force-cgi-redirectcooooiiiiiiiiiiii 489

Apache configuration fllescooiiiiiiiiii e 489
TIMEOUL ..o 489
DocumentROOT. ..ot 490

AATYPE oo 490

ACTIOTL . 490
LoadMOdULe ... 491
AAMOAULE ..o 491

The Php.ni fI1e ..o 491
short_open_tag = Off ... 491
disable_functions = [functionl, function2, function3 . . . functionn] 492
max_execution_time = 30 ... 492
error_reporting = E_ALL & ~E_NOTICE............cccooiiiiii 492
error_prepend_string = [“"]ccocooiii 492
warn_plus_overloading = Off ... 492
variables_order = EGPCS ... 492

gpC_order = GPC ... 492
auto-prepend-file = [path/to/file]cooiiiiiiiiii 492
auto-append-file = [path/to/file] ... 493
include_path = [DIR]oooiiiiiiiiii e 493

Contents

doc_1r0o0ot = [DIR] ..ot 493
upload_tmp_dir = [DIR] ..o 493
session.save-handler = files..........ooo 493
ignore_user_abort = [On/Off]............o 493
Improving PHP Performance............c.oooiiiiiiiiiiii i 493
SUITIITIATY .. 495

Chapter 30: Handing ExceptionswithPHP 497

Error Handling in PHP ...
Errors and exceptions
The Exception classcco......
The try/catch BlocK ...
TRIOWING an @XCEPUIOTL. ...ttt 501
Defining your own Exception subclasses..............coocooiiiiiiiiiiiiii 502
Limitations of Exceptions in PHP ... 504
Other Methods of Error Handlingocooiiiiiiiii e 504
Native PHP @TTOTSoiiiiiiiii e 504
Defining an error handler ... 506
TrIGEETING @ USET CITOT ...ttt 507
Logging and Debugging
SUIIIIIIATY ¢t

Chapter 31: Debugging PHP Programs.civuinn.. 511

General Troubleshooting Strategies
Change one thing at a time...........
Try to isolate the Problemocooiiiiiiiiiiii
Simplify, then build Up ...
Check the ODVIOUSc.oiiiiiii e
Document YOUT SOIULIONiiiiiiiiiiii i
AT fIXITIEZ, TELEST ..ottt

A Menagerie Of BUESoiiiiiiiii it
Compile-time bugscoo...

PHP Error Reporting and LOZEINg..........c.ccooiiiiiiiiiiiiiiiiiiii e
EIXTor repOTting ..o
Error loggingcoocooiiiiiiiii e
Choosing which errors to report or log
Error-Reporting FUNCHONS ..o 518

XXV

Contents

Diagnostic Print STALEIMETIESoouiiiiii it 518
Using var_dump()oocoorii i 519
USING SYSIOZ0) . 519
Logging to a custom loCAtIoNocooiiiiiiiiiiiiic i 521
USINg eTTOT_L0Z() ..o 522
SUIMIMIATY .ottt 523

Chapter 32: Learning PHP Style i,

The USes 0f STYLEuiiiiiii e
Readability...........ccooooiii
Commentscccoeeoiiiiiiiiiee

LONE VETSUS SHOT L.ttt
Underscores Versus CamelCapso.oovioiiiiiiiiiiiceee e
Reassigning variables ...
Uniformity of SEYle......oooiiii e
MaintainabIlitY ...
Avoid Magic UMDETS ...
Functions.............ccocoi
Include files ..o
Object WIappersccccccccevereiennnn
Consider using version control
RODUSIIIESS ...
Unavailability of Serviceoociiiiiiiiiiiii i
Unexpected variable tyPes...........ocooiiiiiiiiii i
Efficiency and CONCISETIESS ..ottt
Efficiency: only the algorithm mattersc.cooiviiiiiiiiiiiee e
Efficiency optimization tPSociiiiiiiiiiii it
Don't reinvent the wheel ...
Discover the bottleneck
Focus on database queries
Focus on the innermost loopccocooenn
Conciseness: the dOWNSIAeccooiiiiiiiiii e
Conciseness rarely implies efficiency ...
Conciseness trades off with readability...................o
CONCISEIIESS TIPS ..ttt
Use return values and side effects at the same time
Use incrementing and assignment operators

Reuse functions............cccooiiiiiiiiii

There’s nothing wrong with Boolean

Use short-circuiting Boolean expressions
HTML Mode or PHP MOd@?........ooiiiiiii i 539
Minimal PHP ... 540
Maximal PHP.......oo 541

XXVi

Contents

Meditum PHP ..o 542

The heredoe Styleo 543
Separating Code fTom Design...........cociiiiiiiiiiiiii i 544
FUNCHONS. ... 544
Cascading style sheets in PHP ... 545
Templates and page CONSISLENICYoiiiiiiiiiiii e 545
SUIMIMIATY ... 547
Part IV: Other Databases 549
Chapter 33: Connecting PHP and PostgreSQL 551
Why Choose PoStZreSQLY ..ottt 551
Why Object-Relational ANYWaY?coociiiiiiiiii e 552
But is it a database Yet?ocociiiiiiiiiiiiii 553
Down to Real WOTK ... 554
PHP and PostZreSQLoiiiiiiiiiiiii e 556
The Cartoons Database.coooiiiiiiiiiiiii oo 557
SUITIITIATY ¢ 565
Chapter 34: Using PEAR DB withPHP.................., 567
Pear DB CONCEPLS ... 568
Data Source Names (DSNS)oooi i 568
CONTMICCTIOML .. 570
QUBTY e 570

ROW TetTieVal......ooiii e 571
DISCONMMECTION. ... 571

A complete eXAMPLE ..ot 571
PEAR DB FUNCHOMIS ... 573
Members of the DB ClaSS.......c.ooiiiiiiii i 573
Members of the DB_Common Class ..o 573
Members of the DB_Result class.............ccooiiiiiiiiiii e 574
SUIIIILATY .ttt 574
Chapter 35: An OverviewofOracle. i, 575
When Do You Need Oracle? ..o 575
IMIOTICY . 576
Other TIvalroUs TESOUTCESoviiiiiiiiiiiiii e 576

HUEE dALA SELS.....uiiiii i 576

Lots of big formulaic writes or data munging...............ccoccocooeiiiiiiiii, 577
Triggers. ..o 577

Legal Habilityocooiiiiiiii e 577
Bottom line: two-year oUtlOOKocioiiiiiiiiiiiii e 578
Oracle and Web ATchiteCtureccooiiiiiiii e, 578
Specialized team members ... 578
Shared development databasesociiiiiiiiiiiiiii e 578

Contents

Limited schema changes...............ocoiiiiii i 579

Tools (01 Jack thereol) o 579
Replication and failover ... 579

Data CaChing ... oot 579
Using OCI8 FUNCLONS. ... 580
ESCAPINE SIIINESt 580
Parsing and eXeCUtING............ooiiiiii i 581

EITOT T@POTTITIE ... 581
MemoTy MANAZEINICTIT ...ttt 581

ASK 0T IIULLS .o 581
Fetching entire data SEUSc.ooiiiiiiiiiiii i 581

AL CAPS 1. 582
TransaCtioNAlILYottt 582
Stored procedures and CUTSOTS ..ottt 583
Project: POINE EAITOToviiiiiiii i 584
Project: Batch EdItOT.......oooiiiiii i 594
SUIMIMATY ... 604
Chapter 36: An Introductionto SQLite, 605
An Introduction t0 SQLITEc..iiiiiiii oo 605
Using SQLite-related FUNCHOMNS.ooiiiiiiiiiiiiii i 606
Creating Databasesc.ocoiiiiiiiiiii 606
Running QUETIESc..iiiiiiiiiii e 606
Creating Tables ... 606

INSerting Data........oooiiiiiii 608

FetChing Data.....oooioiiie i 608

Mote 0N SQLILE ..o 610
SUITIITIATY ¢ttt 610
Part V: Connections 611
Chapter 37: Sending E-Mail withPHP 613
Sending E-Mail with PHP ... 613
WiIndows CONfIGUTALIONoiiiiiiiiiiii e 613
Linux COnfIgUIAtionoiiiiiiiiiiii e 614

The mail fUNCHON ..o 614
Sending Mail from a FOTT.........coooiiiiiii e 616
SUIMIMIATY ...t 618
Chapter 38: Integrating PHPand Java 619
PHP fOr Java PrOZIamIneTsc.ooviuiiiieiiieit ettt 619
SIMILATIEES. ..o 620
SYTUAX .t 620

OPCTALOTS .ttt 620

Object MOeL. ..ot 620

XXViii

Contents

Memory ManageIMeTIILottt 620
Packages and libraries............coooiiiiiiiiiiii e 620
DAOTOIICES ...t 620
Compiled Versus SCriptingcoooiiiiiiiiiiiiiiii e, 621
Variable declaration and loose typingcoccooiiiiiiiiiiiiiie 621
Java Server Pages and PHP ... 621
Embedded HTML ... 621
Choose your scripting language............cccooiviiiiiiiiiiiiiie e 622
Integrating PHP and JAVA.........oociiiiiiii e 622
The Java SAPT ..o 623
Installation and SETUPo.ooioiiiii i 623
Further informationocooiiiiiiii 623
The Java eXTENSIONiii it 623
Installation and SETUPoooioiiii i 624
TOSTINIEZ . 625
The JAVA ODJECT. ..ot 625
ETT0rs and eXCEPLIONSiiiiieii e 627
Potential GOtChas...........oooiiiiiiiii i 628
Installation Problemsocooiiiiiiiiii 628
It's the classpath, stupid...........c.ccoooiiiiiiiiii 628
Here comes that loose typing again...............ccooooiiiiiiiiiii 628
SPEOM e 628
The sky’s the Hmit. ..o 629
SUIMIMIATY ..ttt 629
Chapter 39: Integrating PHP and JavaScript.................. 631
Outputting JavaScript With PHP ..o 631
DUETING ODJECLS ...t 632
PHP doesn’t care What it OULPULSiovioiiiiiii i 632
WHhere 10 USe JAVASCIIP. ..ottt 633
PHP as a Backup for JavVaSCIIPL.......ooiiiiiiiiiiiii e 634
Static versus Dynamic JaVaSCIIPLcoouiiiiiiiiiiiiiiiic e 636
Dynamically generated formsccocooiiiiiiiiiii 637
Passing data back to PHP from JavaScriptcccociiiiiiiiiiiiiii, 642
SUIMIMATY ... e 646
Chapter 40: Integrating PHPand XML oottt 647
WHRAE IS XML ..o 647
Working with XIML ...
Documents and DTDScoiiiiiiiii e
The structure of @ DTDociiiiiiiiiei e
Validating and nonvalidating parsers
SAX versus DOM ...
DOM .
Using DOM XML
DOM [UNCHOMIS 1.

XXX

Contents

A X e 659
USING SAX L 660

SAX OPUOTIS ... 601

SAX FUNCHOMIS ... 663
SIMPIEXML APL ... e 664
Using SIMPIeXML.......oiiiiiiii e 664
SIMPIEXML fUNCHOTIS ... 665

A Sample XML APPLCAION. ..ottt 665
Gotchas and TroubleshOOtNg.oo.ioiiiii 672
SUITIITIATY .ottt 673
Chapter 41: Creating and Consuming Web Services with PHP........... 675
The End of Programming as We Know Itcocoiiiiiiiiiiiiiii e 675
The ugly truth about data movement.............coccoociiiiiiiii e 675
Brutal SIMPLICILY .o 676
REST, XML-RPC, SOAP, INEToiiiiiiiiii i 678
RE ST e 678
SOAP . 680
Current Issues with Web Servicescocoiiiiiiiiiiiiiiiiiiii e 681
Large FOOTPTIIIL. ..ottt 681
Potentially heavy load.............ocooiiiiiiii 681
SEANAATAS. ... 682

Hide and SEekooiiiiii i 682

Who pays and ROW? ... 682
Project: A REST CHENU.......ooiiiiiiiii e 683
SUIMIMIATY ..ot 688
Chapter 42: Creating GraphicswithPHP........................... 689
YOUT OPTIOTIS ..t 689
HTML GTAPRICS .t 690
Creating images USING G . ..oooiiiiii e 695
WHAL 1S ZA7 1o 695
Image formats and BrOWSETScoociiiiiiiiii i 696
InStallation.o 696

G COTICEPLS 1. 697
COLOTS e 698

Drawing coordinates and commands..............ccocoriiiniiiiiiii 699

Format translationccooiiiiiiiii i 699

FIe@INgG TESOUTTES ...uiiiiiiiiii et 699

FUNCUOTIS. ... 700
Images and HTTP ..o 701
Full-page IMagesoooiiiiiiiiiii i 701

Embedded images from files.................ooooiii 702

Embedded images from SCripts..........ccooiiiiiiiiiiiiii 702

Example: fractal images ..o 703

Contents

Gotchas and TroubleshOOtNE.c.ooiiiiiii e 710
Symptom: completely blank imagecccocooiiii 710
Symptom: headers already SENt.............ccooiiiiiiiiiiiiii e 710
Symptom: broKen fMagecooiiiiiiiiiiiiii e 711

SUIMIMATY ... 712

Part VI: Case Studies 713
Chapter 43: Developing a Weblog withPHP 715

WY WEDBLOZS? ... 715

The SIMPlest WEDLOg ...t 716

Adding an HTML-Editing TOOL.........coociiiiiiiiii e 722

Changes and AddItIONS ..ot 724

SUIIIIIIATY ¢t 725

Chapter44: ATriviaGame.oiiiiin ittt iiiiinienenenns 727

Concepts Used in This CRapter.........ccooiiiiiiiii e 727

THE GAIME ... 728
OUT VETSIONL. ... 728
SAMPIE SCTEOILS ...ttt 728
The TULES ... 729
Playing the game yourself ... 731

The COde .o 731
COE 1B ..t 732

IR PP 732
game_display_class.php ... 735
game_text_Class.PhP......oooiiiiiiii 744
game_ClasS.PIP...oviiii 746
game_parameters_Class. PIpoooiiiiiiiiiiii e 753
certainty_UtilS.PRP ..o 755
QUESHION_ClASSPIP Lo 759
ADVATSPIP - 763
Creating the databaseocooiiiiiiiii e 764
Table definitionsccoiiiiiiii 764
entry_fOrm.PRP ... 766

General Design Considerationsocooiiiiiiiiiiii e, 768
Separation of code and displayccooioiiiiiiiii 768
Persistence of data ..o 768
Exception handling..............coooiiii 769

SUIMIMATY ... 769

Chapter 45: Data Visualization with Venn Diagrams 771

Scaled Venn diag@rammsooviiiiiiiii i 771
The task ... 772

Outline of the CoOde ... 772

Contents

Necessary TrigOMOMELIYoiiiiiii i 773
Planning the DISPlayccooiiiiiiiiii i 777
SImplifying assumptionsccccooiiiiiiiiiiiii e 777
Determining size and scalecociiiiiiiiiiii 777

The @aSY CASES ...ttt 778

The hard Case.........coooiiii 778

DASPLAY e 784
INOLES 0N CITCIES. ... 784

NOLES 0N CENLETING LEXT ...ttt 785

Visualizing @ Database............cciiiiiiiiiii 785
TIYITIZ IE OUL. et 790
EXLOTISIOTIS L. 792
SUIIIIIIATY ..ottt 793
Appendix A: PHP for C Programmers.o iiiiiiien.n. 795
SIMILATIEES ... 795
SYTILAX 1t 795
OPCTALOTS ... 796
CONLIOL SLIUCTUTES. ... 796
Many fUNCHON NAMES ...t 796

DI ETOTICES. ..ot 796
Those dollar SIgNS..........ccooiiiiiiiii e 796

Ty DS 796

Type CONVETSION...........ooi 797
AATTAYS 1. e 797

INO SLTUCLUTE LY .. 797

O LS. .-ttt 797

INO POIIERTS .. 797

INO PIOLOLYPES 1.ttt 797
MemMOTY MANAZETIICTIL ...ttt 798
Compilation and HNKING..........cooiiiii e 798
PeIMISSIVEIESS ... 798
Guide t0 the BOOK.......c.iiiiiiii i 798
A Bonus: Just Look at the Code! ... 799
Appendix B: PHP for Perl Hackerso, 801
SIMILATIEIES ... 801
Compiled scripting languages.............c.ccooviiiiiiiiiiiii e 801
SYTUAX . 802
Dollar-sign variables ... 802

No declaration of variablesc.ocooiiiiiiiii e 802
Loose typing of variables ..o 802
Strings and variable interpolation....................coi 802
DITETOIICES. ...t 803
PHP is HTML-embedded..............ocoiii e 803

NO @ 01 % VATIADIES ... 803

XXXxii

Contents

Arrays versus hashes...........oooiiiiiii e, 803
Specifying arguments to fUnctionsccccocoiiiiiiiiiiiiii e 803
Variable scoping in fUNCHONS.ccooiiiiiiiii i, 804
No module system as SUCh.............oociiiiiiiiiiii e 804
Break and continue rather than next and last...................... 805
NO elSif oo

More kinds of comments
Regular expressions......................

MiSCEIIANEOUS THPS ..ot
What about use 0f SUTICt “VATS™?ooiiiiiiie e, 806
WHETE'S CPANT ...t 806

Guide 10 the BOOK.......o.iiiiiiiiiiii e

Appendix C: PHP for HTMLCoderscooiiiiiiininnnnn.

The GOOA INEWS ...t
You already kKnow HTML ...
PHP is an easy first programming language to learn ..o,
Web development is increasingly prefab anyway................coccocoiiiiiii
The Bad INEWS......ueiiiii i
If programming were that easy, you’d already know how
Backend servers can add complexityccococooiiiiiiiiii,
Concentrate ONoooiiiiiiiiiiiiii e
Reading other people’s code...........oooiiiiiiiiiiiii
Working on what interests YOUcoooiiiiiiiiiiii e
Thinking about programming ...
Learning SQL and other protocols...............ooiiiiiiii
Making cosmetic changes to prefab PHP applicationsccocoooiiiiiiii..
Debugging is Programmiing.........ccooouiiiiiiiiiaii it
AVOIA AU FATSL . .+ oo 814
Maximal PHP SUYLE ...t
Programming large applications from scratch............
Consider TRiSo
Reading a book on C programming..........................
Minimal PHP SEYLe ..ot
Use the right tools for the job ...

XXxiii

Contents

Give detailed desCTIPHONS.c.ooviiiiiiiiiie e
PHP is internationalocoiiiiiii
There are HMItSoooiiii i
Do it yourself ...
It's probably YOU ..o
There are now commercial alternatives
Other PHP Web Sites...........c.ocoocociin.
Core scripting engine and tools
PHP Knowledgebase.coiiiiiiiiiii e
Articles and tULOTIALS ..o
PHP COAEDASES ...
MaJor PHP PIOJECES ...ooiiiiiiiiii e
Appendix E: PEAR .. oo e
WHhat IS PEAR? ..ot 830
The PEAR PaCKage SySTEIN........ooiiiiiiiiiiiiiie oo
A sampling of PEAR packages............oooooiiiiiiiii i
How the PEAR database WOTKS.............cccoiiiiiiiiiiiiii e
The Package Managerccooiiiiiiiiiii oo
Installing the PEAR Package Manager on Linux
Updating the Package Manager...............ococoooiiiniiiiiiiiii,
Using the Manager............ccocociviiioiiiniiiie
Automatic package installation ...
Automatic package removal ...
Semiautomatic package installation ...
Using PEAR packages in your SCripts............ccocooiiiiiiiiiiiiiiii e
PHP Foundation Classes (PFC)ccooiiiiiiiii e
PHP Extension Code Library (PECL).........ocoiiiiiiiiiiiiie e
The PEAR COding SUYIE ..ottt
Indenting, whitespace, and line length ...
Formatting control structures
if Statementscccoeeeeeen
if/else Statements
if/elseif SAtETENILSo.viiiiiiii e
SWILCh SEALETNENIES ...
Formatting functions and function calls...............cocoiiiiii
SUIMIMATY ... e
Index ..ot e e e e 841

XXXIV

What Is PHP?

PHP is an open source, server-side, HTML-embedded web-scripting language that is compatible
with all the major web servers (most notably Apache). PHP enables you to embed code fragments
in normal HTML pages — code that is interpreted as your pages are served up to users. PHP also
serves as a “glue” language, making it easy to connect your web pages to server-side databases.

Why PHP?

We devote nearly all of Chapter 1 to this question. The short answer is that it’s free, it's open
source, it’s full featured, it’s cross-platform, it’s stable, it’s fast, it’s clearly designed, it’s easy to
learn, and it plays well with others.

What’s New in This Edition?

This book is a new edition of the popular PHP Bible and PHP5 and MySQL Bible series. The book
updates the elements from previous versions, where applicable, for PHP 6 and MySQL 6.

New PHP 6 features

Although much of PHP 5’s functionality survives unchanged in PHP 6, there have been some
changes. Among the ones we cover are:

B Unicode support, making internationalization easier

B Security enhancements such as removing safe_mode and register globals

m Enhancements to the object-oriented interfaces

Who wrote the book?

The first two editions were by Converse and Park, with a guest chapter by Dustin Mitchell and
tech editing by Richard Lynch. For the third edition, Clark Morgan took on much of the revision
work, with help from Converse and Park as well as from David Wall and Chris Cornell, who also
contributed chapters and did technical editing. For this edition, Steve Suehring did revision work
with Aaron Saray providing technical editing.

XXXV

Introduction

XXXVi

Whom This Book Is For

This book is for anyone who wants to build web sites that exhibit more complex behavior than is
possible with static HTML pages. Within that population, we had the following three particular
audiences in mind:

Web site designers who know HTML and want to move into creating dynamic web sites

Experienced programmers (in C, Java, Perl, and so on) without web experience who want
to quickly get up to speed in server-side web programming

m Web programmers who have used other server-side technologies (Active Server Pages, Java
Server Pages, or ColdFusion, for example) and want to upgrade or simply add another tool
to their kit

We assume that the reader is familiar with HTML and has a basic knowledge of the workings of the
web, but we do not assume much programming experience beyond that. To help save time for more
experienced programmers, we include a number of notes and asides that compare PHP with other
languages and indicate which chapters and sections may be safely skipped. Finally, see our appen-
dixes, which offer specific advice for C programmers, ASP coders, and pure-HTML designers.

This Book Is Not the Manual

The PHP Documentation Group has assembled a great online manual, located at www.php.net and
served up (of course) by PHP. This book is not that manual or even a substitute for it. We see the
book as complementary to the manual and expect that you will want to go back and forth between

them to some extent.

In general, you'll find the online manual to be very comprehensive, covering all aspects and func-

tions of the language, but inevitably without a great amount of depth in any one topic. By contrast,
we have the leisure of zeroing in on aspects that are most used or least understood and give back-

ground, explanations, and lengthy examples.

How the Book Is Organized

This book is divided into five parts, as the following sections describe.

PartI: PHP: The Basics

This part is intended to bring the reader up to speed on the most essential aspects of PHP, with com-
plexities and abstruse features deferred to later parts.

m Chapters 1 through 3 provide an introduction to PHP and tell you what you need to know
to get started.

Introduction

m Chapters 4 through 9 are a guide to the most central facets of PHP (with the exception of
database interaction): the syntax, the data types, and the most basic built-in functions.

m Chapter 10 is a guide to the most common pitfalls of PHP programming.

Part I1: PHP and MySQL
Part 11 is devoted both to MySQL and to PHP’s interaction with MySQL.
m Chapters 11 and 12 provide a general orientation to web programming with SQL data-
bases, including installation of MySQL.

m Chapter 13 covers Structured Query Language (SQL), and Chapter 14 covers database
administration basics.

m Chapter 15 is devoted to PHP functions for MySQL.
Chapters 16 and 17 are detailed, code-rich case studies of PHP/MySQL interactions.
Chapters 18 and 19 provide tips and gotchas specific to PHP/MySQL work.

Part I11: Advanced Techniques

In this part we cover more advanced features of PHP, usually as self-contained chapters, including
object-oriented programming, session handling, exception handling, using cookies, and regular expres-
sions. Chapter 31 is a tour of debugging techniques, and Chapter 32 discusses programming style.

Part IV: Connections
In this part we cover advanced techniques and features that involve PHP talking to other services,
technologies, or large bodies of code.
m Chapters 33 through 36 cover PHP’s interaction with other database technologies
(PostgreSQL, Oracle, PDO, and SQLite).

m Chapters 37 through 42 cover self-contained topics: PHP and e-mail programs, combining
PHP with JavaScript, integrating PHP and Java, PHP and XML, PHP-based Web services,
and creating graphics with the gd image library.

Part V: Case Studies

Here we present three extended case studies that wrap together techniques from various early chapters.

m Chapter 43 takes you through the design and implementation of a weblog.
B Chapter 44 discusses a soup-to-nuts implementation of a novel trivia quiz game.

B Chapter 45 uses the gd image library to visualize data from a MySQL database.

XXXVii

Introduction

Appendices

At the end, we offer three “quick-start” appendixes, for use by people new to PHP but very famil-
iar with either C (Appendix A), Perl (Appendix B), or pure HTML (Appendix C). If you are in any
of these three situations, start with the appropriate appendix for an orientation to important dif-
ferences and a guide to the book. Appendix (D) is a guide to important resources, web sites, and
mailing lists for the PHP community. The final appendix (E) is information on the PEAR repository,
which is no longer scheduled to be included in PHP 6. However, this information (from a previous
edition of the book) may be helpful to someone maintaining a PHP site on an earlier version of PHP
or one that uses PEAR.

Conventions Used in This Book

We use a monospaced font to indicate literal PHP code. Pieces of code embedded in lines of text look
like this, while full code listing lines look as follows:

print("this");

If the appearance of a PHP-created web page is crucial, we include a screenshot. If it is not, we
show textual output of PHP in monospaced font. If we want to distinguish the PHP output as seen
in your browser from the actual output of PHP (which your browser renders), we call the former
browser output.

If included in a code context, italics indicate portions that should be filled in appropriately, as
opposed to being taken literally. In normal text, an italicized term means a possibly unfamiliar
word or phrase.

What the Icons Mean

Icons similar to the following example are sprinkled liberally throughout the book. Their purpose is
to visually set off certain important kinds of information.

= Tip icons indicate PHP tricks or techniques that may not be obvious and that enable you
to accomplish something more easily or efficiently.

Note icons usually provide additional information or clarification but can be safely
S ignored if you are not already interested. Notes in this book are often audience-specific,
targeted to people who already know a particular programming language or technology.

& Caution icons indicate something that does not work as advertised, something that is eas-
ily misunderstood or misused, or anything else that can get programmers into trouble.

XXXV

P2

| =
— S St e

Introducing PHP

Why PHP and MySQL?

Server-Side Scripting Overview

Getting Started with PHP

Learning PHP Syntax and
Variables

Learning PHP Control Structures
and Functions

Passing Information with PHP

Learning PHP String Handling

Learning Arrays

Learning PHP Number Handling

PHP Gotchas

his first chapter is an introduction to PHP, MySQL, and the interac-

tion of the two. In it, we’ll try to address some of the most common

questions about these tools, such as “What are they?” and “How do
they compare to similar technologies?” Most of the chapter is taken up with
an enumeration of the many, many reasons to choose PHP, MySQL, or the
two in tandem. If you're a techie looking for some ammunition to lob at your
PHB (“Pointy-Haired Boss,” for those who don’t know the Dilbert cartoons)
or a manager asking yourself what is this P-whatever thing your geeks keep
whining to get, this chapter will provide some preliminary answers.

What Is PHP?

PHP is the web development language written by and for web developers.
PHP stands for PHP: Hypertext Preprocessor. The product was originally
named Personal Home Page Tools, and many people still think that’s what the
acronym stands for, but as it expanded in scope, a new and more appropri-
ate (albeit GNU-ishly recursive) name was selected by community vote.
PHP is currently in its sixth major rewrite, called PHP6 or just plain PHP.

PHP is a server-side scripting language, usually used to create web applica-
tions in combination with a web server, such as Apache. PHP can also be
used to create command-line scripts akin to Perl or shell scripts, but such
use is much less common than PHP’s use as a web language.

Strictly speaking, PHP has nothing to do with layout, events, on-the-fly
Document Object Model (DOM) manipulation, or really anything about the
look and feel of a web page. In fact, most of what PHP does is invisible to
the end user. Someone looking at a PHP page will not necessarily be able to
tell that it was not written purely in Hypertext Markup Language (HTML),
because the result of PHP is usually HTML.

IN THIS CHAPTER

Understanding PHP and MySQL

The benefits of using PHP
and MySQL

m Introducing PHP

What Is MySQL?

MySQL (pronounced My Ess Q ED is an open source, SQL relational database management system
(RDBMS) that is free for many uses (more detail on that later). Early in its history, MySQL occasion-
ally faced opposition because of its lack of support for some core SQL constructs such as subselects
and foreign keys. Ultimately, however, MySQL found a broad, enthusiastic user base for its liberal
licensing terms, perky performance, and ease of use. Its acceptance was aided in part by the wide
variety of other technologies such as PHP, Perl, Python, and the like that have encouraged its use
through stable, well-documented modules and extensions.

Databases are generally useful, perhaps the most consistently useful family of software products
(the “killer product”) in modern computing. Like many competing products, both free and com-
mercial, MySQL isn't a database until you give it some structure and form. You might think of this
as the difference between a database and an RDBMS (that is, RDBMS plus user requirements equal a
database).

There’s lots more to say about MySQL, but then again, there’s lots more space in which to say it.

Deciding on a Web Application Platform

There are many platforms upon which web applications can be built. This section compares PHP to
a few other platforms and highlights some of PHP’s and MySQLSs strengths.

Cost

PHP is one of the “P’s” in the popular LAMP stack. The LAMP stack refers to the popular combina-
tion of Linux, Apache, MySQL, and PHP/Perl/Python that runs many web sites and powers many
web applications. Many of the components of the LAMP stack are free, and PHP is no exception.
PHP is free, as in there is no cost to develop in and run programs made with PHP. Though MySQL’s
license and costs have changed, you can obtain the Community Server edition for free. MySQL
offers several levels of support contracts for their database server. More information can be obtained
at www.mysql.com. Both PHP and MySQL run on a variety of platforms, including many variants
of Linux, Microsoft Windows, and others. Running on an operating system such as Linux gives the
opportunity for a completely free web application platform, with no up-front costs.

Of course, when talking about software development and application platforms, the up-front cost of
software licensing is only a portion of the total cost of ownership (TCO). Years of real-world experi-
ence with Linux, Apache, MySQL, and PHP in production environments has proved that the total
cost of maintaining these platforms is lower, many times much lower, than maintaining an infra-
structure with proprietary, non-free software.

Why PHP and MySQL?

Ease of Use

When compared to many other programming languages, PHP makes it easy to develop powerful
web applications quickly (this is a blessing and a curse). Many of the most useful specific functions
(such as those for opening a connection to an Oracle database or fetching e-mail from an Internet
Message Access Protocol [IMAP] server) are predefined for you. A lot of complete scripts are waiting
out there for you to look at as you're learning PHP.

Most advanced PHP users (including most of the development team members) are diehard hand-
coders. They tend to share certain gut-level, subcultural assumptions — for instance, that hand-
written code is beautiful and clean and maximally browser-compatible and therefore the only way
to go — that they do not hesitate to express in vigorous terms. The PHP community offers help and
trades tips mostly by e-mail, and if you want to participate, you have to be able to parse plain-text
source code with facility. Some WYSIWYG users occasionally ask list members to diagnose their
problems by looking at their web pages instead of their source code, but this rarely ends well.

That said, let us reiterate that PHP really is easy to learn and write, especially for those with a little
bit of experience in a C-syntaxed programming language. It’s just a little more involved than HTML.
This small learning curve means that relatively inexperienced programmers can sometimes make
mistakes that turn into large security issues. This is the curse of PHP. While this book has no spe-
cific chapter dedicated to security, I feel that security needs to be applied at every layer, during every
phase of programming. Therefore dedicating a single chapter would not do justice to the importance
of web application security.

If you have no relational database experience, or are coming from an environment such as Microsoft
Access, MySQLs command-line interface and lack of implicit structure may at first seem a little
daunting. MySQL has a few GUI (graphical user interface) tools to help work with databases. None
of the GUI tools is a substitute for learning a little theory and employing good design practices, but
that is a subject for another chapter.

HTML-embeddedness

PHP can be embedded within HTML. In other words, PHP pages are ordinary HTML pages that
escape into PHP mode only when necessary. Here is an example:

<HEAD>

<TITLE>Example.com greeting</TITLE>

</HEAD>

<BODY>

<P>Hello,

<{?php

// We have now escaped into PHP mode.

// Instead of static variables, the next three lines
// could easily be database calls or even cookies;
// or they could have been passed from a form.
$firstname = 'Joyce';

$lastname = 'Park';

m Introducing PHP

$title = "Ms.';

echo "$title $lastname";

// 0K, we are going back to HTML now.

?>

. We know who you are! Your first name is <?php echo
$firstname; 7>.</P>

<P>You are visiting our site at <?php echo date('Y-m-d H:i:s");

[DAVA

{P>Here is a link to your account management page: <A
HREF="http://www.example.com/accounts/<?php echo

"$firstname$lastname”; ?>/"><?php echo $firstname; ?>'s account

management page</P>
</BODY>
</HTMLS

When a client requests this page, the web server preprocesses it. This means it goes through the
page from top to bottom, looking for sections of PHP, which it will try to resolve. For one thing, the
parser will suck up all assigned variables (marked by dollar signs) and try to plug them into later
PHP commands (in this case, the echo function). If everything goes smoothly, the preprocessor will

eventually return a normal HTML page to the client’s browser, as shown in Figure 1-1.

FIGURE 1-1

A result of preprocessed PHP

Example.com greeting - Mozilla {Build I1D: 2002051006}
. File Edit View Go Bookmarks Tools Window Help Debug 0A

| Q @ @ @ _[% http://localhost/sent_code/ch1/greeting.php I [Qggﬂﬂﬂﬁj ng m |
a o 5 |

Hello, Ms. Park . We know who you are! Your first name is Joyce.

You are visiting our site at 2002-07-29 00:52:42

|| Here 1s a link to your account management page: Joyce's account
/| management page

Document: Done (0.82 secs) Sm=ep

If you peek at the source code from the client browser (select Source or Page Source from the View

menu, it will look like this:

<HEAD>
KTITLE>Example.com greeting</TITLE>

Why PHP and MySQL?

</HEAD>
<BODY>
{P>Hello,
Ms. Park
We know who you are! Your first name is Joyce.</P>

<P>You are visiting our site at 2002-04-21 19:34:24</P>

{P>Here is a link to your account management page: <A HREF="http://
www.example.com/accounts/JoycePark/">Joyce's account management page</
ADL/P>

</BODY>

</HTML>

This code is exactly the same as if you were to write the HTML by hand. So simple!
The HTML-embeddedness of PHP has many helpful consequences:

PHP can quickly be added to code produced by WYSIWYG editors.
PHP lends itself to a division of labor between designers and programmers.

Every line of HTML does not need to be rewritten in a programming language.

PHP can reduce labor costs and increase efficiency because of its shallow learning curve
and ease of use.

Cross-platform compatibility

PHP and MySQL run native on every popular flavor of Linux/Unix (including Mac OS X) and
Microsoft Windows. A huge percentage of the world’s Hypertext Transfer Protocol (HTTP) servers
run on one of these two classes of operating systems.

PHP is compatible with the leading web servers: Apache HTTP Server for Linux/Unix and Windows
and Microsoft Internet Information Server. It also works with several lesser-known servers. Specific
web server compatibility with MySQL is not required, since PHP will handle all the dirty work for you.

Stability

The word stable means two different things in this context:

B The server doesn’t need to be rebooted or restarted often.

B The software doesn’t change radically and incompatibly from release to release.

To our advantage, both of these connotations apply to both MySQL and PHP.

Apache Server is generally considered the most stable of major web servers, with a reputation for
enviable uptime percentages. Most often, a server reboot isn't required for each setting change. PHP
inherits this reliability; plus, its own implementation is solid yet lightweight.

m Introducing PHP

PHP and MySQL are also both stable in the sense of feature stability. Their respective development
teams have thus far enjoyed a clear vision of their project and refused to be distracted by every new
fad and ill-thought-out user demand that comes along. Much of the effort goes into incremental per-
formance improvements, communicating with more major databases, or adding better OOP support.
In the case of MySQL, the addition of reasonable and expected new features has hit a rapid clip. For
both PHP and MySQL, such improvements have rarely come at the expense of compatibility.

Many extensions

PHP makes it easy to communicate with other programs and protocols. The PHP development team
seems committed to providing maximum flexibility to the largest number of users.

Database connectivity is especially strong, with native-driver support for about 15 of the most popu-
lar databases plus Open DataBase Connectivity (ODBC). In addition, PHP supports a large number
of major protocols such as POP3, IMAP, and LDAP. Earlier versions of PHP added support for Java
and distributed object architectures (Component Object Model [COM] and Common Object Request
Broker Architecture [CORBA]J), making n-tier development a possibility for the first time, fully incor-
porated GD graphics library and revamped Extensible Markup Language (XML) support with DOM
and simpleXML.

Fast feature development

Users of proprietary web development technologies can sometimes be frustrated by the glacial speed
at which new features are added to the official product standard to support emerging technologies.
With PHP, this is not a problem. All it takes is one developer, a C compiler, and a dream to add
important new functionality. This is not to say that the PHP team will accept every random contri-
bution into the official distribution without community buy-in, but independent developers can and
do distribute their own extensions that may later be folded into the main PHP package in more or
less unitary form. For instance, Dan Libby’s elegant xmlrpc-epi extension was adopted as part of the
PHP distribution in version 4.1, a few months after it was first released as an independent package.

PHP development is also constant and ongoing. Although there are clearly major inflection points,
such as the transition between PHP4 and PHP5, these tend to be most important deep in the guts
of the parser — people were actually working on major extensions throughout the transition period
without critical problems. Furthermore, the PHP group subscribes to the open source philosophy
of “release early, release often,” which gives developers many opportunities to follow along with
changes and report bugs.

Not proprietary

The history of the personal computer industry to date has largely been a chronicle of proprietary
standards: attempts to establish them, clashes between them, their benefits and drawbacks for the
consumer, and how they are eventually replaced with new standards.

Why PHP and MySQL?

In the past few years the Internet has demonstrated the great convenience of voluntary, standards-
based, platform-independent compatibility. E-mail, for example, works so well because it enjoys a
clear, firm standard to which every program on every platform must conform. New developments
that break with the standard (for example, HTML-based e-mail stationery) are generally regarded as
deviations, and their users find themselves having to bear the burdens of early adoption.

Furthermore, customers (especially the big-fish businesses with large systems) are fed up with
spending vast sums to conform to a proprietary standard only to have the market uptake not turn
out as promised. Much of the current momentum toward XML and web services is driven by years
of customer disappointment with Java RMI (Remote Method Invocation), CORBA, COM, and even
older proprietary methods and data formats.

Right now, software developers are in a period of experimentation and flux concerning proprietary
versus open standards. Companies want to be sure that they can maintain profitability while adopt-
ing open standards. There have been some major legal conflicts related to proprietary standards,
which are still being resolved. These could eventually result in mandated changes to the codebase
itself or even affect the futures of the companies involved. In the face of all this uncertainty, a grow-
ing number of businesses are attracted to solutions that they know will not have these problems in
the foreseeable future.

PHP is in a position of maximum flexibility because it is, so to speak, antiproprietary. It is not tied
to any one server operating system, unlike Active Server Pages. It is not tied to any proprietary
cross-platform standard or middleware, as is Java Server Pages or ColdFusion. It is not tied to any
one browser or implementation of a programming language or database. PHP isn't even doctrinaire
about working only with other open source software. This independent but cooperative pragmatism
should help PHP ride out the stormy seas that seem to lie ahead.

Strong user communities

PHP is developed and supported in a collaborative fashion by a worldwide community of users.
Some animals (such as the core developers) are more equal than others, but that’s hard to argue
with, because they put in the most work, had the best ideas, and have managed to maintain civil
relationships with the greatest number of other users.

The main advantage for most new users is technical support without charge, without boundaries,
and without the runaround. People on the mailing list are available 24/7/52 to answer your ques-
tions, help debug your code, and listen to your gripes. The support is human and real. PHP commu-
nity members might tell you to read the manual, take your question over to the appropriate database
mailing list, or just stop your whining — but they’ll never tell you to wipe your C drive and then
charge you for the privilege. Often, they’ll look at your code and tell you what you're doing wrong or
even help you design an application from the ground up.

As you become more comfortable with PHP, you may wish to contribute. Bug tracking, offering
advice to others on the mailing lists, posting scripts to public repositories, editing documentation,
and, of course, writing C code are all ways you can give back to the community.

m Introducing PHP

10

MySQL, while open source licensed for non-redistributive uses, is somewhat less community driven
in terms of its development. Nevertheless, it benefits from a growing community of users who are
actively listened to by the development team. Rarely has a software project responded so vigorously
to community demand, and the community of users can be extremely responsive to other users who
need help. It's a point of pride with a lot of SQL gurus that they can write the complicated queries
that get you the results you are looking for but had struggled with for days. In many cases, they’ll
help you for nothing more than the enduring, if small, fame that comes with the archived presence
of their name on Google Groups. Try comparing that with $100 per incident support.

Summary

PHP and MySQL, individually or together, aren’t the panacea for every web development problem,
but they present a lot of advantages. PHP is built by web developers for web developers and sup-
ported by a large and enthusiastic community. MySQL is a powerful standards-compliant RDBMS
that comes in at an extremely competitive price point, even more so if you qualify for free use. Both
technologies are clear-cut cases of the community banding together to address its own needs.

his chapter is about server-side scripting and its relationship to both
static HTML and common client-side technologies. By the end, you
can expect to gain a clear understanding of what kinds of things
PHP can and cannot do for you, along with a general understanding of
how it interacts with client-side code (JavaScript, Java applets, Flash, style
sheets, and the like).

Static HTML

The most basic type of web page is a completely static, text-based one, writ-
ten entirely in HTML. Take the simple HTML-only page that Figure 2-1
shows as an example.

The following example displays the source code for the web page shown in
Figure 2-1:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/html4/strict.dtd">

<html>

<head>

<title>Selected Constellations</title>

</head>

<body>

<hl>Constellations</hl>

Aquila</1i>

<1i>Bootes</1i>

Cassiopeia</1i>

11

IN THIS CHAPTER

Understanding static and
dynamic web pages

Client-side versus server-side
scripting

An introduction to server-side
scripting

m Introducing PHP

<1i><a
<1i><a
<1i><a
<1i><a
<1i><a
<1i><a
<a
<T1i><a
<1i><a
<1i><a
<a
<1i><a
<1i><a
<1i><a
<1i><a

</body>
</html>

FIGURE 2-1

href="Cygnus.html">Cygnus</1i>
href="Deneb.html">Deneb</1i>
href="Draco.html">Draco</1i>
href="Gemini.html">Gemini</1i>
href="Leo.html">Leo</11>
href="Libra.html">Libra</1i>
href="Lynx.html">Lynx</1i>
href="0rion.html">0rion</1i>
href="Pegasus.html">Pegasus</1i>
href="Perseus.html">Perseus</1i>
href="Pisces.html">Pisces</1i>
href="Taurus.html">Taurus</1i>
href="Ursa_Major.html">Ursa Major</1i>
href="Ursa_Minor.html">Ursa Minor</1i>
href="Vega.html">Vega</1i>

A static HTML example

¥ Selected Constellations - Mogzilla Firefox =]

File Edit ‘“iew History Bockmarks Toodls Help

<-,EI x _./ . @j .7,7-7‘) {j,,l} http:waw.bralngla.org,l’booksh|'| [P] ||_—G_I'iGngie |‘-\J
Constellations

e Aouila

+ Bootes

+ Cassiopeia
& Cyonus

¢ Deneb

¢ Draco

¢ Cremnini

¢ Leo

¢ Libra

¢ Lz

* Orion

¢ Pegasus

¢ Derscus

* Pisces

¢ Taurus

¢ Ursa Major
¢ Ursa Minor
* Vega

‘ Dane

S
Skl

12

Server-Side Scripting Overview

Client-Side Technologies

The most common additions to plain HTML are on the client side. These add-ons include formatting
extensions, such as Cascading Style Sheets (CSS) and Dynamic HTML; client-side scripting lan-
guages, such as JavaScript; VBScript; Java applets; and Flash. Support for all these technologies is (or
is not, as the case may be) built into the web browser. They perform the tasks described in Table 2-1,
with some overlap.

TABLE 2-1

Client-Side HTML Extensions

Client-Side Main Use Example Effects
Technology
Cascading Style Formatting pages: controlling size, Overlapping, different colored/sized
Sheets, Dynamic color, placement, layout, timing of fonts
HTML elements
Layers, exact positioning
Client-side Event handling: controlling Link that changes color on mouseover
scripting consequences of defined events
(JavaScript, Mortgage calculator
VBScript)

Java applets

Delivering small standalone Moving logo
applications
Crossword puzzle

Flash animations Animation Short cartoon film

The page shown in Figure 2-2 is based on the same content as that in Figure 2-1. As you can see
from the following source code, however, this example adds a bit of styling with basic inline CSS.

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.0rg/
TR/html14/strict.dtd">

<html>

<head>

(STYLE TYPE="text/css">

BODY, P {color: black; font-family: verdana; font-size: 10 pt}

H1 {margin-top: 10; color: black; font-family: arial; font-size: 12 pt}
H2 {margin-bottom: -10; color: black; font-family: verdana; font-size:
18 pt}

A:Tink, A:visited {color: #000080; text-decoration: none}

</STYLE>

<title>Selected Constellations</title>

</head>

<body>

<h1>Constellations</hl>

13

m Introducing PHP

<1i><a
<1i><a
<1i><a
<1i><a
<1i><a
<1i><a
<T1i><a
<1i><a
<1i><a
<1i><a
<1i><a
<1i><a
<1i><a
<1i><a
<1i><a
<1i><a
<1i><a
<T1i><a

</body>
</htm1>

FIGURE 2-2

href="Aquila.html">Aquila</1i>
href="Bootes.html">Bootes</1i>
href="Cassiopeia.html">Cassiopeia</1i>
href="Cygnus.html">Cygnus</1i>
href="Deneb.html">Deneb</1i>
href="Draco.html">Draco</1i>
href="Gemini.html">Gemini</1i>
href="Leo.html">Leo</11>
href="Libra.html">Libra</1i>
href="Lynx.html">Lynx</1i>
href="0rion.html">0rion</1i>
href="Pegasus.html">Pegasus</1i>
href="Perseus.html">Perseus</1i>
href="Pisces.html">Pisces</1i>
href="Taurus.html">Taurus</1i>
href="Ursa_Major.html">Ursa Major</1i>
href="Ursa_Minor.html">Ursa Minor</1i>
href="Vega.html">Vega</1i>

An example of HTML plus CSS.

¥ Selected Constellations - Mozilla Firefox =101x(

File Edit “iew History Bockmarks Toodls Help

- = -@§ &d

{.j,,l} http:waw.bralngla.org,l’booksh|'| [i'| i‘[C_‘l"Gougie |‘-x]

Constellations

« Sguila

+ Bootes

+ Cassiopeia
e Cygnus

+ Deneb

+ Draco

¢ Semini

¢ leo

s Libra

o Lynx

¢ Orion

¢ Pegasus

* Perseus

+ Pisces

¢ Taurus

¢ Lrsa Major
e Ursa Minor
+ Yega

Done

0 4

14

Server-Side Scripting Overview

Unfortunately, the best thing about client-side technologies is also the worst thing about them: They
depend entirely on the browser. Wide variations exist in the capabilities of each browser and even
among versions of the same brand of browser. Individuals can also choose to configure their own
browsers in awkward ways: Some people disable JavaScript for security reasons, for example, which
makes it impossible for them to view sites that use JavaScript incorrectly or with little care.

The savvy web developer should also consider the implications of device-based browsing, universal
accessibility, and a global audience. The stubborn unwillingness of the public to upgrade is the bane
of client-side developers, causing them to frequently suffer screaming nightmares and/or existen-
tial meltdowns in the dark, vulnerable hours before dawn. The bottom-line irony is that, even after
almost 15 years of explosive web progress, the only thing that a developer can absolutely, positively
know that the client is going to see is plain text-based HTML (or, rather, the subset of HTML that’s
widely supported and has stood the tests of time and usefulness).

Server-Side Scripting

Client-side scripting is the glamorous, eye-catching part of web development. In contrast, server-side
scripting is invisible to the user. Pity the poor server-side scripters, toiling away in utter obscurity,
trapped in the no-man’s land between the web server and the database while their arty brethren bra-
zenly flash their wares before the public gaze.

Server-side web scripting is mostly about connecting web sites to backend servers, processing data
and controlling the behavior of higher layers such as HTML and CSS. This enables the following
types of two-way communication:

B Server to client: Web pages can be assembled from backend-server output.

m Client to server: Customer-entered information can be acted upon.

Common examples of client-to-server interaction are online forms with some drop-down lists (usu-
ally the ones that require you to click a button) that the script assembles dynamically on the server.

Server-side scripting products consist of two main parts: the scripting language and the scripting
engine (which may or may not be built into the web server). The engine parses and interprets pages
written in the language.

The following code shows a simple example of server-side scripting — a page assembled on the fly
from a database. We include database calls (which we don’t get around to explaining until Part II of
this book) and leave out some of the included files, because we intend this example to show the final
product of PHP rather than serve as a piece of working code.

The following PHP code shows the source on the server:
<?php

require_once('db-config.inc."');

15

m Introducing PHP

16

$dbh = mysql_connect(DB_HOST,DB_USER,DB_PASSWORD) or die("Unable to
connect to database.");
mysql_select_db('webdb') or die("Cannot access database.");
$query = "SELECT pagetitle FROM sitepages

WHERE site = 'braingia.org'

AND page_id = "1"'";
$qresult = mysql_query($query) or die("Unable to query database.");
$title = mysql_fetch_array($qresult);

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.0rg/
TR/html4/strict.dtd">
<html1>
<head>
(STYLE TYPE="text/css">
BODY, P {color: black; font-family: verdana; font-size: 10 pt}
H1 {margin-top: 10; color: black; font-family: arial; font-size: 12 pt}
H2 {margin-bottom: -10; color: black; font-family: verdana; font-size:
18 pt}
A:link, A:visited {color: #f000080; text-decoration: none}
</STYLE>
<title><?php echo $title[0] ?></title>
</head>
<body>
<h1>$titlel01</h1>

<?php
$1inksQuery = "SELECT description,href FROM sitepagedata
WHERE site = 'braingia.org'
AND pagetitle = '"{$title}'";
$1inksResult = mysql_query($1inksQuery) or die("Unable to query
database.");
while ($row = mysql_fetch_array($linksResult)) f
print "<1i>$row[0]</T1i>\n";
>

</body>
</html1>

This particular page isn't significantly more impressive to look at than the version shown in
Figure 2-2.

Compare the version with the PHP code to the HTML versions shown earlier in the chapter.

The source code that uses PHP is shorter because it retrieves the information from a database.
Nevertheless, this server-side code is never viewable by end users. The version that they see is
exactly the same as the HTML shown earlier. The only evidence that it's a PHP file is the filename
extension, . php. All the heavy lifting happens before the code gets shoved down the pipe to the
client. After emerging from the web server, the code appears on the other end as normal HTML

Server-Side Scripting Overview

and JavaScript, which also means that you can't tell which server-side scripting language was used
unless something in the header or URL gives it away (which usually is the case, as the page you are
requesting often ends with . jsp or . php). These scripts, incidentally, were written in PHP using the
MySQL database as backend; you can learn all about these techniques in Part II of this book.

Server-Side or Client-Side?

here are client-side methods and server-side methods to accomplish many tasks. When sending e-mail,

for example, the client-side way is to open up the mail client software with a preaddressed blank e-mail
message after the user clicks a MAILTO link. The server-side method is to make the user fill out a form, and
the contents are formatted as an e-mail that is sent via a Simple Mail Transfer Protocol (SMTP) server (which
very well could be the same machine that the server-side script is executing on). You can also choose between
client methods and server methods of browser-sniffing, form validation, drop-down lists, and arithmetic cal-
culation. Sometimes you see subtle but meaningful differences in functionality (server-side drop-downs can
be assembled dynamically; client-side cannot) but not always.

How to choose? Know your audience. Server-side methods are generally a bit slower at runtime because of
the extra transits they must make, but they don’t assume anything about your visitor’s browser capabilities and
take less developer time to maintain.

What Is Server-Side Scripting Good For?

Server-side scripting languages such as PHP perfectly serve most of the truly useful aspects of the
web, such as the items in this list:

Content sites (both production and display)

Community features (forums, bulletin boards, and so on)

E-mail (web mail, mail forwarding, and sending mail from a web application)
Customer-support and technical-support systems

Advertising networks

Web-delivered business applications

Directories and membership rolls

Surveys, polls, and tests

Filling out and submitting forms online

Personalization technologies

Groupware

17

m Intruducing PHP

Catalog, brochure, and informational sites
Games (for example, chess) with lots of logic but simple/static graphics

B Any other application that needs to connect a backend server (database, Lightweight
Directory Access Protocol [LDAP], and so on) to a web server

PHP can handle all these essential tasks — and then some.

But enough rhetoric! Now that you have a grasp of the differences between client-side and server-
side technologies, you can get on to the practical stuff. In Chapter 3, we show you how to get, install,
and configure PHP for yourself (or find someone to do it for youw).

Summary

To understand what PHP (or any server-side scripting technology) can do for you, having a firm
grasp on the division of labor between client and server is crucial. In this chapter, we worked
through examples of plain, static HTML; HTML with client-side additions such as JavaScript and
Cascading Style Sheets; and PHP-generated web pages as viewed from both the server and the client.

Client-side scripting can be visually attractive and quickly responsive to user inputs, but anything
beyond the most basic HTML is subject to browser variation. Static client-side scripts also require
more developer time to maintain and update, because pages cannot be dynamically generated from a
constantly changing datastore. Server-side programming and scripting languages, such as PHP, can
connect databases and other servers to web pages.

18

n this chapter, we’ll give detailed directions for installing PHP and fin-
ish with a few tips on finding the right development tool. By the end of
the chapter, you should be ready to write your first script.

Installing PHP

This section looks at the installation of PHP onto a computer. If you're going
to be using a hosting provider that provides PHP or if you have a friendly
sysadmin who has installed PHP for you, then this section will be of limited
usefulness. PHP runs on various platforms, including Linux, various Unix
flavors, Microsoft Windows, and Mac OS X. Linux is the most popular plat-
form for PHP, and when combined with the Apache web server, and MySQL
forms the acronym LAMP (although the “P” can also be Perl or Python).

If you plan to install PHP on Windows, you'll also need:

m A working PHP-supported web server. Under previous versions
of PHP, 11S/PWS was the easiest choice because a module version
of PHP was available for it; but PHP now has added a much wider
selection of modules for Windows. These days, Apache works very
well with Windows, so we’ll be focusing on PHP with Apache on
Windows.

m The PHP Windows binary distribution (download it at www . php
.net/downloads.php)

m A utility to unzip files (search http://download.cnet.com for
PC file compression utilities), if your version of Windows doesn’t
include such a utility.

19

IN THIS CHAPTER

Installing PHP

Coding in PHP

Introducing PHP

1f you plan to install PHP on Linux, you may be able to take advantage of your distribution’s PHP
package. Most Linux distributions, including Red Hat, Debian, SuSE, and Ubuntu, include PHP as
an available package, and, where possible, you should use the distribution’s official PHP package.

There are certain instances where you need to compile PHP from source, in order to take advantage
of a bleeding-edge feature, for example, but these are the rare exceptions. It is much easier and much
more stable to use the distribution’s PHP package.

Additionally, you need a web server that supports PHP. Most of the time this will be the Apache web
server, but others work well with PHP. For this book, we’ll be concentrating on Apache as the web
server of choice. Therefore, you'll need to install Apache from your distribution, as well.

Installation procedures

Because of PHP’s strong commitment to cross-platform operability, there are far too many specific
installation methods to fully list here. We have tried to cover what we believe to be the most popular
platforms for PHP, but trying to write the installation instructions for every possible operating sys-
tem and web server would have resulted in a prohibitively long chapter.

Furthermore, while PHP installation procedures under Unix have been stable for years, Windows
installs have gone through quite a bit of flux since PHP4 was first released. Part of this is the result
of actions on the part of the PHP team; part of this is because of changes in the Windows product
line. PHP also runs on Macintosh OS X, and that installation has only fairly recently stabilized.

In response to such rapid change, we can only caution you that for the freshest information on
installation you should visit the PHP web site (www.php.net/docs.php) on each download. Even
if you've installed PHP a gazillion times before, there might be something new and different on the
gazillion-and-first occasion.

For those who have already successfully built an earlier version of PHP, the procedure is exactly the
same — only it takes a lot longer than before.

Your Red Hat, Mandrake, or SuSE Linux installation may have come with RPM versions
of Apache and PHP, or your Debian Linux may have come with a deb package. You must
remove these packages before compiling your new PHP! In addition, you may have RPM or apt ver-
sions of third-party servers, such as MySQL or PostgreSQL, which are generally installed differently
from their source counterparts. If you encounter problems, look in the documentation for installation
locations, or uninstall the packages and reinstall from scratch. Nevertheless, I strongly recommend
using the distribution’s version of the package unless you have specific reasons for doing otherwise.

If you choose to compile your own versions of PHP and Apache from source then you must maintain
them by hand. This means that each and every time a security update is released for either, or for a
library touching either, PHP or Apache, you need to recompile the server in order to remain up to date.
Otherwise, just use the distribution’s package. They’ll maintain the security updates, leaving you to
concentrate on things like programming PHP!

20

Getting Started with PHP

The following procedures give an overview of PHP installation on CentOS and Debian. As of this
writing, the only version of PHP officially available with these distributions is PHP5. We expect
these instructions to be valid when PHP6 becomes available with the distributions.

Installing PHP on CentOS

The YellowDog Update Manager (yum) is available with CentOS and is somewhat like the dpkg and
apt toolset from Debian. Therefore, installation of PHP and Apache on CentOS is rather trivial. From
the command-line as root, type:

yum install php

Doing so will cause the yum system to examine the system, gather any prerequisites, and inform
you of the installation’s progress. Our example system is a fresh CentOS 5.1 install with a minimal
package set. Therefore, yum needs to install several prerequisites, and a summary is shown.

After downloading the prerequisites (if necessary), yum will go about its business and install PHP.
Part of the install includes Apache, known as “httpd” in CentOS terminology. Apache 2 is installed
as part of the installation of PHP.

Apache isn’t started by default. To start it, run:

/etc/init.d/httpd start

While Apache is installed, it is firewalled by default in CentOS, meaning that you can’t get to the
web server through its default protocol and port, tcp/80. To alleviate this problem, edit /etc/
sysconfig/iptables and add this line, second from the bottom:

-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 80 -j
ACCEPT

The final file looks like this:

Firewall configuration written by system-config-securitylevel
Manual customization of this file is not recommended.

*filter

:INPUT ACCEPT [0:01]

:FORWARD ACCEPT [0:0]

:QUTPUT ACCEPT [0:0]

:RH-Firewall-1-INPUT - [0:0]

-A INPUT -j RH-Firewall-1-INPUT

-A FORWARD -j RH-Firewall-1-INPUT

-A RH-Firewall-1-INPUT -i To -j ACCEPT

-A RH-Firewall-1-INPUT -p icmp --icmp-type any -j ACCEPT

-A RH-Firewall-1-INPUT -p 50 -j ACCEPT

-A RH-Firewall-1-INPUT -p 51 -j ACCEPT

-A RH-Firewall-1-INPUT -p udp --dport 5353 -d 224.0.0.251 -j ACCEPT
-A RH-Firewall-1-INPUT -p udp -m udp --dport 631 -j ACCEPT

-A RH-Firewall-1-INPUT -p tcp -m tcp --dport 631 -j ACCEPT

21

m Introducing PHP

22

-A RH-Firewall-1-INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 22 -j

ACCEPT

-A RH-Firewall-1-INPUT -m state —state NEW -m tcp -p tcp —dport 80 -j
ACCEPT

-A RH-Firewall-1-INPUT -j REJECT --reject-with icmp-host-prohibited
COMMIT

Restart the iptables firewall by running;

/etc/init.d/iptables restart

With that, you'll be able to access your web server with PHP enabled by visiting http://your
.1p.address/ in the browser. For example, my CentOS computer is 192.168.1.155 and so pointing
to that in the web browser looks like this:

http://192.168.1.155
You may also want to install MySQL through the yum installer and the PHP/MySQL libraries:

yum install mysqgl php-mysqgl mysqgl-server mysqgl-devel

Installing PHP on Debian

Installation of PHP (or really anything) on Debian is probably the easiest and most manageable of all
Linux distributions with which I've worked (and that's more than a few). Installation of the Debian
PHP package is done through the apt-get utility:

apt-get install Tibapache2-mod-phpb

This example shows the installation of the PHP5 module on Debian because the PHP6
module was not yet available at the time of this writing.

This will install not only the PHP module for Apache 2 but also Apache 2 itself, if the web server
software hasn't already been installed.

Once installed, the web server is ready to use. You'll find the default location for PHP files at /var/
www/ apache2-default/, though that location may change in future releases of Debian.

Installing PHP from source
In the following directions, you will type the code fragments into each shell prompt, substituting the
version of software shown in the examples for the version that youre compiling.

You'll need a C compiler, with GCC being a good choice. On Debian you can install gce by typing
apt-get install gcc, whereas on CentOS you can install GCC by typing yum install gcc.

You'll also need ICU (International Components for Unicode) for Unicode support. On CentOS, this
is installed with yum install icu libicu-devel.

Getting Started with PHP

Finally, you'll also need development libraries for libxml, which can be installed on CentOS through
the libxml2-devel package, yum install Tibxml2-devel.

If you'll be using MySQL you can install it and the libraries from the command line with the yum
installer:

yum install mysqgl mysql-server mysql-devel

B Remember to log in as the root user first if you are installing in a root-owned directory.
s Remember to stop and uninstall your previous Apache server if you had one.

To start your build, just follow these steps:

1. If you haven't already done so, unzip and untar your Apache source distribution. Unless
you have a reason to do otherwise, /usr/Tocal is the standard place to do so.

tar -zxvf httpd-2.2.x.tar.gz

2. Build the Apache server: If you are installing somewhere other than /usr/local, thisis
the time to say so with the --prefix flag as follows. If you are installing in /usr/local,
don’t worry that the apache directory mentioned in a moment doesn'’t exist — it will by
the end of the build process. The --enable-so flag will allow Apache to load PHP sup-
port (and many other things) as a module called a Shared Object. This is how you'll build
your PHP module later on. After the configuration finishes, the next two commands will
build the binaries and then drop everything in the appropriate place according to the target
of the --prefix flag.
cd apache_2.2.x
./configure --prefix=/usr/local/apache --enable-so
make
make install

3. Unzip and untar your PHP source distribution. Unless you have a reason to do otherwise,
/usr/Tlocal is the standard place to do so.

tar -zxvf php-6.x.tar.gz
cd php-6.x

4. Conlfigure your PHP build. (Configuring PHP is a topic so large and important that it
would not fit into this chapter, so please {lip over to Chapter 29 for more information.)
The most common options are the ones to build as an Apache module, which you almost
certainly want, and to do so with specific database support. The example build here is an
Apache module with MySQL support, built using apxs.

./configure
--with-apxs2=/usr/local/apache/bin/apxs
--with-mysql

5. Make and install the PHP module.

make
make install

23

m Introducing PHP

10.

Install the php.ini file. Edit this file to get configuration directives; see the options listed
in Chapter 29. At this point, we highly recommend that new users set error reporting to
E_ALL on their development machines.

cd ../../php-6.x
cp php.ini-dist /usr/local/lib/php.ini

Tell your Apache server what extension(s) you want to identify PHP files (. php is the stan-
dard, but you can use .htm1, .phtm1, or whatever you want). Go to your HTTP configura-
tion files (/usr/local/apache/conf or whatever your path is), and open httpd.conf
with a text editor. Add at least one PHP extension directive, as shown in the first line of
code that follows. In the second line, we’ve also added a second handler to have all HTML
files parsed as PHP (which does impose a small performance hit and should not be done if
your architecture uses the . html file extension strictly for HTML-only files). This would
also be a good time for you to ensure that Apache knows what domain alias or IP address
to listen for. (If you have no idea what this means, search httpd.conf for the word
ServerName, add the word Tocalhost right after it, and use that as your domain name
until you get a better one.)

AddType application/x-httpd-php .php

AddType application/x-httpd-php .html

Restart your server. Every time you change your HTTP configuration or php. ini files, you
must stop and start your server again. An HUP signal will not suffice.

cd ../bin
./apachectl start

Set the document root directory permissions to world-executable. The actual PHP files in
the directory need only be world-readable (644). If necessary, replace /home/httpd with
your document root in the code that follows.

chmod 755 /home/httpd/html/php

Open a text editor. Type: <?php phpinfo(); ?>. Save this file in your web server’s docu-
ment root as info.php. Start any web browser and browse the file — you must always
use an HTTP request (http://www.example.com/info.phporhttp://localhost/
info.phporhttp://127.0.0.1/info.php) rather than a filename (/home/httpd/
info.php) for the file to be parsed correctly. You should see a long table of information
about your new PHP6 installation. Congratulations!

Many Apache production servers do not use a php. ini file; it can be undesirable to
have two different configuration files in two different locations. You can replicate many

of the configuration directives of php.ini in your Apache httpd.conf file. At a minimum, you prob-
ably want to set the include path and error-reporting levels, because the default settings for these are
often unsatisfactory. See Chapter 29 for more details.

24

Getting Started with PHP

Microsoft Windows and Apache

As with the LAMP (Linux/Apache/MySQL/Perl/PHP/Python) stack, the last several years has seen
a rise in the WAMP stack (Windows/Apache/MySQL/Perl/PHP/Python). If Microsoft Windows is
your OS of choice, then youwll have no problem running any of these popular packages, just like
your Linux brethren. Apache, PHP, and MySQL all offer installers and source code for Windows.
This section examines installation on Microsoft Windows Server 2008, Windows Server 2003, and
Windows Vista.

NOTE -
Server 2003.

Microsoft Windows XP is still quite popular on the desktop, and installation of these
components on Windows XP is roughly the same as the installation on Windows

To install Apache with PHP on Microsoft Windows Vista and Windows Server 2003 and 2008:

1.

Download Apache server from http://httpd.apache.org/download.cgi. You want
the current stable release version with the no_src.msi extension (You can try the .exe
version if there is one, but it doesn’t work on all systems and isn’t any easier). Once down-
loaded, double-click the installer file to install. The installer will run through a wizard. For
our intents and purposes in this book, you can accept the defaults. As you gain experience
with the Apache server, you may find that you want to adjust and tweak the configuration,
but for now, the defaults are fine.

You may need to stop Internet Information Server (IIS) in Windows prior to starting
Apache, since both will attempt to listen on TCP port 80. You may also need to allow
Apache through the firewall in Windows. In Vista, this is accomplished through the
Security Center Control Panel in Windows Vista. Specifically, by using the “Allow a pro-
gram through Windows Firewall” option, clicking on Add Port, and then configuring TCP
port 80 within the Add a Port dialog. In Windows Server 2008, the Windows Firewall with
Advanced Security applet is found in Administrative Tools. Within the Windows Firewall
with Advanced Security applet, clicking on Inbound Rules on the left and then New Rule
on the right will result in a New Inbound Rule Wizard. Follow the wizard to add a TCP
port of 80 inbound.

Next, download PHP from www.php.net/downloads.php. If there’s an installer avail-
able, get it. Otherwise get the zip file version. If you download the installer, then you can
merely follow through the Installation Wizard. Otherwise, for the zip version of PHP,
extract the PHP binary archive using your unzip utility placing it in C: \PHP.

Copy some .d11 files from your PHP directory to your system directory (usually C:\
Windows\System32). You need php6ts.d11 for every case. You will also probably need
to copy the file corresponding to your web server module — C:\PHP\php6apache?2_2.
d11 — to your Apache modules directory. It’s possible that you will also need other files
from the d11s subfolder — but start with the two mentioned previously and add more

if you need them. For instance, it’s quite common to need to copy 1ibmysql.d11 from
C:\PHP to C:\Windows\System32 as well, so you might as well copy it there now. In
Windows Vista, I've found that the easiest way to do this is to right-click on the command
prompt, select Run as Administrator, and then copy the files using the copy command, as
in copy c:\php\php6ts.dll c:\windows\system32\.

25

m Introducing PHP

26

CROSS:Ri

4. Rename either php.ini-dist or php.ini-recommended (preferably the latter) as php.
ini within your C: \PHP directory. Open this file in a text editor (for example, Notepad).
Edit this file to get configuration directives; see the options listed in Chapter 29. At this
point, we highly recommend that new users set error reporting to E_ALL on their devel-
opment machines. Note that it’s not strictly necessary to edit the file at this time, but you
should be familiar with its contents nonetheless.

5. Go to your HTTP configuration files (C: \Program Files\Apache Software
Foundation\Apache2.2\conf or whatever your path is), and open httpd.conf with a
text editor. Add the PHP module load directive as shown in the first line of the following
code and add the handler for .php and .phtm1 files, too:

LoadModule php6_module modules/php6apache2_2.d11
AddType application/x-httpd-php .php .phtml

6. Stop and restart the WWW service. Go to the Start menu => All Programs = Apache
HTTP Server 2.2 = Control Apache HTTP Server = Stop/Start; or Restart, or even run
Apache from the MS-DOS prompt.

7. Open a text editor (for example, Notepad). Type: <?php phpinfo(); ?>. Save this
file in your web server’s document root (C: \Program Files\Apache Software
Foundation\Apache2.2\htdocs by default) as info.php. Start any web browser and
request the file: http://1ocalhost/info.phporhttp://127.0.0.1/info.php). You
should see a long table of information about your new PHP6 installation. Congratulations!
If things didn’t go as planned, check the error log for Apache, usually located at C: \
Program Files\Apache Software Foundation\Apache\logs\error.log.

If you follow these directions and don’t get the results you expected, don’t panic! Check
out Chapter 10 for common gotchas and quirks. If that doesn’t help, check out the com-
ments on the relevant pages in the PHP online manual — users leave specific tips for specific setups
they’ve had problems with.

Other web servers

PHP has been successfully built and run with many other web servers, such as Netscape Enterprise
Server, Xitami, Zeus, and thttpd. Module support for AOLServer, NSAPI, and fhttpd is available. See
the relevant pages on the PHP online manual’s installation section.

Development tools

When it comes to development tools, PHP used to fall between the cracks — between tools origi-
nally designed for other programming languages and those mainly used to create pretty HTML. It’s
certainly possible to write a complex 2000-line program that touches several other services and file-
systems and outputs the string 1 to the browser on completion. On the other hand, there are many
people whose main use of PHP is to slap common headers and footers on what amounts to a bunch
of static HTML pages. With such a diversity of usages, it's perhaps not so amazing that the perfect
PHP development environment — user-friendly enough for the designers, but light and powerful
enough for the geeks — has been elusive.

Getting Started with PHP

Those coming to PHP from a strictly client-side perspective probably have the hardest adjustment
to make. There’s no such thing as a plush development environment with wizards and drag-
and-drop icons and built-in graphics manipulation. If that sort of thing is important to you, you
can use a WYSIWYG editor to format the page and then add PHP functionality later using a text
editor. The downside of this strategy is, of course, that machine-written code is often not very
human-readable — but one must suffer to be pretty.

The last year and a half, however, has seen substantial change in the market. Plenty of editors for
both Windows and Linux now offer at least syntax highlighting for PHP. Several of these can map
drive locations to server names, so you can debug in place.

. Be particularly careful with using Microsoft FrontPage or Adobe Dreamweaver as a PHP
= editor, as they both leave something to be desired for PHP development. .

Old-school programmers will have less of a learning curve, since they can treat PHP like any other
server-side programming language that may or may not happen to output HTML to a browser. Most
PHP users in this category seem to prefer simple text editors. Generally, these products will afford
you a modest amount of help, such as syntax highlighting, brace matching, or tag closing — most of
which is about helping you avoid stupid mistakes rather than actually writing the script for you.

My favorite is good old Vi, or Vi-Enhanced, Vim, although many people have problems using Vi.
An excellent GUI tool is Eclipse. I've been using Eclipse for quite some time and feel comfortable
recommending it for development in PHP, JavaScript, HTML, and just about any other language.
Get Eclipse from www.eclipse.org.

What’s to Come?

The remainder of this chapter looks at some basics of PHP, focusing on getting you up to speed for
the rest of the book!

Your HTML Is Already PHP-Compliant!

PHP is already perfectly at home with HTML — in fact, it is generally embedded within HTML. As
you'll see in later chapters, PHP rides piggyback on some of the cleverer parts of the HTML stan-
dard, such as forms and cookies, to do all kinds of useful things.

Anything compatible with HTML on the client side is also compatible with PHP. PHP could not care
less about chunks of JavaScript, calls to music and animation, applets, or anything else on the client
side. PHP will simply ignore those parts, and the web server will happily pass them on to the client.

It should be clear that you can use any method of developing web pages and simply add PHP to that
method. If you're comfortable having teams work on each page using huge multimedia graphics
suites, you can keep doing that. The general point is that you don’t need to change tools or workflow
order, just do what you've been doing and add the server-side functionality at the end.

27

m Introducing PHP

Escaping from HTML

By now you're probably wondering: How does the PHP parser recognize PHP code inside your
HTML document? The answer is that you tell the program when to spring into action by using
special PHP tags at the beginning and end of each PHP section. This process is called escaping from
HTML or escaping into PHP.

| Not to confuse you, but escape in this sense should not be confused with another com-
: . mon use of the term escape in PHP: putting a backslash in front of certain special charac-
ters (such as tab and newline) within double-quoted strings. Escaping strings is explained in Chapter 7.

Everything within these tags is understood by the PHP parser to be PHP code. Everything outside of
these tags does not concern the server and will simply be passed along and left for the client to sort
out whether it's HTML or JavaScript or something else.

There are several styles of PHP, but it’s best to stick with the tried-and-true tags that will always
work no matter which version of PHP you're using;

Canonical PHP tags

The most universally effective PHP tag style is:
<tphp ?>

1f you use this style, you can be positive that your tags will always be correctly interpreted. Unless
you have a very, very strong reason to prefer another style, use this one. Some or all of the other
styles of PHP tag may be phased out in the future — only this one is certain to be safe.

Hello World

Now you're ready to write your first PHP program. Open a new file in your preferred editor. Type:

<HTML>
<HEAD>
KTITLE>My first PHP program</TITLE>
</HEAD>

<BODY>

<?php

print("Hello, World
\n");
phpinfo();

7>

</BODY>

</HTML>

In most browsers, nothing but the PHP section is strictly necessary; however, it's a good idea to get
in the habit of always using a well-formed HTML structure in which to embed your PHP.

28

Getting Started with PHP

If you don’t see something pretty close to the output shown in Figure 3-1, you have a problem —
most likely some kind of installation or configuration glitch. Review Chapter 2 and make doubly
sure that your installation succeeded.

FIGURE 3-1

Your first PHP script

by lies) PHR promeom - MosHle Eirmfox

Fle Edt Yew Mgoy Beomals Took e _ =

= = == 1
Q- - @ -5: L1 Wil 192. 68,1 188 wkomesk st [l] Gl _\:_‘
Hello Worl a

PHF Credits

Configuration
PHP Core

i
%‘;i._
BEEEE
HEEEE

)

Refer back to Chapter 2 for installation instructions and forward to Chapter 29 for configuration
options. Chapter 10 diagnoses some common early problems and gives debugging hints.

29

m Introducing PHP

30

Jumping in and out of PHP mode

At any given moment in a PHP script, you are either in PHP mode or you're out of it in HTML.
There’s no middle ground. Anything within the PHP tags is PHP; everything outside is plain HTML,
as far as the server is concerned.

You can escape into PHP mode with giddy abandon, as often and as briefly or lengthily as necessary.
For example:

<?php $id = 1; 7>

<FORM METHOD="POST" ACTION="registration.php"">
<P>First name:

<INPUT TYPE="TEXT" NAME="firstname" SIZE="20">
<{P>Last name:

<INPUT TYPE="TEXT" NAME="Tastname" SIZE="20">
<P>Rank:

<INPUT TYPE="TEXT" NAME="rank" SIZE="10">
<INPUT TYPE="HIDDEN" NAME="serial number" VALUE="<?php
echo $id; 72>">

<INPUT TYPE="submit"SUBMIT" VALUE="INPUT"">
</FORM>

Notice that things that happened in the first PHP mode instance — in this case, a variable being
assigned — are still valid in the second. In Chapter 4, you'll learn more about what happens to vari-
ables when you skip in and out of PHP mode. In Chapter 32, you'll also learn about different styles
of using PHP mode.

Including files

Another way you can add PHP to your HTML is by putting it in a separate file and calling it by using
PHP’s include functions. There are four include functions:

m include('/filepath/filename")

B require('/filepath/filename')

m include_once('/filepath/filename")
]

require_once('/filepath/filename")

In previous versions of PHP, there were significant differences in functionality and speed between
the include functions and the require functions. This is no longer true; the two sets of functions
differ only in the kind of error they throw on failure. Include () and include_once() will merely
generate a warning on failure, while require() and require_once() will cause a fatal error and
termination of the script.

As suggested by the names of the functions, include_once() and require_once() differ from
simple include() and require() in that they will allow a file to be included only once per PHP
script. This is extremely helpful when you are including files that contain PHP functions, because

Getting Started with PHP

redeclaring functions results in an automatic fatal error. In larger PHP systems, it’s quite common
to include files that include other files that include other files — it can be difficult to remember
whether you've included a particular function before, but with include_once() or require_
once() you don't have to.

How do you decide on a preferred include function? In essence, you must decide whether you
want to force yourself to write good code on pain of fatal error or whether you want it to run regard-
less of certain common errors on your part. The strictest alternative is require (), which will bring
everything grinding to a halt if your code isn't perfect; the least strict is include_once (), which
will good-naturedly hide the consequences of some of your bad coding habits.

The most common use of PHP’s include capability is to add common headers and footers to all the
web pages on a site. For example, a simple header file (cleverly named header.php) might look
like this:

<HTML>

<HEAD>

KTITLEDA site title</TITLE>
</HEAD>

<BODY>

Similarly, a footer file called footer.php might consist of:

<P>Copyright 1995 - 2002</P>
</B0ODY>
</HTML>

They are called from a PHP page this way:

<?php
require_once($_SERVER['DOCUMENT_ROOT'].'/header.php');
7>

<P>This is some body text for this particular page.</P>
<?php
require_once($_SERVER['DOCUMENT_ROOT'].'/footer.php');
>

Obviously, this single move greatly enhances the maintainability and scalability of an entire site.
Now, if you want a different look and feel or if you need to update the copyright notice, you can alter
one file instead of identical lines in dozens of HTML pages.

When including files, remember to set the include_path directive correctly in your
php.ini file. Remember that you can include files from above or entirely outside your
web tree by proper use of this directive. See Chapter 29 for more information.

As you can see from the preceding example, PHP’s inc1ude functions simply pass along the con-
tents of the included file as text. Many people think that because an include function occurs inside
PHP mode, the included file will also be in PHP mode. This is not true! Actually, the server escapes

31

Introducing PHP

32

back into HTML mode at the beginning of each included file and silently returns to PHP mode at the
end, just in time to catch the semicolon.

As always, you need to say when you intend something to be PHP by using PHP opening and closing
tags. Any part of an included file that needs to be executed as PHP should be enclosed in valid PHP
tags. If the entire file is PHP (very common in files of functions), the entire file must be enclosed
within PHP tags.

Take the following file, database.php:

$db = mysql_connect('localhost', 'db_user', 'db_password');
mysql_select_db('my_database');

& We can’t emphasize this enough: If you’re having problems including PHP files, par-
ticularly if you're seeing output you don’t expect or not seeing output you do expect, be
ABSOLUTELY POSITIVE that you’ve put PHP tags at the beginning and end of the included file.

If you were to foolishly include this file from a PHP script, your database variables would be visible
to the world in plain text — because you neglected to use PHP tags, the parser assumes that this
block of code is HTML. A correct version of the database. php file would look like this:

<?php

$db = mysql_connect('Tocalhost', 'db_user', 'db_password');
mysql_select_db('my_database');

7>

For all PHP files included from other files, you must ensure that there are no empty new
lines at the end of the file. Remember, anything outside a PHP block is considered HTML,
even a blank line. Blank lines, or even blank spaces outside a closing PHP tag, will be interpreted as
output. If you include the file in a situation where you cannot have output — say before using HTTP
headers — your script will fail with a big error message about the output stream having already been
started in your included file. See Chapter 10 for an example.

