
GNU T

E

X

MACS

user manual

Table of contents

Table of contents . 3

1. Getting started . 11

1.1. Conventions for this manual . 11

1.2. Con�guring T

E

X

MACS

. 11

1.3. Creating, saving and loading documents . 12

1.4. Printing documents . 12

2. Writing simple documents . 13

2.1. Generalities for typing text . 13

2.2. Typing structured text . 13

2.3. Content-based tags . 14

2.4. Lists . 14

2.5. Environments . 15

2.6. Layout issues . 15

2.7. The font selection system . 16

2.8. Mastering the keyboard . 16

2.8.1. General pre�x rules . 16

2.8.2. Some fundamental keyboard shortcuts . 17

2.8.3. Keyboard shortcuts for text mode . 17

2.8.4. Hybrid commands and L

A

T

E

X simulation . 19

2.8.5. Dynamic objects . 19

2.8.6. Customization of the keyboard . 19

3. Mathematical formulas . 21

3.1. Main mathematical constructs . 21

3.2. Typing mathematical symbols . 22

3.3. Typing big operators . 23

3.4. Typing large delimiters . 23

3.5. Wide mathematical accents . 24

4. Tabular material . 25

4.1. Creating tables . 25

4.2. The formatting mode . 25

4.3. Specifying the cell and table alignment . 26

4.4. Specifying the cell and table size . 26

4.5. Borders, padding and background color . 26

4.6. Advanced table features . 27

5. Links and automatically generated content 29

5.1. Creating labels, links and references . 29

5.2. Inserting images . 29

5.3. Generating a table of contents . 30

5.4. Compiling a bibliography . 30

3

5.5. Generating an index . 31

5.6. Compiling a glossary . 31

5.7. Books and multi�le documents . 31

6. Editing tools . 33

6.1. Cut and paste . 33

6.2. Search and replace . 33

6.3. Spell checking . 34

6.4. Undo and redo . 34

7. Advanced layout features . 35

7.1. Flows . 35

7.2. Floating objects . 35

7.3. Page breaking . 35

8. T

E

X

MACS

plug-ins . 37

8.1. Installing and using a plug-in . 37

8.2. Writing your own plug-ins . 37

8.3. Example of a plug-in with Scheme code . 39

The world plug-in . 39

How it works . 39

8.4. Example of a plug-in with C++ code . 39

The minimal plug-in . 39

How it works . 40

8.5. Summary of the con�guration options for plug-ins 40

9. Using GNU T

E

X

MACS

as an interface . 43

9.1. Creating sessions . 43

9.2. Editing sessions . 43

9.3. Selecting the input method . 44

9.4. Supported systems . 44

9.4.1. Shell sessions and scheme sessions . 44

9.4.2. Giac . 44

9.4.3. GTybalt . 45

9.4.4. Macaulay 2 . 45

9.4.5. Maxima . 45

9.4.6. Pari . 45

9.4.7. Qcl . 46

9.4.8. Yacas . 46

10. Writing T

E

X

MACS

style files . 47

10.1. Writing a simple style package . 47

10.2. Rendering of style �les and packages . 49

10.2.1. ASCII-based or tree-based editing: an intricate choice 49

10.2.2. Global presentation . 50

10.2.3. Local customization . 53

10.3. The style-sheet language . 54

10.3.1. Assignments . 54

10.3.2. Macro expansion . 54

4 Table of contents

10.3.3. Formatting primitives . 55

10.3.4. Evaluation control . 57

10.3.5. Flow control . 58

10.3.6. Computational markup . 59

10.4. Customizing the standard T

E

X

MACS

styles . 60

10.4.1. Organization of style �les and packages . 60

10.4.2. General principles for customization . 61

10.4.3. Customizing the general layout . 61

10.4.4. Customizing list environments . 62

10.4.5. Customizing numbered textual environments 63

De�ning new environments . 64

Customization of the rendering . 64

Customization of the numbering . 65

10.4.6. Customizing sectional tags . 65

10.4.7. Customizing the treatment of title information 67

10.5. Further notes and tips . 68

10.5.1. Customizing arbitrary tags . 68

10.5.2. Standard utilities . 69

11. Customizing T

E

X

MACS

. 71

11.1. Introduction to the Guile extension language . 71

11.2. Writing your own initialization �les . 71

11.3. Creating your own dynamic menus . 72

11.4. Creating your own keyboard shortcuts . 72

11.5. Other interesting �les . 73

12. The T

E

X

MACS

format . 75

12.1. T

E

X

MACS

trees . 75

Internal nodes of T

E

X

MACS

trees . 75

Leafs of T

E

X

MACS

trees . 75

Serialization and preferred syntax for editing 76

12.2. T

E

X

MACS

documents . 76

12.3. Default serialization . 77

Main serialization principle . 77

Formatting and whitespace . 78

Raw data . 79

12.4. XML serialization . 79

The encoding for strings . 79

XML representation of regular tags . 79

Special tags . 79

12.5. Scheme serialization . 80

12.6. The typesetting process . 81

12.7. Data relation descriptions . 82

The rationale behind D.R.D.s . 82

Current D.R.D. properties and applications 83

Determination of the D.R.D. of a document 83

12.8. T

E

X

MACS

lengths . 84

Absolute length units . 84

Rigid font-dependent length units . 84

Table of contents 5

Stretchable font-dependent length units . 85

Other length units . 85

Di�erent ways to specify lengths . 85

13. Built-in environment variables . 87

13.1. General environment variables . 88

13.2. Specifying the current font . 90

13.3. Typesetting mathematics . 92

13.4. Paragraph layout . 93

13.5. Page layout . 97

Paper speci�c variables . 97

Screen speci�c variables . 98

Specifying the margins . 99

Page decorations . 100

13.6. Table layout . 101

Layout of the table as a whole . 101

Layout of the individual cells . 102

13.7. Editing source trees . 104

13.8. Miscellaneous environment variables . 104

14. Built-in T

E

X

MACS

primitives . 107

14.1. Fundamental primitives . 107

14.2. Formatting primitives . 108

14.2.1. White space primitives . 108

14.2.2. Line breaking primitives . 110

14.2.3. Indentation primitives . 110

14.2.4. Page breaking primitives . 111

14.2.5. Box operation primitives . 112

14.3. Mathematical primitives . 114

14.4. Table primitives . 117

14.5. Linking primitives . 118

14.6. Miscellaneous physical markup . 120

15. Primitives for writing style files . 123

15.1. Environment primitives . 123

15.2. Macro primitives . 124

15.3. Flow control primitives . 127

15.4. Evaluation control primitives . 128

15.5. Functional operators . 129

15.5.1. Operations on text . 130

15.5.2. Arithmetic operations . 130

15.5.3. Boolean operations . 131

15.5.4. Operations on tuples . 131

15.6. Transient markup . 132

15.7. Miscellaneous style-sheet primitives . 135

15.8. Internal primitives . 135

16. The standard T

E

X

MACS

styles . 137

16.1. General organization . 137

6 Table of contents

16.1.1. Standard T

E

X

MACS

styles . 137

16.1.2. Standard T

E

X

MACS

packages . 138

16.2. The common base for most styles . 139

16.2.1. Standard markup . 139

16.2.2. Standard symbols . 142

16.2.3. Standard mathematical markup . 143

16.2.4. Standard lists . 143

16.2.4.1. Using list environments . 143

16.2.4.2. Customization of list environments . 144

16.2.5. Automatic content generation . 145

16.2.5.1. Bibliographies . 145

16.2.5.2. Tables of contents . 146

16.2.5.3. Indexes . 147

16.2.5.4. Glossaries . 148

16.2.6. Utilities for writing style �les . 148

16.2.7. Counters and counter groups . 150

16.2.8. Special markup for programs . 152

16.2.9. Special markup for sessions . 152

16.3. Standard environments . 153

16.3.1. De�ning new environments . 153

16.3.2. Mathematical environments . 154

16.3.3. Theorem-like environments . 155

16.3.3.1. Using the theorem-like environments 155

16.3.3.2. Customization of the theorem-like environments 155

16.3.4. Environments for �oating objects . 156

16.3.4.1. Using the environments for �oating objects 156

16.3.4.2. Customization of the environments for �oating objects 157

16.4. Headers and footers . 157

16.4.1. Standard titles . 157

16.4.1.1. Entering titles and abstracts . 157

16.4.1.2. Customizing the global rendering of titles 159

16.4.1.3. Customizing the rendering of title �elds 160

16.4.2. Standard headers . 161

16.5. L

A

T

E

X style sections . 162

16.5.1. Using sectional tags . 162

16.5.2. Customization of the sectional tags . 163

16.5.3. Helper macros for rendering section titles 164

17. Compatibility with other formats . 165

17.1. Compatibility with L

A

T

E

X . 165

17.1.1. Conversion from T

E

X

MACS

to L

A

T

E

X . 165

17.1.2. Possible conversion problems . 166

17.1.2.1. Speci�c T

E

X

MACS

features . 166

17.1.2.2. Not yet implemented conversions . 167

17.1.2.3. Bugs in the conversion algorithm . 167

17.1.2.4. Work-arounds . 167

17.1.3. Conversion from L

A

T

E

X to T

E

X

MACS

. 167

17.2. Conversion of T

E

X

MACS

documents to Html . 168

17.3. Adding new data formats and converters . 168

Declaring new formats . 168

Declaring new converters . 169

Table of contents 7

Appendix A. Configuration of T

E

X

MACS

. 171

A.1. Introduction . 171

A.2. Con�guration of the modi�er keys . 171

A.3. Notes for Russian and Ukranian users . 172

Appendix B. About GNU T

E

X

MACS

-1.0.5 . 175

B.1. Summary . 175

B.2. The philosophy behind T

E

X

MACS

. 175

B.2.1. A short description of GNU T

E

X

MACS

. 175

B.2.2. Why freedom is important for scientists . 176

B.3. The authors of T

E

X

MACS

. 176

B.3.1. Developers of T

E

X

MACS

. 176

B.3.2. Authors and maintainers of plugins for T

E

X

MACS

. 177

B.3.3. Administration of T

E

X

MACS

and material support 178

B.3.4. Porting T

E

X

MACS

to other platforms . 178

B.3.5. Contributors to T

E

X

MACS

packages . 179

B.3.6. Internationalization of T

E

X

MACS

. 179

B.3.7. Other contributors . 180

B.3.8. Contacting us . 181

B.4. Important changes in T

E

X

MACS

. 182

B.4.1. Improved titles (1.0.4.1) . 182

B.4.2. Improved style sheets and source editing mode (1.0.3.5) 182

B.4.3. Renaming of tags and environment variables (1.0.2.7 � 1.0.2.8) 182

B.4.4. Macro expansion (1.0.2.3 � 1.0.2.7) . 183

B.4.5. Formatting tags (1.0.2 � 1.0.2.1) . 183

B.4.6. Keyboard (1.0.0.11 � 1.0.1) . 183

B.4.7. Menus (1.0.0.7 � 1.0.1) . 184

B.4.8. Style �les (1.0.0.4) . 184

B.4.9. Tabular material (0.3.5) . 184

B.4.10. Document format (0.3.4) . 184

Appendix C. Contributing to GNU T

E

X

MACS

. 185

C.1. Use T

E

X

MACS

. 185

C.2. Making donations to the T

E

X

MACS

project . 185

Making donations to TeXmacs through the SPI organization 185

Details on how to donate money . 185

Important notes . 186

C.3. Contribute to the GNU T

E

X

MACS

documentation 186

C.3.1. Introduction on how to contribute . 186

C.3.2. Using cvs . 187

C.3.3. Conventions for the names of �les . 187

C.3.4. Copyright information & the Free Documentation License 188

C.3.5. Traversing the T

E

X

MACS

documentation . 188

C.3.6. Using the tmdoc style . 189

C.4. Internationalization . 190

C.5. Writing data converters . 191

C.6. Porting T

E

X

MACS

to other platforms . 191

C.7. Interfacing T

E

X

MACS

with other systems . 191

C.8. T

E

X

MACS

over the network and over the web . 191

C.9. Become a T

E

X

MACS

developer . 191

8 Table of contents

Appendix D. Interfacing T

E

X

MACS

with other programs 193

D.1. Introduction . 193

D.2. Basic input/output using pipes . 193

D.3. Formatted and structured output . 195

The formula plug-in . 195

The markup plug-in . 196

D.4. Output channels, prompts and default input . 197

The prompt plug-in . 197

D.5. Sending commands to T

E

X

MACS

. 198

The menus plug-in . 198

D.6. Background evaluations . 199

The substitute plug-in . 199

The secure plug-in . 199

D.7. Mutator tags . 200

The mutator plug-in . 201

D.8. Mathematical and customized input . 202

The input plug-in . 202

D.9. Tab-completion . 204

The complete plug-in . 205

D.10. Dynamic libraries . 206

The dynlink plug-in . 207

D.11. Miscellaneous features . 208

Interrupts . 208

Testing whether the input is complete . 208

D.12. Plans for the future . 209

Index . 211

Table of contents 9

Chapter 1

Getting started

1.1. Conventions for this manual

Throughout the T

E

X

MACS

manual, menu entries will be typeset using a sans serif font, like

in Document, File! Load or Text!Font shape! Italic. Keyboard input will be typeset in

a typewriter font inside boxes, like in

C-s

. At the righthand side of menu entries, you see

keystroke equivalents, when these are available. The following abbreviations are used for

such keystrokes:

S-

. For shift key combinations.

C-

. For control key combinations.

A-

. For alternate key combinations.

M-

. For meta key combinations.

H-

. For hyper key combinations.

For instance,

A-C-b

stands for

alternate-control-b

. Spaces inside keyboard shortcuts

indicate multiple key-presses. For instance,

M-t N b

stands for

meta-t N b

.

The

alternate

,

meta

and

hyper

keys are not available on all keyboards. On recent

PC's, the

meta

key is often replaced by the

windows

key. In the case when one or

several modi�er keys are missing on your keyboard, you may use

escape

instead of

M-

,

escape escape

instead of

A-

and

F5

,

escape escape escape

or

A-C-

instead of

H-

.

For instance,

escape w

is equivalent to

A-w

. You may also con�gure the keyboard mod-

i�ers in order to take full advantage out of the powerful set of keyboard shortcuts which

is provided by T

E

X

MACS

.

Notice that the T

E

X

MACS

menus and keyboard behavior are contextual , i.e. they depend on

the current mode (i.e. text mode or �math mode�), the current language and the position

of the cursor inside your document. For instance, inside math mode, you have special

keyboard shortcuts which are handy for typing mathematical formulas, but which are

useless in text mode.

1.2. Configuring T

E

X

MACS

When starting T

E

X

MACS

for the �rst time, the program automatically con�gures itself in

a way which it thinks to be most suitable for you. For instance, T

E

X

MACS

will attempt

to determine your systems settings for the language and the paper type of your printer.

However, the automatic con�guration may sometimes fail or you may want to use an

alternative con�guration. In that case, you should go to the Edit!Preferences menu and

specify your preferences.

11

In particular, we recommend you to con�gure the desired �look and feel� of T

E

X

MACS

. By

default, we use the Emacs look and feel, which ensures a limited compatibility of the

T

E

X

MACS

keyboard shortcuts with those of Emacs. Also, T

E

X

MACS

comes with a powerful

keyboard shortcut system, which attempts to optimize the use of the modi�er keys like

shift

and

control

on your keyboard. However, on many X Window systems these

modi�er keys are not well con�gured, so that you may wish to redo this yourself. More

details can be found in the section about the con�guration of T

E

X

MACS

.

1.3. Creating, saving and loading documents

When launching T

E

X

MACS

without any command line options, the editor automatically

creates a new document for you. You may also create a new document yourself using

File! New. Newly created documents do not yet carry a name. In order to give them a

name, you should click on File!Save as.

We recommend you to give documents a name immediately after their creation; this will

avoid you to loose documents. It is also recommended to specify the global settings for

your document when necessary. First of all, you may specify a document style like article,

book or seminar using Document ! Style. If you write documents in several languages,

then you may want to specify the language of your document using Document!Language.

Similarly, you may specify a paper type using Document!Page! Size.

After modifying your document, you may save it using File! Save. Old documents can

be retrieved using File! Load. Notice that you can edit several documents in the same

window using T

E

X

MACS

; you can switch between di�erent bu�ers using Go.

1.4. Printing documents

You can print the current �le using File!Print!Print all. By default, T

E

X

MACS

assumes

that you have a 600dpi printer for a4 paper. These default settings can be changed in

Edit!Preferences!Printer. You can also print to a postscript �le using File!Print!Print

all to �le (in which case the default printer settings are used for creating the output) or

File!Export!Postscript (in which case the printer settings are ignored).

You may export to PDF using File ! Export! Pdf. Notice that you should set Edit!

Preferences!Printer!Font type!True Type if you want the produced Postscript or PDF

�le to use True Type fonts. However, only the CM fonts admit True Type versions.

These CM fonts are of a slightly inferior quality to the EC fonts, mainly for accented

characters. Consequently, you might prefer to use the EC fonts as long as you do not need

a PDF �le which looks nice in Acrobat Reader.

When adequately con�guring T

E

X

MACS

, the editor is guaranteed to be wysiwyg: the result

after printing out is exactly what you see on your screen. In order to obtain full wysiwyg-

ness, you should in particular select Document! Page! Type! Paper and Document!

Page!Screen layout!Margins as on paper. You should also make sure that the characters

on your screen use the same number of dots per inch as your printer. This rendering

precision of the characters may be changed using Document ! Font ! Dpi. Currently,

minor typesetting changes may occur when changing the dpi, which may globally a�ect

the document through line and page breaking. In a future release this drawback should be

removed.

12 Getting started

Chapter 2

Writing simple documents

2.1. Generalities for typing text

As soon as you have performed the preparatory actions as explained above, you can start

typing. The usual English characters and punctuation symbols can easily be obtained

on most keyboards. Accented characters from foreign languages can systematically be

obtained using the escape key. For instance, �é� is obtained by typing

A-' e

. Similarly, we

obtain �à� via

A-` a

and so on. Long words at borders of successive lines are automatically

hyphenated. In order to hyphenate foreign languages correctly, you should specify the

language of the document in the menu Document! Language.

At the left hand side of the footer, you see the document style, the text properties at the

current cursor position. Initially, it displays �generic text roman 10�, which means that you

type in text mode using a 10 point roman font and the generic document style. You can

change the text properties (font, font size, color, language) in the Format menu. You can

also change the text properties of the text you have already typed by selecting a region

and then using the Format menu. Some text properties can also be changed for all the

document with the Document menu.

At the right hand side of the footer, the character or object (like a change in the text

properties) just before the cursor is displayed. We also display all environments which are

active at the cursor position. This information should help you to orient yourself in the

document.

2.2. Typing structured text

Usually, long documents have a structure: they are organized in chapters, sections and

subsections, they contain di�erent types of text, such as regular text, citations, footnotes,

theorems, etc. After selecting a document style in Document!Style, T

E

X

MACS

takes care of

speci�c layout issues, such as numbering of sections, pages, theorems, typesetting citations

and footnotes in a nice way and so on.

Currently, four standard document styles have been implemented: letter, article, book and

seminar. The seminar style is used for making transparencies. As soon as you have selected

such a style, you can organize your text into sections (see Text! Section) and use speci�c

environments . Examples of environments are theorem, proposition, remark and so on (see

Text! Environment). Other examples are lists of items (see Text! Itemize) or numbered

lists (see Text!Enumerate).

When you get more acquainted with T

E

X

MACS

, it is possible to add your own new envi-

ronments in your own style �le. Assume for instance that you often make citations and

that you want those to appear in italic, with left and right margins of 1cm. Instead of

manually changing the text and paragraph properties each time you make a citation, it is

better to create a citation environment. Not only it will be faster to create a new citation

when doing so, but it is also possible to systematically change the layout of your citations

throughout the document just by changing the de�nition of the citation environment. The

latter situation occurs for instance if you discover a posteriori that you prefer the citations

to appear in a smaller font.

13

2.3. Content-based tags

The simplest examples of structure in a text are content-based tags. In Text ! content

tags you see a list of them. Content based tags indicate that a given portion of text is of a

particular kind or that it serves a speci�c purpose. For instance, important text should be

marked using the strong tag. Its default rendering uses a bold type face, like in this strong

text. However, strong text might be rendered in a di�erent way according to the document

style. For instance, strong text may be rendered in a di�erent color on transparencies for

presentations. Here follows a short list of the most common content-based tags and their

purpose:

Tag Example Purpose

strong this is important Indicate an important region of text

em the real thing Emphasize a region of text

dfn A gnu is a horny beast De�nition of some concept

samp the ae ligature æ A sequence of literal characters

name the Linux system The name of a particular thing

person I am Joris The name of a person

cite* Melville's Moby Dick A bibliographic citation

abbr I work at the C.N.R.S. An abbreviation

acronym the HTML format An acronym

verbatim the program said hello Verbatim text like computer program output

kbd Please type return Text which should be entered on a keyboard

code* cout << 1+1; yields 2 Code of a computer program

var cp src-file dest-file Variables in a computer program

Table 2.1. Some of the most common content-based tags.

2.4. Lists

Using Text! Itemize you may start an unnumbered list. You may either select a particular

tag like � (bullets), � (dashes) or ! (arrows) to indicate entries in the list or the default

tag. Lists may be nested inside other tags, like in the following list:

� First item.

� Now comes the sublist:

� A subitem.

� Another one.

� A �nal item.

The default tag is rendered in a di�erent way depending on the level of nesting. At the

outermost level, we used the � tag, at the second level �, and so on. When you are inside

a list, notice that pressing

return

automatically starts a new item. If you need items

which are several paragraphs long, then you may always use

S-return

in order to start a

new paragraph.

14 Writing simple documents

Enumerate environments, which are started using Text! Enumerate, behave in a similar

way as itemize, except that the items are numbered. Here follows an example of an enu-

meration which was started using Text!Enumerate!Roman:

I. A �rst item.

II. A second one.

III. And a last one.

The last type of lists are descriptive lists. They are started using Text! Description and

allow you to describe a list of concepts:

Gnu. A hairy but gentle beast.

Gnat. Only lives in a zoo.

2.5. Environments

In a similar way as content-based tags, environments are used to mark portions of text

with a special meaning. However, while content-based tags usually enclose small portions

of text, environments often enclose portions that are several paragraphs long. Frequently

used environments in mathematics are theorem and proof, like in the example below:

Theorem 2.1. There exist no positive integers a, b, c and n with n > 3, such that

a

n

+ b

n

= c

n

.

Proof. I do not have room here to write the proof down. �

You may enter environments using Text!Environment. Other environments with a similar

rendering as theorems are proposition, lemma, corollary, axiom, de�nition. You may use

the dueto macro (entered using

\ d u e t o return

) in order to specify the person(s) to

which the theorem is due, like in

Theorem 2.2. (Pythagoras) Under nice circumstances, we have a

2

+ b

2

= c

2

.

Other frequently used environments with a similar rendering as theorems, but which do not

emphasize the enclosed text, are remark, note, example, warning, exercise and problem. The

remaining environments verbatim, code, quote, quotation and verse can be used in order to

enter multiparagraph text or code, quotations or poetry.

2.6. Layout issues

As a general rule, T

E

X

MACS

takes care of the layout of your text. Therefore, although we

did not want to forbid this possibility, we do not encourage you to typeset your document

visually. For instance, you should not insert spaces or blank lines as substitutes for hor-

izontal and vertical spaces between words and lines; instead, additional space should be

inserted explicitly using Insert!Space. This will make your text more robust in the sense

that you will not have to reconsider the layout when performing some minor changes, which

a�ect line or page breaking, or major changes, such as changing the document style.

2.6 Layout issues 15

Several types of explicit spacing commands have been implemented. First of all, you can

insert rigid spaces of given widths and heights. Horizontal spaces do not have a height

and are either stretchable or not. The length of a stretchable spaces depends on the way

a paragraph is hyphenated. Furthermore, it is possible to insert tabular spaces. Vertical

spaces may be inserted either at the start or the end of a paragraph: the additional vertical

space between two paragraphs is the maximum of the vertical space after the �rst one and

the vertical space before the second one (contrary to T

E

X, this prevents from super�uous

space between two consecutive theorems).

As to the paragraph layout, the user may specify the paragraph style (justi�ed, left ragged,

centered or right ragged), the paragraph margins and the left (resp. right) indentation

of the �rst (resp. last) line of a paragraph. The user also controls the spaces between

paragraphs and successive lines in paragraphs.

You can specify the page layout in the Document ! Page menu. First of all, you can

specify the way pages are displayed on the screen: when selecting �paper� as page type

in Document ! Page ! Type, you explicitly see the page breaks. By default, the page

type is �papyrus�, which avoids page breaking during the preparation of your document.

The �automatic� page type assumes that your paper size is exactly the size of your window.

The page margins and text width are speci�ed in Document! Page! Layout. Often, it

is convenient to reduce the page margins for usage on the screen; this can be done in

Document!Page!Screen layout.

2.7. The font selection system

In T

E

X

MACS

, fonts have �ve main characteristics:

� Its name (roman, pandora, concrete, etc.).

� Its family (roman, typewriter or sans serif).

� Its size (a base size (in points) and a relative size (normal, small, etc.).

� Its series (bold, medium or light).

� Its shape (right, italic, small caps, etc.).

Notice that in the font selection system of L

A

T

E

X 2", the font name and family are only

one (namely, the family). Notice also that the base font size is speci�ed for the entire

document in Document!Font! Size.

2.8. Mastering the keyboard

2.8.1. General pre�x rules

Since there are many keyboard shortcuts, it is important to have some ways of classifying

them in several categories, in order to make it easier to memorize them. As a general rule,

keyboard shortcuts which fall in the same category are identi�ed by a common pre�x. The

main such common pre�xes are:

C-x

. Control key based shortcuts are used for frequently used editing commands.

They depend very much on the �look and feel� in Edit!Preferences. For instance,

if you use an Emacs-compatible look and feel, then the shortcuts of the form

C-x

correspond to Emacs commands, like

C-y

for pasting text.

16 Writing simple documents

A-x

. The alternate key is used for commands which depend on the mode that you

are in. For instance,

A-s

produces strong text in text mode and a square root

p

in math mode. Notice that

escape escape

is equivalent to

A-

.

M-x

. The meta key is used for general purpose T

E

X

MACS

commands, which can be

used in all modes. For instance,

M-!

produces a label. It is also used for additional

editing commands, like

A-w

for copying text if you use the Emacs look and feel.

Notice that

escape

is equivalent to

M-

.

H-x

. The user keyboard modi�er key is used for producing special symbols like Greek

characters in math mode. You may con�gure your keyboard so as to let caps-lock

play the rôle of the hyper key. The

F5

is equivalent to

H-

.

We recall that the particular modi�er keys which are used in order to obtain the

M-

and

H-

pre�xes can be con�gured in Edit!Preferences.

2.8.2. Some fundamental keyboard shortcuts

Some standard keyboard actions which are valid in all modes are:

S-return

. always starts a new paragraph.

C-backspace

. remove the containing object or environment.

A-space

. insert a small space.

A-S-space

. insert a small negative space.

M-A-home

. manually set start of the selection.

M-A-end

. manually set end of the selection.

M-<

. go to the start of the document.

M->

. go to the end of the document.

2.8.3. Keyboard shortcuts for text mode

To write a text in an european language with a keyboard which does have the appropriate

special keys, you can use the following shortcuts to create accented characters. Note that

they are active regardless of the current language setting.

Shortcut Example Shortcut Example

A-'

Acute �

A-' e

é

A-`

Grave �

A-` e

è

A-^

Hat �

A-^ e

ê

A-"

Umlaut �

A-" e

ë

A-~

Tilde �

A-~ a

ã

A-C

Cedilla �

A-C c

ç

A-U

Breve �

A-U g

§

A-V

Check �

A-V s

²

A-O

Above ring �

A-O a

å

A-.

Above dot

A-. z

»

A-H

Hungarian �

A-H o

®

Table 2.2. Typing accented characters.

2.8 Mastering the keyboard 17

Special characters can also be created in any language context:

Shortcuts

S-F5 a

æ

S-F5 A

Æ

S-F5 a e

æ

S-F5 A E

Æ

S-F5 o

ø

S-F5 O

Ø

S-F5 o e

÷

S-F5 O E

×

S-F5 s

ÿ

S-F5 S

ß

S-F5 !

½

S-F5 ?

¾

S-F5 p

�

S-F5 P

¿

Table 2.3. Typing special characters.

When you press the

"

key, an appropriate quote will be inserted. The quote character is

chosen according to the current language and the surrounding text. If the chosen quoting

style is not appropriate, you can change it in Edit! Preferences!Keyboard!Automatic

quotes. You can also insert raw quotes:

Shortcuts

S-F5 "

"

, ,

�

< tab

�

> tab

�

< <

�

> >

�

Table 2.4. Typing raw quotes.

�English� quotes are considered ligatures of two successive backticks or apostrophes. They

can be created with

` `

and

' '

but these are not actual keyboard commands: the result

is two characters displayed specially, not a special single character.

Some shortcuts are available in speci�c language contexts. You can set the text language

for the whole document with Document!Language or only locally with Format!Language

(see generalities for typing text).

Hungarian Spanish Polish

S-F5 o

®

! tab

½

S-F5 a

¡

S-F5 o

ó

S-F5 O

�

? tab

¾

S-F5 A

�

S-F5 O

Ó

S-F5 u

¶

! `

½

S-F5 c

¢

S-F5 s

±

S-F5 U

�

? `

¾

S-F5 C

�

S-F5 S

�

S-F5 e

¦

S-F5 x

¹

S-F5 E

�

S-F5 X

�

S-F5 l

ª

S-F5 z

»

S-F5 L

�

S-F5 Z

�

S-F5 n

«

S-F5 z tab

¹

S-F5 N

�

S-F5 Z tab

�

Table 2.5. Language-speci�c text shorthands.

Language-speci�c shortcuts override generic shortcuts; for example, you cannot easily

type �ø� in hungarian context.

18 Writing simple documents

2.8.4. Hybrid commands and L

A

T

E

X simulation

T

E

X

MACS

allows you to enter L

A

T

E

X commands directly from the keyboard as follows. You

�rst hit the

\

-key in order to enter the hybrid L

A

T

E

X/T

E

X

MACS

command mode. Next

you type the command you wish to execute. As soon as you �nished typing your command,

the left footer displays something like

<return>: action to be undertaken

When you hit the

return

-key at this stage, your command will be executed. For instance,

in math-mode, you may create a fraction by typing

\ f r a c return

.

If the command you have typed is not a (recognized) L

A

T

E

X command, then we �rst look

whether the command is an existing T

E

X

MACS

macro, function or environment (provided

by the style �le). If so, the corresponding macro expansion, function application or envi-

ronment application is created (with the right number of arguments). Otherwise, it is

assumed that your command corresponds to an environment variable and we ask for its

value. The

\

-key is always equivalent to one of the commands

M-i l

,

M-i e

,

M-i a

,

M-i #

or

M-i v

.

To insert a literal \ (backslash) character, you can use the

S-F5 \

sequence.

2.8.5. Dynamic objects

Certain more complex objects can have several states during the editing process. Examples

of such dynamic objects are labels and references, because the appearance of the reference

depends on a dynamically determined number. Many other examples of dynamic markup

can be found in the documentation about writing style �les.

When entering a dynamic object like a label using

M-!

, the default state is inactive. This

inactive state enables you to type the information which is relevant to the dynamic object,

such as the name of the label in our case. Certain dynamic objects take an arbitrary number

of parameters, and new ones can be inserted using

tab

.

hlabeljpythagorasi

Figure 2.1. Inactive label

When you �nished typing the relevant information for your dynamic object, you may type

return

in order to activate the object. An active dynamic object may be deactivated by

placing your cursor just behind the object and hitting

backspace

.

2.8.6. Customization of the keyboard

It is possible for the user to modify the keyboard behaviour. In order to do so, we sug-

gest �rst to look at the �les in the directory $TEXMACS_PATH/progs/keyboard, where the

standard keyboard behaviour is de�ned. Then you may rede�ne the keyboard behaviour

in your private initialization �le.

2.8 Mastering the keyboard 19

Chapter 3

Mathematical formulas

To type mathematical formulas, you need �rst to enter �math mode�. This is a special text

property enabled in structures created by the Text!Mathematics menu.

Formula

$

. is used for small mathematical fragments inside a textual paragraph.

Note that formulas are typeset specially so they do not take too much vertical space.

For example, limits are always displayed on the left. Limits can be displayed below

in formulas with Format! Formula style! on. In formulas, formula style is o� by

default.

Equation

A-$

. is the structure for bigger mathematical expressions which are

typeset in a paragraph of their own.

Equations

A-&

. create an eqnarray*, a three columns wide table-like environment

(see creating tables).

This environment should be used for multiple relations where each line repeats the

relation symbol. The �rst column should contain the left hand side, the middle

column the relational symbol, and the left column the right hand side. The typical

use for eqnarray* is a step by step computation where each line describes a simple

operation on the right hand side of an equation.

In math mode, you have speci�c commands and key-combinations to type mathematical

symbols and formulas. For instance, the

H-

pre�x can be used in order to enter Greek

symbols (recall that

H-

is equivalent to

F5

,

escape escape escape

or

A-C-

).

The editor favors typing mathematics with a certain meaning. This feature, which will be

developed more in future releases, is useful when communicating with a computer algebra

package. At this moment, you should for instance explicitly type the multiplication

*

between symbols a and b. By default, typing

a b

will yield ab and not a b.

3.1. Main mathematical constructs

The main mathematical objects are created using the

A-

pre�x as follows:

Shortcut Purpose Example

A-$

Text L= fxjx is su�ciently largeg

A-f

Fractions

a

b+ c

A-s

Square roots x+ y

p

A-S

n-th Roots x

3

+ y

3

3

p

A-n

Negations

a

b+ c

Table 3.1. Creation of major mathematical markup.

21

Primes, subscripts and superscripts are created as follows:

Shortcut Purpose Example

'

Primes f

0

or (g+ h)

000

`

Back-primes f

8

_

Subscripts x

n

or x

i

3

^

Superscripts x

2

, x

n

2

or e

e

x

A-l _

Left subscripts x

2

A-l ^

Left superscripts x

�

or He

�

�

�

�

Table 3.2. Creation of primes, subscripts and superscripts

Some important mathematical constructs are actually tabular constructs and are docu-

mented separately.

3.2. Typing mathematical symbols

The Greek characters are obtained in T

E

X

MACS

by combining the hyper modi�er key

H-

with a letter. For instance,

H-a

yields � and

H-G

yields �. Recall that the

F5

key is

equivalent to

H-

, so that � can also be obtained by typing

F5 r

. Similarly,

F6

,

F7

,

F8

and

S-F6

can be used in order to type bold, calligraphic, fraktur and blackboard bold

characters. For instance,

F8 m

yields m,

S-F6 R

yields R and

F6 F7 Z

yields Z.

Greek characters can also be obtained as �variants� of Latin characters using the

tab

-

key. For instance,

p tab

yields �. The

tab

-key is also used for obtaining variants of the

Greek letters themselves. For instance, both

H-p tab

and

p tab tab

yield $.

Many other mathematical symbols are obtained by �natural� key-combinations. For

instance,

- >

yields ! ,

- - >

yields � and

> =

yields > . Similarly,

| -

yields ` ,

| - >

yields � and

- > < -

yields � . Some general rules hold in

order to obtain variants of symbols:

tab

. is the main key for obtaining variants. For instance,

> =

yields > , but

> = tab

yields � . Similarly,

< tab

yields � ,

< tab =

yields 4 and

< tab = tab

yields

� . Also,

P tab

yields } and

e tab

yields the constant e= exp(1). You may �cycle

back� using

S-tab

.

@

. is used for putting symbols into circles or boxes. For instance,

@ +

yields � and

@ x

yields
 . Similarly,

@ tab +

yields � .

/

. is used for negations. For instance,

= /

yields � and

< = /

yields 6. Notice

that

< = tab tab /

yields � , while

< = tab tab / tab

yields � .

!

. is used after arrows in order to force scripts to be placed above or below the arrow.

For instance,

- - > ^ x

yields �

x

, but

- - > ! ^ x

yields .

x

.

22 Mathematical formulas

Several other symbols which cannot be entered naturally in the above way are obtained

using the

S-F5

pre�x. Here follows a short table of such symbols:

Shortcut Symbol Shortcut Symbol

S-F5 a

q

S-F5 n

\

S-F5 u

[

S-F5 v

_

S-F5 w

^

Table 3.3. Some symbols which cannot be obtained using general rules in a natural way.

3.3. Typing big operators

The following key-combinations are used in order to create big symbols:

Shortcut Result Shortcut Result

S-F5 I

Z

S-F5 O

I

S-F5 P

Y

S-F5 A

a

S-F5 S

X

S-F5 @ +

M

S-F5 @ x

O

S-F5 @ .

K

S-F5 U

[

S-F5 N

\

S-F5 V

_

S-F5 W

^

Table 3.4. Big mathematical operators.

The big integral signs admit two variants, depending on where you want to place subscripts

and superscripts. By default, the scripts are placed as follows:

Z

0

1

dx

1+x

2

:

The alternative rendering �with limits�

Z

0

1

dx

1+ x

2

:

is obtained using

S-F5 L I

. Similarly, you may type

S-F5 L O

in order to obtain

H

with

limits.

3.4. Typing large delimiters

Large delimiters are created as follows:

3.4 Typing large delimiters 23

Shortcut Result Shortcut Result

A-(

�

A-)

�

A-[

�

A-]

�

A-{

�

A-}

	

A-<

A->

�

A-/

�

A-\

�

Table 3.5. Keyboard shortcuts for large delimiters.

In T

E

X

MACS

, large delimiters may either be �left delimiters�, �right delimiters� or �middle

delimiters�. By default, (; [;f and h are left delimiters,);];g and i are right delimiters and j;/

and n are middle delimiters. But there status can be changed using the

A-l

,

A-r

and

A-m

key combinations. For instance,

A-l)

produces), considered as a large left delimiter.

In T

E

X and L

A

T

E

X, �middle delimiters�, or �separators� do not exist; they are used for

producing the vertical bars in formulas like

�

a

b+ c

�

�

�

�

p

q+ r

�

�

�

�

a

b+ c

�

:

There may be as many middle delimiters between a left and a right delimiter as one wishes.

3.5. Wide mathematical accents

The table below how to type mathematical accents above symbols or entire formulas.

Indeed, some of these accents automatically become as wide as the formulas below them.

Shortcut Example Wide variant Shortcut Result

A-~

x~ x+ y

A-'

x�

A-^

x̂ x+ y

A-`

x�

A-B

x� x+ y

A-.

x_

A-V

xG AB

A-"

x�

A-C

x� x+ y

A-U

x� x+ y

Table 3.6. Keyboard shortcuts for wide mathemarical accents.

24 Mathematical formulas

Chapter 4

Tabular material

4.1. Creating tables

In order to create a table, you may either use Insert!Table or one of the following keyboard

shorthands:

M-t N t

. Create a regular table.

M-t N T

. Create a regular table whose cells are centered.

M-t N b

. Create a regular �block�, whose cells are separated by lines.

M-t N B

. Create a block whose cells are centered.

In math mode, a few other table-like structures are provided:

M-t N m

. Create a matrix.

M-t N d

. Create a determinant.

M-t N c

. Create a choice list.

The eqnarray* environment is also a special kind of table-like structure, which extends over

the entire line. You may start a list of equations using Text!Mathematics!Equations.

When starting a new table, its size is minimal (usually 1 � 1) and its cells are empty.

New rows and columns are inserted using the

A-left

,

A-right

,

A-up

and

A-down

shorthands. For instance,

A-right

creates a new column at the right of the current

cursor position. You may also start a new row below the current cursor position by hitting

return

.

4.2. The formatting mode

In T

E

X

MACS

, arbitrary blocks of cells in the table may be formatted in particular ways.

For instance, you may give individual cells a background color, but you may also decide

an entire column to be horizontally centered. By default, formatting commands operate on

individual cells, but this may be changed via Table! Cell operation mode. The following

operation modes are available:

M-t m c

. Operate on individual cells.

M-t m h

. Operate on rows.

M-t m v

. Operate on columns.

25

M-t m t

. Operate on the entire table.

It is also possible to select a block of cells using the mouse and perform a single operation

on that rectangle.

4.3. Specifying the cell and table alignment

The most frequent formatting operation is the horizontal or vertical alignment of a block

of cells. You may use the

M-

,

M-!

,

M-"

and

M-#

keystrokes to quickly align more

to the left, right, top or bottom.

A speci�c alignment can also be selected in the Table ! Horizontal cell alignment and

Table!Vertical cell alignment menus. Alternatively, you may use keyboard shorthands of

the types

M-t h x

and

M-t v x

for horizontal resp. vertical alignment.

Similarly, you may specify how the table itself should be aligned with respect to the

surrounding text. This is either done via the Table!Horizontal table alignment and Table!

Vertical table alignment submenus, or using keyboard shorthands of the form

M-t H x

or

M-t V x

. Here

x

represents

l

for �left�,

c

for �centered�,

r

for �right�,

b

for �bottom�

and

t

for �top�.

4.4. Specifying the cell and table size

Using Table!Cell width!Set width resp. Table!Cell height!Set height you may specify

the width or height of a cell. In fact, the speci�ed width (or height) may be taken into

account in three di�erent ways:

Minimum mode. The actual width of the cell will be the minimum of the speci�ed

width and the width of the box inside the cell.

Exact mode. The width of the cell will be precisely the speci�ed one.

Maximum mode. The actual width of the cell will be the maximum of the speci�ed

width and the width of the box inside the cell.

The border width and the cell padding (to be explained below) are taken into account in

the size of the box inside the cell.

You may also specify the width and the height of the entire table in Table ! Special

table properties. In particular, you may specify the table to run over the entire width of

a paragraph. When specifying a width (or height) for the entire table, you may specify

how the unused space is distributed over the cells using Table! Special cell properties!

Distribute unused space. By default, the unused space is equally distributed.

4.5. Borders, padding and background color

You may specify the border widths and padding spaces of a cell in all possible four direc-

tions: on the left, on the right, at the bottom and at the top (see Table!Cell border). You

have keyboard shorthands of the forms

M-t b x

and

M-t p x

in order to specify border

widths and cell padding.

26 Tabular material

The default border width for cells in the block environment is 1ln, i.e. the standard line

width in the current font (like the width of a fraction bar). This width occurs at the right

and the bottom of each cell (except when the cell is on the �rst row or column). The default

horizontal cell padding is 1spc: the width of a white space in the current font. The default

vertical cell padding is 1sep: the standard minimal separation between two close boxes.

Cells may be given a background color via Table!Cell background color.

The entire table may also be given a border and a table padding in Table! Special table

properties!Border. In this case, the padding occurs outside the border.

4.6. Advanced table features

In the menus, you also �nd some other more special features for tables. Very brie�y, these

include the following:

� Change the �span� of a cell and let it run over its neighbouring cells on its right and

below.

� Creation of entire subtables inside cells.

� Correction of the depth and height of text, in order to let the baselines match.

� Horizontal hyphenation of cell contents and vertical hyphenation of the entire table.

� Gluing several rows and/or columns together, so that the glued cells become �part

of the borders� of the remaining cells.

� Disactivation of the table, in order to see its �source code�.

� Setting the �extension center� of a table. From now on, the formatting properties

of this cell will be used for new cells created around this center.

� Speci�cation of the minimal and maximum size of a table, which will be respected

during further editing. (this is mainly useful when creating table macros).

Currently, all tables come inside an environment like tabular, block, matrix, etc. When

creating your own table macros, you may use Table ! Special table properties ! Extract

format to extract the format from a given table.

4.6 Advanced table features 27

Chapter 5

Links and automatically generated content

5.1. Creating labels, links and references

You may create a new inactive label using

M-!

or Insert! Link! Label and a reference

to this label using

M-?

or Insert ! Link ! Reference. Be careful to put the label at a

point where its number will be correct. When labeling sections, the recommended place

is just after the section name. When labeling single equations (created using Insert !

Mathematics!Equation), the recommended place is at the start inside the equation. When

labeling multiple equations (created using Insert ! Mathematics! Equations), you must

put the labels just behind the equation numbers. Recall that you may use

A-*

in order

to transform an unnumbered environment or equation into a numbered one, and vice versa.

It is possible to create hyperlinks to other documents using

M-i >

or Insert ! Link !

Hyperlink. The �rst �eld of the hyperlink is the associated text, which is displayed in blue

when activated. The second �eld contains the name of a document, which may be on the

web. As is usual for hyperlinks, a link of the form #label points to a label in the same

document and a link of the form url#label points to a label in the document located at

url .

In a similar fashion, an action may be associated to a piece of text or graphics using

M-i *

or Insert!Link!Action. The second �eld now contains a Guile/Scheme script command,

which is executed whenever you double click on the text, after its activation. For security

reasons, such scripts are not always accepted. By default, you are prompted for acceptation;

this default behaviour may be changed in Options!Security. Notice that the Guile/Scheme

command

(system "shell-command")

evaluates shell-command as a shell command.

Finally, you may directly include other documents inside a given document using

M-i i

or Insert! Link! Include. This allows you for instance to include the listing of a program

in your text in such a way that your modi�cations in your program are automatically

re�ected in your text.

5.2. Inserting images

You can include images in the text using the menu Insert! Image. Currently, T

E

X

MACS

recognizes the ps, eps, tif, pdf, pdm, gif, ppm, xpm and fig �le formats. Here, gs (i.e.

ghostscript) is used to render postscript images. If ghostscript has not yet been installed

on your system, you can download this package from

www.cs.wisc.edu/~ghost/index.html

Currently, the other �le formats are converted into postscript �les using the scripts

tiff2ps, pdf2ps, pnmtops, giftopnm, ppmtogif, xpmtoppm. If these scripts are not avail-

able on your system, please contact your system administrator.

29

By default, images are displayed at their design size. The following operations are sup-

ported on images:

� Clipping the images following a rectangle. The lower left corner of the default image

is taken as the origin for specifying a rectangle for clipping.

� Resizing an image. When specifying a new width, but no height at the prompt (or

vice versa), the image is resized so as to preserve the aspect ration.

� Magnifying the image. An alternative way to resize an image, by multiplying the

width and the height by a constant.

We also included a script to convert pictures, with optional L

A

T

E

X formulas in it, into

encapsulated postscript. In order to include a L

A

T

E

X formula in an xfig picture, we recall

you should enter the formula as text, while selecting a L

A

T

E

X font and setting the special

�ag in the text �ags.

5.3. Generating a table of contents

It is very easy to generate a table of contents for your document. Just put your cursor at

the place where you want your table of contents and click on Text!Automatic!Table of

contents.

In order to generate the table of contents, you should be in a mode where page breaks

are visible (select paper in Document! Page! Type), so that the appropriate references

to page numbers can be computed. Next, use Document! Update! Table of contents or

Document!Update!All to generate the table of contents. You may have to do this several

times, until the document does not change anymore. Indeed, the page numbers may change

as a result of modi�cations in the table of contents!

5.4. Compiling a bibliography

At the moment, T

E

X

MACS

uses bibtex to compile bibliographies. The mechanism to auto-

matically compile a bibliography is the following:

� Write a .bib �le with all your bibliographic references. This �le should have the

format of a standard bibliography �le for L

A

T

E

X.

� Use Insert! Link!Citation and Insert! Link! Invisible citation to insert citations,

which correspond to entries in your .bib �le.

� At the place where your bibliography should be compiled, click on Text ! Auto-

matic!Bibliography. At the prompt, you should enter a bibtex style (such as plain,

alpha, abbrv, etc.) and your .bib �le.

� Use Document!Update!Bibliography in order to compile your bibliography.

Notice that additional BiBT

E

X styles should be put in the directory

~/.TeXmacs/system/bib.

30 Links and automatically generated content

5.5. Generating an index

For the generation of an index, you �rst have to put index entries in your document using

Insert!Link! Index entry. At a second stage, you must put your cursor at the place where

you want your index to be generated and click on Text!Automatic! Index. The index is

than generated in a similar way as the table of contents.

In the Insert ! Link ! Index entry menu, you �nd several types of index entries. The

simplest are �main�, �sub�, �subsub�, which are macros with one, two and three arguments

respectively. Entries of the form �sub� and �subsub� may be used to subordinate index

entries with respect to other ones.

A complex index entry takes four arguments. The �rst one is a key how the entry has to

be sorted and it must be a �tuple� (created using

M-i <

) whose �rst component is the

main category, the second a subcategory, etc. The second argument of a complex index

entry is either blank or �strong�, in which case the page number of your entry will appear

in a bold typeface. The third argument is usually blank, but if you create two index entries

with the same non-blank third argument, then this will create a �range� of page numbers.

The fourth argument, which is again a tuple, is the entry itself.

It is also possible to create an index line without a page number using �interject� in

Insert! Link! Index entry. The �rst argument of this macro is a key for how to sort the

index line. The second argument contains the actual text. This construct may be useful

for creating di�erent sections �A�, �B�, etc. in your index.

5.6. Compiling a glossary

Glossaries are compiled in a similar way as indexes, but the entries are not sorted. A �reg-

ular� glossary entry just contains some text and a page number will be generated for it.

An �explained� glossary entry contains a second argument, which explains the notation.

A �duplicate� entry may be used to create a page number for the second occurence of an

entry. A glossary line creates an entry without a page number.

5.7. Books and multifile documents

When a document gets really large, you may want to subdivide it into smaller pieces. This

both makes the individual pieces more easily reusable in other works and it improves the

editor's responsiveness. An entire �le can be inserted into another one using Insert!Link!

Include. In order to speed up the treatment of included documents, they are being bu�ered.

In order to update all included documents, you should use Tools!Update! Inclusions.

When writing a book, one usually puts the individual chapters in �les c1.tm, c2.tm until

cn.tm. One next creates one �le book.tm for the whole book, in which the �les c1.tm, c2.tm

until cn.tm are included using the above mechanism. The table of contents, bibliography,

etc. are usually put into book.tm.

In order to see cross references to other chapters when editing a particular chapter ci.tm,

one may specify book.tm as a �master �le� for the �les c1.tm to cn.tm using Document!

Master! Attach. Currently, the chapter numbers themselves are not dealt with by this

mechanism, so you may want to manually assign the environment variable chapter-nr at

the start of each chapter �le in order to get the numbering right when editing.

5.7 Books and multifile documents 31

Chapter 6

Editing tools

6.1. Cut and paste

You can select text and formulas by maintaining the left mouse button. In order to delete

the selected region, use Edit ! Cut. In order to copy the selected region, �rst click on

Edit!Copy. Next, paste it as many times as you want to the location of your cursor, using

Edit!Paste. Alternatively, you may copy a selected region using the middle mouse button.

It is also possible to the change text properties of a selected region. For instance, in

order to transform some black text in red, you select it using the left mouse button and

click on Text! Color! Red. Similarly, if you select a formula and you click on Insert!

Mathematics!Fraction, then the formula becomes the numerator of some fraction.

When using the copy and paste mechanism to communicate with other applications, text

is copied and pasted using the T

E

X

MACS

data format. You may specify other import and

export formats using Edit! Import resp. Edit! Export. By default, copying and pasting

uses the primary text bu�er. Using Edit!Copy to and Edit!Paste from, you may specify

as many other bu�ers as you like.

6.2. Search and replace

You can start searching text by pressing

C-s

or Edit!Search. During a search, the �search

string� is displayed at the left hand side of the footer. Each character you type is appended

to this search string and the next occurrence of it is surrounded by a red box. When

pressing

C-s

a second time during a search, the next occurrence is being searched. A

beep indicates that no more occurrences were found in the document; pressing

C-s

will

continue the search at the beginning of your document. You may press

backspace

in order

to undo key presses during a search.

Usually, text is being searched for in a forward manner, starting from the current cursor

position. You may also search backwards, using

C-r

. During a search, only text in the

same mode and the same language will be found, as those which are active at the position

where you started your search. In other words, when searching an x in math-mode, you

will not �nd any x's in the ordinary text. As a current limitation, the search string can

only contain ordinary text and no math-symbols or more complicated structured text.

A query replace is started by pressing

C-=

or Edit ! Replace. You are prompted for a

string which is to be replaced and the string by which to replace. At each occurrence of

the string to be replaced you are prompted and you have to choose between replacing the

string (y), not replacing it (n) and replace this and all further occurrences (a). Like in the

case of searching, the query-replace command is mode and language sensitive.

33

6.3. Spell checking

If the program ispell has been installed on your system, then you may use it to check your

text for misspelled words by pressing

M-$

or Edit! Spell. Notice that you might have to

verify that the dictionaries corresponding to the languages in which your texts have been

written have been installed on your system; this is usually the case for English.

When you launch the spell checker (either on the whole text or a selected region), you will

be prompted at each misspelled word and the footer displays the available options:

a). Accepts the misspelled word and all its future occurrences in the text.

r). Replace the misspelled word by a correction you have to enter.

i). Indicate that the �misspelled� word is actually correct and that it has to be inserted

in your personal dictionary.

1-9). Several suggested corrections for your misspelled word.

Notice that ispell just checks for misspelled words. No grammatical faults will be

detected.

When starting the spell checker, it will use the dictionary of the language which is active

at the current cursor position (or the start of a selection). Only text in that language will

be checked for. If your document contains text in several languages, then you will have to

launch the spell checker once for each language being used.

6.4. Undo and redo

It is possible to gradually undo the changes you made in a document from the moment

that you launched T

E

X

MACS

. This can be done via Edit! Undo or using the keystrokes

M-[

or

C-/

. Undone changes can be �redone� using Edit!Redo or

M-]

.

In order to save memory, the number of successive actions which can be undone is limited

to 100 (by default). It is possible to increase this number by adding a command like

(set-maximal-undo-depth 1000)

in our personal initialization �le (see Help!Scheme). When specifying a negative number

as your maximal undo depth, any number of actions can be undone.

34 Editing tools

Chapter 7

Advanced layout features

7.1. Flows

Complex documents often contain footnotes or �oating objects, which appear di�erently on

pages as the main text. In fact, the content of such complex documents use several �ows,

one for the main text, one for the footnotes, one for �oats, and still another one for two

column text. The di�erent �ows are broken across pages in a quite independent way.

In order to insert a footnote, you may use Insert!Page insertion!Footnote. The number

of columns of the text may be changed in Paragraph!Number of columns.

7.2. Floating objects

Floating objects are allowed to move on the page independently from the main text.

Usually they contain �gures or tables which are too large to nicely �t into the main text.

A �oating object may be inserted using Insert!Page insertion! Floating object.

You may also create a �oating object and directly insert a �gure or table inside it using

Insert ! Page insertion ! Floating �gure resp. Insert ! Page insertion ! Floating table.

However, sometimes you might want to insert several smaller �gures or tables inside one

�oating object. You may do this using Insert! Image!Small �gure resp. Insert!Table!

Small table.

After creating a �oating object, you may control its position using Insert! Position �oat

(when inside the �oat). You may specify whether you allow the �oating object to appear

at the top of the page, at the bottom, directly in the text, or on the next page. By default,

the �oat may appear everywhere. However, a �oating object will never appear inside the

main text at less than three lines from the bottom or the top of a page.

7.3. Page breaking

The page breaking may be controlled very precisely by the user inside Document !

Page! Breaking. In the submenu Algorithm, you may specify the algorithm being used.

Professional page breaking is best in print, but may slow down the editing when being

used interactively in paper mode. Sloppy page breaking is fastest and medium is profes-

sional except for multicolumn material, for which the professional algorithm is signi�cantly

slower.

You may also allow the page breaking algorithm to enlarge or reduce the length of pages

in exceptional cases in the submenu Limits. The stretchability of vertical space between

paragraphs and so may be speci�ed in Flexibility. The factor 1 is default; a smaller factor

enforces a more rigid spacing, but the quality of the breaks may decrease.

35

Chapter 8

T

E

X

MACS

plug-ins

There are many ways in which T

E

X

MACS

can be customized or extended: users may de�ne

their own style �les, customize the user interface, or write links with extern programs. The

plug-in system provides a universal mechanism to combine one or several such extensions

in a single package. Plug-ins are both easy to install by other users and easy to write and

maintain.

8.1. Installing and using a plug-in

From the user's point of view, a plug-in myplugin will usually be distributed on some web-

site as a binary tarball with the name

myplugin-version-architecture.tar.gz

If you installed T

E

X

MACS

yourself in the directory $TEXMACS_PATH, then you should unpack

this tarball in the directory $TEXMACS_PATH/plugins, using

tar -zxvf myplugin-version-architecture.tar.gz

This will create a myplugin subdirectory in $TEXMACS_PATH/plugins. As soon as you

restart T

E

X

MACS

, the plug-in should be automatically recognized. Please read the docu-

mentation which comes with your plug-in in order to learn using it.

Remark 8.1. If you did not install T

E

X

MACS

yourself, or if you do not have write access to

$TEXMACS_PATH, then you may also unpack the tarball in $TEXMACS_HOME_PATH/plugins.

Here we recall that $TEXMACS_HOME_PATH defaults to $HOME/.TeXmacs. When starting

T

E

X

MACS

, your plug-in should again be automatically recognized.

Remark 8.2. If the plug-in is distributed as a source tarball like myplugin-version-

src.tar.gz, then you should �rst compile the source code before relaunching T

E

X

MACS

.

Depending on the plug-in (read the instructions), this is usually done using

cd myplugin; make

or

cd myplugin; ./configure; make

Remark 8.3. In order to upgrade a plug-in, just remove the old version in

$TEXMACS_PATH/plugins or $TEXMACS_HOME_PATH/plugins using

rm -rf myplugin

and reinstall as explained above.

8.2. Writing your own plug-ins

In order to write a plug-in myplugin , you should start by creating a directory

37

$TEXMACS_HOME_PATH/plugins/myplugin

where to put all your �les (recall that $TEXMACS_HOME_PATH defaults to $HOME/.TeXmacs).

In addition, you may create the following subdirectories (when needed):

bin � For binary �les.

doc � For documentation (not yet supported).

langs � For language related �les, such as dictionaries (not yet supported).

lib � For libraries.

packages � For style packages.

progs � For Scheme programs.

src � For source �les.

styles � For style �les.

As a general rule, �les which are present in these subdirectories will be automatically

recognized by T

E

X

MACS

at startup. For instance, if you provide a bin subdirectory, then

$TEXMACS_HOME_PATH/plugins/myplugin/bin

will be automatically added to the PATH environment variable at startup. Notice that

the subdirectory structure of a plug-in is very similar to the subdirectory structure of

$TEXMACS_PATH.

Example 8.4. The easiest type of plug-in only consists of data �les, such as a collection

of style �les and packages. In order to create such a plug-in, it su�ces to create directories

$TEXMACS_HOME_PATH/plugins/myplugin

$TEXMACS_HOME_PATH/plugins/myplugin/styles

$TEXMACS_HOME_PATH/plugins/myplugin/packages

and to put your style �les and packages in the last two directories. After restarting

T

E

X

MACS

, your style �les and packages will automatically appear in the Document !

Style and Document!Use package menus.

For more complex plug-ins, such as plug-ins with additional Scheme or C++ code, one

usually has to provide a Scheme con�guration �le

$TEXMACS_HOME_PATH/plugins/myplugin/progs/init-myplugin.scm

This con�guration �le should contain an instruction of the following form

(plugin-configure myplugin

configuration-options)

Here the configuration-options describe the principal actions which have to be under-

taken at startup, including sanity checks for the plug-in. In the next sections, we will

describe some simple examples of plug-ins and their con�guration. Many other examples

can be found in the directories

38 T

E

X

MACS

plug-ins

$TEXMACS_PATH/examples/plugins

$TEXMACS_PATH/plugins

Some of these are described in more detail in the chapter about writing new interfaces.

8.3. Example of a plug-in with Scheme code

The world plug-in.

Consider the world plug-in in the directory

$TEXMACS_PATH/examples/plugins

This plug-in shows how to extend T

E

X

MACS

with some additional Scheme code in the �le

world/progs/init-world.scm

In order to test the world plug-in, you should recursively copy the directory

$TEXMACS_PATH/examples/plugins/world

to $TEXMACS_PATH/plugins or $TEXMACS_HOME_PATH/plugins. When relaunching

T

E

X

MACS

, the plug-in should now be automatically recognized (a World menu should

appear in the menu bar).

How it works.

The �le init-world.scm essentially contains the following code:

(define (world-initialize)

(menu-extend texmacs-extra-menu

(=> "World"

("Hello world" (insert-string "Hello world")))))

(plugin-configure world

(:require #t)

(:initialize (world-initialize)))

The con�guration option :require speci�es a condition which needs to be satis�ed for the

plug-in to be detected by T

E

X

MACS

(later on, this will for instance allow us to check whether

certain programs exist on the system). The con�guration is aborted if the requirement is

not ful�lled.

The option :initialize speci�es an instruction which will be executed during the ini-

tialization (modulo the ful�llment of the requirement). In our example, we just create

a new top level menu World and a menu item World! Hello world, which can be used to

insert the text �Hello world�. In general, the initialization routine should be very short and

rather load a module which takes care of the real initialization. Indeed, keeping the init-

myplugin.scm �les simple will reduce the startup time of T

E

X

MACS

.

8.4. Example of a plug-in with C++ code

The minimal plug-in.

Consider the example of the minimal plug-in in the directory

8.4 Example of a plug-in with C++ code 39

$TEXMACS_PATH/examples/plugins

It consists of the following �les:

minimal/Makefile

minimal/progs/init-minimal.scm

minimal/src/minimal.cpp

In order to try the plug-in, you �rst have to recursively copy the directory

$TEXMACS_PATH/examples/plugins/minimal

to $TEXMACS_PATH/progs or $TEXMACS_HOME_PATH/progs. Next, running the Makefile

using

make

will compile the program minimal.cpp and create a binary

minimal/bin/minimal.bin

When relaunching T

E

X

MACS

, the plug-in should now be automatically recognized.

How it works.

The minimal plug-in demonstrates a minimal interface between T

E

X

MACS

and an extern

program; the program minimal.cpp is explained in more detail in the chapter about writing

interfaces. The initialization �le init-minimal.scm essentially contains the following code:

(plugin-configure minimal

(:require (url-exists-in-path? "minimal.bin"))

(:launch "minimal.bin")

(:session "Minimal"))

The :require option checks whether minimal.bin indeed exists in the path (so this will

fail if you forgot to run the Makefile). The :launch option speci�es how to launch the

extern program. The :session option indicates that it will be possible to create sessions

for the minimal plug-in using Text! Session!Minimal.

8.5. Summary of the configuration options for plug-

ins

As explained before, the Scheme con�guration �le myplugin/progs/init-myplugin.scm

of a plug-in with name plugin should contain an instruction of the type

(plugin-configure myplugin

configuration-options)

Here follows a list of the available configuration-options :

(:require condition) � This option speci�es a sanity condition which needs to

be satis�ed by the plug-in. Usually, it is checked that certain binaries or libraries

are present on your system. If the condition fails, then T

E

X

MACS

will continue as

whether your plug-in did not exist. In that case, further con�guration is aborted.

The :require option usually occurs �rst in the list of con�guration options.

40 T

E

X

MACS

plug-ins

(:version version-cmd) � This option speci�es a Scheme expression version-cmd

which evaluates to the version of the plug-in.

(:setup cmd) � This command is only executed when the version of the plug-in

changed from one execution of T

E

X

MACS

to another one. This occurs mainly when

installing new versions of T

E

X

MACS

or helper applications.

(:initialize cmd) � This option executes the Scheme expression cmd . It usually

occurs just after the :require option, so that the plug-in will only be con�g-

ured if the plug-in really exists. For large plug-ins, it is important to keep the �le

myplugin/progs/init-myplugin.scm small, because it will be rerun each time you

start T

E

X

MACS

. In order to reduce the boot time, most Scheme commands of the

plug-in therefore occur in separate modules, some of which may be loaded by the

initialization command.

(:launch shell-cmd) � This option speci�es that the plug-in is able to evaluate

expressions over a pipe, using a helper application which is launched using the shell-

command shell-cmd .

(:link lib-name export-struct options) � This option is similar to :launch,

except that the extern application is now linked dynamically. For more informa-

tion, see the section about dynamic linking.

(:session menu-name) � This option indicates that the plug-in supports an eval-

uator for interactive shell sessions. An item menu-item will be inserted to the

Text! Session menu in order to launch such sessions.

(:serializer ,fun-name) � If the plug-in can be used as an evaluator, then this

option speci�es the Scheme function fun-name which is used in order to transform

T

E

X

MACS

trees to strings.

(:commander ,fun-name) � This command is similar to the :serializer option

except that it is used to transform special commands to strings.

(:tab-completion #t) � This command indicates that the plug-in supports tab-

completion.

(:test-input-done #t) � This command indicates that the plug-in provides a rou-

tine for testing whether the input is complete.

8.5 Summary of the configuration options for plug-ins 41

Chapter 9

Using GNU T

E

X

MACS

as an interface

An important feature of T

E

X

MACS

is it's ability to communicate with extern systems in

shell-like sessions. Typically, it is possible to evaluate commands of an extern computer

algebra system inside such a session and display the results in a nice, graphical way. It is

also possible to evaluate shell commands and Scheme programs inside such sessions.

9.1. Creating sessions

A session can be started from the Text! Session menu. A session consists of a sequence

of input and output �elds and possible text between them. When pressing

return

inside

an input �eld of a session, the text inside the environment is evaluated and the result is

displayed in an output �eld.

When entering a command in a session, the application attempts to execute it. Several

commands may be launched concurrently in the same document, but the output will only

be active in the session where the cursor is and at the place of the cursor. Therefore, we

recommend to use di�erent bu�ers for parallel executions.

For each type of extern application, one may choose between sharing a single process by

di�erent sessions, or launching a separate process for each di�erent session. More precisely,

when inserting a session using Text!Session!Other, you may specify both a �session type�

(Shell, Pari, Maxima, etc.) and a �session name� (the default name is �default�). Sessions

with di�erent names correspond to di�erent processes and sessions with the same name

share a common process.

In order to �nish the process which underlies a given session, you may use Session!Close

session. When pressing

return

in the input of a non-connected system, the system will be

restarted automatically. You may also use Session! Interrupt execution in order to interrupt

the execution of a command. However, several applications do not support this feature.

9.2. Editing sessions

Inside input �elds of sessions, the cursor keys have a special meaning: when moving

upwards or downwards, you will move to previous or subsequent input �elds. When moving

to the left or to the right, you will never leave the input �eld; you should rather use

the mouse for this.

Some facilities for editing input, output and text �elds are available in the Session! Insert

�elds and Session ! Remove �elds menus. Most operations directly apply to matching

input/output �elds. Optionally, an additional explanatory text �eld can be associated to an

input �eld using Session! Insert �elds! Insert text �eld. Keyboard shortcuts for inserting

�elds are

A-up

(insert above) and

A-down

. Keyboard shortcuts for removing matching

text/input/output �elds are

A-backspace

(remove backwards) and

A-delete

(remove

current �elds).

43

It is possible to create �subsessions� using Session ! Insert �elds ! Fold input �eld or

A-right

. In that case, the current text/input/output �eld becomes the body of an

unfolded subsession. Such a subsession consists of an explanatory text together with a

sequence of text/input/output �elds. Subsessions can be folded and unfolded using

M-A-up

resp.

M-A-down

. Subsessions have a nice rendering on the screen when using the vars-

ession package in Document!Use package!Program.

Other useful editing operations for text/input/output �elds are Session!Remove �elds!

Remove all output �elds, which is useful for creating a demo sessions which will be executed

later on, and Session!Split session, which can be used for splitting a session into parts for

inclusion into a paper.

9.3. Selecting the input method

By default, T

E

X

MACS

will attempt to evaluate the input �eld when pressing

return

.

Multiline input can be created using

S-return

. Alternatively, when selecting the multiline

input mode using Session! Input mode!Multiline input, the

return

key will behave as

usual and

S-return

may be used in order to evaluate the input �eld. Notice �nally that

certain systems admit built-in heuristics for testing whether the input has been completed;

if not, then the

return

may behave as usual.

Certain applications allow you to type the mathematical input in a graphical, two dimen-

sional form. This feature can be used by selecting Session! Input mode!Mathematical

input. If this feature is available, then it is usually also possible to copy and paste output

back into the input. However, it depends on the particular application how well this works.

9.4. Supported systems

When taking a look at the Insert! Session menu, only those systems which are actually

installed on your system will show up. The only exceptions are shell sessions and scheme

sessions, which are always available.

Below, you �nd a short list of free computer algebra systems which have been interfaced

with T

E

X

MACS

. There also exist interfaces with several proprietary interfaces, but you

should look at the documentation of those systems for more information.

9.4.1. Shell sessions and scheme sessions

In a �shell session� it is possible to evaluate shell commands. All input and output is

verbatim. No particular command-line utilities (such as completion mechanisms) have been

implemented yet. The output of the shell command is displayed gradually as the program

executes.

In a �Scheme session� you can evaluate Guile/Scheme programs. The input should

be verbatim text. The input is evaluated and the result is displayed. No gradual output

mechanism has been implemented yet for Scheme session.

9.4.2. Giac

Giac Is A Computer algebra system, which can be downloaded from

44 Using GNU T

E

X

MACS

as an interface

http://www-fourier.ujf-grenoble.fr/~parisse/english.html

9.4.3. GTybalt

GTybalt is a free computer algebra system which is built on top of GiNaC, CLN and a

program to interpret C and C++ commands. For more information, see

http://www.fis.unipr.it/~stefanw/gtybalt.html

9.4.4. Macaulay 2

Macaulay 2 is a new software system devoted to supporting research in algebraic geom-

etry and commutative algebra. The software is available now in source code for porting,

and in compiled form for Linux, Sun OS, Solaris, Windows, and a few other unix

machines. You can get it from

http://www.math.uiuc.edu/Macaulay2

9.4.5. Maxima

Maxima is not alone one of the oldest and best computer algebra systems around, it is

also one of the only general purpose systems for which there is a free implementation. You

can get it from

http://www.ma.utexas.edu/users/wfs/maxima.html

The supported version is GCL-based Maxima 5.6. For CLisp-based Maxima 5.6, edit

your tm_maxima and replace -load by -i. For Maxima 5.9-pre, replace -load by -p.

Known problems:

� If you press

return

when a statement is not complete (typically, terminated by ;

or $), the interface will hang.

� If you cause the Lisp break prompt to appear, the interface will hang.

� The command info is not supported (it is de�ned in the underlying Lisp, and

di�cult to support portably).

� Some commands in the debugger work, but some (including :c) don't work, nobody

knows why.

� The command load sometimes behaves mysteriously.

9.4.6. Pari

Pari is a software package for computer-aided number theory. It consists of a C library,

libpari (with optional assembler cores for some popular architectures), and of the pro-

grammable interactive gp calculator. You can download Pari from

ftp://megrez.math.u-bordeaux.fr/pub/pari

You will need a version newer than Pari-2.1.0 for use from inside T

E

X

MACS

(for an already

installed Pari-system, type gp --version).

9.4 Supported systems 45

9.4.7. Qcl

QCL is a high level, architecture independent programming language for quantum com-

puters, with a syntax derived from classical procedural languages like C or Pascal. This

allows for the complete implementation and simulation of quantum algorithms (including

classical components) in one consistent formalism. The T

E

X

MACS

interface is mainly useful

for displaying quantum states in a readable way. For more information, see

http://tph.tuwien.ac.at/~oemer/qcl.html

Starting from 1.0.0.8, T

E

X

MACS

supportsQCL 0.4.3 or newer. Users of older versions should

upgrade.

9.4.8. Yacas

Yacas is, as it's name suggest, yet another computer algebra system. Things implemented

include: arbitrary precision, rational numeric, vector, complex, and matrix computations

(including inverses and determinants and solving matrix equations), derivatives, solving,

Taylor series, numerical solving (Newtons method), and a lot more non-mathematical

algorithms. The language natively supports variables and user-de�ned functions. There

is basic support for univariate polynomials, integrating functions and tensor calculations.

You can get Yacas at

http://www.xs4all.nl/~apinkus/yacas.html

46 Using GNU T

E

X

MACS

as an interface

Chapter 10

Writing T

E

X

MACS

style files

One of the fundamental strengths of T

E

X

MACS

is the possibility to write your own style

�les and packages. The purpose of style �les is multiple:

� They allow the abstraction of repetitive elements in texts, like sections, theorems,

enumerations, etc.

� They form a mechanism which allow you to structure your text. For instance,

you may indicate that a given portion of your text is an abbreviation, a quotation

or �important�.