Summary

This chapter gets you up to speed with PHP, beginning with installation instructions for the several
common platforms. Finally, some coding was shown in this chapter through the venerable “Hello
World” example, illustrating not only that your PHP installation is working, but also that you can
code in PHP!

n this chapter, we cover the basic syntax of PHP — the rules that all

well-formed PHP code must follow. We explain how to use variables to

store and retrieve information as your PHP code executes and the type
of system that governs what kinds of values can be stored in the first place.
Finally, we look at the simplest ways to display text that will show up in
your user’s browser window.

PHP Is Forgiving

The first and most important thing to say about the PHP language is that

it tries to be as forgiving as possible. Programming languages vary quite

a bit in terms of how stringently syntax is enforced. Pickiness can be a
good thing because it helps make sure that the code you're writing is really
what you mean. If you are writing a program to control a nuclear reactor
and you forget to assign a variable, it is far better to have the program be
rejected than to create behavior different from what you intended. PHP’s
design philosophy, however, is at the other end of the spectrum. Because
PHP started life as a handy utility for making quick web pages, it empha-
sizes convenience for the programmer over correctness; rather than have a
programmer do the extra work of redundantly specifying what is meant by
a piece of code, PHP requires the minimum and then tries its best to figure
out what was meant. Among other things, this means that certain syntacti-
cal features that show up in other languages, such as variable declarations
and function prototypes, are simply not necessary.

33

IN THIS CHAPTER

Understanding the basic rules
of PHP

Storing information in variables

Constants, variables, and data
types

Output to HTML

m Introducing PHP

34

With that said, though, PHP can't read your mind; it has a minimum set of syntactical rules that
your code must follow. Whenever you see the words parse error in your browser window instead
of the cool web page you thought you had just written, it means that you've broken these rules to the
point that PHP has given up on your page.

HTML Is Not PHP

The second most important thing to understand about PHP syntax is that it applies only within PHP.
Because PHP is embedded in HTML documents, every part of such a document is interpreted as
either PHP or HTML, depending on whether that section of the document is enclosed in PHP tags.

PHP syntax is relevant only within PHP, so we assume for the rest of this chapter that PHP mode is
in force — that is, most code fragments will be assumed to be embedded in an HTML page and sur-
rounded with the appropriate tags.

PHP’s Syntax Is C-Like

The third most important thing to know about PHP syntax is that, broadly speaking, it is like the

C programming language. If you happen to be one of the lucky people who already know C, this is
very helpful; if you are uncertain about how a statement should be written, try it first the way you
would do it in C, and if that doesn’t work, look it up in the manual. The rest of this section is for the
other people, the ones who don't already know C. (C programmers might want to skim the headers
of this section and also see Appendix A, which is specifically for C programmers.)

PHP is whitespace insensitive

Whitespace is the stuff you type that is typically invisible on the screen, including spaces, tabs,
and carriage returns (end-of-line characters). PHP’s whitespace insensitivity does not mean that
spaces and such never matter. (In fact, they are crucial for separating the words in the PHP lan-
guage.) Instead, it means that it almost never matters how many whitespace characters you have in
a row — one whitespace character is the same as many such characters.

For example, each of the following PHP statements that assigns the sum of 2 + 2 to the variable
$four is equivalent:

$four = 2 + 2; // single spaces

$four <tab>=<tab>2<tab>+<{tab>2 ; // spaces and tabs
$four =

2

+

2; // multiple lines

Learning PHP Syntax and Variables

The fact that end-of-line characters count as whitespace is handy, because it means you never have
to strain to make sure that a statement fits on a single line.

PHP is sometimes case sensitive

Having read that PHP isn't picky, you may be surprised to learn that it is sometimes case sensitive
(that is, it cares about the distinction between lowercase and capital letters). In particular, all vari-
ables are case sensitive. If you embed the following code in an HTML page:

<{?php
$capital = 67;
print("Variable capital is $capital
");
print("Variable CaPiTalL is $CaPiTaL
");
7>

The output you will see is:

Variable capital is 67
Variable CaPiTal is

The different capitalization schemes make for different variables. (Surprisingly, under the default
settings for error reporting, code like this fragment will not produce a PHP error — see the section
“Unassigned variables,” later in this chapter.)

On the other hand, unlike in C, function names are not case sensitive, and neither are the basic lan-
guage constructs (1 f, then, else, while, and the like).

Statements are expressions terminated
by semicolons

A statement in PHP is any expression that is followed by a semicolon (;). If expressions correspond

to phrases, statements correspond to entire sentences, and the semicolon is the full stop at the end.
Any sequence of valid PHP statements that is enclosed by the PHP tags is a valid PHP program. Here
is a typical statement in PHP, which in this case assigns a string of characters to a variable called
$greeting:

$greeting = "Welcome to PHP!";

The rest of this subsection is about how such statements are built from smaller components and how
the PHP interpreter handles the evaluation of statements. (If you already feel comfortable with state-
ments and expressions, feel free to skip ahead.)

Expressions are combinations of tokens

The smallest building blocks of PHP are the indivisible tokens, such as numbers (3.14159), strings
("two"), variables ($two), constants (TRUE), and the special words that make up the syntax of PHP

35

m Introducing PHP

36

itself (i f, else, and so forth). These are separated from each other by whitespace and by other spe-
cial characters such as parentheses and braces.

The next most complex building block in PHP is the expression, which is any combination of tokens
that has a value. A single number is an expression, as is a single variable. Simple expressions can
also be combined to make more complicated expressions, usually either by putting an operator

in between (for example, 2 + (2 + 2)) or by using them as input to a function call (for example,
pow(2 * 3, 3 *2)). Operators that take two inputs go in between their inputs, whereas functions
take their inputs in parentheses immediately after their names, with the inputs (known as argu-
ments) separated by commas.

Expressions are evaluated

Whenever the PHP interpreter encounters an expression in code, that expression is immediately
evaluated. This means that PHP calculates values for the smallest elements of the expression and suc-
cessively combines those values connected by operators or functions, until it has produced an entire
value for the expression. For example, successive steps in an imaginary evaluation process might
look like:

$result 2 %2 +3*3+5h;
+ 3 3+ 5) //imaginary evaluation steps
+ 9 5

)

*
+
+ 5)

(= 4
(=4
(=13

(= 18)

with the result that the number 18 is stored in the variable $result.

Precedence, associativity, and evaluation order

There are two kinds of freedom PHP has in expression evaluation: how it groups or associates sub-
expressions and the order in which it evaluates them. For example, in the evaluation process just
shown, multiplications were associated more tightly than additions, which affects the end result.

The particular ways that operators group expressions are called precedence rules — operators that
have higher precedence win in grabbing the expressions around them. If you want, you can memo-
rize the rules, such as the fact that * always has higher precedence than +. Or you can just use the
following cardinal rule: When in doubt, use parentheses to group expressions.

For example:

$resultl
$result?

2+ 3 *4+5; // is equal to 19
(2 +3) * (4 +5); // is equal to 45

Operator precedence rules remove much of the ambiguity about how subexpressions are associated.
But what about when two operators have the same precedence? Consider this expression:

$how_much = 3.0 / 4.0 / 5.0;

Learning PHP Syntax and Variables

Whether this is equal to 0.15 or 3.75 depends on which division operator gets to grab the num-
ber 4.0 first. There is an exhaustive list of rules of associativity in the online manual, but the rule
to remember is that associativity is usually left-before-right — that is, the preceding expression
would evaluate to 0.15, because the leftmost of the two division operators wins the dispute over
precedence.

The final wrinkle is order of evaluation, which is not quite the same thing as associativity. For
example, look at the arithmetic expression:

3*4+5*6

We know that the multiplications will happen before the additions, but that is not the same as
knowing which multiplication PHP will perform first. In general, you need not worry about evalua-
tion order, because in almost all cases it will not affect the result. You can construct weird examples
where the result does depend on order of evaluation, usually by making assignments in subexpres-
sions that are used in other parts of the expression. For example:

$huh = ($this = $that + 5) + ($that = $this + 3); // BAD

But don't do this, okay? PHP may or may not have a predictable order of evaluation of expressions,
but you shouldn’t depend on it — so we’re not going to tell you! (The one legitimate use of relying on
left-to-right evaluation order is in short-circuiting Boolean expressions, which we cover in Chapter 5.)

Expressions and types

Usually, the programmer is careful to match the types of expressions with the operators and func-
tions that combine them. Common expressions are mathematical (with mathematical operators
combining numbers) or Boolean (combining true-or-false statements with ands and ors) or string
expressions (with operators and functions constructing strings of characters). As with the rest of PHP,
however, the treatment of types is surprisingly forgiving. Consider the following expression, which
deliberately mixes the types of subexpressions in an inappropriate way:

2 + 2 * "nonsense" + TRUE

Rather than produce an error, this evaluates to the number 3. (You can take this as a puzzle for now,
but we will explain how such a thing can happen in the “Types in PHP” section of this chapter.)

Assignment expressions

A very common kind of expression is the assignment, where a variable is set to equal the result of
evaluating some expression. These have the form of a variable name (which always starts with a $),
followed by a single equal sign, followed by the expression to be evaluated. For example:

$eight = 2 * (2 * 2);

assigns the variable $eight the value you would expect.

37

m Introducing PHP

38

An important thing to remember is that even assignment expressions are expressions and so have val-
ues themselves! The value of an expression that assigns a variable is the same as the value assigned.
This means that you can use assignment expressions in the middle of more complicated expressions.
If you evaluate the statement:

$ten = ($two = 2) + ($eight =2 * (2 * 2));

each variable would be assigned a numerical value equal to its name.

Reasons for expressions and statements

There are usually only two reasons to write an expression in PHP: for its value or for a side effect. The
value of an expression is passed on to any more complicated expression that includes it; side effects
are anything else that happens as a result of the evaluation. The most typical side effects involve
assigning or changing a variable, printing something to the user’s screen, or making some other per-
sistent change to the program’s environment (such as interacting with a database).

Although statements are expressions, they are not themselves included in more complicated expres-
sions. This means that the only good reason for a statement is a side effect! It also means that it is
possible to write legal (yet totally useless statements) such as the second of these:

print("Hello"); // side effect is printing to screen
2 * 3+ 4; // useless - no side effect
$value_num = 3 * 4 + 5; // side effect is assignment

store_in_database(49.5); // side effect to DB

Braces make blocks

Although statements cannot be combined like expressions, you can always put a sequence of state-
ments anywhere a statement can go by enclosing them in a set of curly braces.

For example, the 1f construct in PHP has a test (in parentheses) followed by the statement that
should be executed if the test is true. If you want more than one statement to be executed when the
test is true, you can use a brace-enclosed sequence instead. The following pieces of code (which sim-
ply print a reassuring statement that it is still true that 1 + 2 is equal to 3) are equivalent:

if (3 ==2+1)
print("Good - I haven't totally Tost my mind.
");

if (3 ==2+1)
{
print("Good - I haven't totally ");
print("lost my mind.
");

Learning PHP Syntax and Variables _

You can put any kind of statement in a brace-enclosed block, including, say, an 1 f statement that
itself has a brace-enclosed block. This means that if statements can have other i f statements inside
them. In fact, this kind of nesting can be done to an arbitrary number of levels.

Comments

A comment is the portion of a program that exists only for the human reader. The very first thing that
a program executor does with program code is to strip out the comments, so they cannot have any
effect on what the program does. Comments are invaluable in helping the next person who reads
your code figure out what you were thinking when you wrote it, even when that person is yourself a
week from now.

PHP drew its inspiration from several different programming languages, most notably C, Perl, and
Unix shell scripts. As a result, PHP supports styles of comments from all those languages, and those
styles can be intermixed freely in PHP code.

C-style multiline comments

The multiline style of commenting is the same as in C: A comment starts with the character pair /*
and terminates with the character pair */. For example:

/* This is
a comment in
PHP */

The most important thing to remember about multiline comments is that they cannot be nested.
You cannot put one comment inside another. If you try, the comment will be closed off by the first
instance of the */ character pair, and the rest of what was intended to be an enclosing comment will
instead be interpreted as code, probably failing horribly. For example:

/* This comment will /* fail horribly on the
last word of this */ sentence
*/

This is an easy thing to do unintentionally, usually when you try to deactivate a block of commented
code by “commenting it out.”

Single-line comments: #and //

In addition to the /* ... */ multiple-line comments, PHP supports two different ways of comment-
ing to the end of a given line: one inherited from C++ and Java and the other from Perl and shell
scripts. The shell-script-style comment starts with a pound sign, whereas the C++ style comment
starts with two forward slashes. Both of them cause the rest of the current line to be treated as a
comment, as in the following:

This is a comment, and
this is the second Tine of the comment

39

m Introducing PHP

40

// This is a comment too. Each style comments only
// one Tine so the Tast word of this sentence will fail
horribly.

The very alert reader might argue that single-line comments are incompatible with what we said
earlier about whitespace insensitivity. That would be correct — you will get a very different result if
you take a single-line comment and replace one of the spaces with an end-of-line character. A more
accurate way of putting it is that, after the comments have been stripped out of the code, PHP code
is whitespace insensitive.

Variables

The main way to store information in the middle of a PHP program is by using a variable — a way to
name and hang on to any value that you want to use later.

Here are the most important things to know about variables in PHP (more detailed explanations
will follow):

All variables in PHP are denoted with a leading dollar sign ($).

The value of a variable is the value of its most recent assignment.

Variables are assigned with the = operator, with the variable on the left-hand side and the
expression to be evaluated on the right.

Variables can, but do not need, to be declared before assignment.
Variables have no intrinsic type other than the type of their current value.

m Variables used before they are assigned have default values.

PHP variables are Perl-like

All variables in PHP start with a leading $ sign just like scalar variables in the Perl scripting lan-
guage, and in other ways they have similar behavior (need no type declarations, may be referred to
before they are assigned, and so on). (Perl hackers may need to do no more than skim the headings
of this section, which is really for the rest of us.)

After the initial $, variable names must be composed of letters (uppercase or lowercase), digits (0-9),
and underscore characters (_). Furthermore, the first character after the $ may not be a number.

Declaring variables (or not)

This subheading is here simply because programmers from some other languages might be looking for
it — in languages such as C, C++, and Java, the programmer must declare the name and type of any
variable before making use of it. However in PHP, because types are associated with values rather than
variables, no such declaration is necessary — the first step in using a variable is to assign it a value.

Learning PHP Syntax and Variables _

Assigning variables

Variable assignment is simple — just write the variable name, and add a single equal sign (=); then
add the expression that you want to assign to that variable:

$pi = 3 + 0.14159; // approximately

Note that what is assigned is the result of evaluating the expression, not the expression itself. After
the preceding statement is evaluated, there is no way to tell that the value of $pi was created by
adding two numbers together.

It’s conceivable that you will want to actually print the preceding math expression rather than evalu-
ate it. You can force PHP to treat a mathematical variable assignment as a string by quoting the
expression:

$pi = "3 + 0.14159";

Reassigning variables

There is no interesting distinction in PHP between assigning a variable for the first time and chang-
ing its value later. This is true even if the assigned values are of different types. For example, the fol-
lowing is perfectly legal:

$my_num_var = "This should be a number - hope it's reassigned";
$my_num_var = 5;

If the second statement immediately follows the first one, the first statement has essentially no effect.

Unassigned variables

Many programming languages will object if you try to use a variable before it is assigned; others
will let you use it, but if you do you may find yourself reading the random contents of some area of
memory. In PHP, the default error-reporting setting allows you to use unassigned variables without
errors, and PHP ensures that they have reasonable default values.

| If you would like to be warned about variables that have not been assigned, you should

change the error-reporting level to E_ALL (the highest level possible) from the default level
of error reporting. You can do this either by including the statement error_reporting(E_ALL); at
the top of a script or by changing your php . ini file to set the default level (see Chapters 29 and 30).

Default values

Variables in PHP do not have intrinsic types — a variable does not know in advance whether it will
be used to store a number or a string of characters. So how does it know what type of default value
to have when it hasn’t yet been assigned?

41

m Introducing PHP

42

The answer is that, just as with assigned variables, the type of a variable is interpreted depend-

ing on the context in which it is used. In a situation where a number is expected, a number will be
produced, and this works similarly with character strings. In any context that treats a variable as a
number, an unassigned variable will be evaluated as 0; in any context that expects a string value, an
unassigned variable will be the empty string (the string that is zero characters long).

Checking assignment with isset

Because variables do not have to be assigned before use, in some situations you can actually convey
information by selectively setting or not setting a variable! PHP provides a function called isset
that tests a variable to see whether it has been assigned a value.

As the following code illustrates, an unassigned variable is distinguishable even from a variable that
has been given the default value:

$set_var = 0; //set_var has a value
//never_set does not

print("set_var print value: $set_var
");
print("never_set print value: $never_set
");
if ($set_var == $never_set)

print("set_var is equal to never_set!
");
if (isset($set_var))

print("set_var is set.
");
else

print("set_var is not set.
");
if (isset($never_set))

print("never_set is set.
");
else

print("never_set is not set.");

Oddly enough, this code will produce the following output:

set_var print value: 0
never_set print value:

set_var is equal to never_set!
set_var is set.

never_set is not set.

The variable $never_set has never been assigned, so it produces an empty string when a string is
expected (as in the print statement) and a zero value when a number is expected (as in the com-
parison test that concludes that the two variables are the same). Still, isset can tell the difference
between $set_var and $never_set.

Assigning a variable is not irrevocable — the function unset () will restore a variable to an unas-
signed state (for example, unset($set_var); will make $set_var into an unbound variable,
regardless of its previous assignments).

Learning PHP Syntax and Variables _

Variable scope

Scope is the technical term for the rules about when a name (for, say, a variable or function) has the
same meaning in two different places and in what situations two names spelled exactly the same
way can actually refer to different things.

Any PHP variable not inside a function has global scope and extends throughout a given “thread” of
execution. In other words, if you assign a variable near the top of a PHP file, the variable name has
the same meaning for the rest of the file; and if it is not reassigned, it will have the same value as the
rest of your code executes (except inside the body of functions and classes).

The assignment of a variable will not affect the value of variables with the same name in other
PHP files or even in repeated uses of the same file. For example, let’s say that you have two files,
startup.php and next_thing.php, which are typically visited in that order by a user. Let’s also
say that near the top of startup.php, you have the line:

$username = "Jane Q. User";

which is executed only in certain situations. Now, you might hope that, after setting that variable in
startup.php, it would also be preset automatically when the user visited next_thing.php, but
no such luck. Each time a PHP page executes, it assigns and reassigns variables as it goes, and those
variables disappear at the end of a page’s production. Assignments of variables in one file do not
affect variables of the same name in a different file or even in other requests for the same file.

Obviously, there are many situations in which you would like to hold onto information for longer
than it takes to generate a particular web page. There are a variety of ways you can accomplish this,
and the different techniques are a lot of what the rest of this book is about. For example, you can
pass information from page to page using GET and POST variables (Chapter 6), store information
persistently in a database (all of Part II of this book), associate it with a user’s session using PHP’s
session mechanism (see Chapter 24), or store it on a user’s hard disk via a cookie (see Chapter 24).

Functions and variable scope

Except inside the body of a function, variable scope in PHP is quite simple: Within any given execu-
tion of a PHP file, just assign a variable, and its value will be there for you later. We haven't yet cov-
ered how to define your own functions, but it’s worth a look-ahead note: Variables assigned within

a function are local to that function, and unless you make a special declaration in a function, that
function won't have access to the global variables defined outside the function, even when they are
defined in the same file. (We will discuss the scope of variables in functions in depth when we cover
function definitions in Chapter 5.)

You can switch modes if you want

One scoping question that we had the first time we saw PHP code was: Does variable scope persist
across tags? For example, we have a single file that looks like:

<HTML>
<HEAD>

43

m Introducing PHP

44

<?php
$username = "Jane Q. User";
7>
</HEAD>
<BODY>
<?php
print("$username
");
?>
</BODY>
</HTML>

Should we expect our assignment to $username to survive through the second of the two PHP-
tagged areas? The answer is yes — variables persist throughout a thread of PHP execution (in other
words, through the whole process of producing a web page in response to a user’s request). This is
a single manifestation of a general PHP rule, which is that the only effect of the tags is to let the PHP
engine know whether you want your code to be interpreted as PHP or passed through untouched as
HTML. You should feel free to use the tags to switch back and forth between modes whenever it is
convenient.

Constants

In addition to variables, which may be reassigned, PHP offers constants, which have a single value
throughout their lifetime. Constants do not have a $ before their names, and by convention the
names of constants usually are in uppercase letters. Constants can contain only scalar values (num-
bers and string). Constants have global scope, so they are accessible everywhere in your scripts after
they have been defined — even inside functions.

For example, the built-in PHP constant E_ALL represents a number that indicates to the error_
reporting() function that all errors and warnings should be reported. A call to error_report-
ing () might look like this:

error_reporting(E_ALL);

This is identical to calling error_reporting() on the integer value of E_ALL, but is better because
the actual value of E_ALL may change from one version of PHP to the next.

It’s also possible to create your own constants using the define() function. The code:

define(MY_ANSWER, 42);

would cause MY_ANSWER to evaluate to 42 everywhere it appears in your code. There is no way to
change this assignment after it has been made, and like variables, user-defined constants that are
not part of PHP itself do not persist across pages unless they are explicitly passed to a new page.
When created constants are used, they are generally most usefully defined in an external include file
and might be used for such information as a sales-tax rate or perhaps an exchange rate.

Learning PHP Syntax and Variables _

Types in PHP: Don’t Worry, Be Happy

All programming languages have some kind of type system, which specifies the different kinds of
values that can appear in programs. These different types often correspond to different bit-level rep-
resentations in computer memory, although in many cases programmers are insulated from having
to think about (or being able to mess with) representations in terms of bits.

PHP’s type system is simple, streamlined, and flexible, and it insulates the programmer from low-level
details. PHP makes it easy not to worry too much about typing of variables and values, both because it
does not require variables to be typed and because it handles a lot of type conversions for you.

No variable type declarations

As you saw in Chapter 3, the type of a variable does not need to be declared in advance. Instead, the
programmer can jump right ahead to assignment and let PHP take care of figuring out the type of
the expression assigned:

$first_number = 55.5;
$second_number = "Not a number at all";

Automatic type conversion

PHP does a good job of automatically converting types when necessary. Like most other modern
programming languages, PHP will do the right thing when, for example, doing math with mixed
numerical types. The result of the expression

$pi = 3 + 0.14159;

is a floating-point (double) number, with the integer 3 implicitly converted into floating point before
the addition is performed.

Types assigned by context

PHP goes further than most languages in performing automatic type conversions. Consider:

$sub = substr(12345, 2, 2);
print("sub is $sub
");

The substr function is designed to take a string of characters as its first input and return a sub-
string of that string, with the start point and length determined by the next two inputs to the func-
tion. Instead of handing the function a character string, however, we gave it the integer 12345. What
happens? As it turns out, there is no error, and we get the browser output:

sub is 34

Because substr expects a character string rather than an integer, PHP converts the number 12345
to the character string '12345", which substr then slices and dices.

45

m Introducing PHP

46

Because of this automatic type conversion, it is very difficult to persuade PHP to give a type error —
in fact, PHP programmers need to exercise a little care sometimes to make sure that type confusions
do not lead to error-free but unintended results.

Type Summary

PHP has a total of eight types: integers, doubles, Booleans, strings, arrays, objects, NULL, and resources.

Integers are whole numbers, without a decimal point, like 495.

Doubles are floating-point numbers, like 3.14159 or 49.0.

Booleans have only two possible values: TRUE and FALSE.

NULL is a special type that only has one value: NULL.

Strings are sequences of characters, like 'PHP 4.0 supports string operations.’

Arrays are named and indexed collections of other values.

Objects are instances of programmer-defined classes, which can package up both other
kinds of values and functions that are specific to the class.

B Resources are special variables that hold references to resources external to PHP (such as
database connections).

Of these, the first five are simple types, and the next two (arrays and objects) are compound — the
compound types can package up other arbitrary values of arbitrary type, whereas the simple types
cannot. We treat only the simple types in this chapter, since arrays (see Chapter 8) and objects (see
Chapter 20) need chapters all to themselves. Finally, the thorniest details of the type system, includ-
ing discussion of the resource type, are deferred to Chapter 25.

The Simple Types

The most of the simple types in PHP (integers, doubles, Booleans, NULL, and strings) should be familiar
to those with programming experience (although we will not assume that experience and will explain
them in detail). The only thing likely to surprise C programmers is how few types there are in PHP.

Many programming languages have several different sizes of numerical types, with the larger ones
allowing a greater range of values, but also taking up more room in memory. For example, the C lan-
guage has a short type (for relatively small integers), a Tong type (for possibly larger integers), and
an int type (which might be intermediate, but in practice is sometimes identical either to the short
or long type). It also has floating-point types, which vary in their precision. This kind of typing
choice made sense in an era when tradeoffs between memory use and functionality were often ago-
nizing. The PHP designers made what we think is a good decision to simplify this by having only
two numerical types, corresponding to the largest of the integral and floating-point types in C.

Learning PHP Syntax and Variables _

Integers

Integers are the simplest type — they correspond to simple whole numbers, both positive and nega-
tive. Integers can be assigned to variables, or they can be used in expressions, like this:

$int_var = 12345;
$another_int = -12345 + 12345; // will equal zero

Read formats

Integers can actually be read in three formats, which correspond to bases: decimal (base 10), octal
(base 8), and hexadecimal (base 16). Decimal format is the default, octal integers are specified with
a leading 0, and hexadecimals have a leading Ox. Any of the formats can be preceded by a - sign to
make the integer negative. For example:

$integer_10 = 1000;

$integer_8 = -01000;

$integer_16 = 0x1000;
print("integer_10: $integer_10
");
print("integer_8: $integer_8
");
print("integer_16: $integer_16
");

yields the browser output:

integer_10: 1000
integer_8: -512
integer_16: 4096

Note that the read format affects only how the integer is converted as it is read — the value stored in
$integer_8 does not remember that it was originally written in base 8. Internally, of course, these
numbers are represented in binary format; we see them in their base 10 conversion in the preceding
output because that is the default for printing and incorporating int variables into strings.

Range

How big (or small) can integers get? Because PHP integers correspond to the C Tong type, which

in turn depends on the word-size of your machine, this is difficult to answer definitively. For most
common platforms, however, the largest integer is 23! — 1 (or 2,147,483,647), and the smallest (most
negative) integer is —(23! — 1) (or —2,147,483,647).

The PHP constant PHP_INT_MAX will tell you the maximum integer for your implementation. If you
really need integers even larger or smaller than the preceding, PHP does have some arbitrary-preci-
sion functions — see the BC section of the “Mathematics” chapter (see Chapter 27).

Doubles

Doubles are floating-point numbers, such as:

$first_double = 123.456;

47

m Introducing PHP

48

CROSSER.

$second_double 456

= 0.
$even_double 2.0;

Note that the fact that $even_double is a “round” number does not make it an integer. Integers and
doubles are stored in different underlying formats, and the result of:

$five = $even_double + 3;

is a double, not an integer, even if it prints as 5. In almost all situations, however, you should feel
free to mix doubles and integers in mathematical expressions, and let PHP sort out the typing.

By default, doubles print with the minimum number of decimal places needed — for example, the code:

$many = 2.2888800;

$many_2 = 2.2111200;

$few = $many + $many_2;

print("$many + $many 2 = $few
");

produces the browser output:

2.28888 + 2.21112 = 4.5

If you need finer control of printing, see the printf function in Chapter 7.

Read formats

The typical read format for doubles is -X. Y, where the - optionally specifies a negative number, and
both X and Y are sequences of digits between 0 and 9. The X part may be omitted if the number is
between —1.0 and 1.0, and the Y part can also be omitted. Leading or trailing zeros have no effect.
All the following are legal doubles:

$small_positive = 0.12345;
$small_negative -.12345;
$even_double = 2.00000;
$still_double = 2.;

In addition, doubles can be specified in scientific notation, by adding the letter e and a desired
integral power of 10 to the end of the previous format — for example, 2.2e-3 would correspond
to 2.2 x 107~. The floating-point part of the number need not be restricted to a range between 1.0
and 10.0. All the following are legal:

$small_positive = 5.5e-3;

print("small_positive is $small_positive
");
$large_positive = 2.8e+16;
print("large_positive is $large_positive
");
$small_negative = -2222e-10;
print("small_negative is $small_negative
");
$large_negative = -0.00189e6;
print("large_negative is $large_negative
");

Learning PHP Syntax and Variables

The preceding code produces the following browser output:

small_positive is 0.0055
large_positive is 2.8E+16
small_negative is -2.222E-07
large_negative is -1890

Notice that, just as with octal and hexadecimal integers, the read format is irrelevant once PHP has
finished reading in the numbers — the preceding variables retain no memory of whether or not
they were originally specified in scientific notation. In printing the values, PHP is making its own
decisions to print the more extreme values in scientific notation, but this has nothing to do with the
original read format.

Booleans

Booleans are true-or-false values, which are used in control constructs like the testing portion of
an if statement. As you will see in Chapter 5, Boolean truth values can be combined using logical
operators to make more complicated Boolean expressions.

Boolean constants

PHP provides a couple of constants especially for use as Booleans: TRUE and FALSE, which can be
used like this:

if (TRUE)

print("This will always print
");
else

print("This will never print
");

Interpreting other types as Booleans
Here are the rules for determine the “truth” of any value not already of the Boolean type:

m If the value is a number, it is false if the number is zero and true otherwise.

If the value is a string, it is false if the string is empty (has zero characters) or is the string
"0", and is true otherwise.

m Values of type NULL are always false.

1f the value is a compound type (an array or an object), it is false if it contains no other val-
ues, and it is true otherwise. For an object, containing a value means having a member vari-
able that has been assigned a value.

m Valid resources are true (although some functions that return resources when they are suc-
cessful will return FALSE when unsuccessful).

For a more complete account of converting values across types, see Chapter 25.

49

m Introducing PHP

50

Examples
Each of the following variables has the truth value embedded in its name when it is used in a
Boolean context.

$true_num = 3 + 0.14159;

$true_str = "Tried and true";

$true_arrayl[49] = "An array element"; // see next section
$false_array = array();

$false_null = NULL;

$false_num = 999 - 999;

$false_str = ; // a string zero characters long

Don’t use doubles as Booleans

Note that, although Rule 1 implies that the double 0.0 converts to a false Boolean value, it is danger-
ous to use floating-point expressions as Boolean expressions, because of possible rounding errors.
For example:

$floatbool = sqrt(2.0) * sqrt(2.0) - 2.0;
if ($floatbool)
print("Floating-point Booleans are dangerous!
");
else
print("It worked ... this time.
");
print("The actual value is $floatbool
");

The variable $f1oatbool is set to the result of subtracting two from the square of the square root of
two — the result of this calculation should be equal to zero, which means that $f1oatbool is false.
Instead, the browser output we get is:

Floating-point Booleans are dangerous!
The actual value is 4.4408920985006E-16

The value of $f1oatbool is very close to 0.0, but it is nonzero and, therefore, unexpectedly true.
Integers are much safer in a Boolean role — as long as their arithmetic happens only with other inte-
gers and stays within integral sizes, they should not be subject to rounding errors.

NULL

The world of Booleans may seem small, since the Boolean type has only two possible values. The
NULL type, however, takes this to the logical extreme: The type NULL has only one possible value,
which is the value NULL. To give a variable the NULL value, simply assign it like this:

$my_var = NULL;

The special constant NULL is capitalized by convention, but actually it is case insensitive; you could
just as well have typed:

$my_var = null;

Learning PHP Syntax and Variables

So what is special about NULL? NULL represents the lack of a value. (You can think of it as the non-
value or the unvalue.) A variable that has been assigned the value NULL is nearly indistinguishable
from a variable that has not been set at all. In particular, a variable that has been assigned NULL has
the following properties:

m Itevaluates to FALSE in a Boolean context.
B It returns FALSE when tested with IsSet (). (No other type has this property.)

m PHP will not print warnings if you pass the variable to functions and back again, whereas
passing a variable that has never been set will sometimes produce warnings.

The NULL value is best used for situations where you want a variable not to have a value, intention-
ally, and you want to make it clear to both a reader of your code and to PHP that this is what you
want. The latter point is particularly relevant when passing variables to functions.

For example, the following pseudocode may print a warning (depending on your error-reporting
settings) if the variable $authorization has never been assigned before you pass it to your test_
authorization() function.

if (test_authorization($authorization)) {
// code that grants a privilege of some sort
t

On the other hand, code like this:

$authorization = NULL;
// code that might or might not set $authorization
if (test_authorization($authorization)) {
// code that grants a privilege of some sort
}

does not cause an unbound-variable warning, assuming that you have written test_authoriza-
tion() to handle arguments that might be NULL. It also makes clear to a reader of the code that
you intend for the variable to lack a value unless there’s a case where it is assigned.

Strings

Strings are character sequences, as in the following:

$string_1 = "This is a string in double quotes.";

$string_2 = 'This is a somewhat longer, singly quoted string';
$string_39 = "This string has thirty-nine characters.";
$string_ 0 = ""; // a string with zero characters

Strings can be enclosed in either single or double quotation marks, with different behavior at read
time. Singly quoted strings are treated almost literally, whereas doubly quoted strings replace vari-
ables with their values as well as specially interpreting certain character sequences.

51

m Introducing PHP

52

Singly quoted strings
Except for a couple of specially interpreted character sequences, singly quoted strings read in and
store their characters literally. The following code:

$literally = "My $variable will not print!\\n';
print($literally);

produces the browser output:

My $variable will not print!\n

Singly quoted strings also respect the general rule that quotation marks of a different type will not
break a quoted string. This is legal:

$singly_quoted = 'This quote mark: is no big deal';

To embed a single quotation mark (such as an apostrophe) in a singly quoted string, escape it with a
backslash, as in the following:

$singly_quoted = 'This quote mark\'s no big deal either';

Although in most contexts backslashes are interpreted literally in singly quoted strings, you may
also use two backslashes (\\) as an escape sequence for a single (nonescaping) backslash. This is
useful when you want a backslash as the final character in a string, as in:

$win_path = "C:\\InetPub\\PHP\\";
print("A Windows-style pathname: $win_path
");

which is displayed as:

A Windows-style pathname: C:\InetPub\PHP\

; i We could have used single backslashes to produce the first two backslashes in the output,

. but the escaping is necessary at the end of the string so that the closing quotation mark
will not be escaped.

These two escape sequences (\\ and \ ') are the only exceptions to the literal-mindedness of singly
quoted strings.

Doubly quoted strings

Strings that are delimited by double quotes (as in "this") are preprocessed in both the following
two ways by PHP:

m Certain character sequences beginning with backslash (\) are replaced with special
characters.

B Variable names (starting with $) are replaced with string representations of their values.

Learning PHP Syntax and Variables _

The escape-sequence replacements are:

\n is replaced by the newline character

\r is replaced by the carriage-return character
\'t is replaced by the tab character

\'$ is replaced by the dollar sign itself ($)

\" is replaced by one double quotation mark (")

\\ is replaced by a single backslash (\)

The first three of these replacements make it easy to visibly include certain whitespace characters
in your strings. The \$ sequence lets you include the $ symbol when you want it, without it being
interpreted as the start of a variable. The \" sequence is there so that you can include a double quo-
tation mark symbol without terminating your doubly quoted string. Finally, because the \ character
starts all these sequences, you need a way to include that character literally, without it starting an
escape sequence — to do this, you preface it with itself.

Just as with singly quoted strings, quotes of the opposite type can be freely included without an
escape character:

$has_apostrophe = "There's no problem here";

Single versus double quotation marks

PHP does some preprocessing of doubly quoted strings (strings with quotation marks like "this")
before constructing the string value itself. For one thing, variables are replaced by their values (as in
the preceding example). To see that this replacement is really about the quoted string rather than the
print construct, consider the following code:

$animal = "antelope"; // first assignment
$saved_string = "The animal is $animal
";
$animal = "zebra"; // reassignment

print("The animal is $animal
"); //first display line
print($saved_string); //second display line

What output would you expect here? As it turns out, your browser would display:

The animal is zebra
The animal is antelope

And the browser displays the preceding output in exactly that order. This is because "antelope"
is spliced into the string $saved_string, before the $animal variable is reassigned. In addition to
splicing variable values into doubly quoted strings, PHP also replaces some special multiple-char-
acter escape sequences with their single-character values. The most commonly used is the end-of-line
sequence ("\n") — in reading a string like:

"The first Tine \n\n\nThe fourth Tine"

53

m Introducing PHP

54

Variable interpolation

Whenever an unescaped $ symbol appears in a doubly quoted string, PHP tries to interpret what
follows as a variable name and splices the current value of that variable into the string. Exactly what
kind of substitution occurs depends on how the variable is set:

m If the variable is currently set to a string value, that string is interpolated (or spliced) into
the doubly quoted string.

m If the variable is currently set to a nonstring value, the value is converted to a string, and
then that string value is interpolated.

m If the variable is not currently set, PHP interpolates nothing (or, equivalently, PHP splices
in the empty string).

For example:

$this = "this";

$that = "that";

$the_other = 2.2000000000;
print("$this,$not_set,$that+$the_other
");

produces the PHP output
this,,that+2.2

which in turn, when seen in a browser, looks like:
this,,that+2.2

If you find any part of this example puzzling, it is worth working through exactly what PHP does to
parse the string in the print statement. First, notice that the string has four $ signs, each of which
is interpreted as starting a variable name. These variable names terminate at the first occurrence of a
character that is not legal in a variable name. Legal characters are letters, numbers, and underscores;
the illegal terminating characters in the preceding print string are (in order) a comma, another
comma, the plus symbol (+), and a left angle bracket (<). The first two variables are bound to strings
("this"and 'that"), so those strings are spliced in literally. The next variable ($not_set) has
never been assigned, so it is omitted entirely from the string under construction. Finally, the last
variable ($the_other) is discovered to be bound to a double — that value is converted to a string
("2.2"), which is then spliced into our constructed string.

For more about converting numbers to strings, see the “Assignment and Coercion” sec-
tion in Chapter 25.

As we said earlier in this chapter, all this interpretation of doubly quoted strings happens when
the string is read, not when it is printed. If we saved the example string in a variable and printed
it out later, it would reflect the variable values in the preceding code even if the variables had been
changed in the meantime.

Learning PHP Syntax and Variables _

) :q}:{‘_\ P In addition to single quotation marks and double quotation marks, there is another way
e b to create strings (called the heredoc syntax), which in some ways makes it even easier to
splice in the values of variables. We cover it in Chapter 7.

Newlines in strings

Although PHP offers an escape sequence (\n) for newline characters, it is good to know that you
can literally include new lines in the middle of strings, which PHP also treats as a newline charac-
ters. This capability turns out to be convenient when creating HTML strings, because browsers will
ignore the line breaks anyway, so you can format your strings with line breaks to make your PHP
code lines short:

print ("<HTML><HEAD></HEAD><BODY>My HTML page is too big
to fit on a single Tine, but that doesn't mean that I
need multiple print statements!</BODY></HTML>");

We produced this statement in our text editor by literally hitting the Enter key at the end of the first
two lines — these newlines are preserved in the string, so the single print statement will produce
three distinct lines of PHP output. (Your mileage may vary depending on your text editor — if your
editor automatically wraps lines in displaying them, you may see three lines of code that are actu-
ally one long line.) Of course, the browser program will ignore these newlines and will make its own
decisions about whether and where to break the lines in display, but you will see the linebreaks if
you use View Source in your browser to see the HTML itself.

Limits
There are no artificial limits on string length — within the bounds of available memory, you ought
to be able to make arbitrarily long strings.

Output

Most of the constructs in the PHP language execute silently — they don't print anything to output.
The only way that your embedded PHP code will display anything in a user’s browser program is

either by means of statements that print something to output or by calling functions that, in turn,
call print statements.

Echo and print

The two most basic constructs for printing to output are echo and print. Their language status

is somewhat confusing, because they are basic constructs of the PHP language, rather than being
functions. As a result, they can be used either with parentheses or without them. (Function calls
always have the name of the function first, followed by a parenthesized list of the arguments to the
function.)

55

m Introducing PHP

56

Echo

The simplest use of echo is to print a string as argument, for example:
echo "This will print in the user's browser window.";
Or equivalently:

echo("This will print in the user's browser window.");

Both of these statements will cause the given sentence to be displayed, without displaying the quote
signs. (Note for C programmers: Think of the HTTP connection to the user as the standard output
stream for these functions.)

You can also give multiple arguments to the unparenthesized version of echo, separated by commas,
asin:

echo "This will print in the ", "user's browser window.";

The parenthesized version, however, will not accept multiple arguments:

echo ("This will produce a ", "PARSE ERROR!");

Print

The command print is very similar to echo, with two important differences:

m Unlike echo, print can accept only one argument.

m Unlike echo, print returns a value, which represents whether or not the print statement
succeeded.

The value returned by print is always 1.

Both echo and print are usually used with string arguments, but PHP’s type flexibility means that
you can throw pretty much any type of argument at them without causing an error. For example, the
following two lines will print exactly the same thing;

print("3.14159"); // print a string
print(3.14159); // print a number

Technically, what is happening in the second line is that, because print expects a string argument,
the floating-point version of the number is converted to a string value before print gets hold of it.
However, the effect is that both print and echo will reliably print out numbers as well as string
arguments.

For the sake of simplicity and uniformity, we will typically use the parenthesized version of print
in our examples, rather than using echo.

Learning PHP Syntax and Variables

In addition to the printing functions discussed here, there are two primary printing func-
tions used mostly for debugging: print_r () and var_dump (). The point of these func-
tions is to help you visualize what’s going on with compound data structures like arrays, so we cover
them along with the details of arrays in Chapter 8.

Variables and strings

C programmers are accustomed to using a function called printf, which allows you to splice values
and expressions into a specially formatted printing string. PHP has analogous functions (which we
will cover in Chapter 6), but as it turns out we can get much of the same functionality just by using
print (or echo) with quoted strings. For example, the fragment:

$animal = "antelope";

$animal_heads = 1;

$animal_legs = 4;

print("The $animal has $animal_heads head(s).
");
print("The $animal has $animal_legs Teg(s).
");

will produce the following output in the browser:

The antelope has 1 head(s).
The antelope has 4 leg(s).

The values for the variables we included in the string have been neatly spliced into the printed out-
put. This makes it very easy to quickly produce web pages with content that varies depending on
how variables have been set. It is not the result of any magical properties of print, however — the
magic is really happening in the interpretation of the quoted string itself.

HTML and linebreaks

One mistake often made by new PHP programmers (especially those from a C background) is to

try to break lines of text in their browsers by putting end-of-line characters ("\n") in the strings
they print. To understand why this doesn’t work, you have to distinguish the output of PHP (which
is usually HTML code, ready to be sent over the Internet to a browser program) from the way that
output is rendered by the user’s browser. Most browser programs will make their own choices about
how to split up lines in HTML text, unless you force a line break with the
 tag. End-of-line
characters in strings will put line breaks in the HTML source that PHP sends to your user’s browser
(which can still be useful for creating readable HTML source), but they will usually have no effect on
the way that text looks in a web page.

Summary

PHP code follows a basic set of syntactical rules, mostly borrowed from programming languages
such as C and Perl. The syntactical requirements of PHP are minimal, and in general PHP tries to
display results when it can rather than generating an error.

57

m Introducing PHP

58

PHP has eight types: integer, double, Boolean, NULL, string, array, object, and resource. Five of
these are simple types: Integers are whole numbers, doubles are floating-point numbers, Booleans
are true-or-false values, NULL has just one value (NULL), and strings are sequences of characters.
Arrays are a compound type that holds other PHP values, indexed either by integers or by strings.
Objects are instances of programmer-defined classes, which can contain both member variables and
member functions, and which can inherit functions and data types from other classes. (We address
arrays in Chapter 8 and objects in Chapter 20.) Finally, resources are special references to memory
allocated from external programs, which memory PHP frees automatically when they are no longer
needed (we cover resources in Chapter 25).

Only values are typed in PHP — variables have no inherent type other than the value of their most
recent assignment. PHP automatically converts value types as demanded by the context in which the
value is used. The programmer can also explicitly control types by means of both conversion func-
tions and type casts.

PHP code is whitespace insensitive, and although variable names are case sensitive, basic language
constructs and function names are not. Simple PHP expressions are combined into larger expres-
sions by operators and function calls, and statements are expressions with a terminating semicolon.
Variables are denoted by a leading $ character and are assigned using the = operator. They need

no type declarations and have reasonable default values if used before they are assigned. Variable
scope is global except inside the body of functions, where it is local to the function unless explicitly
declared otherwise.

The simplest way to send output to the user is by using either echo or print, which output the
string arguments. They are particularly useful in combination with doubly quoted strings, which
automatically replace embedded variables with their values.

t’s difficult to write interesting programs if you can’t make the course of
program execution depend on anything. In a weak sense, the behavior
of code that prints variables depends on the variable values, but that
is as exciting as filling out a template. As programmers, we want programs
that react to something (the world, the time of day, user input, or the con-
tents of a database) by doing something different.

This kind of program reaction requires a control structure, which indicates
how different situations should lead to the execution of different code.

In Chapter 4, we informally used the 1 f control structure without really
explaining it; in this chapter, we lay out every kind of control structure
offered by PHP and study their workings in detail.

Experienced C programmers: Of all the features in PHP, control
is probably the most reliably C-like — all the structures you are
used to are here, and they work the same way.

The two broad types of control structures we will talk about are branches
and loops. A branch is a fork in the road for a program’s execution —
depending on some test or other, the program goes either left or right,
possibly following a different path for the rest of the program’s execution.
A'loop is a special kind of branch, where one of the execution paths jumps
back to the beginning of the branch, repeating the test and possibly the
body of the loop.

Before we can make interesting use of control structures, however, we have
to be able to construct interesting tests. We'll start from the very simplest
of tests, working our way up from the constants TRUE and FALSE and then
move on to using these tests in more complicated code.

59

IN THIS CHAPTER

Boolean expressions

Branching

Looping

Terminating execution

Exceptions

Using functions

Function documentation

Defining your own functions

Functions and variable scope

Function scope

m Introducing PHP

60

Any real programming language has some kind of capability for procedural abstraction — a way to
name pieces of code so that you can use them as building blocks in writing other pieces of code.
Some scripting languages lack this capability, and we can tell you from our own sorrowful experi-
ence that complex server-side code can quickly become unmanageable without it.

PHP’s mechanism for this kind of abstraction is the function. There are really two kinds of functions
in PHP — those that have been built into the language by the PHP developers and those defined by
individual PHP programmers.

In this chapter, we also look at how to use the large body of functions already provided in PHP and
then, a bit later, how to define your own functions. Luckily, there is no real difference between using
a built-in function and using your own functions. But first, let’s discuss control.

Boolean Expressions

Every control structure in this chapter has two distinct parts: the test (which determines which part
of the rest of the structure executes), and the dependent code itself (whether separate branches or the
body of a loop). Tests work by evaluating a Boolean expression, an expression with a result treated as
either true or false.

Boolean constants

The simplest kind of expression is a simple value, and the simplest Boolean values are the con-
stants TRUE and FALSE. We can use these constants anywhere we would use a more complicated
Boolean expression, and vice versa. For example, we can embed them in the test part of an if-else
statement:

if (TRUE)

print("This will always print
");
else

print("This will never print
");

Or equivalently:

if (FALSE)

print("This will never print
");
else

print("This will always print
");

Logical operators

Logical operators combine other logical (aka Boolean) values to produce new Boolean values. The
standard logical operations (and, or, not, and exclusive-or) are supported by PHP, which has
alternate versions of the first two, as shown in Table 5-1.

TABLE 5-1

Learning PHP Control Structures and Functions

Logical Operators

Operator Behavior

and Is true if and only if both of its arguments are true.

or Is true if either (or both) of its arguments are true.

! Is true if its single argument (to the right) is false and false if its argument is true.

xor Is true if either (but not both) of its arguments are true.

&& Same as and but binds to its arguments more tightly. (See the discussion of precedence later

in the chapter.)

Same as or but binds to its arguments more tightly.

The && and | | operators will be familiar to C programmers. The ! operator is usually called not,
since it negates the argument it operates on.

As an example of using logical operators, consider the following expression:

(($statement_1 && $statement_2) ||
($statement_1 && !$statement_2) |
(I'$statement_1 && $statement_2) |
(!$statement_1 && !$statement_2))

This is a tautology, meaning that it is always true regardless of the values of the statement variables.
There are four possible combinations of truth values for the two variables, each of which is repre-
sented by one of the && expressions. One of these four must be true, and because they are linked by
the | | operator, the entire expression must be true.

Here’s another, slightly trickier tautology using xor:

(($statement_1 and $statement_2 and
$statement_3) xor

((!($statement_1 and $statement_2)) or
(!($statement_1 and $statement_3)) or
(!($statement_2 and $statement_3))))

In English, this expression says, “Given three statements, one and only one of the following two things
hold — either 1) all three statements are true, or 2) there are two statements that are not both true.”

Precedence of logical operators

Just as with any operators, some logical operators have higher precedence than others, although pre-
cedence can always be overridden by grouping subexpressions using parentheses. The logical opera-
tors listed in declining order of precedence are: !, &&, | |, and, xor, or. Actually, and, xor, and or

61

m Introducing PHP

TABLE 5-2

have much lower precedence than the others, so that the assignment operator (=) binds more tightly
than and but less tightly than &&.

A complete table of operator precedence and associativity can be found in the online
manual at www.php.net.

Logical operators short-circuit

One very handy feature of Boolean operators is that they associate left to right, and they short-circuit,
meaning that they do not even evaluate their second argument if their truth value is unambiguous
from their first argument. For example, imagine that you wanted to determine a very approximate
ratio of two numbers but also wanted to avoid a possible division-by-zero error. You can first test to
make sure that the denominator is not zero by using the != (not-equal-to) operator:

if ($denom != 0 && $numer / $denom > 2)
print("More than twice as much!");

In the case where $denom is zero, the && operator should return false regardless of whether the sec-
ond expression is true or false. Because of short-circuiting, the second expression is not evaluated,
so an error is avoided. In the case where $denom is not zero, the && operator does not have enough
information to reach a conclusion about its truth value, so the second expression is evaluated.

So far, all we've formally covered are the TRUE and FALSE constants and how to combine them to
make other true-or-false values. Now we’ll move on to operators that actually let you make meaning-
ful Boolean tests.

Comparison operators

Table 5-2 shows the comparison operators, which can be used for either numbers or strings
(although you should see the cautionary sidebar entitled “Comparing Things That Are Not Integers”).

Comparison Operators

Operator Name Behavior

== Equal True if its arguments are equal to each other, false otherwise

I= Not equal False if its arguments are equal to each other, true otherwise

< Less than True if the left-hand argument is less than its right-hand
argument but false otherwise

> Greater than True if the left-hand argument is greater than its right-hand
argument but false otherwise

<= Less than or equal to True if the left-hand argument is less than its right-hand

argument or equal to it but false otherwise

62

Learning PHP Control Structures and Functions

Operator Name Behavior

Greater than or equal to True if the left-hand argument is greater than its right-hand
argument or equal to it but false otherwise

Identical True if its arguments are equal to each other and of the same
type but false otherwise

As an example, here are some variable assignments, followed by a compound test that is always true:

$three = 3;
$four = 4;
$my_pi = 3.14159;
if (($three == $three) and
($four === $four) and
($three != $four) and
($three < $four) and
($three <= $four) and
($four >= $three) and
($three <= $three) and
($my_pi > $three) and
($my_pi <= $four))
print("My faith in mathematics is restored!
");
else
print("Sure you typed that right?
");

Watch out for a very common mistake: confusing the assignment operator (=) with the

A bt comparison operator (==). The statement if ($three = $four) will (probably unex-

pectedly) set the variable $three to be the same as $ four; what’s more, the test will be true if $four
is a true value!

Operator precedence

Although overreliance on precedence rules can be confusing for the person who reads your code
next, it's useful to note that comparison operators have higher precedence than Boolean operators.
This means that a test like the following:

if ($small_num > 2 && $small_num < 5)

doesn’t need any parentheses other than those shown.

String comparison

The comparison operators may be used to compare strings as well as numbers (see the cautionary
sidebar). We would expect the following code to print its associated sentence (with apologies to Billy
Bragg):

if (("Marx" < "Mary") and
("Mary" < "Marzipan"))

63

m Introducing PHP

64

{
print("Between Marx and Marzipan in the ");
print("dictionary, there was Mary.
");

}

The comparisons are case sensitive, and the only reason that this example will print anything is
because our values are case-consistent. Because of the capitalization of Dennis, the following will
not print anything:

if (("deep blue sea" < "Dennis") and
("Dennis" < "devil"))
{
print("Between the deep blue sea and ");
print("the devil, that was me.
");
}

Comparing Things That Are Not Integers

Although comparison operators work with numbers or strings, a couple of gotchas lurk here.

First of all, although it is always safe to do less-than or greater-than comparisons on doubles (or even
between doubles and integers), it can be dangerous to rely on equality comparisons on doubles, especially
if they are the result of a numerical computation. The problem is that a rounding error may make two values
that are theoretically equal differ slightly.

Second, although comparison operators work for strings as well as numbers, PHP’s automatic type conversions
can lead to counterintuitive results when the strings are interpretable as numbers. For example, the code:

SISAC pE:ngsl =" 0 0 (0,318
$string_2 S(OOVAT %
$string_3 "00008-0K";
ISENE SIS N G2 OR SIS L RN giil)

print("$string_2 is less than $string 1
");
(S RR0S SERIN GRS ESSIE R g 29

print("$string_3 is less than $string_2
");
IR €SS BRSNS STRA g3

printic" $s triingssl s sl ess 1 than, $isTr iing=3< BRI

gives this output (with comments added):

007 is less than 00008 // numerical comparison
00008-0K is Tess than 007 // string comparison
00008 is less than 00008-0K // string comp. - contradiction!

When it can, PHP will convert string arguments to numbers, and when both sides can be treated that way, the
comparison ends up being numerical, not alphabetic. The PHP designers view this as a feature, not a bug. Our
view is that if you are comparing strings that have any chance of being interpreted as numbers, you're better
off using the strcmp () function.

Learning PHP Control Structures and Functions

The ternary operator

One especially useful construct is the ternary conditional operator, which plays a role somewhere
between a Boolean operator and a true branching construct. Its job is to take three expressions and
use the truth value of the first expression to decide which of the other two expressions to evaluate
and return. The syntax looks like:

testExpression ? yeskExpression : noExpression

The value of this expression is the result of yes-expression if test-expression is true; other-
wise, it is the same as no-expression.

For example, the following expression assigns to $max_num either $first_numor $second_num,
whichever is larger:

$max_num = $first_num > $second_num ? $first_num : $second_num;

As you will see, this is equivalent to:

if ($first_num > $second_num)
$max_num = $first_num;

else
$max_num = $second_num;

but is somewhat more concise.

Branching

The two main structures for branching are if and switch. I'f is a workhorse and is usually the first
conditional structure anyone learns. Switch is a useful alternative for certain situations where you
want multiple possible branches based on a single value and where a series of i f statements would
be cumbersome.

If-else

The syntax for 1 f is:

if (test)
statement-1

Or with an optional e1se branch:

if (test)
statement-1

else
statement-2

65

m Introducing PHP

66

CROSS-R

When an if statement is processed, the test expression is evaluated, and the result is interpreted
as a Boolean value. If test is true, statement-1 is executed. If test is not true, and there is an
else clause, statement-2 is executed. If test is false, and there is no e1se clause, execution sim-
ply proceeds with the next statement after the if construct.

Note that a statement in this syntax can be a single statement that ends with a semicolon, a brace-
enclosed block of statements, or another conditional construct (which itself counts as a single state-
ment). Conditionals can be nested inside each other to arbitrary depth. Also, the Boolean expression
can be a genuine Boolean (TRUE, FALSE, or the result of a Boolean operator or function), or it can be
a value of another type interpreted as a Boolean.

For the full story on how values of non-Boolean types are treated as Booleans, see
Chapter 25. The short version is that the number 0, the string "0", and the empty string,
, are false, and almost every other value is true.

The following example, which prints a statement about the absolute difference between two num-
bers, shows both the nesting of conditionals and the interpretation of the test as a Boolean:

if ($first - $second)
if ($first > $second)
{
$difference = $first - $second;
print("The difference is $difference
");

else
{
$difference = $second - $first;
print("The difference is $difference
");
}
else
print("There is no difference
");

This code relies on the fact that the number 0 is interpreted as a false value — if the difference is
zero, then the test fails, and the no difference message is printed. If there is a difference, a fur-
ther test is performed. (This example is artificial, because a test like $first != $second would
accomplish the same thing comprehensibly.)

Else attachment

At this point, former Pascal programmers may be warily wondering about e1se attachment — that
is, how does an else clause know which 1 f it belongs to? The rules are simple and are the same as
in most languages other than Pascal. Each el se is matched with the nearest unmatched i f that can
be found, while respecting the boundaries of braces. If you want to make sure that an if statement
stays solo and does not get matched to an else, wrap it up in braces like this:

if ($num % 2 == 0) // $num is even?
{
if ($num > 2)

Learning PHP Control Structures and Functions

print("num is not prime
");
}
else
print("num is odd
");

This code will print num is not prime if $num happens to be an even number greater than 2, num
is odd if $num is odd, and nothing if $num happens to be 2. If we had omitted the curly braces, the
else would attach to the inner 1 f, and so the code would buggily print num s odd if $num were
equal to 2 and would print nothing if $num were actually odd.

In this chapter’s examples, we often use the modulus operator (%), which is explained in
Chapter 9. For the purposes of these examples, all you need to know is that if $x % $y is
zero, $x is evenly divisible by $y.

Elseif

It’s very common to want to do a cascading sequence of tests, as in the following nested i f statements:

if ($day == 5)
print("Five golden rings
");
else
if ($day == 4)
print("Four calling birds
");

else
if ($day == 3)
print("Three French hens
");
else

if ($day == 2)
print("Two turtledoves
");
else
if ($day == 1)
print("A partridge in a pear tree
");

We have indented this code to show the real syntactic structure of inclusions — although
this is always a good idea, you will often see code that does not bother with this and
where each el se line starts in the first column.

This pattern is common enough that there is a special elseif construct to handle it. We can rewrite
the preceding example as:

if ($day == 5)
print("Five golden rings
");
elseif ($day == 4)
print("Four calling birds
");
elseif ($day == 3)
print("Three French hens
");
elseif ($day == 2)
print("Two turtledoves
");
elseif ($day == 1)
print("A partridge in a pear tree
");

67

m Introducing PHP

68

Branching and HTML Mode

s you may have learned from earlier chapters, you should feel free to use the PHP tags to switch back and

forth between HTML mode and PHP mode, whenever it seems convenient. If you need to include a large
chunk of HTML in your page that has no dynamic code or interpolated variables, it can be simpler and more
efficient to escape back into HTML mode and include it literally than to send it using print or echo.

What may not be as obvious is that this strategy works even inside conditional structures. That is, you can
use PHP to decide what HTML to send and then “send” that HTML by temporarily escaping back to HTML
mode.

For example, the following cumbersome code uses print statements to construct a complete HTML page
based on the supposed gender of the viewer. (We're assuming a nonexistent Boolean function called female()
that tests for this.)

<HTML><HEAD>
<?php
ISERACcAE®))
{
prinEEEGRIEEE>Th el cabs on'l Y ssiiee </ T LT EEX BRI
print("</HEAD><BODY>");
print(*This site has been specially constructed ");
print("for cats only.
 No dogs allowed here!l");

P E RS R B es dolgEenityas i e /AT EE>KB R 1)
print("</HEAD><BODY>");

print("This site has been specially constructed ");
print("for dogs only.
 No cats allowed here!l");

£

</BODY></HTML>

Instead of all these print statements, we can duck back into HTML mode within each of the two branches:

<HTML><HEAD>
<?php
i CEELIO)

it
7>
KTIMLE>The cat-only site</TITLE>
</HEAD><BODY>
This site has been specially constructed
for cats only.
 No dogs allowed here!
<?php

Learning PHP Control Structures and Functions

else

{
?>
KTITLE>The dog-only site</TITLE>

</HEAD><BODY>
This site has been specially constructed
for dogs only.
 No cats allowed here!
<?php

1
>
</BODY></HTML>

This version is somewhat more difficult to read, but the only difference is that it replaces each set of print
statements with a block of literal HTML that starts with a closing PHP tag (?>) and ends with a starting PHP
tag (<?php).

In this book’s examples, we mostly avoid this kind of conditional inclusion, simply because we feel that it
may be harder for the novice PHP programmer to decipher. But that shouldn’t stop you — literal inclusion
has advantages, including fast execution. (In HTML mode, all the PHP engine must do is pass on characters
and watch for the next PHP start tag, which is inevitably faster than parsing and executing print statements,
especially if they include doubly quoted strings.)

A third alternative, when large blocks of HTML are conditionally included, is the heredoc, alluded to in Chapter
4 and explained fully in Chapter 7. The heredoc will allow you to include large blocks of HTML code inside a
chunk of PHP without several consecutive print statements.

The if, elseif construct allows for a sequence of tests that executes only the first branch that has a
successful test. In theory, this is syntactically different from the previous example (we have a single
construct with five branches rather than a nesting of five two-branch constructs), but the behavior is
identical. Use whichever syntax you find more appealing.

Switch

For a specific kind of multiway branching, the switch construct can be useful. Rather than branch
on arbitrary logical expressions, switch takes different paths according to the value of a single
expression. The syntax is as follows, with the optional parts enclosed in square brackets ([1):

switch(expression)
{
case value-1:
statement-1;
statement-2;
[break;]
case value-2:

69

Introducing PHP

Statement-3;
Statement-4;

[break;]
[default:
default-statement;]

}

The expression can be a variable or any other kind of expression, as long as it evaluates to a simple
value (that is, an integer, a double, or a string). The construct executes by evaluating the expression
and then testing the result for equality against each case value. As soon as a matching value is found,
subsequent statements are executed in sequence until the special statement (break;) or until the
end of the switch construct. (As we’ll see in the “Looping” section of this chapter, break can also
be used to break out of looping constructs.) A special default tag can be used at the end, which
will match the expression if no other case has matched it so far.

For example, we can rewrite the if-else example as follows:

switch($day)
{
case b5:
print("Five golden rings
");
break;
case 4:
print("Four calling birds
");
break;
case 3:
print("Three French hens
");
break;
case 2:
print("Two turtledoves
");
break;
default:
print("A partridge in a pear tree
");
}

This will print a single appropriate line for days 2-5; for any day other than those, it will print A
partridge in a pear tree. Although switch will accept only a single argument, there’s no rea-
son why that argument can’t be the value of expressions evaluated previously in your code.

The single most confusing aspect of switch is that all cases after a matching case will
execute, unless there are break statements to stop the execution. In the “partridge”
example, the break statements ensure that we see only one line from the song at a time. If we remove
the break statements, we will see a sequence of lines counting down to the final line, just as in the
song.

70

Learning PHP Control Structures and Functions

Looping

Congratulations! You just passed the boundary from scripting into real programming. The branch-
ing structures we have looked at so far are useful, but there are limits to what can be computed with
them alone. On the other hand, it’s well established in theoretical computer science that any lan-
guage with tests plus unbounded looping can do pretty much anything that any other language can
do. You may not actually want to write a C compiler in PHP, for example, but it’s nice to know that
no inherent language limits are going to stop you.

Bounded loops versus unbounded loops

A bounded loop executes a fixed number of times — you can tell by looking at the code how many
times the loop will iterate, and the language guarantees that it won’t loop more times than that. An
unbounded loop repeats until some condition becomes true (or false), and that condition is dependent
on the action of the code within the loop. Bounded loops are predictable, whereas unbounded loops
can be as tricky as you like.

Unlike some languages, PHP doesn't actually have any constructs specifically for bounded loops —
while, do-while, and for are all unbounded constructs — but as you will see in this section, an
unbounded loop can do anything a bounded loop can do.

GROSS-R
While

The simplest PHP looping construct is whi1e, which has the following syntax:

In addition to the looping constructs in this chapter, PHP provides functions for iterating
over the contents of arrays, which are covered in Chapter 8.

while (condition)
statement

The while loop evaluates the condition expression as a Boolean — if it is true, it executes statement
and then starts again by evaluating condition. If the condition is false, the while loop terminates. Of
course, just as with 1f, statement may be a single statement or it may be a brace-enclosed block. The
body of a while loop may not execute even once, as in:

while (FALSE)
print("This will never print.
");

Or it may execute forever, as in this code snippet:

while (TRUE)
print("Al1l work and no play makes
Jack a dull boy.
");

71

m Introducing PHP

72

Or it may execute a predictable number of times, as in:

$count = 1;
while ($count <= 10)
{
print("count is $count
");
$count = $count + 1;
}

which will print exactly 10 lines. (For more interesting examples, see the “Looping examples” sec-
tion, later in this chapter.)

Do-while

The do-while construct is similar to whiTe, except that the test happens at the end of the loop.
The syntax is:

do statement
while (expression);

The statement is executed once, and then the expression is evaluated. If the expression is true, the
statement is repeated until the expression becomes false. The only practical difference between
while and do-while is that the latter will always execute its statement at least once. For example:

$count = 45;
do
{
print("count is $count
");
$count = $count + 1;
}
while ($count <= 10);

prints the single line:

count is 45

For

The most complicated looping construct is for, which has the following syntax:

for (initial-expression;
termination-check;
loop-end-expression)
statement

In executing a for statement, first the initial-expression is evaluated just once, usually to initialize
variables. Then termination-check is evaluated — if it is false, the for statement concludes, and if it is

Learning PHP Control Structures and Functions

true, the statement executes. Finally, the loop-end-expression is executed and the cycle begins again
with termination-check. As always, by statement we mean a single (semicolon-terminated) statement, a
brace-enclosed block, or a conditional construct.

1f we rewrote the preceding for loop asa while loop, it would look like this:

initial-expression;
while (termination-check)
i
statement
loop-end-expression;
}

Actually, although the typical use of for has exactly one initial-expression, one termination-check,
and one loop-end-expression, it is legal to omit any of them. The termination-check is taken to be
always true if omitted, so:

for (;3)
statement

is equivalent to:

while (TRUE)
statement

It is also legal to include more than one of each kind of for clause, separated by commas. The
termination-check will be considered to be true if any of its subclauses is true; it is like an 'or ' test.
For example, the following statement:

for ($x =1, $y =1, $z = 1; //initial expressions
$y < 10, $z < 10; // termination checks
$x = $x + 1, $y = $y + 2, // Toop-end expressions
$z = $z + 3)

print("$x, $y, $z
");

would give the browser output:

1, 1,1
2, 3, 4
3, 5,7

Although the for syntax is the most complex of the looping constructs, it is often used for simple
bounded loops, using the following idiom:

for ($count = 0; $count < $1imit; $count = $count + 1)
statement

73

m Introducing PHP

Looping examples
Now let’s look at some examples.
A bounded for loop

Listing 5-1 shows a typical use of bounded for loops. The page produced by Listing 5-1 is shown in
Figure 5-1.

LISTING 5-1

A division table

<?php
$start_num = 1;
$end_num = 10;
>
<HTML>
<HEAD>
<TITLE>A division table</TITLE>
</HEAD>
<BODY>
<H2>A division table</H2>
<TABLE BORDER=1>
<?php
print("<TR>");
print ("<TH> </TH>");
for ($count_1 = $start_num;
$count_1 <= $end_num;
$count_1++)
print("<TH>$count_1</TH>");
print("</TR>");

for ($count_1 = $start_num;
$count_1 <= $end_num;
$count_1++)
{
print ("<TR><TH>$count_1</TH>");
for ($count_2 = $start_num;
$count_2 <= $end_num;
$count_2++)
{
$result = $count_1 / $count_2;
printf("<TD>%.3f</TD>",
$result); // see Chapter 7
}
print("</TR>\n");
}

74

Learning PHP Control Structures and Functions

7>
</TABLE>
</B0ODY>
</HTML>

FIGURE 5-1

A division table

L A division table - Netscape

File Edit View Go Communicater Help
W ¢ A D o w3 & @
& Back Forward Reload Haome Search MWetscape Frint Security Stop
B ‘Q‘v Bookmarks & Lucaliun.Ihltp./!IDcthUsl/divisiDn php j @'Wha{‘s Related
il &InstantMessage Catagories Maps Phata Finder Secure Web Shop Hame

A division table

|1 [2[3[a]s5 |6 [7][8][9 [mw
11000 [0.500(0.333(0.250 0.200[0.167/0.143(0.125 0.1110.100
12 2.000 [1.000(0.667(0.500 0.400[0.333(0.286(0.250 0.222[0.200
'3 [3.000 [1.500(1.000(0.750 0.600(0.500(0.429(0.375 0.333 [0.300
"4 [4.000 [2.000(1.333[1.000 0.800 [0.667(0.571(0.500 0.444 [0.400
'5[5.000 [2:500(1.667[1.250 1.000 [0.8330.714(0.625 0.5560.500
16 /6.000 [3.000[2.000[1.5001.200[1.000(0.857(0.750 0.667 [0.600
177.000 [3.5002.333|1.7501.400 1167 [1.000/0.875 0.778/0.700
'8 8.000 [4.0002.667[2.000 1.600 [1.333|1.143(1.000 0.889 0.800
19 [9.000 [4.500(3.000[2.250 1.800[1.500(1.286[1.125 1.000(0.900
10[10.000[5.000(3.333[2.500 2.000 1.667[1.429(1.250 1.111[1.000

EE{'@ |Document: Done R Y \‘Q Ll

The main body of this code simply has one for loop nested inside another, with each loop executing
10 times, resulting in a 10 x 10 table. Each iteration of the outer loop prints a row, whereas each inner
iteration prints a cell. The only novel feature is the way we chose to print the numbers — we used
printf (covered in Chapter 7), which allows us to control the number of decimal places printed.

e The $variable_name++ feature used above is called an increment. It’s a fairly standard
“ shorthand for $variable_name + 1.

An unbounded while loop

Now let’s look at a loop not so obviously bounded. The sole purpose of the code in Listing 5-2 is to
approximate the square root of 81 (using Newton’s method). The approximation starts with a guess
of 1 and then “zeros in” on the actual square root of 9 by improving the guesses. A trace of this
approximation is shown in Figure 5-2.

75

m Introducing PHP

LISTING 5-2

76

Approximating a square root

<HTML>

<HEAD>

KTITLE>Approximating a square root</TITLE>
</HEAD>

<BODY>

<H3>Approximating a square root</H3>

<?php
$target 81
$guess 1.0
$precision =

s
- s

0.0000001;

$guess_squared $guess * $guess;
while (($guess_squared - $target > $precision) or
($guess_squared - $target < - $precision))
{
print("Current guess: $guess is the square
root of $target
");
$guess ($guess + ($target / $guess)) / 2;
$guess_squared = $guess * $guess;
}
print("$guess squared
?>
</BODY>
</HTML>

$guess_squared
");

Now, although it nicely illustrates a potentially unbounded loop, this approximation example is very
artificial — first, because PHP already has a perfectly good square-root function (sqrt) and second,
because the number 81 is hardcoded into the page. We can’t use this page to find the square root of

any other number.

Break and continue

The standard way to get out of a looping structure is for the main test condition to become false. The
special commands break and continue offer an optional side exit from all the looping constructs,
including while, do-while, and for:

B The break command exits the innermost loop construct that contains it.

m The continue command skips to the end of the current iteration of the innermost loop
that contains it.

Learning PHP Control Structures and Functions

FIGURE 5-2

Approximating a square root

¥< Approximating a square root - Netscape
File Edit View Go Communicator \ Help
< » A & a2 W IS & @
Back Forward Reload Hame Search Metscape Print Security Stap
‘L&t' Bookmarks J‘ Locat\om:lhtlp Hocalhost/sq root.php d @l' ‘what's Related
i &InstaﬂlMessage talagulies Maps Photo Finder Secure Web Shap Home

Approximating a square root

Current guess: 1 is the square root of 81

Current guess: 41 1s the square root of 81

Current guess: 21.487804878049 is the square root of 81
Cwrrent guess: 12.628692450375 1s the square root of 81
Current guess: 9.521329066772 is the square root of 81
Current guess: 9.0142723769946 1s the square root of 81
Current guess: 9.0000112987902 is the square root of 81
9.0000000000071 squared = 81.000000000128

EF@H [Document; Done

For example, the following code:

for ($x = 1; $x < 10; $x++)
{
// if $x is odd, break out
if ($x % 2 1= 0)
break;
print("$x ");
}

prints nothing, because 1 is odd, which terminates the for loop immediately. On the other hand,
the code:

for ($x = 1; $x < 10; $x++)
{
// if $x is odd, skip this loop
if ($x % 2 1=0)
continue;
print("$x ");
}

77

m Introducing PHP

78

prints:
2468
because the effect of the continue statement is to skip the printing of any odd numbers.

Using the break command, the programmer can choose to dispense with the main termination test
altogether. Consider the following code, which prints a list of prime numbers (that is, numbers not
divisible by something other than 1 or the number itself):

$1imit = 500;
$to_test = 2;
while(TRUE)

{

$testdiv = 2;
if ($to_test > $1imit)
break;

while (TRUE)
{
if ($testdiv > sqrt($to_test))
{
print "$to_test ";
break;
}
// test if $to_test is divisible by $testdiv
if ($to_test % $testdiv == 0)
break;
$testdiv = $testdiv + 1;
1
$to_test = $to_test + 1;
}

In the preceding code, we have two while loops — the outer loop works through all the numbers
between 1 and 500, and the inner loop actually does the testing with each possible divisor. If the
inner loop finds a divisor, the number is not prime, so it breaks out without printing anything. If, on
the other hand, the testing gets as high as the square root of the number, we can safely assume that
the number must be prime, and the inner loop is broken without printing. Finally, the outer loop is
broken when we have reached the limit of numbers to test. The result in this case is a list of primes
less than 500:

2 357 1113 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83
89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167
173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257
263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353
359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449
457 461 463 467 479 487 491 499

Notice that it is crucial to this code that break interrupt the inner while loop only.

Learning PHP Control Structures and Functions

There is another iteration construct, called foreach, which is used only for iterating
over arrays. We cover it in Chapter 8.

A note on infinite loops

If you've ever programmed in another language, you've probably had the experience of acciden-

tally creating an infinite loop (a looping construct whose exit test never becomes true and so never
returns). The first thing to do when you realize this has happened is to interrupt the program, which
will otherwise continue “forever” and use up a lot of CPU time. But what does it mean to interrupt a
PHP script? Is it sufficient to click the Stop button on your browser?

As it turns out, the answer is dependent on some PHP configuration settings — you can set the PHP
engine to ignore interruptions from the browser (like the result of clicking Stop) and also to impose
a time limit on script execution (so that “forever” will only be a short time). The default configura-
tion for PHP is to ignore interruptions, but with a script time limit of 30 seconds — the time limita-
tion means that you can afford to forget about infinite loops that you may have started.

CROSS-R|

For more on the configuration of PHP, see Chapter 29.

Alternate Control Syntaxes

PHP offers another way to start and end the bodies of the i f, switch, for, and while constructs.
It amounts to replacing the initial brace of the enclosed block with a colon and the closing brace
with a special ending statement for that construct (endif, endswitch, endfor, or endwhile). For
example, the 1f syntax becomes:

if (expression):
statementl
Sstatement?

endif;

if (expression):
statementl
statement?

elseif (expressionZ):
statement3

else:
statement4

endif;

79

m Introducing PHP

80

Note that the else and elseif bodies also begin with colons. The corresponding while syntax is:

while (expression):
statement
endwhile;

Which syntax you use is a matter of taste. The nonstandard syntax in PHP is largely used for histori-
cal reasons and for the comfort of people who are familiar with it from the early versions of PHP. We
will consistently use the standard syntax in the rest of this book.

Terminating Execution

Sometimes you just have to give up, and PHP offers a construct that helps you do just that. The
exit() construct takes either a string or a number as argument, prints out the argument, and

then terminates execution of the script. Everything that PHP produces up to the point of invoking
exit() is sent to the client browser as usual, and nothing in your script after that point will even be
parsed — execution of the script stops immediately. If the argument given to exit is a number rather
than a string, the number will be the return value for the script’s execution. Because exit is a con-
struct, not a function, it’s also legal to give no argument and omit the parentheses.

The die() construct is an alias for exit () and so behaves exactly the same way. (We'll usually use the
die() version because we find the name more evocative.) So what's the point of exit () and die()?
One possible use is to cut off production of a web page when your script has determined that there is no
more interesting information to send, without bothering to wrap up the different branches in a condi-
tional construct. This usage can make long scripts somewhat difficult to read and debug, however.

A better use for die () is to make your crashes informative. It's good to get into the habit of test-
ing for unexpected conditions that would crash your script if they were true, and throw ina die()
statement with an informative message. If you're correct in your expectations, the die () will never
be invoked; if you're wrong, you will have an error message of your own rather than a possibly
obscure PHP error. For example, consider the following pseudocode, which assumes that we have
functions to make a database connection and that we then use that database connection:

$connection = make_database_connection();
if (!$connection)

die("No database connection!");
use_database_connection($connection);

This example assumes that our imaginary function make_database_connection(), like many
PHP functions, returns a useful value if it succeeds, and a false value if it fails. An even more com-
pact version of the preceding code takes advantage of the fact that or has lower precedence than the
= assignment operator.

$connection = make_database_connection()
or die("No database connection!");
use_database_connection($connection);

Learning PHP Control Structures and Functions

This works because the or operator short-circuits, and therefore the die () construct will only be
evaluated if the expression $connection = make_database_connection() has a false value.
Because the value of an assignment expression is the value assigned, this code ends up being equiva-
lent to the earlier version. (Note that this would not work the same way if we used | | instead of

or, because | | has higher precedence than assignment, and so $connection would end up being
assigned to the true-or-false result of the | | expression.)

Before PHP5, the control structures we’ve presented so far were really the only alterna-
tives; control would flow from the first statement in a file to the last (possibly bounced
around by function calls), unless prematurely terminated with die (). With exception handling, PHP5
introduces an alternate way to deal with problematic conditions, and one that is much more flexible
than die (). We treat exceptions briefly later in this chapter, and more thoroughly in Chapter 30.

In Table 5-3, we summarize all the control structures you've seen thus far.

TABLE 5-3

PHP Control Structures

Name Syntax Behavior
If if (test)statement-1 Evaluate test and if it is true, execute
(or if-else) -or- statement-1. If test is false and there is an
if (test) else clause, execute statement-2. The
statement-1 elseif construct is a syntactic shortcut for
else else clauses, where the included statement is
statement-2 itself an if construct.
-or- Statements may be single statements
if (test) terminated with a semicolon or brace-
statement-1 enclosed blocks.

elseif (test?2)
statement-2

else
statement-3

Ternary operator expression-1 7 Evaluate expression-1 and interpret it as a
expression-2 : Boolean. If it is true, evaluate expression-2 and
expression-3 return it as the value of the entire expression.

Otherwise, evaluate and return expression-3.

continued

81

BTN roteoducing pree

PHP Control Structures

Name Syntax Behavior
If if (test)statement-1 Evaluate test and if it is true, execute
(or if-else) -or- statement-1. If test is false and there is an
if (test) else clause, execute statement-2. The
statement-1 elseif construct is a syntactic shortcut for
else else clauses, where the included statement is
statement-2 itself an if construct.
-or- Statements may be single statements
if (test) terminated with a semicolon or brace-
statement-1 enclosed blocks.

elseif (test?)
statement-2

else
statement-3

Ternary operator expression-1 7 Evaluate expression-1 and interpret it as a
expression-2 : Boolean. If it is true, evaluate expression-2 and
expression-3 return it as the value of the entire expression.

Otherwise, evaluate and return expression-3.

Switch switch(expression) Evaluate expression, and compare its value
{ to the value in each case clause. When
case value-1: a matching case is found, begin executing
statement-1 statements in sequence (including those from
statement-2 later cases), until the end of the switch

statement or until a break statement is
encountered. The optional default case
will execute if no other case has matched the
expression.

[break;]
case value-2:

statement-3

statement-4

Ebreak;]
[default:

default-statement]
}

While while (condition) Evaluate condition and interpret it as Boolean.
statement If condition is false, the while construct

terminates. If it is true, execute statement, and
keep executing it until condition becomes
false. Terminate the whi 1e loop if the special
break command is encountered, and skip
the rest of the current iteration if continue is
encountered.

82

Learning PHP Control Structures and Functions

Name Syntax Behavior
Do-while do statement Perform statement once unconditionally,
while (condition); then keep repeating statement until condition

becomes false. (The break and continue
commands are handled as in while.)

For for (initial-expression; Evaluate initial-expression once
termination-check; unconditionally. Then if termination-check
loop-end- is true, evaluate statement, and then loop-

expression) end-expression, and repeat that loop until
statement termination-check becomes false. Clauses

may be omitted, or multiple clauses of the
same kind can be separated with commas — a
missing termination-check is treated as
true. (The break and continue commands
are handled as in while.)