� Standard document styles enable you to write professionally looking documents,

because the corresponding style �les have been written with a lot of care by people

who know a lot about typography and aesthetics.

The user may select a major style from the Document!Stylemenu. The major style usually

re�ects the kind of document you want to produce (like a letter, an article or a book) or

a particular layout policy (like publishing an article in a given journal).

Style packages, which are selected from the Document! Style menu, are used for further

customization of the major style. For instance, the number-europe package enables Euro-

pean-style theorem numbering and the maxima package contains macros for customizing

the layout of sessions of the Maxima computer algebra system. Several packages may be

used together.

When you want to add your own markup to T

E

X

MACS

or personalize the layout, then you

have to choose between writing a principal style �le or a style package. In most cases, you

will probably prefer to write a style package, since this will allow you to combine it arbitrary

other styles. However, in some cases you may prefer to create a new principal style, usually

by personalizing an existing style. This is usually the case if you want to mimic the layout

policy of some journal. In this chapter, we will both explain how to write your own style

packages and how to customize the standard styles.

10.1. Writing a simple style package

Let us explain on an example how to write a simple style package. First of all, you have

to create a new bu�er using File ! New and select the source document style using

Document ! Style ! source. Now save your empty style package in your personal style

package directory

$HOME/.TeXmacs/packages

Notice that the button Texts in the �le browser corresponds to the directory

$HOME/.TeXmacs/texts

Consequently, you can go to the style package directory from there, by double clicking on

.. and next on packages. Similarly, the directory

47

$HOME/.TeXmacs/styles

contains your personal style �les. After saving your empty style package, it should

automatically appear in the Document ! Package menu. Notice that style �les must

be saved using the .ts �le extension. If you save the style �le in a subdirectory of

$HOME/.TeXmacs/packages, then it will automatically appear in the corresponding sub-

menu of Document!Package.

Let us now create a simple macro hi which displays �Hello world�. First type

A-=

, so as

to create an assignment. You should see something like

hassignjji

Now enter �hi� as the �rst argument and type

A-m

inside the second argument in order

to create a macro. You should now see something like

hassignjhi jhmacrojii

Finally, type the text �Hello world� in the body of the macro. Your document should now

consist of the following line:

hassignjhi jhmacrojHello worldii

After saving your style package, opening a new document and selecting your package in

the Document! Use package menu, you may now use the macro hi in your document by

typing

\ h i

and hitting

return

.

In a similar way, you may create macros with arguments. For instance, assume that we

started entering a macro hello in a similar way as above. Instead of typing �Hello world�,

we �rst type

A-left

inside the macro body so as to create an additional argument on the

left hand side of the cursor. We next enter the name of the argument, say �name�. You

should now see something like below:

hassignjhellojhmacrojnamejii

In the second argument of the body, we now type �Hello �,

A-#

, �name�,

right

and �,

how are you today?�. After this you should see

hassignjhellojhmacrojnamejHello name, how are you today?ii

The

A-#

shortcut is used to retrieve the macro argument name. Instead of typing

A-#

,

�name� and

right

, you may also use the hybrid

\

-key and type

\ n a m e

followed by

return

. After saving your style package, you may again use the macro in any document

which uses your package by typing

\ h e l l o

and hitting

return

.

From the internal point of view, all macro de�nitions are stored in the environment of the

T

E

X

MACS

typesetter. Besides macros, the environment also contains normal environment

variables, such as section counters or the font size. The environment variables can either

be globally changed using the assign primitive, or locally, using the with primitive. For

instance, when including the line

hassignjsection-nr j-1i

in your package, and using article as your major style, then the �rst section will be

numbered 0. Similarly, the variant

48 Writing T

E

X

MACS

style files

hassignjhellojhmacrojnamejHello hwithjfont-shapejsmall-capsjnamei!ii

of the hello macro displays the name of the person in Small Capitals. Notice that the

with primitive can also be used to locally rede�ne a macro. This is for instance used in

the de�nitions of the standard list environments, where the macro which renders list icons

is changed inside the body of the list. Yet another variant of the hello macro relies on the

standard person macro:

hassignjhellojhmacrojnamejHello hpersonjnamei!ii

In order to produce the macro application hperson j namei, you �rst have to start a

compound tag using

A-c

, type the name �person�, insert an argument

A-right

, and

enter the argument name as before. When you are done, you may press

return

in order

to change the compound tag into a person tag. Alternatively, you may type

\

, �person�,

A-right

and �name�.

By combining the above constructs, an ordinary user should already be able to produce

style packages for all frequently used notations. An interesting technique for writing macros

which involve complex formulas with some subformulas which may change goes as follows:

1. Type the formula, say (a

1

;� ; a

n

), in an ordinary document.

2. Create the skeleton of your macro in your style package:

hassignjn-tuplejhmacrojajii

3. Copy the formula and paste it into the body of your macro:

hassignjn-tuplejhmacrojaj(ahrsubj1i,<ldots>,ahrsubjni)ii

4. Replace the subformulas you want to parameterize by macro arguments:

hassignjn-tuplejhmacrojaj(ahrsubj1i,<ldots>,ahrsubjni)ii

5. You may now use the macro in documents which use your package:

(a

1

;� ; a

n

) = (b

1

;� ; b

n

):

10.2. Rendering of style files and packages

10.2.1. ASCII-based or tree-based editing: an intricate choice

Most users are used to edit source code using a conventional editor like Emacs, while

presenting the source code in ASCII format. Since all T

E

X

MACS

documents are stored as

trees, an interesting but complicated question is which format is most suitable for editing

such documents. One option is to represent the tree using an ASCII-based format, such

as XML, Scheme, or the native format for storing �les on a disk. The other option is to

edit the trees as such, making no fundamental distinction between source code and normal

documents.

10.2 Rendering of style files and packages 49

In T

E

X

MACS

we have chosen to implement the second option. More precisely, any document

can be edited in �source mode�, which is merely a mode for rendering the document in a

way which makes its tree structure particularly apparent. It may be instructive to take

an arbitrary document of yours and to take a look at it in �source mode� by enabling

Document!View!Edit source tree.

The choice between ASCII-based editing and tree-based editing is non-trivial, because

T

E

X

MACS

style �les and packages have a double nature: they may be seen as programs which

specify how to render macros, but these programs naturally contain ordinary content.

There are several reasons why users often prefer to edit source code in an ASCII-based

format:

1. It is easy to manually format the code so as to make it more readable.

2. In particular, it is easy to add comments.

3. Standard editors like Emacs provide tools for automatic highlighting, indentation,

etc.

4. One is not constraint by any �structure� during the editing phase.

Our approach is to reproduce as much of the above advantages in a structured docu-

ment environment. Although point 4 will obviously be hard to meet when following this

approach, we believe that the �rst three advantages might actually become greater in a

structured environment. However, this requires a more profound understanding of how

users format and edit source code.

For instance, consider a piece of manually formatted code like

if (cond) hop = 2;

else holala= 3;

Clearly, the user had a particular formatting policy when writing this code. However,

this policy does not appear in the document: manual intervention will be necessary if the

variable cond is renamed c, or if the variable holala is renamed hola.

At the moment, T

E

X

MACS

provides no tools for dealing with the above example in an

automatic way, but a few tools are already provided. For instance, the user is given a great

amount of control on how to indent source code and reasonable defaults are provided as

a function of the structure. We also provide high level environments for comments and

structured highlighting. Further tools will be developed later and we are open for any

suggestions from our users.

10.2.2. Global presentation

In the Source tags group of the Document!View menu, you �nd several ways to customize

the rendering of source trees in your document. We recommend you to play around with the

di�erent possibilities in a document of your own (after enabling Document!View!Source

tree) or a standard style package in $TEXMACS_PATH/packages.

First of all, you may choose between the di�erent major styles �angular�, �scheme�, �func-

tional� and �L

A

T

E

X� for rendering source trees, as illustrated in the �gure below:

50 Writing T

E

X

MACS

style files

Angular Scheme

hassignjquick-theoremj

hmacrojbody j

hsurroundjhno-indentiTheorem. jj

bodyiii

(assign �quick-theorem�

(macro �body�

(surround (no-indent)�Theorem. � ��

(arg �body�))))

Functional L

A

T

E

X

assign (quick-theorem,

macro (body ,

surround (no-indentTheorem. , ,

body)))

assignfquick-theoremgf

macrofbodygf

surroundfno-indentTheorem. gfgf

bodyggg

Figure 10.1. Di�erent styles for rendering the same source tree.

Secondly, you may wish to reserve a special treatment to certain tags like concat and

document. In the menu Document!View! Special you may specify to which extent you

want to treat such tags in a special way:

None. No tags receive a special treatment.

Formatting. Only the formatting tags concat and document are represented as usual.

Normal. In addition to the formatting tags, a few other tags like compound, value and

arg are represented in a special way.

Maximal. At the moment, this option is not yet implemented. The intention is to

allow the user to write his own customizations and to allow for special rendering of

basic operations like plus.

These di�erent options are illustrated below:

None Formatting

hassignjquick-theoremj

hmacrojbody j

hdocumentj

hsurround j hconcat j hno-indenti jThe-

orem. ijj

hargjbodyiiiii

hassignjquick-theoremj

hmacrojbody j

hsurroundjhno-indentiTheorem. jj

hargjbodyiiii

Normal Maximal

hassignjquick-theoremj

hmacrojbody j

hsurroundjhno-indentiTheorem. jj

bodyiii

hassignjquick-theoremj

hmacrojbody j

hsurroundjhno-indentiTheorem. jj

bodyiii

Figure 10.2. Di�erent ways to render special tags.

Another thing which may be controlled by the user is whether the presentation of tags

should be compact or stretched out across several lines. Several levels of compacti�cation

may be speci�ed in the Document!View!Compacti�cation menu:

Minimal. The tags are all stretched out across several lines.

10.2 Rendering of style files and packages 51

Only inline tags. All non-inline tags are stretched out across several lines.

Normal. All inline arguments at the start of the tag are represented in a compact

way. As soon as we encounter a block argument, the remainder of the arguments

are stretched out across several lines.

Inline arguments. All inline arguments are represented in a compact way and only

block tags are stretched out across several lines.

Maximal. All source code is represented in a compact way.

The �normal� and �inline arguments� options rarely di�er. The visual e�ect of the di�erent

options is illustrated below:

Minimal Only inline tags

hassignj

quick-theoremj

hmacroj

bodyj

hsurroundj

hconcatj

hno-indentij

Theorem. ij

j

bodyiii

hassignj

quick-theoremj

hmacroj

bodyj

hsurroundj

hno-indentiTheorem. j

j

bodyiii

Normal Maximal

hassignjquick-theoremj

hmacrojbody j

hsurroundjhno-indentiTheorem. jj

bodyiii

hassignjquick-theorem jhmacrojbody jhdocumentj

hsurroundjhno-indentiTheorem. jjbodyiiii

Figure 10.3. Di�erent levels of compacti�cation.

Finally, the user may specify the way closing tags should be rendered when the tag is

stretched out across several lines. The rendering may either be minimalistic, compact, long,

or recall the matching opening tag. The di�erent options are illustrated below:

Minimal Compact

assign quick-theorem

macro body

surround hno-indentiTheorem. j

body

hassignjquick-theoremj

hmacrojbody j

hsurroundjhno-indentiTheorem. jj

bodyiii

Stretched Repeat

hassignjquick-theoremj

hmacrojbody j

hsurroundjhno-indentiTheorem. jj

body

i

i

i

hnassignjquick-theoremi

hnmacrojbodyi

hnsurroundjhno-indentiTheorem. ji

body

h/surroundi

h/macroi

h/assigni

Figure 10.4. Di�erent ways to render closing tags.

52 Writing T

E

X

MACS

style files

10.2.3. Local customization

Even though T

E

X

MACS

tries hard to render source code in a nice way following the global

rendering options that you speci�ed, the readability of the source code often needs to be

further enhanced locally. In source mode, this can be done using the menus Source !

Activation and Source ! Presentation. Any local hints on how to render source code are

automatically removed from the document when it is being used as a style �le or package.

First of all, for certain pieces of content the user may prefer to see them in their �activated�

form instead as dead source code. This may for instance be the case for embedded images,

or for mathematical symbols, like in

hassignjRjhmacrojRii

Such an active presentation may also be preferred for certain more complex macros:

hassignjdiag jhmacrojvar jdimj

0

@

var

1

0

�

0 var

dim

1

A

ii

A piece of code can be activated by selecting it and using Source! Activation! Activate

or

M-+

. Similarly, a piece of content may be deactivated using

M--

(we used this in the

second example above for the rendering of the arguments var and dim). Activation and

deactivation either apply to the whole tree, or to the root only (e.g. Source!Activation!

Activate once).

Another way to customize the rendering is to override some of the global rendering options.

This is mainly interesting for controlling more precisely which tags have to be stretched

across several lines and which tags have to be represented in a compact fashion. For

instance, the concat tag can be used in order to concatenate content, as well as for speci-

fying a block of sequential statements, or a combination of both. For instance, in the piece

of code

hassignjmy-sectionj

hmacrojtitlej

hconcatj

hheader-hookjtitleij

htoc-hookjtitleij

hmy-section-titlejtitleiiii

we have stretched the concat tag along several lines using Source!Presentation!Stretched

(notice that this implies the concat tag to appear explicitly, so as to avoid confusion with

the document tag). Similarly, if a part of the concatenation were to be displayed as usual,

then one may use Source!Presentation!Compact:

hassignjmy-sectionj

hmacrojtitlej

hconcatj

hheader-hookjtitleij

htoc-hookjtitleij

hwithjfont-seriesjboldjSection:i titleiii

At present, we did not implement a way to mark arguments as inline or block, but we

might do this later.

10.2 Rendering of style files and packages 53

A �nal way to customize the rendering of source code is to apply an arbitrary macro using

Source! Presentation! Apply macro or Source! Presentation! Apply macro once. This

macro will be automatically removed when you use your document as a style �le or package.

10.3. The style-sheet language

In the section about writing a simple style package we already gave you a �rst impression

about the style-sheet language of T

E

X

MACS

. In this section, we will give a more complete

survey of the available features. For more detailed descriptions, we refer to the chapter

about the T

E

X

MACS

primitives.

Most style-sheet primitives can be obtained from the Source menu when you are in source

mode. You may also obtain them from the Insert!Macro and Insert! Executable menus

when editing usual text. Alternatively, you may use the

A-

and

M-e

pre�xes in source

mode and the

M-i

and

M-e

pre�xes otherwise. Furthermore, we recall that the hybrid

\

-key may be used for creating macro-applications or arguments, depending on the con-

text. Finally, the

A-right

and

A-left

keys are used for inserting arguments.

10.3.1. Assignments

All user de�ned T

E

X

MACS

macros and style variables are stored in the �current typesetting

environment�. This environment associates a tree value to each string variable. Variables

whose values are macros correspond to new primitives. The others are ordinary envi-

ronment variables. The primitives for operating on the environment are available from

Source!De�ne.

You may permanently change the value of an environment variable using the assign prim-

itive, as in the example

hassignjhi jhmacrojHi there!ii

You may also locally change the values of one or several environment variables using the

with primitive:

hwithjfont-series jboldjcolor jredjBold red texti

The value of an environment variable may be retrieved using the value primitive. This may

for instance be used in order to increase a counter:

hassignjmy-counter jhplusjmy-counter j1ii

Finally, you may associate logical properties to environment variables using the drd-props

primitive. This is explained in more detail in the section about macro primitives.

10.3.2. Macro expansion

The main interest of the T

E

X

MACS

' style-sheet language is the possibility to de�ne macros.

These come in three �avours: ordinary macros, macros which take an arbitrary number of

arguments and external macros, whose expansion is computed by Scheme or a plug-in.

The macro-related primitives are available from the Source!Macro menu. Below, we will

only describe the ordinary macros. For more details, we refer to the section about macro

primitives.

54 Writing T

E

X

MACS

style files

Ordinary macros are usually de�ned using

hassignjmy-macrojhmacrojx

1

j� jx

n

jbodyii

After such an assignment, my-macro becomes a new primitive with n arguments, which

may be called using

hmy-macrojy

1

j� jy

n

i

Inside the body of the macro, the arg primitive may be used to retrieve the values of the

arguments to the macro.

hassignjhellojhmacrojnamejHello name, you look nice today!ii

It is possible to call a macro with less or more arguments than the expected number. Super-

�uous arguments are simply ignored. Missing arguments take the nullary uninit primitive

as value:

hassignjhey j

hmacroj�rst jsecond j

hifj

hequaljsecond j?ij

Hey �rst , you look lonely today...j

Hey �rst and second , you form a nice couple!iii

We �nally notice that you are allowed to compute with macros, in a similar way as in

functional programming, except that our macros are not closures (yet). For instance:

hassignjmy-macro-copy jmy-macroi

The compound tag may be used to apply macros which are the result of a computation:

hassignjoverloaded-hi j

hmacrojnamej

hcompoundj

hifjhnice-weatherijhappy-hi jsad-hiij

nameiii

10.3.3. Formatting primitives

This section contains some important notes on formatting primitives which are not really

part of the style-sheet language, but nevertheless very related.

First of all, most T

E

X

MACS

presentation tags can be divided in two main categories: inline

tags and block tags. For instance, frac is a typical inline tag, whereas theorem is a typical

block tag. Some tags, like strong are inline if their argument is and block in the contrary

case. When writing macros, it is important to be aware of the inline or block nature of

tags, because block tags inside a horizontal concatenation are not rendered in an adequate

way. If you need to surround a block tag with some inline text, then you need the surround

primitive:

10.3 The style-sheet language 55

hassignjmy-theoremj

hmacrojbody j

hsurroundjhno-indentihwithjfont-series jboldjTheorem. ijhright-�ushij

bodyiii

In this example, we surrounded the body of the theorem with the bold text �Theorem.�

at the left hand side and a �right-�ush� at the right-hand side. Flushing to the right is

important in order to make the blue visual border hints look nice when you are inside the

environment.

In most cases, T

E

X

MACS

does a good job in determining which tags are inline and which

ones are not. However, you sometimes may wish to force a tag to be a block environment.

For instance, the tag very-important de�ned by

hassignjvery-important jhmacrojbody jhwithjfont-series jboldjcolor jredjbodyiii

may both be used as an inline tag and a block environment. When placing your cursor

just before the with-tag and hitting

return

followed by

backspace

, you obtain

hassignjvery-important j

hmacrojbody j

hwithjfont-series jboldjcolor jredjbodyiii

Since the body of the macro is now a block, your tag very-important will automatically

become a block environment too. In the future, the drd-props primitive will give you even

more control over which tags and arguments are inline and which ones are block.

Another important property of tags is whether they contain normal textual content or

tabular content. For instance, consider the de�nition of the standard eqnarray* tag (with

a bit of presentation markup suppressed):

hassignjeqnarray* j

hmacrojbody j

hwithjpar-modejcenterjmodejmathjmath-display jtruejpar-sepj0.45fnj

hsurround j hno-page-break*ihvspace* j 0.5fni j hvspace j 0.5fnihno-

indent*ij

htformatj

htwithjtable-hyphenjyij

htwithjtable-widthj1parij

htwithjtable-min-cols j3ij

htwithjtable-max-cols j3ij

hcwithj1j-1j1j1jcell-hpart j1ij

hcwithj1j-1j-1j-1jcell-hpart j1ij

bodyiiiii

The use of surround indicates that eqnarray* is a block environment and the use of tformat

speci�es that it is also a tabular environment. Moreover, the twith and cwith are used

to specify further formatting information: since we are a block environment, we enable

hyphenation and let the table span over the whole paragraph (unused space being equally

distributed over the �rst and last columns). Furthermore, we have speci�ed that the table

contains exactly three columns.

56 Writing T

E

X

MACS

style files

Finally, it is important to bear in mind that style-sheets do not merely specify the �nal

presentation of a document, but that they may also contain information for the authoring

phase. Above, we have already mentioned the use of the right-�ush tag in order to improve

the rendering of visual border hints. Similarly, visual hints on invisible arguments may

be given in the form of �ags:

hassignjlabeled-theoremj

hmacrojid jbody j

hsurroundj

hconcatj

hno-indentij

h�agjId: id jbluejidij

hwithjfont-series jboldjTheorem. iij

hright-�ushij

bodyiii

More generally, the speci�c tag with �rst argument �screen� may be used to display visual

hints, which are removed when printing the document.

10.3.4. Evaluation control

The Source!Evaluation menu contains several primitives to control the way expressions in

the style-sheet language are evaluated. The most frequent use of these primitives is when

you want to write a �meta-macro� like new-theorem which is used for de�ning or computing

on other macros. For instance:

hassignjnew-theoremj

hmacrojnamejtext j

hquasij

hassignjhunquotejnameij

hmacrojbody j

hsurround j hno-indentihstrong j hunquote j texti. i j hright-

�ushij

bodyiiiiii

When calling hnew-theoremjtheoremjTheoremi in this example, we �rst evaluate all unquote

instructions inside the quasi primitive, which yields the expression

hassignjtheoremj

hmacrojbody j

hsurroundjhno-indentihstrongjTheorem. ijhright-�ushij

bodyiii

Next, this expression is evaluated, thereby de�ning a macro theorem.

It should be noticed that the T

E

X

MACS

conventions for evaluation are slightly di�erent

then those from conventional functional languages like Scheme. The subtle di�erences are

motivated by our objective to make it as easy as possible for the user to write macros for

typesetting purposes.

10.3 The style-sheet language 57

For instance, when T

E

X

MACS

calls a macro hmacrojx

1

j� jx

n

jbodyi with arguments y

1

until

y

n

, the argument variables x

1

until x

n

are bound to the unevaluated expressions y

1

until

y

n

, and the body is evaluated with these bindings. The evaluation of y

i

takes place each

time we request for the argument x

i

. In particular, when applying the macro hmacrojx jx

and again xi to an expression y, the expression y is evaluated twice.

In Scheme, the bodies of Scheme macros are evaluated twice, whereas the arguments

of functions are evaluated. On the other hand, when retrieving a variable (whether it is

an argument or an environment variable), the value is not evaluated. Consequently, a

T

E

X

MACS

macro

hassignjfoojhmacrojx jhblahjx jx iii

would correspond to a Scheme macro

(define-macro (foo x)

`(let ((x (lambda () ,x)))

(blah (x) (x)))

Conversely, the Scheme macro and function

(define-macro (foo x) (blah x x))

(define (fun x) (blah x x))

admit the following analogues in T

E

X

MACS

:

hassignjfoojhmacrojx jhevaljhblahjhquote-argjx ijhquote-argjx iiiii

hassignjfunjhmacrojx jhwithjx* jx jhblahjhquote-valuejx* ijhquote-valuejx* iiiii

Here the primitives quote-arg and quote-value are used to retrieve the value of an argument

resp. an environment variable. The T

E

X

MACS

primitives eval, quote, quasiquote and unquote

behave in the same way as their Scheme analogues. The quasi primitive is a shortcut for

quasi-quotation followed by evaluation.

10.3.5. Flow control

Besides sequences of instructions, which can be achieved using the concat primitive, and

the mechanism of macro expansion, the T

E

X

MACS

style-sheet language provides a few

other primitive for a�ecting the control �ow: if, case, while and for-each. These primitives

are available from the Source ! Flow control menu. However, we have to warn the user

that the conditional constructs are quite fragile: they only apply to inline content and the

accessibility of macro arguments should not to much depend on the conditions.

The most important primitive if, which can be entered using

A-?

, allows for basic condi-

tional typesetting:

hassignjappendix j

hmacrojtitlejbody j

hcompoundj

hifjhlong-documentijchapter-appendix jsection-appendix ij

titlej

bodyiii

58 Writing T

E

X

MACS

style files

In this example, appendix is a block environment consisting of a title and a body, and which

is rendered as a chapter for long documents and as a section for short ones. Notice that

the following implementation would have been incorrect, since the if primitive currently

only works for inline content:

hassignjappendix j

hmacrojtitlejbody j

hifj

hlong-documentij

hchapter-appendixjtitlejbodyij

hsection-appendixjtitlejbodyiiii

The if primitive may also be used in order to implement optional arguments:

hassignjhey j

hmacroj�rst jsecond j

hifj

hequaljsecond j?ij

Hey �rst , you look lonely today...j

Hey �rst and second , you form a nice couple!iii

However, T

E

X

MACS

is not clever enough to detect which arguments are optional and which

arguments are accessible (i.e. which arguments can be edited by the user). Therefore, you

will have to manually give this information using the drd-props primitive. The case, while

and for-each primitives are explained in more detail in the corresponding section on the

T

E

X

MACS

primitives.

10.3.6. Computational markup

In the menus Source! Arithmetic, Source!Text, Source!Tuple and Source! Condition

you will �nd di�erent primitives for computing with integers, strings, tuples and boolean

values. For instance, in the following code, the new-important tag de�nes a new �important

tag� as well as a variant in red:

hassignjnew-important j

hmacrojnamej

hquasij

hconcatj

hassignj

hunquotejnameij

hmacrojx jhwithjfont-series jboldjx iiij

hassignj

hunquotejhmergejnamej-rediij

hmacrojx jhwithjfont-series jboldjcolor jredjxiiiiiii

Here we use the merge primitive in order to concatenate two strings. The di�erent com-

putational primitives are described in more detail in the corresponding section on the

T

E

X

MACS

primitives.

10.3 The style-sheet language 59

10.4. Customizing the standard T

E

X

MACS

styles

Whenever the standard T

E

X

MACS

style �les are inadequate for a given purpose, it is possible

to write your own style �les. However, designing your own style �les from scratch may be

a complex task, so it is usually preferable to customize the existing styles. This requires

some understanding of the global architecture of the standard style �les and a more precise

understanding of the parts you wish to customize. In this section, we will explain the

general principles. For more details, we refer to the chapter on the principal T

E

X

MACS

tags.

10.4.1. Organization of style �les and packages

Each standard T

E

X

MACS

style �le or package is based on a potentially �nite number of

subpackages. From an abstract point of view, this organization may be represented by a

labeled tree. For instance, the tree which corresponds to the article style is represented

below:

article

std

std-markup

std-symbol

std-math

std-list

std-utils

std-counter

std-automatic

list

session

env

env-base

env-math

env-theorem

env-float

title-base

title-generic

header-article section-article

section-base

Figure 10.5. The tree with the packages from which the article style has been built up. In order to

save space, we have regrouped the numerous children of std and env in vertical lists.

Most of the style packages correspond to a d.t.d. (data type de�nition) which contains

the �abstract interface� of the package, i.e. the exported tags. For instance, the package

std-markup corresponds to the d.t.d. std-markup. Sometimes however, several style pack-

ages match the same d.t.d.. For instance, both header-article and header-book match

the d.t.d. header, since they merely implement di�erent ways to render the same tags.

When building your own style �les or packages, you may use the use-package primitive in

order to include other packages. For instance, the article style essentially consists of the

line

huse-packagejstdjenvjtitle-genericjheader-articlejsection-articlei

More precisely, the use-package package sequentially includes the style packages corre-

sponding to its arguments. The packages should be in $TEXMACS_PACKAGE_PATH, which

contains ., ~/.TeXmacs/packages and $TEXMACS_PATH/packages by default. Furthermore

rendering information for the source code like style-with tags are discarded before evaluation

of the �les.

Remark 10.1. We strongly recommend the user to take a look at some of the standard

style �les and packages which can be found in

60 Writing T

E

X

MACS

style files

$TEXMACS_PATH/styles

$TEXMACS_PATH/packages

When loading using

C-x C-f

, these paths are in the standard load path. For instance,

if you want to take a look at the std-markup package, then it su�ces to type

C-x C-f

,

followed by the �le name std-markup.ts and

return

.

Remark 10.2. It is also possible to customize the presentation of the source code of the

style �les and packages themselves, by using other packages in addition to source or by

using another major style �le based on source. In that case, the extra markup provided

by such packages may be used for presentation purposes of the source code, but it is not

exported when using your package in another �le.

10.4.2. General principles for customization

Style �les and packages basically enrich the current typesetting environment with a com-

bination of

� Environment variables.

� Tags for the end-user.

� Customizable macros.

Furthermore, they may de�ne some tags for intern implementation purposes, which will

not be documented in this manual. They may also specify some logical properties of tags

using the drd-props primitive.

Environment variables are almost always attributes for controlling the rendering of content,

or counters for sections, equations, etc.. Although several simple tags for the end-user

like strong may be rede�ned in your own style �les, this practice is not recommended for

more complex tags like section. Indeed, the section tag involves many things like resetting

subcounters, entering the title into the table of contents and so on. Therefore, special

additional macros are provided the customization of such tags, like section-title, section-

clean and section-toc.

10.4.3. Customizing the general layout

The general layout of a document is mainly modi�ed by setting the appropriate envi-

ronment variables for page layout and paragraph layout. For instance, by including the

following lines in your style �le, you can set the page size to letter and the left and right

margins to 2in:

hassignjpage-typejletteri

hassignjpage-odd j2ini

hassignjpage-evenj2ini

hassignjpage-right j2ini

It should be noticed that the environment variables for page layout are quite di�erent in

T

E

X

MACS

and T

E

X/L

A

T

E

X. In order to make it easier to adapt L

A

T

E

X style �les to T

E

X

MACS

,

we have therefore provided the std-latex package, which emulates the environment vari-

ables from T

E

X/L

A

T

E

X. Typically, this allows you determine the global layout by lines like

10.4 Customizing the standard T

E

X

MACS

styles 61

hassignjtex-odd-side-marginjhmacroj20ptii

hassignjtex-even-side-marginjhmacroj20ptii

hassignjtex-text-widthjhmacroj33pcii

We notice that macros which return lengths are considered as lengths themselves. In the

case of the T

E

X/L

A

T

E

X emulation package, we actually require all lengths to be macros.

The page headers and footers are usually not determined by global environment variables or

macros, since they may change when a new chapter or section is started. Instead, T

E

X

MACS

provides the call-back macros header-title, header-author, header-primary and header-sec-

ondary. These macros are called when the document title or author are speci�ed or when

a new primary or secondary section is started (primary sections are typically chapters in

books, or sections in articles). For instance, the following rede�nition makes the principal

section name appear on even pages, together with the current page number and a wide

underline.

hassignjheader-primary j

hmacrojtitlejnr jtypej

hassignjpage-even-header j

hquasiquotej

hwide-std-underlinedj

hconcatj

hpage-the-pageij

hhtabj5mmij

hunquotejtitleiiiiiii

10.4.4. Customizing list environments

Lists are made up of two principal ingredients: the outer list environment and the inner

items. List environments may either be customized by customizing or rede�ning the ren-

dering macros for these environments, or de�ning additional list environments which match

the same abstract interface.

The rendering of the outer list environment is controlled by the render-list macro which

takes the body of the list as its argument. For instance, consider the following rede�nition

of render-list:

hassignjrender-list j

hmacrojbody j

hsurroundj

hno-page-break*ihvspace*j0.5fnij

hright-�ushihvspacej0.5fnihno-indent*ij

hwithjpar-left jhplusjpar-left j3fnijpar-right jhplusjpar-right j3fnij

bodyiiii

This rede�nition a�ects the rendering of all list environments (itemize, enumerate, etc.)

by reducing the right margin with a length of 3fn:

� This text, which has been made so long that it does not �t on a single line,

is indented on the right hand side by 3fn.

1. This text is indented by an additional 3fn on the right hand

side, since it occurs inside a second list environment.

62 Writing T

E

X

MACS

style files

� Once again: this text, which has been made so long that it does not �t on a

single line, is indented on the right hand side by 3fn.

In a similar way, you may customize the rendering of list items by rede�ning the macros

aligned-item and compact-item. These macros both take one argument with the text of the

item and render it either in a right-aligned way (such that subsequent text is left aligned)

or in a left-aligned way (such that subsequent text may not be aligned). For instance,

consider the following rede�nition of aligned-item:

hassignjaligned-itemj

hmacrojx j

hconcatj

hvspace*j0.5fnij

hwithjpar-�rst j-3fnjhyes-indentiij

hresizejhwithjcolor jredjxijr-2.5fnjjr+0.5fnjiiii

Then items inside all list environments with compact items will appear in red:

� This list and aligned descriptions have red items.

C1. First condition.

C2. Second condition.

� The items of compact description lists are rendered using compact-item.

Gnus and gnats. Nice beasts.

Micros and softies. Evil beings.

Remark 10.3. The macros aligned-item and compact-item are required to produce inline

content, so that they may be used in order to surround blocks. In particular, several

other internal macros (aligned-space-item, long-compact-strong-dot-item, etc.) are based on

aligned-item and compact-item, and used for the rendering of the di�erent types of lists

(itemize-arrow, description-long, etc.). In the future, we also plan to extend item and item*

with a compulsory body argument. When customizing the list environments, it is important

to keep that in mind, so as to make your style-sheets upward compatible.

The std-list d.t.d. also provides a macro new-list to de�ne new lists. Its syntax is hnew-listj

namejitem-render jitem-transformi, where name is the name of the new list environment,

item-render an (inline) macro for rendering the item and item-transform an additional

transformation which is applied on the item text. For instance, the enumerate-roman envi-

ronment is de�ned by

hnew-listjenumerate-romanjaligned-dot-itemjhmacrojx jhnumberjx jromaniii

10.4.5. Customizing numbered textual environments

T

E

X

MACS

provides three standard types of numbered textual environments: theorem-like

environments, remark-like environments and exercise-like environments. The following

aspects of these environments can be easily customized:

� Adding new environments.

10.4 Customizing the standard T

E

X

MACS

styles 63

� Modifying the rendering of the environments.

� Numbering the theorems in a di�erent way.

De�ning new environments.

First of all, new environments can be added using the meta-macros new-theorem, new-

remark and new-exercise. These environments take two arguments: the name of the environ-

ment and the name which is used for its rendering. For instance, you may wish to de�ne

the environment experiment by

hnew-theoremjexperimentjExperimenti

When available in the T

E

X

MACS

dictionaries, the text �Experiment� will be automatically

translated when your document is written in a foreign language. In the section about how

to de�ne new environments, it is also explained how to de�ne other numbered textual

environments (besides theorems, remarks and exercises).

Customization of the rendering.

The principal rendering of the environments can be customized by rede�ning the render-

theorem, render-remark and render-exercise macros. These macros take the name of the

environment (like �Theorem 1.2�) and its body as arguments. For instance, if you want

theorems to appear in a slightly indented way, with a slanted body, then you may rede�ne

render-theorem as follows:

hassignjrender-theoremj

hmacrojwhichjbody j

hpadded-normalj1fnj1fnj

hsurroundjhtheorem-namejwhichhtheorem-sepiijj

hwith j font-shape j slanted j par-left j hplus j par-left j 1.5fni j

bodyiiiii

This rede�nition produces the following e�ect:

Theorem 10.4. This is a theorem which has been typeset in a slanted font.

By default, the theorems are rendered as remarks with the only di�erence that their bodies

are typeset in an italic font. Hence, rede�ning the render-remark macro will also a�ect the

rendering of theorems. The default render-proof macro is also based on render-remark.

Instead of rede�ning the entire rendering, the user might just wish to customize the way

names of theorems are rendered or rede�ne the separator between the name and the body.

As the user may have noticed by examining the above rede�nition of render-theorem, these

aspects are controlled by the macros theorem-name and theorem-sep. For instance, consider

the following rede�nitions:

hassignjtheorem-name jhmacrojname jhwithjcolor jdark redjfont-series jboldj

nameiii

hassignjtheorem-sepjhmacroj: ii

Then theorem-like environments will be rendered as follows:

64 Writing T

E

X

MACS

style files

Proposition 10.5: This proposition is rendered in is a fancy way.

Customization of the numbering.

In the sections about counters and counter groups, it is explained how to customize the

counters of numbered environments for particular purposes. For instance, by rede�ning

inc-theorem, you may force theorems to reset the counter of corollaries:

hquasij

hassignj

inc-theoremj

hmacrojhcompoundjhunquotejinc-theoremiihreset-corollaryiiii

Notice the trick with quasi and unquote in order to take into account additional action

which might have been undertaken by the previous value of the macro inc-theorem.

The following code from number-long-article.ts is used in order to pre�x all standard

environments with the number of the current section:

hassignjsection-cleanjhmacrojhreset-subsectionihreset-std-enviii

hassignjdisplay-std-env jhmacrojnr jhsection-pre�xinrii

10.4.6. Customizing sectional tags

By default, T

E

X

MACS

provides the standard sectional tags from L

A

T

E

X part, chapter, sec-

tion, subsection, subsubsection, paragraph, subparagraph, as well as the special tag appendix.