Using Functions

The basic syntax for using (or calling) a function is:

function_name(expression_1, expression_2, ..., expression_n)

This includes the name of the function followed by a parenthesized and comma-separated list of
input expressions (which are called the arguments to the function). Functions can be called with zero
or more arguments, depending on their definitions.

When PHP encounters a function call, it first evaluates each argument expression and then uses
these values as inputs to the function. After the function executes, the returned value (if any) is the
result of the entire function expression.

All the following are valid calls to built-in PHP functions:

sqrt(9); // square root function, evaluates to 3

rand(10, 10 + 10); // random number between 10 and 20
strien("This has 22 characters"); // returns the number 22
pi(); // returns the approximate value of pi

These functions are called with 1, 2, 1, and 0 arguments, respectively.

Return values versus side effects

Every function call is a PHP expression, and (just as with other expressions) there are only two rea-
sons why you might want to include one in your code: for the return value or for the side effects.

83

m Introducing PHP

84

The return value of a function is the value of the function expression itself. You can do exactly the
same things with this value as with the results of evaluating any other expression. For example, you
can assign it to a variable, as in:

$my_pi = pi();
Or you can embed it in more complicated expressions, as in:
$approx = sqrt($approx) * sqrt($approx)

Functions are also used for a wide variety of side effects, including writing to files, manipulating
databases, and printing things to the browser window. It’s okay to make use of both return values
and side effects at the same time — for example, it is very common to have a side-effecting function
return a value that indicates whether or not the function succeeded.

The result of a function may be of any type, and it is common to use the array type as a way for
functions to return multiple values.

Function Documentation

The architecture of PHP has been cleverly designed to make it easy for other developers to extend.
The basic PHP language itself is very clean and flexible, but there is not a lot there — most of PHP’s
power resides in the large number of built-in functions. This means that developers can contribute
simply by adding new built-in functions, which is nice especially because it does not change any-
thing that PHP users may be relying on.

Although this book covers many of these built-in functions, explaining some of them in greater
detail than the online manual can, the manual at www.php.net is the authoritative source for func-
tion information. In this book, we get to choose our topics to some extent, whereas the PHP docu-
mentation group has the awesome responsibility of covering every aspect of PHP in the manual.
Also, although we hope to keep updating this book in future editions, the manual will have the
freshest information on new additions to the ever-growing PHP functionality. It's worth looking at
some of the different resources that the PHP site and manual offer.

Although the following information is correct at this writing, some details may become
dated or inapplicable if the online manual is reorganized.

To find the manual, head to www.php.net. A handy search bar at the top offers quick and easy
access to any individual part of the online documentation. Alternatively, find the Documentation
item at the top of the page. The Documentation page that this tab leads to has links to manual infor-
mation in a wide variety of formats and languages.

The largest section of the manual is the function reference, where each built-in function gets its own
page of documentation. Typically, each group of functions has a page of general explanation, leading
to pages for individual functions. Each function page starts off with the name of the function and a
one-line description. This is followed by a C-style header declaration of the function (explained in

Learning PHP Control Structures and Functions

the next section), followed by a slightly longer description and possibly an example or two, and then
(in the annotated manual) clarifications and gotcha reports from users.

Headers in documentation

For those unfamiliar with C function headers, the very beginning of a function documentation page
might be confusing. The format is:

return-type function-name(typel argl, type? arg?, . . .);

This specifies the type of value the function is expected to return, the name of the function, and the
number and expected types of its arguments.

Here is a typical header description:
string substr(string string, int startl[, int lengthl);

This says that the function substr () will return a string and expects to be given a string and two
integers as its arguments. Actually, the square brackets around Tength indicate that this argument
is optional — so substr () should be called either with a string and an int, or a string and two ints.

Unlike in C, the argument types in these documentary headers are not absolute requirements. If
you call substr() with a number as its first argument, you will not get an error. Instead, PHP will
convert the first argument to a string as it begins to execute the function. However, the argument
types do document the intent of the function’s author, and it is a good idea either to use the function
as documented or to understand the type conversion issues well enough that you are sure the result
will be what you expect.

In general, the type names used in function documentation will be those of the basic types or of
their aliases: integer (or int), double (or f1oat, real), Boolean, string, array, object, resource, and
NULL. In addition, you may see the types void and mixed. The void return type means that the
function does not return a value at all, whereas the mixed argument type means that the argument
might be of any type.

Finding function documentation
What's the best way to find information about a function in the manual? That is likely to depend on
what kind of curiosity you have. The most common questions about functions are:

m [want to use function X. Now, how does X work again?

m ['dreally like to do task Y. Is there a function that handles that for me?

For the first type of curiosity, the full version of the online manual offers an automatic lookup by
function name. You can simply type http://php.net/functionName and the functionName
will be searched for automatically. Alternately, the “Search For” box in the upper-right corner of
the manual pages defaults to a mode where it searches for specific function names and displays the

85

m Introducing PHP

86

corresponding function page if found. (You can also make other choices, including searching the
mailing list or the entire online documentation — the latter is a good choice when you don’t know
the name of the function you want, but can guess at words that appear on its manual page.)

For the second type of curiosity, your best bet is probably to use the hierarchical organization of the
function reference. For example, the substr function shown in the “Headers in Documentation”
section is found in the “String Functions” section. You can browse the chapter list of the function
reference for the best fit for the task you want to do.

Defining Your Own Functions

User-defined functions are not a requirement in PHP. You can produce interesting and useful web
sites simply with the basic language constructs and the large body of built-in functions. If you find
that your code files are getting longer, harder to understand, and more difficult to manage, however,
it may be an indication that you should start wrapping some of your code up into functions.

What is a function?

A function is a way of wrapping up a chunk of code and giving that chunk a name, so that you can
use that chunk later in just one line of code. Functions are most useful when you will be using the
code in more than one place, but they can be helpful even in one-use situations, because they can
make your code much more readable.

Function definition syntax

Function definitions have the following form:

function function-name ($argument-1, $argument-2, ..)
{

Statement-1;
Statement-2;

}
That is, function definitions have four parts:

The special word function
The name that you want to give your function

The function’s parameter list — dollar-sign variables separated by commas

The function body — a brace-enclosed set of statements

Just as with variable names, the name of the function must be made up of letters, numbers, and
underscores, and it must not start with a number. Unlike variable names, function names are

Learning PHP Control Structures and Functions

converted to lowercase before they are stored internally by PHP, so a function is the same regardless
of capitalization.

The short version of what happens when a user-defined function is called is:

1. PHP looks up the function by its name (you will get an error if the function has not yet
been defined).

2. PHP substitutes the values of the calling arguments (or the actual parameters) into the vari-
ables in the definition’s parameter list (or the formal parameters).

3. The statements in the body of the function are executed. If any of the executed statements
are return statements, the function stops and returns the given value. Otherwise, the
function completes after the last statement is executed, without returning a value.

The alert and experienced programmer will have noticed that the preceding description
o implies call-by-value, rather than call-by-reference. In Chapter 26, we explain the differ-
ence and show how to get call-by-reference behavior.

Function definition example

As an example, imagine that we have the following code that helps decide which size of bottled soft
drink to buy. (This is sometime next year, when supermarket shoppers routinely use their wearable
wireless web browsers to get to our handy price-comparison site.)

$liters_1 = 1.0;
$price_1 = 1.59;
$liters 2 = 1.5;
$price 2 = 2.09;

$per_liter_1 = $price_ 1 / $liters_1;
$per_liter_2 = $price_2 / $liters_2;
if ($per_literl < $per_liter2)

print("The first deal is better!
");
else

print("The second deal is better!
");

Because this kind of comparison happens in our web site code all the time, we would like to make
part of this a reusable function. One way to do this would be the following rewrite:

function better_deal ($amount_1, $price_1,
$amount_2, $price_2)
{
$per_amount_1 = $price_1 / $amount_1;
$per_amount_2 = $price_2 / $amount_2;
return($per_amount_1 < $per_amount_2);
}

$1iters_1 = 1.0;

87

m Introducing PHP

88

$price_1 = 1.59;
$liters_2 = 1.5;
$price_2 = 2.09;

if (better_deal($liters_1, $price_1,
$liters_2, $price_2))
print("The first deal is better!
");
else
print("The second deal is better!
");

Our better_deal function abstracts out the three lines in the previous code that did the arithmetic
and comparison. It takes four numbers as arguments and returns the value of a Boolean expression.
As with any Boolean value, we can embed it in the test portion of an i f statement. Although this
function is longer than the original code, there are two benefits to this rewrite: We can use the func-
tion in multiple places (saving lines overall), and if we decide to change the calculation, we have to
make the change in only one place.

Alternatively, if the only way we ever use these price comparisons is to print which deal is preferred,
we can include the printing in the function, like this:

function print_better_deal ($amount_1, $price_1,
$amount_2, $price_2)

{

$per_amount_1 = $price_1 / $amount_1;
$per_amount_2 = $price_2 / $amount_2;
if ($per_amount_1 < $per_amount_2)
print("The first deal is better!
");
else
print("The second deal is better!
");

}

$1iters_1 = 1.0;
$price_1 = 1.59;
$liters_2 = 1.5;
$price_2 = 2.09;

print_better_deal($Titers_1, $price_1,
$liters_2, $price_2);

Our first function used the return statement to send back a Boolean result, which was used in

an if test. The second function has no return statement, because it is used for the side effect of
printing text to the user’s browser. When the last statement of this function is executed, PHP simply
moves on to executing the next statement after a function call.

Formal parameters versus actual parameters

In the preceding examples, the arguments we passed to our functions happened to be variables, but
this is not a requirement. The actual parameters (that is, the arguments in the function call) may

Learning PHP Control Structures and Functions

be any expression that evaluates to a value. In our examples, we could have passed numbers to our
function calls rather than variables, as in:

print_better_deal(1.0, 1.59, 1.5, 2.09);

Also, notice that in the examples we had a couple of cases where the actual parameter variable had
the same name as the formal parameter (for example, $price_1), and we also had cases where the
actual and formal names were different. ($1iters_1 is not the same as $amount_1.) As we will see
in the next section, this name agreement doesn’t matter either way — the names of a function’s for-
mal parameters are completely independent of the world outside the function, including the function
call itself.

Argument number mismatches

What happens if you call a function with fewer arguments than appear in the definition, or with
more? As you might have come to expect by now, PHP handles this without anything crashing, but
it may print a warning depending on your settings for error reporting.

Too few arguments

If you supply fewer actual parameters than formal parameters, PHP will treat the unfilled formal
parameters as if they were unbound variables. However, under the usual settings for error reporting
in PHP6, you will also see a warning printed to the browser.

The default error-reporting setting in PHP6 reports on every kind of error except runtime notices,
which are the least serious condition that is detected. The reason you see warnings about too few
arguments to a function is that this is treated as a runtime-warning situation (the next most serious
category). If you really need function calls that sometimes provide too few arguments and seeing
warnings is unacceptable, you have two options for suppressing the warnings:

B You can temporarily change the value of error reporting in your script, with a statement
like error_reporting(E_ALL ~ E_NOTICE ~ E_WARNING;. This will turn off both
runtime notices and runtime warnings from the point where it appears in your script up
to the next error_reporting() statement (if any). (Note that this is dangerous, as lots of
other problems might produce warnings besides the one you're interested in.)

B You can suppress errors for any single expression by using the error-control operator @,
which you can put in front of any expression to suppress errors from that expression only.
For example, if the function call my_function() is producing a warning, @my_function()
will not. Note that this is dangerous as well because all types of errors except for parse errors
will be suppressed.

We don't advise using either of these workarounds, but we provide them because we are such non-
judgmental people by nature. PHP actually provides ways to write functions that expect variable
numbers of arguments (see the “Variable Numbers of Arguments” section in Chapter 26), and using
them is a much better idea than shooting the messenger.

89

Introducing PHP

90

Rather than decreasing PHP’s reportage of errors, we advise increasing it to the

: maximum level possible when you are developing new code. You can do this glob-
ally by changing the php.ini file (see Chapter 29) or simply by including the statement error_
reporting(E_ALL) ; at the top of your scripts. Among other things, this increase in reportage will
mean that you will be warned about variables you have forgotten to assign, which is one of the most
frequent causes of time-wasting bugs.

Too many arguments

If you hand too many arguments to a function, the excess arguments will simply be ignored, even
when error reporting is set to E_ALL. As you will see in Chapter 26, this tolerance turns out to be
helpful in defining functions that can take a variable number of arguments.

Functions and Variable Scope

As we said in Chapter 4, outside of functions, the rules about variable scope are simple: Assign a
variable anywhere in the execution of a PHP code file, and the value will be there for you later in
that file’s execution. The rules become somewhat more complicated in the bodies of function defini-
tions, but not much.

The basic principle governing variables in function bodies is: Each function is its own little world.
That is, barring some special declarations, the meaning of a variable name inside a function has
nothing to do with the meaning of that name elsewhere. (This is a feature, not a bug — you want
functions to be reusable in different contexts, and so having the behavior be independent of the con-
text is a good thing. If not for this kind of scoping, you would waste a lot of time chasing down bugs
caused by using the same variable name in different parts of your code.)

As of PHP 4.1, there is a small set of global variables that are automatically visible from

9 within function definitions, in contradiction to the previous paragraph and the following
one. These are the superglobal arrays ($_POST, $_GET, $_SESSION, and so on), which contain keys
and values corresponding to variable bindings from different sources. For more on these variables and
their uses, see Chapter 6.

The only variable values that a function has access to are the formal parameter variables (which have
the values copied from the actual parameters), plus any variables assigned inside the function. This
means that you can use local variables inside a function without worrying about their effects on the
outside world. For example, consider this function and its subsequent use:

function SayMyABCs ()
{
$count = 0;
while ($count < 10)
{
print(chr(ord('A") + $count));
$count = $count + 1;
}

Learning PHP Control Structures and Functions

print("
Now I know $count letters
");
}
$count = 0;
SayMyABCs () ;
$count = $count + 1;
print("Now I've made $count function call(s).
");
SayMyABCs () ;
$count = $count + 1;
print("Now I've made $count function call(s).
");

The intent of SayMyABCs () is to print a sequence of letters. (The functions chr() and ord() trans-
late between letters and their numeric ASCII codes — we use them here just as a trick to generate
letters in sequence.) The output of this code is:

ABCDEFGHIJ

Now I know 10 Tletters

Now I've made 1 function call(s).
ABCDEFGHIJ

Now I know 10 Tetters

Now I've made 2 function call(s).

Both the function definition and the code outside the function make use of variables called $count,
but they refer to different variables and do not clash.

The default behavior of variables assigned inside functions is that they do not interact with the out-
side world; they act as though they are newly created each time the function is called. Both of these
behaviors, however, can be overridden with special declarations.

Global versus local

The scope of a variable defined inside a function is local by default, meaning that (as we explained
in the previous section) it has no connection with the meaning of any variables outside the function.
Using the global declaration, you can inform PHP that you want a variable name to mean the same
thing as it does in the context outside the function. The syntax of this declaration is simply the word
global, followed by a comma-delimited list of the variables that should be treated that way, with a
terminating semicolon. To see the effect, consider a new version of the previous example. The only
difference is that we have declared $count to be global, and we have removed its initial assignment
to zero inside the function:

function SayMyABCs2 ()
{
global $count;
while ($count < 10)
{
print(chr(ord("A") + $count));
$count = $count + 1;
}
print("
Now I know $count lTetters
");

91

m Introducing PHP

92

}

$count = 0;

SayMyABCs2();

$count = $count + 1;

print("Now I've made $count function call(s).
");
SayMyABCs2();

$count = $count + 1;

print("Now I've made $count function call(s).
");

Our revised version prints the following browser output:

ABCDEFGHIJ
Now I know 10 Tetters
Now I've made 11 function call(s).

Now I know 11 Tletters
Now I've made 12 function call(s).

This is buggy behavior, and the global declaration is to blame. There is now only one $count
variable, and it is being increased both inside and outside the function. When the second call to
SayMyABCs () happens, $count is already 11, so the loop that prints letters is never entered.

Although this example shows global to bad advantage, it can be quite useful, especially because (as
we'll see in Chapter 6) PHP provides some variable bindings to every page even before any of your
own code is executed. It can be helpful to have a way for functions to see these variables without the
bother of passing them in as arguments with each call.

Static variables

By default, functions retain no memory of their own execution, and with each function call local
variables act as though they have been newly created. The static declaration overrides this behav-
ior for particular variables, causing them to retain their values in between calls to the same function.
Using this, we can modify our earlier function SayMyABCs2() to give it some memory:

function SayMyABCs3 ()
{
static $count = 0; //assignment only if first time called
$1imit = $count + 10;
while ($count < $1imit)
{
print(chr(ord('A") + $count));
$count = $count + 1;
}
print("
Now I know $count letters
");
1
$count = 0;
SayMyABCs3();
$count = $count + 1;

Learning PHP Control Structures and Functions

print("Now I've made $count function call(s).
");
SayMyABCs3();

$count = $count + 1;

print("Now I've made $count function call(s).
");

This memory-enhanced version gives us the following output:

ABCDEFGHIJ

Now I know 10 Tetters

Now I've made 1 function call(s).
KLMNOPQRST

Now I know 20 Tletters

Now I've made 2 function call(s).

The static keyword allows for an initial assignment, which has an effect only if the function has not
been called before. The first time SayMyABCs3 () executes, the local version of $count is set to zero.
The second time the function is called, it has the value it had at the end of the last execution, so we
are able to pick up our studies where we left off. Notice that changes to $count outside the function
still have no effect on the local value.

Exceptions

You've already seen some fairly primitive error handling in the form of die (), and you might well
imagine the custom error handling possibilities implied by the combination of control structures
and basic use of print () or printf() commands (more on this in Chapter 26). However, in prior
versions of PHP, a chief complaint was the lack of standardized means for handling errors, and sepa-
rating that means from the application code itself. Enter Exceptions.

Exceptions use the try, catch syntax similar to Java or Python, although programmers using
those languages will note the absence of finally.

Let’s start with a simple example that has no error handling at all:

function print_header($title, $keywords, $description) ({
print ("<HTML><HEAD>");
print("<TITLE>$title</TITLE>");
print ("<META NAME=\"Keywords\" CONTENT=\"$keywords\">");
print("<META NAME=\"Description\" CONTENT=\"$description\">");
print("</HEAD><BODY>");

}

print_header('My Page',
'PHP, Programming, Beer',
")

The custom function print_header () is designed to make it easy for us to place a standardized,

search engine—friendly header at the top of each page. However, we've left the description variable
undefined, which will not yield an error, but will leave us without a meaningful description for our

93

Introducing PHP

page. Unfortunately, because the function is essentially called correctly and PHP is forgiving in nature,
we may never know that we've left off this important detail. Some form of error handling is necessary
to point this out, and Exceptions provide a handy way of dong so. Consider this revised code:

function print_header($title, $keywords, $description) f{
if(strlen($description) < 40)
throw new Exception('A reasonable description length is
required
");
print ("<HTML><HEAD>");
print("<KTITLE>$tit1e</TITLE>");
print ("<META NAME=\"Keywords\" CONTENT=\"$keywords\">");
print("<META NAME=\"Description\" CONTENT=\"$description\">");
print("</HEAD><BODY>");
}

try {
print_header('My Page',
'"PHP, Programming, Beer',
li);
} catch (Exception $e) {
echo($e->getMessage());
}

The first new thing in our revised function is a simple test in line 2 suggesting an appropriate mini-
mum length for the $description variable. The line immediately following initiates an instance of
the Exception class with the message suggested by the quoted value.

You can create your own classes and extensions of existing classes, including those for
“5 exception handling. PHP gives you Exception for free. We’ll go into much greater depth
on the subject of classes in Chapter 20 and exception handling itself in Chapter 30.

Next, instead of simply calling the function, we’ve enclosed the function in a new control structure,
the try. . .catch block. If we execute the code as written, PHP first tries to execute the function
as described, then it terminates execution almost immediately, because the $description variable
has failed our simple test. At this point, the script can continue execution after the try. . .catch
block, or it can be terminated with die() or exit().

Multiple exceptions can be defined in a single function. This is a good idea because it yields more
specific information about what exactly happened. Because execution stops with the first exception,
only this exception will be caught.

Exceptions are a huge topic; they’re outlined here so that you can start using them imme-
; diately. You’ll find nods to exceptions throughout this book, but they are covered in
depth in Chapter 30.

94

Learning PHP Control Structures and Functions

Function Scope

Although the rules about the scope of variable names are fairly simple, the scoping rules for function
names are even simpler. There is just one rule in PHP6: Functions must be defined once (and only
once) somewhere in the script that uses them. (See the following note about differences between
this behavior and PHP3.) The scope of function names is implicitly global, so a function defined in

a script is available everywhere in that script. For clarity’s sake, however, it is often a good idea to
define all your functions before any code that calls those functions.

In PHP3, functions could be used only after they were defined. This meant that the safest
practice was to define (or include the definitions of) all functions early in a given script,
before actually using any of them. Beginning with PHP4, scripts are precompiled before being run,
and one effect of this precompilation is that the compiler discovers all function definitions before actu-
ally running the code. This means that functions and code can appear in any order in a script, as long
as all functions are defined once (and only once).

Include and require

It's very common to want to use the same set of functions across a set of web site pages, and the usual
way to handle this is with either include or require, both of which import the contents of some
other file into the file being executed. Using either one of these forms is vastly preferable to cloning
your function definitions (that is, repeating them at the beginning of each page that uses them); when
you want to modify your functions, you will have to do it only once. (We covered these forms in
Chapter 3, but they are worth reviewing here in the context of including function definitions.)

For example, at the top of a PHP code file we might have lines like:

include "basic-functions.inc";
include "advanced-function.inc";
(.. code that uses basic and advanced functions ..)

which import two different files of function definitions. (Note that parentheses are optional with
both include() and require().) As long as the only things in these files are function definitions,
the order of their inclusion does not matter.

Both include and require have the effect of splicing in the contents of their file into the PHP code
at the point that they are called. The only difference between them is how they fail if the file cannot
be found. The include construct will cause a warning to be printed, but processing of the script
will continue; require, on the other hand, will cause a fatal error if the file cannot be found.

Note that incTude and require are now more similar in their behavior than they used
to be. Prior to PHP 4.0.2, require had its file contents spliced in statically, before the
actual execution of the page; whereas the contents from include were spliced in dynamically as the
page executed. Among other things, this led to subtle differences in behavior when the include/
require form was in conditional code. Now, however, both include and require have the same
dynamic behavior. This means, for example, that if an include/require formis in a loop executed
10 times, 10 inclusions will be made.

95

m Introducing PHP

96

Including only once

Sometimes you really want a file to be included once, but not more than once. This is true most
often in the case of function definitions. For example, two different function definition files might,
in turn, include the same file of utility functions — if a top-level page includes both of these files,
the utility functions might be included twice, leading to complaints from PHP that functions are
being defined twice.

To the rescue come include_once and require_once, which act just like their counterparts except
that they will not include a file named by a given string if that file has already been included. It’s usu-
ally better to use the _once version, in general, for including function and class definition files.

The include path

When you include a filename, PHP searches for a file by that name in the directories specified in
the include_path (which is settable in your php.ini file). The default path includes the same
directory as the one the top-level code page is in. See Chapter 29 for details about how to add loca-
tions to your include path.

In situations where a single instance of PHP serves several virtual sites, it’s generally easier and less
confusing to PHP to use the $_SERVER superglobal array to specify the location of an inc1ude file:

include_once($_SERVER['DOCUMENT_ROOT']."/path/to/include_file");

Remember that included (and required) files are parsed by default in HTML mode rather

st % than in PHP mode. This means that any included file meant to be interpreted as PHP needs

to have the usual PHP tags at the beginning and end, though the end tags aren’t technically required.

Recursion

Some compiled languages, like C and C++, impose somewhat complex ordering constraints on how
functions are defined. To know how to compile a function, the compiler must know about all the
functions that the function calls, which means the called functions must be defined first. So what
do you do if two functions each call the other or if one function calls itself? Issues like this led the
designers of C to a separation of function declarations (or prototypes) from function definitions (or
implementations). The idea is that you use declarations to inform the compiler in advance about the
types of arguments and return types of the functions you plan to use, which is enough information
for the compiler to handle the actual definitions in any order.

In PHP, this problem goes away, and so there is no need for separate function prototypes. As long
as each function that is called is defined once (and only once) in the current code file or one that is
included in the course of the current script’s execution, PHP will have no problem resolving func-
tion calls, regardless of the interleaving of function calls and definitions.

This means that recursive functions (functions that call themselves) are no problem in PHP4. For
example, we can define a recursive function and then immediately call it:

function countdown ($num_arg)

{

Learning PHP Control Structures and Functions

if ($num_arg > 0)

{

}
}

countdown(10);

print("Counting down from $num_arg
");
countdown($num_arg - 1);

This produces the browser output:

Counting
Counting
Counting
Counting
Counting
Counting
Counting
Counting
Counting
Counting

down
down
down
down
down
down
down
down
down
down

from
from
from
from
from
from
from
from
from
from

o

=N WS OOy N 00 WO

As with all recursive functions, it’s important to be sure that the function has a base case (a nonrecur-
sive branch) in addition to the recursive case, and that the base case is certain to eventually occur. If
the base case is never invoked, the situation is much like a while loop where the test is always true
— we will have an infinite loop of function calling. In the case of the preceding function, we know
that the base case will happen, because every invocation of the recursive case reduces the countdown
number, which must eventually become zero. Of course, this assumes that the input is a positive inte-
ger rather than a negative number or a double. Notice that our “greater than zero” test guards against
infinite recursion even in these cases, whereas a “not equal to zero” test would not.

Similarly, mutually recursive functions (functions that call each other) work without a hitch. For exam-
ple, the following definitions plus function call:

function countdown_first ($num_arg)

{

if ($num_arg > 0)

{

}
}

print("Counting down (first) from $num_arg
");
countdown_second($num_arg - 1);

function countdown_second ($num_arg)

{

if ($num_arg > 0)

{

}

print("Counting down (second) from $num_arg
");
countdown_first($num_arg - 1);

97

m Introducing PHP

98

}
countdown_first(5);

produce the browser output:

Counting down (first) from 5
Counting down (second) from 4
Counting down (first) from 3
Counting down (second) from 2
Counting down (first) from 1

Summary

PHP has a C-like set of control structures, which branch or loop depending on the value of Boolean
expressions, which in turn can be combined using Boolean operators (and, or, xor, !, &&, | |). The
structures 1 f and switch are used for simple branching; while, do-while, and for are used for
looping, and exit () or die() terminates script execution.

Most of the power of PHP resides in the large number of built-in functions provided by PHP’s benev-
olent army of open source developers. Each of these functions should be documented (albeit briefly)
in the online manual at waw.php.net.

You can also write your own functions, which are then used in exactly the same way as the built-in
functions. Functions are written in a simple C-style syntax, as in the following:

function my_function ($argl, $arg2, ..)
{

statementl;

Statement?Z;

return($value);

}

User-defined functions can use arguments of any PHP type and can also return values of any type.
The types of arguments and return values do not need to be declared.

In PHP, the ordering of function definitions and function calls makes no difference, as long as every
function that is called is defined exactly once. There is no need for separate function declarations or
prototypes. Variables assigned inside a function are local to that function, unless specified otherwise
with the global declaration. Local variables may be declared to be static, which means that they
hold onto their values in between function calls.

Finally, with our brief treatment of exceptions, we're well on our way to writing thoughtful friendly
code that uses standardized error handling.

n this chapter, we’ll briefly discuss some things you need to know

about passing data between web pages. Some of this information is not

specific to PHP but is a consequence of the PHP/HTML interaction or
of the HTTP protocol itself.

HTTP Is Stateless

The most important thing to recall about the way the web works is that the
HTTP protocol itself is stateless. If you are a poetic soul, you might say that
each HTTP request is on its own, with no direction home, like a complete
unknown . . . you know how the rest goes.

For the less lyrical among us, this means that each HTTP request — in
most cases, this translates to each resource (HTML page, . jpg file, style
sheet, and so on) being asked for and delivered — is independent of all the
others, knows nothing substantive about the identity of the client, and has
no memory.

Even if you design your site with very strict one-way navigation (Page 1
leads only to Page 2, which leads only to Page 3, and so on), the HTTP
protocol will never know or care that someone browsing Page 2 must have
come from Page 1. You cannot set the value of a variable on Page 1 and
expect it to be imported to Page 2 by the exigencies of HTTP itself. You
can use HTTP to display a form, and someone can enter some information
using it — but unless you employ some extra means to pass the informa-
tion to another page or program, the variable will simply vanish into the
ether as soon as you move to another page.

99

IN THIS CHAPTER

HTTP is stateless

GET arguments

A better use for GET-style URLs

POST arguments

Formatting form variables

PHP superglobal arrays

m Introducing PHP

100

This is where a form-handling technology like PHP comes in. PHP will catch the variable tossed
from one page to the next and make it available for further use. PHP happens to be unusually good
at this type of data-passing function, which makes it fast and easy to employ for a wide variety of
web site tasks.

HTML forms are mostly useful for passing a few values from a given page to one single other page of
a web site. There are more persistent ways to maintain state over many pageviews, such as cookies
and sessions, which we cover in Chapter 24. This chapter will focus on the most basic techniques of
information-passing between web pages, which utilize the GET and POST methods in HTTP to create
dynamically generated pages and to handle form data.

GET Arguments

The GET method passes arguments from one page to the next as part of the Uniform Resource
Indicator (you may be more familiar with the term Uniform Resource Locator, or URL) query string.
When used for form handling, GET appends the indicated variable name(s) and value(s) to the URL
designated in the ACTION attribute with a question mark separator and submits the whole thing to
the processing agent (in this case a web server).

This is an example HTML form using the GET method (save the file under the name sportselect
.html):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.0rg/
TR/html4/strict.dtd">

<HTML>

<HEAD>

KTITLE>A GET method example, part 1</TITLE>

</HEAD>

<BODY>

<FORM ACTION="sports.php" METHOD="GET">
<P>Choose your favorite sport:

<SELECT NAME="Sport">

<OPTION VALUE="Baseball">Baseball</OPTION>
<OPTION VALUE="Basketball">Basketball</OPTION>
<OPTION VALUE="Football">Football</OPTION>
<OPTION VALUE="Ice Hockey">Ice Hockey</OPTION>
<OPTION VALUE="Racing">Auto Racing</OPTION>
<OPTION VALUE="Soccer">Soccer</OPTION>
</SELECT>

<P>INPUT TYPE="submit" NAME="Submit" VALUE="Select"></P>
</FORM>

</BODY>

</HTML>

Passing Information with PHP

When the user makes a selection and clicks the Submit button, the browser agglutinates these ele-
ments in this order, with no spaces between the elements:

The URL in quotes after the word ACTION (http://localhost/baseball.php)

A question mark (?) denoting that the following characters constitute a GET string.

A variable NAME, an equal sign, and the matching VALUE (Team=Cubbies)

An ampersand (&) and the next NAME-VALUE pair (Submit=Select); further name-value
pairs separated by ampersands can be added as many times as the server query-string-
length limit allows.

The browser thus constructs the URL string;

http://<your-server-name>/sports.php?Sport=Icet+Hockey&Submit=Select

It then forwards this URL into its own address space as a new request. The PHP script to which the
preceding form is submitted (sports.php) will grab the GET variables from the end of the request
string, stuff them into the $_GET superglobal array (explained in a moment), and do something use-
ful with them — in this case, plug one of two values into a text string.

The following code sample shows the PHP form handler for the preceding HTML form:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.0rg/
TR/html4/strict.dtd">

<HTML>

<HEAD>

KTITLE>A GET method example, part 2</TITLE>
(STYLE TYPE="text/css">

<l--

BODY {font-size: 24pt;}

-->

</STYLE>

</HEAD>

<BODY>
<{P>You've indicated that you Tike
<?php echo $_GET['Sport']; ?>!</P>
</BODY>
</HTMLD>

Note that the value inputted into the previous page’s HTML form field named “Sport*“is now avail-

able in a PHP variable called $_GET['Sport']. Finally, you should see a page that says You've indi-
cated that you like Ice Hockey! in big type.

101

Introducing PHP

102

At this point, it makes some sense to explain just how to access values submitted from
page to page. This chapter discusses the two main methods for passing values: GET and
POST (there are others, but they are not covered until Part Ill). Each method has an associated super-
global array, explained in more depth in Chapter 8, which can be distinguished from other arrays by the
underscore that begins its name. Each item submitted via the GET method is accessed in the handler via
the $_GET array; each item submitted via the POST method is accessed in the handler via the $_P0OST
array. The syntax for referencing an item in a superglobal array is simple and 100 percent consistent:

$_ARRAY_NAME["index_name"']

where the index_name is the name part of a name-value pair (for the GET method), or the name of an
HTML form field (for the POST method). As in the preceding example, $_GET['Sport '], indicates the
value of the form select field called ' Sport’', sent by the GET operation in the original file. You must
use the array appropriate to the method used to send data. In this case, $_POST['Sport'] is unde-
fined because no data was POSTed by the original form.

The GET method of form handling offers one big advantage over the POST method: It constructs an
actual new and differentiable URL query string. Users can now bookmark this page. The result of
forms using the POST method is not bookmarkable.

Just because you can achieve the desired functionality with GET arguments doesn’t mean you should.
The disadvantages of GET for most types of form handling are so substantial that the original HTML
4.0 draft specification deprecated its use in 1997. These flaws include:

B The GET method is not suitable for logins because the username and password are fully vis-
ible onscreen as well as potentially stored in the client browser’s memory as a visited page.

B Every GET submission is recorded in the web server log, data set included.

Because the GET method assigns data to a server environment variable, the length of the URL
is limited. You may have seen what seem like very long URLs using GET — but you really
wouldn’t want to try passing a 300-word chunk of HTML-formatted prose using this method.

The original HTML spec called for query strings to be limited to 255 characters. Although
this stricture was later loosened to mere encouragement of a 255-character limit, using a
longer string is asking for trouble.

The GET method of form handling had to be reinstated by the W3C after much outcry, largely
because of the bookmarkability factor. Despite that it’s still implemented as the default choice for
form handling in all browsers, GET now comes with a strong recommendation to deploy it in idem-
potent usages only — in other words, those that have no permanent side effects. Putting two and two
together, the single most appropriate form-handling use of GET is the search box. Unless you have a
compelling reason to use GET for non-search-box form handling, use POST instead.

A Better Use for GET-Style URLs

Although the actual GET method of form handling is deprecated, the style of URL associated with it
turns out to be very useful for site navigation. This is especially true for dynamically generated sites
such as those often constructed with PHP, because the appended-variable style of URL works par-
ticularly smoothly with a template-based content-development system.

Passing Information with PHP

As an illustration, imagine you are the proud proprietor of an information-rich web site about solar
cars. You've toiled long and hard over informative and attractive pages such as these:

Suspension_design.html
Windtunnel_testing.html
friction_braking.html

But as your site grows, a flat-file site structure like this can take a lot of time to administer, as even
the most trivial changes must be repeated on every page. If the structure of these pages is very simi-
lar, you might want to move to a template-based system with PHP.

You might decide to utilize a single template with separate text files for each topic (containing infor-
mation, photos, comments, and so on):

topic.php
suspension_design.inc
windtunnel_testing.inc
friction_braking.inc

Or you might decide you needed a larger, more specialized choice of template files:

Vehicle_structure.php
Tubular_frames.inc
Mechanical_systems.php

Friction_braking.inc
Electrical_systems.php

Solar_array.inc
racing.php

race_strategy.inc

A simple template file might look something like this (because we haven't included the necessary
.inc text files, this example will not actually work):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.0rg/
TR/html4/strict.dtd">

<HTML>

<HEAD>

KTITLE>Solar-car topics</TITLE>

(STYLE TYPE="text/css">

<--

BODY {font: verdana; font-size: 12pt}
-=>

</STYLE>

</HEAD>

<BODY>
<TABLE BORDER=0 CELLPADDING=0 WIDTH="100%">
<TR>
<!-- Navbar, with Get-style URLs. -->
<TD ALIGN=CENTER VALIGN=TOP>
<P>

103

m Introducing PHP

104

Friction braking

Steering

Suspension

Tires and wheels

/P
</TD>

<!-- Main body of content -->

<TD ALIGN=LEFT VALIGN=TOP>

<?php include($_GET['Name'] . "inc"); ?>
</TD></TR>/TABLE>

</BODY>

</HTML>

Notice that the links on the navbar, when clicked, will be handled by the browser as if they were the
product of a GET submission.

But even with this solution, you still have to tend part of your garden by hand: making sure that each
include file is properly formatted in HTML, adding a new link to the navbar each time you add a new
page to the site, and other such chores. Following the general rule to separate form and content as much
as is feasible, you might choose to go to another level of abstraction with a database. In that case, a URL
suchas http://www.example.com/topic.php?topicID=2 would point to a PHP template that
makes database calls. (Using a number variable rather than a word makes for faster database interac-
tion.) This system could also automatically add a link to the navbar whenever you added new topics

to the database, so it could produce web pages entirely without ongoing human intervention (all right,
maybe entirely is an exaggeration — but with significantly fewer person-hours of grunt labor).

POST Arguments

POST is the preferred method of form submission today, particularly in nonidempotent usages (those
that will result in permanent changes), such as adding information to a database. The form data set
is included in the body of the form when it is forwarded to the processing agent (in this case, PHP).
No visible change to the URL will result according to the different data submitted.

The POST method has one primary advantage:

B There is a much larger limit on the amount of data that can be passed (a couple of mega-
bytes rather than a couple of hundred characters).

Passing Information with PHP _

POST has these disadvantages:

B The results at a given moment cannot be bookmarked.

B Browsers exhibit different behavior when the visitor uses their Back and Forward naviga-
tion buttons within the browser.

There is a misguided belief that POST is more secure than GET. In reality, neither offers any more
security than the other. The visitor can still view variables and data being sent with a POST just as
they can with a GET. The only difference is that the data doesn’t show up in the address bar. This
doesn’t mean that it'’s hidden. Data sent with a POST can be viewed and altered by the web site user.

The first and most important rule of programming, especially web programming is:
Never Trust Input

Always assume that the visitor has either maliciously or accidentally altered the data being passed
into your application, and validate the data.

Only when the request is secured using SSL or TLS or some other form of encryption is the form
data somewhat secure. Nevertheless, the end user or visitor can still see and alter the data. SSL
merely encrypts the data in transit, preventing prying eyes on the network from looking at it. SSL
does nothing to prevent the visitor from changing form data.

I'll cover much more about security throughout the book. I believe security needs to be included in
every aspect of programming, and, therefore, you'll see security tips when appropriate and within
context, rather than trying to make sense of them in a specific chapter. Chapter 28 will examine
PHP security, concentrating on overall best practices and also server security, as well.

Get and Post Both

Did you know that with PHP you can use both GET and POST variables on the same page? You might want
to do this for a dynamically generated form, for example.

But what if you (deliberately or otherwise) use the same variable name in both the GET and the POST variable
sets? PHP keeps all ENVIRONMENT, GET, POST, COOKIE, and SERVER variables in the $GLOBALS array if you
have set the register_globals configuration directive to “on” in your php.ini file (doing so creates a
security risk). If there is a conflict, it is resolved by overwriting the variable values in the order you set, using the
variables_order optionin php.ini. Later trumps earlier, so if you use the default "EGPCS" value, cookies
will triumph over POSTs that will themselves obliterate GETs. You can control the order of overwriting by simply
changing the order of the letters on the appropriate line of this file, or even better, turning register_globals
off and using the new PHP superglobal arrays instead. See the section on superglobals later in this chapter.

105

Introducing PHP

106

Formatting Form Variables

PHP is so efficient at passing data around because the developers made a very handy but (in theory)
slightly sketchy design decision. PHP automatically, but invisibly, assigns the variables for you on
the new page when you submit a data set using GET or POST. Most of PHP’s competitors make you
explicitly do this assignment yourself on each page; if you forget to do so or make a mistake, the
information will not be available to the processing agent. PHP is faster, simpler, and mostly more
goof-proof.

But because of this automatic variable assignment, you need to always use a good NAME attribute for
each INPUT. NAME attributes are not strictly necessary in HTML proper — your form will render fine
without them — but the data will be of little use because the HTML form-field NAME attribute will
be the variable name in the form handler.

In other words, in this form:

<FORM ACTION="<?php echo $_SERVER['PHP_SELF']; ?>"
METHOD="POST">

CINPUT TYPE="text" NAME="email">

<INPUT TYPE="submit" NAME="submit" VALUE="Send">
</FORM>

the text field named email will cause the creation of a PHP variable called $_POST['email"']
when the form is submitted. Similarly, the submit button will lead to the creation of a variable called
$_POSTL'submit'] on the next page. The name you use in the HTML form will be the name of
your variable in the PHP form handler.

$HTTP_POST_VARS, $HTTP_SERVER_VARS, and the whole family of these long-form
predefined variables were deprecated in PHP5. If you are already an experienced PHP
programmer, perhaps with a large body of previously written code lying around, you might want to
think about rewriting now for backward compatibility. They are supported for the time being, but their
days are numbered. Use $_POST, $_GET, and friends instead.

Remember that you cannot use a variable name beginning with a number — so you should not
name your form field something like 5 (you laugh, but we’ve seen people try to do it) — and PHP
variable names are case sensitive. Also, please try to use informative variable names rather than a
succession of form fields named myvar and e.

It’s a good idea to standardize how you name form variables, to make your code more
readable and so that you spend less time flipping back to the form itself when you are
supposed to be writing code to process that form. For example, you might precede all form variables
with frm to indicate their source. You might then consistently use the first few letters of each identify-
ing word for what a field does, for example, frmNameFirst, frmOfficeAdd, frmHomeAdd, and so
on. The specific standard you set is less important than having a standard to begin with.

Passing Information with PHP _

Another thing to keep in mind when creating your HTML forms is that, if you ever want this form to
be displayed with prefilled inputs, you need to set the VALUE attribute. This is particularly relevant
to two kinds of forms: those that are used to edit data from a database, and those that are intended
to possibly be submitted more than once. The latter case is very common in situations where a form
should redisplay on error with values already prefilled — for instance, a registration form that will
not work until the user provides a valid e-mail address or other required data.

For example, the form in Listing 6-1 (which represents a retirement savings calculator) is designed
to be submitted multiple times while the user fiddles around with the values. Every time you submit
the form, the values from the previous go-round will be filled in for you automatically. Note the use
of the VALUE attribute in the form fields in this code sample.

LISTING 6-1

Form with prefilled values (retirement_calc.php)

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.0rg/TR/htm14/
strict.dtd">

<HTML>

<HEAD>

KTITLE>A POST example: retirement savings worksheet</TITLE>
(STYLE TYPE="text/css">

<h--

BODY {font-size: l4pt}

.heading {font-size: 18pt; color: red}

>

</STYLE>

</HEAD>

<?php

// This test, along with the Submit button value in the form
// below, will check to see if the form is being rendered for
// the first time (in which case it will display with only the
// default annual gain filled in).

if (11sSet($_POST['Submit']) || $_POST['Submit'] != 'Calculate’)
{

$_POSTL'CurrentAge'] = "";

$_POSTL'RetireAge'] = "";

$_POSTL'Contrib']l = "";

$Total = 0;
$AnnGain = 7;
} else |
$AnnGain $_POST['AnnGain'];

$Years = $_POST['RetireAge'] - $_POST['CurrentAge'];
$YearCount = 0;

107

m Introducing PHP

$Total = $§_POST['Contrib'];

while ($YearCount <= $Years) {
$Total = round($Total * (1.0 + $AnnGain/100) +
$_POST['Contrib'1);
$YearCount = $YearCount + 1;
t
}
2>
<BODY>

<DIV ID="Divl" class="heading">
A retirement-savings calculator</DIV>

<P class=blurb>Fill in all the values (except "Nest Egg")
and see how much money you'll have for your retirement

under different scenarios. You can change the values and
resubmit the form as many times as you like. You must fill
in the two "Age" variables. The "Annual return" variable has
a default inflation-adjusted value (7% = 8% growth minus 1%
inflation) which you can change to reflect your greater
optimism or pessimism.</P>

<FORM ACTION="<?php echo $_ SERVER['PHP_SELF']; 7?>"
METHOD="POST">

<P>Your age now:

<INPUT TYPE="text" SIZE=5 NAME="CurrentAge"
VALUE="<?php echo $ _POST['CurrentAge']; ?>">
<P>The age at which you plan to retire:

<INPUT TYPE="text" SIZE=6 NAME="RetireAge"
VALUE="<?php echo $_POST['RetireAge']; ?>">
<P>Annual contribution:

<INPUT TYPE="text" SIZE=15 NAME="Contrib"
VALUE="<?php echo $_POST['Contrib']; 2>">
<P>Annual return:

CINPUT TYPE="text" SIZE=5 NAME="AnnGain"
VALUE="<?php echo $AnnGain; ?>"> %

<P>NEST EGG: <?php echo $Total; ?>
<P>CINPUT TYPE="submit" NAME="Submit" VALUE="Calculate">
</FORM>

</BODY>

</HTMLY>

Figure 6-1 shows the result of the Listing 6-1.

108

FIGURE 6-1

Passing Information with PHP _

A form using the POST method with VALUE attributes

) a POST example: retirement savings worksheet - Mozilla Firefox 3 =1of x|
File Edit Wiew History Bookmarks Tooks Help 5

)

\,J x _ = @ A | {Ll"‘ | http:,i,iwww.bralng\a.nrg;‘buoks,ﬂ|'| [i'bl E[G]YiGoogia

-

A retirement-gavings caleulator

Fill in all the values (except "Nest Egg'") and see how much money you'll
have for your retirement under different scenarios. You can change the
values and resubmit the form as many times as vou like. You must fill in
the two "Age" variables. The "Annual return" variable has a default
inflation-adjusted value (7% = 8%6 growth minus 1% inflation) which you
can change to reflect your greater optimism or pessimism.

Your age now: [z3

The age at which you plan to retire: |55

Annual contribution: |51 50

Annual return: |7 %

NEST EGG: 660542

Calculate I |

| Dione: Q

Consolidating forms and form handlers

As you can see in the preceding example, it is often handy to make the HTML form and the form
handler into one script. This practice has many advantages, such as making it easier to change the
name of the file without harming functionality, making it easier to display error messages and pre-
filled form fields, and achieving better control over your variable namespace. Suppose that you are
making a login form that redisplays with an error message if the login is unsuccessful. If you have
separate forms and form handlers, youll probably have to do something yucky with GET vars and
redirection. If you consolidate, it’s very simple to control the display without these machinations.

EJ(;. To see how these techniques can be used with data from MySQL, see Chapter 17.
il

When you consolidate, generally the form-handling code should come before the form display. This
order may be something of a shift in thinking for those who are used to writing the form before the
handler, but if you think it through, you will see the logic of the practice. You have to give yourself

an opportunity to set variables and make choices before you can decide what to show the user. This

109

m Introducing PHP

110

is especially relevant if you will be redirecting the user to a different page under certain circum-
stances, via the header () function, because this decision point must come before any HTML out-
put has been displayed to the browser.

PHP Superglobal Arrays

A change that has been coming for a long time in PHP is the gradual phasing out of automatic global
variables in favor of superglobal arrays, which were introduced in PHP4. Understanding superglobal
arrays before you understand arrays may present difficulties; if so, we recommend that you read
Chapter 8 and come back to this section later.

In the good old days before PHP4.1, you could write a piece of code like this and expect it to work:

<?php
if (isSet($submit))
echo $email;
} else {
7>
<FORM ACTION="<?php echo $PHP_SELF; ?>" METHOD="POST">
<INPUT TYPE="text" NAME="email">
<INPUT TYPE="submit" NAME="submit" VALUE="Send">
</FORM>

All GET, POST, COOKIE, ENVIRONMENT, and SERVER variables were made global by the register_
globals directive in php.ini and were directly accessible by their names by default.

The PHP team decided to phase out the practice of registering globals, forcing everyone to call these
variables as indices in an array (for example, $_POST['secretpassword']). This had already been
possible in PHP4, via arrays named $HTTP_GET_VARS, $HTTP_POST_VARS, $HTTP_POST_VARS,
and so on, but few developers had used this syntax; frankly, it was a lot of extra keystrokes for a
small increase in security. So the PHP team also took this opportunity to rename these arrays with
shorter names: $_GET, $_POST, $_COOKIE, $_ENV, and $_SERVER.

These superglobal arrays also have one cool feature that may ameliorate some pain: They are auto-
matically global everywhere. This means, for instance, that you no longer have to pass cookie values
into a function or declare the $HTTP_COOKIE_VARS array global before you can access those values
in a function. This will help those who functionalize to the max and will be a small amelioration for
everyone else.

As of PHP6, register_globals is officially gone.

Passing Information with PHP

Summary

The HTTP protocol is stateless. This means a plain HTML page is incapable of receiving informa-
tion from any other page. It can be used to pass values via a URL or an HTML form, but a separate
program called a form handler must step in to recognize and perform actions on the passed values.
In first-generation web development, these form handlers were Perl or C CGI scripts, but nowadays
web developers are more likely to use an HTML-embedded programming language such as PHP.
PHP makes it particularly easy to write form handlers and even to combine them with HTML dis-
play on a single web page.

Information is passed between web pages using one of four main methods: GET, POST, a cookie, or
sessions. GET is mainly used to construct complex URL strings for use with dynamically generated
pages. Forms are a good way to pass information from one web page to a single other web page. We
deal with the persistent state methods, cookies, and sessions in Chapter 24.

11

Ithough images, sound files, videos, animations, and applets make

up an important portion of the World Wide Web, much of the web

is still text — one character’s worth after another, like this sen-
tence. The basic PHP data type for representing text is the string.

In this chapter, we cover almost all PHP’s capabilities for manipulating strings
(although we leave more advanced string functions and the pattern-matching
power of regular expressions for separate treatment in Chapter 22). We start
with the basics of strings, then move to the most commonly used operators
and functions.

Strings in PHP

Strings are sequences of characters that can be treated as a unit — assigned
to variables, given as input to functions, returned from functions, or sent
as output to appear on your user’s web page. The simplest way to specify a
string in PHP code is to enclose it in quotation marks, whether single quo-
tation marks (') or double quotation marks ("), like this:

$my_string = 'A Titeral string';
$another_string = "Another string";

The difference between single and double quotation marks lies in how
much interpolation PHP does of the characters between the quote signs
before creating the string itself. If you enclose a string in single quota-
tion marks, almost no interpolation will be performed; if you enclose it in

113

IN THIS CHAPTER

Strings in PHP

String functions

m Introducing PHP

114

CROS

double quotation marks, PHP will splice in the values of any variables you include, as well as make
substitutions for certain special character sequences that begin with the backslash (\) character. For
example, if you evaluate the following code in the middle of a web page:

$statement = 'everything I say';
$question_1 =

"Do you have to take $statement so literally?\n
";
$question_2 =

'Do you have to take $statement so literally?\n
';
echo $question_1;
echo $question_2;

you should expect to see the browser output:

Do you have to take everything I say so literally?
Do you have to take $statement so Titerally?\n

For the details on exactly how PHP interprets both singly and doubly quoted strings, see
the “Strings” section of Chapter 4.

Interpolation with curly braces

In most situations, you can simply include a variable in a doubly quoted string, and the variable’s
value will be spliced into the string when it is interpreted. There are two situations where the string
parser might very reasonably get confused and need more guidance from you. The first situation is
when your notion of where the variable name should stop is not the same as the parser’s, and the
other occurs when the expression you want to have interpolated is not a simple variable. In these
cases, you can clear things up by enclosing the value you want interpolated in curly braces: {}.

For example, PHP has no difficulty with the following code:

$sport = 'volleyball';
$plan = "I will play $sport in the summertime";

The parser in this case encounters the $ symbol, and then begins collecting characters for a vari-
able name until it runs into the space after $sport. Spaces cannot be part of a variable name, so it
is clear that the variable in question is $sport, and PHP successfully finds a value for that variable
("volleyball"), and splices the value in.

Sometimes, though, it is not convenient to stop a variable name with a space. Take this example:

$sportl = 'volley';

$sport? "foot';

$sport3 "basket';

$planl = "I will play $sportlball in the summertime"; //wrong
$plan2 = "I will play $sport2ball in the fall"; //wrong
$plan3 "I will play $sport3ball in the winter"; //wrong

Learning PHP String Handling

You will not get the desired effect here, because PHP interprets $sportl as part of the variable
name $sportlball, which is probably unbound. Instead, you need something like:

$planl = "I will play {$sportliball in the summertime"; //right
which asks PHP to evaluate only the variable expression within the braces before interpolating.

For similar reasons, PHP has difficulty interpolating complex variable expressions, such as multi-
dimensional arrays and object variables, unless curly braces are used. The general rule is that if you
have a { immediately followed by a $, PHP will evaluate the variable expression up until the closing
} and will interpolate the resulting value into the string. (If you need a literal {$ to appear in your
string, you can accomplish it by escaping either character with a backslash (\)).

See the “Concatenation and Assignment” section later in this chapter for ideas on other
ways to address challenges like this.

Characters and string indexes

Unlike some programming languages, PHP has no distinct character type different from the string
type. In general, functions that would take character arguments in other languages expect strings of
length 1 in PHP.

You can retrieve the individual characters of a string by including the number of the character, start-
ing at 0, enclosed in curly braces immediately following a string variable. These characters will actu-
ally be one-character strings. For example, the following code:

$my_string = "Doubled";

for ($index = 0; $index < 7; $index++) {
$string_to_print = $my_string{$index};
print("$string_to_print$string_to print");

}

gives the browser output:

DDoouubblleedd

with each character of the string being printed twice per loop. (The number 7 is hardcoded in this
example only because we haven't yet covered how to find out the length of a string — see the func-
tion strlen() in the later section “Inspecting strings.”)

String operators

PHP offers two string operators: the dot (.) or concatenation operator and the .= concatenating
assignment operator. The concatenating assignment operator is discussed in the next section. The
concatenation operator, when placed between two string arguments, produces a new string that is
the result of putting the two strings together in sequence. For example:

$my_two_cents = "I want to give you a piece of my mind ";

115

m Introducing PHP

116

$third_cent = " And another thing";
print($my_two_cents . "..." . $third_cent);

gives the output:

I want to give you a piece of my mind ... And another thing

Note that we are not passing multiple string arguments to the print statement — we are handing it
one string argument, which was created by concatenating three strings together. The first and third
strings are variables, but the middle one is a literal string enclosed in double quotation marks.

Note that the concatenation operator is not + as in Java, and it does not overload any-
thing else. If you forget this and add strings using +, they will be interpreted as numbers,
with the result that 'one' + 'two' equals O (because no successful string-to-number conversion can
be made).

Concatenation and assignment
Just as with arithmetic operators, PHP has a shorthand operator (. =) that combines concatenation
with assignment. The following statement:
$my_string_var .= $new_addition;
is exactly equivalent to:

$my_string_var = $my_string_var . $new_addition;

Note that, unlike commutative addition and multiplication, with this shorthand operator it matters
that the new string is added to the right. If you want the new string tacked on to the left, there’s no
alternative shorter than:

$my_string_var = $new_addition . $my_string_var;

Note also that unassigned variables are treated as empty strings for the purposes of concatenation,
so $my_string_var will end up unchanged if $new_addition has never been given a value.

The heredoc syntax

In addition to the single-quote and double-quote syntaxes, PHP offers another way to specify a
string, called the heredoc syntax. This syntax turns out to be extremely useful for specifying large
chunks of variable-interpolated text, because it spares you from the need to escape internal quota-
tion marks. It is especially useful in creating pages that contain HTML forms.

The operator in the heredoc syntax is <<<. What is expected immediately after this is a label
(unquoted) that indicates the beginning of a multiline string. PHP will continue including subse-
quent lines in this string until it sees the same label again, beginning a line. The ending label may
optionally be followed by a semicolon but by nothing else.

Learning PHP String Handling

For example:

$my_string_var = <<KLEOT

Everything in this rather unnecessarily wordy

ramble of prose will be incorporated into the

string that we are building up inevitably, inexorably,
character by character, Tine by line, until we reach that
blessed final line which is this one.

EOT;

Note that the preceding final EOT must not be indented at all — otherwise it will be taken to be just
more text to be included. The label need not be literally EOT — it can be whatever you like within
the normal rules for variable names in PHP.

Interpolation of variables happens exactly the same way as with double-quoted strings. The nice
thing about heredoc, though, is that quote signs can be included without any escaping and without
prematurely terminating the string. Here’s another example:

echo <<<ENDOFFORM

<FORM METHOD=POST ACTION="{$_ENV['PHP_SELF'1}">
<INPUT TYPE=TEXT NAME=FIRSTNAME VALUE=$firstname>
<INPUT TYPE=SUBMIT NAME=SUBMIT VALUE=SUBMIT>
</FORM>

ENDOFFORM;

This has the effect of echoing a very simple form to the browser.

String Functions

PHP gives you a huge variety of functions for the munching and crunching of strings. If you're ever
tempted to roll your own function that reads strings character by character to produce a new string,
pause for a moment to think whether the task might be common. If so, there is probably a built-in
function that handles it.

For more information on string functions see http://php.net/manual/en/ref.strings.php.

In this section, we present the basic functions for inspecting, comparing, modifying, and printing
strings. If you want to be really comfortable with string manipulation in PHP, you should probably
have at least a passing acquaintance with everything in this section. Both the regular expression
functions and the more abstruse string functions can be found in Chapter 22.

A note for C programmers: Many of the PHP string function names should be familiar to

you. Just keep in mind that, because PHP takes care of memory management for you, the
functions that return strings are allocating the string storage on their own and do not need to be given

a preallocated string to write into.

117

Introducing PHP

118

Inspecting strings
What kinds of questions can you ask strings? First on the list is how long the string is, using the
strlen() function (the name is short for string length).

$short_string = "This string has 29 characters";
print("It does have " . strlen($short_string)
" characters");

This code gives the following output:

It does have 29 characters

Knowing the string’s length is particularly useful in form validation or for situations in which we’d
like to loop through a string character by character. A useless but illustrative example, using the pre-
ceding example string, is:

for ($index = 0; $index < strlen($short_string); $index++)
print($short_string{$index});

This simply prints:
This string has 29 characters

which is the string we started with.

Finding characters and substrings

The next question you can ask your strings is what they contain. For example, the strpos () func-
tion finds the numerical position of a particular character in a string, if it exists.

$twister = "Peter Piper picked a peck of pickled peppers";
print("Location of 'p' is " . strpos($twister, 'p') .'
');
print("Location of 'q' is " . strpos($twister, 'q') .'
');

This gives us the browser output:

Location of 'p' is 8
Location of 'q' is

The 'q"' location is apparently blank because strpos () returns false if the character in question
cannot be found, and a false value prints as the empty string. You should note that the strpos()
function is case sensitive.

I The strpos() function is one of those cases where PHP’s type-looseness can be prob-
lematic. If no match can be found, the function returns a false value; if the very first
character is a match, the function returns 0 (because the indexing count starts with 0 rather than 1).
Both of these values look false if used in a Boolean test. One way to distinguish them is to use the iden-
tity comparison operator (===, introduced as of PHP4), which is true only if its arguments are the same
and of the same type — you can use it to test if the returned value is O (or is FALSE) without risk of
confusion with other values that might be the same after type coercion.

Learning PHP String Handling

The strpos () function can also be used to search for a substring rather than a single character,

simply by giving it a multicharacter string rather than a single-character string. You can also supply

an extra integer argument specifying the position to begin searching forward from.

Searching in reverse is also possible, using the strrpos () function. (Note the extra r, which you
can think of as standing for reverse.) This function takes a string to search and a single-character
string to locate, and it returns the last position of occurrence of the second argument in the first

argument. (Unlike with strpos (), the string searched for must have only one character.) If we use

this function on our example sentence, we find a different position:

$twister = "Peter Piper picked a peck of pickled peppers";
printf("Location of 'p' is " . strrpos($twister, 'p') .'
");

Specifically, we find the third p in peppers:

Location of 'p' is 40

Are strings immutable?

In some programming languages (such as C), it is common to manipulate strings by directly changing
them — that is, storing new characters into the middle of an existing string, replacing old characters. Other
languages try to keep the programmer out of certain kinds of trouble by making string classes that are immutable
(or unchangeable) — you can make new strings by creating modified copies of old ones, but once you have
made a string, you are not allowed to change it by directly changing the characters that make it up.

Where does PHP fit in? As it turns out, PHP strings can be changed, but the most common practice seems to
be to treat strings as immutable.

Strings can be changed by treating them as character arrays and assigning directly into them, like this:
$my_string = "abcdefg";

SIyASIEIrT NG EENl = X S5

print($my_string . "
");

which will give the browser output:

abcdeXg

This modification method seems to be undocumented, however, and shows up nowhere in the online manual,
even though the corresponding extraction method (now updated to use curly braces) is highlighted. Also, almost
all PHP string-manipulation functions return modified copies of their string arguments rather than making direct
changes, which seems to indicate that this is the style that the PHP designers prefer. Our advice is not to use
this direct-modification method to change strings, unless you know what you are doing and there is some large
benefit in terms of memory savings.

119

Introducing PHP

Comparison and searching

Is this string the same as that string? It's a question that your code is likely to have to answer fre-
quently, especially when dealing with input typed by the end user.

For the == operator, two strings are the same if they contain exactly the same sequence
of characters. It does not test any stricter notion of being the same, such as being stored
at the same memory address, but it does pay attention to case (or capitalization).

The simplest method to find an answer is to use the basic comparison operator (==), which does
equality testing on strings as well as numbers.

Comparing two strings using == (or the corresponding < and > operators) is trustworthy
if both the arguments are strings and if you know that no type conversion is being per-
formed. (See Chapter 4 for more on this.) Using strcmp () (described next) is always trustworthy.

The most basic workhorse string-comparison function is strcmp (). It takes two strings as argu-
ments and compares them byte by byte until it finds a difference. It returns a negative number if the
first string is less than the second and a positive number if the second string is less. It returns 0 if
they are identical.

The strcasecmp () function works the same way, except that the equality comparison is case
insensitive. The function call strcasecmp("hey!", "HEY!") should return 0.

Searching

The comparison functions just described tell you whether one string is equal to another. To find
out if one string is contained within another, use the strpos () function (covered earlier) or the
strstr() function (or one of its relatives).

The strstr() function takes a string to search in and a string to look for (in that order). If it suc-
ceeds, it returns the portion of the string that starts with (and includes) the first instance of the
string it is looking for. If the string is not found, a false value is returned. Here is a successful search
followed by an unsuccessful search:

$string_to_search = "showsuponceshowsuptwice";

$string_to_find = "up";

print("Result of Tooking for $string_to_find"
strstr($string_to_search, $string_to_find) . "
");

$string_to_find = "down";

print("Result of Tooking for $string_to_find"
strstr($string_to_search, $string_to find));

which gives us:

Result of Tooking for up: uponceshowsuptwice
Result of Tooking for down:

120

Learning PHP String Handling

The blank space after the colon in the second line is the result of trying to print a false value, which
prints as the empty string. The strstr() function also has an alias by the name of strchr ().
Other than the name, the two functions are identical. Just as with strcmp (), strstr() has a case-
insensitive version, by the name of stristr(). (That i in the middle stands for insensitive.) It is
identical to strstr() in every way, except that the comparison treats lowercase letters as indistin-
guishable from their uppercase counterparts. The string functions we have covered so far are sum-
marized in Table 7-1.

TABLE 7-1

Simple Inspection, Comparison, and Searching Functions

Function Behavior
strien() Takes a single string argument and returns its length as an integer.
strpos() Takes two string arguments: a string to search, and the string being searched for.

Returns the (0-based) position of the beginning of the first instance of the string if
found and a false value otherwise. It also takes a third optional integer argument,
specifying the position at which the search should begin.

strrpos() Like strpos (), except that it searches backward from the end of the string, rather
than forward from the beginning. The search string must only be one character long,
and there is no optional position argument.

stremp() Takes two strings as arguments and returns O if the strings are exactly equivalent. If
strcmp () encounters a difference, it returns a negative number if the first different
byte is a smaller ASCII value in the first string, and a positive number if the smaller
byte is found in the second string.

strcasecmp() Identical to strcmp (), except that lowercase and uppercase versions of the same
letter compare as equal.

strstr() Searches its first string argument to see if its second string argument is contained in it.
Returns the substring of the first string that starts with the first instance of the second
argument, if any is found — otherwise, it returns false.

strchr() Identical to strstr().

stristr() Identical to strstr() except that the comparison is case independent.

Substring selection

Many of PHP’s string functions have to do with slicing and dicing your strings. By slicing, we mean
choosing a portion of a string; by dicing, we mean selectively modifying a string. Keep in mind that
(most of the time) even dicing functions do not change the string you started out with. Usually, such
functions return a modified copy, leaving the original argument intact.

121

m Introducing PHP

The most basic way to choose a portion of a string is the substr () function, which returns a new
string that is a subsequence of the old one. As arguments, it takes a string (that the substring will be
selected from), an integer (the position at which the desired substring starts), and an optional third
integer argument that is the length of the desired substring. If no third argument is given, the sub-
string is assumed to continue until the end. (Remember that, as with all PHP arguments that deal
with numerical string positions, the numbering starts with O rather than 1.)

For example, the statement:

echo(substr("Take what you need, and Teave the rest behind",
23));

prints the string Teave the rest behind, whereas the statement:

echo(substr("Take what you need, and leave the rest behind",
5, 13));

prints what you need — a 13-character string starting at (0-based) position 5.

Both the start-position argument and the length argument can be negative, and in each case the neg-
ativity has a different meaning. If the start position is negative, it means that the starting character

is determined by counting backward from the end of the string, rather than forward from the begin-
ning. (A start position of -1 means start with the last character, -2 means second to last, and so on.)

Now, you might expect that a negative length would similarly imply that the substring should be
determined by counting backward from the start character rather than forward. This is not the case
— it is always true that the character at the start position is the first character in the returned string
(not the last). Instead, a negative-length argument means that the final character is determined by
counting backward from the end rather than forward from the start position.

Here are some examples, with positive and negative arguments:

$alphabet_test = "abcdefghijklmnop";

print("3: " . substr($alphabet_test, 3) . "
");
print("-3: " . substr($alphabet_test, -3) . "
");
print("3, 5: " . substr($alphabet_test, 3, 5) . "
");
print("3, -5: " . substr($alphabet _test, 3, -5) . "
");
print("-3, -5: " . substr($alphabet_test, -3, -5) . "
");
print("-3, 5: " . substr($alphabet_test, -3, 5) . "
");

This gives us the output:

3: defghijklimnop

-3: nop

3, 5: defgh

3, -5: defghijk
-3, -5

-3, 5: nop

122

Learning PHP String Handling

Notice that there is an intimate relationship between the functions substr(), strstr(), and
strpos(). The substr () function selects a substring by numerical position, strstr() selects

a substring by its content, and strpos () finds the numerical position of a given substring. In the
case where we're sure in advance that the string $containing has the string $contained as a sub-
string, the expression:

strstr($containing, $contained)
should be equivalent to the code:

substr($containing, strpos($containing, $contained))

String cleanup functions

Although they are technically substring functions, just like the others in this chapter, the functions
chop(), 1trim(), and trim() are really used for cleaning up untidy strings. They trim whitespace
off the end, the beginning, and the beginning and end, respectively, of their single string argument.
Some examples:

$original = More than meets the eye ;
$chopped = chop($original);

$1trimmed = 1trim($original);

$trimmed = trim($original);

print("The original is '$original "
");
print("Its Tength is " . strlen($original) . "
");
print("The chopped version is '$chopped'
");
print("Its Tength is " . strlen($chopped) . "
");
print("The Ttrimmed version is '$1trimmed'
");
print("Its length is " . strlen($ltrimmed) . "
");
print("The trimmed version is '$1trimmed'
");
print("Its Tength is " . strlen($trimmed) . "
");

The result as viewed by a browser is:

The original is ' More than meets the eye
Its Tength is 28

The chopped version is ' More than meets the eye'
Its Tength is 25

The 1trimmed version is 'More than meets the eye
Its Tength is 26

The trimmed version is 'More than meets the eye'
Its Tength is 23

The original string had three spaces at the end (subject to removal by chop() or trim()) and two
at the beginning (removed by Ttrim() and trim()). We were careful to describe our result as
viewed by a browser because the multiple spaces have apparently been collapsed to one in the out-
put, as browsers will do. If we viewed the HTML source produced by PHP originally, we would still
see sequences of two and three spaces.

123

m Introducing PHP

124

In addition to spaces, these functions remove whitespace like that denoted by the escape sequences
\n, \r, \t, and \0 (end-of-line characters, tabs, and the null character used to terminate strings in
C programs).

You will hear the name chop () more frequently, but the identical function can also be called with
the more logical name of rtrim(). Finally, notice that although chop () sounds extremely destruc-
tive, it does not harm the $original argument, which retains the same value.

String replacement

The substring functions we've seen so far are all about choosing a portion of the argu-
ment rather than building a genuinely new string. Enter the functions str_replace() and
substr_replace().

The str_replace() function enables you to replace all instances of a particular substring with an
alternate string. It takes three arguments: the string to be searched for, the string to replace it with
when it is found, and the string to perform the replacement on. For example:

$first_edition =
"Burma is similar to Rhodesia in at least one way.";

$second_edition = str_replace("Rhodesia", "Zimbabwe",
$first_edition);
$third_edition = str_replace("Burma", "Myanmar",

$second_edition);
print($third_edition);

gives us:
Myanmar is similar to Zimbabwe in at Teast one way.

This replacement will happen for all instances found of the search string. If our outdated encyclope-
dia could be snarfed into a single PHP string, we could update it in one pass.

One subtlety to be aware of: What happens when multiple instances of the search string overlap?
For example, with code like:

$tricky_string = "ABA is part of ABABA";
$maybe_tricked = str_replace("ABA", "DEF", $tricky_string);
print("Substitution result is '$maybe tricked'
");

the behavior we see is:
Substitution result is 'DEF is part of DEFBA'
which is probably as reasonable as any other alternative.

As you've seen, str_replace() picks out portions to replace by matching to a target string; by
contrast, substr_replace() chooses a portion to replace by its absolute position. The function
takes up to four arguments: the string to perform the replacement on, the string to replace it with,

Learning PHP String Handling

the starting position for the replacement, and (optionally) the length of the section to be replaced.
For example:

print(substr_replace("ABCDEFG", "-", 2, 3));

gives us:
AB-FG

The CDE portion of the string has been replaced with the single -. Notice that you are allowed
to replace a substring with a string of a different length. If the length argument is omitted, it is
assumed that you want to replace the entire portion of the string after the start position.

The substr_replace() function also takes negative arguments for starting position and length,
which are treated exactly the same way as in the substr () function (described in the earlier section
“Substring selection”). It is important to remember with both str_replace and substr_replace
that the original string remains unchanged by these operations.

Finally, we have a couple more whimsical functions that produce new strings from old. The
strrev() function simply returns a new string with the characters of its input in reverse order. The
str_repeat () function takes a string argument and an integer argument and returns a string that
is the appropriate number of copies of the string argument tacked together. For example:

print(str_repeat("cheers ", 3));

gives us:

cheers cheers cheers
for the end of this section at long last.

The substring search and replacement functions are summarized in Table 7-2.

TABLE 7-2

Substring and String Replacement Functions

Function Behavior

substr() Returns a subsequence of its initial string argument, as specified by the second (position)
argument and optional third (length) argument. The substring starts at the indicated
position and continues for as many characters as specified by the length argument or until
the end of the string, if there is no length argument.

A negative position argument means that the start character is located by counting backward
from the end, whereas a negative length argument means that the end of the substring is
found by counting back from the end, rather than forward from the start position.

continued

125

BTN roteoducing pree

Substring and String Replacement Functions

Function Behavior

chop(), or Returns its string argument with trailing (right-hand side) whitespace removed. Whitespace

rtrim() is a blank space, \n, \r, \'t, and \0.

Ttrim() Returns its string argument with leading (left-hand side) whitespace removed.

Trim() Returns its string argument with both leading and trailing whitespace removed.

Str_ Used to replace target substrings with another string. Takes three string arguments: a substring

replace() to search for, a string to replace it with, and the containing string. Returns a copy of the
containing string with all instances of the first argument replaced by the second argument.

Substr_ Puts a string argument in place of a position-specified substring. Takes up to four

replace() arguments: the string to operate on, the string to replace with, the start position of the

substring to replace, and the length of the string segment to be replaced. Returns a copy of
the first argument with the replacement string put in place of the specified substring.

If the length argument is omitted, the entire tail of the first string argument is replaced.
Negative position and length arguments are treated as in substr().

Case functions

These functions change lowercase to uppercase and vice versa. The first two (de)capitalize entire
strings, whereas the second two operate only on first letters of words.

strtolower()

The strtolower () function returns an all-lowercase string. It doesn’t matter if the original is all
uppercase or mixed. This fragment:

$original = "They DON'T KnoW they're SHOUTING";
$lower = strtolower($original);
echo $lower;

returns the string "they don't know they're shouting”

If you have been faced with extensive form-validation needs before, you might already

& have noticed that strtolower () is extremely handy for use with those that still think

their e-mail addresses contain capital letters. Subsequent functions in this category will prove similarly

useful.

126

Learning PHP String Handling

strtoupper()

The strtoupper () function returns an all-uppercase string, regardless of whether the original was
all lowercase or mixed:

<?php
$original = "make this Tink stand out";
echo("strtoupper($original)");
>

ucfirst()

The ucfirst() function capitalizes only the first letter of a string:

<?php

$original = "polish is a word for which pronunciation depends on
capitalization";

echo(ucfirst($original));

7>

ucwords()
The ucwords () function capitalizes the first letter of each word in a string:

<?php

$original = "truth or consequences";

$capitalized = ucwords($original);

echo "While $original is a parlor game, $capitalized is a town in New
Mexico.";

7>

Neither ucwords () nor ucfirst() converts anything into lowercase. Each makes only
e the appropriate leading letters into uppercase. If there are inappropriate capital letters in
the middle of words, they will not be corrected.

Escaping functions

One of the virtues of PHP is that it is willing to talk to almost anybody. In its role as a glue language,
PHP talks to database servers, to LDAP servers, over sockets, and over the HTTP connection itself.
Frequently, it accomplishes this communication by first constructing a message string (like a data-
base query) and then shipping it off to the receiving program. Often, however, the program attaches
special meanings to certain characters, which therefore have to be escaped, meaning that the receiv-
ing program is told to take them as a literal part of the string rather than treating them specially.

Many users deal with this issue by enabling magic-quotes, which ensures that quotation marks
are escaped before strings are inserted into databases. If that's not feasible or desirable, there
are good old-fashioned strip-slashing and add-slashing by hand. The addsTashes () function

127

m Introducing PHP

128

escapes quotation marks, double quotation marks, backslashes, and NULLs with backslashes,
because these are the characters that typically need to be escaped for database queries.

<?php

$escapedstring = addslashes("He said, 'I'm a dog.'");

$query = "INSERT INTO test (quote) values ('$escapedstring')";
$result = mysql_query($query) or die(mysql_error());

?>

This will prevent the SQL statement from thinking it’s finished right before the letter I. When you
pull the data back out, you'll need to use stripslashes() to get rid of the slashes.

<?php

$query = "SELECT quote FROM test WHERE ID=1";
$result = mysql_query($query) or die(mysqgl_error());
$new_row = mysql_fetch_array($result);

$quote = stripslashes($new_row[0]);

echo $quote;

The quotemeta () function escapes a wider variety of characters, all of which usually have a special
meaning in the Unix command line: ". ", "\" "+' "4 2t tpr oAt]t ('8 Jand)
For example, the code:

$1iteral_string =

'These characters ($, *) are very special to me\n
"';
$qm_string = quotemeta($literal_string);
echo $gm_string;

will print:
These characters \(\$, *\) are very special to me\\n

For escaping functions specific to HTML, see the “Advanced String Functions” section in
Chapter 22.

Printing and output

The workhorse constructs for printing and output are print and echo, which we cover in detail in
Chapter 4. The standard way to print the value of variables to output is to include them in a doubly
quoted string (which will interpolate their values) and then give that string to print or echo.

If you need even more tightly formatted output, PHP also offers printf () and sprintf(), which
are modeled on C functions of the same name. The two functions take identical arguments: a special
format string (described later in this section) and then any number of other arguments, which will
be spliced into the right places in the format string to make the result.

The only difference between printf () and sprintf() isthat printf() sends the resulting string
directly to output, whereas sprintf () returns the result string as its value.

Learning PHP String Handling

To C programmers: This sprintf () function is slightly different from C’s version in that
you need not supply an allocated string for sprintf () to write into — PHP allocates the
result string for you.

The complicated bit about these functions is the format string. Every character that you put in the
string will show up literally in the result, except the % character and characters that immediately
follow it. The % character signals the beginning of a conversion specification, which indicates how to
print one of the arguments that follow the format string.

After the %, there are six elements that make up the conversion specification, some of which are
optional: padding, alignment, minimum width, precision, and type.

B An optional sign character used for numbers to indicate whether the number will be
negative (-).

B The single (optional) padding character is either a 0 or a space (). This character is used to
fill any space that would otherwise be unused but that you have insisted (with the mini-
mum width argument) be filled with something. If this padding character is not given, the
default is to pad with spaces.

B The optional alighment character (-) indicates whether the printed value should be left- or
right-justified. If present, the value will be left-justified; if absent, it will be right-justified.

B An optional minimum width number that indicates how many spaces this value should take
up, at a minimum. (If more spaces are needed to print the value, it will overflow beyond its
bounds.)

B An optional precision specifier is written as a dot (.) followed by a number. It indicates
how many decimal points of precision a double should print with. (This has no effect on
printing things other than doubles.)

B A single character indicating how the type of the value should be interpreted. The f char-
acter indicates printing as a double, the s character indicates printing as a string, and then
the rest of the possible characters (b, ¢, d, 0, x, X) mean that the value should be inter-
preted as an integer and printed in various formats. Those formats are b for binary, ¢ for
printing the character with the corresponding ASCII values, o for octal, x for hexadecimal
(with lowercase letters) and X for hexadecimal with uppercase letters.

Here’s an example of printing the same double in several different ways:

<pre>
<?php
$value = 3.14159;
printf("%f,%10f,%-010f,%2.2f\n",

$value, $value, $value, $value);
>
</pre>

gives us:

3.141590, 3.141590,3.141590000000000, 3.14

129

m Introducing PHP

130

The <pre></pre> construct is HTML that tells the browser to format the enclosed block literally,
without collapsing many spaces into one, and so on.

Summary

Strings are sequences of characters, and the string is one of the eight basic data types in PHP. Unlike
in some other languages, there is no distinct character type, since single characters behave as strings
of length 1. Literal strings are specified in code by either single (") or double (") quotation marks.
Singly quoted strings are interpreted nearly literally, while doubly quoted strings interpret a number
of escape sequences and automatically interpolate variable values.

The main string operator is ' . ', which concatenates two strings together. In addition, there is a
dizzying array of string functions, which help you inspect, compare, search, extract, chop, replace,
slice, and dice strings to your heart’s content. For the most sophisticated string-manipulation needs,
PHP supports both POSIX and Perl-compatible regular expressions (covered in Chapter 22).

rrays are definitely one of the coolest and most flexible features of

PHP. Unlike vector arrays from other languages (C, C++, Pascal),

PHP arrays can store data of varied types and automatically orga-
nize it for you in a large variety of ways.

CROSS- REF This chapter treats arrays and array functions in some depth.

For a very quick introduction to the syntax and use of arrays,
see Chapter 4. For a more complete survey of advanced array functions, see
Chapter 21.

The Uses of Arrays

An array is a collection of variables indexed and bundled into a single, eas-
ily referenced supervariable that offers an easy way to pass multiple values
between lines of code, functions, and even pages. Throughout much of this
chapter, we will be looking at the inner workings of arrays and exploring
all the built-in PHP functions that manipulate them. Before we get too deep
into that, however, it's worth listing the common ways that arrays are used
in real PHP code.

Many built-in PHP environment variables are in the form of arrays (for
example, $_SESSION, which contains all the variable names and values
being propagated from page to page via PHP’s session mechanism). If you
want access to them, you need to understand, at a minimum, how to refer-
ence arrays.

Almost any situation that calls for a number of pieces of data to be pack-
aged and handled as one is appropriate for a PHP array.

131

IN THIS CHAPTER

An all-purpose data type

Storing and retrieving values

Multidimensional arrays

Iteration

Introducing PHP

What Are PHP Arrays?

PHP arrays are associative arrays with a little extra machinery thrown in. The associative part means
that arrays store element values in association with key values rather than in a strict linear index
order. (If you have seen arrays in other programming languages, they are likely to have been vector
arrays rather than associative arrays — see the related sidebar for an explanation of the difference.)
If you store an element in an array, in association with a key, all you need to retrieve it later from
that array is the key value. For example, storage is as simple as this:

$state_location['San Mateo'] = 'California';

which stores the element 'California' in the array variable $state_location, in association
with the lookup key 'San Mateo'. After this has been stored, you can look up the stored value by
using the key, like so:

$state = $state _location['San Mateo']; // equals 'California'
Simple, no?

If all you want arrays for is to store key/value pairs, the preceding information is all you need to
know. Similarly, if you want to associate a numerical ordering with a bunch of values, all you have to
do is use integers as your key values, as in:

$my_array[1]
$my_arrayl[2]

"The first thing";
"The second thing"; // and so on

For Perl programmers: Arrays in PHP are much like hashes in Perl, with some syntactic
differences. For one thing, all variables in PHP are denoted with a leading $, not just sca-
lar variables. Second, even though the array is associative, the indices are grouped by square brackets
(L]) rather than curly braces ({ }). Finally, there is no array or list type indexed only by integers. The
convention is to use integers as associative indices, and the array itself maintains an internal ordering
for iteration purposes.

In addition to the machinery that makes this kind of key/value association possible, arrays track
some other things behind the scenes. Because of this, we sometimes treat them as other kinds of
data structures. As you will see, arrays can be multidimensional. They can store values in associa-
tion with a sequence of key values rather than a single key. Also, arrays automatically maintain an
ordered list of the elements that have been inserted in them, independent of what the key values
happen to be. This makes it possible to treat arrays as linked lists. In general, we will reveal the
workings of this extra machinery as we explore the functions that use it.

A note for C++ programmers: You should be aware that arrays can handle some of the
same tasks that require the use of template libraries in C++. Much of the reason for hav-
ing templates in the first place is to get around restrictions having to do with strict typing of data. PHP’s
looser typing system makes it possible, for example, to write general algorithms that iterate over the
contents of arrays without committing to the type of the array elements themselves.

132

Learning Arrays _

Associative Arrays versus Vector Arrays

f you have programmed in languages like C, C++, and Pascal, you are probably used to a particular usage
of the word array, one that doesn’t match the PHP usage very well at all. A more specific term for a C-style
array is a vector array, whereas a PHP-style array is an associative array.

In a vector array, the contained elements all need to be of the same type, and usually the language compiler
needs to know in advance how many such elements there are likely to be. For example, In C you might declare
an array of 100 double-precision floating-point numbers with a statement like:

dob Lo mySalpray R0 0N /At niisEsiisstCatiniot = PHIR

The restriction on types and the advance declaration of size have an associated benefit: Vector arrays are very
fast, both for storage and lookup. The reason is that the compiler will usually lay out the array in a contiguous
block of computer memory, as large as the size of the element type multiplied by the number of elements.
This makes it very easy for the programming language to locate a particular array slot — all it needs to know
is the starting memory address of the array, the size of the element type, and the index of the element it wants
to look up, and it can directly compute the memory address of that slot.

By contrast, PHP arrays are associative (and so some would call them hashes, rather than arrays). Rather than
having a fixed number of slots, PHP creates array slots as new elements that are added to the array. Rather
than requiring elements to be of the same type, PHP arrays have the same type-looseness that PHP variables
have — you can assign arbitrary PHP values to be array elements. Finally, because vector arrays are all about
laying out their elements in numerical order; the keys used for lookup and storage must be integer numbers.
PHP arrays can have keys of arbitrary type, instead, including string keys. So, you could have successive array
assignments like:

$my_arrayl[1]
$my_array['orange'] = 2;
$my_array[3]

without any paradox. The result is that your array has three values (1, 2, 3), each of which is stored in associa-
tion with a key (1, "orange', and 3, respectively).

The extra flexibility of associative arrays comes at a price, because there is a little bit more going on between
your code and the actual computation of a memory address than is true with vector arrays. For most web
programming purposes, however, this extra access time is not a significant cost.

The fact that integers are legal keys for PHP arrays means that you can easily imitate the behavior of a vector
array, simply by restricting your code to use only integers as keys.

= A general note for programmers familiar with other languages: PHP does not need very
S many different kinds of data structures, in part because of the great flexibility offered by
PHP arrays. By careful choice of a subset of array functions, you can make arrays pretend to act like
vector arrays, structure/record types, linked lists, hash tables, or stacks and queues — data structures
that in other languages either require their own data types or less common language features such as
pointers and explicit memory management.

A

ARV

133

m Introducing PHP

134

Creating Arrays

There are three main ways to create an array in a PHP script: by assigning a value into one (and
thereby implicitly creating it), by using the array () construct, and by calling a function that hap-
pens to return an array as its value.

Direct assignment

The simplest way to create an array is to act as though a variable is already an array and assign a
value into it, like this:

$my_array[1l] = "The first thing in my array that I just made";

If $my_array was an unbound variable (or bound to a nonarray variable) before this statement, it
will now be a variable bound to an array with one element. If instead $my_array was already an
array, the string will be stored in association with the integer key 1. If no value was associated with
that number before, a new array slot will be created to hold it; if a value was associated with 1, the
previous value will be overwritten. (You can also assign into an array by omitting the index entirely
asin $my_array[], described later in this chapter.)

The array() construct

The other way to create an array is via the array () construct, which creates a new array from the
specification of its elements and associated keys. In its simplest version, array () is called with no
arguments, which creates a new empty array. In its next simplest version, array () takes a comma-
separated list of elements to be stored, without any specification of keys. The result is that the ele-
ments are stored in the array in the order specified and are assigned integer keys beginning with
zero. For example, the statement:

$fruit_basket = array('apple', 'orange', 'banana', 'pear');

causes the variable $fruit_basket to be assigned to an array with four string elements (*apple’,
'banana', 'orange', 'pear"'), with the indices 0, 1, 2, and 3, respectively. In addition (as you'll
see in the “Iteration” section later in this chapter), the array will remember the order in which the
elements were stored.

The assignment to $fruit_basket, then, has exactly the same effect as the following:

$fruit_basket[0] = 'apple';
$fruit_basket[1] 'orange';
$fruit_basket[2] "banana';
$fruit_basket[3] = 'pear’';

assuming that the $fruit_basket variable was unbound at the first assignment. The same effect
could also have been accomplished by omitting the indices in the assignment, like so:

$fruit_basket[] = 'apple';
$fruit_basket[] 'orange';

Learning Arrays

$fruit_basket[] = 'banana';
$fruit_basket[] 'pear’';

In this case, PHP again assumes that you are adding sequential elements that should have numerical
indices counting upward from zero.

Yes, the default numbering for array indices starts at zero, not one. This is the conven-
tion for arrays in most programming languages. We’re not sure why computer scientists
start counting at zero (mathematicians, like everyone else in the world, start with one), but it prob-
ably has its origin in the kind of pointer arithmetic that calculates memory addresses for vector arrays.
Addresses for successive elements of such arrays are found by adding successively larger offsets to the
array’s address, but the offset for the first element is zero (because the first element’s address is the
same as the array’s address).

Specifying indices using array()

The simple example of array () in the preceding section assigns indices to our elements, but those
indices will be the integers, counting upward from zero — we're not getting a lot of choice in the
matter. As it turns out, array () offers us a special syntax for specifying what the indices should be.
Instead of element values separated by commas, you supply key/value pairs separated by commas,
where the key and value are separated by the special symbol =>.

Consider the following statement:

$fruit_basket = array(0 => 'apple', 1 => 'orange',
2 => 'banana', 3 => 'pear');

Evaluating it will have exactly the same effect as our earlier version — each string will be stored in
the array in succession, with the indices 0, 1, 2, 3 in order. Instead, however, we can use exactly the
same syntax to store these elements with different indices:

$fruit_basket = array('red' => 'apple', 'orange' => 'orange',
'yellow' => 'banana', 'green' => 'pear');

This gives us the same four elements, added to our new array in the same order, but indexed by
color names rather than numbers. To recover the name of the yellow fruit, for example, we just
evaluate the expression:

$fruit_basket['yellow'] // will be equal to 'banana'

Finally, as we said earlier, you can create an empty array by calling the array function with no
arguments. For example:

$my_empty_array = array();

creates an array with no elements. This can be handy for passing to a function that expects an array
as argument.

135

m Introducing PHP

136

Functions returning arrays

The final way to create an array in a script is to call a function that returns an array. This may be a user-
defined function, or it may be a built-in function that makes an array via methods internal to PHP.

Many database-interaction functions, for example, return their results in arrays that the functions
create on the fly. Other functions exist simply to create arrays that are handy to have as grist for later
array-manipulating functions. One such is range(), which takes two integers as arguments and
returns an array filled with all the integers (inclusive) between the arguments. In other words:

$my_array = range(l,5);
is equivalent to:

$my_array = array(l, 2, 3, 4, 5);

Retrieving Values

After we have stored some values in an array, how do we get them out again?

Retrieving by index
The most direct way to retrieve a value is to use its index. If we have stored a value in $my_array at
index 5, $my_array[5] should evaluate to the stored value. If $my_array has never been assigned,

or if nothing has been stored in it with an index of 5, $my_array[5] will behave like an unbound
variable.

The list() construct

There are a number of other ways to recover values from arrays without using keys, most of which
exploit the fact that arrays are silently recording the order in which elements are stored. We cover
this in more detail in this chapter’s “Iteration” section, but one such example is 11st (), which is
used to assign several array elements to variables in succession. Suppose that the following two
statements are executed:

$fruit_basket = array('apple', 'orange', 'banana');
list($red_fruit, $orange_fruit) = $fruit_basket;

This will assign the string "apple’ to the variable $red_fruit and the string 'orange" to the
variable $orange_fruit (with no assignment of 'banana"', because we didn’t supply enough
variables). The variables in 11st () will be assigned to elements of the array in the order they were
originally stored in the array. Notice the unusual behavior here — the 1ist () construct is on the
left-hand side of the assignment operator (=), where we normally find only variables.

Learning Arrays _

In some sense, 115t () is the opposite or inverse of array () because array () packages its argu-
ments into an array, and 11st () takes the array apart again into individual variable assignments. If
we evaluate:

Tist($first, $second) = array($first, second);

the original values of $first and $second will be assigned to those variables again, after having
been briefly stored in an array.

We have been careful to refer to both array () and 1ist () as constructs, rather than

, . functions. This is because they are not in fact functions — like certain other specialized
PHP language features (i f, while, function, and so on) they are interpreted specially by the lan-
guage itself and are not run through the usual routine of function-call interpretation. Remember that
the arguments to a function call are evaluated before the function is really invoked on those arguments,
so constructs that need to do other kinds of interpretation on what they are given cannot be imple-
mented as function calls. It’s a useful exercise to look hard at the example uses of both array () and
1ist() to figure out why treating them as function calls could not result in the behavior advertised.

Multidimensional Arrays

So far, the array examples we have looked at have all been one-dimensional, with only one level

of bracketed keys. However, PHP can easily support multidimensional arrays, with arbitrary num-
bers of keys. And just as with one-dimensional arrays, there is no need to declare our intentions in
advance — the first reference to an array variable can be an assignment like:

$multi_array[1][2][3][4]1[5] = "deeply buried treasure";

That is a five-dimensional array with successive keys that happen, in this case, to be five successive
integers.

Actually, in our opinion, thinking of arrays as multidimensional makes matters more confusing
than they need to be. Instead, just remember that the values that are stored in arrays can themselves
be arrays, just as legitimately as they can be strings or numbers. The multiple-index syntax in the
preceding example is simply a concise way to refer to a (four-dimensional) array that is stored with
akeyof 1in $multi_array, which in turn has a (three-dimensional) array stored in it, and so on.
Note also that you can have different depths of reference in different parts of the array, like this:

$multi_Tevel_array[0] = "a simple string";
$multi_Tevel_array[1]['contains'] = "a string stored deeper";

The integer key of 0 stores a string, and the key of 1 stores an array that, in turn, has a string in it.
However, you cannot continue on with this assignment:

$multi_Tevel _array[0]['contains'] = "another deep string";

without the result of losing the first assignment to 'a simple string'. The key of 0 can be used to
store a string or another array, but not both at once.

137

Introducing PHP

If we remember that multidimensional arrays are simply arrays that have other arrays stored in
them, it’s easier to see how the array () creation construct generalizes. In fact, even this seemingly
complicated assignment is not that complicated:

$cornucopia = array('fruit' =>

array('red' => 'apple',
'orange' => 'orange',
'yellow"' => 'banana',
'green' => 'pear'),

"flower' =>

array('red' => 'rose',
'yellow"' => 'sunflower',
"purple' => 'iris'));

It is simply an array with two values stored in association with keys. Each of these values is an array
itself. After we have made the array, we can reference it like this:

$kind_wanted = 'flower';

$color_wanted = 'purple';

print("The $color_wanted $kind_wanted is
$cornucopial$kind_wanted][$color_wanted]);

See the browser output:
The purple flower is iris

There’s a reason that we used the string concatenation operator, ., in the preceding

: print statement, rather than simply embedding the $cornucopial$kind_wanted]
[$color_wanted] in our print string as we do with other variables. PHP3 string parsing can be
confused by multiple array indices within a double-quoted string, so it needs to be concatenated sepa-
rately. PHP since version 4 handles this in a better way — you are safe embedding array references in a
string as long as you enclose the reference in curly braces, like this:

print("The thing we want is
{$cornucopial$kind_wanted][$color_wanted]}");

Finally, notice that there is no great penalty for misindexing into a multidimensional array when we
are trying to retrieve something; if no such key is found, the expression is treated like an unbound
variable. So, if we try the following instead:

$kind_wanted = 'fruit';
$color_wanted = 'purple'; //uh-oh, we didn't store any plums

print("The $color_wanted $kind_wanted is "
$cornucopial$kind_wanted][$color_wanted]);

The worst that happens is the unsatisfying:

The purple fruit is

138

Learning Arrays _

This is the worst thing that happens, of course, unless you have raised your error_reporting level
to E_ALL, as we advise you to do at some points in this book. In that case, you will get a notice mes-
sage about an undefined index ('purple") just as you would if you had an unbound variable.

Inspecting Arrays

Now we can make arrays, store values in arrays, and then pull the values out again when we want
them. Table 8-1 summarizes a few other functions we can use to ask questions of our arrays.

TABLE 8-1

Simple Functions for Inspecting Arrays

Function Behavior

is_array() Takes a single argument of any type and returns a true value if the argument
is an array, and false otherwise.

count() Takes an array as argument and returns the number of nonempty elements
in the array. (This will be 1 for strings and numbers.)

sizeof () Identical to count ().

in_array() Takes two arguments: an element (that might be a value in an array), and
an array (that might contain the element). Returns true if the element is
contained as a value in the array, false otherwise. (Note that this does not
test for the presence of keys in the array.)

isset($arrayl[$keyl) Takes an arrayl key] form and returns true if the key portion is a
valid key for the array. (This is a specific use of the more general function
isset (), which tests whether a variable is bound.)

Note that all of these functions work on only the depth of the array specified, so that testing for val-
ues layers deep in a multidimensional array requires that you specify out that number of places. In
the case of our preceding $cornucopia example, for instance:

count($cornucopia); // what do you expect here? 27 77 97
returns a 2, while
count($cornucopialfruit]);

returns 4.

139

m Introducing PHP

140

Deleting from Arrays

Deleting an element from an array is simple, exactly analogous to getting rid of an assigned variable.
Just call unset (), as in the following:

$my_array[0] = 'wanted';
$my_array[1] = 'unwanted';
$my_array[2] = 'wanted again';
unset($my_array[11);

Assuming that $my_array was unbound when we started, at the end it has two values ('wanted",
'wanted again'), in association with two keys (0 and 2, respectively). It is as though we had
skipped the original 'unwanted' assignment (except that the keys are numbered differently).

Note that this is not the same as setting the contents to an empty value. If, instead of calling
unset (), we had the following statement:

$my_arrayl[l] = ;

at the end we would have three stored values ('wanted', '', 'wanted again') in association with

three keys (0, 1, and 2, respectively).

Iteration

We've seen how to put things into arrays, how to find them once we have put them there, and how
to delete them when we don’t want them anymore. What we need next is a technique for dealing
with array elements in bulk. Iteration constructs help us do this by letting us step or loop through
arrays, element by element or key by key.

We'll first delve briefly into the internal representation of arrays to understand how PHP supports
iteration. (Although important, this subsection is skippable — if you want to use it but don’t want to
know how it works, you can jump down to the section titled “Using iteration functions.”)

Support for iteration

In addition to storing values in association with their keys, PHP arrays silently build an ordered
list of the key/value pairs that are stored, in the order that they are stored. The reason for this is to
support operations that iterate over the entire contents of an array. (Notice that this is difficult to
do simply by building a loop that increments an index, because array indices are not necessarily
numerical.)

There is, in fact, sort of a hidden pointer system built into arrays. Each stored key/value pair points
to the next one, and one side effect of adding the first element to an array is that a current pointer
points to the very first element, where it will stay unless disturbed by one of the iteration functions.

Learning Arrays _

Each array remembers a particular stored key/value pair as being the current one, and

: array iteration functions work in part by shifting that current marker through the internal
list of keys and values. Although we will call this marker the current pointer, PHP does not support full
pointers in the sense that C and C++ programmers may be used to, and this usage of the word will turn
up only in the context of iterating through arrays.

This linked-list pointer system is an alternative way to inspect and manipulate arrays, which exists
alongside the system that allows key-based lookup and storage. Figure 8-1 shows an abstract view
(not necessarily reflecting the real implementation) of how these systems locate elements in an array.

FIGURE 8-1

Internal structure of an array

________ | Linked list |
: . : Index Value : structure !
| Hashing \ ¢ I
Iookup l«<—L—curren |
| | |
| | - | |
! :/ |
: I Index Value ; :
| | |
| [| :
| | | |
| |
| ¢ ! :
| :\ Index Value |
| | |
| ! \ | :
| | | |
| |
| ! ¢ | :
: : Index Value) |
! |
|
| B | '
L___T____l L____T_____I
Index-based [teration
functions functions

Using iteration functions

To explore the iteration functions, let’s construct a sample array that we can iterate over.

$major_city_info = array();
$major_city_info[0] = 'Chicago';

141

m Introducing PHP

142

$major_city_info['Chicago'] = 'United States';
$major_city_info[l] = 'Stockholm';
$major_city_info['Stockholm'] = 'Sweden';
$major_city _info[2] = 'Montreal';
$major_city_info['Montreal'] = 'Canada';

In this example, we created an array and stored some names of cities in it, in association with
numerical indices. We also stored the names of the relevant countries into the array, indexed by the
city names. (We could have accomplished all this with one big call to array (), but the separate
statements make the structure of the array somewhat clearer.)

Now, we can use the array key system to pull out the data we have stored. If we want to rely on the
convention in the preceding example (cities stored with numerical indices, countries stored with
city-name indices), we can write a function that prints the city and the associated country, like this:

function city_by_number ($number_index, $city_array)
{
if (IsSet($city_arrayl[$number_index]))
{
$the_city = $city_array[$number_index];
$the_country = $city_arrayl[$the_cityl;
print("$the_city is in $the_country
");
}
}
city_by_number(0, $major_city_info);
city_by_number(l, $major_city_info);
city_by_number(2, $major_city_info);

If we have set $major_city, as in the previous block of code, the browser output we should expect is:

Chicago is in United States
Stockholm is in Sweden
Montreal is in Canada

Now, this method of retrieval is fine when we know how the array is structured and we know what
all the keys are, but what if you would simply like to print everything that an array contains?

Our favorite iteration method: foreach

Our favorite construct for looping through an array is foreach. Although it is probably inherited
from Perl’s foreach, it has a somewhat odd syntax (which is not the same as Perl’s odd syntax). It
comes in two flavors — which one you decide to use will depend on whether you care about the
array’s keys or just the values.

foreach ($array_variable as $value_variable) {
// .. do something with the value in $value_variable
}// Note that this is an example template, not real PHP code

Learning Arrays _

foreach ($array_variable as $key_var => $value_var) ({
// .. do something with $key_var and/or $value_var
t

Although in the preceding pseudocode we assume that the array of interest is in the variable
$array_variable, you can have any expression that evaluates to an array in that position, for
example:

foreach (function_returning_array() as $value_variable) {
// .. do something with the value in $value_variable

Like array () and 1ist (), but unlike the genuine iteration functions in the rest of this
: section, foreach is a language construct, not a function. (See the earlier note about
1ist () for an explanation of the difference.)

As an example, let’s write a function to print all the names from our sample array:

function print_all_foreach ($city_array)
{
foreach ($city_array as $name_value) {
print("$name_value
");
1
1
print_all_foreach($major_city_info);
print_all_foreach($major_city_info);// again, as an experiment

As output, we get all the names, in the order we stored them, twice over:

Chicago
United States
Stockholm
Sweden
Montreal
Canada
Chicago
United States
Stockholm
Sweden
Montreal
Canada

We printed the contents twice to show that calling the function is repeatable.

Iterating with current() and next()

We like foreach, but it is really only good for situations where you want to simply loop through an
array’s values. For more control, let’s look at current () and next().

143

Introducing PHP

The current () function returns the stored value that the current pointer points to. (Refer back to
Figure 8-1 for a diagram of the array internals.) When an array is newly created with elements, the
element pointed to will always be the first element. The next () function first advances that pointer
and then returns the current value pointed to. If the next () function is called when the current
pointer is already pointing to the last stored value and, therefore, runs off the end of the array, the
function returns a false value.

As an example, we can print out an array’s contents with the iteration functions current () and
next (). (Notice that the final function call is repeated.)

function print_all_next($city_array)
{ // warning--doesn't quite work. See the function each()
$current_item = current($city_array);
if ($current_item)
print("$current_item
");
else
print("There's nothing to print");
while($current_item = next($city_array))
print("$current_item
");
1
print_all_next($major_city_info);
print_all_next($major_city_info);// again, to see what happens

There is a gotcha lurking in the preceding code example, which doesn’t bite us in this
particular example but makes this function untrustworthy as a general method for find-
ing everything in an array. The problem is that we may have stored a false value in the array, which our
whiTe loop won'’t be able to distinguish from the false value that next () returns when it has run out
of array elements. See the discussion of the each () function later in this chapter under “Empty values
and the each () function” for a solution.

When we execute this array-printing code, we get the following again:

Chicago
United States
Stockholm
Sweden
Montreal
Canada
Chicago
United States
Stockholm
Sweden
Montreal
Canada

Now, how is it that we are seeing the same thing from the second call to print_all_next()? How
did the current pointer get back to the beginning to start all over again the second time? The answer

144

Learning Arrays _

lies in the fact that PHP function calls are call-by-value, meaning that they copy their arguments
rather than operating directly on them. Both of the function calls, then, are getting a fresh copy of
their array argument, which has never itself been disturbed by a call to next ().

F For more on under what circumstances functions copy their arguments rather than oper-
=<4 ating on them directly, see Chapter 5.

We can test this explanation by passing the arrays by reference rather than by value. If we define the
same function but call it with ampersands (&) like this:

print_all_next(&$major_city_info);
print_all_next(&$major_city info);// again

We get the following printing behavior:

Chicago

United States

Stockholm

Sweden

Montreal

Canada

There's nothing to print

The trick we used to test the array behavior (passing a variable reference to a function)
has been deprecated, so you may get a warning when running this code, in addition to
seeing the results printed above.

The reason is that this time the current pointer of the global version of the array was moved by the
first function call.

Most of the iteration functions have both a returned value and a side effect. In the case

. of the functions next (), prev(), reset(), and end (), the side effect is to change the
position of the internal pointer, and what is returned is the value from the key/value pair pointed to
after the pointer’s position is changed.

Starting over with reset()

In the preceding section, we wrote a function intended to print out all the values in an array, and we
saw how it could fail if the array’s internal pointer did not start off at the beginning of the list of key/
value pairs. The reset () function gives us a way to “rewind” that pointer to the beginning — it sets
the pointer to the first key/value pair and then returns the stored value. We can use it to make our
printing function more robust by replacing the call to current () with a call to reset ().

function print_all_array_reset($city_array)

{ // warning--still not reliable. See the function each()
$current_item = reset($city_array); //rewind, return value
if ($current_item)

print("$current_item
");

145

m Introducing PHP

146

else
print("There's nothing to print");
while($current_item = next($city_array))
print("$current_item
");
}

This function is somewhat more predictable in that it will always start with the first element,
regardless of the pointer’s location in the array it is handed. (Whether this is a good idea depends,
of course, on what the function is used for and whether its arguments are passed by value or by
reference.)

Perhaps confusingly, we use our call to reset () in the preceding example both for its side effect
(rewinding the pointer) and for its return value (the first value stored). Alternatively, we could
replace the first real line of the function body with these two lines:

reset($city_array); // rewind to the first element
$current_item = current($city_array); // the first value

Reverse order with end() and prev()

We have seen the functions next (), which moves the current pointer ahead by one, and reset (),
which rewinds the pointer to the beginning. Analogously, there are also the functions prev (),
which moves the pointer back by one, and end (), which jumps the pointer to the last entry in the
list. We can use these, for example, to print our array entries in reverse order.

function print_all_array_backwards($city_array)

{ // warning--still not reliable. See the function each()
$current_item = end($city_array); //fast-forward to last
if ($current_item)

print("$current_item
");
else
print("There's nothing to print");
while($current_item = prev($city_array))
print("$current_item
");
}
print_all_array_backwards($major_city_info);

1f we call this on the same $major_city_info data as in previous examples, we get the same print-
out in reverse order:

Canada
Montreal
Sweden
Stockholm
United States
Chicago

Learning Arrays

Extracting keys with key()

So far, we have printed only the values stored in arrays, even though we are storing keys as well. The
keys are also retrievable from the internal linked list of an array by using the key () function — this
acts just like current () except that it returns the key of a key/value pair, rather than the value. (Refer
to Figure 8-1.) Using the key () function, we can modify one of our earlier printing functions to print
keys as well as values.

function print_keys_ and values($city_array)
{ // warning--See the discussion of each() below
reset($city_array);
$current_value = current($city_array);
$current_key = key($city_array);
if ($current_value)
print("Key: $current_key; Value: $current_value
");
else
print("There's nothing to print");
while($current_value = next($city_array))
{
$current_key = key($city_ array);
print("Key: $current_key; Value: $current_value
");
}
}
print_keys_and_values($major_city_info);

With the same data as before, this gives us the browser output:

Key: 0; Value: Chicago

Key: Chicago; Value: United States
Key: 1; Value: Stockholm

Key: Stockholm; Value: Sweden

Key: 2; Value: Montreal

Key: Montreal; Value: Canada

Empty values and the each() function

We have written several functions that print the contents of arrays by iterating through them and,
as we have pointed out, all but the foreach version have the same weakness. Each one of them
tests for completion by seeing whether next () returns a false value. This will reliably happen
when the array runs out of values, but it will also happen if and when we encounter a false value
that we have actually stored. False values include the empty string (""), the number 0, and the
Boolean value FALSE, any or all of which we might reasonably store as a data value for some task
or other.

To the rescue comes each (), which is somewhat similar to next () but has the virtue of return-
ing false only after it has run out of array to traverse. Oddly enough, if it has not run out, each ()
returns an array itself, which holds both keys and values for the key/value pair it is pointing at. This

147

Introducing PHP

148

characteristic makes each () confusing to talk about because you need to keep two arrays straight:
the array that you are traversing and the array that each () returns every time that it is called. The
array that each () returns has the following four key/value pairs:

Key: 0; Value: current-key

Key: 1; Value: current-value

Key: 'key"'; Value: current-key

Key: 'value'; Value: current-value

The current-key and current-value are the key and value from the array being traversed. In other
words, the returned array packages up the current key/value pair from the traversed array and offers
both numerical and string indices to specify whether you are interested in the key or the value.

In addition to having a different type of return value, each () differs from next () in
that each () returns the value that was pointed to before moving the current pointer
ahead, whereas next () returns the value after the pointer is moved. This means that if you start with
a current pointer pointing to the first element of an array, successive calls to each () will cover each
array cell, whereas successive calls to next () will skip the first value.

We can use each () to write a more robust version of a function to print all keys and values in
an array:

function print_keys_and_values_each($city_array)
{ // reliably prints everything in array
reset($city_array);
while ($array_cell = each($city_array))
{
$current_value = $array_cell['value'];
$current_key = $array_cell['key'];
print("Key: $current_key; Value: $current_value
");
1
1
print_keys_and_values_each($major_city_info);

Applying this function to our standard sample array gives the following browser output:

Key: 0; Value: Chicago

Key: Chicago; Value: United States
Key: 1; Value: Stockholm

Key: Stockholm; Value: Sweden

Key: 2; Value: Montreal

Key: Montreal; Value: Canada

Learning Arrays

This is exactly the same as was produced by our earlier function print_keys_and_values(). The
difference is that our new function will not stop prematurely if one of the values is false or empty.

Walking with array_walk()

Our last iteration function lets you pass an arbitrary function of your own design over an array,
doing whatever your function pleases with each key/value pair. The array_walk() function takes
two arguments: an array to be traversed and the name of a function to apply to each key/value pair.
(It also takes an optional third argument, discussed later in this section.)

The function that is passed in to array_walk() should take two (or three) arguments. The first
argument will be the value of the array cell that is visited, and the second argument will be the
key of that cell. For example, here is a function that prints a descriptive statement about the string
length of an array value:

function print_value_length($array_value, $array_key_ignored)
{

$the_length = strlen($array_value);

print("The Tength of $array_value is $the_length
");
}

(Notice that this function intentionally does nothing with the second argument.) Now let’s pass this
function over our standard sample array using array_walk():

array_walk($major_city_info, 'print_value_length');

which gives the browser output:

The Tength of Chicago is 7

The length of United States is 13
The Tength of Stockholm is 9

The Tength of Sweden is 6

The Tength of Montreal is 8

The Tength of Canada is 6

The final flexibility that array_walk() offers is accepting an optional third argument that, if pres-
ent, will be passed on, in turn, as a third argument to the function that is applied. This argument
will be the same throughout the array’s traversal, but it offers an extra source of runtime control for
the passed function’s behavior.

You should not alter an array while you are iterating through the array using array_
walk(). There is no guarantee how array_walk() will behave if you do this.

Table 8-2 shows a summary of the behavior of the array iteration functions that we covered in this
section. Notice that foreach and 11 st are not included; they are not functions.

149

m Introducing PHP

Functions for Iterating over arrays

Function Arguments Side Effect Return Value
current() One array argument None. The value from the key/value
pair currently pointed to by the
internal “current” pointer (or
false if no such value).
next() One array argument Advances the pointer by The value pointed to after the
one. If already at the last pointer has been advanced (or
element, it will move the false if no such value).
pointer “past the end,”
and subsequent calls to
current () will return
false.
prev() One array argument Moves the pointer back The value pointed to after the
by one. If already at the pointer has been moved back
first element, will move (or false if no such value).
the pointer “before the
beginning.”
reset() One array argument Moves the pointer back The first value stored in the
to point to the first key/ array, or false for an empty
value pair, or “before the array.
beginning” if the array is
empty.
end() One array argument Moves the pointer ahead The last value that is currently
to the last key/value pair. in the list of key/value pairs.
pos () One array argument None. (This function is an The value of the key/value pair
alias for current().) that is currently pointed to.
each() One array argument Moves the pointer ahead An array that packages the

to the next key/value pair.

keys and values of the key/
value pair that was current
before the pointer was moved
(or false if no such pair). The
returned array stores the key
and value under its own keys
0 and 1, respectively, and also
under its own keys 'key' and
‘value'.

150

Learning Arrays _

Function Arguments Side Effect Return Value
array_ 1) An array This function invokes (Returns 1.)
walk() argument, 2) the the function named by

name of a two- (or its second argument on

three-) argument each key/value pair. Side

function to call on effects depend on the

each key/value, and side effects of the passed

3) an optional third function.

argument.

Summary

The array is a basic PHP data type and plays the role of both record types and vector array types in
other languages. PHP arrays are associative, meaning that they store their values in association with
unique keys or indices. Indices can be either strings or numbers, and are denoted as indices by square
brackets. (The expression $my_array[4] refers to the value stored in $my_array in association
with the integer index 4, and not necessarily to the 4th element of $my_array.)

The loose typing of PHP means that any PHP value can be stored as an array. In turn, this means
that arrays can be stored as array elements. Multidimensional arrays are simply arrays that contain
other arrays as elements, with a reference syntax of successive brackets. (The expression $my_
array[3][4] refers to the element (indexed by 4) of an array that is an element [indexed by 3] of
$my_array.)

The array is the standard vehicle for PHP functions that return structured data, so PHP program-
mers should learn to unpack arrays, even if they are not interested in constructing them. PHP also
offers a huge variety of functions for manipulating data after you have it stored in an array, including
functions for counting, summarizing, and sorting.

151

f you need to do serious numerical, scientific, or statistical computa-

tion, a web-scripting language is probably not where you want to be

doing it. With that said, however, PHP does offer a generous array of
functions that nicely cover most of the mathematical tasks that arise in web
scripting. It also offers some more advanced capabilities such as arbitrary-
precision arithmetic and access to hashing and cryptographic libraries.

The PHP designers have, quite sensibly, not tried to reinvent any wheels

in this department. Instead, they found about 18 perfectly good wheels by
the side of the road and built a lightweight fiberglass chassis to connect
them all together. Many of the more basic math functions in PHP are simple
wrappers around their C counterparts (for more on this, see the sidebar “A
Glimpse behind the Curtain” in Chapter 27, which will cover PHP’s math-
ematics capabilities in greater detail).

Numerical Types

PHP has only two numerical types: integer (also known as long), and double
(aka float), which correspond to the largest numerical types in the C lan-
guage. PHP does automatic conversion of numerical types, so they can be
freely intermixed in numerical expressions, and the “right thing” will typi-
cally happen. PHP also converts strings to numbers where necessary.

153

IN THIS CHAPTER

Numerical types

Mathematical operators

Simple math functions

Random numbers

m Introducing PHP

TABLE 9-1

GROSS-R

In situations where you want a value to be interpreted as a particular numerical type, you can force a
typecast by prepending the type in parentheses, such as:

(double) $my_var
(integer) $my_var

Or you can use the functions intval () and doubleval (), which convert their arguments to inte-
gers and doubles, respectively.

For more details on the integer and double types, see Chapter 4.

Mathematical Operators

Most of the mathematical action in PHP is in the form of built-in functions rather than in the form
of operators. In addition to the comparison operators covered in Chapter 5, PHP offers five opera-
tors for simple arithmetic, as well as some shorthand operators that make incrementing and assigning
statements more concise.

Arithmetic operators

The five basic arithmetic operators are those you would find on a four-function calculator, plus the
modulus operator (%). (If you are unfamiliar with modulus, see the discussion following Table 9-1.)
The operators are summarized in Table 9-1.

Arithmetic Operators

Operator Behavior Examples

+ Sum of its two arguments. 4+ 9.5 evaluates to 13.5

- If there are two arguments, the right- 50 - 75 evaluates to -25
hand argument is subtracted from the - 3.9 evaluatesto -3.9

left-hand argument. If there is just a
right-hand argument, then the negative
of that argument is returned.

* Product of its two arguments. 3.14 * 2 evaluates to 6. 28
/ Floating-point division of the left-hand 5/ 2 evaluatesto 2.5
argument by the right-hand argument.
% Integer remainder from division of left- 101 % 50 evaluates to 1
hand argument by the absolute value of 999 % 3 evaluates to 0
the right-hand argument. (See discussion 43 % 94 evaluates to 43
in the following section.) -12 % 10 evaluates to -2

-12 % -10 evaluates to -2

154

Learning PHP Number Handling _

Arithmetic operators and types

With the first three arithmetic operators (+, -, *), you should expect type contagion from doubles to
integers; that is, if both arguments are integers, the result will be an integer, but if either argument is
a double, then the result will be a double. With the division operator, there is the same sort of conta-
gion, and in addition the result will be a double if the division is not even.

If you want integer division rather than floating-point division, simply coerce or convert
the division result to an integer. For example, intval(5 / 2) evaluates to the integer 2.

L, \ -

Modular arithmetic is sometimes taught in school as clock arithmetic. The process of taking one num-
ber modulo to another amounts to “wrapping” the first number around the second, or (equivalently)
taking the remainder of the first number after dividing by the second. The result of such an opera-
tion is always less than the second number.

Roughly speaking, a conventional civilian analog clock displays hours elapsed modulo 12, while
military time is modulo 24. (The roughly in the previous sentence is because the real modulus
function converts numbers to the range O to n-1, rather than the range 1 to n. If bell-tower clocks
respected this, noontime would be marked by silence, rather than by 12 chimes.)

The modulus operator in PHP (%) expects integer arguments — if it is given doubles, they will sim-
ply be converted to integers (by truncation) first. The result is always an integer.

Most programming languages have some form of the modulus operator, but they differ in how they
handle negative arguments. In some languages, the result of the operator is always positive, and -2
% 26 equals 24. In PHP, though, -2 % 26 is -2, and, in general, the statement $mod = $first_num %
$second_num is exactly equivalent to the expression:

if ($first_num >= 0)
$mod = $first_num % abs($second_num);
else
$mod = - (abs($first_num) % abs($second_num));

where abs () is the absolute value function.

Incrementing operators

PHP inherits a lot of its syntax from C, and C programmers are famously proud of their own con-
ciseness. The incrementing/decrementing operators taken from C make it possible to more concisely
represent statements like $count = $count + 1, which tend to be typed frequently.

The increment operator (++) adds one to the variable it is attached to, and the decrement operator
(--) subtracts one from the variable. Each one comes in two flavors, postincrement (which is placed
immediately after the affected variable), and preincrement (which comes immediately before). Both
flavors have the same side effect of changing the variable’s value, but they have different values as
expressions. The postincrement operator acts as if it changes the variable’s value after the expres-
sion’s value is returned, whereas the preincrement operator acts as though it makes the change

155

m Introducing PHP

first and then returns the variable’s new value. You can see the difference by using the operators in
assignment statements, like this:

$count = 0;

$result = $count++;

print("Post ++: count is $count, result is $result
");
$count = 0;

$result = ++$count;

print("Pre ++: count is $count, result is $result
");

$count = 0;

$result = $count--;

print("Post --: count is $count, result is $result
");
$count = 0;

$result = --$count;

print("Pre --: count is $count, result is $result
");

which gives the browser output:

Post ++: count is 1, result is O
Pre ++: count is 1, result is 1

Post --: count is -1, result is 0
Pre --: count is -1, result is -1

In this example, the statement $result = $count++; is exactly equivalent to:

$result = $count;
$count = $count + 1;

while $result =++$count; is equivalent to:

$count = $count + 1;
$result = $count;

Assignment operators

Incrementing operators like ++ save keystrokes when adding one to a variable, but they don’t help
when adding another number or performing another kind of arithmetic. Luckily, all five arithmetic
operators have corresponding assignment operators (+=, -=, *=, /= and %=) that assign to a variable
the result of an arithmetic operation on that variable in one fell swoop. The statement:

$count = $count * 3;

can be shortened to:

$count *= 3;

156

Learning PHP Number Handling _

and the statement:
$count = $count + 17;
becomes:

$count += 17;

Comparison operators

PHP includes the standard arithmetic comparison operators, which take simple values (numbers or
strings) as arguments and evaluate to either TRUE or FALSE:

For examples of using the comparison operators and also some gotcha issues with com-
paring doubles and strings, see Chapter 5.

B The < (less than) operator is true if its left-hand argument is strictly less than its right-hand
argument but false otherwise.

B The > (greater than) operator is true if its left-hand argument is strictly greater than its
right-hand argument but false otherwise.

B The <= (less than or equal) operator is true if its left-hand argument is less than or equal to
its right-hand argument but false otherwise.

B The >= (greater than or equal) operator is true if its left-hand argument is greater than or
equal to its right-hand argument but false otherwise.

B The == (equal to) operator is true if its arguments are exactly equal but false otherwise.

The !'= (not equal) operator is false if its arguments are exactly equal and true otherwise.
This operator is the same as <>.

B The === operator (identical to) is true if its two arguments are exactly equal and of the
same type.

B The == operator (not identical to) is true if the two arguments are not equal or not of the
same type.

The identical to operator (===)can, at times, be a necessary antidote to PHP’s auto-
matic type conversions. None of the following expressions will have a true value:

0 === FALSE

This behavior can be invaluable, for example, if you have a function that returns a string when it suc-
ceeds (which might be the empty string) and a FALSE value when it fails. Testing the truth of the return
value would confuse FALSE with the empty string, whereas the identical operator can distinguish them.

157

m Introducing PHP

158

Precedence and parentheses

Operator precedence rules govern the relative stickiness of operators, deciding which operators in
an expression get first claim on the arguments that surround them. You can find a complete table
of all operator precedences in the manual at www.php.net, but the important precedence rules for
arithmetic are:

m Arithmetic operators have higher precedence (that is, bind more tightly) than comparison
operators.

Comparison operators have higher precedence than assignment operators.

The *, /, and % arithmetic operators have the same precedence.

The + and - arithmetic operators have the same precedence.

The *, /, and % operators have higher precedence than + and -.

When arithmetic operators are of the same precedence, associativity is from left to right
(that is, a number will associate with an operator to its left in preference to the operator on
its right).

If you find the precedence rules difficult to remember, the next person who reads your code may
have the same problem, so feel free to parenthesize when in doubt. For example, can you easily fig-
ure out the value of this expression?

1+2*3-4-5/47%3

As it turns out, the value is 2, as you can see more easily when we add parentheses that are not,
strictly speaking, necessary:

((L +(2*3)) -4) -5/ 4)%3)

Simple Mathematical Functions

The next step up in sophistication from the arithmetic operators consists of miscellaneous functions
that perform tasks like converting between the two numerical types (which we discussed in Chapter 4)
and finding the minimum and maximum of a set of numbers (see Table 9-2).

For example, the result of the following expression:

min(3, abs(-3), max(round(2.7), ceil(2.3), floor(3.9)))

is 3, because the value of every function call is also 3.

Learning PHP Number Handling

TABLE 9-2

Simple Math Functions

Function Behavior

floor() Takes a single argument (typically a double) and returns the largest integer that is less
than or equal to that argument.

ceil() Short for ceiling — takes a single argument (typically a double) and returns the smallest
integer that is greater than or equal to that argument.

round() Takes a single argument (typically a double) and returns the nearest integer. If the
fractional part is exactly 0.5, it returns the nearest even number.

abs() Short for absolute value — if the single numerical argument is negative, the
corresponding positive number is returned; if the argument is positive, the argument
itself is returned.

min() Takes any number of numerical arguments (but at least one) and returns the smallest of
the arguments.

max () Takes any number of numerical arguments (but at least one) and returns the largest of
the arguments.

Randomness

PHP’s functions for generating pseudo-random numbers are summarized in Table 9-3. (If you are
new to random number generation and are wondering what the pseudo is all about, please see the
accompanying sidebar.)

There are two random number generators (invoked with rand () and mt_rand (), respectively),
each with the same three associated functions: a seeding function, the random number function
itself, and a function that retrieves the largest integer that might be returned by the generator.

The particular pseudo-random function that is used by rand () may depend on the particular
libraries that PHP was compiled with. By contrast, the mt_rand () generator always uses the same
random function (the Mersenne Twister), and the author of mt_rand()’s online documentation
argues that it is also faster and “more random” (in a cryptographic sense) than rand (). We have no
reason to believe that this is not correct, so we prefer mt_rand() to rand().

159

m Introducing PHP

TABLE 9-3

Random Number Functions

Function Behavior
srand() Takes a single positive integer argument and seeds the random number generator with it.
rand() If called with no arguments, returns a “random” number between 0 and RAND_MAX

(which can be retrieved with the function getrandmax()). The function can also be
called with two integer arguments to restrict the range of the number returned — the
first argument is the minimum and the second is the maximum (inclusive).

getrandmax()

Returns the largest number that may be returned by rand (). This number is limited to
32768 on Windows platforms.

mt_srand()

Like srand(), except that it seeds the “better” random number generator.

mt_rand()

Like rand (), except that it uses the “better” random number generator.

mt_
getrandmax()

Returns the largest number that may be returned by mt_rand ().

On some PHP versions and some platforms, you can apparently get seemingly random
numbers from rand () and mt_rand () without seeding first — this should not be relied
upon, however, both for reasons of portability and because the unseeded behavior is not guaranteed.

Seeding the generator

The typical way to seed either of the PHP random number generators (using mt_srand() or
srand()) looks like this:

mt_srand((double)microtime()*1000000);

This sets the seed of the generator to be the number of microseconds that have elapsed since the
last whole second. (Yes, the typecast to doubTe is necessary here, because microtime() returns a
string, which would treated as an integer in the multiplication but for the cast.) Please use this seed-
ing statement even if you don’t understand it — just place it in any PHP page, once only, before you
use the corresponding mt_rand() or rand () functions, and it will ensure that you have a varying
starting point and therefore random sequences that are different every time. This particular seeding
technique has been thought through by people who understand the ins and outs of pseudo-random
number generation and is probably better than any attempt an individual programmer might make
to try something trickier.

Although the random number functions only return integers, it is easy to convert a ran-
dom integer in a given range to a corresponding floating-point number (say, one between
0.0 and 1.0 inclusive) with an expression like rand() / getrandmax(). You can then scale and shift
the range as desired (to, say, a number between 100.0 and 120.0) with an expression like 100.0 +
20.0* (rand() / getrandmax()).

B

Learning PHP Number Handling _

Pseudo-Random Number Generators

s with all programming languages, the “random” number functions offered by PHP are really implemented

by pseudo-random number generators. This is because conventional computer architectures are deter-
ministic machines that will always produce the same results given the same starting conditions and inputs and
have no good source of randomness. (Here we're talking about the ideal computer as it is supposed to work,
not the actual physically embodied, power-interruptible, cosmic-ray flippable, seemingly very random machines
we all struggle with daily!) You could imagine connecting a conventional computer to a source of random bits
such as a mechanical coin-flip reader, or a device that observed quantum-level events, but such peripherals
don’t seem to be widely available at this time.

So we must make do with pseudo-random generators, which produce a deterministic sequence of numbers
that looks random enough for most purposes. They typically work by running their initial input number (the
seed) through a particular mathematical function to produce the first number in the sequence; each subsequent
number in the sequence is the result of applying that same function to the previous number in the sequence.
The sequence will repeat at some point (once it generates a particular number for the second time, it is doomed
to follow the same sequence as it did the first time around), but a good iteration function will generate a very
long sequence of numbers that have little apparent pattern before the loop occurs.

How do you choose a seed to start off with? Because of the generator’s determinism, if you hardcode a PHP
page to have a particular seed, that page will always see the same sequence from the generator. (Although this
is not usually what you want, it can be an invaluable trick when you are trying to debug behavior that depends
on the particular numbers that are generated.) The typical seeding technique is to use a fast-changing digit from
the system clock as the initial seed — although those numbers are not exactly random, they are likely to vary
quickly enough that subsequent page executions will start with a different seed every time.

Here’s some representative code that uses the pseudo-random functions:

print("Seeding the generator
");
mt_srand((double)microtime() * 1000000);

print("With no arguments: " . mt_rand() . "
");
prii nt C WMo ‘A rgument S i A mt e Faindi()=" "
MDE
print("With no arguments: " . mt_rand() . "
");

print("With two arguments:
mES ran diC27 3110 AR LR
print("With two arguments: "
mESnand (2755 310N SEESBIRARE N
print("With two arguments: "
Mt AR ain 6278 SNk K PR

with the browser output:

Seeding the generator

With no arguments: 1962311688
With no arguments: 1494083765
With no arguments: 1224081997
With two arguments: 31

With two arguments: 27

With two arguments: 30

161

Introducing PHP

162

Obviously, if you run exactly this code, you will get numbers that differ from those in the output
shown here, because the point of seeding the generator this way is to ensure that different execu-
tions produce different sequences of numbers.

In some old versions of PHP3, the rand () function buggily ignored its arguments,
returning numbers between 0 and getrandmax() regardless of restrictions. We have
also heard some reports of that behavior under more recent Windows implementations. If you suspect
that you are suffering from such a bug, you can define your own restricted version of rand () like this:

function my_rand ($min, $max)
{
return(rand() % (($max $min) + 1)
+ $min);
}

Unlike rand (), this version requires the min and max arguments.

Example: Making a random selection

Now let’s use the random functions for something useful (or, at least, something that could be used
for something useful). The following two functions let you construct a random string of letters,
which could, in turn, be used as a random login or password string:

function random_char($string)
{
$length = strlen($string);
$position = mt_rand(0, $length - 1);
return($string[$positionl);
}
function random_string ($charset_string, $length)
{
$return_string = ""; // the empty string
for ($x = 0; $x < $length; $x++)
$return_string .= random_char($charset_string);
return($return_string);

}

The random_char () function chooses a character (or, actually, a substring of length 1) from its input
string. It does this by restricting the mt_rand () function to positions within the length of the string
(with chars numbered starting at zero), and then returning the character that is at that random posi-
tion. The random_string() function calls random_char () a number of times on a string repre-
senting the universe of characters to be chosen from and concatenates a string of the desired length.

Now, to demonstrate this code, we first seed the generator, define our universe of allowable charac-
ters, and then call random_string() a few times in a row:

mt_srand((double)microtime() * 1000000);
$charset = "abcdefghijkImnopgrstuvwxyz";

Learning PHP Number Handling

$random_string = random_string($charset, 8);
print("random_string: $random_string
");
$random_string = random_string($charset, 8);
print("random_string: $random_string
");
$random_string = random_string($charset, 8);
print("random_string: $random_string
");

with the result:

random_string: eisexkio
random_string: mkvflwfy
random_string: gpulbwth

In this example, we seed the generator only once, and we draw that seed value from the system
clock. Notice what happens if we make the mistake of repeatedly seeding the generator with the
same value:

mt_srand(43);
$random_string = random_string($charset, 8);
print("random_string: $random_string
");

mt_srand(43);
$random_string = random_string($charset, 8);
print("random_string: $random_string
");

mt_srand(43);
$random_string = random_string($charset, 8);
print("random_string: $random_string
");

Because the sequence that is generated depends deterministically on the seed, we get the same
behavior each time:

random_string: ggkxvurw
random_string: qggkxvurw
random_string: qggkxvurw

In these examples, we chose to draw random characters from strings, but this kind of selection pro-
cess is generalizable to draw items from arrays or to be used in any situation that requires choosing
random members from a set. All you need is the universe of items, a way to put them in numerical
order, and a way to retrieve them by order number, and you can then use the rand () or mt_rand()
function to choose a random order number for the retrieval.

Summary

The highlights of PHP math are summarized in Table 9-4. Refer to Chapter 27 for more advanced
mathematical concepts as they are handled by PHP.

163

m Introducing PHP

TABLE 9-4

Summary of PHP Math Operators and Functions

Category Description
Arithmetic Operators +, -, *, /, % perform basic arithmetic on integers and doubles.
operators

Incrementing The ++ and - - operators change the values of numerical variables, increasing them

operators by one or decreasing them by one (respectively). The value of the postincrement form
($var++) is the same as the variable’s value before the change; the value of the
preincrement form (++$var) is the variable’s value after the change.

Assignment Each arithmetic operator (like +) has a corresponding assignment operator (+=). The

operators expression $count += 5isequivalentto $count = $count + 5.

Comparison These operators (K, <=, >, >=,==,1=) compare two numbers and

operators return either true or false. The === operator is true if and only if its arguments
are equal and of the same type while the !== is true if the arguments are not equal or
aren’t of the same type.

Basic math floor(), ceil(), and round() convert doubles to integers, min() and max()

functions take the minimum and maximum of their numerical arguments, and abs () is the

absolute value function.

164

ven though we've tried to give clear instructions, and you’ve no

doubt followed them to the letter, problems can still arise. This

chapter lays out some of the most common problems by symptom
and suggest some frequent causes.

RO There is a whole other universe of gotchas involving database
CRO - S REFE connectivity. This chapter deals with PHP-only problems. You
may want to skip ahead to Chapter 19 if you’re having problems with PHP
and a database. Also, problems specific to certain more advanced features
(including sessions, cookies, building graphics, e-mail, and XML) are dealt
with in their individual chapters in Parts 11l and IV.

Installation-Related Problems

Instead of getting moralistic about people who rush through their installs
without understanding the documentation, we’ll point out a few common
symptoms that characteristically appear when you've just installed PHP for
the first time.

If you are seeing similar errors but are confident that your
installation is stable, follow the cross-references to later parts of

this chapter.

165

IN THIS CHAPTER

Installation-related problems

Rendering problems

Failures to load page

Parse errors

File permissions

Missing includes

Unbound variables

Function problems

Math problems

Timeouts

Introducing PHP

166

Symptom: Text of file displayed in browser window

If you are seeing the text of your PHP script instead of the resulting HTML, the PHP engine is clearly
not being invoked. Check that you are accessing the site through the web server and not via the file-
system. Use this:

http://Tocalhost/mysite/mypage.php
rather than this:

file://home/httpd/html/mysite/mypage.php

Symptom: PHP blocks showing up as text under

HTTP or browser prompts you to save file

The PHP engine is not being invoked properly. If you're properly requesting the file via HTTP as
explained previously, the most common reason for this error is that you haven't specified all the file
extensions you want to be served by the web server and parsed with the PHP interpreter. Go back
to Chapter 2, and review how to configure your Web server to recognize PHP file extensions. The
second most common reason is that your php.ini file is in the wrong place or has a bad configu-
ration directive.

= If you see PHP code in your Web browser and you have a stable installation, your prob-
“ lem is probably due to missing PHP tags. See the “Rendering Problems” section later in
this chapter.

Symptom: Server or host not found/Page cannot

be displayed

If your browser can't find your server, you may have a DNS (Domain Name Service) or Web-server
configuration issue.

If you can get to the site via IP address rather than domain name, your problem is probably DNS-related.

1f you cannot get to the site via IP address for a new installation, it’s likely you haven’t successfully
bound the IP address to your network interface or configured the web server to handle requests for
a particular domain (see Chapter 2). If you can't get to the site via IP address for a previously work-
ing installation, most likely your Web server is down or unreachable for a reason not related to PHP.

Rendering Problems

This section covers problems where PHP does not report an error per se, but what you see is not
what you thought you would get.

PHP Gotchas

Symptom: Totally blank page

A blank page could be caused by any number of issues. Usually, it’s caused by a fatal error in the
PHP code from which the PHP interpreter cannot recover. Begin by debugging at the top of the PHP
file that you're trying to visit by placing a die () after the opening <?php tag:

<{?php
die(print "hello");

If you refresh the page, and see the word hello in the browser, then you've ruled out problems with
the web server and the PHP module itself. Continue to move the die () statement further down into
the PHP code until you reproduce the blank page error. Don't forget that any files included through
a“require,” “require_once,” “include,” or the like could also be causing the script to fail. If
you place the die() statement just before an included file and it works and then move the die()
just after the included file and the script fails, then you've determined that the problem (or at least a
problem) lies in the included file.

Of course, another possible answer in this case is that the PHP module is not working at all. Test
by browsing a different page in the same directory that you've previously verified is being correctly
handled by PHP.

Also see the “Timeouts” section near the end of this chapter for more information on what happens
when you write code that runs “forever.”

Finally, you might be seeing a blank screen if your PHP hits a more or less fatal error but you have
error reporting turned off. Error reporting should probably be turned off for production servers
for security reasons, but error reporting to the browser is actually a huge help for development
servers. Check your php.ini file's display_errors setting and make sure the settings are what
you expected. If you really dislike error reporting to the browser, you need to make heavy use of
the error_1log function in exception handling. See Chapters 30 and 31 for more debugging tips.

Symptom: PHP code showing up in Web browser

If you are seeing literal PHP code in your browser, rather than a rendering of the HTML it should
be producing, you may have omitted a PHP start tag somewhere. (This assumes that you have had
PHP running successfully and that you are using the correct tags for your installation. If not, see the
“Installation-Related Problems” section near the beginning of this chapter.)

It’s easy to forget that PHP treats included files as HTML, not as PHP, unless you tell it otherwise
with a start tag at the beginning of the file. For example, assume that we load the following PHP file:

<HTML><HEAD></HEAD><BODY>
<?php include("secret.php");
secret_function(); 2>
</BODY></HTML>

167

m Introducing PHP

which includes the file secret.php, which in turn looks like this:

function secret_function ()
{

echo "Open sesame!";
}

The result is shown in Figure 10-1.

FIGURE 10-1

A PHP include appearing as HTML

7 Netscape

Eile Edit View Go Communicator Help
2 » 3 N 2 W s & @ HHI
Back Forward Reload Home Seaich Metscape Frint Security Stop
‘Q"Bookmarks Jg Lucal\on:Ihttn:/#IDcthDlesecreLlunclinn.php :I ﬁl' ‘what's Related
ﬁlnslantMessage Catagories Maps Phota Finder Secure Web Shop Home
function secret_function () { print"Open sesame|"); }

Fatal error: Call to undefined function: secret_fiunction() in
c:'php\phpdocsisecret_function.php on line 3

@W| |Document: Done

This can be fixed by adding PHP tags to the included file like this:

<?php
function secret_function ()
{
echo "Open sesame!";
}
?>

Failures to Load Page

A couple of different kinds of errors are seen when PHP is unable to find a file that you have asked it
to load.

Symptom: Page cannot be found

If your browser can't find a PHP page you've created, and you have recently installed PHP, please see the
section “Installation-Related Problems” earlier in this chapter. If you get this message when you have

168

PHP Gotchas

been loading other PHP files without incident, it's quite likely you are just misspelling the filename or
path. Alternatively, you may be confused about where the web server document root is located.

Symptom: Failed opening [file] for inclusion

When including files from PHP files, we sometimes see errors like this (on a Unix platform, the file
paths would be different):

Warning Failed opening 'C:\InetPub\wwwroot\asdf.php' for
inclusion (include_path="") in [no active file] on line 0

It turns out that this is the included-file version of Page cannot be found — that is, PHP hasn’t
even gotten to loading the first line of the active file. There is no active file because no file by that
name could be found.

It’s also possible that you will see this message as a result of incorrect permissions on the file you are
trying to load.

Parse Errors

The most common category of error arises from mistyped or syntactically incorrect PHP code, which
confuses the PHP parsing engine.

Symptom: Parse error message

Although the causes of parsing problems are many, the symptom is almost always the same: a parse
error message like that in Figure 10-2.

FIGURE 10-2

A parse error message

File Edit View Go Communicator Help

2 ¢ A3 B 2 ©Ww S & G
Back Forivard Reload Home Seaich Metscape Print Security Stop

"l " Bockmarks A Lacatior:{hitp: /Aocabhost/weblog php =] @ what's Related
T & Inetant Message Catagories Maps Phota Finder Secure Web Shop Haome.

Parse error: parse error in c:\phpiphpdocsiweblog.php on line 30

ElEE |Document: Done.

169

Introducing PHP

170

The most common causes of parse errors, detailed in the subsections that follow, are all quite minor
and easy to fix, especially with PHP lighting the way for you. However, every parse error returns
the identical message (except for filenames and line numbers) regardless of cause. Any HTML that
may be in the file, even if it appears before the error-causing PHP fragment, will not be displayed or
appear in the source code.

The missing semicolon

If each PHP instruction is not duly finished off with a semicolon, a parse error will result. In this
sample fragment, the first line lacks a semicolon, and therefore, the variable assignment is never
completed.

What we have here is

<?php

$Problem = "a silly misunderstanding"
echo $Problem; ?>.

No dollar signs

Another very common problem is that a dollar sign prepending a variable name is missing. If the
dollar sign is missing during the initial variable assignment, like this:

What we have here is

<?php

Problem = "a big ball of earwax";
echo $Problem; ?>.

a parse error message will result. However, if instead the dollar sign is missing from a later output of
the variable, like this:

What we have here is

<?php

$Problem = "a big ball of earwax";
print("Problem"); ?>.

PHP will not indicate a parse error. Instead, you will get the screen shown in Figure 10-3.

This is an excellent example of why you should not rely on PHP to tell you something is wrong.
Although PHP’s error messages are more informative than most, errors such as this are easily missed
if your proofreading efforts aren’t up to par.

If you spend any significant portion of your time debugging PHP code, an editor that can
jump to specific line numbers can be invaluable. Note that the actual mistake that caused
the error may be on the line that PHP complains about, or before it, but never after it. For example,
because there’s nothing wrong with commands that span several lines, a missed semicolon won’t cause
a parse error until PHP tries to interpret subsequent lines as part of the same statement. Some inte-
grated development environments (IDEs) will do on-the-fly syntax checking while you write. These can
be helpful to spot the errors before they get to the server, while you're still coding.

PHP Gotchas

A missing dollar sign on variable output

File Edit View Go Communicator Help

W o A D s W o & !HI
Back Forpard Reload Haome Seaich Metscape Print Security Stop:

i ‘[gt" Bookmaks A Lo:almn:Ihtlp #/localhost/zanwag, phel j 7 what's Related

i g%\nslanlMessagE Catagories I aps Photo Finder Secure Web Shop Home.

What we have here is Problem.

[== |Document: Done

Mode issues

Another family of glitches arises from faulty transitions in and out of PHP mode.

A parse error will result if you fail to close off a PHP block properly, as in:

What we have here is
<?php

$Problem = "Bad Code!";
echo $Problem;

This particular mode issue is very common with short PHP blocks. Conversely, if you fail to begin
the PHP block properly, the rest of the intended block will simply appear as HTML.

A slightly more tricky issue is engendered by the use of the minimal PHP style, which entails weav-
ing in and out of HTML mode frequently. (See the discussion of minimal versus maximal style in
Chapter 33.) For instance, this fragment (which omits the ?> after the first curly brace, when we
intend to return to HTML mode) will return a parse error:

<?php if(!IsSet($stage))

{

What we have here is

<?php

$Problem = "an awful kerfuffle ";
print("$Problem"); ?>.

<?php

} else {

print("$Stage"); }

>

171

m Introducing PHP

Another instance of a very common problem is this one, which combines the short block and
weaving-in-and-out-of-HTML issues neatly:

<FORM>

<INPUT TYPE="TEXT" SIZE=15 NAME="FirstName"
VALUE="<%?php print("$FirstName"); ?>">

<INPUT TYPE="TEXT" SIZE=15 NAME="LastName"
VALUE="<?php print("$LastName"); ?>">

<INPUT TYPE="TEXT" SIZE=10 NAME="PhoneNumber"
VALUE="<%?php print($PhoneNumber"); 7?>"

<INPUT TYPE="SUBMIT" NAME="Submit">

</FORM>

A PHP double-quote and the HTML closing bracket have been forgotten on the PhoneNumber
input line here. This will both cause a parse error and prevent the Submit button from appearing
on a client browser.

The sample code is meant to demonstrate how easy it can be to forget an element on a crowded
page with lots of small but important symbols. You can reduce this type of error either by using a
good programmer’s text editor or by completing and testing the HTML first and adding the PHP
later (or both).

Unescaped quotation marks

Another type of parse error is characteristic of maximal PHP: the unescaped quotation mark.

<?php
print("She said, /"What we have here is ");
$Problem = "a difference of opinion\"";

print("$Problem"); 7?>.

In this case, the double-quote just before the word What is incorrectly, and therefore ineffectively,
escaped by a forward slash rather than a backslash. If you simply forgot the backslash, the effect
would be the same.

Unterminated strings

Failing to close off a quoted string can cause parse errors that refer to line numbers far away from
the source of the problem. For example, a code file like this:

print("I am a guilty print statement!); // line 5
// 47 Tines of PHP code omitted ...
print("I am an innocent print statement!"); // line 53

might well produce a parse error that complains about line 53. This is because PHP is happy to
include any text you might want in a quoted string, including many lines of your own code. This

172

PHP Gotchas

inclusion finishes happily with the first double-quote in line 53, and then the parser finds the sym-
bol I, which it can't figure out how to interpret as PHP code.

1f the quotation mark symbol that begins the unterminated string happens to be the last one in the
file, the line number in the complaint will be the last line in the file — again, probably far away from
the scene of the crime.

Other parse error causes

The problems we have named are not an exhaustive list of the sources of parse errors. Anything
that makes a PHP statement malformed will confuse the parser, including unclosed parentheses,
unclosed brackets, operators without arguments, control structure tests without parentheses, and
so on. Sometimes the parse error will include a statement about what PHP was expecting and didn’t
find, which can be a helpful clue. If the line of the parse error is the very last line of the file, it usu-
ally means that some kind of enclosure (quotation marks, parentheses, braces) was opened and
never closed, and PHP kept on hoping until the very end.

Missing Includes

In addition to loading top-level source files, PHP needs to be able to load any files you bring in via
include() or require().

Symptom: Include warning

This kind of error is shown in Figure 10-4.

FIGURE 10-4

Include warning

File Edit View Go Communicator Help

2 o (B DX 2 W S &£ B
Back Forpard: | Reload Haome Search Metscape Print Security Stop:
‘n&t" Bookmarks J; Localiun:Ihtlp #localhost/bad_include.php :I @"W’hat's Related

' g%\nslanlMessage Catagories Maps Phato Finder Secure WwWeb Shop Home.

Warning: Failed opening 'somefile inc' for inclusion {include_path=") in
c:\php'phpdocsibad_include.php on line 2

[== |Document: Done

173

m Introducing PHP

174

The problem is that you call somewhere in the script for a file to be included, but PHP can't find it.
Check to see that the path is correct. You might also have a case sensitivity or other typographic
issue. Note the important difference between include() and require(). If a file is included
and PHP can’t locate the file, execution of the script will continue with a PHP warning. If a file is
required and PHP can’t locate that file, execution will stop with an error.

Unbound Variables

PHP is different from many programming languages in that variables do not have to be declared
before being assigned, and (under its default settings) PHP will not complain if they are used before
being assigned (or bound) either. As a result, forgetting to assign a variable will not result in direct
errors — either you will see puzzling, but error-free output, or you will see a downstream error that
is a result of variables not having the values you expected. (If you would rather be warned, you can
set the error-reporting level in php.ini or by evaluating error_reporting(E_ALL).) Some symp-
toms of this kind of problem follow.

Symptom: Variable not showing up in print string

If you embed a variable in a double-quoted string ("1ike $this") and then print the string using
print or echo, the variable’s value should show up in the string. If it seems to not be there at all in
the output (“11ke “), the variable has probably never been assigned.

Symptom: Numerical variable unexpectedly zero

Although it’s possible to have a math error or misunderstanding result in this symptom, it's much
more likely that you believe that the variable has been assigned when it actually hasn't been.

Causes of unbound variables

PHP automatically converts the types of variables depending on the context in which they are used,
and this is also true of unbound variables. In general, unbound variables are interpreted as 0 in a
numerical context, "" in a string context, FALSE in a Boolean context, and as an empty array in an
array context. The following code shows the effect of forgetting to bind two variables ($two_string
and $three); the resulting display appears in Figure 10-5:

<?php

$one_string = "one";
$three_string = "three";
fone = 1;

$two = 2;

print("This math is as easy as $one_string, $two_string,
$three_string!
");

print("$one_string is equal to $one
");
print("$two_string is equal to $two
");

PHP Gotchas

print("$three_string is equal to $three
");

print("$one_string divided by $two_string is "
($one / $two) . "
");

print("$one_string divided by $three_string is "
($one / $three) . "
");

?>

FIGURE 10-5

The effect of unbound variables

Eile Edit View Go Communicator Help

< o A B 2 wWw S & &
Back Forward Reload Home Search Metscape Prirt Security Stop

Lgtv Bookmarks A2 Localiun:ihtlp dlocalhost/math_unbound.php] j @'W’hat's Felated
] &\nstanlMassaga Catagaries taps Phita Finder Secure Web Shop Hame

Thus math 15 as easy as one, , threel
one is equal to 1

is equal to 2

three iz equal to

one divided by is 0.5

Warning: Division by zero in ¢:\php'phpdocs‘math_unbound. php on line 13
one divided by three ig

@'@| |Document: Done

Case problems

Variables in PHP are case sensitive, so the same name with different capitalization results in a dif-
ferent variable. Even after a value is assigned to the variable $Mississippi, the variable $mis -
sissippi will still be unbound. (Capitalization aside, variables that are this difficult to spell are
probably to be avoided for the same reason.)

Scoping problems

As long as no function definitions are involved, PHP variable scoping is simple: Assign a variable,
and its value will be there for you from that point on in that script’s execution (until the variable is
reassigned). However, the only variables that are available inside a function body are the function’s
formal parameters and variables that have been declared to be global — if you have a puzzling,
unbound variable inside a function, this is probably something you've forgotten. In the following
code, for example, the variable $serial_no is neither passed in to the function nor declared to be

global:
$name = "Steve Suehring";
$rank = "Intarweb Programmer";
$serial_no = "4";

function Answer($name)

175

m Introducing PHP

O

{

global $rank;

print("Name: $name; Rank: $rank;
serial no: $serial_no
");

}

Answer($name);

The resulting browser output looks like:

Name: Steve Suehring, Rank: Intarweb Programmer, serial no:

because the variable is unbound inside the function.

Variable Naming Conventions

ne way to avoid a lot of the gotchas in PHP is to decide on, and to rigorously use, a set of variable nam-
ing conventions for all of your code. In the frequent cases where variables will be assigned and used in

widely separated places in the same script and even across scripts, such a set of standards will save lots of time
referring back and forth. What conventions you decide on are less important than that you have some standard
in the first place. That said, here are a few tips to help you decide what to do:

176

B A common mistake many new programmers make is thinking that variables must somehow be an

abbreviation of the thing they represent. Remember, a variable is not an abbreviation, but rather
a stand-in for some value that may change depending on circumstances or as a script executes. A
longer, meaningful, and easy-to-remember variable name is better than a shorter variable name that
is anybody’s guess.

Variable names that consist of multiple words strung together can be made more readable by using
underscores (for example, $of fice_address) or initial capitalization ($0fficeAddress). There
is some sense to the notion that the underscore solution can create confusion with function-naming
conventions. Use what works best for you.

In a more general sense, remember that you may not be the only person that has to read this code.
You may get really excited about PHP and get involved in one of the many open source projects
that use PHP. You may even start your own project (we’d be delighted to see that happen)! In either
case, readable code will be a must, and good variable names are a foundation of producing read-
able code.

Function Problems

Many problems having to do with function calls result in fatal errors, which means that PHP gives
up on processing the rest of the script.

PHP Gotchas

Symptom: Call to undefined function my_function()

PHP is trying to call the function my_function(), which has not been defined. This could be
because you misspelled the name of a function (built-in or user-defined) or because you have simply
omitted the function definition. If you use include/require files to load user-defined functions,
make sure that you are loading the appropriate files.

If the problem involves a fairly specialized, built-in function (for instance, it is related to XML or
arbitrary-precision math), it may be that you did not enable the relevant function family when you
installed or configured PHP.

Symptom: Call to undefined function ()

In this case, PHP is trying to call a function and doesn’t even know the function’s name. This is
invariably because you have code of the form $my_function(), where the name of the function is
itself a variable. Unless you are intentionally trying to exploit the variable-function-name feature of
PHP, you probably accidentally put a $ in front of a sensible call to my_function(). Because $my_
function is an unbound variable, PHP interprets it as the empty string — which is not the name of
a defined function — and gives this uninformative error message.

Symptom: Call to undefined function array()

This problem has a cause that is similar to the cause of the previous problem, although it still baffled
us completely the first time we ran into it. It can arise when you have code like the following:

$my_amendments = array();
$my_amendments(5) = "the fifth";

Unless you look closely, this looks like an innocent pair of statements to create an array and then store
something in that array, with the number 5 as a key. And yet PHP is telling us that array () is an
unbound function, even though we know that it is a very standard built-in function. What’s going on?

The fault is actually with Line 2 above, rather than with Line 1. If we want to access an element of
$my_amendments, the correct syntax is $my_amendments[5], with square brackets. Instead, we
used parentheses, which the parser interprets as an attempted function call. It takes what is imme-
diately before the left parenthesis to be a function. Instead, what comes before the parenthesis is an
array, which is not a function; PHP gives up on us, with this obscure complaint.

Symptom: Cannot redeclare my_function()

This is a simple one — somewhere in your code you have two definitions of my_function(), which
PHP will not stand for. Make sure that you are not using include to pull in the same file of function
definitions more than once. Use include_once or require_once to avoid seeing this error, with
the caveat that, well, you won't see this error. Why might that be bad? It’s conceivable that you could
define two distinctly different functions and inadvertently give them the same name. This runs the
risk of exposing your mistake at a somewhat inconvenient moment.

177

m Introducing PHP

Symptom: Wrong parameter count

The function named in the error message is being called with either fewer or more arguments than
it is supposed to handle. In the case of more parameters you're okay, but if you use fewer parameters
than is expected you will get an error.

Math Problems

The problems that follow are specific to math and the numerical data types.

Symptom: Division-by-zero warning
Somewhere in your code, you have a division operator where the denominator is zero. The most
common cause of this is an unbound variable, as in:

$numerator = 5;
$ratio = $numerator / $denominator;

where $denominator is unbound. It’s also possible, of course, that the legitimate result of a compu-
tation is producing a zero denominator. In this case, the only thing to do is catch it with a test and
do something reasonable if the test applies. See the following example:

$numerator = 5;

if (isset($denominator) && $denominator != 0)
$ratio = $numerator / $denominator;
else

print("I'm sorry, Dave, I cannot do that
");

Symptom: Unexpected arithmetic result

Sometimes things just don’t add up (or multiply up, or subtract up). If you are having this experi-
ence, check any complex arithmetic expressions for unbound variables (which would act as zeros)
and for precedence confusions. If you have any doubt about the precedence of operators, add (pos-
sibly redundant) parentheses to make sure the grouping is as you intend.

Symptom: NaN (or NAN)

If you ever see this dreaded acronym, it means that some mathematical function you used has gone
out of range or given up on its inputs. The value NAN stands for “Not a Number,” and it has some
special properties. Here’s what happens if we try to take the arccosine of 45, even though arccosine
is defined only when applied to numbers between —1.0 and 1.0:

$value = acos(45);

print("acos result is $value
");
print("The type is " . gettype($value) . "
");

178

PHP Gotchas

$value2 = $value + 5;
print("Derived result is $value
");
print("The type is " . gettype($value2) . "
");

if ($value == $value)
print("At Teast that much makes sense
");
else

print("Hey, value isn't even equal to itself!
");

The browser output looks like:

acos result is NAN

The type is double

Derived result is NAN

The type is double

Hey, value isn't even equal to itself!

Oddly enough, NAN is a number, at least in the sense that its PHP type in this example turns out to
be double rather than string. It also infects other values with not-a-numberness when used in math
expressions. (This behavior is a feature, not a bug, when used in very complex calculations that
must be correct. It’s better to have the whole value be tagged as untrustworthy than have one subex-
pression be silently bogus.) Finally, any equality comparison that involves NAN will be false — NAN
is neither less than, nor greater than, nor equal to any other number, including itself. It is always
unequal (!=) to all numbers, including itself. (The NAN value is not a PHP-specific feature — it is
part of the IEEE standard for floating-point arithmetic, which is implemented by the C functions
that underlie PHP.)

Because of the contagion of NAN values, this kind of problem can be difficult to debug. The best way
to try to find the original offending NAN is with diagnostic print statements, especially because
comparison tests will give counterintuitive results. You can explicitly test for NAN values using the
built-in is_nan () function, which returns TRUE if the number submitted is not a number or FALSE
otherwise. In earlier versions (you aren’t using an earlier version, are you?), you can cobble together
your own function for NAN testing like this:

function is_nan($value)
{
return($value != $value);

}

It uses the weird comparison properties of NAN as a type checker.

Timeouts

Of course any download can occasionally time out before a complete page can be delivered.
However, this shouldn’t be happening frequently on your local development server!

179

m Introducing PHP

TABLE 10-1

The most interesting reason for a timeout is an infinite loop. These can be difficult to track down
quickly, as in this example:

//compute the factorial of 10

$Fact = 1;

for ($Index = 1; $Index <= 10; $index++)
$Fact *= $Index;

This code shows a nasty little collaboration between a loop and a case confusion — the lowercase

$index that is incremented has nothing to do with the $Index that is being tested, so the test will
never become false.

Summary

In Table 10-1, we summarize the gotchas in this chapter by mapping symptoms to possible causes.
We also offer some suggestions on how to fix the most common problems.

From Symptoms to Causes

Symptom

Possible Causes

Advice

(New installation)
Text of file
displayed in
browser window

The PHP engine is not being invoked,
possibly because you are opening it
via the local filesystem rather than as a
request to your server.

Make sure that your request is to the web
server, either via localhost (http://
localhost/[path]) if testing on the
server machine, or by the full URL (www .
example.com/[path]).

(New installation)
PHP blocks
showing up as
text, or browser
prompts you to
save file

PHP is not being invoked properly.

Your web server may not be set up

to map the right file extensions (for

example, . php) to the PHP engine,
or there may be a problem with the
location or contents of php.ini.

Check your web server configuration,
and the PHP init file (php.ini).

(New installation)
Server or host
not found/

Page cannot be
displayed

Often due to Internet/DNS/web-server
configuration problems, rather than PHP.

Try loading a pure HTML file with a file
extension you have not set up for PHP
(for example, .html) to rule out PHP
problems.

Totally blank page

Usually due to PHP syntax errors.

Use die() to determine the location of
the syntax error.

180

Symptom

Possible Causes

PHP Gotchas

Advice

PHP code
showing up in
browser window

If the PHP engine is installed and
functioning properly, this is usually
due to a missing PHP start tag or
misconfigured web server.

Check start and end tags and make sure
that any include files of PHP code
have correct tags at beginning and end
also check web server functionality with
a basic PHP page.

Parse error

A variety of causes, including missing

Locate the line with the parse error in the

message semicolons, variables without a PHP file, and look for one of the causes
$, unescaped quotation marks, in that line or the lines immediately
unclosed quotation marks, brackets, preceding it. If the “error” is on the final
or parentheses, and HTML being line of the file, look for an unclosed
interpreted as PHP. quote, parenthesis, or bracket, possibly

much earlier in the file.
Include For one reason or another, PHP was Check that the file actually exists, the
warning not able to load a file named in an spelling of the filename, the pathname,

include statement.

and (on Unix systems) the case of the
name. Also make sure that the file
permissions allow the file to be read.

Variable value
not showing up
inprint string

The variable has not been assigned,
and so its value in a printed string is the
empty string.

Check that you are assigning the variable
before the print statement and compare
spelling and case (capitalization). Make
sure that you are not embedding any
objects or multidimensional arrays in
quoted strings. You can also use the
statement error-reporting(15) to tell
PHP to warn about any unbound variables.

Numerical
variable
unexpectedly
zero

Often due to the variable never having
been assigned.

(See preceding.)

Variable value
is valid, but
unexpected.

Often due to variable having been
unexpectedly overwritten.

Use good variable names; search through
all included files for variable name.

Call to undefined

function my__
function()

Function my_function() is being
called without having been defined
first.

If you are trying to call a function of
your own, check that the definition

(or inclusion of the file containing the
definition) is before the use. If you are
trying to call a built-in function, check
the spelling. If it is correct, investigate
whether that “family” of functions was
included when you configured PHP (for
example, either all the XML functions
will work, or none will).

continued

181

m Introducing PHP

TABLE 10-1 (continued)

Symptom

Possible Causes

Advice

Call to undefined
function ()

An expression of the form $my_
function() is being evaluated, and
$my_function is not bound to the
name of a defined function.

If you intend to use the variable-function
feature, then add (or correct) the
assignment of $my_function. If you
are just trying to call my_function(),
remove the $.

Call to undefined
function

You probably have an expression of
the form $array_var_name(3),

Decide whether you want an array
expression or a function call — if the

array() when what you want is $array_var_ former, then change parentheses to
namel[3] square brackets.
Cannot The function my_function() Look for double definitions of my__

redeclare my_
function()

is being defined twice in a page’s
execution.

function in the PHP file, or double-
inclusions of the file that defines it.

Wrong parameter
count

The named function (usually a built-in
function) is being called with an
incorrect number of arguments.

Compare the function call to the
definition in the online PHP manual
(www.php.net)

Division-by-zero
warning

A / operator has a right-hand argument
of zero. Can be due to an unbound
variable in the denominator.

Assign the unbound variable if that’s the
cause. If the desired logic could actually
result in zero denominators, install a test
to catch that case.

Unexpected
arithmetic result

Frequently due to an unbound variable
in an arithmetic expression.

Check for unbound variables (see
preceding), and make sure that
arithmetic expressions are parenthesized
appropriately.

NAN value

A built-in math function is being given
inputs outside its acceptable range.
If that function’s results are used in
arithmetic, the results are also NAN.

Trace backward from the NAN value

to function calls that contribute to

its computation. Test with print
statements, or test for values that fail to
be self-equal (a diagnostic for NAN).

182

s

| =
— S e NS et s

MySQL Database
Integration

Introducing Databases and
MySQL

Installing MySQL

Learning Structured Query
Language (SQL)

Learning Database Administration
and Design

Integrating PHP and MySQL

Performing Database Queries

Integrating Web Forms and
Databases

Improving Database Efficiency

MySQL Gotchas

atabases and PHP go together like cake and ice cream, Trinidad
and Tobago, green eggs and ham — you get the picture.