T

E

X

MACS

also implements the unnumbered variants part*, chapter*, etc. and special sec-

tion-like tags bibliography, table-of-contents, the-index, the-glossary, list-of-�gures, list-of-

tables.

Remark 10.6. Currently, the sectional tags take one argument, the section title, but a

second argument with the body of the section is planned to be inserted in the future (see

the experimental structured-section package). For this reason (among others), style �les

should never rede�ne the main sectional tags, but rather customize special macros which

have been provided to this e�ect.

From a global point of view, an important predicate macro is sectional-short-style. When it

evaluates to true, then appendices, tables of contents, etc. are considered to be at the same

level as sections. In the contrary case, they are at the same level as chapters. Typically,

articles use the short sectional style whereas book use the long style.

The rendering of a sectional tag x is controlled through the macros x-sep, x-title and x-

numbered-title. The x-sep macro prints the separator between the section number and the

section title. It defaults to the macro sectional-sep, which defaults in its turn to a wide

space. For instance, after rede�ning

hassignjsectional-sepjhmacroj � ii

sectional titles would typically look like

10.4 Customizing the standard T

E

X

MACS

styles 65

10.1 � Hairy GNUs

The x-title and x-numbered-titlemacros respectively specify how to render unnumbered and

numbered section titles. Usually, the user only needs to modify x-title, since x-numbered-

title is based on x-title. However, if the numbers have to be rendered in a particular way,

then it may be necessary to rede�ne x-numbered-title. For instance, consider the rede�nition

hassignjsubsection-numbered-titlej

hmacrojnamej

hsectional-normalj

hwithjfont-seriesjboldjhthe-subsectioni. inameiii

This has the following e�ect on the rendering of subsection titles:

2.3. Very hairy GNUs

Notice that the section-base package provides several useful helper macros like sectional-

normal.

Remark 10.7. Sectional titles can either be rendered in a �short� or in the �long� fashion.

By default, paragraphs and subparagraphs use the short rendering, for which the body

starts immediately at the right of the title:

My paragraph. Blah, blah, and more blahs...

All other sectional tags use the long rendering, in which case the section title takes a

separate line on its own:

My section

Blah, blah, and more blahs...

We do not recommend to modify the standard settings (i.e. to render paragraphs in a

long way or sections in a short way). If you really want to do so, then we recommend to

rede�ne the corresponding environment variables enrich-x-long . This will ensure upward

compatibility when sectional tags will take an additional argument (see remark 10.6).

Besides their rendering, several other aspects of sectional tags can be customized:

� The call-back macro x-clean can be used for cleaning some counters when a new

section is started. For instance, in order to pre�x all standard environments by the

section counter, you may use the following lines:

hassignjsection-cleanjhmacrojhreset-subsectionihreset-std-enviii

hassignjdisplay-std-env jhmacrojnr jhsection-pre�xinrii

� The call-back macro x-header should be used in order to modify page headers and

footers when a new section is started. Typically, this macro should call header-

primary, or header-secondary, or do nothing.

66 Writing T

E

X

MACS

style files

� The call-back macro x-toc should be used in order to customize the way new sections

appear in the table of contents.

10.4.7. Customizing the treatment of title information

T

E

X

MACS

uses the doc-data tag in order to specify global data for the document. These data

are treated in two stages by the doc-data macro. First, the document data are separated

into several categories, according to whether the data should be rendered as a part of the

main title or in footnotes or the abstract. Secondly, the data in each category are rendered

using suitable macros.

Each child of the doc-data is a tag with some speci�c information about the document. Cur-

rently implemented tags are doc-title, doc-subtitle, doc-author-data, doc-date, doc-running-

title, doc-running-author, doc-keywords, doc-AMS-class and doc-note. The doc-author-data

tag may occur several times and is used in order to specify data for each of the authors of

the document. Each child of the doc-author-data tag is a tag with information about the

corresponding author. Currently implemented tags with author information are author-

name, author-address, author-email, author-homepage and author-note.

Most of the tags listed above also correspond to macros for rendering the corresponding

information as part of the main title. For instance, if the date should appear in bold italic

at a distance of at least 1fn from the other title �elds, then you may rede�ne doc-date as

hassignjdoc-datej

hmacrojbody j

hconcatj

hvspace*j1fnij

hdoc-title-blockjhwithjfont-shapejitalicjfont-series jboldjbodyiij

hvspacej1fniiii

The title-block macro is used in order to make the text span appropriately over the width

of the title. The doc-title and author-name are special in the sense that they also render

possible references to footnotes. For this reason, you should rather customize the doc-

render-title and author-render-name macros in order to customize the rendering of the title

and the name themselves.

Notice also that the doc-running-title and author-running-author macros do not render

anything, but rather call the header-title and header-author call-backs for setting the appro-

priate global page headers and footers. By default, the running title and author are

extracted from the usual title and author names.

In addition to the rendering macros which are present in the document, the main title

(including author information, the date, etc.) is rendered using the doc-make-title macro.

The author information, as part of the main title, is rendered using doc-author or doc-

authors, depending on whether the document has one or more authors. Footnotes to the

title or to one of the authors are rendered using doc-title-note resp. doc-author-note. These

footnote macros always expect a document tag on input, because they may compress it

into a horizontal concatenation.

The �rst stage of processing the document data is more complex and the reader is invited

to take a look at the short descriptions of the macros which are involved in this process.

It is also good to study the de�nitions of these macros in the package itself. In order to

indicate the way things work, we �nish with an example on how the email address and

homepage of an author can be rendered in a footnote instead of the main title:

10.4 Customizing the standard T

E

X

MACS

styles 67

hassignjdoc-author-mainj

hmacrojdataj

hquasij

hunquote*jhselectjhquote-argjdataijauthor-nameii

hunquote*jhselectjhquote-argjdataijauthor-addressiiiii

hassignjdoc-author-data-notej

hxmacrojdataj

hquasij

hunquote*jhselectjhquote-argjdataijauthor-emailii

hunquote*jhselectjhquote-argjdataijauthor-homepageii

hunquote* jhselectjhquote-arg jdataijauthor-note jdocument jhpat-

anyiiiiii

10.5. Further notes and tips

10.5.1. Customizing arbitrary tags

Imagine that you want to change the rendering of a given tag, like lemma. As a general

rule, T

E

X

MACS

provides a set of well-chosen macros which can be customized by the user so

as to obtain the desired e�ect. For instance, as we have seen above, you should use modify

one of the macros render-theorem, theorem-name or theorem-sep in order to customize the

rendering of lemma and all other theorem-like environments.

However, in some cases, it may not be clear which �well-chosen� macro to customize. If

we just wanted to change the presentation of lemmas and not of any other theorem-like

environments, then we clearly cannot modify render-theorem, theorem-name or theorem-sep.

In other cases, the user may not want to invest his time in completely understanding the

macro hierarchy of T

E

X

MACS

, and �nd out about the existence of render-theorem, theorem-

name and theorem-sep.

So imagine that you want all lemmas to appear in red. One thing you can always do is

copy the original de�nition of lemmas in a safe place and rede�ne the lemma macro on top

of the original de�nition:

hassignjorig-lemmajlemmai

hassignjlemmajhmacrojbody jhwithjcolor jredjhorig-lemmajbodyiiii

Alternatively, if only the text inside the lemma should be rendered in red, then you may do:

hassignjorig-lemmajlemmai

hassignjlemmajhmacrojbody jhorig-lemmajhwithjcolor jredjbodyiiii

Of course, you have to be careful that the name orig-lemma is not already in use.

Another frequent situation is that you only want to modify the rendering of a tag when it

is used inside another one. On the web, the Cascading Style Sheet language (CSS) provides

a mechanism for doing this. In T

E

X

MACS

, you may simulate this behaviour by rede�ning

macros inside a with. For instance, imagine that we want the inter-paragraph space inside

lists inside theorem-like environments to vanish. Then we may use:

68 Writing T

E

X

MACS

style files

hassignjorig-render-theoremjrender-theoremi

hassignjrender-theoremj

hmacrojnamejbody j

hwithjorig-render-list jrender-list j

hwithjrender-list jhmacrojx jhwithjpar-par-sep j0fnjhorig-render-listj

x iiij

horig-render-theoremj

namej

bodyiiiii

On the one hand side, this mechanism is a bit more complex than CSS, where it su�ces

to respecify the par-par-sep attribute of lists inside theorems. On the other hand, it is also

more powerful, since the render-theorem macro applies to all theorem-like environments at

once. Furthermore, if the above mechanism is to be used frequently, then real hackers may

simplify the notations using further macro magic.

10.5.2. Standard utilities

In the package std-utils, the user may �nd several useful additional macros for writing

style �les. It mainly contains macros for

� Writing block environments which span over the entire paragraph width. Notice

that the title-base package provides some additional macros for wide section

titles.

� Writing wide block environments which are underlined, overlined or in a frame box.

� Recursive indentation.

� Setting page headers and footers.

� Localization of text.

It is good practice to use these standard macros whenever possible when writing style �les.

Indeed, the low-level T

E

X

MACS

internals may be subject to minor changes. When building

upon standard macros with a clear intention, you increase the upward compatibility of

your style-sheets.

10.5 Further notes and tips 69

Chapter 11

Customizing T

E

X

MACS

One major feature of T

E

X

MACS

is that it can be highly customized. First of all, the most

important aspects of the program can be con�gured in Edit!Preferences. Most other parts

of T

E

X

MACS

can be entirely adapted or reprogrammed using the Guile/Scheme extension

language. In the sequel, we give a short overview of how this works in simple cases.

11.1. Introduction to the Guile extension language

Like Emacs, T

E

X

MACS

comes with a Lisp-like extension language, namely the Guile

Scheme dialect from the Gnome project. For documentation about Guile Scheme, we

refer to

http://www.gnu.org/software/guile/guile.html

Scheme has the advantage that it may be extended with extern C and C++ types and

routines. In our case, we have extended Scheme with routines which you can use to create

your own menus and key-combinations, and even to write your own extensions to T

E

X

MACS

.

If you have downloaded the source �les of T

E

X

MACS

, then it may be interesting for you to

take a look at the �les

Guile/Glue/build-glue-basic.scm

Guile/Glue/build-glue-editor.scm

Guile/Glue/build-glue-server.scm

These three �glue� �les contain the C++ routines, which are visible within Scheme. In

what follows, we will discuss some of the most important routines. We plan to write a

more complete reference guide later. You may also take a look at the scheme .scm �les in

the directory $TEXMACS_PATH/progs.

11.2. Writing your own initialization files

When starting up, T

E

X

MACS

executes the �le

$TEXMACS_PATH/progs/init-texmacs.scm

as well as your personal initialization �le

$TEXMACS_HOME_PATH/progs/my-init-texmacs.scm

if it exists. By default, the path $TEXMACS_HOME_PATH equals .TeXmacs. Similarly, each

time you create a new bu�er, the �le

$TEXMACS_PATH/progs/init-buffer.scm

is executed, as well as

71

$TEXMACS_HOME_PATH/progs/my-init-buffer.scm

if it exists.

11.3. Creating your own dynamic menus

You may de�ne (or modify) a (part of a) menu with name name using

(menu-bind name . prog)

and append new entries to an existing (part of a) menu with name name using

(menu-extend name . prog)

Here prog is a program which represents the entries of the menu. In particular, you may

take a look at the �les in the directory

$TEXMACS_PATH/progs/menu

in order to see how the standard T

E

X

MACS

menus are de�ned.

More precisely, the program prog in menu-set or menu-append is a list of entries of one

of the following forms:

(=> "pulldown menu name" menu-definition)

(-> "pullright menu name" menu-definition)

("entry" action)

(if condition menu-definition)

(link variable)

The constructors => and -> are used to create pulldown or pullright menus and menu-

definition should contain a program which creates the submenu. The constructor

("entry" action) creates an ordinary entry, where action will be compiled and executed

when you click on entry. Items of a menu may be separated using ---. The constructor

if is used for inserting menu items only if a certain condition is satis�ed (for instance,

if we are in math mode).

Finally, if you declared a menu name, then you may use this menu indirectly using the link

constructor. This indirect way of declaring submenus has two advantages

� An �indirect� submenu may be linked to as many menus as we like.

� New items may be added to �indirect� submenus a posteriori using menu-append.

The main T

E

X

MACS

menus are texmacs-menu, texmacs-popup-menu, texmacs-main-

icons, texmacs-context-icons and texmacs-extra-icons. Other standard indirect

menus are file-menu, edit-menu, insert-menu, text-menu, paragraph-menu, document-

menu, options-menu and help-menu.

11.4. Creating your own keyboard shortcuts

Keymaps are speci�ed using the command

(kbd-map predicate . keymaps)

72 Customizing T

E

X

MACS

The predicate speci�es under which circumstances the keymaps are valid. Examples of

predicates are always?, in-math? and in-french?, but the user may de�ne his own pred-

icates. Each item in keymaps is of one of the following forms:

(key-combination action_1 ... action_n)

(key-combination result)

(key-combination result help-message)

In the �rst case, the action_i are Scheme commands associated to the string key-

combination. In the second and third case, result is a string which is to be inserted in

the text when the key-combination has been completed. An optional help-message may

be displayed when the key-combination is �nished.

11.5. Other interesting files

Some other �les may also be worth looking at:

� $TEXMACS_PATH/fonts/enc contains encodings for di�erent T

E

X fonts.

� $TEXMACS_PATH/fonts/virtual contains de�nitions of virtual characters.

� $TEXMACS_PATH/langs/natural/dic contains the current dictionaries used by

T

E

X

MACS

.

� $TEXMACS_PATH/langs/natural/hyphen contains hyphenation patterns for various

languages.

� $TEXMACS_PATH/progs/fonts contains Scheme programs for setting up the fonts.

11.5 Other interesting files 73

Chapter 12

The T

E

X

MACS

format

12.1. T

E

X

MACS

trees

All T

E

X

MACS

documents or document fragments can be thought of as trees . For instance,

the tree

with

mode math concat

x+ y+ frac

1 2

+ sqrt

y+ z

typically represents the formula

x+ y+

1

2

+ y+ z

p

(12.1)

Internal nodes of T

E

X

MACS

trees.

Each of the internal nodes of a T

E

X

MACS

tree is a string symbol and each of the leafs is an

ordinary string. A string symbol is di�erent from a usual string only from the e�ciency

point of view: T

E

X

MACS

represents each symbol by a unique number, so that it is extremely

fast to test weather two symbols are equal.

Leafs of T

E

X

MACS

trees.

Currently, all strings are represented using the universal T

E

X

MACS

encoding . This encoding

coincides with the Cork font encoding for all characters except �<� and �>�. Character

sequences starting with �<� and ending with �>� are interpreted as special extension char-

acters. For example, <alpha> stands for the letter �. The semantics of characters in the

universal T

E

X

MACS

encoding does not depend on the context (currently, cyrillic characters

are an exception, but this should change soon). In other words, the universal T

E

X

MACS

encoding may be seen as an analogue of Unicode. In the future, we might actually switch

to Unicode.

The string leafs either contain ordinary text or special data. T

E

X

MACS

supports the fol-

lowing atomic data types:

Boolean numbers. Either true or false.

Integers. Sequences of digits which may be preceded by a minus sign.

Floating point numbers. Speci�ed using the usual scienti�c notation.

Lengths. Floating point numbers followed by a length unit, like 29.7cm or 2fn.

75

Serialization and preferred syntax for editing.

When storing a document as a �le on your harddisk or when copying a document fragment

to the clipboard, T

E

X

MACS

trees have to be represented as strings. The conversion without

loss of information of abstract T

E

X

MACS

trees into strings is called serialization and the

inverse process parsing . T

E

X

MACS

provides three ways to serialize trees, which correspond

to the standard T

E

X

MACS

format, the XML format and the Scheme format.

However, it should be emphasized that the preferred syntax for modifying T

E

X

MACS

docu-

ments is the screen display inside the editor. If that seems surprising to you, consider that

a syntax is a way to represent information in a form suitable to understanding and modi-

�cation. The on-screen typeset representation of a document, together with its interactive

behaviour, is a particularly concrete syntax. Moreover, in the Document ! View menu,

you may �nd di�erent ways to customize the way documents are viewed, such as di�erent

levels of informative �ags and a �source tree� mode for editing style �les.

12.2. T

E

X

MACS

documents

Whereas T

E

X

MACS

document fragments can be general T

E

X

MACS

trees, T

E

X

MACS

documents

are trees of a special form which we will describe now. The root of a T

E

X

MACS

document is

necessarily a document tag. The children of this tag are necessarily of one of the following

forms:

hTeXmacsjversioni (T

E

X

MACS

version)

This mandatory tag speci�es the version of T

E

X

MACS

which was used to save the doc-

ument.

hprojectjref i (part of a project)

An optional project to which the document belongs.

hstylejversioni

hstylejhtuplejstylejpack-1 j� jpack-nii (style and packages)

An optional style and additional packages for the document.

hbodyjcontenti (body of the document)

This mandatory tag speci�es the body of your document.

hinitialjtablei (initial environment)

Optional speci�cation of the initial environment for the document, with information

about the page size, margins, etc.. The table is of the form hcollection j binding-1 j� j

binding-ni. Each binding-i is of the form hassociatejvar-i jval-ii and associates the initial

value val-i to the environment variable var-i . The initial values of environment variables

which do not occur in the table are determined by the style �le and packages.

hreferencesjtablei (references)

An optional list of all valid references to labels in the document. Even though this

information can be automatically recovered by the typesetter, this recovery requires

several passes. In order to make the behaviour of the editor more natural when loading

�les, references are therefore stored along with the document.

76 The T

E

X

MACS

format

The table is of a similar form as above. In this case a tuple is associated to each label.

This tuple is either of the form htuplejcontent jpage-nri or htuplejcontent jpage-nr j�lei.

The content corresponds to the displayed text when referring to the label, page-nr to

the corresponding page number, and the optional �le to the �le where the label was

de�ned (this is only used when the �le is part of a project).

hauxiliaryjtablei (auxiliary data attached to the �le)

This optional tag speci�es all auxiliary data attached to the document. Usually, such

auxiliary data can be recomputed automatically from the document, but such recompu-

tations may be expensive and even require tools which are not necessarily installed on

your system. The table, which is speci�ed in a similar way as above, associates auxiliary

content to a key. Standard keys include bib, toc, idx, gly, etc.

Example 12.1. An article with the simple text �hello world!� is represented as

document

TeXmacs

1.0.5

style

article

body

document

helloworld!

12.3. Default serialization

Documents are generally written to disk using the standard T

E

X

MACS

syntax (which cor-

responds to the .tm and .ts �le extensions). This syntax is designed to be unobtrusive

and easy to read, so the content of a document can be easily understood from a plain text

editor. For instance, the formula (12.1) is represented by

<with|mode|math|x+y+<frac|1|2>+<sqrt|y+z>>

On the other hand, T

E

X

MACS

syntax makes style �les di�cult to read and is not designed

to be hand-edited: whitespace has complex semantics and some internal structures are not

obviously presented. Do not edit documents (and especially style �les) in the T

E

X

MACS

syntax unless you know what you are doing.

Main serialization principle.

The T

E

X

MACS

format uses the special characters <, |, >, \ and / in order to serialize trees.

By default, a tree like

f

x

1

� x

n

(12.2)

is serialized as

<f|x

1

|...|x

n

>

If one of the arguments x

1

; � ; x

n

is a multi-paragraph tree (which means in this context

that it contains a document tag or a collection tag), then an alternative long form is used

for the serialization. If f takes only multi-paragraph arguments, then the tree would be

serialized as

12.3 Default serialization 77

<\f>

x

1

<|f>

...

<|f>

x

n

</f>

In general, arguments which are not multi-paragraph are serialized using the short form.

For instance, if n=5 and x

3

and x

5

are multi-paragraph, but not x

1

, x

2

and x

4

, then (12.2)

is serialized as

<\f|x

1

|x

2

>

x

3

<|f|x

4

>

x

5

</f>

The escape sequences \<, \|, \> and \\ may be used to represent the characters <, |, >

and \. For instance, �+ � is serialized as \<alpha\>+\<beta\>.

Formatting and whitespace.

The document and concat primitives are serialized in a special way. The concat primitive is

serialized as usual concatenation. For instance, the text �an important note� is serialized as

an <em|important> note

The document tag is serialized by separating successive paragraphs by double newline

characters. For instance, the quotation

Ik ben de blauwbilgorgel.

Als ik niet wok of worgel,

is serialized as

<\quote-env>

Ik ben de blauwbilgorgel.

Als ik niet wok of worgel,

</quote-env>

Notice that whitespace at the beginning and end of paragraphs is ignored. Inside para-

graphs, any amount of whitespace is considered as a single space. Similarly, more than two

newline characters are equivalent to two newline characters. For instance, the quotation

might have been stored on disk as

<\quote-env>

Ik ben de blauwbilgorgel.

Als ik niet wok of worgel,

</quote-env>

78 The T

E

X

MACS

format

The space character may be explicitly represented through the escape sequence �\ �.

Empty paragraphs are represented using the escape sequence �\;�.

Raw data.

The raw-data primitive is used inside T

E

X

MACS

for the representation of binary data, like

image �les included into the document. Such binary data is serialized as

<#binary-data>

where the binary-data is a string of hexadecimal numbers which represents a string of

bytes.

12.4. XML serialization

For compatability reasons with the XML technology, T

E

X

MACS

also supports the serializa-

tion of T

E

X

MACS

documents in the XML format. However, the XML format is generally

more verbose and less readable than the default T

E

X

MACS

format. In order to save or load

a �le in the XML format (using the .tmml extension), you may use File! Export! XML

resp. File! Import!XML.

It should be noticed that T

E

X

MACS

documents do not match a prede�ned DTD, since the

appropriate DTD for a document depends on its style. The XML format therefore merely

provides an XML representation for T

E

X

MACS

trees. The syntax has both been designed to

be close to the tree structure and use conventionalXML notations which are well supported

by standard tools.

The encoding for strings.

The leafs of T

E

X

MACS

trees are traslated from the universal T

E

X

MACS

encoding into Uni-

code. Characters without Unicode equivalents are represented as entities (in the future,

we rather plan to create a tmsym tag for representing such characters).

XML representation of regular tags.

Trees with a single child are simply represented by the corresponding XML tag. In the

case when a tree has several children, then each child is enclosed into a tm-arg tag. For

instance, x+ y

p

is simply represented as

<sqrt>y+z</sqrt>

whereas the fraction

1

2

is represented as

<frac>

<tm-arg>1</tm-arg>

<tm-arg>2</tm-arg>

</frac>

In the above example, the whitespace is ignored. Whitespace may be preserved by setting

the standard xml:space attribute to preserve.

Special tags.

12.4 XML serialization 79

Some tags are represented in a special way in XML. The concat tag is simply represented

by a textual concatenation. For instance,

1

2

+ x+ y

p

is represented as

<frac><tm-arg>1</tm-arg><tm-arg>2</tm-

arg></frac>+<sqrt>y+z</sqrt>

The document tag is not explicitly exported. Instead, each paragraph argument is enclosed

within a tm-par tag. For instance, the quotation

Ik ben de blauwbilgorgel.

Als ik niet wok of worgel,

is represented as

<quote-env>

<tm-par>

Ik ben de blauwbilgorgel.

</tm-par>

<tm-par>

Als ik niet wok of worgel,

</tm-par>

</quote-env>

A with tag with only string attributes and values is represented using the standard XML

attribute notation. For instance, �some blue text� would be represented as

some <with color="blue">blue</with> text

Conversily, T

E

X

MACS

provides the attr primitive in order to represent attributes of XML

tags. For instance, the XML fragment

some <mytag beast="heary">special</mytag> text

would be imported as �some hmy-tag jhattr jbeast jhearyi jspeciali text�. This will make it

possible, in principle, to use T

E

X

MACS

as an editor of general XML �les.

12.5. Scheme serialization

Users may write their own extensions to T

E

X

MACS

in the Scheme extension language. In

that context, T

E

X

MACS

trees are usually represented by Scheme expressions. The Scheme

syntax was designed to be predictable, easy to hand-edit, and expose the complete internal

structure of the document. For instance, the formula (12.1) is represented by

(with "mode" "math" (concat "x+y+" (frac "1" "2") "+" (sqrt

"y+z")))

The Scheme representation may also be useful in order to represent complex macros with

a lot of programmic content. Finally, Scheme is the safest format when incorporating

T

E

X

MACS

snippets into emails. Indeed, both the standard T

E

X

MACS

format and the XML

serialization may be quite sensitive to white-space.

80 The T

E

X

MACS

format

In order to save or load a document in Scheme format, you may use File!Export!Scheme

resp. File! Import! Scheme. Files saved in Scheme format can easily be processed by

external Scheme programs, in the same way as �les saved in XML format can easily be

processed by tools for processing XML, like XSLT.

In order to copy a document fragment to an email in Scheme format, you may use Edit!

Copy to! Scheme. Similarly, you may paste external Scheme fragments into T

E

X

MACS

using Edit!Paste from!Scheme. The Scheme format may also used interactively inside

Scheme sessions or interactive commands. For instance, typing

M-x

followed by the

interactive command

(insert '(frac "1" "2"))

inserts the fraction

1

2

at the current cursor position.

12.6. The typesetting process

In order to unserstand the T

E

X

MACS

document format well, it is useful to have a basic

understanding about how documents are typeset by the editor. The typesetter mainly

rewrites logical T

E

X

MACS

trees into physical boxes , which can be displayed on the screen or

on paper (notice that boxes actually contain more information than is necessary for their

rendering, such as information about how to position the cursor inside the box or how to

make selections).

The global typesetting process can be subdivided into two major parts (which are currently

done at the same stage, but this may change in the future): evaluation of the T

E

X

MACS

tree using the stylesheet language, and the actual typesetting.

The typesetting primitives are designed to be very fast and they are built-in into the

editor. For instance, one has typesetting primitives for horizontal concatenations (concat),

page breaks (page-break), mathematical fractions (frac), hyperlinks (hlink), and so on. The

precise rendering of many of the typesetting primitives may be customized through the

built-in environment variables. For instance, the environment variable color speci�es the

current color of objects, par-left the current left margin of paragraphs, etc.

The stylesheet language allows the user to write new primitives (macros) on top of the

built-in primitives. It contains primitives for de�nining macros, conditional statements,

computations, delayed execution, etc. The stylesheet language also provides a special extern

tag which o�ers you the full power of the Scheme extension language in order to write

macros.

It should be noticed that user-de�ned macros have two aspects. On the one hand they

usually perform simple rewritings. For instance, the macro

hassignjseqjhmacrojvar jfromjtojvar

from

;� ; var

to

ii

is a shortcut in order to produce sequences like a

1

; � ; a

n

. When macros perform simple

rewritings like in this example, the children var , from and to of the seq tag remain acces-

sible from within the editor. In other words, you can position the cursor inside them and

modify them. User de�ned macros also have a synthetic or computational aspect. For

instance, the dots of a seq tag as above cannot be edited by the user. Similarly, the macro

12.6 The typesetting process 81

hassignjsquarejhmacrojx jhtimesjx jx iii

serves an exclusively computational purpose. As a general rule, synthetic macros are some-

times easier to write, but the more accessability is preserved, the more natural it becomes

for the user to edit the markup.

It should be noticed that T

E

X

MACS

also produces some auxiliary data as a byproduct of

the typesetting product. For instance, the correct values of references and page numbers,

as well as tables of contents, indexes, etc. are determined during the typesetting stage and

memorized at a special place. Even though auxiliary data may be determined automatically

from the document, it may be expensive to do so (one typically has to retypeset the

document). When the auxiliary data are computed by an external plug-in, then it may

even be impossible to perform the recomputations on certain systems. For these reasons,

auxiliary data are carefully memorized and stored on disk when you save your work.

12.7. Data relation descriptions

The rationale behind D.R.D.s.

One major advantage of T

E

X

MACS

is that the editor uses general trees as its data format.

Like for XML, this choice has the advantages of being simple to understand and making

documents easy to manipulate by generic tools. However, when using the editor for a

particular purpose, the data format usually needs to be restricted to a subset of the set of

all possible trees.

In XML, one uses Data Type De�nitions (D.T.D.s) in order to formally specify a subset

of the generic XML format. Such a D.T.D. speci�es when a given document is valid for a

particular purpose. For instance, one has D.T.D.s for documents on the web (XHTML), for

mathematics (MathML), for two-dimensional graphics (SVG) and so on. Moreover, up to

a cetain extent, XML provides mechanisms for combining such D.T.D.s. Finally, a precise

description of a D.T.D. usually also provides some kind of reference manual for documents

of a certain type.

In T

E

X

MACS

, we have started to go one step further than D.T.D.s: besides being able to

decide whether a given document is valid or not, it is also very useful to formally describe

certain properties of the document. For instance, in an interactive editor, the numerator

of a fraction may typically be edited by the user (we say that it is accessible), whereas the

URL of a hyperlink is only editable on request. Similarly, certain primitives like itemize

correspond to block content, whereas other primitives like sqrt correspond to inline content.

Finally, certain groups of primitives, like chapter, section, subsection, etc. behave similarly

under certain operations, like conversions.

A Data Relation Description (D.R.D.) consists of a Data Type De�nition, together with

additional logical properties of tags or document fragments. These logical properties are

stated using so called Horn clauses, which are also used in logical programming languages

such as Prolog. Contrary to logical programming languages, it should nevertheless be

relatively straightforward to determine the properties of tags or document fragments, so

that certain database techniques can be used for e�cient implementations. At the moment,

we only started to implement this technology (and we are still using lots of C++ hacks

instead of what has been said above), so a more complete formal description of D.R.D.s

will only be given at a later stage.

82 The T

E

X

MACS

format

One major advantage of the use of D.R.D.s is that it is not necessary to establish rigid

hierarchies of object classes like in object oriented programming. This is particularly useful

in our context, since properties like accessability, inline-ness, etc. are quite independent one

from another. In fact, where D.T.D.s may be good enough for the description of passive

documents, more �ne-grained properties are often usefull when manipulating documents

in a more interactive way.

Current D.R.D. properties and applications.

Currently, the D.R.D. of a document contains the following information:

� The possible arities of a tag.

� The accessability of a tag and its children.

In the near future, the following properties will be added:

� Inline-ness of a tag and its children.

� Tabular-ness of a tag and its children.

� Purpose of a tag and its children.

The above information is used (among others) for the following applications:

� Natural default behaviour when creating/deleting tags or children (automatic inser-

tion of missing arguments and removal of tags with too little children).

� Only traverse accessible nodes during searches, spell-checking, etc.

� Automatic insertion of document or table tags when creating block or tabular envi-

ronments.

� Syntactic highlighting in source mode as a function of the purpose of tags and

arguments.

Determination of the D.R.D. of a document.

T

E

X

MACS

associate a unique D.R.D. to each document. This D.R.D. is determined in two

stages. First of all, T

E

X

MACS

tries to heuristically determine D.R.D. properties of user-

de�ned tags, or tags which are de�ned in style �les. For instance, when the user de�nes a

tag like

hassignjhi jhmacrojnamejHello name!ii

T

E

X

MACS

automatically notices that hi is a macro with one element, so it considers 1 to be

the only possible arity of the hi tag. Notice that the heuristic determination of the D.R.D.

is done interactively: when de�ning a macro inside your document, its properties will

automatically be put into the D.R.D. (assuming that you give T

E

X

MACS

a small amount

of free time of the order of a second; this minor delay is used to avoid compromising the

reactivity of the editor).

Sometimes the heuristically de�ned properties are inadequate. For this case, T

E

X

MACS

provides the drd-props tag in order to manually override the default properties.

12.7 Data relation descriptions 83

12.8. T

E

X

MACS

lengths

A simple T

E

X

MACS

length is a number followed by a length unit, like 1cm or 1.5mm. T

E

X

MACS

supports three main types of units:

Absolute units. The length of an absolute unit like cm or pt on print is �xed.

Context dependent units. Context-dependent length units depend on the current

font or other environment variables. For instance, 1ex corresponds to the height of

the �x� character in the current font and 1par correspond to the current paragraph

width.

User de�ned units. Any nullary macro, whose name contains only lower case roman

letters followed by -length, and which returns a length, can be used as a unit itself.

For instance, the following macro de�nes the dm length:

hassignjdm-lengthjhmacroj10cmii

Furthermore, length units can be stretchable. A stretchable length is represented by a triple

of rigid lengths: a minimal length, a default length and a maximal length. When justifying

lines or pages, stretchable lengths are automatically sized so as to produce nicely looking

layout.

In the case of page breaking, the page-�exibility environment provides additional control

over the stretchability of white space. When setting the page-�exibility to 1, stretchable

spaces behave as usual. When setting the page-�exibility to 0, stretchable spaces become

rigid. For other values, the behaviour is linear.

Absolute length units.

cm. One centimeter.

mm. One millimeter.

in. One inch.

pt. The standard typographic point corresponds to 1/72.27 of an inch.

bp. A big point corresponds to 1/72 of an inch.

dd. The Didôt point equals 1/72 of a French inch, i.e. 0.376mm.

pc. One �pica� equals 12 points.

cc. One �cicero� equals 12 Didôt points.

Rigid font-dependent length units.

fs. The font size. When using a 12pt font, 1fs corresponds to 12pt.

fbs. The base font size. Typically, when selecting 10 as the font size for your docu-

ment and when typing large text, the base font size is 10pt and the font size 12pt.

ln. The width of a nicely looking fraction bar for the current font.

84 The T

E

X

MACS

format

sep. A typical separation between text and graphics for the current font, so as to keep

the text readable. For instance, the numerator in a fraction is shifted up by 1sep.

yfrac. The height of the fraction bar for the current font (approximately 0.5ex).

ex. The height of the �x� character in the current font.

emunit. The width of the �M� character in the current font.

Stretchable font-dependent length units.

fn. This is a stretchable variant of 1quad. The default length of 1fn is 1quad. When

stretched, 1fn may be reduced to 0.5fn and extended to 1.5fn.

fns. This length defaults to zero, but it may be stretched up till 1fn.

bls. The �base line skip� is the sum of 1quad and par-sep. It corresponds to the distance

between successive lines of normal text.

Typically, the baselines of successive lines are separated by a distance of 1fn (in

T

E

X

MACS

and L

A

T

E

X a slightly larger space is used though so as to allow for sub-

scripts and superscripts and avoid a too densely looking text. When stretched, 1fn

may be reduced to 0.5fn and extended to 1.5fn.

spc. The (stretchable) width of space character in the current font.

xspc. The additional (stretchable) width of a space character after a period.

Other length units.

par. The width of the paragraph. That is the length the text can span. It is a�ected

by paper size, margins, number of columns, column separation, cell width (if in a

table), etc.

pag. The height of the main text in a page. In a similar way as par, this length unit

is a�ected by page size, margins, etc.

px. One screen pixel, the meaning of this unit is a�ected by the shrinking factor.

tmpt. The smallest length unit for internal length calculations by T

E

X

MACS

. 1px

divided by the shrinking factor corresponds to 256tmpt.

Di�erent ways to specify lengths.

There are three types of lengths in T

E

X

MACS

:

Simple lengths. A string consisting of a number followed by a length unit.

Abstract lengths. An abstract length is a macro which evaluates to a length. Such

lengths have the advantage that they may depend on the context.

Normalized lengths. All lengths are ultimately converted into a normalized length,

which is a tag of the form htmlenjli (for rigid lengths) or htmlenjminjdef jmax i (for

stretchable lengths). The user may also use this tag in order to specify stretchable

lengths. For instance, htmlen j hminus j 1quad j 1pti j 1quad j 1.5quadi evaluates to a

length which is 1quad by default, at least 1quad-1pt and at most 1.5quad.

12.8 T

E

X

MACS

lengths 85

Chapter 13

Built-in environment variables

The way T

E

X

MACS

typesets documents is in�uenced by so called environment variables.

The style-sheet language uses a so called environment (or context) to store both environ-

ment variables and macros. The environment variables are subdivided into two catagories:

built-in variables and additional variables provided by style �les. Built-in variables usually

a�ect the layout, while additional variables mostly serve computational purposes. In the

next sections of this chapter, we will describe all built-in environment variables.

A typical built-in environment variable is color . The value of an environment variable may

be changed permanently using assign and temporarily using the with primitive:

Some colored text.

Some hwithjcolor jdark redjcoloredi text.

Counters are typical environment variables de�ned in style-sheets.