After all, what's the Web about? Making vast stores of informa-
tion available to a more or less wide public, that’s what. Not that there
aren’t small brochureware sites galore, but the bigger and more frequently
updated the data source, the more comparative value is provided by the
Web over other media.

Perhaps the single greatest advantage of PHP over similar products is the
unsurpassed choice and ease of database connectivity it offers. As detailed
in the “Choosing a Database” section of this chapter, PHP supports native
connections to a number of the most popular database server types, open
source and commercial alike. Almost any database that will open its appli-
cation programming interface (API) to the public seems to be included
eventually. For any unsupported databases, there’s generic ODBC (Open
Database Connectivity) support.

What Is a Database?

A database is a collection of data. The term database usually indicates that
the collection of data is stored on a computer. Regardless, it’s the databases
that are on computers that I'll concentrate on in this book.

Databases implemented through a computer are created within software.
That software, commonly known as a database application, controls how

185

IN THIS CHAPTER

What is a database?

PHP-supported databases

Our focus: MySQL

Z1iel |8 MySQL Database Integration

186

the actual data is stored and retrieved. Some database applications include Microsoft Access and
OpenOffice.org’s Base. Sometimes, databases are stored in a central location and managed by a data-
base server. A database server is a database application built with multiple users in mind.

Most of the time when programming PHP you'll be accessing a database server. Some database servers
include PostgreSQL, MySQL, Microsoft's SQL Server, and the Oracle suite of databases. You may also
see database servers called RDBMS, which is an acronym for relational database management system.

Database servers usually have one or more distinct APIs for programmatically creating, accessing,
managing, searching, and replicating the data they hold. It is through the API that you connect to
and work with data stored in database servers when using PHP.

There is no requirement that an RDBMS be used to store data. Other data stores can be used such as
a flat file or a table known as a hash table. These are perfectly fine for some applications, especially
smaller applications; however, for larger applications or applications that require optimal speed for
large data stores, an RDBMS is a requirement.

Why a Database?

If you're going to the trouble to use PHP at all, you're likely to need a database sooner or later —
probably sooner. Even for something small, like a personal blog, you want to think hard about the
advantages of using a database instead of static pages or included text files.

Maintainability and scalability

Having PHP assemble your pages on the fly from a template and a database is an addictive experi-
ence. Once you enjoy it, you'll never go back to managing a static HTML site of any size. For the
effort of programming one page, you can produce an infinite number of uniform pages. Change one,
and you've changed them all.

There are now web sites with hundreds of thousands of separate pages — you can rest assured that
no one is maintaining them all by hand. If you have a web site that may eventually grow to more
than a few dozen pages, you should think about moving to a database sooner rather than later.

Portability

Because a database is an application rather than a part of the operating system, you can easily trans-
fer its structure and contents from one machine to another or (in certain cases) even from one plat-
form to another. This is especially valuable for contractors, who may develop a project without being
able to control the environment in which it will eventually be deployed — they can deliver a pack-
age of PHP plus a MySQL database schema dump.

Introducing Databases and MySQL

Avoiding awkward programming

Certain things can be done with PHP but probably shouldn’t, because they entail ugly or risky pro-
gramming moves.

Say that you happen to be the commander of the starship Enterprise and are keeping a captain’s
log. Each log entry is contained in a text file identified by its unique stardate, which is plugged into
a template by PHP — but hey, you're a busy spaceman with whole galaxies to explore; you don't
always have time to write in your log every day. You want to put automatically generated Next and
Previous links on each page for those who wish to read in straight chronological order. It’s pretty
easy to use PHP to find the previous stardated entry, but any attempt to locate the next entry can
quickly become an infinite loop — because it’s easier to prove something does exist than that it
doesn’t. On the other hand, if you put your log data in a database, the whole job becomes trivial.
The database will tell you which is the latest entry at any given moment.

There are other types of programming tasks that a database is highly optimized to do, and given
the option, you should take advantage of it to perform these chores. For instance, you should avoid
sorting data sets on the PHP side in favor of writing queries so the data is returned presorted. We
discuss these efficiency issues in greater detail in Chapter 18.

Searching

Although it’s possible to search multiple text files for strings (especially on Unix platforms), it’s not
something most web developers will want to do often. After you search a few hundred files, the task
becomes slow and hard to manage. Databases exist to make searching easy. With a single command,
you can find anything from one ID number to a large text block to a JPEG-format image.

In some cases, information attains value only when put into a searchable database. For instance,
relatively few people would want to read a long text list of movie directors and their films, but
many might occasionally want to search a database of that information. You could argue that it’s the
searchability, as much as the information itself, that creates the value here.

PHP-Supported Databases

PHP Data Objects (PDO) was introduced back with the 5.1 release of PHP. PDO creates a consistent,
abstracted interface to database servers and data. PHP offers several database-specific drivers for
both PDO and non-PDO access. The PHP web site contains a list with the latest information about
databases that can be integrated along with the PDO abstraction layer and other abstraction layers.
See www.php.net/pdo for more information.

187

Z1iel |8 MySQL Database Integration

188

Our Focus: MySQL

MySQL, (officially pronounced my- S - Q - L and not “mysequel”), is an incredibly popular and powerful
RDBMS. MySQL provides one of the letters in the ubiquitous acronym “LAMP,” which is an abbreviation
for Linux, Apache, MySQL, PHP/Perl/Python. MySQL has become so popular for several reasons. First,
MySQL is free (as in price), although the licensing has changed (discussed later). Second, MySQL is also
stable, meaning that it’s not prone to crashing even under load. Third, MySQL is lightweight, meaning
that it doesn't require many resources to install or run. Fourth, MySQL is fast and easy to use. Finally,
MySQL is powerful, with all of the features required for web applications.

MySQL AB, which is the company behind MySQL (owned by Sun), changed the licensing for MySQL
relatively recently. In the latest iteration as of this writing, MySQL offers a product called MySQL
Server Community Edition, which is essentially the same as the MySQL Enterprise Server, but is
lacking official MySQL support and some graphical user interface (GUD) tools. If your organization
needs an officially supported product, where you can call for assistance with the database server at
any time, then MySQL Enterprise is for you. MySQL AB'’s support is excellent; it’s not unheard of to
get responses from developers themselves. Otherwise, the MySQL Server Community Edition is your
choice. For more information on the differences between the two versions, see www.mysql.com/
products/which-edition.html.

I'll be concentrating on the MySQL Server Community Edition in this book, and the next chapter
will show you how to obtain and install MySQL.

Summary

The great advantage of the Web is its capability to make large quantities of information publicly
available quickly and cheaply. This functionality has been tremendously enhanced by the recent
increase in availability of inexpensive, reliable databases.

PHP supports several types of databases, including flat-file, hash, and relational databases. Most
large web sites (and even small sites, too) use some sort of relational database management system
(RDBMS). MySQL is a common choice among PHP developers. MySQL is not only free but also light-
weight, stable, and full of features necessary for both online and offline applications.

efore jumping into MySQL installation you need to get the software.

MySQLs database server can be downloaded from MySQLs web site

atwww.mysql.com. As of this writing, the free Community Edition
server feels somewhat hidden on the web site. Therefore, with the caveat
that the URL may change on a whim by the time you read this text, the
download section for MySQL is currently located at http://dev.mysq]l
.com/downloads. However, realize that most distributions of Linux
include their own MySQL server package.

Obtaining MySQL

I strongly recommend using the MySQL server package directly from your
Linux distribution rather than downloading from MySQL AB unless you
have a very specific reason for using a different version. If you can’t think
what one of those specific reasons might be, then you probably don’t have
one, and you therefore should use the MySQL server available with your
distribution.

Installing MySQL on Linux

There are several distributions upon which you might find yourself install-
ing MySQL. It's always a challenge choosing which distributions to cover.
No matter which ones we decide to cover there will always be someone
installing on another distribution.

189

IN THIS CHAPTER

Obtaining MySQL

Installing MySQL on Linux

Installing MySQL on Windows

170 |l MySQL Database Integration

190

In this section I'll examine MySQL installation on Debian, CentOS, and Ubuntu. Additionally,

I'll demonstrate compiling MySQL from source for those who don’t have a MySQL server package
available with their distribution. It should be noted that because MySQL 6 is so new it may not be
available as a package in your distribution. If this is the case, I recommend sticking with the latest
MySQL available for your distribution. For the most part, this book will use functions available in
MySQL 5 and later, so MySQL 6 isn't a requirement. Where MySQL 6 is required, a special note will
be shown.

Installing MySQL Server on Debian and Ubuntu

Debian’s dpkg and apt installation and package management tools make installation of MySQL (and
everything else for that matter) incredibly easy. Debian is a system administrator’s dream because
it’s so stable, package installation is so easy, and the packages are maintained and configured with
excellent defaults. But enough evangelizing; installation of MySQL server on Debian requires super-
user privileges and is accomplished simply by running apt-get:

apt-get install mysql-server

Of course, that assumes that you have correctly configured sources in /etc/apt/sources.1ist.
For more information on APT and configuration of the sources.11ist file, see www.debian.org/
doc/manuals/apt-howto/ch-basico.en.html. Debian’s package management system will
install and configure any necessary prerequisites for you.

Debian separates MySQL into its components such as server, client, and libraries. Therefore, in order
to use MySQL and PHP together, you should install the php5-mysql package:

apt-get install php5-mysql

As you can see by that installation command, the PHP5 version of the interface is being installed.
That is the latest version available as of this writing.

Finally, you'll likely also want to install the MySQL command-line interface (CLI), which is accom-
plished by installing the mysql-client package:

apt-get install mysql-client

MySQL will now be installed and ready to use on your Debian server. However, by default the
MySQL server won't listen on anything by localhost. To change this, edit /etc/mysql/my.cnf and
comment out the skip-networking line with a pound sign or hash mark (#), so it looks like this:

fiskip-networking
Now restart the MySQL server by typing this command:

/etc/init.d/mysqgl restart

Installing MySQL

Installing MySQL on Microsoft Windows

MySQL installation on Windows is much, much easier than it used to be thanks to fully automated
installers

Installing MySQL on Windows

Default installation on any version of Windows is now much easier than it used to be, as MySQL
now comes neatly packaged with a native Windows installer. Simply download the installer package,
usually an msi, and run it. This will walk you through the trivial process and by default will install
everything under C:\Program Files\MySQL, which is probably as good a place as any.

The MySQL installer will attempt to install itself as a service, which means you need Administrator
rights on the computer upon which MySQL is being installed. Part of the installation process will
configure the MySQL server. During this portion of the installation, you can configure things like
the root password, the port on which MySQL will listen, and whether to include the MySQL utilities
in the Windows path (I recommend that you do so).

The Windows install is now so simplified that for most cases you can simply click “Next” to con-
tinue and, where you have an exception, refer to the online manual for MySQL at www.mysq1 . com.

Summary

This chapter examined installation of MySQL on Linux and Windows. The Linux installation var-
ies somewhat depending on the flavor of Linux on which MySQL is being installed. However, the
Windows installation has been greatly refined and reduced to simply clicking through the installa-
tion and receiving a fully functional yet incredibly powerful database system. The online documen-
tation for MySQL is available for assistance with installation issues, should they arise.

191

his chapter is a basic introduction to SQL databases in which we

discuss standards, database design, Data Manipulation Language,

Data Definition Language, and database security procedures com-
mon to all SQL databases.

| This chapter is in no way a comprehensive guide to SQL or to
any particular SQL database. To go beyond the simplest com-
mon features, you will need to consult your particular manufacturer’s docu-
mentation or specific books. You will also want to look at documentation and
books relating to your specific SQL database.

Relational Databases and SQL

SQL is the language of relational databases. A simple query like a one-table
SELECT will be more or less the same whether you're using a tiny database
like mSQL or an expensive behemoth like Oracle.

The big advantage for you, the web developer, is that, after you learn SQL,
you will be able to interact with numerous databases across all platforms
without a steep retraining curve. Just imagine how horrible life would be if
Oracle, MySQL, and SQL Server all had entirely different sets of commands
for putting data in and getting data out of their stores — as if Oracle used
SELECT to ask for data sets, MySQL used VALJ (the developers are Swedish,
you know), and SQL Server used FIND IT IN THIS TABLE (to better match

193

IN THIS CHAPTER

Relational databases and SQL

SQL standards

The workhorses of SQL

Database design

Privileges and security

Z1id |8 MySQL Database Integration

194

the vocabulary of Windows). SQL is the common vocabulary and syntax that will save you from this
nightmare. There are differences among products, and in their implementations of the SQL standard
and the extensions they each define to that standard, but it’s better to have 80 percent in common and
20 percent different than the other way around.

SQL Standards

According to Andrew Taylor, original inventor of SQL, SQL does not stand for Structured Query
Language (or anything else for that matter). But for the rest of the world, it does now. As you would
expect from the (non-) title, SQL represents a stricter and more general method of data storage than
the previous standard of flat-file DBM-style databases.

SQL is a standard under both the American National Standards Institute (ANSI) and the Equipment
Managers Council of America (ECMA); both are international standards-maintenance organizations.
You can read the standards on payment of a fee to these organizations:

B www.ansi.org
B Www.ecma.org

However, within the general guidelines of the standard there are considerable differences among the
products of individual companies and open source database development organizations. The past
few years, for instance, have seen the rapid growth of so-called object-relational databases, as well as
of SQL products specifically slanted toward the web market.

The key to choosing a database is to be selfish, or at least supremely self-centered. You will see
plenty of unusually virulent postings out there opining that a certain advanced database fea-

ture (like triggers or cross joins) is a “must,” and any SQL installation without this feature hardly
deserves the name. Take this stuff with a grain of salt. It’s far better to make a blind shopping list of
functions you need in order of importance and then go out looking for the product that best meets
your requirements.

That said, a good deal of SQL really is pretty standardized. You will be using a few SQL statements
over and over and over, no matter which specific product you choose to deploy.

The Workhorses of SQL

The basic logical structure of a SQL database is very simple. A given SQL installation can usually
contain multiple databases — for instance, one for customer data and one for product data. (It’s
problematic that both the SQL server itself and the collections of tables within it are commonly
referred to by the term database — but what can you do?) Each database contains a number of
tables. Each table is made up of carefully defined columns, and every entry can be thought of as an
added record or row. (I’s not really a row, but this is a concept so stuck in our visualization that we
may as well go with it.)

Learning Structured Query Language (SQL)

Four so-called data manipulation statements are supported by every SQL server and will constitute an
extremely high percentage of all the things you'll want to do with a relational database. These four
horsemen of the database are SELECT, INSERT, UPDATE, and DELETE. These commands are your
friends and helpmates; get comfy with them, and they will serve you well.

The thing to remember about these four SQL statements is that they manipulate only database val-
ues, not the structure of the database itself. In other words, you can use these commands to add data
but not to make a database; you can get rid of every piece of data in a database, but the shell will still
be there — so, for instance, you wouldn't be able to name another database on the same server with
the same name. If you want to add or get rid of columns, blow away entire databases as if they never
existed, or make up new databases, you need to use other commands such as DROP, ALTER, and
CREATE. We discuss these in the “Database Design” section later in this chapter.

| A note on SQL style: Many SQL queries that you see are written in one long line of code —
% which becomes totally illegible once you’re dealing with more than four or five fields. A
very accomplished PL/SQL programmer of our acquaintance recommends that you break up every SQL
statement into as many lines as you need for maximum legibility. He also does not shy away from using
indentation in a SQL query with many variables. (SQL queries are usually quite whitespace insensitive.)
He has years of experience working on big Oracle installations, and his recommendations actually are
very helpful — so that is the style we try to use in this book.

SELECT

SELECT is the main command you need to get information out of a SQL database. The basic syntax
is extremely simple:

SELECT fieldl, field2, field3
FROM table

That’s no harder than asking your coworker to get you last month’s sales records from the file cabi-
net in the hallway.

In some cases, you'll want to ask for entire records instead of picking out individual pieces of infor-
mation. This practice is generally frowned upon, but it is still widely used and, therefore, we need to
mention it. A whole record is called for by using the wildcard (asterisk) symbol:

SELECT *
FROM mytable

Selecting Certain Records

The previous two examples show how to retrieve all rows from the table. It’s not all that common
to do this in the real world, which is where the WHERE clause comes in. The WHERE clause places a
condition on the SELECT statement that causes only those rows matching the WHERE clause to be
returned in the result set. For example:

SELECT *
FROM mytable
WHERE ID < 100;

195

Z1id |8 MySQL Database Integration

This example retrieves all fields from the table mytab1e where the ID column value is less than
the integer 100. WHERE clauses can get quite complex, and, frequently, multiple conditions are used
together with the AND keyword.

Joins

Joins are one of the main useful features of SQL.

A SELECT statement on a single table without joins might be visualized as being something like a
row in a spreadsheet. But an SQL database is by definition relational. To understand the philosophy
behind the relational database concept, you have to think back to some occasion on which you were
forced to fill out a whole bunch of forms — such as applying for a loan, visiting a doctor’s office for
the first time, or dealing with some kind of governmental formality. (If you've never had this experi-
ence, it’s because you're young enough to have lived entirely in a world of relational databases.) As
you were writing down your name, address, phone, and Social Security number for the 15" time,
you probably thought, “Why can’t I just write my address down once, and then they could just look
it up on a need-to-know basis?” That’s exactly the concept behind a relational database.

The way a relational database differs from paper forms is the main identifier. Humans do well with
text and prefer to categorize by textual identifiers such as names. If a dentist’s office or auto body
shop stored its paper files in numerical order, it would be difficult for anyone to lay his hands on
John Johnson’s forms when John next required service. Frankly, most paper file users these days ask
for your Social Security number as a backup — it works solely to differentiate you from other people
in their files with exactly the same first, last, and middle names.

Databases, on the other hand, work well with integers. You'll frequently use integer values to create
unique identifiers or IDs within a database table. This field or column is then called a primary key,
which indicates that each value in that column will be unique and that the rows within that column
will always have a value in the primary key field. Because primary keys are unique by nature, a
database needs only one to identify a person, place, or thing uniquely — no matter how many tables
refer to that piece of information.

So instead of needing to repeat information several times, like this:

Name: John Johnson
SS#: 123-45-6789

Name: John Johnson
Fears: Cats, Friday the 13th, Flying

Name: Jane Jones
SS#: 987-65-4321

Name: Jane Jones
Fears: Heights, Flying

with a relational database you can write down each piece of information just once and then relate it
to each other piece using integers, as shown in Tables 13-1 to 13-3.

196

Learning Structured Query Language (SQL)

TABLE 13-1

People

PersonlD Name SS#
1 John Johnson 998-00-9889
2 Jane Jones 987-65-4321
3 Aloysius Snuffleupagus 987-65-4329

Fears
FearlD Fear
1 Black cats
2 Friday the 13th
3 Peanut butter sticking to the roof of your mouth
4 Heights
5 Flying

TABLE 13-3

Person_Fear

ID PersonlD FearlD
1 1 1
2 1 2
3 1 5
4 2 4
5 2 5

This is clearly a neater and faster (for a database) way to store this information. But when you need
to pull out the data into a human-readable form, there’s a problem: You have to get and correlate
information from more than one database. That’s the job of a join.

197

Z1id |8 MySQL Database Integration

To find out what phobias were suffered by Ms. Jones, you could first look up her personal unique ID:

SELECT PersonlID
FROM People
WHERE Name = 'Jane Jones';

that returns the unique integer 2. Then you can define another SELECT statement using that
information:

SELECT FearlD
FROM Person_Fear
WHERE PersonlID = 2;

You get the values 4 and 5 back, which you can use in a third query:

SELECT Fear
FROM Fears
WHERE FearID = 4 OR FearID = 5;

This returns the values Heights and F1ying. We should make it clear that there is nothing
inherently incorrect about doing it this way, as long as any performance loss is within parameters
acceptable to you.

Alternatively, you can perform a join, which returns the same information in a single SELECT
statement:

SELECT Fears.Fear

FROM Fears, Person_Fear, People

WHERE Fears.FearID = Person_Fear.FearlID
AND Person_Fear.PersonlID = People.PersonlID
AND People.Name = 'Jane Jones';

An alternate syntax for this join is:

SELECT Fears.Fear

FROM (Fears INNER JOIN Person_Fear ON FearID INNER JOIN People on
PersonlD)

WHERE People.Name = 'Jane Jones';

As you can see, you need only know one single piece of information to be able to get all the data in
the database about that subject using joins. In effect, a join makes two or more tables into one for
purposes of searching for a particular piece of information.

Joins come in several different flavors. The one in the preceding example is called an inner join,
which is the most common and restrictive type. Another common type is the outer join. This is used

198

Learning Structured Query Language (SQL)

to return a list of all fears even if they do not have people attached to them. In this example, we are
using a left outer join (also known as a natural join):

SELECT Fear
FROM Fears LEFT JOIN People ON PersonlID;

Fears that have people attached to them would appear in the data set multiple times, but fears with-
out people would each appear once.

You can also get a list of all people even if they do not have fears attached to them, using a right outer join:

SELECT Name
FROM Fears RIGHT JOIN People ON PersonlID;

Again, the fears that are actually attached to people appear multiple times, whereas the fears that are not
suffered by any people still show up once in the data set. As you can see, left and right outer joins differ
in which of the two tables you want the actual data set from: the first (left) or the second (right). Because
you can switch them around at will, many people consistently use the left outer join for all outer joins.

| Ask yourself whether you really need to be using outer joins. Because outer joins require less
precision to format, inexperienced SQL users often perform an outer join and then filter the
results in the code layer. This is wasteful and slow. Outer joins are all about the NULL values, which are not
easily returned by inner joins. An example of a good use for an outer join is a report where you want to see
which of your registered users had and had not downloaded your latest software product and how many
times they had downloaded. If you are not in this situation, learn to use inner joins instead.

Finally, there is something known as the self-join, which is a more advanced technique and won't
really make a lot of sense with the example data set. It's often used with denormalized data, which
means data that deliberately bends the rules of good SQL design (for example, never repeating any
data point) for performance reasons (for example, to reduce the number of complex multitable joins).

If you need to make complex and frequent joins, this may constrain the brand of SQL database you
can use, because not all of them support every type of join.

Subselects

Before we leave the realm of SELECT statements, we should mention the subselect. This is a statement
such as:

SELECT phone_number
FROM table
WHERE name = (SELECT name FROM table2 WHERE ID = 1);

Subselects are more of a convenience than a necessity. They can be very handy if you're working
with enormous batches of data, but you can get the same result with two simpler SELECTs. The sub-
select is faster if the subselect clause returns a large data set, but there are cases where two selects
will not appreciably affect performance.

199

170 |l MySQL Database Integration

200

INSERT

Of course, no matter how many SELECT queries you write, all is for naught if you haven’t put any
information in the database to begin with. The command you need to put new data into a database
is INSERT. The basic syntax is:

INSERT INTO table (coll, col2, col3) VALUES(vall, val2, val3);

Obviously, the columns and their values need to match up; if you mix up your array items, noth-
ing good will happen. If some of the rows will not have values for some of the fields, you will need
to use an empty, null, or auto-incremented value — and, at a deeper level, you may need to have
ensured beforehand that fields can be nullable or auto-incrementable. If this is not possible, you
should simply leave out any columns you wish to default to an empty value in an INSERT statement.

A twist on the basic INSERT is the INSERT INTO...SELECT. This just means you can INSERT the
results of a SELECT statement:

INSERT INTO customer(birthmonth, birthflower, birthstone) SELECT * FROM
birthday_info WHERE birthmonth = $birthmonth;

Not every SQL server has this capability. Also, you need to be careful with this command
because you can cause problems for yourself quite easily — for instance you can overwrite data
or experience locking issues. In general, it’s not a good idea to select from the same database
you're inserting into.

UPDATE

UPDATE is used to edit information already in the database, without deleting any rows. In other
words, you can selectively change some information without having to delete an entire old record
and insert a new one. The syntax is:

UPDATE table
SET fieldl='vall', field2='val2', field3='val3"'
WHERE condition;

The conditional statement is just like a SELECT condition, such as WHERE ID>15 AND ID<21 or
WHERE gender="F"'.

DELETE

DELETE is pretty self-explanatory: You use it to delete the contents of one or more fields perma-
nently from the database. The syntax is:

DELETE datapoint
FROM table
WHERE condition;

Learning Structured Query Language (SQL)

The most important thing to remember is the condition — if you don't set one, you will delete
every entry in the specified columns from the database, without a confirmation or a second chance
in many cases!

Let us reemphasize: you must remember to use a condition every single time you UPDATE
or DELETE! If you do not, every single row in the table will experience the same altera-
tion or deletion. Even very experienced programmers have forgotten to include the condition, to their
vast professional embarrassment. You should also give a good deal of thought to restricting database
permissions so the minimum number of people can perform these potentially dangerous operations. I'll
usually jump ahead and write the beginnings of the WHERE condition before filling out the rest of the
DELETE FROM portion of the statement, just to make sure I don’t inadvertently delete the entire table’s
worth of data. Another tip is to use the 1imit keyword within the DELETE statement so as only to
delete the number of rows specified in the limit.

Database Design

As should be obvious from the previous section, learning to use a SQL database isn't exactly rocket
science — you can get a lot done with just a few simple commands. The hard part is designing the
database in the first place and, of course, operating it in the real world over time. Not every web
developer will be asked to design a schema in a professional context, but it never hurts to know how.

At the most fundamental level, database design can be broken down into the following mantra:

One to one,

One to many,

Many to many,

Many to one;

And always use a unique ID.

An example of one-to-one data for Americans is the Social Security number (other nations probably
have similar identification cards with unique numbers). Each U.S. citizen has only one unique iden-
tifier; it is, in fact, a crime to use the Social Security number of another individual or apply for more
than one number. Database designers seize upon truly unique identifiers such as this because almost
every other piece of personal information is subject to change — which accounts for the large num-
ber of businesses who inappropriately use the Social Security number for identification purposes.

One-to-many data and many-to-one are the same, differing only in how the columns are placed in a
database. An example of one-to-many data comes from the medical realm: patients to visits. Each
patient will always be a discrete individual but may have any number of visits to the doctor. If you
designed the table to represent visits to patients, it would instantly become many-to-one data.

Finally, many-to-many data is well represented by the relationship of authors to books. Not only can
a given book have multiple authors, but each author may have written or coauthored many books.

201

Z1id |8 MySQL Database Integration

TABLE 13-4

This is not a matrix of relationships that would be easy to represent efficiently in a spreadsheet, but
it is precisely this category of data at which relational databases most excel.

Every data relationship falls into one of these categories. As a database designer, it’s your job to
decide which one of these represents what you need to know in the way you need to know it.

This is not as trivial as it sounds. Imagine that you want to develop a database of movie information.
One decision you might have to make is whether movie and title are in a one-to-one relationship
with each other, or whether enough films have alternate titles to merit an alternate title field or even
a one-to-many representation. There’s no right answer here — the decision depends on exactly how
the information will be used, how large the database will be, if the extra resources required to main-
tain a more precise data structure are worth the cost, and whether there’s a better-than-even chance
that today’s tangential trivia will become tomorrow’s crucial discovery. Some people may be sur-
prised to learn that archiving information can be as much about ruthless excluding as about careful
hoarding. As historians say, history is about forgetting as much as it is about remembering.

The simplest relationship is the one-to-one because you can group all these fields into a single table
that can be searched more quickly. For instance, a table holding customer information might con-
tain the following fields:

Customer ID

Customer name
Administrative contact
Technical contact

The hardest thing about the one-to-one relationship is definitively deciding that you will never need
to make it into a one-to-many relationship. For instance, what if your biggest customer decides it
wants to designate two technical contacts?

As soon as you have a one-to-many, many-to-one, or many-to-many relationship, you're looking at
going from a single table to multiple tables: one each for the main variables and one stating the rela-
tionship. Tables 13-4 through 13-6 show a common example of a many-to-many relationship:

Customer
Customer_id Name
1 Acme Bread
2 Baker Construction

Coolee Dam

202

Learning Structured Query Language (SQL)

TABLE 13-5

Interactions
Interaction_id Type
1 Phone-support incident
2 On-site incident
3 Written complaint
4 Phone complaint
5 Kudo

TABLE 13-6

Customer-Interaction

Customer- Customer_id Interaction_id
interaction_id

1 1 1

2 3 5
3 2 4
4 2 3
5 1 2

After you've decided on a database design, the mechanical details of constructing the database are
minimal. The main data structure statements of SQL are CREATE, ALTER, and DROP.

CREATE is used to make a completely new table. All the work is in defining the columns of each
table. First, you declare the name of the table, and then you must detail the specific data types of
that table’s columns in what is called a create definition. A CREATE statement will take this form:

CREATE TABLE tablename (

id_col INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
coll TEXT NULL INDEX,

col2 DATE NOT NULL

)

203

Z1id |8 MySQL Database Integration

204

Different SQL Servers have slightly different data types and definition options, so the syntax of one
may not transfer exactly to another. For instance, Oracle databases do not auto-increment; to get a
new value, you must generally call a function.

DROP can be used to completely delete a table and all its associated data. It’s not the most subtle
command:

DROP TABLE tablename;
Obviously, you need to be very careful with this statement.

ALTER is the way to change a table’s structure. You simply indicate which table youre changing and
redefine its specs. Again, SQL products differ in functionality here. The ALTER statement usually
takes this form:

ALTER TABLE table RENAME AS new_table;
ALTER TABLE new_table ADD COLUMN col3 VARCHAR(50);
ALTER TABLE new_table DROP COLUMN col2;

Privileges and Security

As we state in Chapter 28, security online is analogous to security in the real world. Any cop will
tell you that you cannot make your home absolutely crime-proof. A more realistic goal is to increase
the difficulty and risk to a level where a large percentage of intruders will choose to go to an easier
target down the block.

Setting database permissions

The most fundamental rule of database use (of any computer security, really) is to give each user or
group only the minimum permissions necessary to do what needs to be done. Besides the threat
of malicious/experimental outsiders, setting the correct permissions can protect you from your
coworkers and yourself. Insiders have been known to cause massive problems through disgruntle-
ment, ignorance, momentary brain freeze, or a combination of motives. You do not want to have to
cope with the consequences of a fired employee’s parting shot or a new intern trying out the DROP
database command just to see what happens.

A typical database permissions package might be something like:

m Web visitor: SELECT only

m Contributor: SELECT, INSERT, and maybe UPDATE

m Editor: SELECT, INSERT, UPDATE, and maybe DELETE and maybe GRANT

m Database Administrator: SELECT, INSERT, UPDATE, DELETE, GRANT, and DROP

Learning Structured Query Language (SQL)

DROP in particular is the nuclear bomb of SQL because it allows you to blow away an entire table
or database with a single command. Someone’s got to have the ability, but heavy lies the tiara of
responsibility on the head of the root database user. Use the power wisely, grasshopper.

In many databases, including MySQL, passwords are encrypted using a different algorithm from
system passwords (and, of course, they are typically stored in entirely different locations). Even if
one is cracked, the other is not necessarily vulnerable. This assumes that you take the time to set
permissions correctly, pick good passwords, and usually employ a special command to insert user-
names and passwords correctly into the grant table (as opposed to inserting them like other data).

Database usernames and passwords should not be identical to system usernames and
passwords.

Chapter 14 covers permissions for MySQL specifically.

Keep database passwords outside the web area

It's a good idea to separate passwords from the web pages that use them. With PHP’s include()/
include_once() and require()/require_once() functions, it’s very easy to drop in text (such
as database passwords) from another file at runtime. Remember that these included files do not have
to be in a PHP or web server—enabled directory! Whenever possible, keep them somewhere outside
your web area or the file hierarchy viewable to the public through the web server. A good example is
a directory above or outside of your web document root or in a home directory.

Taking the database variables out of PHP files is also good for other reasons. If you have many PHP
scripts using the same database, they can all use the same password file. When you suspect the
password has been compromised, or when you change the password on a regular schedule, you
need only alter one script for all the files to be updated.

The unavoidable downside of this technique is that the file must be readable by the user through
which the web server runs, such as wwwuser, httpd, or Apache. This usually involves changing the
ownership of the file with the database credentials to that of the Apache web server user, and, of
course, making sure that the mode of the file doesn't allow it to be world-readable.

If you have a set of database variables you use infrequently — a configuration script or the like — you
can keep it in a non-Apache-readable directory and change the permissions only on the rare occa-
sions necessary. We infrequently have to go to the trouble to delete postings from our sites’ forums. So
it’s not that much more work (and much more secure) to keep this file in a non-Apache-user-owned
directory, once in awhile change the permissions just long enough to delete the offending post, and
then immediately change everything back.

If for whatever reason, you decide to put your database username, password, hostname, and database
name into a PHP script in plain text, this is what you can expect. If the web server is functioning
normally, the database passwords should be as safe as any file on that server. But if the daemon goes
down, there is some chance your raw PHP (including plain-text database variables) will be delivered in
a human-readable form. You can reduce this risk by avoiding the use of the . htm1 suffix for PHP files.

205

Z1id |8 MySQL Database Integration

206

In some versions of PHP, if database connectivity went down and you hadn’t specified silent mode,
you would see something like the following;

Warning: MySQL Connection Failed: Access denied for user:
'someuser@localhost' (Using password: NO) in
/home/web/html/mysqltest.php3

on line 2

This constitutes a security breach, because it reveals your MySQL username and whether or not you use
a password. From PHP4 forward, MySQL error messages are no longer displayed by default. Two func-
tions, mysql_errno() and mysql_error(), allow you to opt for error codes or text warnings — but
now you have to deliberately choose to ask for the information. Because, in most cases, you can opt for
the more configurable die () instead or remove error messages after debugging, it’s still not a good idea
touse mysql_error on a public production server unless you scrupulously send messages to error logs
using the error_1og() function rather than to standard output.

Learn to make backups

And finally, the biggest part of database security may be backing up. Take an hour to learn the best
way to back up data in your particular database (for example, via the mysqldump command in
MySQL), and then schedule regular backups right away. Even better, with a little foresight you can
also set up an automatic database backup schedule.

Summary

SQL is not rocket science. The four basic data-manipulation statements supported by essentially
all SQL databases are SELECT, INSERT, UPDATE, and DELETE. SELECT gets data out of the data-
base, INSERT puts in a new entry, UPDATE edits pieces of the entry in place, and DELETE gets rid
of an entry.

Designing databases is where most of the difficulty lies. Not all web developers will be asked to do
this. The designer must think long and hard about the best way to represent each piece of data and
relationship for the intended use. Well-designed databases are a pleasure to program with, while
poorly designed ones can leave you pulling your hair out while contemplating numerous connec-
tions and icky joins.

SQL databases are created by so-called data structure statements. The most important of these are
CREATE, ALTER, and DROP. As one would expect, CREATE TABLE defines a new table within a data-
base. ALTER changes the structure of a table. DROP is the nuclear bomb of SQL commands because it
deletes entire tables or sometimes even whole databases.

ySQL is one of the easiest databases to administer on all plat-

forms, and because it's so lightweight, it can run on even

low-powered PCs. Thus, PHP developers have long found it
convenient to throw a copy of MySQL on client machines — even on lap-
tops — for a complete local web development environment. Many devel-
opers learn to run their own MySQL installations so that they can work at
home or on the road, using the OS of their choice. Work teams also some-
times prefer developers to each use a separate local MySQL installation, so
that there is no single point of failure that could affect an entire develop-
ment group. And many PHP-based open source projects assume complete
familiarity with MySQL database administration for all developers.

Unlike some other databases, it should be well within the capability of any
PHP developer to self-administer a MySQL database. There is a plethora of
tools, both in MySQL itself and available from third parties, to make this
job even easier. Many PHP-based application packages, both commercial
and open source, also require familiarity with a MySQL database to install,
run, and debug the web app. So even if you don't plan to write all your PHP
code yourself, getting comfortable with MySQL administration will pay
many dividends.

207

IN THIS CHAPTER

Administering MySQL

Backups

Replication

Recovery

170 |l MySQL Database Integration

208

Basic MySQL Client Commands

It may surprise you to know that the binary named mysq1 in your mysql/bin directory is not the
server, but the client (the server is mysqld). When you type mysq] into a shell, you are using the
MySQL command-line client to access some MySQL server.

To connect to the MySQL server using the command-line client, the basic command is:

mysql [-h hostname] [-P portnumber] -u username -p

You almost certainly need to pass the username; if you don't, the client will try the name of your
shell user. If you don't pass the password flag, mysq1 will check whether a password is needed for
the user you claim to be — and if so, it will reject you. If you're connecting to a local host, you don’t
need the hostname flag; if you're connecting to the default port (3306), you don't need the port num-
ber flag. There are a bunch of other options, but usually this is all you need the first time. Assuming
that you use the username root, you will be prompted for the root password that you just set in the
previous step.

At this point, you will need to select a database to use. The command for that is:
USE databasename;

The semicolon is optional for this command, but you need one for every other SQL command, so
you might as well get used to using it. Until you create new databases, there are only two databases
in a fresh install: mysq1 and test. If you just connected to MySQL as the root user, you have access
to both; if you are connected as any other user, you have access only to test.

The command SHOW TABLES; will dump a list of all the tables in this database.

To quickly see the structure of a database table, use SHOW COLUMNS FROM tablename;. This dis-
plays all the columns with their types, sizes, default values, and other helpful information.

To see all the values in a table, just do a SELECT with unrestrictive conditions:

SELECT * FROM tablename;

Be careful though, since in live databases this kind of query can be huge and take up a lot of
resources. If you have reason to suspect that the data set is more than a few rows, you should take
steps to limit the query.

See Chapter 13 for more information on how to write SQL statements such as SELECT,

===l INSERT, and so forth. Remember that one of the best ways of debugging problems with
SQL statements in your PHP code is to try them out (with suitable fake data plugged into the variables)
using the MySQL command-line client rather than the PHP client. See Chapter 19 for more information
on debugging SQL in your PHP.

Finally, to get out of the MySQL client session, use the command quit;. Again, the semicolon is
optional for this command. This should drop you back into your normal shell.

Learning Database Administration and Design

MySQL User Administration

A big part of using MySQL safely and effectively is understanding its privilege system and learning
how to use the tools provided for controlling user privileges.

MySQL allows you to grant quite fine-grained permissions to different users from different client
locations. There are four descending levels of privileges: global, database, table, and column. So in
theory, you could allow a particular user to write data only to certain columns of certain tables of
certain databases on your MySQL server. Or you could just as easily give any database user con-
necting from anywhere the same powers as the root database user (although this is totally not
recommended).

Of course, for security reasons it's generally a good rule of thumb to grant each user only the mini-
mal permissions necessary to perform his or her function.

There are two different ways to add or edit user permissions in MySQL (assuming that you're the
root database user): by direct SQL statements (for example, putting a Y by hand into every relevant
field of every relevant grant table) or by use of the GRANT and REVOKE syntax. The latter is easier,
and less dangerous if you make a small mistake, since in most cases your query will choke with a
SQL error instead of just leaving a gaping security hole.

To add a new MySQL user, type the following:

GRANT priv_type [(columnl, column2, column3)]
ON database.[table]
TO user@host IDENTIFIED BY 'new_password';

where columns and tables are optional and additional priv_types can be appended in a comma-
separated list.

The types of privileges and their scope are shown in Table 14-1.

Obviously, there’s no point in trying to give anyone the SHUTDOWN privilege at the table level. You
will merely get an error message referring you to the manual. If you grant ALL to a column, table, or
database, the user will get only the basket of privileges appropriate to that level.

You should be especially careful about giving users the following privileges, which are all dangerous:
GRANT, ALTER, CREATE, DROP, FILE, SHUTDOWN, PROCESS. No normal database user, especially a
PHP user, should need these permissions in production.

The syntax for revoking privileges is very similar, although simpler:
REVOKE priv_type [(columnl, column2, column3)]

ON databasel[.table]
FROM user@host;

209

170 |l MySQL Database Integration

MySQL Privilege Scope for Selected Privileges

Privilege Global Database Table Column

ALL v/

ALTER

CREATE

AN NN
AN
N

CREATE
TEMPORARY
TABLE

\
\

DELETE

DROP

EXECUTE

FILE

INDEX

INSERT

LOCK TABLES

PROCESS

REFERENCES

N N N N I N N N NN
AN
AN

RELOAD

AN N NEA YA YA NS N N N NN

REPLICATION
CLIENT

REPLICATION
SLAVE

\

SELECT

SHOW DATABASES

SHUTDOWN

SUPER

UPDATE

USAGE

GRANT OPTION

N N NI N N N
SIS N S

AN

AN

210

Learning Database Administration and Design

After you grant or revoke privileges to any user, you need to force the database to reload the new
privilege data into memory. You do this by issuing the FLUSH PRIVILEGES command. You could
also start and stop the server, but that’s impractical in many circumstances.

This is all well and good, but by now you’re probably thinking: But what actual permissions should 1
actually grant to my actual PHP user? Let’s look at some common cases from the real world.

Local development

For purely local stuff, especially on a machine that isn't connected to the Internet all the time or is
tucked securely behind a good firewall, almost anything goes. If you need to experiment with your
schema, this is the place to do it — so it’s appropriate to have permissions like ALTER, CREATE,
DELETE, and DROP in addition to the normal SELECT, INSERT, UPDATE. A lot of people will find it
convenient to just grant ALL PRIVILEGES on a certain database to a local user, like this:

GRANT ALL PRIVILEGES on database.*
TO username@localhost
IDENTIFIED BY 'password';

Standalone web site

A self-hosted database probably needs to accept connections from numerous web servers in the same
domain. In production, all machines should be limited to SELECT, INSERT, UPDATE, and possibly
DELETE — although many systems never actually delete data, and it’s a little safer not to do so. Since
there probably won't be multiple databases on a standalone web site’s production database, global
permissions are faster with not much more real security risk. So a possible grant statement is:

GRANT SELECT, INSERT, UPDATE ON *.*
TO phpdbuser@%.example.com
IDENTIFIED BY 'password';

However, this is the situation that is most likely to use master-slave replication. Often, these MySQL
clusters are configured so that all writes go to the master, while the slaves do nothing but serve up
very fast reads. In that case, you would give only SELECT privileges on each slave and only INSERT
and UPDATE privileges on the master — possibly to two different database users.

Shared-hosting web site

If you are an Internet service provider (ISP) that offers shared hosting, or a customer hosting your
web site with one, your primary concern should be security over performance. Under no circum-
stances do you want one user to be able to tamper with or delete data belonging to another user.

Unless each user has her own MySQL instance running on her own port, the ISP administrator
should not allow users to create or drop globally. Obviously, though, there is no good way to deny
table creates or drops, which implies that each user will also be able to drop his own database if he
so desires. Yes, that’s right: If your users can define new tables, as they almost certainly will have to

211

Z1iel |8 MySQL Database Integration

212

in this situation, there’s no good way to prevent them from blowing away all their data with a single
command! That's part of the easy come, easy go thrill of MySQL. The database administrator can
and should, however, prevent users from being able to do this to other users on the same server.

Backups

Database backups can be made in two ways: by copying the data directory directly (either manually
or by means of the mysqlhotcopy script on Unix) or by using the mysqgldump tool to write out a
SQL file that will replicate your database. The former is a little faster, but the latter is more flexible.
With mysqTldump you can choose to copy just the structure of the database, just the data, or both.

The most basic usage of mysqldump is:

mysqldump -u username -p databasename > dumpfilename.sql

This command will dump a text file that can be read into another database server, like this:

mysql -u root -p databasename < dumpfilename.sql

Instead of directing the output of mysqldump to a file, you can also pipe it directly to another server,
like this:

mysqldump -u username -p databasename |
mysql -h remote-host -u remoteuser -p -C databasename

However, this can be less secure in some cases, since you have to tell the remote host to accept
database-modifying connections from external clients.

This basic command is fine as far as it goes — meaning that it will result in a nice SQL file contain-
ing both the structure and data of the named database. But sometimes you will want something
more specific than that: maybe just the structure or just the data or all the databases on that server
or just some tables from your chosen database. MySQL allows you to both specify different combina-
tions of databases and/or tables and to add option flags to your command.

1f you want to select specific tables to dump from your chosen database, just list them after the data-
base name:

mysqgldump -u username -p databasename tablel table?
> dumpfilename.sql

If you want to dump some but not all databases on your server, use the --databases flag and then
list the databases. However, in this case, you will not be able to specify tables.

mysqgldump -u username -p --databases databasel database? >
dumpfilename.sql

Learning Database Administration and Design

If you want to dump all databases, use the --all-databases flag:

mysqldump -u username -p --all-databases > dumpfilename.sql

You can specify any of these options before specifying the databases and tables. There are many
mysqldump options, but Table 14-2 lists the most commonly used options.

TABLE 14-2

mysqldump Options
Option Explanation
--add-Tocks Adds table locking to SQL file for faster inserts on the target table.

See also --opt.

--add-drop-table Will overwrite each table definition. Be careful with this option, as
you could delete data! If you don’t use this option but a table of
the same name already exists, you will get an error on the target

database.
-a, --all All options. Be careful!
-c, --complete-insert Use more complete insert statements with column names, instead

of simply reading in values.

--help Displays help message with options.

-1, --Tock-tables Locks tables on the source machine before the dump.

-n, --no-create-db Will not create databases of the specified names if they don’t exist
already. Default with the --databases and --all-databases
options.

-t, --no-create-info Will not create tables of the specified names if they don't exist
already.

-d, --no-data Just the structure of the specified database(s) or tables.

--opt Equalto --quick --add-drop-table --add-locks --

extended-insert --Tock-tables. Fastest possible dump.
Make sure that you want to drop existing tables if there’s a conflict.

-q, ~-quick No buffering.
-r, --result-file=filename Dump result to file. In DOS, creates Unix-style line breaks.
-w, --where="condition’ Select results by the WHERE clause in single quotes.

213

Z1iel |8 MySQL Database Integration

214

Because mysqldump is so easy to use, you should have no excuse for not adhering to a regular
backup schedule. This is why cronjobs were invented! If your data changes relatively infrequently,
you might be able to get away with weekly or fortnightly backups; if you have a fairly high-traffic
site, you'll want to schedule one every night.

Users of PHPMyAdmin have access to mysqldump through the Export tab. However, PHPMyAdmin
currently offers only the most common options for your data dump. If you need more control over
the format of your SQL file, you’ll have to use mysqldump as previously described instead.

Replication

MySQL replication is based on a one-way single-master, single-or-multiple-slave model. The mas-
ter database will handle all writes — meaning all INSERTs, UPDATEs, and DELETEs, as well as all
schema changes. The slaves will periodically get these changes from the master and in the meantime
will be available for highly optimized read-only data serving (meaning all SELECTs). The master
does not know anything about slave databases. It simply makes its binary logs available, and the
slaves do all the rest: scheduling updates, connecting to the master, getting the changes, applying
the changes, and so on. Thus, slaves are aware of the identity of the master, but masters are not
aware of the identities of slaves.

If the master database goes down for any reason, no replacement will be automatically elected. The
entire system is likely to become unresponsive, as the slaves spend many resources trying in vain to
connect to the master for updates, while PHP tries to perform writes without success. The database
administrator will have to manually break the existing master-slave relationships and designate a
new master by hand. Luckily, if something goes wrong with the master, there’s no way the slaves
will have gotten out of sync — so if a database administrator notices the problem and is available to
deal with it, changing to a new master database should be relatively quick.

Because there have been many changes and upgrades to the replication function in recent versions
of MySQL, many recent versions are incompatible with other recent versions in a replication setup.
If you want to try replication, we recommend that you make sure all the database servers involved
are using the same version of MySQL, and furthermore, that this version is 4.0.3+. If you are trying
to replicate with disparate versions of MySQL between 3.23 and 4.0.3, it is very likely that things
will not work properly.

In a nutshell, the operations that must be performed to establish MySQL replication are:

Grant permissions to slave user on master.
Take snapshot of master data; copy to slave machines.
Shut down MySQL servers.

Restart MySQL servers with correct server-ids.

ok why o=

Establish master-slave relationship from each slave.

Learning Database Administration and Design

Now we’ll explain the process in more detail.

You will need to create an account on the master database for slaves to use, with the REPLICATE
SLAVE privilege. You do not need to grant any other privileges to this account.

GRANT REPLICATE SLAVE ON *.*
TO replicant@'%" IDENTIFIED BY 'replpwd';

Next, lock the master server and take a snapshot of its state immediately before the replication. On
the master server, log in to a MySQL client session as the root user and issue the commands:

FLUSH TABLES WITH READ LOCK;
SHOW MASTER STATUS;

This will prevent any changes from being made to the database until you are ready to bring up the
cluster. You may also (depending on whether this server has been run with binary logging) see some
data about the location of the binary log file and offset. If so, write it down; if not, use the default
values ' ' (empty string) and 4, respectively.

Next, copy the master database structure and data. There are two ways to do this. The first is to
simply copy the mysql/data directory into a tarball or zip file by using one of these commands or a
GUI procedure:

tar -cvf master_snapshot.tar data/
zip master_snapshot.zip data/

Alternatively, you can use mysqldump to make a backup as described in the next section. Copy this
snapshot file to each slave server.

Now shut down all the master and slave servers. Quit any mysq1 client shell sessions, and issue the
command:

mysqladmin -u root -p shutdown

on each server. The reason you are shutting the servers down is to give them unique server-id
values. They will use these values to find each other when they establish the master-slave relation-
ship. This value is set in each server’s my . cnf file and will be read in on startup. On Windows, the
my .cnf file is located in one of two places: C:\my.cnf or C:\[Windows directoryl\my.ini.
On Unix systems, the global my . cnf file is found in /etc/my.cnf and the server-specific file
(which is probably the one you want to use) is found in /path/to/mysql/data/my.cnf.

First, set the server-id on the master machine. Find or create a file called my . cnf in the proper
location for your platform, and make sure that it contains the lines:

[mysqld]

lTog-bin
server-id=1

215

Z1iel |8 MySQL Database Integration

Restart the master server:
bin/mysqld_safe --user=mysql

In each slave server’s my . cnf files, you need only the server-id, not the Tog-bin line. The
most important thing is that you are absolutely positive that all the server-1id values in your
cluster are unique! If they are not, bad things will happen. So the first slave’s my . cnf file would
contain this line:

[mysqld]
server-id=2

The second slave would set server-id=3, and so forth.

Now, before you bring up each slave server, you may need to do a little bit of housekeeping. If this
MySQL server has been used as a slave before, you may want to delete the files data/master.info
and data/relay-1og.info. You may also want to delete the .err and .pid files in the data
directory. Also, if you copied the master’s data snapshot into a tarball or zipfile, now is the time to
copy it to the slave with a command like one of these (from the mysq1 directory):

tar -xvf master_snapshot.tar
unzip master_snapshot.zip

If you used mysqldump instead, you have to wait until the server is back up.
Now bring up the slave:
bin/mysqld_safe --user=mysql --skip-slave-start --log-warnings

If you took your master data snapshot with mysqldump, now is the time to apply the SQL file to
the slave:

mysql -u root -p databasename < master_snapshot.sql

Finally, you will establish the master-slave relationship. Log in to amysq1 shell and then enter the
following commands, substituting the values you wrote down at the beginning of the process:

CHANGE MASTER TO
MASTER_HOST="masterhostname',
MASTER_USER="replicant',
MASTER_PASSWORD="replpwd",
MASTER_LOG_FILE="",
MASTER_LOG_P0S=4;

START SLAVE;

If there are problems, they will appear in the slave machine’s error log.

216

Learning Database Administration and Design

Recovery

Normally, MySQL does not require much attention. MySQL servers have happily puttered away for
months if not years with minimal administration. However, bad things do happen to data: Hard
disks melt down, hosting centers lose power suddenly, and human error is a constant and awful
probability. If you have insufficient memory for all the applications you're running on a server, or
insufficient disk space on a partition, you may also get an error that requires a recovery process.

It must be admitted that MySQL seems to have minor database corruption events with greater fre-
quency than heavier-weight databases — or perhaps it’s just easier for the administrator to notice
these events.

Luckily, MySQL is designed to make it amazingly easy to repair small flaws in your data and get
back up quickly. Only once have we had to actually scrap an entire database after repeated attempts
at recovery, and that disaster was caused by a total hard disk failure, which is something a developer
can do nothing to plan for or recover gracefully from — except make frequent backups.

MySQL has long shipped with a command-line tool called myisamchk for checking and repairing
tables. This was a fine script but it suffered from one flaw: It could be run effectively only when the
database was shut down. That’s fine when you're actually recovering from a disaster, since you're
unlikely to be able to start your database anyway, but it’s a significant barrier to trying to head off
problems by regularly checking your data tables. Luckily, there is now a new tool that can be used
during operation — mysqlcheck. You can continue to use myisamchk (used only for myisam
tables) when the server is not running. Refer to the MySQL manual for more information on trouble-
shooting table problems.

Both these tools basically can do three things: check a MyISAM table for errors, repair problems, and
optimize the database. The syntax by which you use the scripts is different, however.

myisamchk
The myisamchk utility is invoked like this:

myisamchk [options] table_name
or
myisamchk [options] /path/to/mysql/data/database/table.MYI

You can wildcard both database directories and table names with an asterisk, which is more com-
mon than specifying a table, since you usually don’t know exactly which table is causing the prob-
lems. Use the following commands to check all the tables of all the databases on a server:

myisamchk [options] /path/to/mysql/data/*/*.MYI
myisamchk [options] /path/to/mysql/data/*/*.MYD

MYTI extensions designate index files, and .MYD extensions designate data files — you need to
check both.

217

Z1iel |8 MySQL Database Integration

218

With no option flags, myisamchk will simply check the designated table. If you pass the -r option
flag, myisamchk will repair the designated tables. You can also check and repair any corrupted
tables in a single operation:

myisamchk --silent --force --fast --update-state -0
key_buffer=64M -0 sort_buffer=64M -0 read_buffer=1 -0
write_buffer=1IM /path/to/mysql/data/*/*.MYI

The command myisamchk -r tablename will also optimize a table that has been fragmented by
deletes and updates.

mysqlcheck

The mysqlcheck tool has several handy advantages over myisamchk. As previously mentioned,

it can be used while the server is running — even while serving up queries. It works on databases
rather than tables, using the same syntax as the mysq1dump tool. And instead of having to remem-
ber the meaning of a bunch of option flags, you can copy and rename the executable to get different
behaviors.

The mysqlcheck tool is invoked in one of these ways:

mysqlcheck [options] databasename tablel table?2 table3
mysqlcheck [options] --databases databasel database?
mysqlcheck [options] --all-databases

To repair, analyze, or optimize databases, you simply copy the mysqlcheck file and change its
name tomysqlrepair, mysqlanalyze, ormysqloptimize — and then invoke it the same way.
So, for instance, to repair all the databases on your server, you might give this command:

mysqglrepair -u root -p --all-databases

MySQL AB recommends that you set up a regular schedule of data file checking via cronjob, plus
run one of these utilities every time you start up your MySQL server. This should help keep your
data compact for fast reads, head off problems while they’re still tiny, and minimize your chances of
a database problem that is visible to your users.

Summary

MySQL is one of the easiest databases to administer, and learning to do so provides many benefits
to PHP developers. MySQL installations have become easier of late on many platforms, and there are
GUI as well as command-line tools available to help you view the structure of your database, man-
age database users, and make backups. More advanced MySQL administration tasks include disaster
recovery and replication — both of which are probably as easy to accomplish on MySQL as they
could possibly be made. However, even long-time MySQL users should consider the impact of recent
changes to the MySQL-PHP relationship: licensing issues, client-version incompatibility, the new
mysql extension, and transactions.

fter you've installed and set up your MySQL database, you can

begin to write PHP scripts that interact with it. Here, we will try

to explain all the basic functions that enable you to pass data back
and forth from web site to database.

Information related to creating a MySQL database is at the end
of this chapter, because it is a more advanced skill that builds
on the fundamental MySQL skills discussed in the earlier parts of the chapter.

Connecting to MySQL

The basic command to initiate a MySQL connection is
mysql_connect($hostname, $user, $password);
if you're using variables, or
mysqgl_connect('localhost', 'root', 'sesame');
if you're using literal strings.

The password is optional, depending on whether this particular database
user requires one (it's a good idea). If not, just leave that variable off. You can
also specify a port and socket for the server ($hostname:port:socket),
but unless you've specifically chosen a nonstandard port and socket, there’s
little to gain by doing so.

The corresponding mysq1i function is mysqli_connect, which adds a
fourth parameter allowing you to select a database in the same function you
use to connect. The function mysqli_select_db exists, but you'll need it
only if you want to use multiple databases on the same connection.

219

IN THIS CHAPTER

Connecting to MySQL

MySQL queries

Fetching data

Metadata

Using multiple connections

Error checking

Creating MySQL databases with
PHP

MySQL functions

170 |l MySQL Database Integration

220

You do not need to establish a new connection each time you want to query the database in the same
script. You will need to run this function again, however, for each script that interacts with the data-
base in some fashion.

Next, you'll want to choose a database to work on:
mysql_select_db($database);

if you're using variables, or
mysql_select_db('phpbook');

if you're using a literal string.

You will sometimes see these two functions used with an @ prepended, such as @nysql_
select_db($database). This symbol denotes silent mode, meaning the function will
not return any message on failure, as a security precaution. You should have display_errors set to
of f on production servers anyway.

You must select a database each time you make a connection, which means at least once per page or
every time you change databases. Otherwise, you'll get a Database not selected error. Even if you've
created only one database per daemon, you must do this, because MySQL also comes with default
databases (called mysqgl and test) you might not be taking into account.

You may find it convenient to group all your connection information into a custom connect func-
tion and put it someplace where you can access it from all your scripts, such as the php includes
directory, or in the case of a virtual server, a site-specific include file. This function might look like
the following:

// Connect to a single db
function gdbconn() {

$dbUser = "myuser";
$dbPass = "mypassword";
$dbName = "mydatabase";
$dbHost = "myhost";

if (1($1ink=mysql_connect($dbHost, $dbUser, $dbPass))) {
error_log(mysqgl_error(), 3, "/tmp/phplog.err");
}
if (Imysql_select_db($dbName, $1ink)) {
error_log(mysql_error(), 3, "/tmp/phplog.err");
}
}

If you like, you could extend this function by creating links (for example, $1ink1, $1ink2) to
multiple databases on the same server. This code also records a MySQL error message in the PHP
error log.

Now that you've established a connection to a specific database, you're ready to make a query.

Integrating PHP and MySQL

Making MySQL Queries

A database query from PHP is basically a MySQL command wrapped up in a tiny PHP function
called mysql_query (). This is where you use the basic SQL workhorses of SELECT, INSERT,
UPDATE, and DELETE that we discussed in Chapter 13. The MySQL commands to CREATE or DROP
a table can also be used with this PHP function if you do not wish to make your databases using the
MySQL client.

You could write a query in the simplest possible way, as follows:
mysql_query("SELECT Surname FROM personal_info WHERE ID < 10");

PHP would dutifully try to execute it. However, there are very good reasons to split up this and
similar commands into two lines with extra variables, like this:

$query = "SELECT Surname FROM personal_info WHERE ID < 10";
$result = mysql_query($query);

The main rationale is that the extra variable gives you a handle on an extremely valuable piece of
information. Every MySQL query gives you a receipt whether you succeed or not — sort of like a
cash machine when you try to withdraw money. If things go well, you hardly need or notice the
receipt — you can throw it away without a qualm. But if a problem occurs, the receipt will give you
a clue as to what might have gone wrong, similar to the “Is the machine not dispensing or is your
account overdrawn?” type of message that might be printed on your ATM receipt.

Another advantage of assigning the query string to a variable is that you can more easily view the
query if you run into an error. Of course, you would accomplish this by writing the variable out to
an error log — never by dumping it out to the browser in production!

The function mysql_query takes as arguments the query string (which should not have a semicolon
within the double quotation marks) and optionally a link identifier. Unless you have multiple con-
nections, you don’t need the link identifier. It returns a TRUE (nonzero) integer value if the query
was executed successfully even if no rows were affected. It returns a FALSE integer if the query was
illegal or not properly executed for some other reason.

For purposes of this chapter, we've left the link identifier off; however, if you need to use multiple
databases in your script, you can use code like this:

$query = "SELECT Surname FROM personal_info WHERE ID < 10";
$result = mysql_query($query, $link_1);

$query = "SELECT * FROM orders WHERE date > 20030702";
$result = mysql_query($query, $1ink_2);

As expected, the MySQL improved analog for this function is mysqgli_query. It is very similar to its
counterpart; however, the 1ink and query parameters change places, and a third parameter allows
you to specify a result flag indicating how PHP should handle the result.

221

170 |l MySQL Database Integration

222

If your query was an INSERT, UPDATE, DELETE, CREATE TABLE, or DROP TABLE and returned TRUE,
you can now use mysql_affected_rows to see how many rows were changed by the query. This
function optionally takes a link identifier, which is only necessary if you are using multiple con-
nections. It does not take the result handle as an argument! You call the function like this, without a
result handle:

$affected_rows = mysql_affected_rows();

If your query was a SELECT statement, you can use mysql_num_rows ($result) to find out how
many rows were returned by a successful SELECT.

The mysqli_affected_rows and mysqli_num_rows behave exactly the same as their mysql_
Counterparts.

The mysq1_num_rows function can be useful in paginating large data sets returned by
MySQL queries.

Fetching Data Sets

One thing that often seems to temporarily stymie new PHP users is the whole concept of fetching
data from PHP. It would be logical to assume that the result of a query would be the desired data,
but that is not correct. As we discussed in the previous section, the result of a PHP query is an inte-
ger representing the success or failure or identity of the query.

What actually happens is that a mysql_query () command pulls the data out of the database and
sends a receipt back to PHP reporting on the status of the operation. At this point, the data exists in
a purgatory that is immediately accessible from neither MySQL nor PHP — you can think of it as a
staging area of sorts. The data is there, but it’s waiting for the commanding officer to give the order
to deploy. It requires one of the mysq1_fetch functions to make the data fully available to PHP.

The fetching functions are as follows:

mysql_fetch_row: Returns row as an enumerated array
mysql_fetch_object: Returns row as an object
mysql_fetch_array: Returns row as an associative array

mysql_result: Returns one cell of data

In our humble opinion, the functions mysql_fetch_field and mysql_fetch_
Tengths are misleadingly named. They both provide information about database
entries rather than the entry values themselves. For instance, one might expect a function named
mysql_fetch_field to be a quick way to fetch a single-field result set (the ID associated with a par-
ticular username, for instance), but that is not the case at all. The actual purpose of these functions is
explained in Table 15-2 at the end of the chapter — but for the moment, the point is not to be misled
into thinking that these functions will return database values.

Integrating PHP and MySQL

The differences among the three main fetching functions is small. The most general one is mysq1_
fetch_row, which can be used something like this:

$query = "SELECT ID, LastName, FirstName
FROM users WHERE Status = 1";
$result = mysql_query($query);
while ($name_row = mysql_fetch_row($result)) f{
print("{$name_row[01} {$name_row[1]1} {$name_row[2]1}
\n");
}

This code will output the specified rows from the database, each line containing one row or the
information associated with a unique ID (if any).

In an enumerated array, the integers in brackets are called field offsets. Remember that
they always begin with the integer zero. If you start counting at 1, you will miss the value
of your first column.

e e

The function mysq1_fetch_object performs much the same task, except the row is returned as an
object rather than an array. Obviously, this is helpful for those among the PHP brethren who utilize
the object-oriented notation:

$query = "SELECT ID, LastName, FirstName
FROM users WHERE Status = 1";
$result = mysql_query($query);
while ($row = mysql_fetch_object($result)) {
echo "{$row->ID}, {$row->LastName}, {$row->FirstName}
\n";
1

The most useful fetching function, mysql_fetch_array, offers the choice of results as an associa-
tive or an enumerated array — or both, which is the default. This means you can refer to outputs by
database field name rather than number:

$query = "SELECT ID, LastName, FirstName
FROM users WHERE Status = 1";
$result = mysql_query($query);
while ($row = mysql_fetch_array($result)) {
echo "{$row['ID']}, {$row['LastName']}, {$row['FirstName']}
\n";
}

Remember that mysql_fetch_array can also be used exactly the same way as mysql_fetch_
row — with numerical identifiers rather than field names. By using this function, you leave your-
self the option. If you want to specify offset or field name rather than making both available, you
can do it like this:

$offset_row = mysql _fetch_array($result, MYSQL_NUM);

or
$associative_row = mysql_fetch_array($result, MYSQL_ASSOC);

223

170 |l MySQL Database Integration

224

et e N

1t’s also possible to use MYSQL_BOTH as the second value, but because that’s the default, it’s
redundant.

In early versions of PHP, mysql_fetch_row was considered to be significantly faster than mysql_
fetch_object and mysql_fetch_array, but this is no longer an issue, as the speed differences
have become imperceptible. The PHP junta now recommends use of mysql_fetch_array over
mysql_fetch_row because it offers increased functionality and choice at little cost in terms of pro-
gramming difficulty, performance loss, or maintainability.

Last and least of the fetching functions is mysq1_result (). You should only even consider using
this function in situations where you are positive you need only one piece of data to be returned
from MySQL. An example of its usage is:

$query = "SELECT count(*) FROM personal_info";
$db_result = mysql_query($query);
$datapoint = mysql_result($db_result, 0, 0);

The mysql_result function takes three arguments: result identifier, row identifier, and (option-

ally) field. Field can take the value of the field offset as above or its name as in an associative array
("Surname") or its MySQL field-dot-table name ("personal_info.Surname"). Use the offset if at
all possible, as it is substantially faster than the other two. Even better, don’t use this function with
any frequency. A well-formed query will almost always return a specific result more efficiently.

You should never use mysql_result() to return information that is available to you
through a predefined PHP-MySQL function. The classic no-no is inserting a row and
then selecting out its ID number (extra demerits if you select on MAX (I1D)!). Wicked bad style — use
mysql_insert_id() instead.

All of the PHP functions for fetching MySQL data have identical mysq1i counterparts. They take the
same parameters and return comparable results.

A special MySQL function can be used with any of the fetching functions to more specifically
designate the row number desired. This is mysql_data_seek, which takes as arguments the
result identifier and a row number and moves the internal row pointer to that row of the data set.
The most common use of this function is to reiterate through a result set from the beginning by
resetting the row number to zero, similar to an array reset. This obviates another expensive data-
base call to get data you already have sitting around on the PHP side. Here’s an example of using
mysql_data_seek():

<?php

echo ("<TABLE>\NKTR><TH>Tit1es</TH></TR>\n<TR>");

$query = "SELECT title, publisher FROM books";

$result = mysql_query($query);

while ($book_row = mysql_fetch_array($result)) {
echo("<TD>$book_row[0]1</TD>\n");

}

echo("</TR></TABLE>
\n");

echo("<TABLE>\nN<KTR><TH>Publishers</TH></TR>\n<TR>");

Integrating PHP and MySQL

mysql_data_seek($result, 0);

while ($book_row = mysql_fetch_array($result)) {
echo("<TD>{$book_row[1]}</TD>\n");

}

echo("</TR></TABLE>
\n");

7>

Without using mysq1_data_seek, the second usage of the result set would turn back no 0 rows
because it has already iterated through to the end of the dataset and the pointer stays there until
you explicitly move it. This handy function helps greatly when you are formatting data in a way that
does not place fields in columns and records in rows.

Getting Data about Data

You only need four PHP functions to put data into or get data out of a preexisting MySQL database:
mysql_connect, mysql_select_db, mysql_query, and mysql_fetch_array. Most of the rest
of the functions in this section are about getting information about the data you put into or took out
of the database or about the construction of the database itself. PHP offers extensive built-in func-
tions to help you learn the name of the table in which your data resides, the data type handled by

a particular column, or the number of the row into which you have just inserted data. With these
functions, you can effectively work with a database about which you know very little.

The MySQL metadata functions fall into two major categories:

B Functions that return information about the previous operation only

m Functions that return information about the database structure in general

A very commonly used example of the first type is mysql_insert_id(), which returns the auto-
incremented ID assigned to a row of data you just inserted. A commonly used example of the second
type ismysql_field_type(), which reveals whether a particular database field’s data must be an
integer, a varchar, text, or what have you. Observe however, that this function is also deceptively
named. Rather than returning the MySQL type, it returns the PHP data type. For example, an
ENUM-type field will return "string'. Use mysql_field_flags to return more specialized field
information. This should be apparent when you consider that it works on a result rather than on an
actual MySQL field. It would be useful to have a function that got the possible values for an ENUM
field, but there isn’t a canned version at this point. Instead, use a “describe table” query and parse
the result using PHP’s regex functions.

Most of the data-about-data functions are pretty self-explanatory. There are a couple of things to
keep in mind when using them, though. First, most of these functions are only effective if used in
the proper combination — don't try to use amysql_affected_rows aftera SELECT query and then
wonder what went wrong. Second, be careful about security with the functions that return informa-
tion about your database structure. Knowing the name and structure of each table is very valuable

to a cracker. And finally, be aware that some of these functions are shopping baskets full of simpler

225

Z1id |8 MySQL Database Integration

functions. If you need several pieces of information about a particular result set or database, it could
be faster to use mysql_fetch_field than all the mysql_field functions one after the other.

All of the MySQL metadata functions are fairly easy to use. However, their efficacy is directly related
to intelligent database design rather than a mere marker of the PHP’s strengths. Good database
practices will make these functions useful over the long haul. The mysq1i equivalent functions are
perfect analogues in each of these cases.

Multiple Connections

Unless you have a specific reason to require multiple connections, you only need to make one data-
base connection per PHP page. Even if you escape into HTML many times within the page, your
connection is still good (assuming that it was good in the first place). You do not want to make mul-
tiple connections if you don’t have to, because that is one of the most costly and time-consuming
parts of most database queries.

Conversely, there’s no easy way to keep your connection open from page to page — because PHP
and MySQL would never know for sure when to close it after visitors wander off. Therefore, your
connection is closed at the end of each script unless you use persistent connections.

The main time that you need to use different connections is when you're querying two or more com-
pletely separate databases. The most common situation in which you might do this is when you're
using MySQL in a replicated situation. MySQL replication is accomplished through a master-slave
setup, where you typically get reads from a slave and make writes to the master.

To use multiple connections, you simply open connections to each database as needed and make
sure to hang on to the right result sets. PHP will help you do this by utilizing the result identifiers
discussed in the “Making MySQL Queries” section earlier in the chapter. You pass the identifiers
along with each MySQL function as an optional argument. If you're completing all your queries on
one connection before moving on to the next, you don't even need to do this; PHP will automatically
use the last link opened.

In this example, we are using connections from three different databases on different servers:

<?php
$1inkl = mysql_connect('hostl', 'me', 'sesame');
mysql_select_db('userdb', $1inkl);
$queryl = "SELECT ID FROM usertable

WHERE username = '$username'";
$resultl = mysqgl_query($queryl, $1inkl);
$arrayl = mysql_fetch_array($resultl);
$usercount = mysql_num_rows($resultl);
mysql_close($Tinkl);

$today '2002-05-01";
$1ink2 = mysqgl_connect('host2', 'myself', 'benne');
mysql_select_db('inventorydb', $1ink2);

226

Integrating PHP and MySQL

$query?2 = "SELECT sku FROM widgets

WHERE ship_date = '"$today'";
$result?2 = mysql_query($query2, $1ink2);
$array2 = mysql_fetch_array($result2);
$widgetcount = mysql_num_rows($result2);
mysql_close($1ink2);

if ($usercount > 0 && $widgetcount > 0) {
$1ink3 = mysql_connect('host3', 'I"', 'seed');
mysql_select_db('salesdb', $1ink3);
$query3 = "INSERT INTO saleslog (ID, date, userID, sku)
VALUES (NULL, '$today', '$arrayl[0]', '$array2[0]1')";
$result3 = mysql_query($query3, $1ink3);
$insertID = mysql_insert_id($1ink3);
mysql_close($1ink3);
if ($insertID >= 1) {
print("Perfect entry");
}
else {
print("Danger, danger, Will Robinson!");
}
} else {
print("Not enough information");

}
7>

In this example, we have deliberately kept the connections as discrete as possible for clarity’s sake,
even going to the trouble to close each link after we use it. Without the mysql_close() commands,
we would be running multiple concurrent connections — which you may want to do. There’s noth-
ing stopping you from doing so. Just remember to pass the link value carefully from one function to
the next, and you should be fine.

Building in Error Checking

This section could have been titled “Die, die, die!” because the main error-checking function is actu-
ally called die(). There was something about that title that failed to reinforce the warm, hospitable
learning environment we cherish, so we went with the more prosaic subheading.

die() is not a MySQL-specific function — the PHP manual lists it in “Miscellaneous Functions.” It
simply terminates the script (or a delimited portion thereof) and returns a string of your choice.

mysql_query("SELECT * FROM mutual_funds
WHERE code = '$searchstring'")
or die("Please check your query and try again.");

Notice the syntax: the word or (you could alternatively use | |, but that isn't as much fun as saying
or die) and only one semicolon per pair of alternatives.

227

Z1id |8 MySQL Database Integration

Until quite recently, MySQL via PHP returned very insecure and unenlightening (except to crackers)
error messages upon encountering a problem with a database query. die () was often used as a way
to exert control over what the public would see on failure. Now that no error messages are returned
atall, die() may be even more necessary — unless you want your visitors to be left wondering
what happened.

Other built-in means of error-checking are error messages. These are particularly helpful during the
development and debugging phase, and they can be easily commented out in the final edit before
going live on a production server. As mentioned, MySQL error messages no longer appear by default.
If you want them, you have to ask for them by using the functions mysql_errno() (which returns
a code number for each error type) or mysql_error () (which returns the text message). Then you
can send them to a custom error log by using the error_log() function:

if (!mysql_select_db($bad_db)) {
print(mysqgl_error());
}

There’s more to database error handling than judicious use of die (), however. Servers become
unavailable, data sets get corrupted, and so forth. We've been fairly liberal in setting up connections
and executing queries, but ideally, every interaction with the database should be nested inside a
conditional that returns the desired result on success and a nice clean error page on failure. This is
where die () drops the ball. Execution immediately stops for the entire script, leaving off, if noth-
ing else, closing tags for your HTML page if they are defined in PHP. Additionally, there may be
plenty more perfectly good scripting or HTML left to go on the page — code that is unaffected by a
dropped database connection or a failed query. Finally, die () doesn’t let you know anything went
wrong. Do you really think that your users will tell you? Probably not. It's much more realistic that
they will leave your site in disgust and never return. An example of good error checking is:

function printError($errorMesg) {
printf("%s
\n", $errorMesqg);
}
function notify($errorMesg) {
mail(webmaster@example.com, "An Error has occurred at
example.com", $errorMesg)
}

if ($1ink = mysqgl_connect("host", "user", "pass")) {
// Things to do if the connection is successful
} else {

printError("Sorry for the inconvenience; but we are unable
to process your request at this time. Please check back
later");

notify("Problem connecting to database in $SCRIPT_NAME at
line 12 on date('Y-m-D")");
}

Even better, if you really want to get your feet wet with PHP6’s new object-oriented programming
(OOP) features, try using exceptions, which are covered in Chapter 30.

228

Integrating PHP and MySQL

Creating MySQL Databases with PHP

You can, if you wish, actually create your databases with PHP rather than using the MySQL client
tool. This practice has potential advantages — you can use an attractive front end that may appeal to
those who find the MySQL command-line client horribly plain or finicky to use — counterbalanced
by one big disadvantage, which is security.

To create a database from PHP, the user of your scripts will need to have full CREATE/DROP privi-
leges on MySQL. That means anyone who can get hold of your scripts can potentially blow away all
your databases and their contents with the greatest of ease. This is not such a great idea from a secu-
rity standpoint.

If you're even considering creating databases with PHP, do yourself a big favor and at least don't store
the database username and password in a text file. Make yourself type your database username and
password into a form and pass the variables to the inserting handler each and every time you use
this script. This is one case where keeping the variables in an include file outside your web tree is
not sufficient precaution. Better yet, run the scripts manually from the command line through SSH:

mysqgl -u <username> -p <databasename> < sql-script.sql
For those times when you need to create databases programmatically, the relevant functions are:

B mysql_create_db(): Creates a database on the designated host, with name specified in
arguments

mysql_drop_db(): Deletes the specified database

mysql_query (): Passes table definitions and drops in this function

A bare-bones database-generation script might look like this:

<?php
$1inkID = mysqgl_connect('localhost', 'root', 'sesame');
mysql_create_db('new_db', $1inkID);
mysql_select_db('new_db');
$query = "CREATE TABLE new_table (
id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
new_col VARCHAR(25)
"
$result = mysql_query($query);
$axe = mysql_drop_db('new_db"');
7>

Several other GUI tools are available that are not database-specific but will probably work with
MySQL. As MySQL has become more and more popular, a number of applications for both
Windows and Linux have come into play that allow you to administer MySQL databases in the
graphical fashion you may have become accustomed to. Like their web counterparts, these applica-
tions offer full administrative control, but without the headache of exposing yourself to the security

229

Z1id |8 MySQL Database Integration

risk of a web-based interface. The list changes often as software comes and goes, so a listing here
would probably very quickly go out of date. However, the MySQL web site keeps a pretty compre-
hensive list at http://dev.mysqgl.com.

MySQL data types

The actual PHP functions used to create MySQL databases are trivial compared to the MySQL data
structure statements that are passed in those functions. The “Database Design” section of Chapter 13
has general rules on how to conceptualize a database schema and use the CREATE, DROP, and ALTER
statements. To implement your abstract schema in MySQL, however, you also need to understand
MySQL data types and how to use them.

The general rule is to use the smallest and most specific data type that will adequately meet the
needs of this particular column in your database. MySQL is known for having compact types, such
as TINYINT and TINYTEXT, that are good for things like 0/1 values or first names. It also has very
large types that can store 4GB (or more) of data in one field.

There are three buckets of MySQL data types: numeric types, date and time types, and string (or
character) types. For the most part, their use is fairly straightforward — in the sense that the aver-
age user is not going to know or care whether you used an INT or a MEDIUMINT. However, if you're
the type of programmer who cares about doing everything in the absolutely tightest and fastest way
possible, the MySQL manual gives subtle tips on maximizing efficiency — for instance, always use
the DECIMAL type with money, or it takes 8 bytes to store a DATETIME but only 4 bytes to store a
Unix TIMESTAMP, which PHP can convert to any date-time format you desire. Careful perusal of the
“Column Types” section of the MySQL manual (at www.mysql.com/doc/en/Column_types.html)
may yield hidden treasures of insight.

Table 15-1 shows the current MySQL data types and their possible values. M stands for the maxi-
mum number of digits displayed, and D stands for the maximum number of decimal places in a
floating-point number. Both are optional.

TABLE 15-1

MySQL Data Types

Name and Aliases Storage size Usage
TINYINT(M)
BIT, BOOL, BOOLEAN are 1 byte If unsigned, stores values from O to 255; otherwise,

synonyms for TINYINT(1)

from -128 to 127. A new Boolean type will appear
in future, but until now has been implemented as a
TINYINT(1).

SMALLINT (M)

2 bytes If unsigned, stores values from 0 to 65535;
otherwise, from -32768 to 32767.

230

Name and Aliases

Storage size

Integrating PHP and MySQL

Usage

MEDIUMINT (M)

3 bytes

If unsigned, stores values from 0 to 16777215;
otherwise, from -8388608 to 8388607.

INT(M)

INTEGER(M)

4 bytes

If unsigned, stores values from 0 to 4294967295;
otherwise, from -2147483648 to 2147483647.

BIGINT(M)

8 bytes

If unsigned, stores values from O to
18446744073709551615; otherwise,

from -9223372036854775808 to
9223372036854775807. You may experience
strangeness when performing arithmetic with
unsigned integers of this size due to limitations in
your operating system.

FLOAT (precision)

4 or 8 bytes

Where precision is an integer up to 53. If precision
<= 24, converted to a FLOAT; if precision > 24 and
<= 53, converted to a DOUBLE. Provided for Open
DataBase Connectivity (ODBC) compatibility;

in general, use the normal MySQL FLOAT and
DOUBLE types.

FLOAT(M, D)

4 bytes

Single-precision floating-point number.

DOUBLE(M, D)

DOUBLE PRECISION,
REAL

8 bytes

Double-precision floating-point number.

DECIMAL(M,D)

DEC, NUMERIC, FIXED

M+1 or M+2 bytes

An unpacked floating-point number that is stored
like a CHAR. Used for small decimals, such as

money.

DATE 3 bytes Displayed in the format YYYY-MM-DD.

DATETIME 8 bytes Displayed in the format YYYY-MM-DD HH:MM: SS.

TIMESTAMP 4 bytes Since MySQL 4.1, can no longer set display size.
Displayed in the same format as DATETIME.

TIME 3 bytes Displayed in the format HHH :MM: SS where HHH is
a value from -838 to 838. This allows a TIME value
to represent an elapsed time between two events.