1. A weirdly

4. numbered list...

henumeratej

hitemiA weirdly

hassignjitem-nr j3ihiteminumbered list...i

The typesetting language uses dynamic scoping of variables. That means that macros can

access and modify variables in their calling context. In the previous example, the enumerate

macro locally initializes item-nr to 0 (uses with) and the item macro increments it by one

and shows its value. Since enumerate locally rede�nes item-nr , the original value of item-

nr is restored on exit.

Each document comes with an initial environment with the initial values of environment

values, i.e. their values just before we typeset the document. If an environment variable

does not occur in the initial environment, then its initial value defaults to its value after

typesetting the document style and possible additional packages. The initial environment

before typesetting the style �les and packages is built-in into the editor.

Some variables, like header and footer variables, must be set inside the document, their

initial environment value is ignored. Generally, they should be set by header and sectioning

markup.

87

13.1. General environment variables

mode4 text (major mode)

This very important environment variable determines the current mode. There are

four possible values: text (text mode), math (mathematical mode), prog (program-

ming mode) and src (source mode). The behaviour of the editor (menus, keystrokes,

typesetting, etc.) depends heavily on the mode. For example, the following code may

be used in order to include a mathematical formula inside text:

The formula a

2

+ b

2

= c

2

is well known.

The formula hwithjmode jmath jahrsupj2i+bhrsupj2i=chrsupj2ii is well

known.

Some other environment variables (mainly the language and the font) also depend on

the current mode (in this context, the source mode always behaves in a similar way as

the text mode). During copy&paste and search&replace operations, T

E

X

MACS

tries to

preserve the mode.

language4 english

math-language4 texmath

prog-language4 scheme (language)

A second major environment variable is the current language. In fact, there are three

such environment variables: one for each mode. The language in which content is

written is responsible for associating a precise semantics to the content. This semantics

is used for di�erent purposes:

� The language may specify rules for typesetting content. For instance, the text

language speci�es punctuation and hyphenation rules. Similarly the mathemat-

ical language containns spacing information for mathematical operators.

� Several editing operations depend on the current language: when performing a

search or replace operation, T

E

X

MACS

is both mode and language sensitive. Sim-

ilarly, the text language determines the dictionary to use when spell-checking

the document.

� The language controls (among other parameters like the mode and the document

format) the way content is being converted from one context to another.

Currently, no real language-dependent conversions have been implemented yet.

But in the future one may imagine that copying a piece of English text to a

document written in French will perform an automatic translation. Similarly, a

mathematical document might be converted from in�x to post�x notation.

� The programming language determines the current scripting language in use.

Other scripting languages than Scheme are currently only used for interactive

sessions, but primitives like extern and mutator might become language-sensitive

in the future.

88 Built-in environment variables

At the moment, the current language is mainly used as a hint for indicating the seman-

tics of text: it is not required that a text written in English contains no spelling errors,

or that a formula written in a mathematical language is mathematically or even syn-

tactically correct. Nevertheless, the editor is intended to enforce correctness more and

more, especially for mathematics.

The language may be speci�ed globally for the whole document in Document! Lan-

guage and locally for a piece of text in Format! Language.

prog-session4 default (name of programming session)

This environment variables is used in addition to the prog-language variable in order

to determine a concrete implementation as well as a particular instance of the current

programming language. For instance, in case of theMaxima language, di�erent imple-

mentation may be used fooor the underlying Lisp. Similarly, one may wish to run two

di�erent instances of Maxima in parallel.

magni�cation4 1 (magni�cation)

This variable determines the magni�cation which is applied to all content. Magni�-

cations bigger than one are typically useful for presentations (from slides or from a

laptop):

normal big huge

normalhhtab j 5mmihwith j magni�cation j 2 j bigihhtab j 5mmihwith j

magni�cationj3jhugei

The magni�cation should not be confused with the font size: contrary to the magni-

�cation, the font size may also a�ect the shapes of the glyphs. The magni�cation is

usually speci�ed for the entire document in Document!Magni�cation.

bg-color 4 white (background color)

The background color for your document, as speci�ed in Document! Color! Back-

ground.

color 4 black (foreground color)

The current foreground color of text and graphics, as speci�ed in Document!Color!

Foreground or Format!Color.

preamble4 false (edit source tree?)

This �ag determines whether we are editing normal text or a style-sheet. The source

tree or preamble mode may be selected in Document!View!Edit source tree.

info-�ag4 short (informative �ags style)

This variable controls the rendering of informative �ags, which are for instance used to

indicate the locations of otherwise invisible labels or typesetting directives. The info-

�ag may take the values none, short and detailed:

13.1 General environment variables 89

Label 1, Label 2, Label 3.

hwithjinfo-�ag jnone jLabel 1hlabelj�ag-label-1ii, hwithjinfo-�ag jshortj

Label 2hlabelj�ag-label-2ii, hwithjinfo-�ag jdetailedjLabel 3hlabel j�ag-

label-3ii.

Usually, the rendering of informative �ags is speci�ed document-wide in Document!

View! Informative �ags.

13.2. Specifying the current font

In this section, we describe the environment variables which control the rendering of fonts.

Several parameters may be de�ned independently for each mode (the font name, variant,

series and shape), whereas other parameters are uniform for all modes. Font properties

may be controlled globally for the whole document in Document ! Font and locally for

document fragments in Format! Font.

From an abstract point of view, a font is de�ned to be a graphically consistent way of

rendering strings. Fonts are usually made up from glyphs like �x�, ���, ���, �

P

�, etc. When

rendering a string, the string is decomposed into glyphs so as to take into account ligatures

(like �, �, �, �, �). Next, the individual glyphs are positioned while taking into account

kerning information (in �xo� the �o� character is slightly shifted to the left so as to take

pro�t out of the hole in the �x�). In the case of mathematical fonts, T

E

X

MACS

also provides

a coherent rendering for resizable characters, like the large brackets in

(

�

��

�

)

:

Similarly, a font family is a family of fonts with di�erent characteristics (like font weight,

slant, etc.), but with a globally consistent rendering. One also says that the fonts in a font

family �mix well together�. For instance, the standard computer modern roman font and

its bold and italic variants mix well together, but the computer modern roman font and

the Avant Garde font do not.

Remark 13.1. For the future, it is planned to replace the font variant and font shape

variables by a larger range of properties to individually control the slant, serifs, small-caps,

and so on. It is also planned to systematically use Unicode fonts with possible additional

glyphs for mathematics. This should automatically enable the use of Cyrillic characters

inside Russian text and similarly for other languages.

font4 roman

math-font4 roman

prog-font4 roman (font name)

These variables control the main name of the font, also called the font family . For

instance:

Computer modern roman, Pandora, Chancery, Palatino

Similarly, T

E

X

MACS

supports various mathematical fonts:

90 Built-in environment variables

Roman: a

2

+ b

2

= c

2

Adobe: a

2

+b

2

=c

2

New roman: a

2

+b

2

= c

2

Concrete: a

2

+b

2

=c

2

font-family4 rm

math-font-family4 mr

prog-font-family4 tt (font variant)

This variable selects a variant of the major font, like a sans serif font, a typewriter font,

and so on. As explained above, variants of a given font are designed to mix well together.

Physically speaking, many fonts do not come with all possible variants (sans serif,

typewriter, etc.), in which case T

E

X

MACS

tries to fall back on a suitable alternative font.

Typical variants for text fonts are rm (roman), tt (typewriter) and ss (sans serif):

roman, typewriter and sans serif

In maths mode, a distinction is made between the mathematical variants mr (roman),

mt (typewriter) and ms (sans serif) and textual variants rm (roman), bf (bold), etc. In

the �rst case, variables and operators are usually rendered in a di�erent slant, contrary

to the second case:

ms: sin (x + y)= sin x cos y + cos x sin y

ss: sin (x+ y)= sin x cos y+ cos x sin y

font-series4 medium

math-font-series4 medium

prog-font-series4 medium (font weight)

The font series determines the weight of the font. Most fonts only provide regular and

bold font weights. Some fonts also provide light as a possible value.

medium, bold

font-shape4 right

math-font-shape4 normal

prog-font-shape4 right (font shape)

The font shape determines other characters of a font, like its slant, whether we use

small capitals, whether it is condensed, and so on. For instance,

upright, slanted, italic, left slanted, Small Capitals, proportional

typewriter, bold condensed, �at sans serif, long

font-base-size4 10 (font base size)

The base font size is speci�ed in pt units and is usually invariant throughout the

document. Usually, the base font size is 9pt, 10pt, 11pt or 12pt. Other font sizes are

usually obtained by changing the magni�cation or the relative font-size.

13.2 Specifying the current font 91

9pt, 10pt, 11pt, 12pt

font-size4 1 (font size)

The real font size is obtained by multiplying the font-base-size by the font-size multi-

plier. The following standard font sizes are available from Format! Size:

size multiplier size multiplier

Tiny 0.59 Very small 0.71

Small 0.84 Normal 1

Large 1.19 Very large 1.41

Huge 1.68 Really huge 2

Table 13.1. Standard font sizes.

From a mathematical point of view, the multipliers are in a geometric progression with

factor 2

4

p

. Notice that the font size is also a�ected by the index level.

dpi4 600 (fonts rendering quality)

The rendering quality of raster fonts (also called Type 3 fonts), such as the fonts

generated by the Metafont program is controlled through its discretization precision

in dots per inch. Nowadays, most laser printers o�er a printing quality of at least

600dpi, which is also the default dpi setting for T

E

X

MACS

. For really high quality

printing, professionals usually use a precision of 1200dpi. The dpi is usually set once

and for all for the whole document.

13.3. Typesetting mathematics

math-level 4 0 (index level)

The index level increases inside certain mathematical constructs such as indices and

fractions. When the index level is high, formulas are rendered in a smaller font. Nev-

ertheless, index levels higher than 2 are all rendered in the same way as index level 2;

this ensures that formulas like

e

e

e

e

x

=

1+

1

x+e

x

1+

1

e

x

+

1

e

e

x

remain readable. The index level may be manually changed in Format! Index level, so

as to produce formulas like

x

y

z

xhrsupjhwithjmath-level j0jyhrsupjhwithjmath-level j0jziiii

92 Built-in environment variables

math-display4 false (display style)

This environement variable controls whether we are in display style or not. Formulas

which occur on separate lines like

n

H(�

1

;� ; �

n

)

=

1

�

1

+� +

1

�

n

are usually typeset in display style, contrary to inline formulas like

n

H(�

1

;� ; �

n

)

=

1

�

1

+� +

1

�

n

. As you notice, formulas in display style are rendered using a wider spacing.

The display style is disabled in several mathematical constructs such as scripts, frac-

tions, binomial coe�cients, and so on. As a result, the double numerators in the formula

H(�

1

;� ; �

n

) =

n

1

�

1

+� +

1

�

n

are typeset in a smaller font. You may override the default settings using Format!

Display style.

math-condensed 4 false (condensed display style)

By default, formulas like a+� + z are typeset using a nice, wide spacing around the

+ symbol. In formulas with scripts like e

a+�+z

+ e

�+�+�

the readability is further

enhanced by using a more condensed spacing inside the scripts: this helps the reader to

distinguish symbols occurring in the scripts from symbols occurring at the ground level

when the scripts are long. The default behaviour can be overridden using Format!

Condensed.

math-vpos4 0 (position in fractions)

For a high quality typesetting of fraction, it is good to avoid subscripts in numerators to

descend to low and superscripts in denominators to ascend to high. T

E

X

MACS

therefore

provides an additional environment variable math-vpos which takes the value 1 inside

numerators, �1 inside denominators and 0 otherwise. In order to see the e�ect the

di�erent settings, consider the following formula:

a

�1

2

+ a

0

2

+ a

1

2

hwithjmath-vpos j-1jhgroupja

�1

2

ii+hwithjmath-vpos j0jhgroupja

0

2

ii+hwithj

math-vposj1jhgroupja

1

2

ii

In this example, the grouping is necessary in order to let the di�erent vertical positions

take e�ect on each a

i

2

. Indeed, the vertical position is uniform for each horizontal

concatenation.

13.4. Paragraph layout

par-mode4 justify (paragraph alignment)

This environment variable speci�es the alignment of the di�erent lines in a paragraph.

Possible values are left, center, right and justify:

13.4 Paragraph layout 93

This paragraph is aligned

to the left. This paragraph

is aligned to the left. This

paragraph is aligned to the

left.

This paragraph is has been

centered. This paragraph

is has been centered. This

paragraph is has been cen-

tered.

This paragraph is aligned to

the right. This paragraph is

aligned to the right. This

paragraph is aligned to the

right.

This paragraph has been

justi�ed. Justi�cation is the

default alignment mode for

paragraphs. So be it.

Table 13.2. The supported modes for alignment.

par-hyphen4 normal (quality of hyphenation)

This parameter controls the quality of the hyphenation algorithm. Possible values are

normal and professional. The professional hyphenation algorithm uses a global algo-

rithm on the entire paragraph, whereas the normal one uses a faster �rst-�t algorithm.

The di�erence between the dif-

ferent hyphenation algorithms

provided by T

E

X

MACS

is seen

best for long paragraphs which

are typeset into a narrow

column. The professional

hyphenation usually succeeds

to minimize the number of

ugly gaps between words.

The di�erence between the

di�erent hyphenation algo-

rithms provided by T

E

X

MACS

is seen best for long para-

graphs which are typeset into

a narrow column. The profes-

sional hyphenation usually suc-

ceeds to minimize the number

of ugly gaps between words.

Table 13.3. Comparison di�erent hyphenation algorithms. At the left hand side, we have used the

normal algorithm and on the right hand side the professional one. Even though there are some ugly

gaps at the right hand side around �hyphenation�, the really bad gap around �The� on the left hand

side has been avoided.

par-width4 auto (paragraph with)

This environment variable controls the width of paragraphs. By default, it is automat-

ically determined as a function of the page (or screen) size and margins.

par-left4 0cm

par-right4 0cm (left and right margins)

These environment variables specify absolute left and right margins for the paragraph,

with respect to the default left and right margins (which are determined as a function

of the page layout). For instance:

This text uses the default margins.

This text uses a left margin of 1cm

This text uses a left margin of 2cm

This text uses a left margin of 3cm

The left and right margins of this

text have both been set to 3cm.

94 Built-in environment variables

Environments like itemize and quote-env which maybe nested usually compute new

margins as a function of the old values by adding or subtracting some space:

hassignjquote-env j

hmacrojbody j

hsurroundj

hvspace*j0.5fnij

hright-�ushihvspacej0.5fnij

hwith j par-left j hplus j par-left j3fni j par-right j hplus j par-right j

3fnijpar-�rst j0fnjpar-par-sepj0.25fnjbodyiiii

par-�rst4 1.5fn (�rst indentation)

The par-�rst parameter speci�es the additional indentation which is used for the �rst

line of the paragraph. The aim of �rst indentations is to indicate the starts of new

paragraphs. An alternative technique is the use of vertical whitespace.

The article and book

styles in T

E

X

MACS

indic-

tate the starts of new para-

graphs through the use of a

�rst indentation.

The generic and

letter styles rather use

vertical whitespace.

The generic and letter

styles in T

E

X

MACS

indic-

tate the starts of new para-

graphs through the use of

vertical whitespace.

The article and book

styles rather use a �rst

indentation.

Table 13.4. Two classical ways to indicate the starts of new paragraphs.

par-sep4 0.2fn (extra separation between successive lines)

The sum of the font size and par-sep determines the ideal distance between two suc-

cessive base lines in a paragraph (also called the �base line skip�). Of course, when the

lines contain large boxes, then this distance may need to be increased. When 1fn for

par-sep, one may for instance produce documents with a double interline space:

A double interline space corresponds to par-sep4 1fn. Double interline

spaces are often used by lazy people who want to pretend that they

have written many pages. They generally do not care about tropical

rain forests.

In the case when two successive lines use di�erent base line skips, then the maximal

value is used in order to compute the ideal distance between their baselines. This allows

for a reasonable spacing when the font size is changed from one paragraph to another:

Normal text.

Some very large text.

And back to normal.

13.4 Paragraph layout 95

par-line-sep4 0.025fn* (extra space between lines)

This parameter corresponds an additional stretchable amount of whitespace between

successive lines in a paragraph. Setting par-line-sep to a small stretchable value which

defaults to 0 allows the page breaker to correctly stretch pages which contain a very

long textual paragraph. Indeed, par-line-sep vanishes, then the height of a textual

paragraph is of the form a+ b n, where a and b are constants and n is the number of

lines. There is no reason why the usable height of a page should be of this form.

par-par-sep4 0.5fn* (extra space between paragraphs)

The par-par-sep parameter speci�es the amount of vertical whitespace which separates

two successive paragraphs. This space is determined in stretchable length units. By

default, T

E

X

MACS

does not use any whitespace between successive paragraphs, except

when no nice page breaks could be found (this explains the use of the fn* length unit).

Starts of new paragraphs are rather indicated through the use of �rst indentations (see

table 13.4).

In the case when two successive paragraph use di�erent paragraph separations, then

the maximum of the two is taken. In fact, the par-par-sep length is added to both the

vertical spacing before and the vertical spacing after the paragraph.

par-hor-sep4 0.5fn

par-ver-sep4 0.2fn (minimal space between ink)

When a paragraph contains several exceptionally large boxes, then T

E

X

MACS

attempts

to �shove successive lines into another� as long as none of the boxes collide:

Consider a fraction which decends more than usual like

1

x+1

at the end of a

line and an expression like e

e

x

which is higher than usual.

When these expressions occur at di�erent places, then T

E

X

MACS

tries to render

the successive lines in a compact manner.

In the case of a fraction

1

x+1

and an exceptionally high expression at the wrong

place, like the expression e

e

x

here, the boxes are separated by env-ver-sep.

As soon as the horizontal distance between two large boxes is less than par-hor-sep,

then they are considered to be in collision. In that case, the vertical distance between

them must be at least par-ver-sep. Also, the amount of showing never exceeds 1ex.

When using an interline space of 1.5 or 2, the default value of par-ver-sep allows the

user to type larger formulas in the text while preserving a uniform layout. When using a

small par-sep and a large par-ver-sep, the distance between two successive lines remains

small, except when their contents are horizontally close. This may for instance be used

to reduce the space between a short like followed by a centered equation.

par-fnote-sep4 0.2fn (minimal space between di�erent footnotes)

This parameter controls the amount of vertical space between successive footnotes.

par-columns4 1 (number of columns)

This environment variable speci�es the number of columns into which the text is being

typeset. Di�erent numbers of columns may be used successively in the same document.

96 Built-in environment variables

par-columns-sep4 2fn (distance between columns)

This environment variable speci�es the amount of horizontal whitespace which sepa-

rates di�erent columns in multi-column mode.

13.5. Page layout

In this section, we describe how T

E

X

MACS

�lls pages with typesetted content. Besides

specifying the settings on how to print a document, the user may also determine the way

pages should be rendered on screen. It should be noticed that the number of environment

variables is redundant in the sense that some variables are computed as a function of other

ones. For instance, by default, the paragraph width is computed as a function of the page

size and the left and right margins.

Paper speci�c variables.

page-type4 a4 (the size of pages)

Specify the size of a page when printing out. Most standard formats are available in

Document ! Page ! Size. By default, the paper size is the one of your printer (the

default printer settings may be changed in Edit ! Preferences ! Printer). When the

page-type is set to user, then the page size is given by page-width and page-height .

page-orientation4 portrait (page orientation)

The orientation of pages can be either portrait or landscape.

page-nr 4 0 (current page number)

The current page number. This environment variable should be manipulated with care,

since it is not yet available at typesetting time. For a reliable determination of page

numbers, one may combine the label and page-ref primitives. Nevertheless, the page-nr

variable can be used in the macros which render page headers and footers.

page-the-page (display the page number)

This environment variable really contains the macro which is used for rendering the

page-number. By default, it renders page-nr . The macro takes no arguments. In order

to simulate a document whose �rst page number os 123, one may rede�ne

hassignjpage-the-pagejhmacrojhplusjpage-nr j122iii

page-breaking4 optimal (page breaking algorithm)

This parameter speci�es the page breaking algorithm. The default optimal algorithm

takes into account the global document and tries hard to avoid bad page breaks. The

alternative sloppy algorithm uses a fast �rst-�t algorithm, but produces bad page break

with a higher probability. The medium quality algorithm is the same as the optimal

algorithm, except for two column content.

page-�exibility4 1.0 (�exibility for stretching)

This parameter speci�es how much stretchable spaces may be extended or reduced in

order to �ll pages which are too short or too long. A page �exibility of 1 allows spaces

to be stretched to their minimal and maximal values. A page �exibility of 0 prevents

spaces to be stretched. For other values of page-�exibility the behaviour is linear.

13.5 Page layout 97

page-shrink4 1fn (allowed amount of page shrinking)

In the case when it is very hard to �nd good page breaks, this parameter speci�es an

additional amount of space by which a page is allowed to be reduced.

page-extend4 0fn (allowed amount of page extensions)

In the case when it is very hard to �nd good page breaks, this parameter speci�es an

additional amount of space by which a page is allowed to be extended.

Screen speci�c variables.

page-medium4 papyrus (the page medium)

This environment variable, which is initialized using Document!Page!Type, speci�es

how pages are rendered on the screen. The following values are available:

paper. Page breaks are visually indicated on the screen. This mode is useful for

ajusting the �nal version of a document before printing or sending it to a

publisher. However, the use of this mode slows down the editor since every

modi�cation in the document triggers the page-breaking algorithm.

Notice also that the mere selection of this mode does not imply the screen

margins and page decorations to be as on paper. In order to previsualize a

document in a fully realistic way, you should also set Document!View!Page

layout!Show header and footer and Document!View!Page layout!Margins

as on paper.

papyrus. The paragraph width is the same as on paper, but page breaking is dis-

abled. This mode is most useful during the editing phase of a document which

will ultimately be printed out. It combines a reasonable editing speed with

realistic line breaks.

automatic. The paragraph width is as large as possible so as to �t into the current

window and page breaking is disabled. This setting, which makes optimal use

of the available space on your screen, is useful for documents which are not

intended to be printed out. It may for instance be selected when using T

E

X

MACS

as a browser or as an interface to computer algebra systems.

page-screen-width4 10cm (width of the rendering window)

In automatic mode, this environement variable contains the width of the screen.

page-screen-height4 10cm (height of the rendering window)

In automatic mode, this environement variable contains the height of the screen.

page-screen-margin4 true (special margins for screen editing?)

This �ag speci�es whether the screen margins are manually speci�ed by the user, or

whether they are the same as on paper.

page-screen-left4 5mm

page-screen-right4 5mm

page-screen-top4 15mm

98 Built-in environment variables

page-screen-bot4 15mm (left margin on screen)

When page-screen-margin is true, then these environment variables determine the

margins which are to be used for rendering on the screen.

page-show-hf 4 false (show headers and footers on screen?)

This �ag determines whether the page headers and footers should be visible on the

screen. When set to true, it should be noticed that the headers and footers are not

always correctly updated when editing. In the case when you suspect them to be wrong,

refreshing the display by scrolling down and up should display the correct values.

Specifying the margins.

The parameters for page margins are represented schematically at the left hand side in

�gure 13.1. One may either specify the paragraph width as a function of the left and right

margins, or vice versa. The left and right margins may depend on whether the page number

is odd or even.

page-width-margin4 false

page-height-margin4 false (compute margins from main text dimensions?)

When page-width-margin is set to false, then the paragraph width par-width is deter-

mined automatically from the page size and the left and right margins. When set to

true, the left and right margins are determined as a function of the page size, the para-

graph width, page-odd-shift and page-even-shift . For compatability with T

E

X/L

A

T

E

X, it

is also possible to set page-width-margin to tex, in which case the horizontal margins are

determined from page-odd , page-even and par-width. The page-height-margin variable

plays a similar role for the vertical margins.

page-width4 auto

page-height4 auto (page width)

By default, the width and height of a page are automatically determined from the page

type. When page-type is set to user, then the user may manually specify the page size

using page-width and page-height .

page-odd4 auto

page-even4 auto (left margin)

If page-width-margin is set to false, then page-odd and page-even specify the left

margins for odd and even pages. If page-width-margin is true, then these values are

computed as a function of the page size, the paragraph width, page-odd-shift and page-

even-shift . When page-odd and page-even are set to auto, then a nice default left

margin is determined as a function of the speci�ed page type.

page-right4 auto (right margin)

If page-width-margin is set to false, then page-right speci�es the right margin for odd

pages. The right margin for even pages is given by the formula

page-right + page-even � page-odd

If page-width-margin is true or when page-right is set to auto, then the right margin

is determined in a similar way as the left margin.

page-odd-shift4 0mm

13.5 Page layout 99

page-even-shift4 0mm (margin shifts)

If page-width-margin is set to true, then the left margins for odd and even pages

are determined from the page size, paragraph width and the margin shifts using the

formulas

page-even =

page-width � par-width

2

+ page-odd-shift

page-odd =

page-width � par-width

2

+ page-even-shift

The right margin is always taken to be such that the paragraph width and the left and

right margins sum up to the page width.

l

r

b

t

w

f

h

m

w

l

d

Figure 13.1. Schematic representation of the layout of pages. On the left hand side,

the parameters l, r, t and b respectively correspond to the left, right, top and bottom

margins, and w corresponds to the paragraph width. On the right hand side, h, f , d andm

correspond to the header, footer, footnote and marginal note separations, w to the width

of marginal notes, and l to the length of the footnote bar.

Page decorations.

page-odd-header 4

page-odd-footer 4

page-even-header 4

page-even-footer 4 (header for odd pages)

These environment variables contain the header and footer texts for odd and even pages.

page-head-sep4 8mm

page-foot-set4 8mm (separation between headers/fotters and text)

These parameters determine the space between the main text and page headers and

footers. They correspond to the h and f distances at the right hand side of �gure 13.1.

page-fnote-sep4 1.0fn (space between footnotes and text)

The separation between the main text and footnotes, i.e. the distance d in �gure 13.1.

page-fnote-barlen4 7.5fn (length of footnote bars)

The length of the foornote bar.

100 Built-in environment variables

page-�oat-sep4 1.5fn (separation between �oats and text)

The separation between the main text and �oating objects.

page-mnote-sep4 5mm (separation between marginal notes and text)

The separation between marginal notes and the main text (not implemented yet).

page-mnote-width4 15mm (width of marginal notes)

The width of marginal notes (not implemented yet).

13.6. Table layout

The environment variables for tables can be subdivided in variables (pre�xed by table-)

which apply to the whole table and those (pre�xed by cell-) which apply to individual cells.

Whereas usual environment variables are set with assign and with, the tabular environment

variables are rather set with the tformat primitive. This makes it possible to apply certain

settings to any rectangular subtable of the entire table and in particular to rows or columns.

For more details, see the documentation of the twith and cwith primitives.

Layout of the table as a whole.

table-width4

table-height4 (hint for table dimensions)

These parameters indicate a hint for the dimensions of the table. The table-hmode and

table-vmode variables determine how to take into account these settings.

table-hmode4

table-vmode4 (determination of table dimensions)

These parameters specify how to determine the dimensions of the table. At the moment,

the values of table-hmode and table-vmode are actually ignored and table-width and

table-height are interpreted as the minimal width and height of the table.

table-halign4 l

table-valign4 f (alignment inside text)

These parameters determine how the table should be aligned in the surrounding text.

Possible values for table-halign are l (left), c (center) and r (right), and possible

values for table-valign are t (top), f (centered at fraction bar height), c (center) and

b (bottom).

In addition to the above values, the alignment can take place with respect to the

baselines of particular cells. Such values for table-halign are L (align w.r.t. the left

column), C (align w.r.t. the middle column), R (align w.r.t. the right column) and O

(align w.r.t. the priviledged origin column table-col-origin). Similarly, table-halign may

take the additional values T (align w.r.t. the top row), C (align w.r.t. the middle row),

B (align w.r.t. the bottom row) and O (align w.r.t. the priviledged origin row table-row-

origin).

table-row-origin4 0

table-col-origin4 0 (priviledged cell)

Table coordinates of an priviledged �origin cell� which may be used for aligning the

table in the surrounding text (see above).

13.6 Table layout 101

table-lsep4 0fn

table-rsep4 0fn

table-bsep4 0fn

table-tsep4 0fn (padding around table)

Padding around the table (in addition to the padding of individual cells).

table-lborder 4 0ln

table-rborder 4 0ln

table-bborder 4 0ln

table-tborder 4 0ln (border around table)

Border width for the table (in addition to borders of the individual cells).

table-hyphen4 n (allow for hyphenation?)

A �ag which speci�es whether page breaks may occur at the middle of rows in the table.

When table-hyphen is set to y, then such page breaks may only occur when

1. The table is not surrounded by other markup in the same paragraph.

2. The rows whether the page break occurs has no borders.

An example of a tabular environment which allows for page breaks is eqnarray*.

table-min-rows4

table-min-cols4

table-max-rows4

table-max-cols4 (constraints on the table's size)

It is possible to specify a minimal and maximal numbers of rows or columns for the

table. Such settings constraint the behaviour of the editor for operations which may

modify the size of the table (like the insertion and deletion of rows and columns). This

is particularly useful for tabular macros. For instance, table-min-columns and table-

max-columns are both set to 3 for the eqnarray* environment.

Layout of the individual cells.

cell-background4 (background color)

A background color for the cell.

cell-width4

cell-height4 (hint for cell dimensions)

Hints for the width and the height of the cell. The real width and height also depend

on the modes cell-hmode and cell-vmode, possible �lling (see cell-hpart and cell-vpart

below), and, of course, on the dimensions of other cells in the same row or column.

cell-hpart4

cell-vpart4 (�ll part of unused space)

When the sum s of the widths of all columns in a table is smaller than the width w

of the table itself, then it should be speci�ed what should be done with the unused

space. The cell-hpart parameter speci�es a part in the unusued space which will be

taken by a particular cell. The horizontal part taken by a column is the maximum of

the horizontal parts of its composing cells. Now let p

i

the so determined part for each

column (i 2 f1; � ; ng). Then the extra horizontal space which will be distributed to

this column is p

i

(w � s)/(p

1

+ � + p

n

). A similar computation determines the extra

vertical space which is distributed to each row.

102 Built-in environment variables

cell-hmode4 exact

cell-vmode4 exact (determination of cell dimensions)

These parameters specify how to determine the width and the height of the cell. If cell-

hmode is exact, then the width is given by cell-width. If cell-hmode is min or max, then

the width is the minimul resp. maximum of cell-width and the width of the content.

The height is determined similarly.

cell-halign4 l

cell-valign4 B (cell alignment)

These parameters determine the horizontal and vertical alignment of the cell. Possible

values of cell-halign are l (left), c (center), r (right), . (decimal dot), , (decimal

comma) and R (vertical baseline). Possible values of cell-valign are t (top), c (center),

b (bottom) and B (baseline).

cell-lsep4 0fn

cell-rsep4 0fn

cell-bsep4 0fn

cell-tsep4 0fn (cell padding)

The amount of padding around the cell (at the left, right, bottom and top).

cell-lborder 4 0ln

cell-rborder 4 0ln

cell-bborder 4 0ln

cell-tborder 4 0ln (cell borders)

The borders of the cell (at the left, right, bottom and top). The displayed border

between cells T

i;j

and T

i;j+1

at positions (i; j) and (i; j + 1) is the maximum of the

borders between the right border of T

i;j

and the left border of T

i;j+1

. Similarly, the

displayed border between cells T

i;j

and T

i+1;j

is the maximum of the bottom border

of T

i;j

and the top border of T

i+1;j

.

cell-vcorrect4 a (vertical correction of text)

As described above, the dimensions and the alignment of a cell may depend on the

dimensions of its content. When cells contain text boxes, the vertical bounding boxes

of such text may vary as a function of the text (the letter �k� resp. �y� ascends resp.

descends further than �x�). Such di�erences sometimes leads to unwanted, non-uniform

results. The vertical cell correction allows for a more uniform treatment of text of the

same font, by descending and/or ascending the bounding boxes to a level which only

depends on the font. Possible values for cell-vcorrect are n (no vertical correction),

b (vertical correction of the bottom), t (vertical correction of the top), a (vertical

correction of bottom and the top).

cell-hyphen4 n (allow for hyphenation inside cells)

By default, the cells contain inline content which is not hyphenated. By selecting

Table ! Special cell properties ! Hyphenation ! Multi-paragraph, the cell contents

becomes multi-paragraph. In that case, cell-hyphen determines how this content is

hyphenated. Possible values are n (disable line breaking) and b, c and t (enable line

breaking and align at the bottom, center resp. top line).

cell-row-span4 1

13.6 Table layout 103

cell-col-span4 1 (span of a cell)

Certain cells in a table are allowed to span over other cells at their right or below them.

The cell-row-span and cell-col-span specify the row span and column span of the cell.

cell-decoration4 (decorating table for cell)

This environment variable may contain a decorating table for the cell. Such a decoration

enlarges the table with extra columns and cells. The tmarker primitive determines the

location of the original decorated cell and its surroundings in the enlarged table are

�lled up with the decorations. Cell decorations are not really used at present and may

disappear in future versions of T

E

X

MACS

.

cell-orientation4 portrait (orientation of cell)

Other orientations for cells than portrait have not yet been implemented.

cell-row-nr 4 1

cell-col-nr 4 1 (current cell position)

In the future, these environment variables should contain the current cell position

during the typesetting process.

13.7. Editing source trees

The di�erent rendering styles for source trees are described in more detail in the section

about the global presentation of source trees. The corresponding environment variables

are brie�y described here.

src-style4 angular (rendering style for source tags)

The principal rendering style for source trees as speci�ed in Document!View!Style.

Possible values are angular, scheme, functional and latex.

src-special 4 normal (how to render special tags)

How to render special tags like concat, document, compound, etc., as speci�ed in Doc-

ument!View!Special. Possible values are raw, format, normal and maximal.

src-compact4 normal (compactication level)

How compact should tags be rendered, as speci�ed in Document!View!Compacti�-

cation. Possible values are none, inline, normal, inline tags and all.

src-close4 compact (closing style for long tags)

The rendering style of closing tags as speci�ed in Document ! View ! Closing style.

Possible values are repeat, long, compact and minimal.

13.8. Miscellaneous environment variables

The following miscellaneous environment variables are mainly intended for internal use:

save-aux 4 true (save auxiliary content)

This �ag speci�es whether auxiliary content has to be saved along with the document.

104 Built-in environment variables

sfactor 4 5 (shrinking factor)

The shrinking factor which is used for rendering.

par-no-�rst4 false (disable �rst indentation for next paragraph?)

This �ag disables �rst indentation for the next paragraph.

cell-format (current cell format)

This variable us used during the typsetting of tables in order to store the with-settings

which apply to the current cell.

atom-decorations

line-decorations

page-decorations

xo�-decorations

yo�-decorations (auxiliary variables for decorations)

These environment variables store auxiliary information during the typsetting of dec-

orations.

13.8 Miscellaneous environment variables 105

Chapter 14

Built-in T

E

X

MACS

primitives

In this chapter, we describe those built-in T

E

X

MACS

primitives which are intended to be

used in normal documents. The additional primitives which are used for writing style �les

are described in a separate chapter.

14.1. Fundamental primitives

hdocumentjpar-1 j� jpar-ni (vertical sequence of paragraphs)

This primitive is used for sequences of logical paragraphs. A simple, plain text docu-

ment is made of a sequence of paragraphs. For instance,

A simple document.

Made of several paragraphs. The second paragraph is very long, so that

it is hyphenated across several line.

is internally represented as a document with two subtrees:

hdocumentj

A simple document.j

Made of several paragraphs. The second paragraph is very long, so

that it is hyphenated across several line.i

From the visual point of view, di�erent paragraphs are often separated by some ver-

tical whitespace. Alternatively, new paragraphs are indicated through the use of an

additional indentation. The root of a T

E

X

MACS

document is usually a document node.

The document tag is also used for marking multi-paragraph content inside other tags,

such lists or theorem-like environments. Environments which require the use of a doc-

ument tag for at least one argument are called �block environments�.

hparagraphjunit-1 j� junit-ni (vertical sequence of paragraph units)

This not yet implemented primitive is a variant of document. While a document is

made up of logical paragraphs, a paragraph is made up of �paragraph units�. From a

visual point of view, di�erent paragraphs are singled out using some additional space

or indentation. New paragraph units rather correspond to simple new lines. Typically,

displayed equations are also paragraph units in a larger paragraph.

hconcatjitem-1 j� jitem-ni (horizontal sequence of inline markup)

This primitive is used for sequences of line items, also called �inline content�. For

instance,

107

Some emphasized text.

is internally represented as:

hconcatjSome jhemjemphasizedij text.i

The concat operator is essential to put compound structures in trees taking multiple

parameters. For example, let us place the previous fragment in a multi-paragraph

context:

Multiple paragraphs.