YEAR 1 byte Displayed in the format YYYY, which is a value

from 1901 to 2155. To use an earlier date, you
should use a TINYINT type.

continued

231

Z1id |8 MySQL Database Integration

Name and Aliases

Storage size

Usage

CHAR(M) M bytes Fixed in length. If your string is not long enough, it
will be padded with spaces at the end. M must be
<= 255.

VARCHAR (M) Up to M bytes Variable in length. M must be <= 255.

BINARY (M) Up to M bytes Stores byte strings.

VARBINARY (M) Up to M bytes Similar to VARCHAR. Stores byte strings.

TINYBLOB or TINYTEXT

Up to 255 bytes

TINYBLOB is case-sensitive for sorting and
comparison; TINYTEXT is case-insensitive.

BLOB or TEXT Up to 64KB BLOB is case-sensitive for sorting and comparison;
TEXT is case-insensitive.

MEDIUMBLOB or Up to 16MB MEDIUMBLOB is case-sensitive for sorting and

MEDIUMTEXT comparison; MEDIUMTEXT is case-insensitive.

LONGBLOB or LONGTEXT Up to 4GB LONGBLOB is case-sensitive for sorting and
comparison; LONGTEXT is case-insensitive.

ENUM(vaTuel, 1 or 2 bytes Up to 65535 distinct values.

...valueN)

SET(valuel, ...
valueN)

Up to 8 bytes

Up to 64 distinct values.

MySQL Functions

Table 15-2 includes a recap of the MySQL functions. All arguments in brackets are optional.

TABLE 15-2

Function Name

PHP-MySQL Functions

Usage

mysql_affected_rows([1ink_id])

Use after a nonzero INSERT, UPDATE, or
DELETE query to check number of rows
changed.

232

Function Name

Integrating PHP and MySQL

Usage

mysql_change_user(user, password[, database]
[, link_id])

Changes MySQL user on an open link.

mysql_close([1ink_id])

Closes the identified link (usually
unnecessary).

mysql_connect([host]I[:port][:socket][,
usernamell, password])

Opens a link on the specified host, port,
socket; as specified user with password.
All arguments are optional.

mysql_create_db(db_name[, Tink_id])

Creates a new MySQL database on the
host associated with the nearest open
link.

mysql_data_seek(result_id, row_num)

Moves internal row pointer to specified
row number. Use a fetching function to
return data from that row.

mysql_drop_db(db_namel, Tink_id])

Drops specified MySQL database.

mysql_errno([1ink_id])

Returns ID of error.

mysql_error([1ink_id])

Returns text error message.

mysql_fetch_array(result_id[, result_typel])

Fetches result set as associative array.
Result type can be MYSQL_ASSOC,
MYSQL_NUM, or MYSQL_BOTH (default).

mysql_fetch_field(result_id[, field_offset])

Returns information about a field as an
object.

mysql_fetch_lengths(result_id)

Returns length of each field in a result set.

mysql_fetch_object(result_id[, result_type])

Fetches result set as an object. See
mysql_fetch_array for result types.

mysql_fetch_row(result_id)

Fetches result set as an enumerated array.

mysqgl_field name(result_id, field index)

Returns name of enumerated field.

mysqgl_field seek(result_id, field offset)

Moves result pointer to specified field
offset. Used with mysql_fetch_field.

mysql_field_table(result_id, field_offset)

Returns name of specified field’s table.

mysql_field type(result_id, field_offset)

Returns type of offset field (for example,
TINYINT, BLOB, VARCHAR).

mysql_field_flags(result_id, field_offset)

Returns flags associated with enumerated
field (for example, NOT NULL, AUTO_
INCREMENT, BINARY).

continued

233

Z1id |8 MySQL Database Integration

TABLE 15-2 (continued)

Function Name

Usage

mysql_field Ten(result_id, field _offset)

Returns length of enumerated field.

mysqgl_free result(result_id)

Frees memory used by result set (usually
unnecessary).

mysql_insert_id([1ink_id])

Returns AUTO_INCREMENTED ID of
INSERT; or FALSE if insert failed or last
query was not an insert.

mysql_list_fields(database, table[, 1ink_id])

Returns result ID for use in mysql_
field functions, without performing an
actual query.

mysql_Tist_dbs([1ink_id])

Returns result pointer of databases
onmysqld. Used with mysql_
tablename.

mysql_Tlist_tables(databasel, Tink_id]1)

Returns result pointer of tables
in database. Used with mysql_
tablename.

mysql_num_fields(result_id)

Returns number of fields in a result set.

mysql_num_rows(result_id)

Returns number of rows in a result set.

mysql_pconnect([host][:port][:socket][,
usernamel[, password])

Opens persistent connection to database.
All arguments are optional. Be careful —
mysql_close and script termination will
not close the connection.

mysql_query(query_stringl[, Tink_id])

Sends query to database. Remember to
put the semicolon outside the double-
quoted query string.

mysql_result(result_id, row_id, field_
identifier)

Returns single-field result. Field
identifier can be field offset (0), field
name (FirstName) or table-dot name
(myfield.mytable).

mysql_select_db(databasel, Tink_id])

Selects database for queries.

mysql_tablename(result_id, table_id)

Used with any of the mysql_Tist
functions to return the value referenced
by a result pointer.

234

Integrating PHP and MySQL

Summary

PHP’s MySQL and MySQL Improved functions are easy to use, if sometimes named confusingly.
Each instance of a PHP/MySQL interaction must have a connection, a database select, and a query or
command that returns a result identifier. The result identifier is like an ATM receipt that reports on
the success or failure of an operation.

If data is returned after a SELECT statement, one of the PHP/MySQL fetching functions must also
be employed. Data pulled from a MySQL database exists in a kind of limbo until one of the fetching
functions is applied to the result set. If you wish to loop through the result set again, you can use
mysql_data_seek() to reset the row pointer to zero.

PHP also has a large number of functions that return data about the database itself or about a par-
ticular operation. Two of the most common are mysq1_num_rows (), which returns the number
of rows in a result set, and mysql_insert_id(), which returns the ID of the proximate INSERT
operation.

PHP handles much of the MySQL connectivity for you without requiring specific link identifiers or
result pointers. The exception comes when you need multiple database connections on the same web
page. In this case, you use exactly the same functions and syntax but simply pass the correct link
identifier with most commands.

We do not personally recommend creating MySQL databases with PHP front ends.

235

uch of the point of PHP is to help you translate between a back-

end database and its frontend presentation on the web. Data can

be viewed, added, removed, and tweaked as a result of your web
user’s keystrokes and mouse clicks.

For most of this chapter, we restrict ourselves to ways to use PHP to look at
the contents of a database without altering it, using only the SELECT state-
ment from SQL and displaying the results in HTML tables. We use a single
database example to show different strategies, including some handy reus-

able functions. Finally, we look at code to create the sample data shown in

the display examples, using the INSERT statement.

The two big productivity points from this chapter are:

B Reuse functions in simple cases. The problem of database table
display shows up over and over in database-enabled site design.
If the display is not complicated, you should be able to throw the
same simple function at the problem rather than reinventing the
wheel with each PHP page you write.

B Choose between techniques in complex cases. You may find yourself
wanting to pull out a complex combination of information from
different tables (which, of course, is part of the point of using a
relational database to begin with). You may not be able to map
this onto a simple reusable function, but there aren’t that many
novel solutions either — get to know the alternatives, and you can
decide how to trade off efficiency, readability, and your own effort.

This chapter uses the MySQL database and functions exclusively,
but the display strategies should be directly transferable to
almost any SQL-compliant database supported by PHP.

237

IN THIS CHAPTER

HTML tables and MySQL tables

Complex mappings

Creating the sample tables

Z1id |8 MySQL Database Integration

238

HTML Tables and Database Tables

First of all, some terminology — unfortunately, both relational databases and HTML scripting use
the term table, but the term means very different things in the two cases. A database table persis-
tently stores information in columns, which have predefined names and types so that the informa-
tion in them can be recovered later. An HTML table is a construct that tells the browser to lay out
arbitrary HTML contents in a rectangular array in the browser window. We'll try to always make it
clear which kind of table we are talking about.

One-to-one mapping

HTML tables are really constructed out of rows (the <TR></TR> construct), and columns have no
independent existence — each row has some number of table datum items (the <TD></TD> con-
struct), which will produce a nice rectangular array only if there are the same number of TDs for
every TR. (There is no corresponding <TC> construct that lets you display by column first.) By con-
trast, fields (aka columns) in database tables are the more primary entity — defining a table means
defining the fields, and then you can add as many rows as you like. In this chapter, we will focus
on printing out tables and queries in such a way that each database field prints in its own HTML
column, simply because there are usually more database rows than database fields, and people are
more used to up-and-down scrolling than left-to-right scrolling. If you find yourself wanting to map
database fields to HTML rows, it is a simple inversion exercise.

The simplest case of displaying a table is the one in which the structure of a database table or query
does correspond to the structure of the HTML table we want to display — the database entity has m
columns and n rows, and we’d like to display an m-by-n rectangular grid in the user’s browser win-
dow, with all the cells filled in appropriately.

Example: A single-table displayer

So let’s write a simple translator that queries the database for the contents of a single table and dis-
plays the results onscreen. Here’s the top-down outline of how the code will get the job done:
Establish a database connection.

Construct a query to send to the database.

Send the query and hold on to the result identifier that is returned.

Using the result identifier, find out how many columns (fields) there are in each row.
Start an HTML table.

ook w b=

Loop through the database result rows, printing a <TR></TR> pair to make a correspond-
ing HTML table row.

N

In each row, retrieve the successive fields and display them wrapped in a <TD></TD> pair.
Close off the HTML table.

Close the database connection.

Performing Database Queries

Finally, we’d like to wrap all the preceding steps up into a handy function that we can use whenever
we want to. Also, for reasons of efficiency, we don’t want to include the first and last steps of creating
and closing the database connection in the function — we may want to use such a function more
than once per page, and it wouldn’t make sense to open and close the connection each time. Instead,
we’ll assume that we have a connection already and pass the connection to the function along with
the table name.

Such a function is shown in Listing 16-1, embedded in a complete PHP page that uses the function
to display the contents of a couple of tables.

LISTING 16-1

A table displayer

<?php

include("/home/phpbook/phpbook-vars.inc");

$global_dbh = mysql_connect($hostname, $username, $password);
mysql_select _db($db, $global_dbh);

function display_db_table($tablename, $connection)

{
$query_string = "SELECT * FROM $tablename";
$result_id = mysqgl_query($query_string, $connection);
$column_count = mysql_num_fields($result_id);

print("<TABLE BORDER=1>\n");
while ($row = mysql_fetch_row($result_id))
{
print("<TR ALIGN=LEFT VALIGN=TOP>");
for ($column_num = 0;
$column_num < $column_count;
$column_num++)
print("<TD>$rowl$column_num]</TD>\n");
print("</TR>\n");
}
print("</TABLE>\n");
}
7>

<HTML>

<HEAD>

<TITLE>Cities and countries</TITLE>
</HEAD>

<BODY>

<TABLE><TR><TD>

<{?php display_db_table("country", $global_dbh); 7>
</TD>LTD>

239

Z1id |8 MySQL Database Integration

<{?php display_db_table("city", $global_dbh); ?>
</TD><S/TR>S/TABLE></BODY></HTML>

Some things to notice about this script:

Although the script refers to specific database tables, the display_db_table() function
itself is general. You could put the function definition in an include file and then use it
anywhere on your site.

The first thing the script does is load in an inc1ude file that contains variable assignments
for the database name, database username, and database password. It then uses those vari-
ables to connect to MySQL and then to choose the desired database. (The fact that this file
is located outside the publicly available web hierarchy makes it slightly more secure than
just including that information in your code.)

In the function itself, we chose to use a while loop for printing rows and a for loop to
print the individual items. We could as easily have used a bounded for loop for both and
recovered the number of rows with mysqgl_num_rows ().

The main while loop reflects a very common idiom, which exploits the fact that the value
of a PHP assignment statement is the value assigned. The variable $row is assigned to the
result of the function mysq1_fetch_row(), which will be either an array of values from
that row or a false value if there are no more rows. If we're out of rows, $row is false, which
means that the value of the whole expression is false, which means that the while loop
terminates.

We put line breaks (\n) at the end of selected lines, so that the HTML source would have
a readable structure when printed or viewed as source from the browser. Notice that these
breaks are not HTML line breaks (
) and do not affect the look of the resulting web
page. (In fact, if you want to make it annoying for someone else to scrutinize the HTML
you generate, don't put breaks in at all!)

The sample tables

To see the Listing 16-1 script in action, see Figure 16-1, which shows the displayed contents of the
Country and City sample tables. These tables have the following structure:

Country:

ID int (auto-incremented primary key)
continent varchar(50)
countryname varchar(50)

City:

240

ID int (auto-incremented primary key)
countryID int
cityname varchar(50)

Performing Database Queries

A simple database table display

E ities and countries - Netscape
File Edit View Go Communicator Help

'-J@i*&z&@@@ﬁ%&

Back Foriward Reload Haome Search Metscape Print Security Stop

w ‘»ﬁt" Bookmarks \f‘ Localmn:Ihtlp Hlocalhost/simpletable. php :J @' ‘what's Related
7 & Instant Message Catagories Maps Photo Finder Secure Web Shupl Home.
[1|[t7airobi
EH|Mombasa

|37 H Iulern
i4_E Rio de Janeire
|5—E|Sao Paulo

|T ‘Afnca iKenya |6— E|Sa]vador

E iSouth America iBrazil ’7"_ EiBelo Horizonte'

[[erth AmericalUsa || [& |[3[Chicago

|Z ‘North America ‘Canada |9— E INEW Yotk
Iﬁ B iHouston
113 Miotmi
|1_2 g Montreal
EE|Windsor

(144 Winnipeg,

| == |Document; Done e Kb P B N2 | g

Think of these tables as a rough draft of the database for an eventual online almanac. They employ
our usual convention of always having one field per table called 1D, which is a primary key and has
successive integers assigned to it automatically for each new row. Although you can't tell for sure
from the preceding description, the tables have one “relation” embodied in their structure — the
countryID field of the City table is matched up with the ID field of the Country table, represent-
ing which country the city belongs to. (If you were designing a real almanac database, you would
want to take this one step further and break the Country table into a relational pair of Country and
Continent tables.)

To see how we created these tables and populated them with sample data, see the
“Creating the Sample Tables” section at the end of this chapter.

Improving the displayer

Our first version of this function has some limitations: It works with a single table only, does no
error-checking and is very bare-bones in its presentation. We’ll address these problems one by one
and then fix them in one fell revision. (If you want to look ahead, the new-and-improved version of
the function is in Listing 16-2.)

241

Z1id |8 MySQL Database Integration

LISTING 16-2

J e YU ~% b
IS S

Displaying column headers

Our first version of a database table displayer simply displays all the table cells, without any labeling
of what the different fields are. It’s conventional in HTML to use the <TH> element for column and/
or row headers — in most browsers and styles, this displays as a bold table cell. One improvement
we can make is to optionally display column headers that are based on the names of the table fields
themselves. To actually retrieve those names, we can use the function mysql_field_name().

Error checking

Our original version of the code assumes that we have written it correctly and also that our database
server is up and functioning normally — if either of these is not the case, we will run into puzzling
errors. We can partially address this by appending a call to die() to the actual database queries

— if they fail, an informative message will be printed. This is a reasonable approach for such a small
example, but as projects get larger it is better to use the exception-handling capability introduced
back in PHP5.

= For an introduction to exception handling, see Chapter 30.
=il

Cosmetic issues

Another source of dissatisfaction with our simple table-displayer is that it always has the same look.
It would be nice, at a minimum, to control whether table borders are displayed. The simple solution
we will use in our new function is just to permit passing in a string of arguments that will be spliced
into the HTML table definition. This is a pretty crude form of style control that style sheet propo-
nents would discourage, but it will permit us to directly specify some elements of the table’s look
without writing an entirely new function.

Displaying arbitrary queries

Finally, it would be nice to be able to exploit our relational database and display the results of com-
plex queries rather than just single tables. Actually, our single-table displayer has an arbitrary query
embedded in it — it just happens that it is hardcoded as select * from table, where table is the
supplied table name. So let us transform our simple table displayer into a query displayer and then
recreate the table displayer as a simple wrapper around the query displayer. These two functions,
complete with the cosmetic improvements and better error checking, are shown in Listing 16-2.

A query displayer

<?php
include("/home/phpbook/phpbook-vars.inc");
$global_dbh = mysql_connect($hostname, $username, $password)

242

or die("Could not connect to database");

Performing Database Queries

mysql_select_db($db, $global_dbh)
or die("Could not select database");

function display_db_query($query_string, $connection,
$header_bool, $table_params)

{

// perform the database query
$result_id = mysql_query($query_string, $connection)
or die("display_db_query:" . mysqgl_error());

// find out the number of columns in result
$column_count = mysql_num_fields($result_id)
or die("display_db_query:" . mysqgl_error());

// TABLE form includes optional HTML arguments passed
// into function
print("<TABLE $table_params >\n");

// optionally print a bold header at top of table
if ($header_bool)
{
print("<TR>");
for ($column_num = 0;
$column_num < $column_count;
$column_num++)
{
$field _name =
mysql_field_name($result_id, $column_num);
print("<TH>$field_name</TH>");
}
print("</TR>\n");
}
// print the body of the table
while ($row = mysql_fetch_row($result_id))
{
print("<TR ALIGN=LEFT VALIGN=TOP>");
for ($column_num = 0;
$column_num < $column_count;
$column_num++)
{
print("<TD>$rowl$column_num]</TD>\n");
}
print("</TR>\n");
}
print("</TABLE>\n");
}

function display_db_table($tablename, $connection,
$header_bool, $table_params)

243

Z1id |8 MySQL Database Integration

{
$query_string = "SELECT * FROM $tablename";
display_db_query($query_string, $connection,
$header_bool, $table_params);
}
7>

<HTML><HEAD><KTITLE>Countries and cities</TITLE></HEAD>
<BODY>
<TABLE>KTR><TD>
<?php display_db_table("country", $global_dbh,
TRUE, "BORDER=2"); 7>
</TD><TD>
<?php display_db_table("city", $global_dbh,
TRUE, "BORDER=2"); 7>
</TD></TR></TABLE></BODY></HTML>

The result of using this code on the same database contents is shown in Figure 16-2. The only vis-
ible difference is the column header. Splitting the functions apart means that we also have a new
function in our bag of tricks — we could do the same kind of display with an arbitrary query string
that joins data from different tables.

FIGURE 16-2

Using the query displayer

3 Countries and cities - Netscape
Eile Edit View Go Communicator Help
a2 2 A A . @ S & @
it Back Forsard Reload Home Search Metscape Frirt Security Sitop.
7 ‘@‘" Bookmarks _“ Locahon: |hllp../‘/Iuca\husl.f‘nlcerlab\e.phpl LI @l‘ Wihat's Related
7 ﬁlnstanlMessage Catagories taps Phota Finder Secure Web Shop @ Hame
iB {countryID | cityname
1 Mairobi
N T
|47|2 Rio de Janeiro
|E| continent ||:num:ry'name |57!2 iSao Paulo
|T|A.ﬁ'1ca |Kenya |67i2 ‘Salvador
|27|South Armerica !Brazﬂ !77 |2 ‘Belo Honzonte
[3 [torth Americal[TSA FHE [Chicago
|4_ |North America |Canada |9—|3 iNBW York
m|3 !Houston
[11][z Miami
E|4 Idontreal
[== |Document: Done Sk W a0 a2 | 4

244

Performing Database Queries

Complex Mappings

So far in this chapter, we’ve enjoyed a very nice and simple-minded correspondence between query
resultsets and HTML tables — every row in the resultset corresponds to a row in the table, and

the structure of the code is simply two nested loops. Unfortunately, life isn’t often this simple, and
sometimes the structure of the HTML table we want to display has a complex relationship to the
relational structure of the database tables.

Views and Stored Procedures

Our query displayer assumes a particular division of labor between the PHP code and the database system
itself — the PHP code sends off an arbitrary query string, which the database responds to by setting up a
resultset. In particular, this means that the database system has to parse that query and then figure out the best
way to go about retrieving the results. This is part of what can make querying a database a mildly expensive
operation.

In cases where your code may construct novel queries on the fly, this is the best you can hope for. However,
some databases offer ways to set up queries in advance, which gives the database system a chance to preop-
timize how it handles the query. One such construct is called a view under MS SQL Server and some other
RDBMSs — after you have set up a query as a named view, it can be treated just like a real table. A related
idea is the stored procedure, which is like a view that also accepts runtime arguments that are spliced into the
query. In general, if you realize that you are suffering from slow query performance, you may want to investigate
what similar optimizations your particular RDBMS makes available.

Multiple queries versus complex printing

Let’s say that, rather than displaying our sample City and Country tables individually, we want to
match them up in a tabular display.

We can easily write a SELECT statement that joins these tables appropriately:

SELECT country.continent, country.countryname,
city.cityname

FROM country, city

WHERE city.countryID = country.ID

ORDER BY continent, countryname, cityname

Now, this would be a handy place to use our query-displayer function — all we have to do is send

it the preceding statement as a string, and it will print out a table of cities matched up with their
continents and countries. However, if we do this, we will see an individual HTML table row for each
city, and the continent and country will print each time — for example, we’ll see North America
printed several times. Instead, what if we want one name matched with many titles? This is a case
where the structure of what we print differs from the structure of the most convenient query.

245

Z1id |8 MySQL Database Integration

1f we want to do a more complex mapping, we have a choice: We can throw database queries at the
problem, or we can write more complex display code. Let’s look at each option in turn. (For each of
these examples, we'll be moving away from the reusable generality of the functions we wrote earlier
toward functions that address a particular display problem.)

A multiple-query example

If we want to print just one HTML row per country, we can make a query for the countries and then
make another query for the relevant cities in each trip through a country row. A function written
using this strategy is shown in Listing 16-3.

LISTING 16-3

A display with multiple queries

<?php
include("/home/phpbook/phpbook-vars.inc");
/* open database connection */
$global_dbh = mysql_connect($hostname, $username, $password)
or die("Could not connect to database");
mysql_select_db($db, $global_dbh)
or die("Could not select database");

function display cities($db_connection)
{
/* Displays table of cities and countries */
$country_query = "SELECT id, continent, countryname
FROM country
ORDER BY continent, countryname";
$country_result =
mysql_query($country_query, $db_connection);

/* begin table, print hard-coded table header */

print("<TABLE BORDER=1>\n");

print ("<TR><TH>Continent</TH><TH>Country</TH>
<TH>Cities</TH>/TR>");

/* Toop through countries */
while ($country_row = mysql_fetch_row($country_result))
{
/* set up country info */
$country_id = $country_row[0];
$continent = $country_rowl[1];
$country_name = $country_rowl[2];

print("<TR ALIGN=LEFT VALIGN=TOP>");
print("<TD>$continent</TD>");

246

Performing Database Queries

print("<TD>$country_name</TD>");

/* begin table cell for city Tist */
print("<TD>");
$city_query = "select cityname from city
where countryID = $country_id
order by cityname";
$city_result =
mysql_query($city_query, $db_connection)
OR die(mysql_error());
/* loop through cities */
while ($city_row = mysql_fetch_row($city_result))
{
$city_name = $city_row[0];
print("$city _name
");
}
/* close city cell and country row */
print("</TD></TR>");
1

print("</TABLE>\n");

<HTML>

<HEAD>

KTITLE>Cities by Country</TITLE>

</HEAD>

<BODY>

<?php
display_cities($global_dbh);

</B0ODY>
</HTML>

The strategy is appealingly simple: There is an outer loop that uses one query to proceed through

all the countries, saving the country’s name and the primary 1D field of each country row. Then for
each country, the ID field is used to look up all the cities belonging to that country. Notice the trick
of embedding the $countryid variable in the inner query — the query string sent is actually differ-
ent on each iteration through the country loop.

Simple? Yes. Efficient? Probably not. This code makes a separate city query for each country. If there
are 500 countries in the database, this function will make 501 separate database queries (the extra
one being the enclosing country query).

Your mileage will vary according to how efficient your particular database is in parsing queries and
planning query retrieval, but the sum of these queries will certainly take more time than the simple
query we started this section with.

247

Z1id |8 MySQL Database Integration

A complex printing example

Now let’s solve exactly the same problem, but using a different strategy. Instead of making multiple
queries, we will make a single query and print the resulting rows selectively, so that each HTML
table row corresponds to more than one database row (see Listing 16-4). The resulting browser dis-
play is exactly the same as in the previous example.

LISTING 16-4

A complex display with a single query

<?php
include("/home/phpbook/phpbook-vars.inc");
/* open a single DB connection for this page */
$global_dbh = mysql_connect($hostname, $username, $password)
or die("Could not connect to database");
mysql_select_db($db, $global_dbh)
or die("Could not select database");

function display cities($db_connection)
{

/* print table of countries and their cities,
selectively printing only one HTML table row
per country */

$query = "SELECT country.id,

country.continent, country.countryname,

city.cityname

FROM country, city

WHERE country.id = city.countryID

ORDER BY country.continent,
country.countryname,
city.cityname";

$result_id =

mysql_query($query, $db_connection)
OR die(mysqgl_error($query));

/* begin table, print hard-coded table header */

print("<TABLE BORDER=1>\n");

print("<TH>Continent</TH><TH>Country</TH>
KTH>Cities</TH>X/TR>");

/* Initialize the ID for the "previous" country.
We will rely on the fact that Country.ID is
numbered beginning with 1, so a previous ID
value of zero means that the current country
is the first */

$old_country_id = 0;

248

Performing Database Queries

/* loop through result rows (one per city) */
while ($row_array = mysql_fetch_row($result_id))
{
$country_id = $row_array[0];
/* if we have a new country */
if ($country_id != $old_country_id)
{
/* set up country info */
$continent = $row_array[1];
$country_name = $row_arrayl[2];

/* if there was a previous country

close the city datum and country row */
if ($old_country_id != 0)

print ("</TD></TR>\n");

/* start a row for the new country,
and begin the city table datum */
print("<TR ALIGN=LEFT VALIGN=TOP>");
print("<TD>$continent</TD>");
print("<TD>$country name</TD><TD>");

/* the new country is no longer new */
$old_country_id = $country_id;
}
/* the only thing that is printed for every result
row is the name of a city */
$city_name = $row_array[3];
print("$city_name
");
}
/* close off final country and table */
print("</TD></TR></TABLE>");
}
7>
<HTML><HEAD><TITLE>Cities by Country</TITLE></HEAD>
<BODY>
<?php display_cities($global_dbh);
7>

</BODY></HTML>

This code is somewhat tricky — although it goes through the result rows in order, and everything
it prints is grabbed from the current row, it prints countries only when their values have changed.
(Continents are still printed redundantly.)

The change in a country is detected by monitoring the 1D field of the country row. A country
change is also a signal to print out the HTML necessary to close off the preceding table row and start
anew one. Finally, the code must handle printing the HTML necessary to start the first row and end
the last one.

249

Z1id |8 MySQL Database Integration

Creating the Sample Tables

Now we will show you the PHP/MySQL code we actually used to create the sample tables. (Such
data might more normally be created by interacting only with MySQL, but we decided to respect our
book’s title by doing it from PHP.) The code (shown in Listing 16-5) is a special-purpose, one-time
hack, not a model of style, but it has useful examples of using the SQL INSERT statement.

LISTING 16-5

Creating the sample tables

<?php
include("/home/phpbook/phpbook-vars.inc");
$global_dbh = mysql_connect($hostname, $username, $password)
or die("Could not connect to database");
mysql_select_db($db, $global_dbh)
or die ("Could not select databased");

function add_new_country($dbh, $continent, $countryname,
$city_array)

{
$country_query =
"INSERT INTO country (continent, countryname)
VALUES ('$continent', '$countryname')";
$result_id = mysql_query($country_query)
OR die($country_query . mysql_error());
if ($result_id)
{
$countryID = mysql_insert_id($dbh);
for ($city = current($city_array);
$city;
$city = next($city_array))

$city_query =
"INSERT INTO city (countryID, cityname)
VALUES ($countryID, '$city')";
mysql_query($city_query, $dbh)
OR die($city_query . mysqgl_error());

}

function populate_cities_db($dbh)

{
/* drop tables if they exist—permits function to be
tried more than once */

250

Performing Database Queries

mysql_query("DROP TABLE city", $dbh);
mysql_query("DROP TABLE country", $dbh);

/* create the tables */
mysql_query("CREATE TABLE country
(ID int not null auto_increment primary key,
continent varchar(50),
countryname varchar(50))",
$dbh)
OR die(mysql_error());
mysql_query("create table city
(ID int not null auto_increment primary key,
countryID int not null,
cityname varchar(50))",
$dbh)
OR die(mysqgl_error());

/* store data in the tables */
add_new_country($dbh, 'Africa', 'Kenya',
array('Nairobi', '"Mombasa', 'Meru'));

add_new_country($dbh, 'South America', 'Brazil',
array('Rio de Janeiro', 'Sao Paulo',
'Salvador', 'Belo Horizonte'));
add_new_country($dbh, 'North America', 'USA",
array('Chicago', 'New York', 'Houston', 'Miami'));
add_new_country($dbh, 'North America', 'Canada',

array('Montreal', 'Windsor', 'Winnipeg'));

print("Sample database created
");
}

7>

CHTML><HEAD><TITLE>Creating a sample database</TITLE></HEAD>
<BODY>

<?php populate_cities_db($global_dbh); 7>

</BODY></HTML>

You should be able to use this code to recreate the sample database on your development machine,
assuming that you have PHP and MySQL configured, and an appropriately located file called php-
book-vars.inc containing username, password, and database-name strings.

Just as in the display examples, this code sends off query strings (with embedded variables), but this
time the queries are INSERT statements, which create new table rows. For the most part, the data
inserted is just string data passed in to the function, although we chose to pass in an arbitrary num-
ber of cities per country by using an array.

The only tricky thing in creating these sample tables is setting up the relational structure. We want
each city row to have an appropriate countryID, which should be equal to the actual ID of the
appropriate row from the country table. However, these countryIDs are automatically assigned

251

Z1id |8 MySQL Database Integration

252

in sequence by MySQL and are not under our control. How can we know the right countryID to
assign? The answer is in the incredibly handy function mysql_insert_id (), which recovers the
ID associated with the last INSERT query made via the given database connection. We insert the
new country, recover the ID of the newly created row, and then use that ID in our city insertion
queries.

Summary

Database interaction is one of the areas where PHP really shines. One very common use for data-
base-enabled web code is simply to display database contents attractively. One approach to this kind
of display is to map the contents of database tables, or SELECT statements, to corresponding HTML
table elements.

When the mapping is simple enough, you can employ reusable functions that take arbitrary table
names, or SELECT statements, and display them as a grid. When you need a more complicated
combination of information from relational tables, you probably need a special-purpose function,
but certain tricks recur there as well. One such trick is to craft a SQL statement that returns all the
information you need, in the order you want, and selectively print only the nonredundant portions.

Near the end of this chapter, you saw a quick example of populating a set of database tables using
INSERT statements. Aside from that, all the techniques in this chapter were read-only and do not
modify the contents of databases at all. In Chapter 17, you’ll see how you can get a more intimate
connection to your database by combining SQL queries with HTML forms.

orm handling is one of PHP’s very best features. The combination

of HTML to construct a data-input form, PHP to handle the data,

and a database server to store the data lies at the heart of all kinds of
supremely useful web tasks.

HTML Forms

You already know most of what you need to make good forms to be handled
by PHP and a database. There are a few PHP-specific points to brush up on:

You must use extra caution when using any data that comes from

a visitor’s web browser. It may seem like common sense, but there
are still too many PHP programs that don’t escape incoming data

from a web form or from a web browser (or anywhere). Never use

unfiltered data in a database query.

Always, always, always use a NAME for every data entry element
(INPUT, SELECT, TEXTAREA, and so on). These NAME attributes
will become PHP variable names — you will not be able to access
your values if you do not use a NAME attribute for each one. If
your WYSIWYG editor doesn’t allow you to do this, you'll need to
remember to add these NAME attributes by hand.

A form field NAME does not need to be the same as the correspond-
ing database field name.

The VALUE can be set to data you wish to display in the form.

Remember that you can pass hidden variables from form to form
(or page), using the HIDDEN data entry elements. This practice has

253

IN THIS CHAPTER

Understanding HTML forms

Submitting data via forms

Self-submitting forms

Editing data with an HTML form

Z1iel |8 MySQL Database Integration

negative security implications, so don't use it to store sensitive data and always validate the
data you receive in a HIDDEN element; never trust it to be what you expect.

= See Chapter 6 for more information on how to format an HTML form for use with PHP.

T
CROSS:REE

Basic Form Submission to a Database

Submitting data to a database via an HTML form is straightforward if the form and form handler
are two separate pages. Listing 17-1, newsletter_signup.html, is a simple form with only one
input field.

LISTING 17-1

A simple form (newsletter_signup.html)

<HTML>

<HEAD>

(STYLE TYPE="text/css">

<h--

BODY, P {color: black; font-family: verdana;

font-size: 10 pt}

H1 {color: black; font-family: arial; font-size: 12 pt}
-->

</STYLE>

</HEAD>

<BODY>

<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>

<TR>

<TD BGCOLOR="4#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=17%>
</TD>

<TD BGCOLOR="4#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>NewsTetter sign-up form</H1>

<{P>Enter your email address and we will send you our
weekly newsletter.</P>

<FORM METHOD="post" ACTION="formhandler.php">

<INPUT TYPE="text" SIZE=25 NAME="email">

<INPUT TYPE="submit" NAME="submit" VALUE="Submit">
</FORM>

</TD>

</TR>

</TABLE>

</BODY>
</HTML>

254

Integrating Web Forms and Databases

Figure 17-1 shows the result of the preceding code sample, a basic form to insert data into a database.

FIGURE 17-1

A form to insert data into a database

Mozilla {Build ID: 2002051006} I [=] 3
. FEile Edit VWiew Go Bookmarks Tools Window Help Debug QA

| Q Q @ Q J% hltp:fflucaIhusl}newslet‘ler_sigm-,_-I [__@}.SEHTI:I'I_']“. Cge |
[(Untitled) |5 (Untitled) | X

Newsletter sign-up form

1 Erter your email address and we will send you our weekly
H newsletter,

I
Subimit

Document: Done {0.55 secs) ==

You enter the data in the database and acknowledge receipt in the form handler in Listing 17-2,
which (with great originality) we are calling formhandler.php.

LISTING 17-2

Form handler for newsletter_signup.html (formhandler.php)

<HTML>

<HEAD>

(STYLE TYPE="text/css">

<l--

BODY, P {color: black; font-family: verdana;

font-size: 10 pt}

H1 {color: black; font-family: arial; font-size: 12 pt}
-->

</STYLE>

</HEAD>

<BODY>

<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>

<TR>

<TD BGCOLOR="#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=17%>
</TD>

<TD BGCOLOR="#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>NewsTletter sign-up form</H1>

255

Z1iel |8 MySQL Database Integration

<?php

if (1$_POST['email"] || $_POST['email'] == ""
strien(isset($_POST['email']) && $_POST['email'] > 30) {
echo '"<P>Is your e-mail address really that long?</P>';

} else {
// Open connection to the database
mysql_connect("Tocalhost", "phpuser", "sesame")

or die("Failure to communicate with database");
mysql_select_db("test");

// Insert email address
$as_email = mysql_real_escape_string($_POST['email']);
$tr_email = trim($as_email);
$query = "INSERT INTO mailinglist (ID, Email, Source)
VALUES(NULL, '$tr_email",
"www.example.com/newsletter_signup.html')
$result = mysql_query($query);
if (mysql_affected_rows() == 1) {
echo "<P>Your information has been recorded.</P>";
} else {
error_log(mysql_error());
echo '"<P>Something went wrong with your signup
attempt.</P>";
}
}
?>
</TD>
</TR>
</TABLE>
</BODY>
</HTML>

Having a separate form and form handler is a very clean design that can potentially be easier to
maintain. However, there are quite a few things that you might want to do that you can’t do easily
with this model, caused by the difficulty of going back to the form from the form handler and the
fact that variables are not available to both at the same time.

For one thing, if something goes wrong with the submission, it’s very difficult to redisplay the form
with the values you just filled in. This is particularly important with something like a user registra-
tion form, where you might want to check for unique e-mail addresses or matching passwords and
reject the entire registration with an error message if it doesn't pass the tests. People are going to be
very annoyed if one little typo causes them to lose all the data that they just filled in — and after one
or two go-rounds, they will simply stop trying to register.

The first step to solving all these problems is to combine form and handler into one self-submitting
PHP script.

256

Integrating Web Forms and Databases

Self-Submission

Self-submission refers to the process of combining one or more forms and form handlers in a single
script, using the HTML FORM standard to submit data to the script one or more times.

Another situation in which self-submission is a win occurs when you need to submit the same form
more than once. Say that you are applying for auto insurance online, and you need to give the par-
ticulars of three or four different cars. It’s extra work for the user to submit the form, get a success
message, and then have to click a button to go back to the form for car #2. This kind of navigation
problem has no perfect solution, but in situations where there’s a high probability of multiple sub-
missions, self-submission causes fewer clickthroughs for your web users.

Finally, the separate form and form handler make it difficult to pull data from the database, edit it,
and submit it — repeating the process however many times it takes for the user to be satisfied. A
common example of this usage is a form to allow users to change their personal information, such as
photos and bios, which people often like to fiddle with until they look exactly the way that the users
want. If you want to make five small incremental edits to your user profile, you aren’t going to want
to go back and forth between the form and form handler 10 times.

Self-submission is accomplished by the simplest of means: specifying the same script name as the
ACTION target in the FORM element, like this:

<FORM METHOD="POST" ACTION="myself.php">

The single most important thing to remember about self-submitting forms is: The logic comes before
the display. If you're used to writing separate forms and handlers, this may seem a little counterin-
tuitive at first — but think of it this way: Because your form will look different or display variables
based on interactions with the database, obviously these interactions must happen before the HTML
for the page is output to the browser. After you construct a few self-submitting forms, logic-before-
display will seem totally natural and painless.

To use self-submission with controls, you will need to employ a more programmatic PHP-

- writing style — what we term the maximum or medium style. Beginners may find this
somewhat more difficult than a clear division between the functions of HTML (form display) and PHP
(form handling). This can be mitigated somewhat by using the heredoc syntax, as we do in many of our
examples.

If you're a think-ahead type, by now youre wondering: “But if the logic comes before the display,
won't my script try to do the database operations before showing me the HTML form in the first
place?” Good question — and an indication that we need some way to tell the script either “We want
to see the form now” or “We want to insert data into the database now.” This “What am I supposed
to be doing now?” bit is called a stage variable. It lets you keep track of how many times the form has
submitted values to itself and, therefore, which stage of a multistep process you have reached.

The cheapest stage variable to test for is the Submit button. You can name your Submit button and
give it a value, which will be set as a PHP value only after the form is submitted at least once. The
easiest way to demonstrate what we're talking about is by rewriting the previous form and form han-
dler as one self-submitting form, as we do in Listing 17-3.

257

Z1iel |8 MySQL Database Integration

Unified form and form handler (newsletter_signup.php)
<?php
if (isset($_POSTL'submit']) && $_POST['submit'] == "Submit') {

if (lisset($_POST['email']) || $_POST['email'] == "" ||
strlen($_POST['email'] > 30)) {

$message = '<P>There is a problem. Did you enter an email
address?</P>";
} else {
// Open connection to the database
mysql_connect("localhost", "phpuser", "sesame")

or die("Failure to communicate with database");
mysql_select_db("test");

// Insert email address

$as_email = mysql_real_escape_string($_POST['email']);

$tr_email = trim($as_email);

$query = "INSERT INTO mailinglist (ID, Email, Source)
VALUES(NULL, '$tr_email’,
"www.example.com/newsletter_signup.html")

$result = mysql_query($query);

if (mysql_affected_rows() == 1) {

$message = '<P>Your information has been recorded.</P>";

$noform_var = 1;

} else {
error_log(mysql_error());
$message = '<P>Something went wrong with your signup

attempt.</P>";
}
}

// Show the form in every case except successful submission
if (lisset($noform_var)) {
$thisfile = "newsletter_signup.php";
$message .= <<< EOMSG
<P>Enter your email address and we will send you our weekly
newsletter.</P>
<FORM METHOD="post" ACTION="$thisfile">
<INPUT TYPE="text" SIZE=25 NAME="email">

<INPUT TYPE="submit" NAME="submit" VALUE="Submit">
</FORM>

258

Integrating Web Forms and Databases

<HTML>

<HEAD>

(STYLE TYPE="text/css">

<=

BODY, P {color: black; font-family: verdana;

font-size: 10 pt}

H1 {color: black; font-family: arial; font-size: 12 pt}
-

</STYLE>

</HEAD>

<BODY>

<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>

<TR>

<TD BGCOLOR="#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=17%>
</TD>

<TD BGCOLOR="4#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>NewsTletter sign-up form</H1>

<?php echo $message; ?>

</TD>

</TR>

</TABLE>

</BODY>
</HTML>

The first time you load up this page, you should see a normal HTML form exactly like the one in
Figure 17-1. If you submit it without any data or with a string that's too long (often a sign of a crack-
ing attempt), you'll see an error message and the form again. If something goes wrong with the
database INSERT, you'll see an error message and the form again. Only if the INSERT completes suc-
cessfully will you not see the form again — which is the navigation we want because we don’t want
people to sign up for the newsletter more than once.

In the preceding example, we need to check only for two states of the form (unsubmitted or submit-
ted), so we can use the Submit button as our stage variable. But what if you want to check for more
than one state? You need a variable that is capable of taking more than one value. You could either
give your Submit button different values, which would show up as different labels in the button
itself, or you could set a hidden variable that is capable of taking more than one value, depending on
the state. We demonstrate the technique in Listing 17-4, which collects some information and then
allows you to rate your boss anonymously.

259

Z1iel |8 MySQL Database Integration

A three-part form (rate_boss.php)
<?php

// First set the form strings, which will be displayed
//in various cases below
$thisfile = "rate_boss.php"; //Have to set this for heredoc

$reg_form = <<< EOREGFORM

<P>We must ask for your name and email address to ensure that no
one votes more than once, but we do not associate your personal
information with your rating.</P>

<FORM METHOD="post" ACTION="$thisfile">

Name: <INPUT TYPE="text" SIZE=25 NAME="name">

Email: <INPUT TYPE="text" SIZE=25 NAME="email">

<INPUT TYPE="hidden" NAME="stage" VALUE="register">

<INPUT TYPE="submit" NAME="submit" VALUE="Submit">

</FORM>

EOREGFORM;

$rate_form = <<< EORATEFORM

<P>My boss is:</P>

<FORM METHOD="post" ACTION="$thisfile">

<INPUT TYPE="radio" NAME="rating" VALUE=1>

Driving me to look for a new job.

<INPUT TYPE="radio" NAME="rating" VALUE=2>

Not the worst, but pretty bad.

<INPUT TYPE="radio" NAME="rating" VALUE=3>

Just so-so0.

<INPUT TYPE="radio" NAME="rating" VALUE=4>

Pretty good.

<INPUT TYPE="radio" NAME="rating" VALUE=5>

A pleasure to work with.

Boss's name: <INPUT TYPE="text" SIZE=25 NAME="boss">

<INPUT TYPE="hidden" NAME="stage" VALUE="rate">

<INPUT TYPE="submit" NAME="submit" VALUE="Submit">
</FORM>

EORATEFORM;

if (lisset($_POSTL['submit'])) {

// First time, just show the registration form
$message = $reg_form;

260

Integrating Web Forms and Databases

} elseif (isset($_POST['submit']) && $_POST['submit'] == 'Submit' && $_
POST['stage'] ==
'register') {

// Second time, show the registration form again on error,

// rating form on successful INSERT

if (lisset($_POST['name']) || $_POST['name'] == "" ||

strlen($_POSTL'name'] > 30) || !$_POST['email'] ||
$_POST['email'] == "" || strlen($_POST['email'] > 30)) {

$message = '<P>There is a problem. Did you enter a name and
email address?</P>";

$message .= $reg_form;

} else {
// QOpen connection to the database
mysql_connect("localhost", "phpuser", "sesame")

or die("Failure to communicate with database");
mysql_select_db("test");

// Check to see this name and email have not appeared before
$as_name = mysql_real_escape_string($_POST['name']);
$tr_name = trim($as_name);
$as_email = mysql_real_escape_string($_POST['email']);
$tr_email = trim($as_email);
$query = "SELECT sub_id FROM raters

WHERE Name = '"$tr_name'’

AND Email = "$tr_email’

$result = mysql_query($query);
if (mysgl_num_rows($result) > 0) {
error_log(mysqgl_error());

$message = 'Someone with this name and password has
already rated . If you think a mistake was made, please email
help@example.com.";
} else {

// Insert name and email address
$query = "INSERT INTO raters (ID, Name, Email)
VALUES(NULL, '$tr_name', '$tr_email')
$result = mysql_query($query);
if (mysql_affected_rows() == 1) {
$message = $rate_form;

} else {
error_log(mysql_error());
$message = '<P>Something went wrong with your signup
attempt.</P>";
$message .= $reg_form;

}
}

261

170 |l MySQL Database Integration

} elseif (isset($_POST['submit']) && $_POST['submit'] == 'Submit' && $_
POST['stage'] ==
‘rate') {

// Third time, store the rating and boss's name

// Open connection to the database

mysql_connect("Tocalhost", "phpuser", "sesame")
or die("Failure to communicate with database");

mysql_select_db("test");

// Insert rating and boss's name

$as_boss = mysql_real_escape_string($_POST['boss']);

$tr_boss = trim($as_boss);

$rating = mysql_real_escape_string($_POST['rating']);

$query = "INSERT INTO ratings (ID, Rating, Boss)
VALUES(NULL, '$rating', '$tr_boss')

$result = mysql_query($query);

if (mysql_affected _rows() == 1) {
$message = '<P>Your rating has been submitted.</P>";
} else {
error_log(mysal_error());
$message = '<P>Something went wrong with your rating
attempt. Try again.</P>";
$message .= $rate_form;
1
}
?>
<HTML>
<HEAD>
(STYLE TYPE="text/css">
==
BODY, P {color: black; font-family: verdana;
font-size: 10 pt}
H1 {color: black; font-family: arial; font-size: 12 pt}
>
</STYLE>
</HEAD>
<BODY>
<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>
<TR>
<TD BGCOLOR="4#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=17%>
</TD>

<TD BGCOLOR="4#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Rate your boss anonymously</H1>
<?php echo $message; 7>

262

Integrating Web Forms and Databases

</TD>
</TR>
</TABLE>

</B0ODY>
</HTML>

Figure 17-2 shows the rating form after an error has occurred.

FIGURE 17-2

A multiple self-submitting form

Mozilla {Build ID: 2002051006} s E3
. FEile Edit View Go Bookmarks Tools Window Help Debug QA

i @-Q @ @ @]% http:/localhost/rate_boss.php £ :| [gs;ar_ﬂ!':]_ g@ |
[My Yahoo! for truitejeunefille | % (Untitled) %]
-

Rate your boss anonymously

Something went wrong with your rating attempt, Try again,
My boss is:

” ¢ Driving me to look for a new job.
© Mot the worst, but pretty bad.

¢ Just so-so.

C Pretty good.

4 pleasure to work with.

Boss's name: |

Subrnit |

‘Document: Done (0.71 secs) Fa e

Some of you might be thinking, “Hey, wait! You said logic always comes before display — but then
you started this script with a bunch of HTML.” Very observant — but not quite right. Look closely,
and you will realize that we are merely setting a bunch of text to a couple of variable strings ($reg_
formand $rate_form). In the entire PHP section, we actually don’t display anything. We merely
construct a string, $message, which will be plugged in to the HTML at the bottom. If we took away
the HTML, you would see a blank page in the browser. So it’s okay to assemble the text you're going
to want to display in the logic part; just don’t echo it out to the browser until the end.

Another issue with self-submitted forms is navigation. With the traditional HTML form, navigation
is strictly one-way: form to handler to whatever navigational device (if any) the designer decrees.

263

170 |l MySQL Database Integration

264

Self-submitted forms need not conform to this rule, however. In each individual instance, you need
to decide:

B Whether the form can be resubmitted multiple times by the user, in whole or in part

B Whether the user decides when to move on by clicking a link or the form moves users
along automatically

B Whether you need to pass variables on to the next page, hidden or in plain view

m Whether you want to control where the user can go next or if you want to give users mul-
tiple choices

The answers to these questions will determine whether you need a control, another form, a simple
link or button, or multiple links.

Whatever you decide about navigation, remember to provide plenty of text that clearly

. explains what’s going to happen at every step. Because PHP gives you so much flexibil-
ity with forms, new users’ default expectations may be crossed up, and they could end up uncertain
whether they accomplished their mission with your form.

Editing Data with an HTML Form

PHP is brilliant at putting variables into a database, but it really shines when taking data from a
database, displaying it in a form to be edited, and then putting it back in the database. Its HTML-
embeddedness, easy variable passing, and slick database connectivity are at their best in this kind
of job. These techniques are extremely useful, because you will find a million occasions to edit data
you're storing in a database.

Let’s look at the specific kinds of HTML FORM data elements and how they are handled.

TEXT and TEXTAREA

TEXT and TEXTAREA are the most straightforward types because they enjoy an unambiguous one-
to-one relationship between identifier and content. In other words, there is only one possible VALUE
per NAME. You just pull the data field from the database and display it in the form by referencing the
appropriate array value, as shown in Figure 17-3.

Listing 17-5, comment_edit.php, takes a comment out of the database and allows you to edit it.

You may need to use the stripslashes function when displaying TEXTAREA and TEXT
. : if there’s any chance the values might have single quotation marks or apostrophes. Watch
out for people with apostrophe’d names like O’Malley or D’Nesh!

Integrating Web Forms and Databases

FIGURE 17-3

Displaying text for editing

Mozilla {Build ID: 2002051006} =] E3
. File Edit View Go Bookmarks Tools Window Help Debug QA

i @0 Q @ @ l% hnp:ﬁlncaIhnsﬂmmment_edit.pﬁ-|m[g.5_'eu£l:h']. Q_sgc ,

Comment edit

Your comment has been updated,

IRe: rnail) not setting From: header correctly

This is probably a sendmail problem. Have you tried
isetting the fifth argument by hand?

I am setting the From: address in the mail header
by setting it in the first and fourth arguments to
mail () as it says in the PHP manual. But it's
still not working for me. Does anyone know why?
Thanks in advance,

T

John . Tehdew

Submit |

Document: Done (.83 secs) =

LISTING 17-5

Editing data from database (comment_edit.php)

<?php

// Open connection to the database
mysqgl_connect("localhost", "phpuser", "sesame")
or die("Failure to communicate with database");
mysql_select_db("test");

if (isset($_POST['submit'] && $_POST['submit'] == "Submit') {
// Format the data
$comment_id = mysql_real_escape_string($_POST['comment_id'1);
$comment_header = mysql_real_escape_string($_POST['comment_header']);
$as_comment_header = mysql_real_escape_string($comment_header);
$comment = mysql_real_escape_string($_POST['comment']);
$as_comment = mysql_real_escape_string($_POST['comment']);

// Update values

265

170 |l MySQL Database Integration

$query = "UPDATE comments
SET comment_header = '$as_comment_header"',
comment = '$as_comment'
WHERE ID = $comment_id";

$result = mysql_query($query);

if (mysql_affected_rows() == 1) {
$success_msg = '<P>Your comment has been updated.</P>';
} else {
error_log(mysal_error());
$success_msg = '<P>Something went wrong.</P>";
}
} else {

// Get the comment header and comment
$comment_id = mysql_real_escape_string($_GET['comment_id']);
$query = "SELECT comment_header, comment
FROM comments
WHERE ID = $comment_id";
$result = mysql_query($query);
$comment_arr = mysql_fetch_array($result);
$comment_header = stripslashes($comment_arr[0]);
$comment = stripslashes($comment_arr[1]);

$thispage = "comment_edit.php"; //Have to do this for heredoc

$form_page = <<< EOFORMPAGE
{STYLE TYPE="text/css">

<r--

BODY, P {color: black; font-family: verdana;
font-size: 10 pt}

H1 {color: black; font-family: arial; font-size: 12 pt}
-=>

</STYLE>

</HEAD>

<BODY>

<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>

<TR>

<TD BGCOLOR="#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=17%>
</TD>

<TD BGCOLOR="#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<HI1>Comment edit</H1>

$success_msg

<FORM METHOD="post" ACTION="$thispage">

<INPUT TYPE="text" SIZE="40" NAME="comment_header"
VALUE="$comment_header">

266

Integrating Web Forms and Databases

{TEXTAREA NAME="comment" ROWS=10 COLS=50>$comment</TEXTAREA>

<INPUT TYPE="hidden" NAME="comment_id" VALUE="$comment_id">
CINPUT TYPE="submit" NAME="submit" VALUE="Submit">

</FORM>

</TD>S/TR>/TABLE>
</BODY>

</HTML>
EOFORMPAGE;

echo $form_page;
7>

Remember that in an HTML form integers and doubles must use the TEXT or TEXTAREA
type, as there is no specifically numeric HTML form field type.

CHECKBOX

The CHECKBOX type has only one possible value per input: off (unchecked) or on (checked). The
database field that records this information is almost always going to be a small integer or bit type
with values 0 and 1 corresponding to unchecked or checked check boxes. Figure 17-4 shows a com-
mon type of check box being edited.

Listing 17-6 demonstrates how to use a check box to display and change a Boolean value.

FIGURE 17-4

A prepopulated check box

Semi-sleazy opt-in form - Mozilla {Build ID: 2002051006}

. File Edit View Go Book ks Tools Wind Help Debug QA

i @O Q @ @ .l% http://localhost/edit_chkbx.php ’.'.I_[{?l‘.-s'_euri:h'_] égﬂ.

Your preference has been updated.

Eimail address: |devnu||@examp\e.com

|Please send me lots of e-mail
| bulletins!

opt o by clitking this tiny checkbox |7

Subrmit

I[)ucument: Done {0.72 secs) = =

267

Z1iel |8 MySQL Database Integration

Check box displaying boolean data from database (optout.php)
<?php

// Open connection to the database
mysql_connect("lTocalhost", "phpuser", "sesame")
or die("Failure to communicate with database");
mysql_select_db("test");

// 1f the form has been submitted, record the preference and
// redisplay
if (isset($_POST['submit'] && $_POST['submit'] == "Submit') {
$email = $ _POST['email'];
$as_email = mysql_real_escape_string($_POST['email']);
if (isSet($_POSTL'OptOut'] && $_POST['OptOut'] == 1) {

$optout = 1;
} else {
$optout = 0;

}

// Update value
$query = "UPDATE checkbox
SET BoxValue = $optout
WHERE BoxName = 'OptOut’
AND email = '$as_email'";
$result = mysql_query($query);
if (mysqgl_error() == "") {
$success_msg = '<P>Your preference has been updated.</P>";
} else {
error_log(mysqgl_error());
$success_msg = '<P>Something went wrong.</P>";
}
// Get the value
$query = "SELECT BoxValue FROM checkbox
WHERE BoxName = 'OptOut' AND email = '$as_email'";
$result = mysql_query($query);
$optout = mysqgl_result($result, 0, 0);

if ($optout == 0) {

$checked = "";
} elseif ($optout == 1) {
$checked = 'CHECKED';
}
}

// Now display the page
$thispage = "optout.php"; //Have to do this for heredoc

268

Integrating Web Forms and Databases

$form_page = <<< EOFORMPAGE

<HTML>

<HEAD>

KTITLE>Semi-sleazy opt-in form</TITLE>
</HEAD>

<BODY>

$success_msg

<FORM METHOD=POST ACTION="$thispage">

Email address:

<INPUT TYPE="text" NAME="email" SIZE=25 VALUE="$email">

Please send me Tots of e-mail bulletins!

0pt out by clicking this tiny checkbox
<INPUT TYPE="checkbox" NAME="0ptOut" VALUE=1 $checked>

<INPUT TYPE="submit" NAME="submit" VALUE="Submit">

</FORM>

</BODY>

</HTML>
EOFORMPAGE;

echo $form_page;

7>

Although each check box is capable of expressing only a fixed chunk of data, check boxes are often used
in bunches to convey more complex aggregate meanings. Look at the check box grouping in Figure 17-5.

RADIO

RADIO data elements allow for a one-to-many relationship between identifier and value. In other
words, they have multiple possible values, but only one can be predisplayed or selected. They are
best for small sets of options, generally between two and ten, which need more than a word or two
of text to identify themselves.

Unfortunately, it’s somewhat more difficult to represent stored data in a radio button than in a check
box or text field. This is because there is only one possible value for text ora textarea and only
two possible values for a check box — but radio buttons can have more than two possible values.
Therefore, you will have to output part of the actual form with PHP. This looks a little bit less neat
than the styles we employed previously, so you have to go to a little more trouble to have an eas-

ily readable script. Again, the user interface experience allowed by radio buttons is worth the extra
trouble it gives to the web developer.

In the example in Figure 17-6 and accompanying code, we are assembling a series of radio buttons
that display preference data from the database.

269

m MySQL Database Integration

FIGURE 17-5

A cluster of check boxes

Mozilla {Build ID: 2002051006}
. File Edit View Go Bookmarks Tools Window Help Debug OA

o

[_[Ofx

O@ @ Q].% hitp://localhost/mult_chkbx.php .!.‘[@\Search l g@

Dating service

I am looking for a man who is:

F Tall

™ Dark

F Handsome
P wWitty

[« & great programmer

Submit

Document; Done (0.44 secs) == |
FIGURE 17-6
Prepopulated radio buttons
Mozilla {Bulld ID: 2002051006} I [E3

. Eile Edit View Go Bookmarks Tools Window Help Debug OA

m G O @ Q l.% http://localhost/radio.php .!.!@gSearchJ“ ‘igo

Dating service

T am looking for a girl who is:

Short

Average height
Tall

Doesn't matter

Blonde
Brunette
Redhead
Doesn't matter

NDEHTF DOED

High school graduate
College graduate
Advanced degree holder
Doesn't matter

Submit

O Lo in !

-
=

Document: Done (0.66 secs)

270

Integrating Web Forms and Databases

Listing 17-7 shows the code for Figure 17-6, which shows how to edit forms with radio buttons.

LISTING 17-7

Radio buttons displaying boolean data from database (date_prefs.php)

<?php

// Subscriber ID is stored in a cookie on the user's browser
if (isset($_COOKIE['userID'])) {

$sub_id = mysql_real_escape_string($_COOKIE["userID']);
1

if (lisset($sub_id)) {
die("Cookie Not Found.");
1

// QOpen connection to the database
mysqgl_connect("localhost", "mysqgluser", "sesame")
or die("Failure to communicate with database");
mysql_select_db("test");

// 1f the form has been submitted, record the preferences

if (isset($_POST['submit'] && $_POST['submit'] == 'Submit') {
$height = mysql_real_escape_string($_POST['height'1);
$haircolor = mysql_real_escape_string($_POST['haircolor']l);
$edu = mysql_real_escape_string($_POST['edu']l);

// Update value
$query = "UPDATE qualities
SET height = $height, haircolor = $haircolor,
edu = $edu
WHERE subscriber = $sub_id";
$result = mysqgl_query($query);
if (mysql_affected_rows() == 1) {

$success_msg = '<P>Your preferences have been updated.</P>";
} else {

error_log(mysql_error());

$success_msg = '<P>Something went wrong.</P>"';

}
}

// Get the values

$query = "SELECT height, haircolor, edu FROM qualities
WHERE subscriber = $sub_id";

$result = mysql_query($query);

$pref_arr = mysql_fetch_array($result);

$height = $pref_arr[0];

271

170 |l MySQL Database Integration

$haircolor = $pref_arr[1];
$edu = $pref_arr(2];

// Assemble the radio button part of the form

if ($height == 1) {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"height\" VALUE=1
checked> Short
\n";
} else {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"height\" VALUE=1> Short
\n";
}
if ($height == 2) {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"height\" VALUE=2
checked> Average height
\n";
} else {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"height\" VALUE=2>

Average height
\n";
}
if ($height == 3) {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"height\" VALUE=3
checked> Tall
\n";
} else {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"height\" VALUE=3>
Tall
\n";
}
if ($height == 0) {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"height\" VALUE=0
checked> Doesn't matter

\n";
} else {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"height\" VALUE=0>

Doesn't matter

\n";
}

if ($haircolor == 1) {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"haircolor\" VALUE=1
checked> Blonde
\n";
} else {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"haircolor\" VALUE=1>
Blonde
\n";
}
if ($haircolor == 2) {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"haircolor\" VALUE=2
checked> Brunette
\n";
} else {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"haircolor\" VALUE=2>
Brunette
\n";

}
if ($haircolor == 3) {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"haircolor\" VALUE=3
checked> Redhead
\n";
} else {

272

Integrating Web Forms and Databases

$radio_str .= "J<INPUT TYPE=RADIO NAME=\"haircolor\" VALUE=3>
Redhead
\n";
t
if ($haircolor == 0) {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"haircolor\" VALUE=0
checked> Doesn't matter

\n";
} else {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"haircolor\" VALUE=0>

Doesn't matter

\n";
}

if ($edu == 1) {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"edu\" VALUE=1 checked>
High school graduate
\n";
} else {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"edu\" VALUE=1> High

school graduate
\n";
}
if ($edu == 2) {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"edu\" VALUE=2 checked>
College graduate
\n";
} else {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"edu\" VALUE=2> College
graduate
\n";
}
if ($edu == 3) {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"edu\" VALUE=3 checked>
Advanced degree holder
\n";
} else {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"edu\" VALUE=3>
Advanced degree holder
\n";
1
if ($edu == 0) {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"edu\" VALUE=0 checked>
Doesn't matter

\n";
} else {

$radio_str .= "<INPUT TYPE=RADIO NAME=\"edu\" VALUE=0> Doesn't
matter

\n";

}

// Now display the page
$thispage = "date_prefs.php"; //Have to do this for heredoc

$form_page = <<< EOFORMPAGE

<HTML>

<HEAD>

(STYLE TYPE="text/css">

<h--

BODY, P {color: black; font-family: verdana;

273

Part Il

MySQL Database Integration

font-size: 10 pt}

H1 {color: black; font-family: arial; font-size: 12 pt}
-

</STYLE>

</HEAD>

<BODY>

<TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>

<TR>

<TD BGCOLOR="4#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=17%>
</TD>

<TD BGCOLOR="#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Dating service</H1>

$success_msg

<P>I

am looking for a girl who is:</P>

<FORM METHOD=POST ACTION="$thispage">

$radio_str

<INPUT TYPE=SUBMIT NAME="submit" VALUE="Submit">
</FORM>

</TD>

</TR>
</TABLE>
</BODY>
</HTML>
EOFORMPAGE ;

echo

7>

274

$form_page;

SELECT

The SELECT field type is perhaps the most interesting of all. It can handle the largest number of
options, and it also allows the user to select multiple options that can be passed back to the database
using arrays.

See Chapter 39 for ideas about using JavaScript to make even more interesting SELECT
forms.

In Figure 17-7, we are using the SELECT form element with multiple options. In PHP, this is done by
creating an array of the multiple selected option values to pass to the form handler. You set up the
array in the HTML form by declaring the MULTIPLE attribute of the SELECT element and by naming
the SELECT element something like $val[] — in other words, appending a set of square brackets to
the variable name. This will indicate to PHP that it’s dealing with an array rather than a single vari-
able, and it will construct the array appropriately with the multiple selected values. When the array
gets to the form handler, you will need to deal with the values as you would any array’s values — by
dereferencing, or by listing out the contents of the array.

FIGURE 17-7

Integrating Web Forms and Databases

A prepopulated select with multiple choices

42 http://localhost/skills.php - Microsoft Internet Explorer

JEiIe Edit View Favorites Tools Help

]@.#-@ﬂiﬁ

Back Fonyerd Stop Refresh Home

Search

Favaiites

| Address [&] hitp:acahost/skills. php

Skills profile

contral key to select multiple skills,

|1 Done

Select as many skills from the following list as apply. Hold down the

[| E&Local intranet v

=] @to |Links

|

Listing 17-8 shows the code for Figure 17-7, which demonstrates how to display and edit a select list

with multiple options.

LISTING 17-8

Select list displaying database values (skills_profile.php)

<?php

if (isset($_COOKIE['user_id']1))
$user_id =
}

if (lisset($user_id)) {
die("Cookie Not Found.");
}

// Open connection to the database
"mysqluser",

mysql_connect("lTocalhost",
or die("Database error!");
mysql_select_db("test");

mysql_real_escape_string($_COOKIE["user_id']);

"sesame")

275

170 |l MySQL Database Integration

if (isset($_POST['submit'] && $_POST['submit'] == "Submit') {

// Delete this user's skills

$query2 = "DELETE FROM user_skill
WHERE user_id = $user_id";

$result2 = mysql_query($query2);

foreach ($_POST['skills'] as $val) {
$cleanVal = mysql_real_escape_string($val);
$query = "INSERT INTO user_skill (ID, user_id, skill_id)
VALUES (NULL, $user_id, $cleanVal)";
$result = mysql_query($query);
if (mysql_affected_rows() == 1) {

continue;
} else {
error_log(mysql_error());
$error_msg = '<P>Something went wrong</P>"';
break;

}
}
}

// Get all the results
$query = "SELECT * FROM skills";
$result = mysql_query($query);

// Download this user's skills
$queryl = "SELECT skill_id
FROM user_skill
WHERE user_id = $user_id";
$resultl = mysql_query($queryl);
while ($user_skill = mysql_fetch_array($resultl)) f{
$skill_id = $user_skill[0];
$user_skill_arr[$skill_id] = $skill_id;
}

while ($skills = mysql_fetch_array($result)) {
$key = $skills[0];
if ($key == $user_skill_arr[$keyl) {

$select_str .= "<OPTION VALUE=\"$key\"
SELECTED>$skills[1]\n";
} else {
$select_str .= "<OPTION VALUE=\"$key\">$skills[1]1\n";

}
}

$thispage = "skills_profile.php"; //Have to do this for heredoc

276

Integrating Web Forms and Databases

$form_str = << EOQOFORMSTR

<HTML>

<HEAD>

(STYLE TYPE="text/css">

<=

BODY, P {color: black; font-family: verdana;
font-size: 10 pt}

H1 {color: black; font-family: arial; font-size: 12 pt}
-

</STYLE>

</HEAD>

<BODY>

<{TABLE BORDER=0 CELLPADDING=10 WIDTH=100%>

<TR>

<TD BGCOLOR="4#FOF8FF" ALIGN=CENTER VALIGN=TOP WIDTH=17%>

</TD>

<TD BGCOLOR="#FFFFFF" ALIGN=LEFT VALIGN=TOP WIDTH=83%>
<H1>Skills profile</H1>

<P>Select as many skills from the following list as apply. Hold
down the control key to select multiple skills.</P>

$error_msg

<FORM METHOD=POST ACTION="$thispage">

<SELECT NAME="skills[]" SIZE=10 MULTIPLE>
$select_str

</SELECT>

<INPUT TYPE="submit" NAME="submit" VALUE="Submit">
</FORM>

</TD></TR>/TABLE>
</BODY></HTML>
EOFORMSTR;

echo $form_str;

7>

Summary

PHP is an extremely powerful form-handling tool, especially in conjunction with a database. You
can use PHP to display database-stored data as form values, and of course, you can also store form-
generated data in the database.

277

Z1iel |8 MySQL Database Integration

278

To prepare your HTML forms to work smoothly with PHP, you need to follow a few simple rules.
First and foremost, never use data that comes from the user directly in a database call or query. This
means using the mysql_real_escape_string() function on any $_POST, $_GET, and $_COOKIE
values. Also, remember always to name every single form element — the HTML standard itself
doesn’t require this, but PHP does because the element names will become variable names in the
form handler. One method that is sometimes helpful is to match the form element name to the cor-
responding database field name so that they are easy to remember, perhaps prefixing form variables
with frm or something similar to help distinguish them from their database counterparts in code.
PHP also allows you to make clever use of hidden form inputs and of multiple SELECT options,
which should be delineated with square brackets (denoting an array) after the element name.

You have the choice with PHP to have separate HTML forms and PHP form handlers or to combine
the two in a PHP script. The latter option is arguably the more powerful, but it can also be more dif-
ficult to work with and maintain. You will need to set a variable within the form to indicate whether
the entries have been submitted; the PHP logic should be placed before the HTML display. You can
even have multiple forms on one page that are handled by the same PHP script.

his quick chapter is for people making database-enabled PHP web

sites who suspect that they are doing things awkwardly or inef-

ficiently. Maybe you are new to databases, or maybe you know
there must be a way to speed things up just because your pages are loading
unacceptably slowly.

We offer some tips and tricks for making things run faster, and we show
you some common ways that database systems can save you from writ-

ing unnecessary PHP code. As usual, some of our code examples will use
MySQL functions, although the lessons are mostly general and independent
of particular database implementations.

CROSS REF This chapter will do little to help you get your database-enabled

code working in the first place. For a guide to common errors,
gotchas, and problems with PHP/database code, see Chapter 19.

Connections — Reduce,
Reuse, Recycle

One important thing to realize is that establishing an initial connection
with a database is never a cheap operation in terms of resource usage and
time. Unless your PHP script is doing some unusually computationally
intensive work, the overall database interaction will be the most time- and
resource-intensive part of your code, and it is frequently true that the estab-
lishment of a connection is the most expensive (in terms of resource usage)
part of code that interacts with a database, even if the connection is only
established once in serving the page.

279

IN THIS CHAPTER

Connections — reduce, reuse,
recycle

Indexing to speed up queries

Make MySQL work for you

170 |l MySQL Database Integration

280

You have two potentially competing goals here. On one hand, you want to minimize the number
of times your code makes the time-consuming call to open an entirely new database connection.
This argues for leaving connections open during the course of page execution, rather than closing
and reopening. On the other hand, there are sometimes hard limits on the number of simultane-
ous connections that a database program can support. This might argue for closing connections
whenever possible in hopes that less connected time per script might allow more scripts to execute
simultaneously.

In our experience, however, most web scripts are evanescent enough that it is never worth the over-
head to close and reopen a database connection within one page’s execution. If you want to mini-
mize total time connected, open the connection immediately before the first call to the database, and
close it immediately after the last one.

A bad example: one connection per statement

The first bad example seems stylistically reasonable in one sense because it uses a function to elimi-
nate repetitive code.

<?php
function box_query ($query, $user, $pass, $db)
{
$my_connection =
mysql_connect('localhost', $user, $pass)
or die("Couldn't connect to database");
mysql_select_db($db, $my_connection)
or die("Couldn't select database");
$result_id = mysql_query($query, $my_connection)
or die(mysql_error());
print("<H3>Results for query: $query</H3>");
print("<TABLE>");
while ($row = mysql_fetch_row($result_id))
{
print("<TR>");
$row_length = mysql_num_fields($result_id);
for ($x = 0; $x < $row_length; $x++)
{
$entry = $rowl[$x];
print("<TD>$entry</TD>");
}
print("</TR>\n");
}
print("</TABLE>");
mysql_close($my_connection);
1
/* code that uses box_query() */
?>

Improving Database Efficiency

The idea is that we take a function that packages up an arbitrary MySQL query and displays the
returned data in an attractive HTML table. The main virtue of this function as defined is that it is
very self-contained — it opens its own database connection for its own purposes, and then it dis-
poses of that connection when the function is done.

The preceding code is fine if we expect to display only one such table per page. If we use this func-
tion more than once per page, however, we will find ourselves opening and closing connections
every time the function is invoked, which is bound to be less efficient than leaving the connection
open. One approach is to leave a single connection open for as long as it is needed in the execution
of a single page’s script. Applying this rule to the preceding function would mean rewriting it so that
it takes a connection as argument (or implicitly uses a connection opened at the beginning of the
script) and then opening a single connection per page.

Multiple results don’t need multiple connections

One thing that surprised us the very first time we saw web-database scripting was that, with many
database programs, it is possible to retain the results from more than one query at one time, even
though only one connection has been opened. For example, with a MySQL database you can do
something like this:

mysqgl_connect('localhost', $user, $pass); //opens connection
mysql_select_db('scienceguide');
$author_result = mysql_query("SELECT ID FROM author")
or die(mysqgl_error());
while ($author_row = mysql_fetch_row($author_result))
{
$book_result =
mysql_query("SELECT title FROM book
WHERE authorID = {$author_row[0]}")
or die(mysqgl_error());
while ($book_row = mysql_fetch_row($book_result))
{
$title = $book_row[0];
print("$title
");
1
}

This would print titles of books after retrieving them from the book table, using IDs from rows
retrieved from the author table. If we assume there is not more than one author per book, then this
is an extremely inefficient way to retrieve the data (see the section “Making the Database Work for
You” later in this chapter), but it illustrates that two different result sets (identified by the variables
$author_result and $book_result) can be actively used at the same time, after having been
retrieved over a single connection.

281

170 |l MySQL Database Integration

282

Persistent connections

Finally, if you become convinced that the sheer overhead of opening new database connections

is killing the performance of your application, you might want to investigate opening persistent
connections. Unlike regular database connections, these connections are not automatically killed
when your page exits (or even when mysql_close() is called) but are saved in a pool for future
use. The first time one of your scripts opens such a connection, it is opened in the same resource-
intensive way as with a regular database connection. The next script that executes, however, might
get that very same connection in response to its request, which saves the cost of reopening a fresh
connection. (The previous connection will be reused only if the parameters of the new request are
identical.)

Persistent database connections work only in the module installation of PHP. If you ask
for a persistent connection in the CGI version, you will simply get a regular connection.

The PHP function to request such a persistent connection for MySQL is mysql_pconnect (), which
is used in exactly the same way as mysql_connect (). This naming convention seems to be stable
across PHP functions for the different databases — if you use a particular DB connect function, you
should consult the documentation to see if a pconnect version exists.

Other than offering a particular kind of increased efficiency, persistent database connec-

. tions do not provide any functionality beyond that of regular database connections. In
particular, you should not expect persistent connections to have any memory of previous queries or of
variables from previous page executions.

Indexing and Table Design

MySQL is a pretty fast database, even absent any serious design considerations. In a lot of installa-
tions and applications, the database-design part of your job may be no more difficult than creating

a single basic table with four or five fields in anticipation of holding no more than a few hundred
records. However, as your database needs grow, your database itself will doubtless grow as well —
in both size and complexity. That’s no sweat for a good RDBMS: MySQL and other products in this
class excel at handling these needs. Still, careful choice of both indexes and field types when design-
ing tables can be crucial for performance as your tables get larger.

Indexing

Probably the first thing to investigate when SELECT statements are slow is whether you have defined
appropriate indexes.

What is an index?

Wikipedia defines an index in the following manner: “A database index is a data structure that improves
the speed of operations in a table” (http://en.wikipedia.org/wiki/Index_(database)). An

Improving Database Efficiency

index on a table field is an indication by a database designer to the database system that any searches
made on that field should be fast. Usually, this is implemented by the RDBMS as a side table that
maintains all the values for the field in order, and maps them to rows in the original table. Whenever a
SELECT statement has a WHERE condition that mentions the indexed field, the side table is consulted to
locate the rows that have the desired values for the field. The ordering of the side table means that the
database system can do fast lookups (for example, using binary search).

Indexing tradeoffs
There are two mantras to keep in mind when thinking about creating indexes:

B SELECT statements that filter on unindexed fields may require full table scans.

B While indexes speed up SELECT statements, they slow down INSERTs, UPDATEs, and
DELETESs.

To see why both these statements are true, imagine that we gave you a large telephone book (sorted
by last name) and asked you to find us everyone in the book with a first name of ' Zachary".
Unlortunately, it’s difficult to see how to accomplish this without looking through the entire book.

A database system trying to execute a statement like:

SELECT Tastname FROM phonebook WHERE firstname = 'Zachary'

is in exactly the same situation, if there is no index on the field ' firstname'. In database parlance,
the system must resort to a full table scan, meaning that every row in the table is inspected.

If your job were to do this phonebook lookup frequently, you might find it worth your while to com-
mission an extra index (in the book-publishing sense) that listed all the first names in order, along
with the page numbers and associated last names. Once the newly indexed phone book arrived,
your job would become a lot easier.

The bad news is that as soon as the new phone book arrived, we decided to promote you.
Congratulations! Your new job is to keep the phone book up to date (including, of course, any asso-
ciated indexes). Here is a list of 10,000 new customers, 8,000 people who have moved away, and 45
people who have had name changes. Now the firstname index is a burden rather than a benefit.
Again, it’s the same with the database system — the indexes that make lookups faster are a mainte-
nance burden when the data must be modified.

The general lesson is that you should consider indexes on fields that you use frequently in the
WHERE clauses of SELECT statements, especially when the data-modifying statements (INSERT,
UPDATE, DELETE) will be used rarely. If modification is much more common than lookup, indexes
make less sense.

Now we move on to the specifics of using indexes in MySQL, beginning with the most common
usage: a single index that uniquely identifies each table row.

283

170 |l MySQL Database Integration

284

Primary keys
Simply put, a primary key is a field in a table that uniquely identifies each record in that table. A
good primary key choice needs to meet a few criteria:

B A primary key should be of an integer type. These may vary some from one database tool
to the next, but in MySQL, they are TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT.
Refer to the MySQL online documentation for the current ranges and other properties of
these types.

B A primary key should not return a null value. Your column definition should contain the
SQL keyword NOT NULL. In fact, many databases, MySQL included, will not let you desig-
nate a primary key that is capable of returning a null value.

B A primary key MUST be unique. That's the point, isn’t it? And because a primary key must
be unique, it should also have an auto-increment feature set. Most databases offer this, and
most call it the same thing.

| Auto-increment and its use are often debated. In your Internet travels, you’ll come across
those who don’t like auto-increment and variously describe it as an accident waiting to
happen or a cop out. To be honest, there are some meritorious arguments in this vein. However, we
believe the benefits significantly outweigh the concerns. The alternatives are either expensive database
calls to determine what key values are available or to generate an ID programmatically and then insert
it with your SQL statement. Neither of these is as reliable nor worry free as auto-increment.

If you've already forged ahead and created some database tables of your own without a primary key,
consider the fields you have already created. Does one of these meet the tests described previously?
It may be that you have wisely foreseen or intuited this need and created something like it already. If
this field exists, but lacks one or more of the components, you can alter it with a SQL statement like
the following:

ALTER TABLE 'my_table' CHANGE 'existing_field' 'my_key' SMALLINT
NOT NULL AUTO_INCREMENT PRIMARY KEY

Or if your field already has all the necessary characteristics, you can simply make it the primary key
like this:

ALTER TABLE 'my_table' ADD PRIMARY KEY ('my_key")

In the first statement, we indicate that we are altering a table and indicate which table we want to
operate on. CHANGE further indicates that we are changing a field’s properties and indicating which
field with its quoted existing name. We can then specify a name that may indicate more specifically
what sort of field it is and set the relevant properties in one fell swoop.

If you don’t already have an appropriate field choice, the syntax doesn’t change much:

ALTER TABLE 'my_table' ADD 'my_key"' SMALLINT NOT NULL
AUTO_INCREMENT PRIMARY KEY

Improving Database Efficiency

Finally, you may just be creating your table for the first time. If that’s the case, you simply need to
include the following field definition in your table create statement:

ID SMALLINT UNSIGNED AUTO_INREMENT NOT NULL PRIMARY KEY

where ID is the name you've assigned to your primary key. There’s nothing magical about this name;
you can call it Fido if you want, but ID is a good, meaningful self-descriptive name.

So now you've got a primary key. What's it good for? Well, it helps define the master record in a
one-to-many relationship. Its other properties enforce an unambiguous identity for each record,
such that the SQL statement delete from 'my_table' where id = 12 can have only one possible
result. Phew, and you thought you just blew that whole table away.

Creation of the primary key also has the net effect of speeding up queries that join tables on this
unique 1D because in the process of making it a primary key, we made it an index as well. An index
is stored separately by MySQL and operates transparently to the end user.

When you are defining a relationship in your SQL, the child table — the many side of the one-to-
many relationship — will also store a copy of the master table’s primary key value. But it will store
it once for every record that is a child of the parent record, making it unsuitable for use as a primary
key. You may still wish to define a primary key for each record in the child table — in fact, it’s a
good idea to do so, but you won’t be able to define a primary key on this particular field because
values may not be unique to this column. On the other hand, you still want to improve the process
MySQL uses to locate related records for queries that perform joins. That works out alright, because
MySQL can still index a field without making it a primary key:

ALTER TABLE “child table' ADD INDEX MyIndex (child_id)

This will work great for an existing field, but as before, you may need to create a suitable field for
this purpose:

ALTER TABLE 'child_table" ADD 'child_id" SMALLINT NOT NULL

Then make the field an index:

ALTER TABLE 'child_table"' ADD INDEX ('child_id")

Everything including the kitchen sink

Indexes are almost a requirement for speedy, efficient joins. Even those most ardently concerned
about things like disk space will rarely find room to argue about the merits of an index that speeds
up the definition of relationships. More debatable, however, may be indexes that do not specifically
operate on joins.