Some emphasized text.

In this example, we need the concat tag in order to indicate that �Some emphasized

text.� correponds to a single paragraph:

hdocumentj

A simple document.j

hconcatjSome jhemjemphasizedij text.ii

Notice that block tags like document may contain inline tags such as concat as its

children, but not vice versa. In order to typeset line content before or after block

content, one has to use the surround tag below.

hsurroundjleft jright jbodyi (surround block content with inline content)

Although it is not possible in T

E

X

MACS

to use block content inside horizontal concate-

nations, it is sometimes useful to add some additional inline content before or after a

block environment. The surround primitive serves this purpose, by adding a left and

right surrounding to some block content body . For instance,

hsurroundj jj

htheoremj

Given P 2TfF g and f < g2T with P (f)P (g)< 0, there exists

an h2T with P (h) = 0.ii

produces

 Theorem 14.1. Given P 2TfF g and f < g 2T with P (f)P (g)< 0,

there exists an h2T with P (h)= 0.

In general, the surround is mainly used in style �les, but it occasionally turns out to be

useful in regular documents as well.

14.2. Formatting primitives

14.2.1. White space primitives

hvspacejleni

108 Built-in T

E

X

MACS

primitives

hvspacejlenjminjmax i (vertical space after)

This primitive inserts an elastic vertical space after the current paragraph. All operands

must be length values. The len argument speci�es the default length and the min and

max arguments the bounds to vertical stretching for page breaking and �lling. If min

and max are not speci�ed, then they are determined implicitly from the length unit of

len.

Notice that operands are not evaluated, so they must be literal strings.

hvspace*jleni

hvspace*jlenjminjmax i (vertical space before)

This primitive is similar to vspace, except that the vertical space is inserted before the

current paragraph. The actual vertical space between two consecutive paragraphs is the

maximum, not the sum, of the vertical spaces speci�ed by the the vspace and vspace*

tags in the surrounding paragraphs.

hspacejleni

hspacejlenjbot jtopi (rigid horizontal space)

This primitive inserts an empty box whose width is len, and whose bottom and top

sides are at distances bot and top from the baseline.

If bot and top are not speci�ed, then an empty box is inserted whose bottom is on the

baseline and whose height is the same as the lowercase letter x in the current font.

Notice that operands are not evaluated, so they must be literal strings.

hhspacejleni

hhspacejlenjminjmax i (stretchable horizontal space)

This primitive inserts inserts a stretchable horizontal space of nominal width len, which

must be a length value. The min and max arguments specify bounds to horizontal

stretching for line breaking and �lling. If min and max are not speci�ed, then they are

determined implicitly from the length unit of len.

Notice that operands are not evaluated, so they must be literal strings.

hhtabjmini

hhtabjminjweighti (horizontal spring)

Springs are horizontal spaces which extend so the containing paragraph takes all the

available horizontal space. When a paragraph is line wrapped, split in several visual

lines, only springs in the last line are extended.

A spring has a minimal width and a weight . If the weight is 0, the spring is weak ,

otherwise it is strong . If a line contains mixed weak and strong springs, only the strong

springs extend.

The fraction of the available horizontal space taken up by each strong spring is propor-

tional to its weight. If there are only weak springs, they share the available space evenly.

hhtabjmini inserts a strong spring of minimal width min and of weight unity. The

min operand must be a length value.

hhtabjmin jweighti speci�es the weight, which can be a positive decimal number or

one of the two special values documented below.

hhtab j min j �rsti inserts a tail weak spring, only the �rst one in a paragraph is

signi�cant.

14.2 Formatting primitives 109

hhtab jmin j lasti inserts a head weak spring, only the last one in a paragraph is

signi�cant.

Operands are not evaluated and must be literal strings.

Weak springs are useful in style-sheets. For example, tail weak springs are used to make

the list environment extend to across the full paragraph, so vertical motion commands

in nested lists behave as expected. In regular documents, springs are often used to place

some text on the right side of the page and some other text on the left side.

14.2.2. Line breaking primitives

A simple document is a sequence of logical paragraphs, one for each subtree of a document or

paragraph node. Paragraphs whose width exceed the available horizontal space are broken

into physical lines by the hyphenation algorithm. By default, hyphenated lines are justi�ed:

horizontal spaces can be shrunk or extended in order to produce a good-looking layout.

hnew-linei (start a new paragraph)

This is a deprecated tag in order to split a logical paragraph into several logical para-

graphs without creating explicit subtrees for all paragraphs.

We recall that logical paragraphs are important structures for the typesetting process.

Many primitives and environment variables (vertical spacing, paragraph style, inden-

tation, page breaking, etc.) operate on whole paragraphs or at the boundaries of the

enclosing paragraph.

hnext-linei (start a new line)

This is a tag which will become deprecated as soon as the paragraph primitive will be

correctly implemented. Its usage is similar to the new-line tag with the di�erence that

we start a new logical paragraph unit instead of a new logical paragraph.

Currently, the next-line tag can also be used in order to force a line break with the

addional property that the line before the break is not justi�ed or �lled.

hline-breaki (line breaking hint, with �lling)

Print an invisible space with zero hyphenation penalty. The line breaking algorithm

searches for the set of hyphenation points minimizing the total penalty, so line breaking

is much more likely to occur at a line-break than anywhere else in its vicinity.

Unlike next-line, this is a hint which may or may not be obeyed by the typesetter, and

it does not prevent the previous line from being �lled.

hno-breaki (forbid line breaking at this point)

Set an hyphenation point with an in�nite penalty. That is useful when the hyphenation

patterns for a language fall short of preventing some forbidden patterns like �arse-nal�

or �con-genital�. An alternative way to prevent breaks is to use the group tag.

14.2.3. Indentation primitives

There are two main ways to distinguish between successive paragraphs: separate them by

a small vertical space, or use an indentation for each new paragraph. The indentation can

be explicitly controlled using the no-indent, yes-indent, no-indent* and yes-indent* tags. The

no-indent and yes-indent primitives apply to the current paragraph, while the no-indent*

and yes-indent* apply the next paragraph.

110 Built-in T

E

X

MACS

primitives

hno-indenti

hyes-indenti

Disable or enable indentation for the current paragraph. For instance, the code

hno-indentiThis is a long paragraph which demonstrates the disabling

indentation using the hmarkupjno-indenti primitive.

hyes-indentiThis is a long paragraph which demonstrates enabling

indentation using the hmarkupjyes-indenti primitive.

typically produces

This is a long paragraph which demonstrates the disabling indentation

using the no-indent primitive.

This is a long paragraph which demonstrates enabling indentation

using the yes-indent primitive.

hno-indent*i

hyes-indent*i

Disable or enable indentation for the next paragraph. For instance,

A �rst paragraph.hyes-indent*i

A second paragraph.

typically produces

A �rst paragraph.

A second paragraph.

Notice that no-indent and yes-indent override no-indent* and yes-indent* directives in

the previous paragraph.

Currently, the no-indent* and yes-indent* tags are mainly used in order to control the

indentation after section titles or environments like equation which usually correspond

to paragraph units. In the future, when sectional tags will take the section bodies as

arguments, and when the paragraph tag will be correctly implemented, the no-indent*

and yes-indent* will become deprecated.

14.2.4. Page breaking primitives

The physical lines in a document are broken into pages in a way similar to how paragraphs

are hyphenated into lines. The page breaker performs page �lling , it tries to distribute page

items evenly so text runs to the bottom of every page. It also tries to avoid orphans and

widows, which are single or pairs of soft lines separated from the rest of their paragraph

by a page break, but these can be produced when there is no better solution.

hno-page-breaki (prevent automatic page breaking after this line)

Prevent the occurrence of an automatic page break after the current line. Set an in�nite

page breaking penalty for the current line, similarly to no-break.

14.2 Formatting primitives 111

Forbidden page breaking points are overridden by �new page� and �page break� primi-

tives.

hno-page-break*i (prevent automatic page breaking before this line)

Similar to no-page-break, but set the page breaking penalty of the previous line.

hnew-pagei (start a new page after this line)

Cause the next line to appear on a new page, without �lling the current page. The

page breaker will not try to position the current line at the bottom of the page.

hnew-page*i (start a new page before this line)

Similar to new-page, but start the new page before the current line. This directive is

appropriate to use in chapter headings.

hpage-breaki (force a page break after this line)

Force a page break after the current line. A forced page break is di�erent from a new

page, the page breaker will try to position the current line at the bottom of the page.

Use only to �ne-tune the automatic page breaking. Ideally, this should be a hint similar

to line-break, but this is implemented as a directive, use only with extreme caution.

hpage-break*i (force a page break before this line)

Similar to page-break, but force a page break before the current line.

When several �new page� and �page break� directives apply to the same point in the

document, only the �rst one is e�ective. Any new-page or page-break after the �rst one in a

line is ignored. Any new-page or page-break in a line overrides any new-page* or page-break*

in the following line. Any new-page* or page-break* after the �rst one in a line is ignored.

14.2.5. Box operation primitives

hmovejcontent jdelta-x jdelta-yi (adjust position)

This primitive moves the box with the speci�ed content by delta-x to the right and

delta-y upwards. It may be used for �ne-grained positioning.

hresizejcontent jleft-limjbot-limjright-limjtop-limi (adjust size)

Resize the box for the content according to new left, bottom, right and top limits left-

lim, bot-lim, right-lim and top-lim. The limits may be either be empty strings (in which

case the old limit is taken), an absolute coordinate, or a limit computed as a function

of the old limit.

In the last case, the limit string should be of the form <pos><op><len>. The �rst

character <pos> indicates a position in the old box and should be either l (left), b

(bottom), c (center), r (right) or t (top). The second character <op> indicates the

operation which will be performed on this position and the remaining length string

<len> in order to yield the new position. Possible operations are +, -, [and]. The

brackets [and] stand for �minimum� and �maximum�. For instance, the code

(hresizejHopsajl-5mmjjr+5mmjji)

widens the box for �Hopsa� by 5mm on each side:

112 Built-in T

E

X

MACS

primitives

(Hopsa)

hif*jconditionjcontenti (conditional appearance of box)

The box with the content is displayed as usual if the condition is satis�ed and displayed

as whitespace otherwise. This primitive is used in particular for the de�nition of the

phantom macro. For instance, the non-text � � is produced using hif* j false j

phantomi.

hrepeatjcontent jpatterni (�ll line)

This primitive can be used to decorate some content with a given pattern. For instance,

when de�ning the macro

hassignjwipe-out jhmacrojx jhrepeatjx jhwithjcolor jredj/iiii

the code hwipe-outjobsoletei produces obsolete///////. The repeat primitive may also be used

to �ll the current line with a given content, like the dots in tables of contents.

hdatomsjfoojcontenti

hdlinesjfoojcontenti

hdpagesjfoojcontenti (decorations)

These primitives are used to decorate a posteriori the lines of a paragraph, the lines of

a page, or the pages of a document. Currently, only decorations of atoms on lines of a

paragraph have been implemented.

The �rst argument foo is a macro which will be applied to all boxes in the line and the

second argument content is the part of the paragraph to which the decoration will be

applied. For instance, the construction

hdatomsj

hmacrojx j

x

ij

bodyi

may be used in order to visualize the boxes in a given paragraph:

Here is a su�ciently long paragraph. Here is a su�ciently long paragraph.

Here is a su�ciently long paragraph. Here is a su�ciently long paragraph.

Here is a su�ciently long paragraph. Here is a su�ciently long paragraph.

When used in combination with the repeat primitive, one may for instance produce the

dotted lines in tables of contents using the macro

hassignj

toc-dotsj

hmacroj

hdatomsj

hmacrojx jhrepeatjx jhspacej0.2fni.hspacej0.2fniiij

hhtabj5mmiiii

Notice that the datoms primitive is quite fragile, because the foo macro has no access

to the environment in which content is typeset.

14.2 Formatting primitives 113

14.3. Mathematical primitives

hleftjlarge-delimiteri

hleftjlarge-delimiter jsizei

hleftjlarge-delimiter jbottomjtopi

hmidjlarge-delimiter j� i

hrightjlarge-delimiter j� i (large delimiters)

These primitives are used for producing large delimiters, like in the formula

�

1

a

1

�

�

�

�

1

a

2

�

�

�

�

�

�

�

�

�

1

a

n

�

:

Matching left and right delimiters are automatically sized so as contain the enclosed

expression. Between matching left and right delimiters, the formula may contain an

arbitrary number of middle delimiters, which are sized in a similar way. Contrary

to T

E

X, the depth of a large delimiter is not necessarily equal to its height, so as to

correctly render formulas like

f

0

@

1

x+

1

y+

1

z

1

A

The user may override the automatically determined size by specifying additional

length parameters size or bottom and top. For instance,

fhleftj(j-8mmj4mmixhmidj|j8mmiyhrightj)j-4mmj8mmi

is rendered as

f

0

@

x

�

�

�

�

y

1

A

The size may also be a number n, in which case the n-th available size for the delimiter

is taken. For instance,

ghleftj(j0ihleftj(j1ihleftj(j2ihleftj(j3izhrightj)j3ihrightj)j2ihrightj)j1ihrightj

)j0i

is rendered as

g

(

�

�

�

z

�

�

�

)

hbigjbig-symboli (big symbols)

This primitive is used in order to produce big operators as in

X

i=0

1

a

i

z

i

(14.1)

114 Built-in T

E

X

MACS

primitives

The size of the operator depends on whether the formula is rendered in �display style�

or not. Formulas in separate equations, like (14.1), are said to be rendered in display

style, contrary to formulas which occur in the main text, like

P

i=0

1

a

i

z

i

. The user may

use Format!Display style to override the current settings.

Notice that the formula (14.1) is internally represented as

hbigjsumihrsubji=0ihrsupj<infty>iahrsubjii*zhrsupjiihbigj.i

The invisible big operator hbigj.i is used to indicate the end of the scope of hbigjsumi.

hfracjnumjdeni (fractions)

The frac primitive is used in order to render fractions like

x

y

. In display style, the

numerator num and denominator den are rendered in the normal size, but display style

is turned of when typesetting num and den. When the display style is turned of, then

the arguments are rendered in script size. For instance, the content

hfracj1jahrsubj0i+hfracj1jahrsubj1i+hfracj1jahrsubj2i+<ddots>iii

is rendered in display style as

1

a

0

+

1

a

1

+

1

a

2

+�

hsqrtjcontenti

hsqrtjcontent jni (roots)

The sqrt primitive is used in order to render square roots like x

p

or n-th roots like x

3

p

.

The root symbol is automatically sized so as to encapsulate the content :

f(x)

y

2

+ z

2

i+ j

r

hlsubjscripti

hlsupjscripti

hrsubjscripti

hrsupjscripti (scripts)

These primitives are used in order to attach a script to the preceeding box in a hor-

izontal concatenation (in the case of right scripts) or the next one (in the case of left

scripts). When there is no such box, then the script is attached to an empty box.

Moreover, when both a subscript and a superscript are speci�ed on the same side, then

they are merged together. For instance, the expression

hrsubjaihrsupjbi+hlsubj1ihlsupj2ixhrsubj3ihrsupj4i=yhrsubj1i+hlsubjci

is rendered as

a

b

+ x

1

2

3

4

= y

1

+

c

When a right script is attached to an operator (or symbol) which accepts limits, then

it is rendered below or above instead of beside the operator:

lim

n!1

a

n

14.3 Mathematical primitives 115

Scripts are rendered in a smaller font in non-display style. Nevertheless, in order to

keep formulas readable, the size is not reduced below script-script-size.

hlprimejprime-symbolsi

hrprimejprime-symbolsi (primes)

Left and right primes are similar to left and right superscripts, except that they behave

in a di�erent way when being edited. For instance, when your cursor is behind the

prime symbol in f

0

and you press backspace, then the prime is removed. If you are

behind f

n

and you press backspace several times, then you �rst enter the superscript,

next remove n and �nally remove the superscript. Notice also that prime-symbols is

necessarily a string of concatenated prime symbols. For instance, f

0y

is represented by

fhrprimej'<dag>i.

hbelowjcontent jscripti

habovejcontent jscripti (scripts above and below)

The below and above tags are used to explicitly attach a script below or above a given

content . Both can be mixed in order to produce content with both a script below and

above:

xor

i=1

1

x

i

can be produced using

habovejhbelowjxorji=1ij<infty>i xhrsubjii

hwidejcontent jwide-symboli

hwide*jcontent jwide-symboli (wide symbols)

These primitives can be used in order to produce wide accents above or below some

mathematical content . For instance x+ y corresponds to the markup hwide j x+y j

<bar>i.

hnegjcontenti (negations)

This primitive is mainly used for producing negated symbols or expressions, such as�

or a.

htreejroot jchild-1 j� jchild-ni (trees)

This primitive is used to produce a tree with a given root and children child-1 until

child-n. The primitive should be used recursively in order to produce trees. For

instance,

+

x y �

2 y z

corresponds to the markup

htreej+jxjyjhtreej<times>j2jyjzii

In the future, we plan to provide further style parameters in order to control the

rendering.

116 Built-in T

E

X

MACS

primitives

14.4. Table primitives

Tables are always present in documents inside evaluable tags which take a tformat operand.

All fundamental table structures have inaccessible borders. The basic top-level table tag

is tabular.

htformatjwith-1 j� jwith-njtablei (table formatting container)

Every tabular structure in a document contains a tformat tag.

htformatjtablei means the table and cell variables de�ned in the top-level table tag are

not modi�ed. The table argument may be a table or a nested tformat tag, the latter

does not appear in documents but is produced by the evaluation of the top-level tag.

htformat jwith-1 j� jwith-n j tablei is used when the table contains speci�c formatting

information. The with-1 to with-n arguments must all be twith or cwith tags.

htwithjvar jvali (set a table variable)

The formatting of the table as a whole is speci�ed by a number of table variables,

which are used internally and do not appear in the environment like regular typesetter

variables.

The twith primitive sets the table variable var (literal string) to the value val (evalu-

ated).

hcwithjtop-row jbot-row jleft-col jright-col jvar jvali (set a cell variable for a range)

The formatting of cells is speci�ed by a number of cell variables, which are used inter-

nally and do not appear in the environment like regular typesetter variables. Rows,

columns, and generally any rectangular range of cells can associated to a cell variable

setting by a single cwith tag.

The cwith primitive sets the cell variable var (literal string) to the value val (evaluated)

for the range of cells spanning rows top-row to bot-row and columns left-col to right-

col (literal non-zero integers).

Range coordinates must be non-zero literal integers, positive values are counted left to

right and top to bottom, negative values are counted right to left and bottom to top.

For example, 2 means the second row or column and -1 means the last row or column.

Typical values for (top-row ; bot-row ; left-col ; right-col) are (r; r; 1; �1) for �row r�, (1;

�1; c; c) for �column c�, and (r; r; c; c) for �the cell at row r, column c�. When new cells

are inserted, it makes a di�erence whether the rows are counted from the top or bottom,

and the columns are counted from the left or right. If m is the number of rows and n

the number of columns, then r and r �m � 1 represent the same row�the former is

relative to the top border while the latter is relative the bottom border. Similarly, c

and c�n� 1 represent the same column.

htablejrow-1 j� jrow-ni (row container)

The only purpose of the table tag is to contain row tags. The number of rows in a table

is the number of subtrees in its table tag.

hrowjcell-1 j� jcell-ki (cell container)

The only purpose of the row tag is to contain cell tags. All row tags in a given table

must have exactly as many subtrees, all cell tags, as there are columns in the table.

14.4 Table primitives 117

hcelljcontenti (cell data container)

Table cells can contain any document fragment. A cell may directly contain an inline

content tag or a concat, if it has block content it must always contain a document tree.

A cell whose operand is a document is a multi-paragraph cell . Since tables are allowed

in line context, this is the only construct which allows, indirectly, the nesting of a

block context within a line context. Note that most block content can only be typeset

correctly within an hyphenated cell, this is controlled by the cell-hyphen table variable.

hsubtablejtablei (subtable cell data)

In addition to regular markup, cells can accept subtable as an operand. The operand

of subtable is a tformat tree containing regular table data.

A similar e�ect can be obtained with normal table by setting the cell's padding to zero

in all directions, the extra twist of a subtable is its inaccessible border positions.

htmarkerjtablei (decoration origin marker)

This tag is used in the de�nition of cell decorations, see the documentation of the cell-

decoration environment variable.

It is also used outside tables, in the switch tag to mark the currently displayed position.

htabularjtablei (built-in tabular macro)

This macro implements standard left aligned tables without borders. Although the

tabular macro is built-in into T

E

X

MACS

, it should not really be considered as a primitive.

However, it is not part of any style �le either.

14.5. Linking primitives

hlabeljnamei (reference target)

The operand must evaluate to a literal string, it is used as a target name which can be

referred to by reference, pageref and hlink tags.

Label names should be unique in a document and in a project.

Examples in this section will make references to an example label named �there�.

hlabeljtherei

hreferencejnamei (reference to a name)

The operand must evaluate to a literal string, which is the name of a label de�ned in

the current document or in another document of the current project.

hreferencejtherei

The reference is typeset as the value of the variable the-label at the point of the target

label. The the-label variable is set by many numbered structures: sections, �gures,

numbered equations, etc.

A reference reacts to mouse clicks as an hyperlink.

118 Built-in T

E

X

MACS

primitives

hpagerefjnamei (page reference to a name)

The operand must evaluate to a literal string, which is the name of a label de�ned in

the current document or in another document of the current project.

hpagerefjtherei

The pageref is typeset as the number of the page containing the target label. Note that

page numbers are only computed when the document is typeset with page-breaking,

that is not in �automatic� or �papyrus� page type.

A pageref reacts to mouse clicks as an hyperlink.

hhlinkjcontent jurli (inline hyperlink)

This primitive produces an hyperlink with the visible text content pointing to url .

The content is typeset as inline url . The url must evaluate to a literal string in URL

syntax and can point to local or remote documents, positions inside documents can be

be speci�ed with labels.

The following examples are typeset as hyperlinks pointing to the label �there�, respec-

tively in the same document, in a document in the same directory, and on the web.

hhlinkjsame documentj#therei

hhlinkjsame directoryjfile.tm#therei

hhlinkjon the webjhttp://example.org/#therei

If the document is not editable, the hyperlink is traversed by a simple click, if the

document is editable, a double-click is required.

hincludejurli (include another document)

The operand must be a literal string and is interpreted as a �le name. The content of

this �le is typeset in place of the include tag, which must be placed in block context.

hactionjcontent jscripti (attach an action to content)

Bind a Scheme script to a double mouse click on content . For instance, when clicking

here, you may launch an xterm. This action is encoded by hactionjherej(system "xterm

&")i.

When clicking on actions, the user is usually prompted for con�rmation, so as to

avoid security problems. The user may control the desired level of security in Edit!

Preferences ! Security. Programmers may also declare certain Scheme routines to

be �secure�. Scheme programs which only use secure routines are executed without

con�rmation from the user.

hmutatorjcontent jscripti (a tag which may modify itself)

The content of a mutator tag is automatically determined by the Scheme script . More

precisely, T

E

X

MACS

periodically determines all mutator tags which are present in the

currently opened. For each such tag, it sets themutator path to the path for accessing its

content and calls the Scheme script . This script is allowed to modify the content of the

mutator and even other parts of the document (for e�ciency reasons it is nevertheless

recommended to mainly modify the content itself). In order to retrieve the mutator

path from within Scheme, one should use the command (get-mutator-path).

14.5 Linking primitives 119

Mutators are very useful in situations where T

E

X

MACS

communicates with extern sys-

tems in an interactive way. For instance, the current implementation of computer

algebra (and other) sessions uses mutators. This allows the user to continue typing

elsewhere in the document while the extern system is computing. Since mutator tags

are automatically localized by the editor, the behaviour remains correct when the

position of the mutator changes during the computation (this happens for instance

when inserting a new paragraph at the start of your document).

14.6. Miscellaneous physical markup

hgroupjcontenti (atomic entity)

Typeset the content , which must be line content, as an atomic line item. Hyphenation

within the group and special spacing handling on its borders are disabled.

h�oatjtypejwherejbodyi (�oating page insertion)

Floating insertions are page items which are typeset �out of band�, they are associated

to two boxes: the anchor box marks the structural position of the �oat, the �oating box

contains the typeset body operand. This facility is used by footnotes and �oating blocks.

The �rst and second operands are evaluated, but for clarity the �rst operand appears

as a literal string in the examples. Since the body is typeset out of band, it may be

block content even if the �oat occurs in line context.

h�oatjfootnotejjbodyi produces a footnote insertion, this should only be used within

the footnote macro and is considered style markup. The �oating box of a footnote

is typeset at the end of the the page containing the anchor box.

h�oat j �oat j where j bodyi produces a �oating block, this is considered physical

markup. The position of the �oating box is chosen by the page breaker, which uses

this extra freedom to minimize the page breaking penalty.

The where operand must evaluate to a string which may contain the following

characters:

t. Allow the �oating box at page top.

b. Allow the �oating box at page bottom.

h. Allow the �oating box �here�, in the middle of the page near the anchor box.

f. Force the �oating box within the same page as the anchor box.

hspeci�cjmediumjbodyi (medium-speci�c content)

This primitive marks body for output only on the speci�ed medium. The following

values of medium are supported:

texmacs. The body is typeset as usual line content.

latex. The body , which must be a string, is not visible from within T

E

X

MACS

, but

it will be included in a verbatim way when the document is exported to L

A

T

E

X.

html. Similar to the latex medium, but for HTML exports.

120 Built-in T

E

X

MACS

primitives

screen. The body is only typeset when the document is visualized on a screen. This

may be useful to provide additional visual information to the user during the

editing phase which should disappear when printing out. A similar tag which

may be used for this purpose is �ag.

printer. This medium is complementary to screen, when the body should only be

visible when printing out, but not when the document is displayed on the screen.

hraw-datajdatai (binary content)

In some contexts you need to embed uneditable data inside a document, most of the

time this is uneditable binary data. The raw-data primitive makes it impossible to view

or modify its subtree from within the editor.

14.6 Miscellaneous physical markup 121

Chapter 15

Primitives for writing style files

15.1. Environment primitives

The current environment both de�nes all style parameters which a�ect the typesetting

process and all additional macros provided by the user and the current style. The primitives

in this section are used to access and modify environment variables.

hassignjvar jvali (variable mutation)

This primitive sets the environment variable named var (string value) to the value of the

val expression. This primitive is used to make non-scoped changes to the environment,

like de�ning markup or increasing counters.

This primitive a�ects the evaluation process �through value, provides, and macro def-

initions� and the typesetting process �through special typesetter variables.

Example 15.1. Enabling page breaking by style.

The page-medium is used to enable page breaking. Since only the initial environment

value for this variable is e�ective, this assignation must occur in a style �le, not within

a document.

hassignjpage-mediumjpaperi

Example 15.2. Setting the chapter counter.

The following snippet will cause the immediately following chapter to be number 3.

This is useful to get the the numbering right in book style when working with projects

and include.

hassignjchapter-nr j2i

The operand must be a literal string and is interpreted as a �le name. The content of

this �le is typeset in place of the include tag, which must be placed in block context.

hwithjvar-1 jval-1 j� jvar-njval-njbodyi (variable scope)

This primitive temporarily sets the environment variables var-1 until var-n (in this

order) to the evaluated values of val-1 until val-n and typesets body in this modi�ed

environment. All non-scoped change done with assign to var-1 until var-n within body

are reverted at the end of the with.

This primitive is used extensively in style �les to modify the typesetter environment.

For example to locally set the text font, the paragraph style, or the mode for mathe-

matics.

123

hvaluejvari (variable value)

This primitive evaluates the current value of the environment variable var (literal

string). This is useful to display counters and generally to implement environment-

sensitive behavior.

This primitive is used extensively in style �les to modify the typesetter environment.

For example to locally set the text font, the paragraph style, or the mode for mathe-

matics.

hprovidesjvari (de�nition predicate)

This predicate evaluates to true if the environment variable var (string value) is

de�ned, and to false otherwise.

That is useful for modular markup, like the session environments, to fall back to a

default appearance when a required package is not used in the document.

15.2. Macro primitives

Macros can be used to de�ne new tags and to build procedural abstractions in style �les.

Older versions of T

E

X

MACS

used to make a distinction between macros (all children acces-

sible) and functions (no accessible child). In modern T

E

X

MACS

there are only macros: the

accessibility of children is determined heuristically and can be controlled with drd-props.

hmacrojvar-1 j� jvar-njbodyi (macro of �xed arity)

This primitive returns a macro (the T

E

X

MACS

analogue of a �-expression) with n argu-

ments, named after the literal strings var-1 until var-n.

New tags are de�ned by storing macros in the environment. Most of the time, macros

are stored without scope with assign, but it is sometimes useful to rede�ne a tag locally

within the scope of a with. For example, itemized and enumerated environment rede�ne

item locally.

Example 15.3. De�nition of the abbr tag

hassignjabbr jhmacrojx jhgroupjxiii

Storing a macro in the environment de�nes a tag whose arity is �xed to the number of

arguments taken by the macro.

hargjvar jindex-1 j� jindex-ni (retrieve macro arguments)

This primitive is used to retrieve the arguments of a macro within its body. For

instance, harg j vari expands the content of the macro argument with name arg (lit-

eral string). Of course, this argument must be de�ned by a macro containing the arg tag.

This tag is similar to value, but di�ers in important ways:

� The argument namespace is distinct from the environment, hargjvari and hvaluej

vari will generally evaluate to di�erent values (although you should not rely on

this).

124 Primitives for writing style files

� The value of arg retains the position of the macro argument in the document

tree, that makes it possible to edit the arguments of a macro-de�ned tag while

it is active.

When more than one arguments are speci�ed, hargjvar jindex-1 j� jindex-ni expands to

a subtree of the argument var . The value of the named argument must be a compound

tree (not a string). The operands var until index-n must all evaluate to positive integers

and give the path to the subtree of the macro argument.

hxmacrojvar jbodyi (macro with a variable arity)

This primitive returns a macro (the T

E

X

MACS

analogue of a �-expression) capable of

taking any number of arguments. The arguments are stored in the macro variable

with name var (a literal string) during the evaluation of the body . The i-th individual

argument can then be accessed using hargjvar jii.

hmap-argsjfoojroot jvari

hmap-argsjfoojroot jvar j�rsti

hmap-argsjfoojroot jvar j�rst jlasti (map a tag on subtrees of an argument)

This primitive evaluates to a tree whose root is labeled by root and whose children are

the result of applying the macro foo to the children of the macro argument with name

var .

By default, the macro foo is applied to all children. If �rst has been speci�ed, then

we rather start at the i-th child of var , where i is the result of evaluating �rst . If last

has been speci�ed to, then we stop at the j-th child of var (the j-th child not being

included), where j is the result of evaluating last . In this last case, the arity of the

returned tree is therefore j � i.

Stated otherwise, map-args applies foo to all subtrees of the macro argument var (or a

range of subtrees if �rst and last are speci�ed) and collect the result in a tree with label

root . In addition, the second argument to foo gives its position of the �rst argument

in the expansion of var .

The map-args is analogue to the Scheme function map. Since T

E

X

MACS

use labeled

trees, the label of the mapping list must also be speci�ed.

Example 15.4. Comma-separated lists.

The comma-separated tag has any arity (though it does not make much sense with arity

zero) and typeset its operands interspersed with commas.

hassignjcomma-extra jhmacrojx j, xii

hassignjcomma-separated j

hxmacrojargs j

hconcatj

hargjargs j0ij

hmap-argsjcomma-extra jconcat jargs j1iiii

heval-argsjvari (macro with a variable arity)

This primitive evaluates to the tree with the same label as the expansion of the argu-

ment var and whose subtrees are the result of the evaluation of the subtrees of the

expansion of var .

15.2 Macro primitives 125

hcompoundjfoojarg-1 j� jarg-ni (expand an unnamed macro)

This primitive is useful to expand macros which are the result of a computation: it

applies the macro which is the result of the evaluation of foo to the arguments arg-1

until arg-n. The compound primitive is useful in call-back and lambda programming

idioms, where a higher-level macro is given a macro as an operand, which it may later

apply under certain conditions or with operands which are not known the client code.

Actually, in the current implementation, foo may either evaluate to a macro or to a

literal string which gives the name of a macro. However, we discourage users to rely

on the second case.

Example 15.5. Lambda programming with macros.

In the code below, h�lter j pred j ti expects a macro pred and a tuple t on input and

returns a tuple containing the elements of t for which pred evaluates to true.

hassignj�lter j

hmacrojpred jt j

hifj

hequaljhlengthjtij0ij

htupleij

hmergej

hifj

hcompoundjpred jhlook-upjt j0iij

htuplejhlook-upjt j0iij

htupleiij

h�lterjpred jhrangejt j1jhlengthjtiiiiiii

As an application, we may de�ne a macro hevens j ti, which expects t to be a tuple

containing integers, and which returns the tuple of integers in t which are divisible by 2.

hassignjevens jhmacrojt jh�lterjhmacrojx jhequaljhmodjx j2ij0iijtiii

hdrd-propsjvar jprop-1 jval-1 j� jprop-njval-ni (set D.R.D. properties of a tag)

The arity and children accessibility of tags de�ned by macros are determined heuris-

tically by default. The drd-props primitive overrides this default for the environment

variable (usually a macro) with name var . The currently supported property-value

pairs are:

(arity, n) � Sets the arity to the given �xed value n (literal integer).

(accessible, all) � Make it impossible to deactivate the tag with normal editor

actions. Inaccessible children become e�ectively uneditable.

(accessible, none) � Make it impossible to position the caret within the tag when

it is active, so children can only be edited when the tag is inactive.

hget-labeljexpressioni (label of an expression)

Returns the label of the tree obtained when evaluating expression.

hget-arityjexpressioni (arity of an expression)

Returns the label of the tree obtained when evaluating expression.

126 Primitives for writing style files

15.3. Flow control primitives

hifjconditionjif-bodyi

hifjconditionjif-body jelse-bodyi (conditional markup)

This primitive can be used to typeset if-body only if the condition is satis�ed. If the

optional else-body is speci�ed, then it is typeset if and only if the condition fails.

Remark 15.6. It should be noticed that the use of conditional markup can be a bit

tricky due to the fact that the accessability of arguments cannot necessarily be checked

beforehand. For instance, in the macro de�nition

hmacrojx jhifjhvisibility-�agijx ii

the macro argument x is accessible if and only if hvisibility-�agi evaluates to true. This

condition cannot necessarily be checked a priori . For certain editing operations, like

searches or spell checking, the incorrect determination of the accessability may lead

to the positioning of the cursor at unaccessible places, or to the ignorance of certain

markup. In the future, we plan to improve this aspect of the editor, but it is better to

avoid conditional markup whenever another solution can be found.

Remark 15.7. The conditional constructs are only fully implemented for inline

markup. In the case when you need conditional markup for block structures you cur-

rently have to write macros for the if-case and the else-case and use the compound

tag. For instance:

hassignjcold jhmacrojx jhwithjcolor jbluejx iii

hassignjhot jhmacrojx jhwithjcolor jredjxiii

hassignjadaptivejhmacrojx jhcompoundjhifjhsummerijhot jcoldijx iii

hcasejcond-1 jbody-1 j� jcond-njbody-ni

hcasejcond-1 jbody-1 j� jcond-njbody-njelse-bodyi (case distinction)

These commands are respectively equivalent to

hifjcond-1 jbody-1 j� hifjcond-njbody-nii

hifjcond-1 jbody-1 j� hifjcond-njbody-njelse-bodyii

hwhilejconditionjbodyi (repeated evaluation)

This construct maybe used in order to repeatly execute a given body while a given

condition is satis�ed. For instance, when declaring

hassignjcount j

hmacrojfromjtoj

hwithji jfromj

hconcatj

hwhilejhlessji jtoiji , hassignji jhplusji j1iiij

toiiii

15.3 Flow control primitives 127

the code hcountj1j50i produces

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46, 47, 48, 49, 50

15.4. Evaluation control primitives

This section describes several primitives for controlling the way expressions in the style-

sheet language are evaluated. The primitives are analoguous to the Scheme primitives

eval, quote, quasiquote, etc., although the T

E

X

MACS

conventions are slightly di�erent

than those used by conventional functional languages like Scheme.

hevaljexpri (force evaluation)

Typeset the result of the evaluation of expr . This primitive is usually combined with

a tag like quote or quasiquote for delaying the evaluation.

hquotejexpri (delayed evaluation)

Evaluation of the expression hquote j expri yields expr itself. This kind of delayed

evaluation may be useful in combination with the eval primitive which forces evaluation.

hquasiquotejexpri (delay evaluation and substitution)

This tag is a variant of the quote tag, which returns the expression expr in which all

subexpressions of the form hunquotejsubexpri have been replaced by the evaluations of

subexpr . For instance,

hassign j hello j hquasiquote j hmacro j name j hunquote j hlocalize j Helloii

name.iii

may be used to de�ne a macro hello whose value is localized for the current language.

In a French document, the declaration would typically be equivalent to

hassignjhellojhmacrojnamejBonjour name.ii

Notice however that it is usually better not to use the quasiquote primitive for such

applications. When de�ning

hassignjhellojhmacrojnamejhlocalizejHelloi name.ii

the typesetting of hhello jNamei would naturally adapt itself to the current language,

while the above version would always use the language at the moment of the de�nition

of the macro. Nevertheless, the �rst form does have the advantage that the localization

of the word �Hello� only has to be computed once, when the macro is de�ned. Therefore,

the quasiquote primitive may sometimes be used in order to improve performance.

hunquotejsubexpri (mark substitutable subexpressions)

This tag is used in combination with quasiquote and quasi in order to mark the subex-

pressions which need to be evaluated.

128 Primitives for writing style files

hunquote*jsubexprsi (unquote splicing)

This tag is similar to unquote, except that the argument subexprs now evaluates to a

list of subexpressions, which are inserted into the arguments of the parent node. For

instance, consider the macro

hassignjfunj

hxmacrojx j

hquasij

htree jdup j hunquote* j hquote-arg j x ii j hunquote* j hquote-arg j

xiiiiii

Then hfunjajbjci is typeset as

dup

a b c a b c

hquasijexpri (substitution)

This tag is a shortcut for hevaljhquasiquotejexprii. This primitive is often used in the

T

E

X

MACS

style �les in order to write macros which de�ne sets of other macros. For

instance, the macro

hassignjnew-theoremj

hmacrojnamejtext j

hquasij

hassignjhunquotejnameij

hmacrojbody j

hsurround j hno-indentihstrong j hunquote jtexti. i jhright-

�ushij

bodyiiiiii

may be used in order to de�ne new theorem-like environments.

hquote-valuejvari (retrieve a value but don't evaluate)

When retrieving an environment variable var , one is usually interested in its typesetted

value, as given by hvaluejvari. In some cases, it may be useful to access the real, non-

typesetted value. This can be done with hquote-valuejvari.

hquote-argjvar jindex-1 j� jindex-ni (retrieve an argument but don't evaluate)

When retrieving (a subexpression of) a macro argument var , one is usually interested

in its typesetted value, as given by hargjvar jindex-1 j� jindex-ni. In some cases, it may

be useful to access the real, non-typesetted value. This can be done with hquote-arg j

var jindex-1 j� jindex-ni.

15.5. Functional operators

Funcational operators are used for computational purposes during the typesetting phase,

such as increasing counters, localizing strings like �theorem� and so on. A fundamental set

of basic functional operators are built-in primitives. New functional operators can easily

be added using the extern primitive. Functional operators operate on �ve main types of

arguments: strings, numbers, lengths, booleans and tuples. Some operators are overloaded,

so that they can be used for several types.

15.5 Functional operators 129

15.5.1. Operations on text

hlengthjexpri (length of a string)

If expr is a string, the length of the string is returned. For instance, hlength jHelloi

evaluates to 5.

hrangejexpr jstart jendi (extract a substring)

Return the substring of expr starting at position start and ending at position end (not

included). For instance, hrange j hottentottententententoonstelling j 9 j 15i evaluates to

tenten.

hmergejexpr-1 j� jexpr-ni (concatenate strings)

This primitive may be used to concatenate several strings expr-1 until expr-n. For

instance, hmergejHellojWorldi produces HelloWorld.

hnumberjnumber jrender-asi (alternative rendering of numbers)

Renders a number in a speci�ed way. Supported values for render-as are

roman. Lower case Roman: hnumberj18jromani � xviii.

Roman. Upper case Roman: hnumberj18jRomani � XVIII.

alpha. Lower case letters: hnumberj18jalphai � r.

Alpha. Upper case letters: hnumberj18jAlphai � R.

hdatei

hdatejformati

hdatejformat jlanguagei (obtain the current date)

Returns the current date in a speci�ed format (which defaults to a standard language-

speci�c format when empty) and a speci�ed language (which defaults to English). The

format is similar to the one used by the Unix date command. For instance, hdatei

evaluates to �April 27, 2005�, hdate j j frenchi to �27 avril 2005� and hdate j%d %B om

%k:%Mjdutchi to �27 April om 12:54�.

htranslatejwhat jfromjintoi (translation of strings)

Returns the translation of a string what of the language from into the language into,

using the built-in T

E

X

MACS

dictionaries. The languages should be speci�ed in lowercase

letters. For instance, htranslatejFilejenglishjfrenchi yields �Fichier�.

The list of currently available languages can be checked in the Document! Language

menu. The built-in T

E

X

MACS

dictionaries can be found in

$TEXMACS_PATH/languages/natural/dic

When attempting to use a non-existing dictionary, the program may quit. For most

purposes, it is more convenient to use the localize macro, which converts a string from

English into the current language.

15.5.2. Arithmetic operations

hplusjexpr-1 j� jexpr-ni

130 Primitives for writing style files

hminusjexpr-1 j� jexpr-ni (addition and subtraction)

Add or subtract numbers or lengths. For instance, hplusj1j2.3j5i yields 8.3 and hplusj

1cmj5mmi produces htmlenj90708.6i. In the case of subtractions, the last argument is

subtracted from the sum of the preceding arguments. For instance, hminusj1i produces

-1 and hminusj1j2j3j4i yields 2.

htimesjexpr-1 j� jexpr-ni (multiplication)

Multiply two numbers expr-1 until expr-n. One of the arguments is also allowed to be

a length, in which case a length is returned. For instance, htimesj3j3i evaluates to 9 and

htimesj3j2cmi to htmlenj362835i.

hoverjexpr-1 j� jexpr-ni (division)

Divide the product of all but the last argument by the last argument. For instance,

hover j1 j2 j3 j4 j5 j6 j7i evaluates to 102.857, hover j3spc j7i to htmlen j2214.86 j3320.14 j

4978.29i, and hoverj1cmj1pti to 28.4528.

hdivjexpr-1 jexpr-2 i

hmodjexpr-1 jexpr-2 i (division with remainder)

Compute the result of the division of an integer expr-1 by an integer expr-2 , or its

remainder. For instance, hdivj18j7i=2 and hmodj18j7i=4.

hequaljexpr-1 jexpr-2 i

hunequaljexpr-1 jexpr-2 i

hlessjexpr-1 jexpr-2 i

hlesseqjexpr-1 jexpr-2 i

hgreaterjexpr-1 jexpr-2 i

hgreatereqjexpr-1 jexpr-2 i (comparing numbers or lengths)

Return the result of the comparison between two numbers or lengths. For instance,

hlessj123j45i yields false and hlessj123mmj45cmi yields true.

15.5.3. Boolean operations

horjexpr-1 j� jexpr-ni

handjexpr-1 j� jexpr-ni

Returns the result of the boolean or/and on the expressions expr-1 until expr-n. For

instance, horjfalsejhequalj1j1ijfalsei yields true.

hxorjexpr-1 jexpr-2 i

Returns the exclusive or of two expressions expr-1 and expr-2 , i.e. hxorjtruejtruei yields

false.

hnotjexpri

Returns the negation of expr .

15.5.4. Operations on tuples

htuplejexpr-1 j� jexpr-ni (construct a tuple)

Forms a tuple from the expressions expr-1 until expr-n.

15.5 Functional operators 131

his-tuplejexpri (tuple predicate)

Tests whether a given expression expr evaluates to a tuple.

hlengthjexpri (length of a tuple)

If expr is a tuple, then we return its arity. For instance, hlength j htuple j hop j holaii

evaluates to 2.

hlook-upjtuplejwhichi (access an entry in a tuple)

Returns the element with index which in tuple. For instance, hlook-upjhtuplejajbjcij1i

yields b.

hrangejexpr jstart jendi (extract a subtuple)

Return the subtuple of expr starting at position start and ending at position end (not

included). For instance, hrangejhtuplejajholajhopjbjcij2j4i evaluates to htuplejhopjbi.

hmergejexpr-1 j� jexpr-ni (concatenate tuples)

This primitive may be used to concatenate several tuples expr-1 until expr-n. For

instance, hmergejhtuplej1j2ijhtuplej3j4j5ii produces htuplej1j2j3j4j5i.

15.6. Transient markup

The tags described in this section are used to control the rendering of style �les and style

�le elements. It both contains markup for activation and disactivation of content and for

the rendering of tags.

hactivejcontenti

hactive*jcontenti

hinactivejcontenti

hinactive*jcontenti (activation/disactivation of content)

These tags can be used to temporarily or permanently change the activity of the con-

tent . In usual documents, tags are by default active. In style �les, they are by default

inactive. For instance, an activated fraction is rendered as

1

2

; when deactivated, it is

rendered as hfracj1j2i.

The active and inactive tags only activate or desactivate the root tag of the content .

Typically, a tag which contains hidden information (like hlink) can be disactivated

by positioning the cursor just behind it and pressing

backspace

. This action just

disactivates the hyperlink, but not the potentially complicated body of the hyperlink.

Therefore, the hyperlink is transformed into an inactive tag of the form hinactivejhhlinkj

body jref ii.

The active* and inactive* variants are used to activate or disactivate the whole content

(except when other (dis-)activation tags are found inside the content). The inactive* is

used frequently inside the present documentation in order to show the inactive represen-

tation of T

E

X

MACS

content. Nevertheless, it is sometimes desirable to reactivate certain

subtrees inside disactivated content. For instance, the following piece of disactivated

code (using disactive*) contains the reactivated subexpression ~~~ (using active*):

hassignjlovejhmacrojfromj~~~ from from.ii

132 Primitives for writing style files

hinline-tagjnamejarg-1 j� jarg-ni (rendering of inline tags)

This tag is used for the default inline rendering of an inactive tag with a given name

and arguments arg-1 until arg-n. For instance, hinline-tagjfoojxjyi produces hfoojxjyi.

The style of the rendering may be customized in the Document! View! Source tags

menu, or by modifying the src-style, src-special , src-compact and src-close environment

variables.

hopen-tagjnamejarg-1 j� jarg-ni

hmiddle-tagjnamejarg-1 j� jarg-ni

hclose-tagjnamejarg-1 j� jarg-ni (rendering of multi-line tags)

These tags are similar to inline-tag, when some of the arguments of the tag run over

several lines. Typical HTML-like tags would correspond to hopen-tagjnamei and hclose-

tagjnamei. Since T

E

X

MACS

macros may take more than one argument, a middle-tag is

provided for separating distinct multi-paragraph arguments. Moreover, the opening,

middle and closing tags may take additional inline arguments for rendering in a compact

fashion. For instance, the code

hopen-tagjtheoremi

hindentjThe weather should be nice today.i

hclose-tagjtheoremi

is rendered by default as

htheoremj

The weather should be nice today.

i

The rendering may be customized in a similar way as in the case of inline-tag.

hstyle-withjvar-1 jval-1 j� jvar-njval-njbodyi

hstyle-with*jvar-1 jval-1 j� jvar-njval-njbodyi (alter presentation in style �les only)

This tag may be used in order to temporarily modify the rendering of inactive tags,

by setting each environment variable var-i to val-i in the local typesetting context of

body . When importing a style �le, each style-with/style-with* tag is replaced by its body .

In the case of style-with, the modi�ed rendering is only applied to the root tag of the

body . In the case of style-with*, the rendering is modi�ed for the entire body .

hstyle-onlyjhfoojcontentii

hstyle-only*jhfoojcontentii (content for use in style �les only)

This tag may be used in order to render an inactive tags as whether we applied the

macro foo on it. When importing a style �le, each style-only/style-only* tag is replaced

by its content . In the case of style-only, the modi�ed rendering is only applied to the

root tag of the content . In the case of style-only*, the rendering is modi�ed for the entire

content .

hsymboljsymboli

hlatexjcmdi

hhybridjcmdi

15.6 Transient markup 133

hhybridjcmd jargi (auxiliary tags for entering special content)

These tags are used only temporarily when entering special content.

When pressing

C-q

, a symbol tag is created. After entering the name of the symbol,

or the ASCII-code of the symbol and pressing return, the symbol tag is replaced by the

corresponding symbol (usually a string enclosed in <>).

When pressing

\

, a hybrid tag is created. After entering a string and pressing return, it

is determined whether the string corresponds to a L

A

T

E

X command, a macro argument,

a macro or an environment variable (in this order). If so, then the hybrid tag is replaced

by the appropriate content. When pressing

\

while a selection is active, then the

selection automatically becomes the argument of the hybrid command (or the hybrid

command itself, when recognized).

The latex tag behaves similarly as the hybrid tag except that it only recognizes L

A

T

E

X

commands.

The rendering macros for source trees are built-in into T

E

X

MACS

. They should not really

be considered as primitives, but they are not part of any style �le either.

hindentjbodyi (indent some content)

Typeset the body using some indentation.

hright�ushi (indent some content)

Flush to the right. This macro is useful to make the end of a block environment run

until the right margin. This allows for more natural cursor positioning and a better

layout of the informative boxes.

hsrc-macrojmacro-namei

hsrc-varjvariable-namei

hsrc-argjargument-namei

hsrc-ttjverbatim-contenti

hsrc-integerjintergeri

hsrc-lengthjlengthi

hsrc-errorjmessagei (syntactic highlighting on purpose)

These macros are used for the syntactic highlighting of source trees. They determine

how to render subtrees which correspond to macro names, variable names, argument

names, verbatim content, integers, lengths and error messages.

hsrc-titlejtitlei

hsrc-style-�lejnamejversioni

hsrc-packagejnamejversioni

hsrc-package-dtdjnamejversionjdtd jdtd-versioni (style and package administration)

These macros are used for the identi�cation of style �les and packages and their corre-

sponding D.T.D.s. The src-title is a container for src-style-�le, src-package, src-package-

dtd as well as src-license and src-copyright macros.

The src-style-�le tag speci�es the name and version of a style �le and sets the envi-

ronment variable with name-style to version. The src-package-dtd speci�es the name

and version of a package, as well as the corresponding dtd and its version dtd-version.

It sets the environment variable name-package to version and dtd-dtd to dtd-version.

The src-package tag is a shorthand for src-package-dtd when the name of the D.T.D.

coincides with the name of the package.

134 Primitives for writing style files

15.7. Miscellaneous style-sheet primitives

hexternjscheme-foojarg-1 j� jarg-ni (apply extern typesetting macro)

This primitive allows the user to implement macros in Scheme. The primitive applies

the Scheme function or macro scheme-foo to the arguments arg-1 until arg-n. For

instance, the code hexternj(lambda (name) `(concat "hi " ,name))jdudei yields �hi

dude�.

The arguments arg-1 until arg-n are evaluated and then passed as trees to scheme-foo.

When de�ning a macro which relies on extern scheme code, it is therefore recommended

to pass the macro arguments using the quote-arg primitive:

hassignjinc-div j

hmacrojx jy j

hexternj

(lambda (x y) `(frac ,x (concat "1+" ,y)))j

hquote-argjxij

hquote-argjyiiii

It has been foreseen that the accessability of the macro arguments x and y is preserved

for this kind of de�nitions. However, since T

E

X

MACS

does not heuristically analyze your

Scheme code, you will have to manually set the D.R.D. properties using drd-props.

Notice also that the Scheme function scheme-foo should only rely on secure scheme

functions (and not on functions like system which may erase your hard disk). User

implemented Scheme functions in plug-ins may be de�ned to be secure using the

:secure option. Alternatively, the user may de�ne all Scheme routines to be secure

in Edit!Preferences!Security!Accept all scripts.

hwritejaux jcontenti (write auxiliary information)

Please document.

h�agjcontent jcolori

h�agjcontent jcolor jvari (display an informative �ag)

This tag is used to in order to inform the user about information which is present in the

document, but not visible when printed out. T

E

X

MACS

displays such informative �ags

for labels, formatting directives such as page breaks, and so on. In Document!View!

Informative �ags, the user may specify how the informative �ags should be rendered.

The two-argument variant displays an informative �ag with a given content and color .

The content is only rendered when selecting Document! View! Informative �ags!

Detailed. For instance, h�agjwarningjredi is rendered as . The optional var argument

may be used in order to specify that the �ag should only be visible if the macro

argument var corresponds to an accessible part of the document. For instance, T

E

X

MACS

automatically generated labels for section titles (so as to include them in the table of

contents), but it is undesirable to display informative �ags for such labels.

15.8. Internal primitives

The primitives in this section are merely for internal use by T

E

X

MACS

only. They are

documented for the sake of completeness, but you should only use them if you really know

what you are doing.

15.8 Internal primitives 135

hunknowni (unknown content or unintialized data)

This primitive is mainly used for default uninialized value of environment variables; the

main advantage of this tag is to be distinct from the empty string.

herrorjmessagei (error messages)

This primitive should never appear in documents. It is provided as aid in tracking down

invalid constructs. It is produced at evaluation time by any kind of primitive which is

given improper operands.

hcollectionjbinding-1 j� jbinding-ni

hassociatejkey jvaluei (collections of bindings)

The collection tag is used to represent hashtables with bindings binding-1 until binding-

n. Each binding is of the form hassociatejkey jvaluei, with a key and an associated value.

hattrjkey-1 jval-1 j� jkey-njval-ni (XML-like attributes)

This tag is included for future compatability with XML. It is used for encoding XML-

style attributes by T

E

X

MACS

trees. For instance, the fragment

<blah color="blue" emotion="verbose">

Some XML stuff

</blah>

would typically be represented as

hblahjhattrjcolorjbluejemotionjverboseijSome XML stu�i

htagjcontent jannotationi

hmeaningjcontent jannotationi (associate a meaning to some content)

Associate a special meaning to some content . Currently, no real use has been made of

these tags.

hbackupjsavejstacki (save values on stack)

Used to represent temporarily saved values on a stack.

hdboxi (marker for decorations)

This primitive is only intended for internal use by the datoms, dlines and dpages prim-

itives.

hrewrite-inactivejt jvari (internal primitive for rendering inactive markup)

This internal primitive is used for rewriting an inactive tree into a new tree whose

rendering corresponds to the rendering of the inactive tree.

hnew-dpagei

hnew-dpage*i (new double page)

Yet to be implemented primitives for starting a new double page.

hidentityjmarkupi (identity macro)

The identity macro is built-in into T

E

X

MACS

. It should not really be considered as a

primitive, but it is not part of any style �le either.

In addition to these primitives for internal use only, there are also quite a few obsolete

primitives, which are no longer being used by T

E

X

MACS

, but whose names should be avoided

when creating your own macros. The full list of obsolete primitives is: format, line-sep, with-

limits, split, old-matrix, old-table, old-mosaic, old-mosaic-item, set, reset, expand, expand*,

hide-expand, apply, begin, end, func, env, authorize.

136 Primitives for writing style files

Chapter 16

The standard T

E

X

MACS

styles

The user may select a major style from the Document!Stylemenu. The major style usually

re�ects the kind of document you want to produce (like a letter, an article or a book) or

a particular layout policy (like publishing an article in a given journal). In addition to a

major style, the user may select one or more additional packages from Document! Use

package. Such packages may customize the major style, provide additional markup, or a

combination of both.

In this chapter, we will survey the standard document styles and packages provided by

T

E

X

MACS

. Most style �les and packages have an abstract interface, the d.t.d. (data domain

de�nition), which speci�es which macros are exported by the style or package, and how to

use them. Distinct styles or packages (like header-article and header-book) may share

the same abstract interface, but di�er in the way macros are rendered. For this reason,

we will mainly be concerned with the description of the standard d.t.d.s, except when we

focus on the rendering. Users may customize standard styles by de�ning new ones which

match the same abstract interface (see the chapter on writing T

E

X

MACS

style �les).

16.1. General organization

16.1.1. Standard T

E

X

MACS

styles

The main T

E

X

MACS

styles are:

generic. This is the default style when you open a new document. The purpose of this

style is to produce quick, informal documents. For this reason, section numbering is

disabled and the layout of paragraphs is very simple: instead of indenting the �rst

lines of paragraphs, they are rather separated by white-space.

article. This style may be used for writing short scienti�c articles, which are subdi-

vided into sections. The numbering of environments like theorems, remarks, etc. is

relative to the entire document. If you use the number-long-article package, then

the numbers are pre�xed by the section number.

book. This is the basic style for writing books. Books are assumed to be subdivided

into chapters and numbers of environments are pre�xed by the chapter number. In

general, it is also comfortable to store each chapter in a separate �le, so that they

can be edited more e�ciently. This issue is explained in more detail in the section

about books and multi�le documents.

seminar. Documents based on this style are typically printed on slides for presentations

using an overhead projector. You may also want to use it when making presentation

directly from your laptop, after selecting View!Presentation mode. Notice however,

that slides correspond to real pages, whereas you rather should use �switches� in

presentation mode.

137

source. This is the privileged style for editing style �les and packages. It

enables �source mode�, so that documents are rendered in a way which makes the

structure fully apparent. For more details, we refer to the section on the rendering

of style �les.

The article style admits several variants, so as to make the layout correspond to the

policy of speci�c journals. Currently, we have implemented the T

E

X

MACS

analogue of the

L

A

T

E

X style amsart, as well as the styles acmconf and jsc. Similarly, we are developing

styles tmarticle and tmbook which provide an alternative layout for articles and books.

In addition to variants of the article and book styles, T

E

X

MACS

provides also a few other

styles, which are based on the main styles, but which provide some additional markup.

letter. This style is based on the informal generic style, but it provides additional

markup for writing letters. The additional macro are mainly used for headers and

endings of letters.

exam. This style, which is again based on generic, provides some additional markup

for headers of exams. It also customizes the rendering of exercises.

tmdoc. This style is used for writing the T

E

X

MACS

documentation. It contains several

tags for special types of content and extensions for linking, indexing, document

traversal, etc.. Some aspects of this style are still under heavy development.

16.1.2. Standard T

E

X

MACS

packages

First of all, T

E

X

MACS

provides several packages for customizing the behaviour of the stan-

dard styles:

number-long-article. This package induces all numbers of environments (theorems,

remarks, equations, �gures, etc.) to be pre�xed by the current section number. It is

usually used in combination with the article style (for long articles) and the book

style (for books with long chapters).

number-europe. By default, T

E

X

MACS

uses �American style numbering�. This means

that the same counter is used for numbering similar environments like theorem

and proposition. In other words, a remark following �Theorem 3� will be num-

bered �Remark 4�. If you want each environment to have its individual counter, then

you should enable �European style numbering�, by selecting the number-europe

package.

number-us. This package may be used in order to switch back to American style num-

bering in the case when a third parties style �le enforces European style numbering.

structured-list. This is an experimental package. By default, items in unnumbered

lists or enumerations take no arguments and items in descriptions one argument.

When using the structured-list package, they take an optional additional argu-

ment with the body of the item.

structured-section. This is an experimental package. By default, sectional tags only

take a title argument. When using the structured-section package, they take an

optional additional argument with the body of the section. Moreover, the environ-

ment rsection for recursive sections is provided.

138 The standard T

E

X

MACS

styles

varsession. This package may be used in order to obtain an alternative rendering

of interactive sessions. The rendering is designed to be nice for interactive use,

although less adequate for printing.

In addition to these packages, and the many packages for internal use, T

E

X

MACS

also

provides a few personal example style packages allouche, bpr and vdh and several style

packages for use in combination with external plug-ins (axiom, giac, macaulay2, etc.).

16.2. The common base for most styles

The std d.t.d. contains the markup which is common to virtually all styles. It is subdivided

into the following parts:

16.2.1. Standard markup

Various standard markup is de�ned in std-markup. The following textual content tags all

take one argument. Most can be found in the Text!Content tag menu.

hstrongjcontenti

Indicates an important region of text. You can enter this tag via Text ! Content

tag! Strong.

hemjcontenti

Emphasizes a region of text like in �the real thing�. This tag corresponds to the menu

entry Text!Content tag!Emphasize.

hdfnjcontenti

For de�nitions like �a gnu is a horny beast�. This tag corresponds to Text! Content

tag!De�nition.

hsampjcontenti

A sequence of literal characters like the ae ligature æ. You can get this tag via Text!

Content tag!Sample.

hnamejcontenti

The name of a particular thing or concept like the Linux system. This tag is obtained

using Text!Content tag!Name.

hpersonjcontenti

The name of a person like Joris. This tag corresponds to Text!Content tag!Person.

hcite*jcontenti

A bibliographic citation like a book or magazine. Example: Melville's Moby Dick . This

tag, which is obtained using Text! Content tag! Cite, should not be confused with

cite. The latter tag is also used for citations, but where the argument refers to an entry

in a database with bibliographic references.

habbrjcontenti

An abbreviation. Example: I work at the C.N.R.S. An abbreviation is created using

Text!Content tag!Abbreviation or the

A-a

keyboard shortcut.

16.2 The common base for most styles 139

hacronymjcontenti

An acronym is an abbreviation formed from the �rst letter of each word in a name or

a phrase, such as HTML or IBM. In particular, the letters are not separated by dots.

You may enter an acronym using Text!Content tag!Acronym.

hverbatimjcontenti

Verbatim text like output from a computer program. Example: the program said hello.

You may enter verbatim text via Text!Content tag!Verbatim. The tag may also be

used as an environment for multi-paragraph text.

hkbdjcontenti

Text which should be entered on a keyboard. Example: please type return. This tag

corresponds to the menu entry Text!Content tag!Keyboard.

hcode*jcontenti

Code of a computer program like in �cout << 1+1; yields 2�. This is entered using

Text!Content tag!Code. For longer pieces of code, you should use the code environ-

ment.

hvarjcontenti

Variables in a computer program like in cp src-file dest-file . This tag corresponds

to the menu entry Text!Content tag!Variable.

hmathjcontenti

This is a tag which will be used in the future for mathematics inside regular text.

Example: the formula sin

2

x+ cos

2

x=1 is well-known.

hopjcontenti

This is a tag which can be used inside mathematics for specifying that an operator

should be considered on itself, without any arguments. Example: the operation + is a

function from R

2

to R. This tag may become depreciated.

httjcontenti

This is a physical tag for typewriter phase. It is used for compatibility with HTML,

but we do not recommend its use.

Most of the following logical size tags can be found in Text!Size tag (orMathematics!Size

tag):

hreally-tinyjcontenti, htinyjcontenti

hreally-smalljcontenti, hvery-smalljcontenti, hsmallerjcontenti, hsmalljcontenti

hnormal-sizejcontenti

hlargejcontenti, hlargerjcontenti, hvery-largejcontenti, hreally-largejcontenti

hhugejcontenti, hreally-hugejcontenti

These logical size tags should be used by preference when typesetting parts of your

document in a larger or smaller font. Environments like footnotes or captions of tables

may also be based on logical size tags. Document styles from professional publishers

often assign very precise font settings to each of the logical size tags. By default, the

size tags are rendered as follows:

140 The standard T

E

X

MACS

styles

Really tiny

Tiny

Really small

Very small

Smaller

Small

Normal size

Large

Larger

Very large

Really large

Huge

Really huge

The following are standard environments:

hverbatimjbodyi

Described above.

hcodejbodyi

Similar to code*, but for pieces of code of several lines.

hquote-envjbodyi

Environment for short (one paragraph) quotations.

hquotationjbodyi

Environment for long (multi-paragraph) quotations.

hversejbodyi

Environment for poetry.

hcenterjbodyi

This is a physical tag for centering one or several lines of text. It is used for compatibility

with HTML, but we do not recommend its use.

Some standard tabular environments are

htabular*jtablei

Centered tables.

hblockjtablei

Left aligned tables with a border of standard 1ln width.

hblock*jtablei

Centered tables with a border of standard 1ln width.

The following miscellaneous tags don't take arguments:

hTeXmacsi

The T

E

X

MACS

logo.

16.2 The common base for most styles 141

hTeXmacs-versioni

The current version of T

E

X

MACS

(1.0.5).

hmade-by-TeXmacsi

Amacro which may be used to indicate that your document was written using T

E

X

MACS

.

hTeXi

The T

E

X logo.

hLaTeXi

The L

A

T

E

X logo.

hhrulei

A horizontal rule like the one you see below:

The following miscellaneous tags all take one or more arguments:

hphantomjcontenti

This tag takes as much space as the typeset argument content would take, but content

is not displayed. For instance, hphantomjphantomi yields � �.

hoverlinejcontenti

For overlined text, which can be wrapped across several lines.

hunderlinejcontenti

For underlined text, which can be wrapped across several lines.

hfoldjsummary jbodyi

The summary is displayed and the body ignored: the macro corresponds to the folded

presentation of a piece of content associated to a short title or abstract. The second

argument can be made visible using Insert! Switch!Unfold.

hunfoldjsummary jbodyi

Unfolded presentation of a piece of content body associated to a short title or abstract

summary . The second argument can be made invisible using Insert! Switch! Fold.

hswitchjcurrent jalternativesi

Content which admits a �nite number of alternative representation among which the

user can switch using the function keys

F9

,

F10

,

F11

and

F12

. This may for instance

be used in interactive presentations. The argument current correspond to the currently

visible presentation and alternative to the set of alternatives.

16.2.2. Standard symbols

The std-symbol d.t.d. de�nes the special symbols ¢, ¤, ¥, ©, «, ®, °, ², ³, ¹, µ, ¶, ¼, ½,

¾, ¿ and �. It also provides the macro nbsp for non-breakable spaces.

142 The standard T

E

X

MACS

styles

As soon as the font support will be further improved, this d.t.d. should become obsolete.

16.2.3. Standard mathematical markup

Standard mathematical markup is de�ned in std-math.

hbinomjamong jnri

For binomial coe�cients, like

�

n

m

�

.

hchoosejamong jnri

Alternative name for binom, but depreciated.

hshrink-inlinejamong jnri

A macro which switches to scriptsize text when you are not in display style. This macro

is mainly used by developers. For instance, the binom macro uses it.

The following are standard mathematical tabular environments:

hmatrixjtablei

For matrices M =

�

1 2

3 4

�

.

hdetjtablei

For determinants �=

�

�

�

�

1 2

3 4

�

�

�

�

.

hchoicejtablei

For choice lists jxj=

�

�x; if x6 0

x; if x> 0

.

16.2.4. Standard lists

16.2.4.1. Using list environments

The standard T

E

X

MACS

lists are de�ned in std-list. The unnumbered lists environments

are:

hitemizejbodyi

The tag before each item depends on the nesting depth.

hitemize-minusjbodyi

Uses � for the tag.

hitemize-dotjbodyi

Uses � for the tag.

hitemize-arrowjbodyi

Uses ! for the tag.

The following environments can be used for producing numbered lists:

16.2 The common base for most styles 143

henumeratejbodyi

The kind of number before each item depends on the nesting depth.

henumerate-numericjbodyi

Number the items by 1, 2, 3, etc.

henumerate-romanjbodyi

Number the items by i, ii, iii, etc.

henumerate-Romanjbodyi

Number the items by I, II, III, etc.

henumerate-alphajbodyi

Number the items by a), b), c), etc.

henumerate-Alphajbodyi

Number the items by A), B), C), etc.

The following environments can be used for descriptive lists:

hdescriptionjbodyi

The environment for default descriptive lists (usually description-compact).

hdescription-compactjbodyi

Align the left hand sides of the items in the list and put their descriptions shortly behind

it.

hdescription-dashjbodyi

Similar to description-compact, but use a � to separate each item from its description.

hdescription-alignjbodyi

Align the left hand sides of the descriptions, while aligning the items to the right.

hdescription-longjbodyi

Put the items and their descriptions on distinct lines.

New items in a list are indicated through the item tag or the item* tag in the case of

descriptions. The item tag takes no arguments and the item* tag one argument. When

using the experimental structured-list package, these tags may take an optional body

argument. In the future, all list items should become structured.

By default, items in sublists are numbered in the same way as usual lists. Each list envi-

ronment list admits a variant list* whose items are pre�xed by the last item in the parent

list. Of course, this feature can be used recursively.

16.2.4.2. Customization of list environments

The std-list provides the following rede�nable macros for customizing the rendering of

lists and items in lists:

144 The standard T

E

X

MACS

styles

hrender-listjbodyi

This block environment is used to render the body of the list. Usually, the macro indents

the body and puts some vertical space around it.

haligned-itemjitem-texti

This inline macro is used to render the item-text in a right-aligned way. As a conse-

quence, text after such items will appear in a left-aligned way.

hcompact-itemjitem-texti

This inline macro is used to render the item-text in a left-aligned way. As a consequence,

text after such items may be indented by the width of the item-text (except when the

text is rendered on a di�erent paragraph).

16.2.5. Automatic content generation

The std-automatic d.t.d. contains macros for the automatic generation and rendering of

auxiliary content. There are four main types of such content in T

E

X

MACS

: bibliographies,

tables of contents, indexes and glossaries. Other types of automatically generated content

like lists of �gures are usually similar to one of the four above types (in the case of

lists of �gures, we use glossaries). The rendering of the entire sections which contain the

bibliographies, tables of contents, etc. are speci�ed in the section-base d.t.d..

16.2.5.1. Bibliographies

The following macros may be used in the main text for citations to entries in a bibliographic

database.

hcitejref-1 j� jref-ni

Each argument ref-i is a citation corresponding to an item in a BiB-T

E

X �le. The

citations are displayed in the same way as they are referenced in the bibliography

and they also provide hyperlinks to the corresponding references. The citations are

displayed as question marks if you did not generate the bibliography.

hnocitejref-1 j� jref-ni

Similar as cite, but the citations are not displayed in the main text.

hcite-detailjref jinfoi

A bibliographic reference ref like above, but with some additional information info,

like a chapter or a page number.

The following macros may be rede�ned if you want to customize the rendering of citations

or entries in the generated bibliography:

hrender-citejref i

Macro for rendering a citation ref at the place where the citation is made using cite.

The content may be a single reference, like �TM98�, or a list of references, like �Euler1,

Gauss2�.

hrender-cite-detailjref jinfoi

Similar to render-cite, but for detailed citations made with cite-detail.

16.2 The common base for most styles 145

hrender-bibitemjcontenti

htransform-bibitemjcontenti

At the moment, bibliographies are generated by BibT

E

X and imported into T

E

X

MACS

.

The produced bibliography is a list of bibliographic items with are based on special

L

A

T

E

X-speci�c macros (bibitem, block, protect, etc.). These macros are all de�ned inter-

nally in T

E

X

MACS

and eventually boil down to calls of the render-bibitem, which behaves

in a similar way as item*, and which may be rede�ned by the user.

The transform-bibitem is used to �decorate� the content . For instance, transform-bibitem

may put angular brackets and a space around content . Notice that the standard imple-

mentation of render-bibitem macro is based on transform-bibitem.

hbib-listjlargest jbodyi

The individual �bibitems� are enclosed in a bib-list, which behaves in a similar way as

the description environment, except that we provide an extra parameter largest which

contains a good indication about the largest width of an item in the list.

16.2.5.2. Tables of contents

The following macros may be used in the main text for adding entries to the table of

contents. They are automatically called by most sectional macros, but it is sometimes

desirable to manually add additional entries.

htoc-main-1jentryi

htoc-main-2jentryi

Create an important entry in the table of contents. The macro toc-main-1 is intended

to be used only for very important entries, such as parts of a book; it usually has to be

added manually. The macro toc-main-2 is intended to be used for chapter or sections.

Important entries are usually displayed in a strong font.

htoc-normal-1jentryi

htoc-normal-2jentryi

htoc-normal-3jentryi

Add a normal entry to the table of contents, of di�erent levels of importance. Usually,

toc-normal-1 corresponds to sections, toc-normal-2 to subsections and toc-normal-3 to

subsubsections.

htoc-small-1jentryi

htoc-small-2jentryi

Add an unimportant entry to the table of contents, like a paragraph. Since such entries

are not very important, some styles may simply ignore the toc-small-1 and toc-small-2

tags.