You can index virtually anything. Sure, binary data presents some problems and is almost always
an ill-advised choice for indexing, but strings, the larger text fields, and numbers (including floats
and decimals) are all fair game. Aside from defining a relationship, the only other overriding

285

Z1ie |8 MySQL Database Integration

286

qualification for index candidacy is that it should be something you're likely to use in the WHERE
clause of your SQL statement.

Let’s say you want to create a membership directory for your local Linux Users Group and you

want members to be able to find other members in the same part of town so that they can easily get
together for a drink or a movie. If you're like us, you're probably thinking Zip code. Excellent choice.
A universally used (at least in the U.S.), well-documented, predictable and fairly stable search crite-
rion. Of course, you don’t have to index this field:

SELECT name, phone from members where zip = '32223"'

will get you an answer, the same answer in fact, with or without an index. On a table with 100 or so
records, youw'll get your answer instantaneously — again, with or without an index.

But maybe you have several hundred, perhaps even thousands of members. An index may just speed
up this search. Add one and try your search again:

ALTER TABLE 'members' ADD INDEX ('zip')

Perhaps do it while watching the output of Linux’s ps or top commands. Perhaps you'll see user
discernible improvement; perhaps you'll need a professional diagnostic tool of some kind to measure
what just happened; perhaps your performance improvement will be measured in nanoseconds. The
point is, at some number of records, you almost certainly will see an improvement at each of these
levels. It will be up to you as the designer to determine whether the benefits justify the tradeoffs.

What are the tradeoffs? Disk space, for one. Depending on the number of records and the size of the
field, an index can increase storage requirements by nearly as much as the table size itself. If you've
got 80GBs of storage, you probably don't care. If you're on a 50MB shared hosting plan, you probably
care very much. Another tradeoff is that although SELECT operations benefit, INSERT, UPDATE, and
DELETE operations actually take longer because the indexes must be updated each time one of these
is performed. The good thing about an index is that it’s not irreversible. Try an index on anything
you think might be useful, measure the performance improvement, and weigh it against what you
may or may not be giving up to get that improvement.

Other types of indexes

There are a couple other types of indexes, or more appropriately, parameters to indexing functions,
that specify how indexes work. Using them may have the net effect of making an index work better
or worse. Again, consider each type, experiment and measure your results. It's a small effort to make
with potentially huge dividends.

UNIQUE

Isn't that a primary key? Maybe. In MySQL at least, a primary key is by definition nothing more

or less complicated than a UNTQUE INDEX with the name PRIMARY. If you find yourself defining a
unique index, consider whether what you've got is really a primary key candidate. Social Security
numbers, if your users are consistently willing to provide them, may work well in this regard. This

Improving Database Efficiency

choice certainly meets the criteria and offers some additional advantages such as knowing what the
primary key will be before you insert anything, enabling you to create master and child records
without the intermediate call to mysql_insert_id().

A phone number, on the other hand, may not be such a good choice. Sure, it’s unique. It also is, or
can be defined as, an integer. But you may wish to store phone numbers as a string to avoid some
post-formatting for creating a readable display, such as parenthesizing an area code or inserting

the traditional, if somewhat meaningless hyphen. But even if you are willing to forgo the aesthetic
concerns, as an integer, a phone number is almost certainly larger than necessary. The largest pos-
sible phone number will store as 9,999,999,999. Yeah, that's what we said. This integer would
require a field type of at least INT. You probably aren’t going to store more than nine billion records.
SMALLINT or MEDIUMINT would be better choices for a storage and searchable volume savings of 21®
or 2° bytes, respectively.

All that said, you can still use UNIQUE without having it as a primary key, and that is precisely why
it exists. A UNIQUE attribute on a phone number field can still serve as a data integrity check, once
again relieving you of the responsibility of performing the check programmatically (of course, you
will still probably have to respond to the problem).

A unique index can be specified in MySQL like this:

ALTER TABLE 'members' ADD UNIQUE my_index ('phone")

Table design

In Chapter 14, we discussed table design pretty extensively; we're not going to recap all that infor-
mation here. However, we do want to reiterate some points about field types because choice of table
fields can have significant performance impact.

There are two interrelated concerns when choosing field types for a table: speed and size in memory.
Your field definitions should anticipate the largest possible value that they may be asked to store,
while not overanticipating and therefore creating unnecessarily huge tables with lots of unused
space, both on disk and in memory. Appropriate field choices also come into play when choosing
indexes for your table. Indexes are of the greatest benefit when they are set on a field type that is
optimized for the type of data it is expected to hold. If, for example, you want an indexed number
field where the count will never be more than 65,000 or so records, that index will perform more
efficiently on the SMALLINT field type than it will on the MEDIUMINT field type, which allocates
more space and therefore must search that extra space when attempting to isolate a specific value.

A similar principle holds true for the string types. Although there’s some debate whether or not it’s
even advisable to index on a string column, that index will certainly perform more efficiently on a
field that is defined precisely to the specifications of the data you will wish to store on it.

Earlier in this book, we pointed out that sometimes concerns about performance are so inflated that
they border on the ridiculous. That's still the way we feel. It should not, however, appear inconsis-
tent that we stress performance concerns now. This section and those that follow offer easily imple-
mented design considerations that will collectively improve the performance of your databases.

287

Z1ie |8 MySQL Database Integration

Making the Database Work for You

Just as when you write code in a programming language, writing code that interacts with a database
is an exercise in appropriate division of labor. People who write programming languages and data-
bases have agreed to automate, standardize, and optimize certain tasks that come up over and over
again in programming, so that programmers don't have to constantly reinvent the wheel when mak-
ing their individual applications. The very general rule is that, unless you're willing to spend a lot of
energy in optimizing code for your special case, you are better off using a database-provided facility
than trying to invent your own solution for the same task.

It’s probably faster than you are

Database programs are judged partly on their speed, so database programmers devote a large por-
tion of their effort toward ensuring that queries execute as quickly as possible. In particular, any
searching or sorting of the contents of a database is best done within that database (if possible)
rather than by your own code.

A bad example: looping, not restricting

For example, take the following code fragment (and please don’t laugh — we have actually seen code
like this):

function print_first_name_bad ($lastname, $dbconnection)
{
$query = "SELECT firstname, Tlastname FROM author";
$result_id = mysql_query($query, $dbconnection)
or die(mysql_error());
while ($row = mysql_fetch_array($result_id))
{
if ($row['Tastname'] == $Tastname)
print("The first name is " $row['firstname']);
}
}

When this code is handed a last name string and a database connection, it will print out associated
first names, if any, in the “author table” of the database. For example, a call to print_first_
name_bad('Sagan', $dbconnection) might produce the output:

The first name is Carl

If there were multiple authors in that table with the same last name, then multiple lines would be
printed.

The problem here is that we don’t need to grab all the data in this table, pull it through the narrow
pipe of a connection, and then pick and choose from it on our side of the pipe. Instead, we should
restrict the query with a WHERE clause:

288

Improving Database Efficiency

function print_first_name_better ($Tastname, $dbconnection)
{

$query = "SELECT firstname, lastname FROM author

WHERE Tastname = '$lastname'";
$result_id = mysql_query($query, $dbconnection)
or die(mysql_error());
while ($row = mysql_fetch_array($result_id))
{

print("The first name is $rowl'firstname'1);

}
}

The WHERE clause ensures that only the rows we care about are selected in the first place. Not only
does this cut down on the data passed over the SQL connection, but the code used to locate the cor-
rect rows on the database side is almost certainly quicker than your PHP code.

Sorting and aggregating

Exactly the same argument applies if you find yourself writing code to sort results that have been
returned from your database, or to count, average, or otherwise aggregate those results. In general,
the ORDER BY syntax in SQL will allow you to presort your retrieved rows by any prioritized list of
columns in the query, and that sort will probably be more efficient than either homegrown code or
the PHP array-sorting functions. Similarly, rather than looping through DB rows to count, sum, or
average a value, investigate whether the syntax of your particular DB’s flavor of SQL supports the
GROUP BY construct and in-query functions such as count (), sum(), and average(). In general,
executing a query like:

$query = "SELECT count(ID) FROM author";

will be a radically more efficient approach to counting table rows than selecting them and iterating
through them with a PHP looping construct.

Where possible, use MIN or MAX rather than sorting

Although it’s good to let the database system do your sorting for you, it’s even better to not have to
sort at all. One task that is often addressed by unnecessary sorting is finding the minimum or maxi-
mum value in a set of result rows. You may see code like this:

$query = "SELECT ID FROM author ORDER BY ID Timit 1;
// inefficient

This query will return a single ID from the author table after having sorted it in ascending order
— in other words, the minimum ID. It does have the virtue that the actual result set returned is
small, so it is a better approach for finding the minimum than using the same query without the
limit clause and picking off the desired value from the top of that large result set. But if all we are
interested in is the minimum (or maximum) value, there is no need to require the DB to figure out
the rank order of all the other IDs that we are not interested in. A better solution is:

$query = select min(ID) from author; // efficient

289

Z1ie |8 MySQL Database Integration

290

The difference between these approaches will be imperceptible when your tables have only tens or
hundreds of rows in them but will begin to matter as your tables grow to thousands or tens of thou-
sands of rows in size.

Creating date and time fields

It is very common to want to associate a date and/or time with a row’s worth of data. For instance,
your table rows might represent requests made by your web site users, and the associated date/time
is the time that that request hit your database.

Now, one way to insert or update date fields is to include a string that represents the desired date in
a format parsable by your database. For example, if you want to set the mydate datetime field of all
rows of mytable to a particular date, you might set up a query like this one:

$query = "UPDATE mytable SET mydate = '2003-11-24'";

and then send that query off for evaluation. (Unfortunately, the exact standards of readable date for-
mats vary quite widely from one SQL database system to another. This particular date string means
November 24, 2003, as far as MySQL is concerned.)

The preceding approach is fine, as long as you take care that the particular date string you send is,
in fact, readable as a date by your DB. Things get more complicated if you need to construct such a
string on the fly to represent a date that depends on the value of variables in your script.

The main thing to remember is that, with most database systems, there is no need to go through
such contortions to set a field to the current date or time. Many have a current-date function that
can be embedded directly in your query. For example, a MySQL version of the preceding query that
sets the relevant date/time field to the current instant looks like this:

$query = "UPDATE mytable SET mydate = now()";

Note that the call to now() is not enclosed in single quotation marks, because it’s a call to database
function rather than a string to be interpreted by the database as data. The analogous query for
Microsoft SQL Server looks like this:

$query = "UPDATE mytable SET mydate = getdate()";

Finally, even if the time you want stored is not that of the instant of execution, there may still be
better alternatives than constructing readable date strings in your script. In addition to functions
returning the current date, many versions of SQL offer functions for performing date arithmetic —
start with a particular date/time, and then add or subtract years, months, or hours. In MySQL, these
functions are:

m date_add(date, date-interval)
m date_sub(date, date-interval)

Improving Database Efficiency

Here date-interval is a string that includes a number of time units and the type of unit. A
MySQL query to set all rows to a time a week from now might look like this:

$query = "UPDATE mytable SET mydate = date_add(now(), INTERVAL 7
DAY)";

MySQL has a plethora of date and time related functions. See the MySQL documentation at:
http://dev.mysql.com/doc/refman/6.0/en/date-and-time-functions.html for more
information on all of the functions.

Finding the last inserted row

Another surprisingly helpful capability offered by some database systems is finding the ID of the last
row inserted. This problem arises when you are trying to create a new database entry that is distrib-
uted across several database tables, each of which has an automatically incremented primary key. As
an example, take the tables created by the following MySQL statements:

CREATE TABLE author (ID int primary key auto_increment,
lastname varchar(75),
firstname varchar (75));
CREATE TABLE book (ID int primary key auto_increment,
authorID int,
title varchar(100));

One intent of these statements is that the book table is linked to the author table by joining them
so that book.authorID =author.ID. Another intent is that we don’t have to worry about assign-
ing unique ID fields for either table — the database will automatically assign them. Unfortunately,
the combined intent leads to a problem. How do we write code that will gracefully insert a linked
book-author pair, when both the author and the book are new to the database? If we insert a new
author, the ID field of the inserted row will be automatically created by the database and so will not
be a part of our SQL insert statement. How can we give the correct authorID to our new book row?

One possible strategy is to do something like the following (in MySQL):

$author_lastname = 'Feynman';
$author_firstname = 'Richard';
$book_title = 'The Character of Physical Law';
$author_insert = "INSERT INTO author (lastname, firstname)
VALUES ('$author_Tlastname', '$author_firstname')";

mysql_query($author_insert) OR die(mysqgl_error());
$author_id_query =

"SELECT ID FROM author

WHERE Tastname = '$author_Tlastname'

AND firstname = '$author_firstname'";
$author_id_result =

mysql_query($author_id_query) OR die(mysql_error());
if (mysgl_num_rows($author_id_result) <= 0)

die("Inserted author not found!");

291

Z1ie |8 MySQL Database Integration

292

else
$author_row = mysql_fetch_row($author_id_result);
$authorID = $author_row[0];
$book_insert = "INSERT INTO book (authorID, title)
VALUES ($authorID, $book_title)";
mysql_query($book_insert) OR die(mysqgl_error());

In this code, we create a new author row, use the last name and first name of the author to select the
row we have just created, pull out the unique ID of that newly created row, and then incorporate
that ID in a statement inserting a new row into the book table. This code would probably work in
this particular instance, if we assume that the author’s last name and first name are sufficient for
unique identification. But for many databases, we will not be able to make such an assumption,
which is, of course, why the convention of unique IDs developed in the first place.

A similar approach that is sometimes used is to insert a row (for example, into the author table)
and then select the maximum ID from that table, on the theory that the highest row ID will be the
one most recently inserted. If the most recently inserted row is, in fact, the one we just inserted,

this will work like a charm. Unfortunately, this is exactly the kind of approach that appears to work
when tested by a solitary user/programmer and then breaks when used with a real database server
that is dealing with requests from multiple connections at the same time. The problem is that an
insertion from another connection might well arrive in between our own insertion and the statement
we send to retrieve the maximum ID to date, with the result that our second insertion is matched
with an inappropriate ID.

The best solution, when it is available, is to have the database itself keep track of the last inserted ID
in a retrievable way, and do this tracking on a per-connection basis, so that there are no worries about
the synchronization issues in the previous paragraph. For MySQL users, PHP offers the function
mysql_insert_id(), which takes a connection ID as argument and returns the auto-incremented
ID of the last inserted row. We can use it to rewrite our previous code example:

$author_lastname = 'Feynman';
$author_firstname = 'Richard';
$book_title = 'The Character of Physical Law';
$author_insert = "INSERT INTO author (lastname, firstname)
VALUES($author_insert) OR die(mysqgl_error());

$authorID = mysql_insert_id();
$book_insert = "INSERT INTO book (authorID, title)

VALUES ($authorID, '$book_title')";
mysql_query($book_insert) OR die (mysqgl_error());

As with many PHP/MySQL functions, the connection argument to mysqgl_insert_id() is actually
optional and defaults to the most recently opened connection.

In some other database systems, the ID of the most recent auto-increment is available (per session)
as a “special” variable that can be embedded in the next query. In Microsoft SQL Server, for exam-
ple, the variable is %4%1dentity, which can be embedded in a query as follows to retrieve the last
insert ID:

$query = "SELECT @@identity";

Improving Database Efficiency

Summary

Because database-related functionality is among the most resource-intensive things that PHP can do,
you can become a hero by giving just a little thought to efficient coding practices. Particularly if your
data-driven PHP scripts are sluggish, you want to learn to work with the database instead of against it.

The basic principles of database-intensive coding are simple. It costs a lot to open a connection to a
database, so don’t turn the tap on and off unnecessarily. Remember the pipe is narrow — you want
to transport the bare minimum of data you need for each page. And take the time to learn all the
functionality your particular database can offer you. SQL is really good at indexing, sorting, filter-
ing, restricting, numbering, and grouping — use these powers rather than doing it less well and
more slowly with PHP.

In Chapter 19, we move from these tips and stylistic concerns to problems and gotchas that can
actually break your database code or give you unintended results.

293

his chapter details some of the common difficulties that arise with

using PHP and databases. The goal is to help you diagnose and

solve problems more quickly and with less frustration. As usual, our
specific code and function references are to MySQL (with one exception),
although the set of gotchas is fairly independent across different databases.

C ROSS REF | This chapter is about diagnosing and fixing PHP/database code

that is genuinely broken — that is, it is not successfully retriev-
ing data, or it is producing error messages. If your scripts are working, but too
slowly, see Chapter 18.

No Connection

1f you have a database call in your PHP script and the connection can’t be
opened, you will see a version of one of these two warning screens (depend-
ing on how high your error reporting levels are cranked up, and, to some
extent, the precise cause of the problem).

The first possibility is the No Connection warning, as shown in
Figure 19-1.

This option indicates a problem either with the MySQL server itself or with
the path to mysq1d. In its own special way, PHP is telling you that it knows
about MySQL but can’t hook up to it. This is the error you will see on a
working PHP-MySQL installation if the database server crashes.

If the problem is on the PHP side, your error screen will look more like the
one shown in Figure 19-2.

295

IN THIS CHAPTER

Connection errors

Problems with privileges

Unescaped quotation marks

Bad SQL

More or less data than expected

Specific SQL functions

Debugging

m MySQL Database Integration

FIGURE 19-1

A No Connection warning

osoft Internet Explorer I
|| Eile ew Go Favorites Help |

[« . +. 0 B A @ @@ 3 9 |Z
|4 ok Fanwaid Stop Refresh Horne: Search Favortes Histony Channels | Fq\lscl_
._!Address i@ hitp: #AlocalhostAdb_pop.php :_J |

||Links @]Mp Presario @]Mysllavista @]MyCty @) Search @] Service and Suppod. €] 5hopping

Edit

Warning: MyS QL Comection Falled: Can't connect to My3QL server on locathost'
(10061) in ¢:\php'phpdocsidb_pop.php on line 2

Warning: Supplied argument is not a valid MySOQL-Link resource i e:
‘php'phpdoesidb_pop.php online 3

Warning: Supplied argument iz not a valid 2My3QL-Link resource in ¢:
‘php'phpdocsidb_pop.php on line 34 i

Warning: Suppled argument 15 not a valid MySQL-Link resource m e:
‘nhwinhndacs'dh_ non nho on fine 35 &l
Done |

| [[| B Local inwanet zone

FIGURE 19-2

An undefined function fatal error

k ocalhost/db_pop.php - Microsoft Internet Explorer B
|| Eile Edit Go Favorites Help | & |
| - @ B @ @ @ =
| Back | i Stop Refresh Home Search Favoites Histony Channels | Fullscr
.!Address i@ hittp: #Alocalhostdb_pop. php :J

| | Links @ Iy Presario @ Muydltalista ﬁ_j tuCity SJ Search GJ Semice and Support GJ Shopping
Fatal errvor; Call to undefined funchion: mysql_cennect) m ¢:php'phpdocsidb_pop.php
on line 2

:éj"[jﬁne i ﬂg Local intranet zone

This means PHP doesn’t know about MySQL at all.

Of the two, the fatal error is much more straightforward to fix. Clearly, if you're running into an
undefined function that is supposed to be in the PHP function set, you can be pretty sure that

you simply forgot to build that module into your installation. So on the Unix side, you will need
to recompile the code with the --with-mysql option. On the Windows side, MySQL should be

296

MySQL Gotchas

precompiled into the binary for you and immediately available. In the case of any other supported
database or a version of PHP older than 4.1, you merely need to uncomment the extension=php_
[database].d11 line in your php.ini file to be ready to go, unless you put your MySQL execut-
able in a very, very strange place (which you shouldn’t do unless you're prepared to handle the
consequences, including fatal errors).

The innocuous-looking No Connection error is actually a little harder to diagnose because there are
several possible causes. They fall into two main categories:

B The MySQL daemon isn't running,.
B The MySQL socket isn't where PHP is looking for it.

It’s easy to check whether mysq1d is running, so you may as well do that first. Just use whatever
method you prefer to check running processes. On Windows, this means it’s time for the old
Ctrl+Alt+Delete action to bring up the Task Manager. On Linux you can check the system processes
by means of ps.

If mysqld is not running, perhaps you have merely forgotten to (re)start it. (Don’t laugh. It happens.)
If it’s been running continuously for 143 days before suddenly quitting in the middle of an opera-
tion, your problem is beyond the scope of this book. We can only direct you to the MySQL web site
(at www.mysql.com) with our deepest sympathies and most fervent hopes that you've maintained a
good backup schedule.

The socket problem usually arises the first time you fire up MySQL on a new server. It’s rather
uncommon for this problem to occur in a long-running site, although it does happen. For instance,
we recently had a web host move our MySQL daemon to another server on short notice, at which
point all our scripts that used the hostname Tocalhost immediately crashed.

The solution to your database connection problems is generally to be found in the php.ini file.
There’s a section of MySQL variables that you must carefully check against whatever hostname, port,
and socket you're specifying in your PHP scripts. You want to ensure that you're not inadvertently
directing PHP to look for MySQL on an odd port or at the wrong default host. On Linux, you can
also check the /etc/services file for a different socket address, and the /etc/hosts file for an
unexpected server alias. In general, you should leave these variables open unless you have a specific
reason to set them.

Problems with Privileges

Error messages caused by privilege problems look a lot like the connection errors described previ-
ously. You will see a No Connection error that looks like Figure 19-3.

The key differentiator is that little piece about the user and password.

297

Z1ie |8 MySQL Database Integration

N\ Because of the security issues caused by these failure messages, which include the database
username and host and whether you’re using a password or not, it’s best to use silent mode

&)

on a production site. You do this by putting the character @ in front of the functions mysql_connect
and mysql_select_db or by setting display_errors tooff inthe php.ini file.

These errors are many in number but fall into pretty clear major types:

Mistyping usernames/passwords.
Failing to use a necessary password.

Trying to use a nonexistent password.

particular user.

Employing a database username that lacks the necessary permissions for the task.

Trying to use your system’s username/password instead of the MySQL username/password.

Logging in from a location or client that the MySQL database does not allow for a

B PHP’s being unable to open the database-password include file because of incorrect file
permissions. (It must be a file readable by your web.)

B The database root user’s having deliberately changed permissions on you.

FIGURE 19-3

Privilege problems

¥ Creating a sample database - Netscape

File Edit View Go Communicator Help

+ @ 3 2 B o & B

Back Reload Hame Search Metscape PFrint Security Stop

&‘Buukmarks J‘ Lucatiun.;hllp..r‘f\u:a\husl.r‘db_pup.php

_'J @ﬂ' What's Related

J%\nstantMessage Catagones @ Maps @ Fhoto Finder @ Secure Web Shop @ Home

Warning: My3 0L Coennection Faled: Access demed for uger: 'nchost@locathost' (Ueng
password: YES) in ¢:\php'phpdocsidb_pop.php on line 2

Warning: Supplied argument is not a valid My3QL-Link resource in
c:iphpiphpdocsidb_pop.php on line 3

Warning: Supplied argument is not a valid 3My3QL-Link rescurce in
c:'php'phpdocsidb_pop php on line 34

&

Document; Done

These are not structural problems but usually just simple slips of memory that result in miscues or
misrecollections. They are very common. We aren't too proud to confess that we’ve fallen victim to
all of them — and not just once but over and over. They should be trivial to fix in the vast majority
of situations. If you are confident your username and password combination is correct, you try using
MySQLs FLUSH PRIVILEGES command to ensure that the most current changes are loaded.

298

MySQL Gotchas

Unescaped Quotes

Quotes can cause many small but annoying buglets between PHP and MySQL. The crux of the issue
is that PHP evaluates within double quotation marks and largely ignores single quotation marks,
whereas MySQL evaluates within single quotation marks and largely ignores double quotation
marks. This can lead to situations where you have to think hard about the purpose of each quotation
mark. An example is:

mysql_query("INSERT INTO book (ID, title, year, ISBN)
VALUES(NULL, '$title', "$year', '$ISBN'")");

In most of PHP, variables within single quotation marks are not expanded, whereas variables in dou-
ble quotation marks or unquoted variables are — so this query looks a bit strange. But if you think
about it, the statement is valid in both languages. The single quotation marks exist within double
quotation marks, so PHP takes them as literal characters, and the variables are actually within
double quotation marks, so PHP replaces them with their values. You can think of the division of
labor this way: In a database query, PHP does its thing on the stuff between double quotation marks
(treating single quotation marks literally), and MySQL later deals with the stuff left over within
single quotation marks.

Obviously, you'll need to exercise some care when writing these statements. This is one of the rea-
sons why it’s preferable to break up your MySQL queries into two parts, a query string and a mysql_
query () function, like this:

$query = "INSERT INTO book (ID, title, year, ISBN)
VALUES(NULL, '$title', '$year', "$ISBN')";
$result = mysql_query($query);

This style also eliminates the double parentheses that account for common PHP errors.

Even greater issues arise with strings that use single quotation marks and double quotation marks
within the text. Remember that apostrophes and single quotation marks are the same thing for PHP
and MySQL — they have no smart-quoting feature (not that most smart quotation marks are all that
smart anyway). So this insertion query will break as follows if any of your lastname entries ever has
an apostrophe in it (for example, O’Hara, D’Souza, and M’Naughten):

$query = "INSERT INTO employee (ID, Tastname, firstname)
VALUES(NULL, '$lastname', '$firstname’')";
$result = mysql_query($query);

Other very common problems are caused by names of businesses with apostrophes in them, such as
Rosalita’s Bar and Grill or Yoshi’s Hair Salon, and by any string that might have a contraction or pos-
sessive in it (such as can’t, what's, or Mike’s).

The parallel issue on the PHP side is a string with a double quotation mark in it. This construction
will definitely not work as intended:

$string = "He said, "I'm not angry," but I knew he was.";

299

170 |l MySQL Database Integration

$statement = mysqgl_query("INSERT INTO diary (ID, entry)
VALUES(NULL, '"$string')";

In very long text entries, a quotation mark problem may present as a partial string being
inserted, or it may appear as a complete failure, or it may seem as though only short

entries are being accepted while longer entries fail.

If you're using an HTML form with values, and only the first word of your string is being inserted, the prob-
lem is likely to be that you forgot to quote the form value properly. In other words, your form field says
<INPUT TYPE="text" VALUE=quoted string> rather than <INPUT TYPE="text" VALUE="quoted
string">.

The following list reviews the three ways of dealing with quoting issues:

B In cases where the string is directly stated within the code, you can escape the necessary
characters with a backslash.

$query = "INSERT INTO employee (ID, Tastname, firstname)
VALUES(NULL, 'O\'Donnell', 'Sean')";
B In cases where the string is represented by a variable, you can use addslashes (), which
will automatically add any necessary backslashes.

$string =

mysql_real_escape_string("He said, 'I'm not angry,' but I knew he

was.");

$statement = mysqgl_query("INSERT INTO diary (ID, entry)
VALUES(NULL, '$string')");

For some murky psychological reason, many PHP users seem exceedingly averse to using add-
slashes() and its partner, stripslashes(). People will tie themselves in knots using single quo-
tation marks when they really shouldn'’t, just so they don’t have to escape double quotation marks.
This practice is bad style at any time but is especially dangerous when using a database.

You need to add slashes when inserting values into a database; conversely, you'll need to strip out the
slashes when pulling strings from a database (unless you have magic quotation marks turned on).

$query = "SELECT passphrase FROM userinfo

WHERE username='$username'";
$result = mysqgl_query($query);
$query_row = mysql_fetch_array($result);
$passphrase = stripslashes($query_row[0]);

If you fail to do this, more and more slashes will be added each time you reenter the data into
MySQL! This is an issue that is very frequently encountered with editable Web forms that redisplay
values pulled from a database, as shown in Figure 19-4.

However, the preferred solution is to use mysql_real_escape_string to escape characters prior
to sending them to the database.

300

FIGURE 19-4

MySQL Gotchas m

Unstripped slashes in a form

Eile Edit View Go Communicater Help

L 2 A A4 a2 b 3 &

Reload Horne: Search Metscape Print Security

Back

3' Bookmarks &. Locat\om:ihtlp Hocalhost/unstripped.form.php LJ @ﬂ'w’hat‘s Related

&InstanlMessage Catagories E'ﬂ Maps E.ﬂ Fhoto Finder E'ﬂ Secure Web Shop @ Home

Tsername: 1JDYCE

Passphrase: IJE nhyh 'aime pas des histoires.

Subrmit Query

by
{

Document: Done

Tis

Broken SQL Statements

In addition to quoting problems, there are a number of easy ways to send a bad query to the data-
base. That query might be syntactically malformed, have the right syntax but refer to tables that do
not exist, or have any of a number of problems that make the database unable to handle it properly.

A typical error message is shown in Figure 19-5.

FIGURE 19-5

A bad SQL statement error

<3 http://127.0.0.1/bad_sql.php - Micresoft Internet Explorer

JEiIe Edit View Favorites Tools Help

€« . s - D ‘ay ‘ Q 3 .
Back Fanward Stop Refresh Home: Search Favaiites Higtory
| Address [&] hup.#127.0.0.1/bad_sal php =] @Ga ||Links
; , B
Tou have an error in your SQL syntax near TNIQUE FROM users' at line 1
R E
|@ Done || % Internet o

301

170 |l MySQL Database Integration

302

A MySQL error (such as the one shown in Figure 19-5) is different from a connection or

. link error, which looks something like Figure 19-1. A MySQL error is the error returned
from the database when you try to do something that it doesn’t like. It is not automatically echoed to
the screen; you need to call mysql_error() to see any output. A connection error is a message that
PHP is sending to you when an expected connection or link is not present. It is automatically echoed to
the screen if you're using display_errors and must be silenced by being prepended with an @.

Older versions of PHP used to automatically echo an error statement in these circumstances. Now, if
you wish to find out what the problem is, you must manually call mysql_error() (as we've done in
the preceding example) or mysqgl_errno(). The safest way to capture these errors is to send them
to a log file by using error_log().

A broken or invalid SQL query is not the same thing as a query that returns no rows. You
can write a perfectly fine SQL query like the following:

$query = "select ID from cust where name = 'nonexistent'";

You send it to your DB and get back a perfectly valid result set, which happens to contain exactly 0
rows. Among other things, this means that error trapping that catches query failures will not help you
detect the case of zero rows. For MySQLers, a helpful function is mysq1_num_rows (), which is called
on the query result ID and returns an integer.

Exactly how a bad SQL problem will present itself in your browser depends on your PHP version,
your database version, your error settings, and how much error-checking code you have incorpo-
rated in your script. Just as with other kinds of malignancy, early detection of a failed query is key.

Your new best friend for making MySQL queries looks like this:
$result = mysql_query($query) or error_log(mysql_error());

Because mysql_query () will return a false value if it fails, the error_1log() portion will be
executed only if a failure occurs. The low operator precedence of the or operator ensures that the
error_log() call also plays no role in the assignment statement — if the assignment succeeds,
itisasif the error() portion did not exist. Failure leads to the script exiting just as soon as it
has printed the most informative error message that the MySQL designers could concoct. If your
particular database lacks such an error variable in PHP, you might want to simply call error_
Tog($query). Often, the problem is obvious after you see the query that is actually being sent.

If you have not incorporated error checking into your query calls, you will get the first bad news
when you try to use the query result ID in subsequent database code. The typical pattern is:

$my_result = mysql_query($bad_query);
$row = mysql_fetch_row($my_result); // error shows up here

The typical error message for MySQL is 0 is not a mysql result identifier in [some row].
This is because, rather than detecting the 0 value that mysql_query () returns when it fails, you
have tried to use that value as if it were a valid identifier for a result set.

MySQL Gotchas

Although a bad query is by far the most common way of producing the 0 is not a
valid result identifier message, itis not the only way. You would also get that
message if you misspelled the name of the result identifier variable (and it was, therefore, unbound) or
if the query statement had never actually executed (with the same result). Again, it is much easier to
distinguish these problems if you trap the errors early on.

If you suspect a broken query is causing your script to fail, liberal use of print and var_dump to
output the actual SQL being executed is almost always helpful. I've found that seeing the SQL being
executed will show a blatant error with quoting or an even subtler error. Taking the SQL and run-
ning it manually through the MySQL CLI can also help to reveal errors. I will say more on this, later.

Misspelled names

The sad truth is that for every bug that plumbs the depths of programming esoterica, there are a
gazillion cheap mistakes that seem obvious once you've discovered them. The former may break
your brain, but afterward you feel a certain exhilaration at testing your skills against a really hard
nut. The latter just leave you feeling empty and regretful at the time you wasted on something so
trivial.

So let us start with the single most common error: simple misspelling of table, column, and value
names. It doesn’t help that PHP and MySQL are both case-sensitive in Linux environments (but not
on Windows). No force on earth can prevent you from using the wrong case once in a while, and the
error messages will be uninformative at best. What can we say? Remember that even the most expe-
rienced programmers do it, too.

Comma faults

Remember to put the comma outside the single quotation marks within a SQL statement. This will
not work:

$query = "UPDATE book SET title="$title,' subtitle="$subtitle,"’
ISBN="$ISBN"";

But this will:

$query = "UPDATE book SET title='$title', subtitle="$subtitle’,
ISBN="$ISBN"";

Think of the single quotation marks as part of the variable itself rather than following common
American typographical practice, which puts a comma inside the ending quotation mark.

Unquoted string arguments

Any values that should be treated by the database as string data types typically need to be single-
quoted within a SQL statement. For example, this query has the correct syntax:

$query = "SELECT * FROM author WHERE firstname = 'Daniel'";

303

Z1ie |8 MySQL Database Integration

304

By contrast, if we make amysql_query () call using the following query, we should expect an
error:

$query = "SELECT * FROM author WHERE firstname = Daniel";

The actual error returned by the database may be deceptive, though — quite likely the complaint
will be about an unknown column named 'Daniel'. This is because unquoted strings are assumed
to name columns, as in:

$query = "select * from author where firstname = Tastname";

This would be a perfectly acceptable way to search our database for Humbert Humbert and Lisa
Lisa, but it won't work for people with more ordinary names.

Unbound variables

One of the sneakier ways to break a SQL statement is to interpolate an unbound variable into the
middle of it.

When it works, the automatic splicing of variables into double-quoted strings is a perfect match for a
SQL-based dialog with your database. Your code can determine values, for example, that are used to
restrict the scope of a query made to the DB, as in this snippet:

$customerID = find_customer_id(); //returns int
$result_id = mysql_query("SELECT * FROM customers

WHERE ID = $customer_ID"); //BUG
$row = mysql_fetch_row($result_id); //CRASH

Because this code makes no attempt to trap query errors, you will again see a complaint about the
fact that 0 is not a valid MySQL result identifier. It's possible (for us anyway) to stare at
code like this for quite a while without seeing anything wrong (although the good PHP coders who
habitually crank error reporting up to E_ALL will be rewarded with the cause of the error in a warn-
ing message). The problem, of course, is that we assigned one variable ($customerID) and then
embedded a different one ($customer_ID) in our SQL statement. The latter variable is unbound
and so behaves like an empty string when interpreted by the double-quote parsing. The result is that
the database sees the following query, which is not valid SQL:

SELECT * FROM customers WHERE ID =

This kind of problem is one reason why it is often a good idea to construct your query and assign it
to a variable in a separate statement, like this:

$my_query = "SELECT * FROM customers WHERE ID = $customer_ID";

Then make a distinct subsequent call to mysql_query ($my_query). If you do this, it is very easy
to add printing or logging statements that show you the actual query you are sending.

MySQL Gotchas

Too Little Data, Too Much Data

Finally, you may find that your PHP/database script is working apparently without error but is dis-
playing no data from the database or far more than you expected. As a vague and general rule, if
your query function is returning successfully (and your code checks that), your suspicions might
rightly turn to the SQL itself. Recheck the logic, particularly of WHERE clauses. It is easy, for exam-
ple, to write a query like:

"SELECT * FROM families WHERE kidcount = 1 AND kidcount = 2";

In this query, you are really intending an or rather than an and, with the result that zero rows will
be returned regardless of the contents of your database.

If your script is iterating through database rows and displaying them and you find that you have

far, far too many of those rows, the problem is very often a SQL join that has too few restrictions. As
a general rule, the number of restrictions in a WHERE clause should not be fewer than the number

of tables joined minus one. For example, the following query has three tables but only one joining
restriction:

"SELECT book.title FROM book, author, country
WHERE author.countryID = country.ID"

It is likely to return every possible book/author pair, without reference to whether the author wrote
the book, which is probably not what was intended.

Specific SQL Functions

A few specific functions seem to cause a higher than normal number of problems, especially in the
learning phase. These functions can send even the experienced PHP developer running to the online
manual to check the arguments and returned data types time and time again.

mysql_affected_rows() versus mysql_num_rows()

Both of these functions tell you how many rows of data your last SQL statement touched. However,
mysql_num_rows () works only on SELECT statements, while mysql_affected_rows () works
only on INSERT, UPDATE, and DELETE statements. The way to think about it is that SELECTs do not
affect (meaning change) any data that exists in the database.

Furthermore, mysql_affected_rows () takes an optional link identifier as the argument, whereas
mysql_num_rows () takes a nonoptional result resource. This means that you can only get a valid
result from mysql_affected_rows () until the moment you call another INSERT, UPDATE, or
DELETE. In contrast, if you use different variable names for your result resources, you can use
mysql_num_rows () anytime in the script. This code will help clarify the differences:

$1ink_id = mysql_connect($host, $user, $pass);

305

170 |l MySQL Database Integration

mysql_select_db($database, $Tink_id);

$query = "INSERT INTO mytable VALUES(NULL, '"$myval')";

$result_resource = mysql_query($query);
$test_insert = mysql_affected_rows();
// This should work and return 1

$queryl = "SELECT * FROM mytable";
$result_resourcel = mysql_query($queryl);
$test _select = mysql_num_rows($result_resourcel);

$query2 = "DELETE FROM mytable";
$result_resource2 = mysql_query($query?2);

$test _select2 = mysql_num_rows($result _resource?);
//Will not work

$test_delete = mysql_affected_rows();

//This will return the number of rows in the table;

// point you can no longer get the old result of 1

at this

$test_select_again = mysql_num_rows($result_resourcel);

//Should be the same as $test_select

mysql_result()

This function, which returns one value at a time from the database, is now used rather rarely. Unlike
mysql_fetch_row() and mysql_fetch_array(), withmysql_result you need to specify the
row and field of the value you're fetching as well as the result resource. Thus, you cannot do this:

// This won't work

while (mysql_result($result_resource)) {
// Some loop

}

/7 This will

$firstname = mysql_result($result_resourcel, 0, 'firstname');

You should really use this function only when you know you'll be fetching one or two pieces of data

(a user’s first name, for instance). Otherwise, the others are much faster.

OCI_Fetch()

When users of MySQL or SQL Server switch over to Oracle, they often have trouble with the OCI
fetching functions — particularly this one. Unlike most other database row-fetching functions, you
don’t immediately access the result of oci_fetch() via echo or some other PHP function. This
function fetches the result of a SQL statement into a result buffer — where it can be accessed via

0CIResult().
$query = "SELECT * from mytable";

$stmt = oci_parse($conn, $query);
$exec_result = oci_execute($stmt, OCI_DEFAULT);

306

? e At

MySQL Gotchas

$row2buffer = oci_fetch($stmt);
$myval = oci_result($stmt, "MYCOLUMN");
echo $myval;

This function should probably be thought of as analogous to mysq1_result () rather than mysql_
fetch_row(), or at best occupying a middle ground between the two. Similarly, it should only

be used when you are sure you will be fetching very small data sets. Otherwise, use oci_fetch_
array ()which returns an array.

Debugging and Sanity Checking

If you are nearing your wit’s end in trying to debug query-related errors and misbehavior, you may
find it extremely useful to compare the results of your PHP-embedded queries with the same queries
made directly to the database. If your technical setup permits actually running a SQL client directly
(for example, the mysql or Oracle command-line clients), as well as cross-program cutting and past-
ing, try this two-step process:

1. Insert a debugging statement in your PHP script that prints the query itself immediately
before it is actually used in a DB query call (for example, echo $query).

2. Directly paste that query from your browser output (or the HTML source) into your
SQL client.

Obviously, this advice applies only to code under development, not to code you are run-
ning in production. It might be okay to echo errors to the browser while you're develop-
ing something for the first time, but when it’s ready to go into production, you should make sure all
your echo () statements are replaced with error_1o0g() functions.

1f the query looks reasonable to you, but it breaks both in the SQL program and in PHP, then there
is some syntax or naming error in that SQL statement itself that you are missing, and your PHP code
is not to blame (unless, of course, your code constructed that query in the first place). Similarly, with
a dearth or overabundance of rows — if the behavior is the same in both places — the query is to
blame. If, on the other hand, the behavior in the SQL interpreter looks like what you wanted, then
the query is fine, and your suspicion should turn to your PHP code that actually sends that query
and processes the results.

One final and general tip is to study any error messages very carefully, paying attention to phrases
like Tink identifier and result resource identifier.In MySQL, the former means an iden-
tifier of a database connection, and the latter identifies the set of rows returned by a particular query.
It is easy to confuse the two, as in the following code:

$my_connection = mysql_connect('localhost', $myname, $mypass);
mysql_select_db('MyDB');
$result = mysqgl_query($my_query, $my_connection);
while ($row = mysql_fetch_row($my_connection)) {
// LOOP
}

307

Z1ie |8 MySQL Database Integration

This code will probably yield an error that contains the words not a valid result identifier.
The problem is that we are using the connection ID where the result ID should be. The resulting
error message is justified yet opaque.

Summary

PHP/database bugs are often not very deep or subtle but can still be difficult to diagnose. In general,
the earlier in a script you can detect trouble, the easier the diagnosis will be. Especially when you
are debugging, every statement that interacts with the database should have an associated error_
10g() clause, containing an informative error message.

By far, the most common cause of database-connection problems is incorrect arguments to the con-
nection function (hostname, username, password). The most common causes of failed queries are
quote faults, unbound variables, and simple misspellings.

If you have repeated failures with database queries that seem like they should be working, have your
code print out the query that it is sending to the DB; if possible, try making that very query to the
database directly. If the problem persists when PHP is out of the loop, you can safely restrict your
attention to database design and your understanding of SQL queries.

308

s d iy

— S e

More PHP

IN THIS PART

Introducing Object-Oriented PHP

Advanced Array Functions

Working with the Filesystem

Working with Cookies and
Sessions

Learning PHP Types

Learning PHP Advanced Functions

Performing Math with PHP

Securing PHP

Learning PHP Configuration

Handling Exceptions with PHP

Debugging PHP Programs

Learning PHP Style

here are many possible audiences for this chapter, including people

who know basic PHP but nothing about object-oriented program-

ming (OOP), and people who know all about OOP and nothing
about PHP. As usual, we aim to please everyone all at once, but be warned
that you may want to pick and choose from the sections.

We start with a quick and very general introduction to object-oriented
programming for those who are completely unfamiliar with it. If you are
already comfortable with OOP from another language, please skip this
section — it will not enlighten you (and might well enrage you). The sec-
tion “PHP Constructs for OOP” gets into the meat of the basic syntax and
behavior of PHP objects. Later in the chapter, we delve into more extended
examples and cover some of the more obscure issues and gotchas around
objects in PHP. Along the way, we offer a couple of sidebar meta-discus-
sions, about the merits of object-oriented PHP and the extent to which PHP
should be considered to be OOP.

In general in this chapter, we discuss OOP programming con-

structs as they are implemented in PHP5, which uses the new
and significantly improved Zend Engine 2 as its parser.

311

IN THIS CHAPTER

What is object-oriented
programming?

The basics of PHP OOP

Advanced topics: serialization
and introspection

Troubleshooting and style issues

2EVa Bl More PHP

312

What Is Object-Oriented
Programming?
So what is object-oriented programming (OOP) all about anyway? OOP turns out to be a very simple

idea, which (when taken seriously and built into the structure of programming languages) leads to
all sorts of more complicated elaborations.

The simple idea

The simple idea is this: Rather than creating data structures on the one hand and code on the other,
suppose that we reorganize everything so that associated pieces of code and data are bundled together?

The procedural approach

For example, imagine a conventional procedural (non-object-oriented) program for manipulating per-
sonal calendars, with the capability to display, update, and edit calendars. Somewhere in the code for
such a program, we would find the actual data definitions for representing someone’s appointments
for a particular month; somewhere else we would find code that did the right things to manipulate
that data. Typically, the only connection between the data type definitions and the manipulation code
is that a clever programmer has made sure that they get matched up appropriately.

Now imagine combining our calendar program with a recipe program (say that we want to plan our
meals in detail for an entire year). Again, there will be data structures somewhere that represent the
contents of the calendar, and other data structures that represent the contents of the recipes. The
data structures will use the basic data types of the programming language; for all we know, the top-
level type of a calendar might be an array, and the top-level type of a recipe might also be an array.
Somewhere else in the program there is code for digging into the data structures that represent cal-
endars and recipes and doing the right things with them. What is the connection between the data
structures and the code? Only that a careful programmer has made sure that the arrays that repre-
sent calendars and the arrays that represent recipes get fed to the appropriate manipulation code.
(Otherwise, we might find ourselves trying to schedule an appointment in Beef Stroganoff rather
than in March 2006.)

1f we think of procedural code as outlined like a book, the outline for the code we're talking about
might look like:
m Data definitions
Data definitions for calendars
Data definitions for recipes
m Data manipulation code
Code for calendars

Code for recipes

Introducing Object-Oriented PHP

The object-oriented approach

The most basic version of OOP reorganizes the procedural approach by grouping associated pieces
of code and data together into conceptual units. This means that we replace the outline in the pre-
ceding subsection with:

m Calendars
Data definitions
Manipulation code
B Recipes
Data definitions

Manipulation code

This organizational inversion is the heart of object-oriented programming.

But so what (we can hear you say)? If we're just talking about a way to organize code, we could do
that without any special terminology or programming languages. In normal procedural code, we
can organize function definitions and data type definitions in any order we want to. For example,
we could put all the data type definition code into one directory and all the manipulation code into
another (a procedural organization), or we could put all the calendar code into one directory and all
the recipe code into another (an object-oriented organization).

Object-oriented programming begins to be interestingly different from procedural programming,
however, once the programming language itself is set up to make it easy to organize things in an
object-oriented way. (See the sidebar “Do Web-Scripting Languages Really Need OOP?” for a dis-
cussion of how useful this organization is in languages like PHP.) The most basic form this takes is
that data objects can be built out of local functions as well as local data. For example, as we build a
data structure that represents a calendar, we can include the data members that are needed (struc-
tures to represent days, months, years, appointments) but also the functions that will be needed
(new_appointment(), calendar_display(), and so forth). These functions are (in some sense)
stored locally in the object definition itself. A calendar doesn’t have an ingredient list, and a recipe
doesn’t have 31 days; similarly, a calendar object doesn’t have a print_ingredients() function,
and a recipe doesn’t have a new_appointment () function. Finally, of course, the data members in
an object may themselves be objects of a different type.

Bundling code and data together into units is the basic idea, and OOP languages always offer some
support for this kind of bundling. However, most OOP languages take things further and offer one
or more of the following elaborations that give OOP even more leverage. (See the sidebar “How OO
Is PHP?” for a discussion of the extent to which PHP itself has these features.)

Elaboration: objects as data types

In addition to allowing us to store functions in our data, a good OO programming language lets us
define these combinations as genuinely new data types that the language supports like any other type.

313

2EVa Bl More PHP

Do Web-Scripting Languages Really Need OOP?

he object-oriented revolution has not been without controversy. Although many programmers embraced

OOP quickly, others preferred the procedural approach they were used to and wondered aloud if the
extra machinery needed to support OOP wasn’t more trouble than it was worth. Still, there’s no doubt that
the revolution has largely succeeded. Most of the popular programming languages in use today are either
fully object oriented or have object-oriented extensions. Also, at least some of the promises about improved
productivity and increased code reuse seem to have been realized, as design methodologies like the Unified
Modeling Language (UML) and patterns gain greater influence, and as people get more used to subclassing as
a standard way to reuse and extend vendor-supplied libraries.

We feel that the benefits of OOP for “major” (that is, compiled) programming languages like Java and C++ are
clear. On the other hand, we feel that the benefits of OOP for scripting languages (like Perl and PHP) are less
obvious and are most debatable in the case of web-scripting (PHP).

How is web scripting different from other kinds of programming tasks? The most obvious difference is simply
that web scripts typically execute quickly and then go away. In other programming situations, you may have
RAM-resident objects that live for hours or days and undergo complex evolutions of state that affect their
behavior. A typical web script, on the other hand, might execute for half a second, as it serves up a particular
page, and then dies happy. You may knit these scripts together to provide a more extended user experience
(using databases, sessions, cookies), but often such efforts are all about making the experience outlive any
PHP objects that may be created. More generally, scripting languages like PHP and Perl typically have a less
thoroughgoing implementation of OOP than languages like Java, C++, and Smalltalk, and the limitations of
implementation make these OOP extensions less attractive. (For more detail, see the sidebar “How OO is
PHP?” later in this chapter.)

This is not to say that there aren’t still benefits of OOP in PHP. In addition to the conceptual benefits that may
result from structuring code in an object-centered way, there are two good reasons to use PHP objects: 1) It's
a good way to distribute third-party code for reuse; 2) Many programmers who are used to OO syntax from
other languages won't feel comfortable unless they can use the same idioms in PHP.

But our main point is that use of PHP constructs for OOP is a very “tradeoffy” and pragmatic decision, which
we have often seen made more on the basis of religion or fashion. If you are comfy with OO, this kind of
syntax is there for you, and if you work in a group that has decided to write in that style, you may want to let
the majority rule. If you decide not to go OO, however, be strong — we urge you not to be swayed by the
moral-superiority arguments you may hear from people who disdain your five-line procedural script in favor
of their ten-line OO script that does exactly the same task.

After such a type is defined, we can create as many such objects as we like, just as we can create as

314

many integers as we like given the integer type. In object-oriented terminology, the term class is used
to refer to the general type definition, which specifies the data members and member functions that
each instance of that class should have.

The term object (or instance) refers to any individual instance of the type. For example, after we
define a class called Calendar (which specifies the different kinds of data and functions that every
self-respecting calendar should have), we can make any number of Calendar objects (which might
be associated with individual people).

Introducing Object-Oriented PHP

Elaboration: Inheritance

After we've written a program that uses the class Calendar, we might want to make a more specific
version of the program for a particular purpose. What we would really like to do is copy most of the
code from the Calendar class but change it in just a few places, so that it prints differently or has

a culturally appropriate set of holidays or allows us to schedule appointments to the second rather
than to the hour.

This desire is common enough that OOP offers a mechanism to support it called inheritance. The
basic idea is that you can define a class in terms of another class and then specify only the things
that you want to be different in your own class. If you view the original class as the parent, the
default is that both function definitions and data definitions are inherited by your child class unless
you specify otherwise. This turns out to be a powerful technique for reusing class definitions. (As
you will see in the “Basic PHP Constructs for OOP” section, OOP in PHP supports inheritance.)

Elaboration: Encapsulation

Part of the point of segregating both data and functions into objects is to reduce the complexity

of programming by reducing unnecessary interactions. There is no reason why calendars should
have to know about the internals of cooking recipes, or vice versa. So some OOP languages actu-
ally enforce information barriers between objects — after the programmer has defined which parts
of recipes and calendars are purely internal and private to those classes, the language actually for-
bids code that is external to an object from messing with an object’s internal workings. This kind

of information-hiding is called encapsulation, and although this sounds restrictive, it can be a good
source of clarity. In particular, if the programmer who designed a particular class knows that some
parts of its workings have been designed to be private in this sense, the programmer also knows that
those parts can be redesigned without checking with everyone who might be using that class’s code.
Support for encapsulation existed for the first time in PHP5, which incorporates Zend Engine 2.
You'll see how to use encapsulation later in this chapter.

Elaboration: Constructors and destructors

After you have defined a class, you can make as many instances of it as you like. Each time you cre-
ate such an instance, your favorite OOP language allocates memory to store the instance in, and
gives you some way to refer to that instance later in the program. There are frequently a number of
initialization steps you want to take every time you make an object of that class. Constructor func-
tions offer a way to build that set of steps into the class definition. The standard way to create a new
instance is to call a constructor function (which usually has the same name as the class and which
you can customize to do all the necessary initialization).

Destructors are the opposite of constructors and specify all the cleanup actions that should happen
when an object is dispensed with.

PHP has offered constructor functions since version 4.2 (which makes sense, because you can't have
object orientation without having constructors). The language acquired explicitly definable and call-
able destructors only in PHP5 (destruction of classes was handled only in an automatic way before
then). Again, these functions are covered later in this chapter.

315

2EVa Bl More PHP

Terminology

There are some standard terms in OOP parlance for all the concepts we have talked about thus far,
and we will be using them for the rest of the chapter. (Several of these terms have alternate names,
which we include in parentheses.)

Class: This is a programmer-defined data type, which includes local functions as well
as local data. You can think of a class as a template (or mold, or form) for making many
instances of the same kind (or class) of object.

Object: (Also known as object instance, or instance.) An individual instance of the data
structure defined by a class. You define a class once and then make many objects that
belong to it.

Member variable: (Also known as propetty, attribute, or instance variable.) One of the com-
ponent pieces of data in a class definition.

Member function: (Also known as method.) A member that happens to be a function.

Inheritance: The process of defining a class in terms of another class. The new (child)
class has all the member data and member function definitions from the old (parent) class
by default but may define new members or “override” parent functions and give them new
definitions. We say that class A inherits from class B if class A is defined in terms of class B
in this way.

Parent class (or superclass or base class): A class that is inherited from by another class.

Child class (or subclass or derived class): A class that inherits from another class.

How OO is PHP?

H ow “object-oriented” is PHP? Your answer to that question probably depends on your particular litmus
tests for object-orientedness. In this sidebar, we offer a whirlwind tour of features that typically show up in
OOP languages and briefly discuss the extent to which PHP supports them. Some of these issues are explored
more broadly in the section “Advanced OOP Features,” later in this chapter. (Note: This sidebar is really only
of interest to developers who are coming to PHP from a different OO language; everyone else may want to
skip this game of buzzword bingo.)

Single inheritance

PHP allows a class definition to inherit from another class, using the extends clause. Both member variables
and member functions are inherited.

Multiple inheritance

PHP offers no support for multiple inheritance as in Java. Each class inherits from, at most, one parent class
(though a class may implement many interfaces).

316

Introducing Object-Oriented PHP

Constructors

Every class can have one constructor function, which in PHP is called __construct (). Note that there are
two underscore characters at the front of that function name. Because prior to PHP5 (under Zend Engine 1),
a class’s constructor function had the same name as the class, PHP still allows (but discourages) that strategy
for purposes of backward compatibility. Constructors of parent classes are not automatically called but must
be invoked explicitly.

Destructors

PHP supports explicit destructor functions as of version 5. The destructor function of a class is always called
SN € SErUGEE)Y

Encapsulation/access control

PHP supports public, private, and protected variables and member functions as of version 5.

Polymorphism/overloading

PHP supports polymorphism in the sense of allowing instance of subclasses to be used in place of parent
instances. The correct member function will be dispatched to at runtime. There is no support for method
overloading, where dispatch happens based on the method’s signature — each class only has one member
function of a given name. However, PHP’s weak typing and support for variable numbers of arguments makes
workarounds possible. See the section “Simulating polymorphism” later in this chapter (in the section “Advanced
OOP Features”).

Early versus late binding

Two equally good answers are: (1) The question doesn’t arise, because of PHP being loosely typed, and (2) All
binding is late. In PHP, values are typed but variables are not, so there is no question about what method to
call when the variable is of a different type than the value.

Static (or class) functions

PHP offers static member variables and static methods as of version 5. It is also possible to call member func-
tions via the Classname: : function() syntax.

Introspection

PHP offers a wide variety of functions here, including the capability to recover class names, member function
names, and member variable names from an instance. (See the section “Introspection Functions,” later in this
chapter.)

Namespaces

PHP6 offers namespaces; these define the area in which an identifier, such as a variable, is unique. For example,
a variable named $f oo inside of a private namespace is different from a global variable $foo.

317

2EVa Bl More PHP

Basic PHP Constructs for OOP

In this section, we cover the basic PHP syntax for OOP from the ground up, with some simple
examples.

Defining classes

The general form for defining a new class in PHP is as follows:

class myclass extends myparent {
public $varl;

public $var2 = "constant string";

public function myfunc ($argl, $arg2) {
[..]

}

[..]

}
The form of the syntax is as described, in order, in the following list:

B The special form class, followed by the name of the class that you want to define.

B An optional extension clause, consisting of the word extends and then the name of the
class that should be inherited from.

B A set of braces enclosing any number of variable declarations and function definitions.
Variable declarations start with the special form public, private, or protected, which
is followed by a conventional $ variable name; they may also have an initial assignment to
a constant value. Function definitions look much like standalone PHP functions but are
local to the class.

As an example, consider the simple class definition in Listing 20-1, which prints out a box of text
in HTML.

LISTING 20-1

TextBox.php

class TextBoxSimple {
public $body_text = "my text";
function display() {
print ("<TABLE BORDER=1><TR><TD>$this->body_text");
print("</TD></TR></TABLE>");
}
}

318

Introducing Object-Oriented PHP

This is an extremely simple class definition. It has no parent (and, therefore, no extends clause).
It has a single member variable (the variable $body_text) and a single member function (the
function display ()). The display function simply prints out the text variable, wrapped up in an
HTML table definition.

Accessing member variables

In general, the way to refer to a member variable from an object is to follow a variable containing the
object with -> and then the name of the member. So if we had a variable $box containing an object
instance of the class TextBox, we could retrieve its body_text variable with an expression like:

$text_of_box = $box->body_text;

However, when we are writing code within a member function, we haven't yet created the object
instance, and so we have no variable like $box to refer to. The answer is the magic variable $this,
which (when used inside a member function of a class) refers to the object instance itself. Note that this
is how the display () function in Listing 20-1 retrieves the text it displays ($this->body_text).

This syntax can be a little counterintuitive. You might think that we could simply refer to $body_text
in functions within our TextBox class because we have declared it in the class definition, but in fact the
only way to get to members from within a member function definition is via $th1is. Notice also that the
syntax for this access does not put a $ before the member variable name itself, only the $this variable.

Creating instances

After we have a class definition, the default way to make an instance of that class is by using the new
operator. If we have already defined the class TextBox as in Listing 20-1, we can make an instance
of it, and then use it, like this:

$box = new TextBoxSimple;
$box->display();

The result of evaluating this code will be to print an HTML fragment containing a table definition
enclosing the text my text. (Not especially useful, but it’s a start.)

Constructor functions

One way in which our TextBox class is not very useful is that its instances do not contain any data
when they are created, except for the static initialization of the variable $body_text. The point of
such a class would be to display arbitrary pieces of text, not the same message every time. It’s true that
we could make an instance and then install the right data in the instance’s internal variables, like this:

$box = new TextBoxSimple;
$box->body_text = "custom text";
$box->display();

But that would be cumbersome and error-prone as we build more complex objects.

319

2EVa Bl More PHP

LISTING 20-2

The correct way to arrange for data to be appropriately initialized is by writing a constructor func-
tion — a special function called __construct (), which will be called automatically whenever a
new instance is created.

Modifying our previous example to include a constructor function gives us Listing 20-2.

TextBox redefined

class TextBox f

}

public $body text = "my text";

// Constructor function

public function __construct($text_in) {
$this->body_text = $text_in;

}

function display() {
print ("<TABLE BORDER=1><TR><TD>$this->body_text");
print("</TD></TR></TABLE>");

}

// creating an instance
$box = new TextBox("custom text");
$box->display();

320

As the preceding code is executed, the output is an HTML table enclosing the text custom text.

[RS8 There should be only one constructor function per class definition. Defining
more than one such function is syntactically legal, but pointless, as only the defi-
nition that occurs last will be in effect. If you'd like to have different constructors to handle different
numbers and types of input arguments, see the section “Simulating Polymorphism” later in this chapter.

Inheritance

PHP class definitions can optionally inherit from a parent class definition by using the extends
clause. The syntax is:

class Child extends Parent {
<definition body>
}

The effect of inheritance is that the child class (or subclass or derived class) has the following
characteristics:

B Automatically has all the member variable declarations of the parent class (or superclass or
base class)

B Automatically has all the same member functions as the parent, which (by default) will
work the same way as those functions do in the parent

Introducing Object-Oriented PHP

In addition, the child class can add on any desired variables or functions simply by including them
in the class definition in the usual way.

In Listing 20-2, we defined a class called TextBox; now we’ll define a class called TextBoxHeader
that extends TextBox (see Listing 20-3). TextBoxHeader has two member variables: one ($body_
text) that it receives through inheritance from TextBox, and another ($header_text) that it
defines itself. Like TextBox, it has a constructor function and a function called display. This func-
tion definition overrides the display function in TextBox.

LISTING 20-3

TextBoxHeader

class TextBoxHeader extends TextBox
{
public $header_text;

// CONSTRUCTOR
public function __construct($header_text_in,
$body_text_in) {
$this->header_text = $header_text_in;
$this->body_text = $body_text_in;
}

// MAIN DISPLAY FUNCTION

public function display() {
$header_html =

$this->make_header($this->header_text);

$body_html = $this->make_body($this->body_text);
print("<TABLE BORDER=1><TR><TD>\n");
print("$header_html\n");
print ("</TD></TR>CTR>KTD>\n");
print("$body_html\n");
print("</TD></TR></TABLE>\n");

}

// HELPER FUNCTIONS

public function make_header ($text) {
return($text);

}

public function make_body ($text) ({
return($text);

}

}

321

2EVa Bl More PHP

322

Overriding functions

Function definitions in child classes override definitions with the same name in parent classes. This
just means that the overriding definition in the more specific class takes precedence and will be the
one actually executed. In the example in Listing 20-3, the TextBoxHeader class defines a function
called display (), which means that executing the following code:

$text_box_header = new TextBoxHeader("The Header", "The Body");
$text_box_header->display();

will result in a call to TextBoxHeader's display () function, not the display() function in
TextBox. The resulting HTML output prints a box with a header of The Header and a body of The
Body. The more specific display () function takes total responsibility here; there is no call, either
explicit or implicit, to the display () function defined in the TextBox class. (Although PHP makes
no such implicit calls, it is possible to explicitly call functions that have been defined in a parent
class — see “Calling parent functions” in the “Advanced OOP Features” section later in the chapter.)

The flip side of overriding functions, however, is that whenever a subclass does not override a
parental definition, the parent’s definition will be in effect. Note that the “helper” functions in the
definition of TextBoxHeader don't really do anything interesting, and you might wonder why we
bothered to separate them out. The answer is that this provides an opportunity for an inheriting
class to do something interesting with those functions by selectively overriding them — or not, as
they see fit.

PHPS5 (as a result of Zend Engine 2) introduced the final keyword. If, in the previous example, the
definition of display() in class TextBox had looked like this:

final function display() {
print ("<TABLE BORDER=1><TR><TD>$this->body_text");
print ("</TD></TR></TABLE>");
}

then the method could not have been overridden by a definition in TextBoxHeader.

It is possible to declare whole classes final and individual methods, but not individual properties.

Chained subclassing

PHP does not support multiple inheritance but does support chained subclassing. This is a fancy way
of saying that, although each class can have only a single parent, classes can still have a long and
distinguished ancestry (grandparents, great-grandparents, and so on). Also, there’s no restriction on
family size; each parent class can have an arbitrary number of children.

As example, see Listing 20-4, where our definition of TextBoxBoldHeader inherits from
TextBoxHeader, which in turn inherits from TextBox.

Introducing Object-Oriented PHP

TextBoxBoldHeader

class TextBoxBoldHeader extends TextBoxHeader {

// CONSTRUCTOR
public function __construct($header_text_in,
$body_text_in) {
$this->header_text = $header_text_in;
$this->body_text = $body_text_in;
}

// HELPER FUNCTIONS

// make_header overrides parent

public function make_header ($text) {
return("$text");

}

This definition of TextBoxBoldHeader is minimal; it defines no new member variables and defines
only one function besides its constructor. That new function (make_header()) overrides the defini-
tion in its parent. Now what happens when we actually use this definition in the usual way?

$text_box_bold_header =
new TextBoxBoldHeader("The Header", "The Body");
$text_box_bold_header->display();

It's worth looking in a bit of detail to see exactly what happens when we make these two function calls.

First, when we call the constructor (TextBoxBoldHeader ()), the constructor sets variables that
were defined in the grandparent (TextBox) and the parent (TextBoxHeader), respectively, and
returns a new instance of TextBoxBoldHeader.

Second, when we call $text_box_bold_header->display(), the call sequence is:

1. Nodisplay() function is found in TextBoxBoldHeader, so the version from
TextBoxHeader is called.

2. The first function call in that version of display () isto $this->make_header().
Remember that $this refers to the object instance that we started with, which happens to
be an instance of TextBoxBoldHeader, so PHP looks first of all for a definition from that
class. It finds one and uses it to return the header string wrapped up in the HTML bold
text construct ().

3. The second function call is to $this->make_body (). This time, though, there is no over-
riding definition in TextBoxBoldHeader, so the version from TextBoxHeader is used.

323

2EVa Bl More PHP

The upshot is that, in defining TextBoxBoldHeader, we mostly exploited the behavior of the par-
ent class but were able to change its behavior slightly by overriding a single member function.

Modifying and assigning objects
Prior to PHP5, when you assigned an object to a variable or passed it to a function, that object was

actually copied, bit for bit, into the variable or function scope. That caused tremendous hassles, and
programmers had to be careful to devise clever workarounds for the problems.

The problem was solved with PHP5, which incorporates Zend Engine 2. Zend Engine 2 copies by
reference, rather than explicitly. That is, several variables can point to the exact same object and
expect changes made via one reference to be reflected in the others.

Scoping issues

Before we move onto the more advanced features of PHP’s version of OOP, it’s important to nail
down issues of scope — that is, which names are meaningful in what way to different parts of our
code. It may seem as though the introduction of classes, instances, and member functions have
made questions of scope much more complicated. Actually, though, there are only a few basic rules
we need to add to make OOP scope sensible within the rest of PHP:

m Names of member variables and member functions are never meaningful to calling code
on their own — they must always be reached via the -> construct (or, as we'll see in the
“Advanced OOP Features” section, the : : construct). This is true both outside the class
definition and inside member functions.

B The names visible within member functions are exactly the same as the names visible
within global functions — that is, member functions can refer freely to other global func-
tions but can’t refer to normal global variables unless those variables have been declared
global inside the member function definition.

These rules, together with the usual rules about variable scope in PHP, are respected in the inten-
tionally confusing example in Listing 20-5. What number would you expect that code to print when
executed?

LISTING 20-5

Confusing scope

$my_global = 3;

public function my_function ($my_input) f{
global $my_global;
return($my_global * $my_input);

}

324

Introducing Object-Oriented PHP

class MyClass {
protected $my_member;
function __ construct($my_constructor_input) f{
$this->my_member =
$my_constructor_input;
}
public function myMemberFunction ($my_input) {
global $my_global;
return($my_global *
$my_input *
my_function($this->my_member));
}
}

$my_instance = new MyClass(4);
print("The answer is: "
$my_instance->myMemberFunction(5));

The answer is: 180 (or 3 * 5 * (3 * 4)). If any of these numerical variables had been undefined when
multiplied, we would have expected the variable to have a default value of 0, making the answer
have a value of 0 as well. This would have happened if we had:

B Left out the global declaration in my_function()

B Left out the global declaration in myMemberFunction()

B Referred to $my_member rather than $this->my_member

Advanced OOP Features

In the previous section, we presented a minimal subset of PHP’s object-oriented constructs that
let you use the most basic OOP techniques. In this section, we look at some of the slightly more
unusual constructs, techniques, and gotchas that can get you into more trouble. (We defer any
discussion of the functions that give meta-information about classes and objects to the section
“Introspection Functions,” later in this chapter.)

Public, Private, and Protected Members

Unless you specify otherwise, properties and methods of a class are public. That is to say, they may
be accessed in three possible situations:

B From outside the class in which it is declared
B From within the class in which it is declared

m From within another class that implements the class in which it is declared

325

2EVa Bl More PHP

326

1f you wish to limit the accessibility of the members of a class, you should use private or
protected.

Private members

By designating a member private, you limit its accessibility to the class in which it is declared. The
private member cannot be referred to from classes that inherit the class in which it is declared and
cannot be accessed from outside the class.

Making a member private is straightforward:

class MyClass {

private $color0fSky = "blue";
$nameO0fShip = "Java Star";

public function __construct($incomingValue) {

// Statements here run every time an instance of the class
// is created.

}

public function myPublicFunction ($my_input) ({
return("I'm visible!");
}

private function myPrivateFunction ($my_input) {
global $my_global;
return($my_global *
$my_input *
my_function($this->my_member));

}

When that class is inherited by another class (using extends), myPublicFunction() will be vis-
ible, as will $name0fShip. The extending class will not have any awareness of or access to myPri -
vateFunction, because it is declared private.

Protected members

A protected property or method is accessible in the class in which it is declared, as well as in classes
that extend that class. Protected members are not available outside of those two kinds of classes,
however.

Here is a different version of MyClass:
class MyClass {

protected $colorOfSky = "blue";

Introducing Object-Oriented PHP

$name0fShip = "Java Star";

public function __construct($incomingValue) {
// Statements here run every time an instance
// of the class is created.

}

public function myPublicFunction ($my_input) {
return("I'm visiblel!");
}

protected function myProtectedFunction ($my_input) {
global $my_global;
return($my_global *
$my_input *
my_function($this->my_member));

}

If we had another class that extended MyClass, it would be able to see and use $color0fSky and
myProtectedFunction(), just as if they were public. It would not, however, be possible to call
MyClass::$color0fSky. You'll read more about the :: syntax later in this chapter.

Interfaces

In large object-oriented projects, there is some advantage to be realized in having standard names
for methods that do certain work. For example, if many classes in a software application needed to
be able to send e-mail messages, it would be desirable if they all did the job with methods of the
same name and had the same number and type of arguments.

interface Mail {
public function sendMail();
}

Then, if another class implemented that interface, like this:

class Report implements Mail {
// Definition goes here
}

it would be required to have a method called sendMai 1. It’s an aid to standardization.

Constants

A constant is somewhat like a variable, in that it holds a value but is really more like a function
because a constant is immutable. Once you declare a constant, it does not change. Declaring one is
easy, as is done in this version of MyClass:

327

2EVa Bl More PHP

328

class MyClass f
const requiredMargin = 1.3;

function __construct($incomingValue) {

// Statements here run every time an instance of the class
// is created.

}

}

In that class, requiredMargin is a constant. It is declared with the keyword const, and under no
circumstances can it be changed to anything other than 1. 3. Note that the constant’s name does not
have a leading $, as variable names do.

Abstract Classes

An abstract class is one that cannot be instantiated, only inherited. You declare an abstract class
with the keyword abstract, like this:

abstract class MyAbstractClass {

abstract function myAbstractFunction() {
}

}

Note that function definitions inside an abstract class must also be preceded by the keyword
abstract. Itis not legal to have abstract function definitions inside a nonabstract class.

Simulating class functions

Some other OOP languages make a distinction between instance member variables, on the one hand,
and class or static member variables on the other. Instance variables are those that every instance of a
class has a copy of (and may possibly modify individually); class variables are shared by all instances
of the class. Similarly, instance functions depend on having a particular instance to look at or
modify; class (or static) functions are associated with the class but are independent of any instance
of that class.

In PHP, there are no declarations in a class definition that indicate whether a function is intended
for per-instance or per-class use. But PHP does offer a syntax for getting to functions in a class even
when no instance is handy. The : : syntax operates much like the -> syntax does, except that it
joins class names to member functions rather than instances to members. For example, in the fol-
lowing implementation of an extremely primitive calculator, we have some functions that depend on
being called in a particular instance and one function that does not:

class Calculator

Introducing Object-Oriented PHP

public $current = 0;
public function add($num) {
$this->current += $num;
}
public function subtract($num) {
$this->current -= $num;
}
public function getValue() {
return($current);
}
public function pi() {
return(M_PI); // the PHP constant
}
}

We are free to treat the pi () function as either a class function or an instance function and access it
using either syntax:

$calc_instance = new Calculator;
$calc_instance->add(2);
$calc_instance->add(5);
print("Current value 1is

$calc_instance->current ."
");
print("Value of pi is " .

$calc_instance->pi() . "
");
print("Value of pi is "

Calculator::pi() . "
");

This means that we can use the pi () function even when we don't have an instance of Calculator
at hand. The Calculator class has to be accessible in either case, though, meaning that it has to
have been imported with a require_once statement, or something similar.

Calling parent functions

Asking an instance to call a function will always result in the most specific version of that function
being called, because of the way overriding works. If the function exists in the instance’s class, the
parent’s version of that function will not be executed.

Sometimes it is handy for code in a subclass to explicitly call functions from the parent class, even if
those names have been overridden. It’s also sometimes useful to define subclass functions in terms
of superclass functions, even when the name is available.

Calling parent constructors

In the section “Inheritance” earlier in this chapter, we showed you code (see Listing 20-3) where
both subclass and superclass had constructors, and both constructors set a variable that was defined

329

2EVa Bl More PHP

330

by the superclass. This might be stylistically dodgy, but more importantly, we would like to avoid
duplicating work across the two constructors, especially if a lot of code is involved.

Instead of writing an entirely new constructor for the subclass, let’s write it by calling the parent’s
constructor explicitly and then doing whatever is necessary in addition for instantiation of the sub-
class. Here’s a simple example:

class Name

{
public $_firstName;
public $_TastName;

public function __construct($first_name, $last_name)
{

$this->_firstName = $first_name;

$this->_TastName = $last_name;
t
public function rename() {

return($this->_lastName

$this->_firstName);
}
}

class NameSubl extends Name
{
public $_middlelnitial;
public function NameSubl($first_name, $middle_initial,
$1ast_name) {
Name::Name($first_name, $last_name);
$this->_middlelnitial = $middle_initial;
t
public function rename() {

return(Name: :rename() . .
$this->_middleInitial);

}

In this example, we have a parent class (Name), which has a two-argument constructor, and a sub-
class (NameSub1), which has a three-argument constructor. The constructor of NameSub1 functions
by calling its parent constructor explicitly using the : : syntax (passing two of its arguments along)
and then setting an additional field. Similarly, NameSub1 defines its nonconstructor rename () func-
tion in terms of the parent function that it overrides.

It might seem strange to call Name: : Name () here, without reference to $this. The good news is
that both $this and any member variables that are local to the parent are available to a parent func-
tion when invoked from a child instance.

Introducing Object-Oriented PHP

Automatic calls to parent constructors

In a sense, constructor functions in a subclass override the constructors in superclasses. (We say “in
a sense” because we usually only say that one function overrides another if the two functions have
the same name; a subclass constructor and a superclass constructor always have different names.)

As you saw in the previous section, if you want both the subclass constructor and the superclass
constructor to be called, you must include code in the subclass to call the superclass code explicitly.
Beginning with PHP4, if a subclass lacks a constructor function and a superclass has one, the super-
class’s constructor will be invoked. The most specific constructor that can be found (if any) will be
called — anything else is up to the programmer.

Simulating method overloading

One neat trick offered by some OOP languages (and not offered by PHP) is automatic overloading
of member functions. This means that you can define several different member functions with the
same name but different signatures (number and types of arguments). The language itself takes care
of matching up calls to those functions with the right version of the function, based on the argu-
ments that are given.

PHP does not offer such a capability, but the loose typing of PHP lets you take care of one half of the
overloading equation — you can define a single function of a given name that behaves differently
based on the number and types of arguments it is called with. The result looks like an overloaded
function to the caller (but not to the definer).

Here’s an example of an apparently overloaded constructor function:

class MyClass

{

public $string_var = "default string";
public $num_var = 42;

public function __construct($argl) {
if (is_string($argl)) f
$this->string_var = $argl;
1
elseif (is_int($argl) ||
is_double($argl)) f{
$this->num_var = $argl;
}
}
}

$instancel = new MyClass("new string");
$instance2 = new MyClass(5);

331

2EVa Bl More PHP

332

The constructor of this class will look to its caller as though it is overloaded, with different behavior

based on the type of its inputs. You can also vary behavior based on the number of arguments by

testing the number of arguments supplied by the caller.

S" For information on writing functions with variable numbers of arguments, see Chapter 26.
tlise==ll The techniques work the same way with member functions in classes as they do with stand-

alone user-defined functions.

Serialization

Serialization of data means converting it into a string of bytes in such a way that you can produce
the original data again from the string (via a process known, unsurprisingly, as unserialization). After
you have the ability to serialize/unserialize, you can store your serialized string pretty much any-
where (a system file, a database, and so on) and recreate a copy of the data again when needed.

PHP offers two functions, serialize() and unserialize(), which take a value of any type
(except type resource) and encode the value into string form and decode again, respectively. The
PHP3 implementation of object serialization wasn't very useful because member function definitions
didn’t survive the serialization/unserialization process; beginning with version 4, however, PHP
robustly recreates all important aspects of the instance from the string, as long as the class definition
is available to the code where unserialize() is called.

Here is a quick example, which we’ll extend later in this section:

class ClassToSerialize {
public $storedStatement = "data";
public function __construct($statement) ({
$this->storedStatement = $statement;
}
public function display ()
{
print($this->storedStatement . "
");
}
}

$instancel =

new ClassToSerialize("You're objectifying mel");
$serialization = serialize($instancel);
$instance?2 = unserialize($serialization);
$instance2->display();

This class has just one member variable and a couple of member functions, but it’s sufficient to dem-
onstrate that both member variables and member functions can survive serialization. We create an
object, convert it to a serialized string, convert it back to a new instance, and the printed result is
the accurate complaint (You're objectifying mel).

Of course, there is no point in serializing and unserializing an object in the same script.
Serialization is only worthwhile when we expect the serialized string to outlive the script (and the

Introducing Object-Oriented PHP

variable) that it currently lives in and be reincarnated in another execution. This may be because we
store the serialization in a file or a database and read it back in again. It can also happen automati-
cally as a result of PHP’s session mechanism — variables that are registered as belonging to a session
will be serialized and unserialized from page to page.

7

CROSS-R

= For more on how the session mechanism uses serialization, see Chapter 26.

Sleeping and waking up

PHP provides a hook mechanism so that objects can specify what should happen just before
serialization and just after unserialization. The special member function __sTeep () (that’s two
underscores before the word s1eep), if defined in an object that is being serialized, will be called
automatically at serialization time. It is also required to return an array of the names of variables
whose values are to be serialized. This offers a way to not bother serializing member variables that
are not expected to survive serialization anyway (such as database resources) or that are expensive
to store and can be easily recreated. The special function __wakeup () (again, two underscores)

is the flip side — it is called at unserialization time (if defined in the class) and is likely to do the
inverse of whatever is done by __sleep() (restore database connections that were dropped by
__sleep() or recreate variables that __sleep() said not to bother with).

You may wonder why these functions are necessary — couldn’t the code that calls serialize()
also just do whatever is necessary to shut down the object? Actually, it’s very much in keeping with
OOP to include such knowledge in the class definition rather than expecting the code using the
objects to know about their special needs. Also the calling code may have no knowledge of the
object’s internals at all (as in the code that serializes all session objects). The author of the class is
uniquely qualified to say what should happen when an instance is sent away or revived.

As an example of how to use these functions, here is the previous serialization example, augmented
with an extra variable, and the __sleep() and __wakeup() functions:

class ClassToSerialize? {
public $storedStatement = "data";
public $easilyRecreatable = "data again";
public function __construct($statement) ({
$this->storedStatement = $statement;
$this->easilyRecreatable =
$this->storedStatement . " Again!";
}
public function __sleep() {
// Could include DB cleanup code here
return array('storedStatement');
}
public function __wakeup() {
// Could include DB restoration code here
$this->easilyRecreatable =
$this->storedStatement . " Again!";

333

2EVa Bl More PHP

334

public function display ()
{
print($this->easilyRecreatable . "
");
}
}

$instancel =

new ClassToSerialize2("You're objectifying me!l");
$serialization = serialize($instancel);
$instance?2 = unserialize($serialization);
$instance2->display();

The variable called $easilyRecreatable is meant to stand in for a piece of data that is (1) expen-
sive to store and (2) implied by the other data in the class anyway. The definition of __sTeep()
does no cleanup itself, but it returns an array that contains only one variable name and does not
include easilyRecreatable. At serialization time, only the value of the variable storedState-
ment is included in the string. When the object is recreated, the __wakeup () function assigns a
value into $this->easilyRecreatable, which is then displayed: You're objectifying me!
Again!

Serialization gotchas

The serialization mechanism is pretty reliable for objects, but there are still a few things that can trip
you up:

B The code that calls unserialize() must also have loaded the definition of the relevant
class. (This is also true of the code that calls serialize() too, of course, but that will
usually be true because the class definition is needed for object creation in the first place.)

B Object instances can be created from the serialized string only if it is really the same string
(or a copy thereof). A number of things can happen to the string along the way, if stored
in a database (make sure that slashes aren’t being added or subtracted in the process), or if
passed as url or form arguments. (Make sure that your URL-encoding/decoding is pre-
serving exactly the same string and that the string is not long enough to be truncated by
length limits.)

m If you choose to use __sleep(), make sure that it returns an array of the variables to
be preserved; otherwise no variable values will be preserved. (If you do not definea ___
sTeep() function for your class, all values will be preserved.)

Introspection Functions

While PHP lacks some features of full OO languages like Java or C++, it is surprisingly good in the
esoteric area of introspection. (It's the classes and objects that get introspective here, not the pro-
grammer.) Introspection allows the programmer to ask objects about their classes, ask classes about

Introducing Object-Oriented PHP

their parents, and find out all the parts of an object without have to crunch the source code to do it.
Introspection also can help you to write some surprisingly flexible code, as you will see.

Function overview

Most of this section will be example-driven, but we begin by looking at the introspection functions
provided by PHP. Table 20-1 summarizes these functions, what they do, and what version of PHP
introduced them. (This table is essentially a reframing of information from the online manual; we
offer it here mainly because it highlights features that we found somewhat confusing the first time
we studied the manual.)

TABLE 20-1

Class/Object Functions

Function Description Operates Operates As of PHP
on Class on Version
Names Instances

get_class() Returns the name of the class an No Yes 4.0.0

object belongs to.

get_parent_ Returns the name of the parent class Yes (as Yes 4.0.0,

class() of the given instance or class. of PHP 4.0.5
v.4.0.5)

class_ Returns TRUE if the string argument is Yes No 4.0.0

exists() the name of a class, FALSE otherwise.

get_ Returns an array of strings N/A N/A 4.0.0

declared_ representing names of classes defined

classes() in the current script.

is_subclass_ Returns TRUE if the class of its first No Yes 4.0.0

of() argument (an object instance) is a

subclass of the second argument (a
class name), FALSE otherwise

get_class_ Returns an associative array of var/ Yes No 4.0.0
vars() value pairs representing the name

of variables in the class and their

default values. Variables without

default values will not be included.

get_object_ Returns an associative array of var/ No Yes 4.0.0
vars() value pairs representing the name

of variables in the instance and their

default values. Variables without

values will not be included.

continued

335

2EVa Bl More PHP

Function Description Operates Operates As of PHP
on Class on Version
Names Instances

method_ Returns TRUE if the first argument No Yes 4.0.0

exists() (an instance) has a method named by

the second argument (a string) and
FALSE otherwise.

get_class_ Returns an array of strings Yes Yes (as of 4.0.0,

methods () representing the methods in the v4.0.6) 4.0.6
object or instance

call_user_ Sameas call_user_ No Yes 4.0.5

method_ method (), except that it expects

array() its third argument to be an array

containing the arguments to the
method.

336

These functions break down into the following four broad categories:

Getting information about the class hierarchy
Finding out about member variables

Finding out about member functions

Actually calling member functions

The first group of functions (get_class () through instanceof()) deal with discovering what
classes exist, asking an object about its class, and discovering class inheritance relationships. Some
of these functions start with an instance of an object, some start with the class name as a string, and
some are happy with either one. (We've included columns in the table to try to clarify this.) Note
that after we have the get_class () function, it’s easy to satisfy functions that require a class as
input; for example, if get_parent_class() insists on a class name, and we want to know the par-
ent class of an object instance, we could just wrap it like this:

$parent_class = get_parent_class(get_class($my_instance));
Bear in mind that as of PHP4.3, the constant ___CLASS___exists. It contains the class name.

Going in the other direction (trying to satisty a function that wants an instance when all we have is a
class) would be more problematic because you don’t want to instantiate a class just to ask questions of it.

The second group of functions (get_class_vars(), get_object_vars()), return an associative
array containing member variables and their values. The keys of these arrays are the names of the

Introducing Object-Oriented PHP

variables as strings (without leading $ symbols), and the array values are the values of those vari-
ables in the object or class. In both cases (for reasons unknown to your authors), only member vari-
ables that actually have a value are returned.

The difference between get_class_vars() and get_object_vars() is subtle, but it’s more than
just a question of what type of input they prefer. The get_class_vars() function returns informa-
tion about variables and default values as they exist in the class definition itself, independent of any
instance; get_object_vars() returns information about the current state of a particular instance.
For example, consider this class definition and use:

class Example {

public $varl = "initialized";

public $var? "initialized";

public $var3;

public $var4d;

public function __construct() {
$this->var3 = "set";
$this->varl = "changed";

}

$example = new Example();
print_r(get_class_vars("Example"));
print_r(get_object_vars($example));

For the first call (to get_class_vars()), we should expect to find varl and var2 both bound to
"initialized" asin the class definition itself. The second call (to get_object_vars()) should
return bindings of varl, var2,and var3to "changed", "initialized", and "set", respec-
tively. In neither case will either function retrieve var4.

The third group of functions (method_exists(), get_class_methods()) manipulate member
function names as strings. The first allows you to ask an instance if it contains a given function, and
the second recovers all function names from an instance or class. (Notice that we don’t need two
separate functions as we did with get_class_vars() and get_object_vars(); PHP doesn’t
offer you a way to add or delete member functions from instances on the fly.)

Finally, the fourth group lets you apply method names (presumably recovered using functions from
the third group) to instances. But these are probably best explained by example, so let’s dive in.

Example: Class genealogy

Consider the following, somewhat confusing, class hierarchy.

class Color {}

class Control extends Ulelement {}
class Widget extends Control { }
class Button extends Widget {}
class Pulldown extends Widget {}

337

2EVa Bl More PHP

class Clicker extends Button {}
class Blue extends Color f{}

class Displayer extends Ulelement {}
class UIETement {}

class LightBlue extends Blue {}

Now imagine that we’d like to have a better visualization of this tangle, just for purposes of docu-
mentation. For starters, it’s pretty easy to use the get_parent_class () function to figure out the
classes that a given class descends from:

public function print_ancestry($class_name) {
print("Class ancestry: ");
print_ancestry_aux($class_name);
print("
");

}

public function print_ancestry_aux ($class_name) {
print("$class_name");
if ($parent = get_parent_class($class_name)) {
print(" => ");
print_ancestry_aux($parent);
}
}
print_ancestry("Clicker");

Which gives us the somewhat informative output:

Class ancestry: Clicker => button => widget => control => uielement

(Notice that our retrieved class names have become lowercase. This happens to user-defined classes,
whereas prior to PHP 6, built-in classes should have their capitalization intact.)

Getting a view of the entire class tree is a little bit harder, because PHP doesn't offer a straight-
forward way to retrieve child classes given a parent class. Our recourse is the get_declared_
classes function, which tells us all the classes that are defined in the current script — we can then
somewhat inefficiently do paternity tests on all known classes to discover the children of a given
class (see Listing 20-6).

LISTING 20-6

Class genealogy

public function same_class_name ($stringl, $string2) {
return ((strtolower($stringl)) ==
(strtolower($string2)));
}

public function get_child_classes ($parent) f{

338

Introducing Object-Oriented PHP

$all_classes = get_declared_classes();

$children = array();

foreach ($all_classes as $candidate) {
if (same_class_name($parent,

get_parent_class($candidate)) &&
Isame_class_name($parent, $candidate)) {
array_push($children, $candidate);

}

}

return($children);

}

public function print_class_tree () {
$all_classes = get_declared_classes();
print("<PRE>");
print("CLASS HIERARCHY:\n");
foreach ($all_classes as $candidate) {
if (lget_parent_class($candidate)) f{
print_class_tree_aux($candidate, 0);
}
}
print("</PRE>");
}

public function print_class_tree_aux ($parent, $level) {
for ($x = 0; $x < $level; $x++) {
print(" ")
}
print("$parent
");
$children = get_child_classes($parent);
foreach ($children as $child) {
print_class_tree_aux($child, $level + 1);
}
}
print_class_tree();

We start off this listing by defining what it means for two class names to be the same. This may be
overkill, but converting every name to lowercase before comparison lets us stop worrying about
whether we’ll be tripped up by case issues. Then we define a general function to retrieve child
classes (inefficiently, but it should make no difference unless your class hierarchy grows to be very,
very large). The print_class_tree() function essentially recovers all orphans or roots (classes
without parents) and prints each one individually as a tree. The auxiliary function handles printing
a rooted tree — first the parent and then indented children. Finally, we wrap the whole thing in a
<{PRE></PRE> construct so we can just use spaces for indenting. The result looks like this:

CLASS HIERARCHY:
stdClass

339

Part Il

340

More PHP

__PHP_Incomplete_Class
OverloadedTestClass
Directory
color
blue
lightblue
uielement
control
widget
button
clicker
pulldown
displayer

The first few classes printed are unfamiliar and not defined in your code file. These either belong to
the PHP implementation itself or to auxiliary packages that you have compiled — the precise classes
that you see when you execute this code may vary.

Example: matching variables and DB columns

One frequent use for PHP objects in database-driven systems is as a wrapper around the entire data-
base API. The theory is that the wrapper insulates the code from the specific database system, which
will make it trivial to swap in a different RDBMS when the technical needs change. (We've never
seen it work out quite this way in practice, but . . . don’t get us started.) Another use that is almost as
common (and that your authors like better) is to have object instances correspond to database result
rows. In particular, the process of reading in a result row looks like instantiating a new object that
has member variables corresponding to the result columns we care about, with extra functionality
in the member functions. As long as the fields and columns match up (and as long as you can afford
object instantiation for every row), this can be a nice abstraction away from the database.

A repetitive task that arises when writing this kind of code is assigning database column values to
member variables, in individual assignment statements. This feels like it should be unnecessary,
especially when the columns and the corresponding variables have exactly the same names. In this
section, we write a hack to automate this process.

For concreteness, let’s start with an actual database table. Following are the MySQL statements nec-
essary to create a simple table and insert one row into it:

mysql> create table book
(id int not null primary key auto_increment,
author varchar(255), title varchar(255),
publisher varchar(255));
mysql> insert into book (author, title, publisher)
values ("Robert Zubrin", "The Case For Mars",
"Touchstone");

Because the id column is auto-incremented, it will happen to have the value 1 for this first row.

Introducing Object-Oriented PHP

The code in Listing 20-7 assumes a database called oop with the table created as above, and also
that we have a file called dbconnect_vars that sets $host, $user, and $pass appropriately for
our particular MySQL setup. There is also little or no error checking (the code assumes the connec-
tion works, that the row was retrieved successfully, and so on). The main point we want to highlight
is the hack in the middle of the Book constructor.

LISTING 20-7

Matching variables and columns

<{?php
include_once("dbconnect_vars.php");

class Book
{
public $id;

// variables corresponding to DB columns
public $author = "DBSET";

public $title = "DBSET";

public $publisher = "DBSET";

public function __construct($db_connection, $id) {
$this->id = $id;
$query = "select * from book "
"where id = $id";
$result = mysql_query($query, $db_connection);
$db_row_array =
mysql_fetch_array($result);
$class_var_entries =
get_class_vars(get_class($this));
while ($entry = each($class_var_entries)) {
$var_name = $entry['key'];
$var_value = $entry['value'];
if ($var_value == "DBSET") {
$this->$var_name =
$db_row_array[$var_name];
1
}
}

public function rename () {
$return_string = "BOOK
";
$class_var_entries =
get_class_vars(get_class($this));
while ($entry = each($class_var_entries)) {
$var_name = $entry['key'];
$var_value = $this->$var_name;

341

2EVa Bl More PHP

$return_string .=
"$var_name: $var_value
";
}
return($return_string);
1
}
$connection =
mysql_connect($host, $user, $pass)
or die("Could not connect to DB");
mysql_select_db("oop");
$book = new Book($connection, 1);
$book_string = $book->rename();
7>

<HTML><HEAD></HEAD><BODY>
<?php echo $book_string ?>
</BODY></HTML>

342

The database query returns all columns from the book table, and the values are indexed in the
result array by the column names. The constructor then uses get_class_vars() to discover all
the variables that have been set in the object, tests them to see if they have been bound to the string
"DBSET", and then sets those variables to the value of the column of the same name.

The result is the output:

BOOK

Author: Robert Zubrin
Title: The Case For Mars
Publisher: Touchstone

If we add fields to the database table definition, the only change we will need to make to

Listing 20-7 is to add appropriately named variables to the class definition and initialize them to
"DBSET". (We use this initialization to be clear about which variables should be overwritten, but
also because we cannot retrieve the variables at all unless they have been initialized.)

Example: Generalized test methods

As a final introspection example, suppose that we are working on a large OOP project, with complex
objects that need to maintain a lot of internal state. Testing is extremely important, because bugs
will creep in and waste our time if we don’t catch them early on.

So let’s adopt some testing conventions for this project. As one of them, let’s agree that any class in
our system can (optionally) define a member function called se1fTest (). The point of this func-
tion is to test the object instance it is called on to make sure the data in the object is valid and con-
sistent across the instance. The selfTest () function should always return FALSE if everything is
okay and a diagnostic string if something is wrong. The coders of the objects agree that they will
write these tests in such a way that a test can be applied at any time during execution.

Introducing Object-Oriented PHP

1f we agree on such a framework, we can write a general object tester. The tester simply calls
selfTest() on any object it is pointed at, if such a method has been defined for that object. To
make it easier to apply, we’ll also make the object tester accept arrays of objects, and test each com-
ponent object individually. Such an object tester is in Listing 20-8, along with some sample class
definitions that have selfTest () defined

LISTING 20-8

ObjectTester

class Namestring {
public $name;
public $namelength;
public $checksum;

public function __construct($string_in) {
$this->name = $string_in;
$this->namelength = strlen($string_in);
$this->checksum =
$this->computeChecksum($string_in);
}

public function setName ($new_string) f
$this->name = $new_string;
$this->namelength = strlen($new_string);
$this->checksum =

$this->computeChecksum($new_string);

}

public function computeChecksum ($string) {
// not a good checksum in practice

$sum = 0;

for ($x = 0;
$x < strlen($string);
$x++) |

$sum += ord($stringl$x1);
t
return($sum % 100);
}

public function selfTest () {
// returns FALSE if everything is OK
if ($this->namelength !=
strlien($this->name)) {
return("Name $this->name not of ".
"Tength $this->namelLength!");

343

2EVa Bl More PHP

}

elseif
($this->checksum !=

$this->computeChecksum($this->name)) {

return("Name $this->name fails checksum!");

}

else {
return(FALSE);

}

}
}

class NonTestingObject {
}

class ObjectTester {
public function ObjectTester() {
// empty constructor
1

public function test ($thing) {
if (is_object($thing)) {
if (method_exists($thing, 'selfTest')) {
$this->handleTest(
call_user_func('selfTest', $thing));
t
}
elseif (is_array($thing)) {
foreach ($thing as $component) {
$this->test($component);
1
}
// ignore if not an array or object
t
public function handleTest ($result) {
if ($result) f
print("Warning: $result");
}
}
}

The Namestring object in Listing 20-8 has several pieces of data, which must be kept consistent
with each other. Using the constructor to build an instance of Namestring keeps them consistent,
as does changing the name with setName. Namestring also defines selfTest (), which cross-
checks the name, the length of the name, and a primitive checksum.

344

Introducing Object-Oriented PHP

Now let’s see how to use the ObjectTester class with some sample Namestring data:

$object_list = array();

array_push($object_list, new Namestring("Jordan"));
array_push($object_Tist, new Namestring("Rodman"));
array_push($object_Tist, new NonTestingObject);
array_push($object_Tist, new Namestring("Pippen"));

$tester = new ObjectTester($object_Tist);

print("Running test..
");
$tester->test($object_list);

print("Changing name..
");

$current_object = &$object_1ist[0]; // note reference!
$current_object->setName("Michael");

print("Running test..
");
$tester->test($object_Tist);

print("Changing name..
");
$current_object = &$object_list[1]; // note reference!
$current_object->name = "Jordan";

print("Running test..
");
$tester->test($object_Tist);

The results of running this code are:

Running test..

Changing name..

Running test..

Changing name..

Running test..

Warning: Name Jordan fails checksum!

This warning resulted because we messed with the object’s data directly the second time, rather
than using the approved method for changing the name.

We’ve used toy self-testing classes here, but the basic approach extends easily to more complex
classes. Among possible extensions is more interesting handling of the warning messages (and pos-
sibly interrupting execution). Another extension would be to use introspection on member variables
themselves, as well as array components, to find contained objects and test those. This would mean
defining the test runner recursively so that a thing passes a se1fTest () if (1) its own selfTest ()
method (if it exists) finds no problem, and (2) any components (member variables, array slots) also
pass selfTest (). (Watch out for circularities though! If the tester is ever called on objects that
mutually refer to each other, it would have to be rewritten to track the identities of previously seen
objects and would only test each object once.)

345

2EVa Bl More PHP

LISTING 20-9

Extended Example: HTML Forms

All the OOP code you've seen so far in this chapter has been fairly short, so in this chapter we pres-
ent an extended piece of code for your enjoyment, shown in Listing 20-9.

The point of this class is to semiautomate the production of HTML forms, which one of your authors
has always found to be a bit of a pain to generate. The top-level class represents a form, while other
classes represent inputs, text areas, and hidden variables (just the ones that your author uses most
frequently). The idea is that you can make a form by adding input fields to an existing object and
display the form upon request. The resulting form will be not be especially pretty (every element

is displayed sequentially down the left-hand side of the page), but it’s good enough for situations
where, say, you want to enter some information into your own database yourself.

form_printer.php

<?php

// ---- The form class itself ---

class HtmlForm {

346

// suitable for generating quick & dirtyforms

public $actionTarget; // path to receiving page
private $inputForms; // array of HtmlFormInput
public $hiddenVariables; // associative name/val

// CONSTRUCTOR

public function __construct($action_target) ({
$this->actionTarget = $action_target;
$this->inputForms = array();
$this->hiddenVariables = array();

}

// PUBLIC METHODS
public function rename () {
$return_string = "";
$return_string .=
"<FORM METHOD=\"POST\" ".
"ACTION=\"$this->actionTarget\">\n";
$return_string .= $this->inputFormsString();

$return_string .= $this->hiddenVariablesString();

$return_string .= "
\n";
$return_string .= $this->submitButtonString();
$return_string .= "</FORM>";

Introducing Object-Oriented PHP

return($return_string);
}

// adding elements to form

public function addInputForm ($input_form) f{
if (lisSet($input_form) ||
lis_object($input_form) ||
lis_subclass_of($input_form,
"htmlforminput')){
die("Argument to HtmlForm::addInputForm
"must be instance of HtmlFormInput.".
" Given argument is of class "
get_class($input_form));

}
else {
array_push($this->inputForms, $input_form);
}
}

public function addInputButton ($input_button) {
if (lisSet($input_button) |]
lisObject($input_button) ||
1is_a($input_button, 'HtmlInputButton')){
die("Argument to HtmlForm::addInputButton ".
"must be instance of HtmlInputButton");
}
else {
array_push($this->inputButtons, $input_button);
}
}

public function addHiddenVariable ($name, $value) {
if (lisSet($value)) {
die("HtmlForm::addHiddenVariable requires
"two arguments (name and value)");

}
else {
$this->hiddenVariables[$name] = $value;
}
}

public function inputFormsString () {
$return_string = "";
$form_array = $this->inputForms;
foreach ($form_array as $input_form) {
$return_string .=
"$input_form->heading";

if ($this->headingElementBreak()) {

347

2EVa Bl More PHP

$return_string .= "
";
}
$return_string .= $input_form->rename();
$return_string .= "
\n";

}
return($return_string);
}

public function hiddenVariablesString () {
$return_string = ""
while ($hidden_var =
each($this->hiddenVariables)) {
$var_name = $hidden_var['key'];
$var_value = $hidden_var['value'];
$return_string .=
"<INPUT TYPE=HIDDEN "
"NAME=$var_name "
"VALUE=$var_value >";
$return_string .= "\n";

}
return($return_string);
}

public function headingElementBreak () {
// override to disable breaks after headings,
// or to do more complicate layout
return(TRUE) ;

}

pubTic function submitButtonString () {
$return_string = "<INPUT TYPE=Submit "
" VALUE=Submit >\n";
return($return_string);
}
}

// ---- Classes for parts of a form ----

abstract class HtmlFormInput {
public $name; // The variable name for form submission
public $heading; // The visible Tabel on form
function __construct() {
die("Class HtmIFormInput intended only "
"to be subclassed");
}
function rename () {
die("Subclass of HtmlFormInput missing "
"definition of rename()");

348

Introducing Object-Oriented PHP

class HtmlFormSelect extends HtmlFormInput
{

public $_valueArray = array();

public $_selectedValue;

public function _ construct ($name, $heading,
$value_array,
$selected_value=NULL) {
if (!isSet($value_array)) {
die("HtmlFormSelect needs a minimum of two "
"arguments: a name, and value array");
}
elseif (lis_array($value_array)) {
die("Third argument to HtmlFormSelect()"
"should be array where keys are values ".
"submitted, and values are display values");
}
else {
// actual initialization
$this->name = $name;
$this->heading = $heading;
$this->_valueArray = $value_array;
$this->_selected_value = $selected_value;
}
}

public function rename () {
$return_string = "";
$return_string .=
"<SELECT NAME=\"$this->name\">";
while ($var_entry =
each($this->_valueArray)) {
$submit_value = $var_entry['key'];
$display_value = $var_entry['value'];
if ($submit_value == $this->_selected_value) {
$return_string .=
"<OPTION VALUE=${submit_value} SELECTED >";
1

else {

$return_string .= "<OPTION VALUE=${submit_value}>";
}
$return_string .= $display_value;

1
$return_string .=
"</SELECT>";
return($return_string);
}
}

class HtmlFormText extends HtmlFormInput

349

2EVa Bl More PHP

public $initial_value;

public function __construct ($name,
$heading,
$initial_value="")

// Initialization of member vars
if (lisSet($name) ||
lisSet($heading)) {
die("HtmlFormText constructor needs .
"at least two arguments (name, heading)");

}
$this->name = $name; // name defined in parent
$this->heading = $heading; // defined in parent
$this->initial_value = $initial_value;

}

public function rename () {

$return_string = "";

$return_string .= "<JINPUT TYPE=TEXT ";

$return_string .= "NAME=\"$this->name\" ";

$return_string .
"VALUE=\"$this->initial_value\" ";

$return_string .= " >";

return($return_string);

}
}

class HtmlFormTextArea extends HtmlFormInput {
public $initial_value;
public $rows;
public $cols;
public $wrapType;

public function __construct ($name,
$heading,
// optional args:
$initial_value="",
$rows=1, $cols=60,
$wrapType="VIRTUAL")

// Initialization of member vars
if (lisSet($name)) {
die("HtmlFormTextArea constructor needs
"at least two arguments (name, heading)");

1

$this->name = $name; // name defined in parent
$this->heading = $heading; // name defined in parent
$this->initial_value = $initial_value;

350

Introducing Object-Oriented PHP

$this->rows = $rows;

$this->cols = $cols;

$this->wrapType = $wrapType;
}

public function rename ()
{
$return_string =

$return_string .= "<TEXTAREA ";

$return_string .= "NAME=\"$this->name\" ";
$return_string .= "ROWS=$this->rows ";
$return_string .= "COLS=$this->cols ";
$return_string .= "WRAP=$this->wrapType ";
$return_string .= $this->additionalAttributes();
$return_string .= ">";

$return_string .= $this->initial_value;
$return_string .= "</TEXTAREA>";

return($return_string);
}

public function additionalAttributes () {
// OVERRIDE THIS to return a string with
// TextArea attributes other than
// NAME, ROWS, COLS, and WRAP
return("");

The basic design for all these objects includes a constructor function with default arguments and

a rename () method that returns HTML for the form or piece thereof. Forms store pieces of input
(which might conceivably be reordered or laid out by a more sophisticated version), and recursively
call rename () on these pieces. The HTML form elements that are supported are: TEXTAREA, TEXT,
and SELECT.

Here is an example of calling this code to generate a simple form page:

<HTML><HEAD></HEAD><BODY>
<?php include("form_printer.php");
$my_form = new HtmlForm($PHP_SELF);
$my_form->addInputForm(
new HtmlFormText("firstname",
"First Name"));
$my_form->addInputForm(
new HtmlFormText("lastname",
"Last Name"));
$my_form->addInputForm(
new HtmlFormSelect(
"age",
"Age",

351

Part Il

352

More PHP

array(0 => "0 - 9",
1 =>"10 - 19",
2 =>"20 - 29",
3 => "Senior citizen"),
2));
$my_form->addInputForm(
new HtmlFormTextAreal(
"feedback",
"What's on your mind?",
"[Please fill in your own personal rant]",
5));
print($my_form->rename());
7>
</BODY>
</HTML>

Much of the form-producing code is straightforward and is concerned with churning out various
kinds of HTML syntax. There are two interesting things to notice from the point of view of OOP-in-
PHP, however.

The first is that the Htm1FormInput class is designated abstract. That is, it exists not to be instan-
tiated but only to be inherited from. The second point of interest is that the Htm1Form class has an
array that is intended to hold Htm1FormInput objects. Of course, because PHP is loosely typed, we
cannot enforce that in any way at compile time, although the manufacturer-approved way to insert
new forms (@addInputForm()) does some type-checking on insertion. If users of this class rely only
on this method, we can be assured that everything that ends up in that array will be an instance of
HtmlFormInput (or subclass thereof) and so should be a well-behaved form element when display
time comes around. The private designation guarantees that the array cannot be manipulated
from outside the class at runtime.

Gotchas and Troubleshooting

In the spirit of Chapter 10, we offer in the following sections the top-two most likely symptoms of
problematic OOP code, along with the most likely cause.

Symptom: Member variable has no value in
member function

This could have many causes, of course, but the most common is simply a confusion about the right
way to refer to member variables. The syntax is:

$this->member_name

Introducing Object-Oriented PHP

1f, instead, your function simply refers to $member_name, that will usually be an unbound variable
and, at any rate, will never succeed in referring to the member variable. Similarly, if your function
refers to $this->$member_name, you are asking for the field named by the string in the variable
$member_name (which is probably unbound).

Symptom: Parse error, expecting T_VARIABLE. . .

There are of course many ways to munge a class definition so that PHP will complain when it tries to
parse it. One of the most common errors again has to do with placement of those $ symbols. A class
declaration like the following:

class MyClass {
public my_var; // WRONG
}

inevitably gives you a parse error of some sort because the syntax requires a $ before my_var.

OOP Style in PHP

The topic of OOP programming style is a huge one (because it includes OOP design!) and is well
beyond the scope of this book. In the spirit of Chapter 32, however, we offer in the following sec-
tions some brief notes on writing readable, maintainable PHP OOP code.

Naming conventions

In this section, we simply pass along the parts of the PEAR coding style that pertain to objects.

For more information on the PEAR project and the PEAR coding style, see Appendix E or
the PEAR web site (at http://pear.php.net).

PEAR recommends that class names begin with an uppercase letter and (if in a PEAR-approved
directory hierarchy of packages) have that inclusion path in the class name, separated by under-
scores. So your class that counts words, and that belongs to a PEAR package called TextUtils,
might be called TextUtils_WordCounter. If building large OOP packages, you may want to emu-
late this underscore convention with your own package names; otherwise, you can simply give your
classes names like WordCounter.

Member variables and member function names should have their first real letter be lowercase and
have word boundaries be delineated by capitalization. In addition, names that are intended to be
private to the class (that is, they are used only within the class, and not by outside code) should
start with an underscore. So the variable in your WordCounter class that holds the count of words
might be called wordCount (if intended to be messed with from the outside) or _wordCount @ifit is
intended to be private to the class).

353

2EVa Bl More PHP

354

Accessor functions

Another style of documenting your intent about use of internal variables is to have your variables
marked as private, in general, and provide “getter” and “setter” functions to outside callers. For
example, we might define a class like this:

class Customer

{
private var _name;
private var _creditCardNumber;
private var _rating;

function getName ()
{

return($this->_name);
}

function getRating ()
{

return($this->_rating);
}

function setRating($rating)
{
$this->_rating = $rating;
1
[... more functions]
}

This class definition has three private variables: one (_creditCardNumber) that should neither be
set nor retrieved from outside code, another (_name) that outside code should be able to retrieve but
not set, and a third (_rating) that outside code should feel free to both get and set.

Although PHP class syntax lets you interleave variables with function definitions, it’s a good idea, in
general, to organize your code so that similar items with similar usage intent are located together in
the class definition. For example, you might develop the habit of laying out class functions like this:

class myClass

j/ Public variables:
}} Private variables
}} Constructor

// Public functions

// Private functions

Introducing Object-Oriented PHP

Designing for inheritance

The question of exactly how to design a class hierarchy is, as we've said, a vast area of study unto
itself, and we're not about to try to contribute to it here. Just as a stylistic matter, though, it's worth
thinking about whether you intend your class to be inherited from, and then try to indicate your
decision, either with comments or in the structure of the definition.

For example, you may intend that your class should never breed, in which case you might just
indicate that in comments, and then stop worrying about inheritance issues. (There is currently
no way in PHP to enforce that a class cannot be inherited from.) At the other end of the spectrum,
you might have all or part of your class intended only for inheritance. You can indicate this in
comments, or you can use the trick we used in the definition of Htm1FormInput in Listing 20-9:
Provide methods that die informatively when called directly in the base class. Finally, of course, you
may have some methods that can be called directly in the base class but are especially intended for
overriding. You may want to group these “hook” methods together in a clearly marked section of
your class definition, so that the later writer of a derived class can quickly figure out what options
are available for specializing the class’s behavior. (Remember that the clueless coder of the future
that you are helping may well be yourself.)

Summary

PHP provides the basics to support object-oriented programming. Among other things, the OOP
syntax in PHP allows for programmer-defined classes with member variables and member data and
offers single inheritance, constructor functions, object serialization, and functions for introspection.
Nothing in PHP requires that you write in an object-oriented style, but if you prefer that style you
can write almost all your code that way. PHP was not originally intended to be an object-oriented
language, and developers with OOP experience will miss some aspects of more mature OOP lan-
guages. On the other hand, the OOP extension is usable, fairly mature, pretty stable, and widely
used. It provides an extra layer of organization that can be helpful when maintaining complex code
and offers a nice way to package code for distribution and reuse.

355

n Chapter 8 we introduced you to arrays, their uses, and some handy

functions for working with them. In some subsequent chapters, we saw

how PHP returns many of its results as arrays, particular when work-
ing with database function sets. This chapter will look at some of the more
advanced functions for working with PHP arrays.

Transformations of Arrays

PHP offers a host of functions for manipulating your data once you have it
nicely stored in an array. What the functions in this section have in com-
mon is that they take your array, do something with it, and return the
results in another array. (We will defer the array-sorting functions until a
later section.)

Not covered in this chapter are explode() and implode(),
which convert strings into arrays and vice versa. We cover these
very handy functions in Chapter 22.

'‘CROSS:REF

In Chapter 8, we incrementally developed a function to print out the
entire contents of an array, and in this section we will use the last of these

357

IN THIS CHAPTER

Transformations of arrays

Stacks and queues

Translating between variables
and arrays

Sorting

2Ea Bl More PHP

(print_keys_and_values_each()) to show the arrays that are being returned in examples. We’ll
list this function again here, in a more generic form:

function print_keys_and_values_each($array_to_test)
{ // reliably prints everything in array
reset($array_to_test);
while ($array_cell = each($array_to_test))
{
$current_value = $array_cell['value'];
$current_key = $array_cell['key'];
print("Key: $current_key; Value: $current_value
");
}
1

Retrieving keys and values

The array_keys () function returns the keys of its input array in the form of a new array where the
keys are the stored values. The keys of the new array are the usual automatically incremented inte-
gers, starting from 0. The array_values () function does exactly the same thing, except the stored
values are the values from the original array. If we start with an array like the following:

$pizza_requests = array('Alice' => 'pepperoni',
"Bob' => "mushrooms"',
'Carl' => 'sausage',
'Dennis' => 'mushrooms');

and then we print the arrays resulting from calls to the these two functions:

print("Array keys:
");
print_keys_and_values_each(array_keys($pizza_requests));
print("Array values:
");

print_keys and_values_each(array_values($pizza_requests));

we get output like this:

Array keys:

Key: 0; Value: Alice
Key: 1; Value: Bob

Key: 2; Value: Carl

Key: 3; Value: Dennis
Array values:

Key: 0; Value: pepperoni
Key: 1; Value: mushrooms
Key: 2; Value: sausage
Key: 3; Value: mushrooms

The second of these (array_values()) may seem uninteresting because we have essentially taken
our old array and produced a new one with the keys renamed to successive numbers.

358

Advanced Array Functions

We can do something slightly more useful (and more helpful for ordering) with the function array_
count_values(). This takes an array and returns a new array, where the old values are now the
new keys and the new values are the number of times each old value occurs in the original array.

print_keys and_values_each(
array_count_values($pizza_requests));

gives us:

Key: pepperoni; Value: 1
Key: mushrooms; Value: 2
Key: sausage; Value: 1

Flipping, reversing, and shuffling

A function that is even more odd is array_f11ip(), which changes the keys of an array into the val-
ues, and vice versa. For example:

print_keys_and_values_each(array_flip($pizza_requests));
gives us:

Key: pepperoni; Value: Alice
Key: mushrooms; Value: Dennis // what happened to Bob?
Key: sausage; Value Carl

Notice that, although array keys are guaranteed to be unique, array values are not — because of this,
any duplicate values in the original array become the same key in the new array. Only one of the
original keys will survive to become the corresponding new value.

Reversing an array is more simple: array_reverse() returns a new array with the key/value pairs
in reverse order. So, with the usual printing test:

print_keys and_values_each(array_reverse($pizza_requests));

we get the result:

Key: Dennis; Value: mushrooms
Key: Carl; Value: sausage
Key: Bob; Value: mushrooms
Key: Alice; Value: pepperoni

In this case, although the internal order has been reversed, all the key/value pairs end up being
the same. However, this function (like several other PHP array functions) treats integer keys some-
what special. It assumes that the ordering of integer keys on those key/value pairs should also

be reversed for the later use of code that pays attention to the ordering of keys, rather than using

359

Z1adl|I8 More PHP

360

the internal linked-list ordering. So, array_reverse() swaps integer keys to make the new key
ordering match the internal list. Dennis, in other words, is now actually at position 0.

If you need some extra randomness in your life, the shuffle() function can give it to you —
shuffle() takes an array argument and pseudo-randomizes the order of the elements in the array.
It uses rand (), a function that generates successive pseudo-random numbers. Before you use
shuffle(), you need to have seeded the random-number generator with a call to srand(). (See
the discussion of random-number generation in Chapter 9.) A reasonable calling sequence looks
like this:

srand((double)microtime() * 1000000); // for random # gen
shuffle($pizza_requests);
print_keys_and_values_each(array flip($pizza_requests));

which might give us output like:

Key: Carl; Value: sausage
Key: Bob; Value: mushrooms
Key: Dennis; Value: mushrooms
Key: Alice; Value: pepperoni

Unlike many of the array functions in this chapter, shuff1e() is destructive, meaning
that it operates directly on its array argument and changes it, rather than returning a
newly created array. (Functions that return a new thing without disturbing their arguments might be
called constructive, or just nondestructive.) Among other things, this means that the correct way to call
the shuffle function is not:

$my_new_array = shuffle($my_old_array); //WRONG!

especially because the shuffle() function does not return a value. Instead, the right call is:

shuffle($my_array); // change the array itself

. . o o o o
Merging, padding, slicing, and splicing

If we want to combine two arrays for a more complete list, the function to use is array_merge().
This function takes two or more arrays as arguments and returns a renumbered new array that is the
second array tacked onto the end of the first. If we create a new array containing some additional
pizza requests like this:

$more_pizza_requests = array('Ted' => 'anchovies',
"MriWilson' => 'pineapple',
'Dagwood' => 'ham');

then we can use array merge(); as:

$all_requests = array _merge($pizza_requests, $more_requests);

Advanced Array Functions

and then use our handy array inspecting function:
print_keys and_values_each($all_requests);
We should see:

Key: Alice; Value: pepperoni
Key: Bob; Value: mushrooms

Key: Carl; Value: sausage

Key: Dennis; Value: mushrooms
Key: Ted; Value: anchovies

Key: MrWilson; Value: pineapple
Key: Dagwood; Value: ham

The array_pad() function is used to create some leading or following key/value pairs increas-

ing the size of an array. It takes an input array as its first argument, then a number of elements to
increase the array to, and then a value to assign to the added elements. A positive integer in the sec-
ond argument will pad the end of the array; a negative integer will pad the beginning. If the second
argument is smaller than the size of the array, no padding is performed.

$requests = array_pad($pizza_requests, 10, 'mushrooms')
//do we have any mushroom fans in the audience tonight?

With our function, we’'d get:

Key: Alice; Value: pepperoni
Key: Bob; Value: mushrooms
Key: Carl; Value: sausage
Key: Dennis; Value: mushrooms
Key: 0; Value: mushrooms

Key: 1; Value: mushrooms
Key: 2; Value: mushrooms
Key: 3; Value: mushrooms
Key: 4; Value: mushrooms
Key: 5; Value: mushrooms

If we make the second argument negative, the new elements appear at the beginning of the array.
Note that the automatically assigned keys start at 0, even though they are in the fifth position.

Somewhat more complicated are the array_slice() and array_splice() functions. The first of
these returns a subset of an input array by accepting an offset and a length as its second and third
arguments, respectively:

$subset = array_slice($pizza_requests, 1, 2);
// returns mushrooms and sausage

361

2Ea Bl More PHP

The array_splice() function is similar, but it accepts a fourth argument, which can be an array
of any length, to splice into the input array, again returning an all new array:

$super_set = array_splice($pizza_requests, 2, 0,
$more_requests);

which will return an array like:

Key:
Key:
Key:
Key:
Key:
Key:
Key:

Alice; Value: pepperoni
Bob; Value: mushrooms

Ted; Value: anchovies
MrWilson; Value: pineapple
Dagwood; Value: ham

Carl; Value: sausage
Dennis; Value: mushrooms

These array-manipulating functions are summarized in Table 21-1.

TABLE 21-1

Array Transformation Functions

Function Behavior

array_ Takes a single array argument and returns a new array where the new values are the

keys() keys of the input array, and the new keys are the integers incremented from zero.

array_ Takes a single array argument and returns a new array where the new values are the

values() original values of the input array, and the new keys are the integers incremented from zero.

array_ Takes a single array argument and returns a new array where the new keys are the old

count_ array’s values, and the new values are a count of how many times that original value

values() occurred in the input array.

array_ Takes a single array argument and changes that array so that the keys are now the values

flip() and vice versa.

array_ Takes a single array argument and changes the internal ordering of the key/value pairs to

reverse() reverse order. Numerical keys will also be renumbered.

shuffle() Takes a single array argument and randomizes the internal ordering of key/value pairs.
Also renumbers integer keys to match the new ordering. This function itself uses the
random-number generator rand (), so srand() must be called to seed the generator
before the call to shuffle().

array_ Takes two array arguments, merges them, and returns the new array, which has (in

merge() order) the first array’s elements and then the second array’s elements. (Note: This is most

362

useful for arrays that are being used for simple linked lists rather than for their associative
keys, because keys that appear in both arrays will have one of the values overwritten.
Also, numerical keys will be renumbered from 0 to reflect the new ordering.)

Advanced Array Functions

Function Behavior

array_pad() Takes three arguments: an input array, a pad size, and a value to pad with. Returns a
new array that is “padded” by the following rules: If the pad size is greater than the
length of the input array, the array is lengthened with the pad value to the pad size, as
though by successive assignments like $my_array[] = $pad_value. A negative
pad size will act the same way with the absolute value of that pad size, except that
the padding will occur at the beginning of the array rather than the end. If the array is
already longer than the (absolute value of) the pad size, the function has no effect.

array_ Takes three arguments: an input array, an integer offset, and an (optional) integer length.

slice() Returns a new array that is a “slice” of the old one — a subsequence of its list of key/
value pairs. The starting and stopping points of the slice are determined by the offset
and length. A positive offset means that the starting point is that number of elements
after the beginning; a negative offset means that it is that many elements before the end.
The optional length argument specifies how long the resulting slice is (if positive) or how
many elements before the end it should stop (if negative). If the length argument is not
present, the slice continues to the end of the array.

array_ Removes a chunk (or a slice) of an array and replaces it with the contents of another

splice() array. Takes four arguments: an input array, an offset, an optional integer length, and an
optional replacement array. Returns a new array containing the slice that was removed
from the input array.

The rules for using the offset and length arguments to determine the slice that is
removed are the same as in the previous array_s1ice() function.

If no replacement array is supplied, this function simply (destructively) removes a slice
of the input array and returns it. If there is a replacement array, the elements of that array
are inserted in place of the removed slice.

Stacks and Queues

Stacks and queues are abstract data structures, frequently used in computer science, that enforce

a certain kind of access discipline on the objects they contain, without necessarily committing to
what those objects are. PHP arrays are well suited to imitating other kinds of data structures, and
the loose typing of PHP array elements makes it easy for them to imitate stacks and queues. PHP
provides some array functions specifically for this purpose — if you use them exclusively, you can
forget that arrays are involved at all.

A stack is a container that stores values and supports last-in—first-out (LIFO) behavior. This means
that the stack maintains an order on the values you store, and the only way you can get a value back
is by retrieving (and removing) the most recently stored value. The usual analogy is a stack of caf-
eteria trays in one of those dispensers that keeps the top tray at a constant level. You can push new
trays down on top of the old ones, and you can take trays off the top, but you can’t grab an older tray
without taking the newer ones first. The act of adding into the stack is called pushing a value onto

363

2Ea Bl More PHP

364

the stack, whereas the act of taking off the top is called popping the stack. Another analogy is the way
some web browsers store the pages you have visited for use by the Back button; visiting a new page
pushes a new URL onto that stack, and using the Back button pops the stack.

A queue is similar to a stack, but its behavior is first in, first out (FIFO). The usual analogy here is
what the British call a queue and what Americans call a line, where people line up in order to wait for
something. The rule is that whoever has been in the queue the longest is the next to be served.

The stack functions are array_push() and array_pop(). The array_push() function takes an
initial array argument and then any number of elements to push onto the stack. The elements will
be inserted at the end of the array, in order from left to right. The array_pop () function takes such
an array and removes the element at the end, returning it. Take the following fragment:

$my_stack = array(); // needed--array_push() will not create
array_push($my_stack, "the first", "the middle");
array_push($my_stack, "the Tlast");
while ($popped = array_pop($my_stack))

print("Popped the stack and got: $popped
");

This will produce the browser output:

Popped the stack and got: the Tlast
Popped the stack and got: the middle
Popped the stack and got: the first

PHP also offers functions that behave exactly the same way as array_push() and array_pop(),
except that they work at the other end, adding to and removing from the beginning of the array. The
array_unshift() function is analogous to array_push(),and array_shift() islike array_
pop (). If you choose one function from column A and one from column B, you can get the behavior
of a queue. For example, we can rewrite our previous example to push into the beginning of the
array (using array_unshift()) and pop from the end (using array_pop(), as before):

$my_queue = array();// needed--array_unshift() will not create
array_unshift($my_queue, "the first");
array_unshift($my_queue,"the middle");
array_unshift($my_queue, "the Tast");
while ($popped = array_pop($my_queue))

print("Popped the queue and got: $popped
");

It produces the output:
Popped the queue and got: the first

Popped the queue and got: the middle
Popped the queue and got: the Tlast

Advanced Array Functions

The array_unshift() and array_shift() functions are somewhat different from
it array_push() and array_pop() in that the former do some renumbering of the array
indices if the indices are integers. The idea is that some people may be relying on the numerical indi-
ces to order the array contents, so using array_unshift() to insert a new element at the beginning
should assign an index of 0 to the new element, and renumber those above. Similarly, popping an ele-
ment from the beginning with array_shift() causes integral indices of other elements to be reduced.
(This is not an issue with array_push and array_pop, because changes are at the end, and no renum-
bering is needed.) If you are using string indices exclusively, this renumbering has no effect. This is a
general pattern with PHP array functions: Some of them treat integer indices like any other associative
indexes, whereas others assume that integers imply order, and redo them if the order has changed.

The stack and queue functions are summarized in Table 21-2.

TABLE 21-2

Stack and Queue Functions

Function Arguments Side Effect Returns
array_ An initial array Modifies the array by Returns the number of
push() argument, then any adding the elements in elements in the array after

number of values to be
pushed onto the stack.

order to the end of the
array.

the push.

array_pop()

A single array argument.

Removes the element at
the end of the array.

Returns the last (removed)
value, or a false value if the
array is empty.

array_ An initial array Maodifies the array by Returns the number of
unshift() argument, then any adding the successive elements in the array after
number of values to be elements to the the new elements are
pushed onto the front of beginning. (The last added.
the array. argument will be at the
beginning of the array.)
array_ A single array argument. Removes the element Returns the first (removed)
shift() at the beginning of the value or a false value if the

array.

array is empty.

Translating between Variables and Arrays

PHP offers a couple of unusual functions for mapping between the name/value pairs of regular vari-
able bindings and the key/value pairs of an array. The compact () function translates from variable

bindings to an array, and the extract () function goes in the opposite direction. These are summa-
rized briefly in Table 21-3.

365

2Ea Bl More PHP

Array/Variable-Binding Functions

Function Behavior

compact() Takes a specified set of strings, looks up bound variables (if any) in the current
environment that are named by those strings, and returns an array where the keys are
the variable names, and the values are the corresponding values of those variables.

This function takes any number of arguments, each of which is either a string or an
array that contains strings at some level of index depth. The entire set of strings that are
included in the argument(s) is used as the candidate set of variable names. Strings that
do not correspond to bound variables are ignored.

extract() Takes an array (plus two optional arguments explained in the next paragraph) and
imports the key/value pairs into the current variable-binding context. The array keys
become the variable names, and the corresponding array values become the values
of the variables. Any keys that do not correspond to a legal variable name will not
produce an assignment.

The optional arguments are an integer (intended to receive one of a small set of
constants) and a prefix string. The point of these arguments is to specify what should
happen in the case of a collision between the name of an existing variable and one
that would be created from an array key.

The intended possible constants for the optional integer arguments include (1) EXTR_
OVERWRITE, (2) EXTR_SKIP, (3) EXTR_PREFIX_SAME, and (4) EXTR_PREFIX_
ALL. The corresponding behaviors are (1) go ahead and overwrite existing variables,
(2) skip any new assignments that would require overwriting, (3) use the optional
prefix string to distinguish the new variable from the old one, or (4) prefix all the

new variables with the string. For example, extract(array('my_var' => 4),
EXTR_PREFIX_SAME, 'diff_"'); would cause $my_var tobe 4 if $my_var
were not already bound; otherwise, it would assign the value 4 to $diff_my_var.
Other constants exist, though are less commonly used. See http://php.net/
extract for more information.

Sorting

Finally, PHP offers a host of functions for sorting arrays. As you saw earlier, a tension sometimes
arises between respecting the key/value associations in an array and treating numerical keys as
ordering info that should be changed when the order changes. Luckily, PHP offers variants of the
sorting functions for each of these behaviors and also allows sorting in ascending or descending
order and by user-supplied ordering functions. The function names are terse, but each letter (other
than the sort part) has its meaning. The decoder ring is something like:

B Aninitial a means that the function sorts by value but maintains the association between
key/value pairs the way it was.

366

Advanced Array Functions

An initial k means that it sorts by key but maintains the key/value associations.

A lack of that initial a or k means that it sorts by value but doesn’t maintain the key/value
association. In particular, numerical keys will be renumbered to reflect the new ordering.

An r before the sort means that the sorting order will be reversed.

An initial u means that a second argument is expected: the name of a user-defined function
that specifies the ordering of any two elements that are being sorted. (See the description
in Table 21-4.)

TABLE 21-4

Array Sorting Functions

Function Behavior

asort() Takes a single array argument. Sorts the key/value pairs by value but keeps the key/value
mapping the same. Good for associative arrays.

arsort() Same as asort (), butsorts in descending order.

ksort() Takes a single array argument. Sorts the key/value pairs by key but maintain the key/value
associations the same.

krsort() Same as ksort (), but sorts in descending order.

sort() Takes a single array argument. Sorts the key/value pairs of an array by their values. Keys
may be renumbered to reflect the new ordering of the values.

rsort() Same as sort (), but sorts in descending order.

uasort() Sorts key/value pairs by value using a comparison function. Similar to asort (), except
the actual ordering of the values is determined by the second argument, which is the
name of a user-defined ordering function. That function should return a negative number
if its first argument is before the second (according to the comparison function), a positive
number if the first argument comes after the second, and zero if the elements are the
same.

uksort() Sorts key/value pairs by key, using a comparison function. Similar to uasort (), except
that the ordering is by key, rather than by value.

usort() Sorts an array by value using a supplied comparison function. Similar to uasort(),

except that (as in sort()), the key/value associations are not maintained.

Printing Functions for Visualizing Arrays

Before we leave this subject entirely, we should mention a couple of printing functions that are very
useful for visualizing and debugging arrays, especially multidimensional arrays.

367

Z1adl|I8 More PHP

368

The first function is print_r (), which is short for print recursive. This takes an argument of any
type and prints it out, which includes printing all its parts recursively. For a simple value (a number
or string), this means simply that the value is printed; for compound types like arrays and objects

it means that all elements (and all parts of those elements) are printed. The layout that makes the
compound structure clear involves spaces, so it’s best to wrap its output in an HTML <pre></pre>
construct so that the spaces are printed literally.

= For more detail on the var_dump function and other ways to visualize data structures,
“ see Chapter 31 on debugging.

The var_dump () function is similar, except that it prints additional information about the size
and type of the values it discovers. An example is worth a thousand words here, so we will create a
simple multidimensional array and print it using both functions:

<?php

$my_array = array("keyl" => "valuel",
"key2" => array("subkeyl" => "value2"));

print("The result of print_r:
<pre>");
print_r($my_array);

print("</pre>
");

print("The result of var_dump:
<pre>");
var_dump($my_array);

print("</pre>
");

7>

The resulting output from this sample looks like this:

The result of print_r:
Array
(
[keyl]l => valuel
[key2] => Array
(
[subkeyl]l => value?
)

)

The result of var_dump:
array(2) {
["keyl"]=>
string(6) "valuel"
["key2"1=>
array(1) {
["subkeyl"1=>
string(6) "value2"
1
1
7>

Advanced Array Functions

Summary

The transformation functions are designed to do interesting things to your arrays. With the excep-
tion of shuffle(), these functions return their results as a newly created array. To treat an array as
a stack is to give it a last-in—first-out property. You can treat an array as a stack by using the array_
push() and array_pop() functions in tandem. Alternatively, array_unshift() and array
shift() used in tandem will have a similar effect, though they work on the opposite end of the
array. By choosing one function from each pair, you can effectively cause an array to act like a queue.

The compact () function maps variable names and values onto array keys and values, while
extract() reverses the process, even if the array was not created with compact. Finally, a variety

of functions in two major classes will sort and reorder arrays. The first major class will do it without
reordering integral keys; the second will reorder your integral keys according to the new sorted order.

369

n Chapter 7 we covered PHP strings — how to create them, print them,

and (to some extent) how to examine and modify them. In this chapter,

we delve into more advanced string-manipulation techniques, starting
off with functions to split up (or tokenize) strings into parts. We'll soon run
into limitations of the basic tokenization functions, which show the need
for regular expressions.

Finally, we’ll cover some of the more advanced string functions that enhance
the effectiveness of regular expressions and the use of strings in general.

Tokenizing and Parsing Functions

Sometimes you need to take strings apart at the seams, and you have your
own notions of what should count as a seam. The process of breaking up a
long string into words is called tokenizing, and among other things it is part of
the internals of interpreting or compiling any computer program, including
PHP. PHP offers a special function for this purpose, called strtok().

The strtok() function takes two arguments: the string to be broken up
into tokens and a string containing all the delimiters (characters that count
as boundaries between tokens). On the first call, both arguments are used,
and the string value returned is the first token. To retrieve subsequent
tokens, make the same call, but omit the source string argument. It will be
remembered as the current string, and the function will remember where it
left off. For example:

$token = strtok(

"open-source HTML-embedded server-side Web
scripting",

n ll);

371

IN THIS CHAPTER

Tokenizing and parsing

Regular expression functions

Example: A simple link scraper

HTML functions

Hashing functions

Strings as character collections

String similarity functions

Z1adl|I8 More PHP

while($token){
print($token . "
");
$token = strtok(" ");

}

produces the browser output:

open-source
HTML-embedded
server-side
Web

scripting

The original string would be broken at each space. At our discretion, we could change the delimiter
set, like this:

$token = strtok(
"open-source HTML-embedded server-side Web scripting”,
oy
while($token){
print($token . "
");
$token = strtok("-");
}

This gives us (less sensibly):

Open

source HTML
embedded server
side Web scripting

Finally, we can break the string at all these places at once by giving it a delimiter string like " -",
containing both a space and a dash. The code:

$token = strtok(
"open-source HTML-embedded server-side Web scripting",
"oy,
while($token){
print($token . "
");
$token = strtok(" -");
}

prints this output:

open
source
HTML
embedded
server
side

Web
scripting

372

Examining Regular Expressions

Notice that in every case the delimiter characters do not show up anywhere in the retrieved tokens.

The strtok() function doles out its tokens one by one. You can also use the explode () function
to do something similar, except that it stores the tokens all at once in an array. After the tokens are
in the array, you can do anything you like with them, including sort them.

The explode () function takes two arguments: a separator string and the string to be separated. It
returns an array where each element is a substring between instances of the separator in the string
to be separated. For example:

$explode_result = explode("AND", "one AND a two AND a three");

results in the array $explode_result having three elements, each of which is a string: "one ", " a
two ",and " a three". In this particular example, there would be no capital letters anywhere in the
strings contained in the array, because the AND separator does not show up in the result.

The separator string in explode () is significantly different from the delimiter string used in
strtok(). The separator is a full-fledged string, and all its characters must be found in the right
order for an instance of the separator to be detected. The delimiter string of strtok () specifies a
set of single characters, any one of which will count as a delimiter. This makes explode () both
more precise and more brittle — if you leave out a space or a newline character from a long string,
the entire function will be broken.

Because the entire separator string disappears into the ether when explode () is used, this function
can be the basis for many useful effects. The examples given in most PHP documentation use short
strings for convenience, but remember that a string can be almost any length — and explode() is
especially useful with longer strings that might be tedious to parse some other way. For instance,
you can use it to count how many times a particular string appears within a text file by turning

the file into a string and using explode () on it, as in this example (which uses some functions we
haven't explained yet, but we hope make sense in context).

<?php
//First, turn a text file into a string called $filestring.
$filename = "complex_layout.html";

$fd = fopen($filename, "r");
$filestring = fread($fd, filesize($filename));
fclose ($fd);

//Explode on the beginning of the <TABLE> HTML tag

$tables = explode("<TABLE", $filestring); // assumes uppercase
//Count the number of pieces

$num_tables = count($tables);

//Subtract one to get the number of <TABLE> tags, and echo

echo ($num_tables - 1);
7>

373

2Ea Bl More PHP

374

The explode () function has an inverse function, implode (), which takes two arguments: a “glue”
string (analogous to the separator string in explode()) and an array of strings like that returned by
explode(). It returns a string created by inserting the glue string between each string element in
the array.

You can use the two functions together to replace every instance of a particular string within a text file.
Remember that the separator string will vanish into the ether when you perform an explode () —if
you want it to appear in the final file, you have to replace it by hand. In this example, we're changing
the font tags on a web page.

<?php
//Turn text file into string
$filename = "someoldpage.html";

$fd = fopen($filename, "r");

$filestring = fread($fd, filesize($filename));

fclose ($fd);

$parts = explode("arial, sans-serif", $filestring);
$whole = implode("arial, verdana, sans-serif", $parts);

//0verwrite the original file
$fd = fopen($filename, "w");
fwrite($fd, $whole);

fclose ($fd);

7>

Why Regular Expressions?

The string-comparison and substring-finding functions we saw here and in Chapter 7 are fine as far
as they go, but they are on the literal-minded side. As an example of their weakness, let’s say that
you want to test strings to see if they are a particular kind of web hostname: addresses that start
with www. and end with . com, and have one lowercase alphabetic word in the middle. For example,
these are strings we want:

"www.ibm.com'
"www.zend.com'

And the following are not:

'java.sun.com'

"www.Jjava.sun.com'

"www.php.net'

www. IBM.com'

www.Web addresses can't have spaces.com’

With a little thought, it's obvious that there is no convenient way to simply use string and substring
comparison to build the test that we want. We can test for the presence of www. and . com, but it is dif-
ficult to enforce what should be happening between them. This is what regular expressions are good for.

Examining Regular Expressions

Regex in PHP

Regular expressions (or regex, pronounced with a soft g by your authors, but with no consensus pro-
nunciation) are patterns for string matching, with special wildcards that can match entire portions
of the target string. There are two broad classes of regular expression that PHP works with: POSIX
(extended) regex and Perl-compatible regex. The differences mostly have to do with syntax, although
there are some functional differences, too.

POSIX-style regular expressions are ultimately descended from the regex pattern-matching machin-
ery used in Unix command-line shells; Perl-compatible regex is a more direct imitation of regular
expressions in Perl. We've already waxed poetic about the utility of arrays. We're about to do it again
with regex. If youre planning on doing any substantial coding in a web environment, sooner or later
you will bump up against regex.

Note that for PHP6, the ereg functions are no longer included.

An example of POSIX-style regex

Here are a few of the rules for POSIX-style regular expressions, simplified:

m Characters that are not special are matched literally. The letter a in a pattern, for example,
matches the same letter in a target string.

B The special character * matches the beginning of a string only, and the special character $
matches the end of a string only.

The special character . matches any character.

The special character * matches zero or more instances of the previous regular expression,
and + matches one or more instances of the previous expression.

B A set of characters enclosed in square brackets matches any of those characters — the pat-
tern [ab] matches either a or b. You can also specify a range of characters in brackets by
using a hyphen — the pattern [a-c] matches a, b, or c.

B Special characters that are escaped with a backslash (\) lose their special meaning and are
matched literally.

We can use the preceding rules to construct an expression that matches the kind of web address we
want in the section “Why Regular Expressions?” earlier in this chapter. Our chosen expression is:

Awww\.[a-z]+\.com$

In this expression we have the “** symbol, which says that the www portion must start at the begin-
ning of the string. Then comes a dot (.), preceded by a backslash that says we really want a dot, not
the special . wildcard character. Then we have a bracket-enclosed range of all the lowercase alpha-
betic letters. The following + indicates that we are willing to match any number of these lowercase
letters in a row, as long as we have at least one of them. Then another literal ., the com, and the spe-
cial $ that says that com is the end of it.

375

Z1adl|I8 More PHP

Now let’s use that expression as an argument to the function ereg(), which takes as arguments a
pattern string and a string to match against. We can use an ereg () call to build a test function for
our kind of web address.

function simple_dot_com ($url)
{

return(ereg('*www\\.[a-z]+\\.com$"', $url));
}

Confusingly, we have to put two backslashes in the pattern string, because PHP treats the first slash
as an escape character for the second backslash. (You can get away with just one backslash, but that
behavior is not guaranteed to continue in future versions of PHP.) The second backslash (escaped by
the first), in turn, is a regex escape character for the following character.

This function will return TRUE or FALSE, depending on whether it successfully matches our pattern.
Now we can use our function to test some of the addresses listed earlier.

$urls_to_test =

array('www.ibm.com', 'www.java.sun.com',
"www.zend.com', 'java.sun.com',
"www.java.sun.com', 'www.php.net',

www.IBM.com",
"www.Web addresses can\'t have spaces.com');
while($test = array_pop($urls_to_test)){
if (simple_dot_com($test))
print("\"$test\" is a simple dot-com
");
else
print("\"$test\" is NOT a simple dot-com
");

}

The results of our tests are:

www.Web addresses can't have spaces.com” is NOT a simple dot-com
www.IBM.com" is NOT a simple dot-com

www.php.net" is NOT a simple dot-com

www.java.sun.com" is NOT a simple dot-com

"java.sun.com" is NOT a simple dot-com

"www.zend.com" is a simple dot-com

"www.java.sun.com" is NOT a simple dot-com

"www.ibm.com" is a simple dot-com

This is the kind of discriminating behavior we are looking for.

On many Unix systems, typing man 7 regex will lead you to a guide to POSIX regular
expressions. If that does not work, try man regex and follow any pointers to related pages.

376

Examining Regular Expressions

Regular expression functions

The POSIX-style regular expression functions in PHP are summarized in Table 22-1. These are
included for legacy applications where you might find them still being used. These functions are
no longer in PHP6 and have been replaced with preg functions, discussed later in this chapter.

If you find yourself using a regular expression function with a pattern that has no special
characters, you are probably using an expensive tool where a cheap one would do. If you
are trying to match a simple string to a simple string, you need only one of the more basic (and faster)
functions that we cover earlier in this chapter and in Chapter 7.

TABLE 22-1

POSIX Regular Expression Functions

Function Behavior

ereg() Takes two string arguments and an optional third-array argument. The first
string is the POSIX-style regular expression pattern, and the second string is the
target string that is being matched. The function returns TRUE if the match was
successful and FALSE otherwise. In addition, if an array argument is supplied
and portions of the pattern are enclosed in parentheses, the parts of the target
string that match successive parenthesized portions will be copied into successive
elements of the array.

ereg_replace() Takes three arguments: a POSIX regular expression pattern, a string to do
replacement with, and a string to replace into. The function scans the third
argument for portions that match the pattern and replaces them with the second
argument. The modified string is returned.

1f there are parenthesized portions of the pattern (as with ereg()), the
replacement string may contain special substrings of the form \\digit (thatis,
two backslashes followed by a single-digit number), which will themselves be
replaced with the corresponding piece of the target string.

eregi() Identical to ereg (), except that letters in regular expressions are matched in a
case-independent way.

eregi_replace() Identical to ereg_replace(), except that letters in regular expressions are
matched in a case-independent way.

split() Takes a pattern, a target string, and an optional limit on the number of portions
to split the string into. Returns an array of strings created by splitting the target
string into chunks delimited by substrings that match the regular expression. (Note
that this is analogous to the explode () function, except that it splits on regular
expressions rather than literal strings.)

spliti() Case-independent version of sp1it().

377

2Ea Bl More PHP

Perl-Compatible Regular Expressions

Perl-compatible regex in PHP has a completely distinct set of functions and a slightly different set of
rules for patterns.

Perl-compatible regex patterns are always bookended by one particular character, which must be
the same at beginning and end, indicating the beginning and end of the pattern. By convention, this
is most often the / character, although you can use a different character if you so desire. The Perl-
compatible pattern:

/pattern/

matches any string that has the string (or substring) pattern in it. To make things slightly more
complicated, these patterns are typically strings, and PHP needs its own quotes to recognize such
strings. So if you are putting a pattern into a variable for later use, you might well do this:

$my_pattern = '/pattern/';

This variable would now be suitable for passing off to a Perl-compatible regex function that expects
a pattern as argument.

Although we don’t have time or space to cover Perl-compatible regex patterns in detail, Table 22-2
shows a list of the most commonly used constructs.

TABLE 22-2

Common Perl-Compatible Pattern Constructs

Construct Interpretation

Simple literal If the character involved is not special, Perl will match characters in sequence. The
character matches example pattern /abc/ matches any string that has the substring "abc " in it.
Character class Will match a single instance of any of the characters between the brackets. For
matches: [</ist of example, /[xyz]/ matches a single character, as long as that character is either x,
characters>] ¥, or z. A sequence of characters (in ASCII order) is indicated by a hyphen, so that

a class matching all digits is [0-91].

Predefined character The patterns \d will match a single digit (from the character class [0-9]), and the
class abbreviations pattern \'s matches any whitespace character.
Multiplier patterns Any pattern followed by * means: “Match this pattern 0 or more times.”

Any pattern followed by ? means: “Match this pattern exactly once.”

Any pattern followed by + means: “Match this pattern 1 or more times.”

378

Examining Regular Expressions

Construct Interpretation

Anchoring characters The caret character * at the beginning of a pattern means that the pattern must
start at the beginning of the string; the $ character at the end of a pattern means
that the pattern must end at the end of the string. The caret character at the
beginning of a character class [*abc] means that the set is the complement of the
characters listed (that is, any character that is not in the list).

Escape character ‘\’ Any character that has a special meaning to regex can be treated as a simple
matching character by preceding it with a backslash. The special characters that
might need this treatment are:

AFF2LIAS ()L =1<>

Parentheses A parenthesis grouping around a portion of any pattern means: “Add the substring
that matches this pattern to the list of substring matches.”

Take, as an example, the following pattern:

/phone number\s+(\d\d\d\d\d\d\d)/

It matches any string that contains the literal phrase phone number, followed by some number of
spaces (but at least one), followed by exactly seven digits (no spaces, no dash). In addition, because
of the parentheses, the seven-digit number is saved and returned in an array containing substring
matches if it is called from a function that returns such things.

The Perl-compatible functions are summarized in Table 22-3.

The most widely used of these functions are probably preg_match() and preg_match_all().
The first is best for simply answering whether a pattern matches a string, and the latter is best for
either counting matches or collecting portions that match.

The optional fourth argument to preg_match_al1() requires a little more explanation. The array
that contains the returned matches is going to be two levels deep, with one level being the iteration
of the match (the first match, the second, and so on) and the other level being the position of the
match in the pattern. (The entire match is always first, followed by any parenthesized subpatterns
in order.) The question is: Which level is on top? Will the array be a list of positions, each of which
contains a list of iterations, or the other way around? If the argument is PREG_PATTERN_ORDER,
the first element will contain all matches of the entire pattern, the second element will contain all
matches of the first parenthesized pattern, and so forth. If the argument is PREG_SET_ORDER, the
first argument will be all the substrings from the first match (first the total match, then parenthe-
sized bits in order), the second element will contain all the substrings from the second match, and
so on. (See the following example to clarify.)

379

2Ea Bl More PHP

Function

Perl-Compatible Regular Expression Functions

Behavior

preg_match()

Takes a regex pattern as first argument, a string to match against as second
argument, and an optional array variable for returned matches. Returns 0 if no
matches are found, and 1 if a match is found. If a match is successful, the array
variable contains the entire matching substring as its first element, and subsequent
elements contain portions matching parenthesized portions of the pattern. As of
PHP 4.3.0, an optional flag of PREG_OFFSET_CAPTURE is also available. This
flag causes preg match to return into the specified array a two-element array for
each match, consisting of the match itself and the offset where the match occurs.

preg_match_all()

Like preg_match (), except that it makes all possible successive matches of
the pattern in the string, rather than just the first. The return value is the number
of matches successfully made. The array of matches is not optional (If you want
a true/false answer, use preg_match()).

The structure of the array returned depends on the optional fourth argument
(either the constant PREG_PATTERN_ORDER, or PREG_SET_ORDER, defaulting
to the former). (See further discussion following the table.) PREG_OFFSET_
CAPTURE is also available with this function.

preg_split()

Takes a pattern as first argument and a string to match as second argument.
Returns an array containing the string divided into substrings, split along
boundary strings matching the pattern. (Analogous to the POSIX-style function
sp1it().) An optional third argument (17mit) controls how many elements to
split before returning the list; -1 means no limit. An optional flag in the fourth
position can be PREG_SPLIT_NO_EMPTY causing the function to return only
nonempty pieces, PREG_SPLIT_DELIM_CAPTURE causing any parenthesized
expression in the delimiter pattern to be returned, or PREG_SPLIT_OFFSET_
CAPTURE, which does the same as PREG_OFFSET_CAPTURE.

preg_replace()

Takes a pattern, a replacement string, and a string to modify. Returns the
result of replacing every matching portion of the modifiable string with
the replacement string. An optional limit argument determines how many
replacements will occur (as in preg_split()).

preg_replace_
callback()

Like preg_replace(), except that the second argument is the name of a
callback function, rather than a replacement string. This function should return
the string that is to be used as a replacement.

preg_grep()

Takes a pattern and an array and returns an array of the elements of the input
array that matched the pattern. Surviving values of the new array have the same
keys as in the input array.

preg_quote()

A special-purpose function for inserting escape characters into strings that
are intended for use as regex patterns. The only required argument is a string
to escape; the return value is that string with every special regex character
preceded by a backslash.

380

Examining Regular Expressions

Example: A simple link-scraper

As an example of what regex can do for us, let’s write a simple function to grab and print links
from an arbitrary web page. The input will be a URL for the page we're interested in analyzing;
the output will be a printed list of the links on the page, split into the target URL for the link
and the descriptive text that appears in the link (the anchortext). We will do this using Perl-
compatible regex functions.

Such a function might be the very first step in writing a web crawler for a search engine. Search
engines download the contents of web pages to analyze and index them, but they also need to dis-
cover links to other pages, if only to discover new content.

The regular expression

The heart of our little function will be the regular expression itself. What we need to do is design an
expression that will match HTML links (and nothing else) and that is suitable for using to extract
pieces of such links.

HTML links generally look something like this:

My cool page on my coo0l
site

That is, an anchor tag that has an HREF attribute, and which encloses the anchortext between the
start tag (CA>) and the end tag (). We'll construct a pattern to match this simplified view of
an anchortext element. (This won't capture everything that the HTML spec permits as legal anchor
links — in particular, you are allowed attributes in anchors other than HREFs, but we will ignore
that for our purposes.)

Now, regular expressions are famously unreadable when considered all at once. So we will grow this
one in several drafts as we explain what’s going on.

First, let’s start with a minimal expression to catch a beginning anchor tag. Our first draft looks
like this:

/<A\NSHREF="[~"]+">/
// first draft of a pattern to match anchor Tinks

(Note that this is not yet intended to be working PHP code; we're drafting an expression that we’ll
plug into PHP code later.)

In English, our first-draft definition of an anchor tag is left angle bracket, followed by A, followed
by a space, followed by the string HREF=, followed by a double-quotation mark, followed by any
number of characters that are not quotation marks, followed by a closing quotation mark, followed
by a right angle bracket. Then the whole expression is enclosed in a pair of slashes, indicating to the
regex engine the start and end of the expression.

381

2Ea Bl More PHP

382

The [*"]+ construction in the middle of this expression breaks down like this: The brackets indi-
cate a character set, and the caret (*) immediately after the left bracket indicates that we are negating
the set — that the set contains every character that is not in the subsequent list. Finally, the + after
that bracketed class means that we expect at least one nonquote character.

As we've said, we're not trying to capture the precise syntax prescribed by the HTML specification.
But there are a couple of ways that we can make this expression less strict. For one thing, as far as
we know, there may be spaces between the initial < character and the A tag. Similarly, there may be
an arbitrary number of spaces between the A and the HREF or the closing double-quote and the right
angle bracket. Adding these, the expression becomes:

/<A\SHHREF="[""]+"\s*>/
// second draft, allowing more spaces

Here, \ s+ means one or more spaces.

Now we add the anchortext itself and the closing tag:

J/<ANSHHREF="[A\"T+"\s*>["> J*<\/A>/
// third draft, with text and close tag

We are allowing the anchortext to be anything up until a closing anchor tag, so we make an any-
thing-but-right-angle-bracket character class ([*>]) and indicate that it can repeat zero or more
times. Finally, we add the subpattern to match the closing anchor tag (<\/A>).

This is fine as far as it goes, but it will only match anchors where the tag name (A) and attribute
(HREF) are in uppercase. Lowercase tags should be legal as well, so we add an i modifier after the
entire expression, to specify case-independent matching.

/<ANSHHREF="["\"T1+"\s*>[*>1*<\/A> /1
// fourth draft, case-independent

This draft is nearly final and could be used to give true/false answers to the question of whether

a page contains the kind of links we like. But we want to go further and extract certain portions
of any string that does match. We signify this by adding parentheses to enclose the portions we're
interested in:

/<ANSHHREF="(LM\"1)+"\s*>([*>1*)<\/A>/1
// final draft, extracts portions

They may be hard to see by this point, but we've added a pair of parentheses to enclose the target
of the HREF (between the quotes) and another pair around the anchortext area (between the tags).
These parentheses tell the calling function to save the string portion that matches the enclosed area,
so that it can be added to the return array.

Examining Regular Expressions

Using the expression in a function

With an anchor-tag-matching expression in hand, our goal now is to write a function to scrape links
from an HTML page. We'll need to:

Take a URL as argument

Open up an HTTP connection to the URL and grab its contents as a string

Iterate through the string, applying our regex pattern wherever we can, saving what matches

Print the extracted portions (target URL and anchortext)

Such a function is shown in Listing 22-1.

LISTING 22-1

A print_links function

<{?php

function print_links ($url)
{
$fp = fopen($url, "r")
or die("Could not contact $url");
$page_contents = ;
while ($new_text = fread($fp, 100)) {
$page_contents .= $new_text;
}
$match_result =
preg_match_all('/<A\SHHREF="([A\"1+)"\s*>([">I*)<K\/A>/i",
$page_contents,
$match_array,
PREG_SET_ORDER);

foreach ($match_array as $entry) {
$href = $entry[1];
$anchortext = $entry[2];
print("HREF: $href;
ANCHORTEXT: $anchortext
");

7>

This function is easier to write than you might expect because PHP takes care of several parts of it
for us. We do not need to write anything special to make an HTTP connection to download a web
page because fopen() will accept a URL as argument and do the right thing. All we need to do after

383

2Ea Bl More PHP

384

calling fopen() on the URL is to read characters until we are out of them, appending what we get
onto a constructed string.

The iteration through the HTML page’s contents is taken care of by preg_match_al1(), which
applies the regex pattern as many times as possible, starting from the previous match each time, and
saving the matches in $match_array. We chose to have the array arranged by PREG_SET_ORDER,
meaning that each entry in the top-level array is the portion from a particular match in the iteration,
rather than across matches.

Applying the function

The only argument the function requires is a URL. In testing the function before including it in the
book, we pointed it at link-rich, top-level pages like http://slashdot.org, www.cnn.com, and
www . php.net. Those results would be fun to display, but all of those sites have copyright notices,
and publishers are understandably wary of allowing authors to put other people’s copyrighted mate-
rial into their copyrighted book without permission. So, instead, we pointed it at the top-level place-
holder page for our own vanity site (www. troutworks.com), like this:

print_Tinks("http://www.troutworks.com/");

You get the following result (approximately):

HREF: http://www.mysteryguide.com; ANCHORTEXT: MysteryGuide
HREF: http://www.sciencebookguide.com; ANCHORTEXT:
ScienceBookGuide

HREF: /Joycelog/joycelog.php; ANCHORTEXT: Troutgirl weblog
HREF: /Timlog/timlog.php; ANCHORTEXT: Timboy weblog

HREF: http://www.troutworks.com/phpbook; ANCHORTEXT: code
download site

HREF: http://www.amazon.com/exec/obidos/tg/detail/-/0764549553/;
HREF: http://www.mysteryguide.com; ANCHORTEXT: MysteryGuide
HREF: http://www.sciencebookguide.com; ANCHORTEXT:
ScienceBookGuide

ANCHORTEXT: PHP Bible

HREF: http://www.troutworks.com/phpbook; ANCHORTEXT: code
download site

Just because we didn't feel that we could print the results of the links from those more interesting
sites doesn’t mean that you can’t apply this code to them (however, see the warnings in the sidebar
“Writing Well-Behaved Spiders”).

Extending the code

As we've said, code like Listing 22-1 is the very beginning of writing a web search spider. If you
want to make it more real, you could:

m Convert the relative links to absolute (http://) links by remembering the URL that you
are scraping and splicing that base URL appropriately with the relative path

Examining Regular Expressions

B Add a more graceful way to bounce back from an unreachable site rather than immedi-
ately dying

B Expand the regex pattern to match HREFs that have quotation marks around the URL as
well as HREFs that do not

B Add capability for recursive calls so that, rather than simply printing a child link, you
apply the same function again to it and explore its own links

Writing Well-Behaved Spiders

Anote of caution, however (informed by the experience of one of your authors in the search engine busi-
ness). There are two rules that you should observe, though, before writing any kind of spider that does
more automated crawling. When you crawl any site, you should:

B Check to see if there is a robots.txt file (at http://sitename/robots.txt). If there is no
such file, the site owners are implicitly saying the site is okay to crawl. If there is such a file, you
should either not crawl the site or, if you do, you should make sure that you are not crawling pages
that match the patterns laid out in that file. (For more on this, do a web search for “robot exclusion
standard”.)

B Make sure that you don’t request files from any particular site too frequently. A decent interval to wait
between requests is 10 seconds or so. (You can implement this delay on a per-site basis, or simply by
sleeping for 10 seconds between every request.) It is not OK to simply create a recursive version of
the preceding code and then unleash it on a large site, grabbing new links and pages as fast as your
code can loop. Remember: One man’s search engine is another’s denial-of-service attack.

Advanced String Functions

We have now covered the most basic things to do with strings, as well some more sophisticated
means of working with them via regular expressions. Now, we’ll delve into some more exotic string
functions, which we’ve categorized by type and/or purpose. These are the sort of functions that
might only be relevant to you if you're working on a particular kind of project. Some of these sec-
tions might make you want to say, “Why would anyone want to do that?” If so, please ignore them
until you the day that you suddenly realize that you need to do that thing exactly.

HTML functions

PHP offers a number of web-specific functions for string manipulation, which are summarized in
Table 22-4.

385

2Ea Bl More PHP

HTML-Specific String Functions

Function Behavior

htmlspecialchars() Takes a string as argument and returns the string with replacements for four
characters that have special meaning in HTML. Each of these characters is
replaced with the corresponding HTML entity, so that it will look like the
original when rendered by a browser. The & character is replaced by &
(the double-quote character) is replaced by "; < is replaced by &1t ;; >
is replaced by > ;.

htmlentities() Goes further than htmlspecialchars(), inthatit replaces all characters that
have a corresponding HTML entity with that HTML entity.

get_html_ Takes one of two special constants (H-TML_SPECIAL_CHARS and HTML_

translation_ ENTITIES), and returns the translation table used by htmlspecialchars()

table() and htmlentities(), respectively. The translation table is an array where keys

are the character strings and the corresponding values are their replacements.

nlz2br() Takes a string as argument and returns that string with
 inserted before all
new lines (\n, \r or \r\n). This is helpful, for example, in maintaining the
apparent line length of text paragraphs when they are displayed in a browser.

strip_tags() Takes a string as argument and does its best to return that string stripped of all
HTML tags and all PHP tags.

Hashing using MD5

MDS5 is a string-processing algorithm that is used to produce a digest or signature of whatever string
it is given. The algorithm boils its input string down into a fixed-length string of 32 hexadecimal
values (0,1,2, ... 9,a,b, ... f). MD5 has some very useful properties:

B MDS5 always produces the same output string for any given input string, so it is not appro-
priate to use MD5 to store passwords.

B The fixed-length results of applying MD5 are very evenly spread over the range of
possible values.

® It may be possible produce an input string corresponding to a given MD5 output string or
to produce two inputs that yield the same output.

PHP’s implementation of MD5 is available in the function md5 (), which takes a string as input and
produces the 32-character digest as output. For example, evaluating this:

print("md5 of 'Tim"' is " . md5('Tim') . "
");
print("md5 of 'tim' is " . mdb('tim") . "
");
print("md5 of 'time' is " . md5('time') . "
");

386

Examining Regular Expressions

gives us the browser output:

md5 of Tim is dc2054afd537ddc98afd9347136494ac
md5 of tim is b15d47e99831ee63e3f47cf3d4478e9a
md5 of time is 07cc694b9b3fc636710fa08b6922c42b

Although the input strings seem close to each other in some sense, there is no apparent similarity in
the output strings. And since the range of possible output values is so huge (16 to the 32nd power), the
chances that any two distinct strings will collide by producing the same MD5 value is vanishingly small.

The characteristics of MD5 make it useful for a wide variety of tasks, including:

B Checksumming a message or file: If you are worried about errors that might happen in
transfer, you can transmit an MD5 digest, along with the message, and run the message
through MD5 again after transfer. If the two versions of the digest do not match, then
something is amiss.

B Detecting if a file’s contents have changed: Similar to checksumming, MD5 is often used
in this way by search engines as a check on whether a web page has changed, making re-
indexing necessary. It is cheaper to store the MD5 digest than the entire original file.

m Splitting strings or files into buckets: If you want to divide a set of strings into N ran-
domly dispersed sets, you can MD5 the strings, take the first few hex characters, translate
them into a number, and take that number modulo the number of bins you want.

In addition to the md5 () function, PHP offers md5_fi1le(), which takes a filename as argument and
returns an MD5 hash of the file’s contents.

Strings as character collecti