By rede�ning the following macros, it is possible to customize the rendering of tables of

contents:

htoc-strong-1jcontent jwherei

htoc-strong-2jcontent jwherei

Used for rendering table of contents entries created using toc-main-1 resp. toc-main-2.

htoc-1jcontent jwherei

htoc-2jcontent jwherei

146 The standard T

E

X

MACS

styles

htoc-3jcontent jwherei

htoc-4jcontent jwherei

htoc-5jcontent jwherei

Used for rendering table of contents entries created using toc-normal-1, toc-normal-2,

toc-normal-3, toc-small-1 resp. toc-small-2.

htoc-dotsi

The separation between an entry in the table of contents and the corresponding page

number. By default, we use horizontal dots.

16.2.5.3. Indexes

The following macros may be used in the main text for inserting entries into the index.

hindexjprimaryi

Insert primary as a primary entry in the index.

hsubindexjprimary jsecondaryi

Insert secondary in the index as a subentry of primary .

hsubsubindexjprimary jsecondary jternaryi

Similar to subindex but for subsubentries ternary .

hindex-complexjkey jhow jrangejentryi

Insert complex entries into the index. This feature is documented in detail in the section

about index generation.

hindex-linejkey jentryi

Adds entry to the index, by sorting it according to key .

The following macros may be rede�ned if you want to customize the rendering of the index:

hindex-1jentry jwherei

hindex-2jentry jwherei

hindex-3jentry jwherei

hindex-4jentry jwherei

hindex-5jentry jwherei

Macro for rendering an entry in the index on page(s) where. The macro index-1 corre-

sponds to principal entries, the macro index-2 to secondary entries, and so on.

hindex-1*jentryi

hindex-2*jentryi

hindex-3*jentryi

hindex-4*jentryi

hindex-5*jentryi

Similar to index-1 until index-5, but without the page number(s).

hindex-dotsi

Macro for producing the dots between an index entry and the corresponding page

number(s).

16.2 The common base for most styles 147

16.2.5.4. Glossaries

The following macros may be used in the main text for inserting glossary entries.

hglossaryjentryi

Insert entry into the glossary.

hglossary-dupjentryi

For creating an additional page number for an entry which was already inserted before.

hglossary-explainjentry jexplanationi

A function for inserting a glossary entry with its explanation.

hglossary-linejentryi

Insert a glossary entry without a page number.

The following macros can be rede�ned if you want to customize the rendering of the

glossary:

hglossary-1jentry jwherei

Macro for rendering a glossary entry and its corresponding page number(s).

hglossary-2jentry jexplanationjwherei

Macro for rendering a glossary entry, its explanation, and its page number.

hglossary-dotsi

Macro for producing the dots between a glossary entry and the corresponding page

number(s).

16.2.6. Utilities for writing style �les

The std-utils package provides several macros which may be useful when writing style

�les. First of all, the following macros may be used for rendering purposes:

hh�ushi

hleft-�ushi

hright-�ushi

Low level tags for �ushing to the right in the de�nition of environments. One usually

should use wide-normal or wide-centered instead.

hwide-normaljbodyi

hwide-centeredjbodyi

These tags are used to make the body span over the entire paragraph width. The text

is left-aligned in the case of wide-normal and centered in the case of wide-centered.

Making a body span over the entire paragraph width does not change the rendering

on paper, but it facilitates the editing on the document. Indeed, on the one hand side,

the box which indicates that you are inside the environment will span over the entire

paragraph width. On the other hand, when clicking su�ciently close to the text inside

this box, it becomes easier to position your cursor at the start or at the end inside the

environment. You may check this by clicking on one of the texts below:

>Some text inside a wide-normal environment. <

148 The standard T

E

X

MACS

styles

> Some text inside a wide-centered environment. <

hpadded-normaljspace-abovejspace-below jbodyi

hpadded-centeredjspace-abovejspace-below jbodyi

These tags are variants of hwide-normaljbodyi and hwide-centeredjbodyi, which put some

vertical white space space-above and space-below above and below the body .

hwide-bothlinedjtop-border jbot-border jtop-sepjbot-sepjbodyi

hwide-std-bothlinedjbodyi

hpadded-bothlinedjspace-abovejspace-below jtop-border jbot-border jtop-sepjbot-sepjbodyi

hpadded-std-bothlinedjspace-abovejspace-below jbodyi

hwide-underlinedjbborder jbsepjbodyi

hwide-std-underlinedjbodyi

These tags are used to make the body span over the entire paragraph width and to

put a horizontal rule above and/or below it. The widths of the rules are given by top-

border and bot-border and the separation between the rules by top-sep and bot-sep.

The standard width and separation (used by wide-std-bothlined, padded-std-bothlined

and wide-std-underlined) are 1ln and 1sep. The padded variants specify additional

spaces space-above and space-below above and below the rules. As an example, hwide-

std-underlinedjlefthhtabj5mmirighti yields:

left right

Wide underlined environments are typically used for page headers. Wide environments

which are both overlined and underlined are typically used for abstracts or �oating

�gures and tables.

hwide-framedjborder-widthjhsepjvsepjbodyi

hwide-std-framedjbodyi

hwide-framed-coloredjborder-color jbody-color jborder-widthjhsepjvsepjbodyi

hwide-std-framed-coloredjborder-color jbody-color jbodyi

These tags put the body inside a frame box which spans over the whole paragraph.

The user may specify a border-width, horizontal and vertical separations hsep and

vsep between the border and the text, and colors border-color and body-color for the

border and the background. For instance, hwide-std-framed-coloredjbrownjpastel greenj

Hi there!i yields

Hi there!

hindent-leftjleft-amount jbodyi

hindent-rightjright-amount jbodyi

hindent-bothjleft-amount jright-amount jbodyi

These environments may be used in order to increase the current left and/or right

indentation by the amounts left-amount and/or right-amount .

hmargin-�rst-otherj�rst-marginjother-marginjbodyi

This environment allows to set the margin �rst-margin for the �rst lines of paragraphs

in the body , as well as the margin other-margin for the other lines. This environment

is for instance useful for glossaries, indexes, etc., in which case other-margin is often

larger than �rst-margin. Notice that this environment enables indentation for the �rst

line of body .

The following macros may be used in order to set headers and footers:

16.2 The common base for most styles 149

hset-headerjheader-texti

A macro for permanently changing the header. Notice that certain tags in the style

�le, like sectional tags, may override such manual changes.

hset-footerjfooter-texti

A macro for permanently changing the footer. Again, certain tags in the style �le may

override such manual changes.

hblanc-pagei

Remove all headers and footers from this page.

hsimple-pagei

Remove the header of this page and set the footer to the current page number (cen-

tered). This macro is often called for title pages or at the start of new chapters.

Other macros provided by std-utils are:

hlocalizejtexti

This macro should be used in order to �localize� some English text to the current

language. For instance, hwithjlanguagejfrenchjhlocalizejTheoremii yields Théorème.

hmapjfunjtuplei

This macro applies the macro fun to each of the entries in a tuple (or the children

of an arbitrary T

E

X

MACS

tag) and returns the result as a tuple. For instance, hmap j

hmacrojx jhemjx iijhtuplej1j2j3ii yields hquotejhtuplej1 j2 j3 ii (the quote only appears

when rendering the result, not when performing further computations with it).

16.2.7. Counters and counter groups

In T

E

X

MACS

, all automatic numbering of theorems, sections, etc. is done using �counters�.

Such counters may be individual counters (like equation-nr) or belong to a group of similar

counters (like in the case of theorem-nr). T

E

X

MACS

allows for the customization of counters

on an individual or groupwise basis. Typically, you may rede�ne the rendering of a counter

(and let it appear as roman numerals, for instance), or undertake special action when

increasing the counter (such as resetting a subcounter).

New individual counters are de�ned using the following meta-macro:

hnew-counterjxi

De�nes a new counter with name x . The counter is stored in the numerical environment

variable x-nr and in addition, the following macros are de�ned:

hthe-xi

Retrieve the counter such as it should be displayed on the screen.

hreset-xi

Reset the counter to 0.

hinc-xi

Increase the counter. This macro may also be customized by the user so as to reset

other counters (even though this is not the way things are done in the standard

style �les).

150 The standard T

E

X

MACS

styles

hnext-xi

Increase the counter, display the counter and set the current label.

For the purpose of customization, the new-counter macro also de�nes the following

macros:

hdisplay-x jnri

This is the macro which is used for transforming the numerical value of the counter

into the value which is displayed on the screen.

hcounter-x jxi

This internal macro is used in order to retrieve the name of the environment variable

which contains the counter. By default, this macro returns �nr-x�, but it may be

rede�ned if the counter belongs to a group.

As noticed in the introduction, T

E

X

MACS

uses counter groups in order to make it possible

to treat similar counters in a uniform way. For instance the counter group theorem-env

regroups the counters theorem, proposition, lemma, etc.. New counter groups and are

de�ned using:

hnew-counter-groupjgi

Create a new counter group with name g. This results in the creation of the following

macros:

hdisplay-in-g jx jnri

hcounter-in-g jx i

These macros are similar to the macros display-x and counter-x from above, but

relative to the counter group. The name x of the counter in consideration is passed

as an argument.

New counters can be added to the group using:

hadd-to-counter-groupjx jgi

De�nes a new counter x and add it to the counter group g . For counters in groups, the

macros display-x and counter-x are replaced with the corresponding macros display-in-g

and counter-in-g for their groups. Nevertheless, two new macros ind-display-x and ind-

counter-x are de�ned which may take over the roles of display-x and counter-x in the

case when the group consists of individual counters.

At any moment, you may decide whether the counters of a group share a common group

counter, or whether they all use their individual counters. This feature is used for instance

in order to switch between American style numbering and European style numbering:

hgroup-common-counterjgi

Use a common counter for the group (which is stored in the environment variable g-nr).

hgroup-individual-countersjgi

Use an individual counter for each member of the group (this is the default).

We notice that group counters may recursively belong to super-groups. For instance, the

following declarations are from env-base.ts:

16.2 The common base for most styles 151

hnew-counter-groupjstd-envi

hnew-counter-groupjtheorem-envi

hadd-to-counter-groupjtheorem-envjstd-envi

hgroup-common-counterjtheorem-envi

16.2.8. Special markup for programs

The program d.t.d. provides markup for the layout of computer programs. However, these

tags should be considered as very unstable, since we plan to replace them by a set of more

detailed tags:

halgorithmjnamejbodyi

The name of the algorithm and its body , which includes its possible speci�cation.

hbodyjbodyi

The real body of the algorithm.

hindentjcontenti

For indenting part of an algorithm.

16.2.9. Special markup for sessions

The session d.t.d. provides the following environments for computer algebra sessions:

hsessionjbodyi

Environment for marking a session. All macros below are only for use inside sessions.

hinputjprompt jbodyi

An input �eld with a prompt and the actual input.

houtputjbodyi

An output �eld.

htextputjbodyi

Fields with ordinary text. These may for instance be used for comments and explana-

tions.

herrputjbodyi

This macro is used inside output �elds for displaying error messages.

In fact, these environments are based on environments of the form lan-session, lan-input,

lan-output, lan-textput and lan-errput for every individual language lan.

If language-speci�c environments do not exist, then generic-session, generic-input, generic-

output, generic-textput and generic-errput are taken instead. It is recommended to base the

language-speci�c environments on the generic ones, which may have di�erent implemen-

tations according to the style (e.g. the varsession package). For this purpose, we also

provide the generic-output* environment, which is similar to generic-output, except that

margins remain unaltered.

152 The standard T

E

X

MACS

styles

16.3. Standard environments

The env d.t.d. contains the standard environments which are available in most styles. It

is subdivided into the following parts:

16.3.1. De�ning new environments

The env-base d.t.d. contains high-level markup which can be used by the user to de�ne

new numbered environments for theorems, remarks, exercises and �gures:

hnew-theoremjenv-namejdisplay-namei

This meta-macro is used for de�ning new theorem-like environments. The �rst argu-

ment env-name speci�es the name for the environment (like �experiment�) and display-

name the corresponding text (like �Experiment�). When de�ning a new theorem-

like environment like experiment, an unnumbered variant experiment* is automatically

de�ned as well.

hnew-remarkjenv-namejdisplay-namei

Similar as new-theorem, but for remarks.

hnew-exercisejenv-namejdisplay-namei

Similar as new-theorem, but for exercises.

hnew-exercisejenv-namejdisplay-namei

Similar as new-theorem, but for �gures. When de�ning a new type of �gure, like �pic-

ture�, the new-�gure macro de�nes both the inline environment small-picture and the

block-environment big-picture, as well as the unnumbered variants small-picture* and

big-picture*.

The theorem-like and remark-like environments belong to a common counter-group

theorem-env. By default, we use American-style numbering (one common counter for

all environments). When selecting the package number-europe, each environment uses

its own counter. All exercises and �gures use their own counter-group.

More generally, the std-env counter-group regroups the counters for all standard T

E

X

MACS

environments. Typically, all counters in this group are pre�xed in a similar way (for

instance by the number of the chapter). Figure 16.1 shows how the hierarchical organiza-

tion of this counter group.

std-env

theorem-env

theorem

proposition

remark

exercise-env

exercise

problem

figure-env

figure

table

equation footnote

Figure 16.1. Organization of the counters for the standard T

E

X

MACS

environments.

16.3 Standard environments 153

In addition to the standard theorem-like, remark-like, exercise-like and �gure-like envi-

ronments, other numbered textual environments may be de�ned using the new-env macro.

These environments may be based on arbitrary counter-groups:

hnew-envjgroupjenv jenv-namejdisplay-namei

The �rst argument is the name of the counter group to which the new environment

belongs. The second argument env is the name of a binary macro for rendering the

environment. The arguments of the rendering macro are a name (like �Theorem 3.14�)

and its body. The remaining arguments are similar as for new-theorem. For instance,

in the standard style-sheets, new-theorem is de�ned by

hassign jnew-theorem j hmacro jenv jname j hnew-env jenv jname jtheorem-

envjrender-theoremiii

We recall that you may add new counters or counter-groups to the theorem-env counter-

group using the new-counter-group and add-to-counter-group macros, as described in the

section about counters.

16.3.2. Mathematical environments

The env-math d.t.d. speci�es which mathematical environments can be used inside text-

mode. In other words, the environments should be used inside text-mode, but their bodies

contain mathematical formulas or tables of mathematical formulas.

hequationjbodyi

A numbered equation.

hequation*jbodyi

An unnumbered equation.

heqnarrayjtablei

An array of numbered equations (not yet implemented).

heqnarray*jtablei

An array of unnumbered equations.

Inside the eqnarray* environment, you can use the eq-number tag in order to number the

equation.

Warning 16.1. The numbering of equations inside tables is not yet as it should be. In

particular, the eqnarray tag is equivalent to eqnarray* at the moment. Later on, when the

eqnarray tag will be implemented correctly, you will also have a no-number tag in order to

suppress the number of an equation, and a style package for numbering equations at the

left hand side.

Warning 16.2. There is no option for numbering equations at the left hand side available

yet. Nevertheless, you may use the manual tag leq-number for this. You also have a tag

next-number which directly display the next number and increases the equation counter.

154 The standard T

E

X

MACS

styles

Warning 16.3. We do not encourage the use of the AMS-T

E

X environments align,

gather and split. Nevertheless, they are available under the names align, gather, eqsplit

together with their variants align*, gather* and eqsplit*. In the future, we plan to provide

more powerful environments.

16.3.3. Theorem-like environments

16.3.3.1. Using the theorem-like environments

The env-theorem d.t.d. contains the default theorem-like and other textual environments,

which are available through Text ! Environment. They are subdivided into three main

categories:

Variants of theorems. The bodies of theorem-like environments are usually empha-

sized. By default, the following such environments are available via Text!Environ-

ment: theorem, proposition, lemma, corollary, axiom, de�nition, notation, conjecture.

Variants of remarks. The following ones are available via Text ! Environment:

remark, example, note, warning, convention.

Variants of exercises. Two such environments are provided by default and available

via Text!Environment: exercise and problem.

The environments are all available in unnumbered versions theorem*, proposition*, etc. as

well. You may use

A-*

in order to switch between the unnumbered and numbered version.

The following tags are also provided:

hproofjbodyi

For proofs of theorems.

hduetojwhoi

An environment which can be used to specify the inventors of a theorem. It should be

used at the start inside the body of a theorem, like in

Theorem. (Pythagoras) a

2

+ b

2

= c

2

.

16.3.3.2. Customization of the theorem-like environments

The following customizable macros are used for the rendering of textual environments:

hrender-theoremjnamejbodyi

This macro is used for displaying a theorem-like environments. The �rst argument

name speci�es the name of the theorem, like �Theorem 1.2� and the second argument

body contains the body of the theorem. This environment is used for environments

de�ned by new-theorem.

hrender-remarkjnamejbodyi

Similar to render-theorem, but for remark-like environments.

hrender-exercisejnamejbodyi

Similar to render-theorem, but for exercise-like environments.

16.3 Standard environments 155

hrender-proofjnamejbodyi

Similar to render-theorem, but for proofs. This environment is mainly used for cus-

tomizing the name of a proof, like in �End of the proof of theorem 1.2�.

Notice that you may also use these macros if you want an environment which is rendered

in a similar way as a theorem, but with another name (like �Corollary of Theorem 7�).

The following tags can be used for further customization of the rendering:

htheorem-namejnamei

This macro controls the appearance of the names of theorem-like and remark-like

environments. Most styles use bold face or small capitals.

hexercise-namejnamei

Similar to theorem-name, but for exercises.

htheorem-sepi

The separator between the name of a theorem-like or remark-like environment and its

main body. By default, this is a period followed by a space.

hexercise-sepi

Similar to theorem-sep, but for exercises.

Each standard environment x also comes with a customizable macro x-text which renders

the localized name of the environment. For instance, hwithjlanguagejdutchjhtheorem-textii

yields �Stelling�.

16.3.4. Environments for �oating objects

16.3.4.1. Using the environments for �oating objects

The env-float d.t.d. provides the following environments for �oating objects:

hsmall-�gurejbody jcaptioni

This macro produces an inline �gure with body as its main body and caption as a

caption. Inline �gures may for instance be used to typeset several small �gures side by

side inside a �oating object.

hbig-�gurejbody jcaptioni

This macro produces a big �gure with body as its main body and caption as a caption.

Big �gures span over the whole paragraph width.

hsmall-tablejbody jcaptioni

Similar to small-�gure, but for tables.

hbig-tablejbody jcaptioni

Similar to big-�gure, but for tables.

hfootnotejbodyi

Produces a footnote.

156 The standard T

E

X

MACS

styles

The �gure-like environments also admit unnumbered versions small-�gure*, big-�gure*,

etc., which are obtained using

A-*

.

16.3.4.2. Customization of the environments for �oating objects

The following macros can be used for customizing the rendering of �gure-like environments:

hrender-small-�gurejaux jnamejbody jcaptioni

This macro is used for rendering small �gure-like environments. The �rst argument aux

speci�es an auxiliary channel (like ��gure� or �table�) which is used for inserting the

caption inside the list of �gures. The second argument name speci�es the name of the

�gure (like �Figure 2.3� or �Table 5�). The last arguments body and caption correspond

to the �gure itself and a caption.

hrender-big-�gurejaux jnamejbody jcaptioni

Similar to render-small-�gure, but for displaying a big �gure-like environments.

The following tags can be used for customizing the appearance the text around �gures,

tables and footnotes:

h�gure-namejnamei

This macro controls the appearance of the text �Figure�. By default, we use bold face.

h�gure-sepi

This macro produces the separator between the �gure and its number and the caption.

By default, it produces a period followed by a space.

hfootnote-sepi

This macro produces the separator between the number of the footnote and the text.

By default, it produces a period followed by a space.

16.4. Headers and footers

16.4.1. Standard titles

16.4.1.1. Entering titles and abstracts

The header-title d.t.d. provides tags for entering information about the entire document.

The two top-level tags are

hdoc-datajdata-1 j� jdata-ni

Specify data attached to your document (title, authors, etc.; see below) and render the

title.

habstractjbodyi

The abstract for your paper.

When creating a doc-data tag using Text ! Title ! Insert title, T

E

X

MACS

automatically

inserts a doc-title tag as its �rst arguments. New data may be inserted from the Text!Title

menu. Each child data-1 , � , data-n of the doc-data tag is of one of the following forms:

16.4 Headers and footers 157

hdoc-titlejtitlei

Specify the title of the document.

hdoc-subtitlejsubtitlei

Specify the subtitle of the document.

hdoc-author-datajdata-1 j� jdata-ni

Specify the data for one of the authors of the document (name, address, etc.; see below).

hdoc-datejdatei

The creation date of the document. In particular you may take hdatei for the value of

date for the current date.

hdoc-running-titlejtitlei

Specify a running title for your document which may be used in page headers.

hdoc-running-authorjauthori

Specify a running author for your document which may be used in page headers.

hdoc-keywordsjkw-1 j� jkw-ni

Specify keywords kw-1 until kw-n for your document.

hdoc-AMS-classjnr-1 j� jnr-ni

Specify A.M.S. subject classi�cation numbers nr-1 until nr-n for your document.

hdoc-notejnotei

A note about your document. In particular, you may take hwith-TeXmacs-texti for the

value of note in order to indicate that your document has been written using T

E

X

MACS

.

When inserting an additional author using Text!Title!Author! Insert author, T

E

X

MACS

inserts a doc-author-data tag with an author-name tag as its �rst argument. New author

data may be inserted from the Text!Title!Author menu. Each child data-1 , � , data-n

of the doc-author-data tag is of one of the following forms:

hauthor-namejnamei

Specify the name of the author.

hauthor-addressjaddressi

An address where the author can be reached.

hauthor-emailjemaili

An email address for the author.

hauthor-homepagejhomepagei

The homepage of the author.

hauthor-notejnotei

A note attached to the author, like a thank-word.

158 The standard T

E

X

MACS

styles

As a general rule, the use of any of the subtags of doc-data or doc-author-data is optional.

An individual subtag may also be speci�ed several times. This is useful for documents

with several authors, or authors with several addresses. The rendering of title information

is very style-dependent: some styles render addresses in a single line or even as a footnote,

where other styles use a more widely spaced presentation. Often, some information like

keywords or AMS subject classi�cation numbers are only rendered as a part of the abstract.

16.4.1.2. Customizing the global rendering of titles

Depending on the kind of attributes, complex titles often use several rendering styles in a

simultaneous version. More precisely, a title usually consists of the following parts:

� A well visible part at the top of the title page.

� Additional notes, which are displayed in the footer.

� An potentially invisible part, with information like running titles and authors.

� A postponed part, which is only rendered in the abstract.

Similarly, individual authors may also contain a main part, which is rendered as part of

the title, and an additional part, which is rendered as a footnote. Moreover, the layout

often changes if the paper has more than one author.

The T

E

X

MACS

mechanism for rendering titles therefore relies on several macros which

extract the information corresponding to each of the above parts. This process may also

involve some sorting, like putting the authors before the date or vice versa. At a second

stage, each extracted part of the title is passed to the appropriate rendering macro. The

following macros are used for extracting title information:

hdoc-data-mainjdata-1 j� jdata-ni

hdoc-data-main*jdata-1 j� jdata-ni

This macro only keeps and sorts the data which should be displayed in the main title.

The doc-data-main* variant is used in the case when the document has more than one

author.

hdoc-data-notejdata-1 j� jdata-ni

This macro only keeps and sorts the data which should be displayed as a footnote.

hdoc-data-abstractjdata-1 j� jdata-ni

This macro only keeps and sorts the data which should be displayed in the abstract.

hdoc-data-hiddenjdata-1 j� jdata-ni

This macro only keeps and sorts the data which might or should not be displayed at all.

In a similar fashion, the following macros are used for extracting author information:

hdoc-author-mainjhdoc-author-datajdata-1 j� jdata-nii

This macro only keeps and sorts the data which should be displayed inside the main

title.

hdoc-author-notejdata-1 j� jdata-ni

This macro only keeps and sorts the data which should be displayed as a footnote.

16.4 Headers and footers 159

It should be noticed that each of the above macros should return a document tag with the

selected data as its children. For instance,

hdoc-author-mainj

hauthor-addressjSomewhere in Africaij

hauthor-namejThe big GNUij

hauthor-notejVery hairy indeed!ii

should typically return

hdocumentj

hauthor-addressjSomewhere in Africaij

hauthor-namejThe big GNUii

The only exception to this rule is doc-data-hidden which should return a concat tag instead.

16.4.1.3. Customizing the rendering of title �elds

Both title information and author information is rendered as a vertical stack of �title blocks�

and �author blocks�. The following macros may be used to customize the global rendering

of such blocks:

hdoc-title-blockjcontenti

hdoc-author-blockjcontenti

Macros for rendering one component of the title or author information.

The following macros may be used to customize the rendering of title information; notice

that they are usually built on top of doc-title-block.

hdoc-make-titlejcontenti

This macro is used for the rendering of the main title information. Usually, it contains

at least the title itself, as well as one or several authors.

hdoc-render-titlejtitlei

This macro is used for rendering the title of the document. The doc-title macro also

takes care of rendering references to potential footnotes.

hdoc-subtitlejtitlei

This macro is used for rendering the subtitle of the document.

hdoc-authorjcontenti

In the case when the document has a single author, then this macro is used for rendering

the content information about him or her.

hdoc-authorsjcontenti

In the case when the document has several authors, then this macros is used for ren-

dering all author-related content which is part of the main title.

hdoc-datejdatei

This macro is used for rendering the creation date of the document.

160 The standard T

E

X

MACS

styles

The following macros may be used to customize the rendering of author information; notice

that they are usually built on top of doc-author-block.

hauthor-render-namejnamei

Renders the name of the author.The author-name macro also takes care of rendering

references to potential footnotes.

hauthor-byjnamei

A macro which may put the text �by � in front of the name of an author.

hauthor-addressjaddressi

Renders the address of the author.

hauthor-emailjemaili

Renders the email address of the author.

hauthor-homepagejemaili

Renders the homepage of the author.

The following macros are used for information which is usually not rendered as a part of

the main title, but rather as a footnote or part of the abstract.

hdoc-title-notejnotei

hdoc-author-notejnotei

A macro for rendering a note attached to the document or one of its authors. The note

will usually appear as part of a footnote. By default, notes that consist of several lines

are compressed into a single paragraph.

hdoc-keywordsjkw-1 j� jkw-ni

A macro for displaying a list of keywords.

hdoc-AMS-classjnr-1 j� jnr-ni

A macro for displaying a list of A.M.S. subject classi�cation numbers.

16.4.2. Standard headers

The header d.t.d. provides call-back macros which allow page headers and footers to

change automatically when specifying the title information of the document or when

starting a new section.

hheader-titlejtitlei

This macro is called when specifying the title of a document.

hheader-authorjauthori

This macro is called when specifying the author(s) of a document.

hheader-primaryjsection-titlejsection-nr jsection-typei

This macro is called at the start of each new primary section (e.g. chapter for book style,

or section for article style). The section-type is a literal text like �Chapter� or �Section�.

16.4 Headers and footers 161

hheader-secondaryjsection-titlejsection-nr jsection-typei

This macro is called at the start of each new secondary section (e.g. section for book

style, or subsection for article style). The section-type is a literal text like �Section�

or �Paragraph�.

In style �les, page headers and footers are usually set by the above call-back macros, and

not manually. You may directly modify headers and footers by setting the corresponding

environment variables or using several helper macros supplied by std-utils.

16.5. L

A

T

E

X style sections

16.5.1. Using sectional tags

The section-base d.t.d. provides the standard tags for sections, which are the same as in

L

A

T

E

X. Most sectional tags take one argument: the name of the section. The intention of

the following tags is to produce numbered sections:

hpartjtitlei

hchapterjtitlei

hsectionjtitlei

hsubsectionjtitlei

hsubsubsectionjtitlei

hparagraphjtitlei

hsubparagraphjtitlei

happendixjtitlei

The intention of this macro is to produce a numbered title for a part (resp. chapter,

section, subsection, etc.). The numbering is not required, but merely an intention: the

paragraph and subparagraph tags are usually not numbered and some styles (like the

generic style) do not produce numbers at all.

The tags part*, chapter*, section*, subsection*, subsubsection*, paragraph*, subparagraph*

and appendix* can be used for producing the unnumbered variants of the above tags.

By default, all sectional only produce the section title. When using the experimental

package structured-section, all sectional tags are enriched, so that they take the body

of the section as an optional argument. Moreover, an additional tag rsection is provided in

order to produce recursively embedded sections. For instance, an rsection inside a section

behaves like a subsection. In the future, all list items should become structured.

The section-base d.t.d. also provides the following sectional environments with automat-

ically generated content

hbibliographyjaux jstylej�le-namejbodyi

This macro is used for producing bibliographies. The �rst argument aux speci�es the

auxiliary channel with the data for generating the bibliography (bib, by default). The

arguments style and �le-name contain the bibliography style and the �le with the

bibliographic database. The body argument corresponds to the automatically generated

content.

htable-of-contentsjaux jbodyi

This macro is used for producing tables of contents. The �rst argument aux speci�es

the auxiliary channel with the data for generating the bibliography (toc, by default).

The body argument corresponds to the automatically generated content.

162 The standard T

E

X

MACS

styles

hthe-indexjaux jbodyi

Similar to table-of-contents but for indices and default channel idx.

hthe-glossaryjaux jbodyi

hlist-of-�guresjaux jbodyi

hlist-of-tablesjaux jbodyi

Similar to table-of-contents but for glossaries (default channel gly), lists of �gures

(default channel figure) and lists of tables (default channel table).

The above tags also admit the variants bibliography*, table-of-contents*, the-index* and

the-glossary* with an additional argument name before body , which speci�es the name of

the section. For instance, the the-glossary* was formerly used for lists of �gures and lists

of tables.

16.5.2. Customization of the sectional tags

The section-base d.t.d. also contains many tags for customizing the rendering of sections

and other section-related behaviour. The following two tags a�ect all sections:

hsectional-sepi

A macro for customizing the separator between the number of a section and its title.

By default, we use two spaces.

hsectional-short-stylei

A predicate which tells whether documents for this style are intended to be short or

long. When sectional-short-style evaluates to true, then appendices, bibliographies, etc.

are supposed to be special types of sections. Otherwise, they will be special types of

chapters.

For each sectional tag x , the following tags are provided for customization:

hx-texti

Amacro which displays the (localized) name of the sectional environment. For instance,

hwithjlanguagejfrenchjhappendix-textii produces �Annexe�.

hx-titlejtitlei

A macro for displaying the unnumbered section title.

hx-numbered-titlejtitlei

A macro for displaying the numbered section title.

hx-display-numbersi

A predicate which speci�es whether numbers will really be displayed. For instance,

in the case of paragraph, this macro evaluates to false. Consequently, even though x-

numbered-title does display the paragraph number, the main macro x will call x-title

and not x-numbered-title, so that paragraph titles are not numbered.

hx-sepi

A macro for customizing the separator between the number of a section and its title.

By default, we call sectional-sep.

16.5 L

A

T

E

X style sections 163

hx-cleani

A hook for resetting all subcounters of the section.

hx-headerjnamei

A hook for changing the page headers.

hx-tocjnamei

A hook for putting the section title into the table of contents.

Finally, the section-base d.t.d. provides rendering macros render-table-of-contents, render-

bibliography, render-index and render-glossary, each of which takes two arguments: the name

of the section and its body. It also provides the macros prologue-text, epilogue-text, bibli-

ography-text, table-of-contents-text, index-text, glossary-text, list-of-�gures-text and list-of-

tables-text for customizing the names of special sections.

16.5.3. Helper macros for rendering section titles

The section-base d.t.d. contains several helper macros which can (should) be used when

customizing the rendering of section titles:

hsectional-shortjbodyi

hsectional-short-italicjbodyi

hsectional-short-boldjbodyi

These macros should be used for rendering �short section titles�, for which the section

body starts immediately at the right of the title. Usually, titles of paragraphs and

subparagraphs are rendered in a short fashion, while the other section titles span over

the entire width of a paragraph.

hsectional-normaljbodyi

hsectional-normal-italicjbodyi

hsectional-short-boldjbodyi

These macros should be used for rendering �normal left-aligned section titles�. Such

titles span over the entire paragraph width.

hsectional-centeredjbodyi

hsectional-centered-italicjbodyi

hsectional-centered-boldjbodyi

These macros should be used for rendering �normal centered section titles�. Such titles

span over the entire paragraph width.

164 The standard T

E

X

MACS

styles

Chapter 17

Compatibility with other formats

T

E

X

MACS

is fully compatible with Postscript (as well as PDF), which is used as the format

in order to print documents. T

E

X

MACS

also provides converters from and to L

A

T

E

X and an

input �lter for Html.

17.1. Compatibility with L

A

T

E

X

Although T

E

X

MACS

has not been designed to be fully compatible with L

A

T

E

X, it is possible

to convert documents from T

E

X

MACS

to L

A

T

E

X and vice versa, although the result will not

always be perfect. Also, conversions from T

E

X

MACS

to L

A

T

E

X will generally yield better

results than conversions the other way around. In particular, T

E

X

MACS

may reasonably well

be used to write articles, which need to be converted to L

A

T

E

X for submission purposes.

In this chapter, we will describe more precisely the conversion mechanisms, which will help

you to obtain a result as satisfactory as possible.

17.1.1. Conversion from T

E

X

MACS

to L

A

T

E

X

The most common situation is that you want to convert an article from T

E

X

MACS

to L

A

T

E

X,

in order to submit it to some journal. Given a T

E

X

MACS

�le name.tm, you may convert it

into a L

A

T

E

X �le name.tex using File! Export! Latex. At a �rst stage, you may try to

run L

A

T

E

X on name.tex, and see whether you obtain a satisfactory result. If so, then you

should submit name.tex together with the style �le TeXmacs.sty, which can be found in

the directory $TEXMACS_PATH/misc/latex.

Often, the journal to which you submit uses its own style �le, say journal.sty. In that

case, you should also copy the �le

$TEXMACS_PATH/styles/article.ts

to

~/.TeXmacs/styles/journal.ts

and use journal as your document style in Document! Style!Other. You may option-

ally edit journal.ts, so that the article layout becomes closer to the journal's style. In

some cases, you also have to create a new copy of TeXmacs.sty, and modify some of the

environments for compatibility with the journal's style �le journal.sty.

If your �rst try to convert your document into L

A

T

E

X did not yield a satisfactory result,

then you will usually observe that only minor parts of the texts were not converted cor-

rectly. This may be due to three main reasons:

� Your text uses some speci�c T

E

X

MACS

features.

� You used a T

E

X

MACS

feature, which has not yet been implemented in the conversion

algorithm.

165

� You found a bug in the conversion algorithm.

These issues will be discussed in more detail in the next section.

In case of problems, a naive strategy would be to correct the produced L

A

T

E

X �le and

to send it to the journal. However, this strategy has the disadvantage that you have to

make these corrections over and over again, each time that you convert your T

E

X

MACS

�le name.tm, after having made some extra modi�cations. A better strategy is to use the

Insert!Speci�c! Latex and Insert! Speci�c!Texmacs constructs to write text which is

visible in the converted resp. original �le only.

For instance, assume that the word �blauwbilgorgel� is hyphenated correctly in the

T

E

X

MACS

source, but not in the L

A

T

E

X conversion. Then you may proceed as follows:

1. Select �blauwbilgorgel�.

2. Click on Insert! Speci�c! Texmacs to make the text �blauwbilgorgel� T

E

X

MACS

-

speci�c.

3. Click on Insert!Speci�c! Latex.

4. Type the latex code blauw\-bil\-gor\-gel with the correct hyphenation.

5. Press

return

to activate the L

A

T

E

X-speci�c text.

In a similar fashion, you may insert L

A

T

E

X-speci�c line breaks, page breaks, vertical space,

style parameter modi�cations, etc.

17.1.2. Possible conversion problems

17.1.2.1. Speci�c T

E

X

MACS

features

Some T

E

X

MACS

typesetting primitives have no analogues in L

A

T

E

X, and the conversion

algorithm will simply transform them into blank space. Some main features which are

speci�c to T

E

X

MACS

are the following:

� Left primes.

� Big separators between big parentheses.

� Mosaics.

� Trees.

� Complex user macros.

� Vertical spaces �before� and �after�.

� Indentation �ags �before� and �after�.

You should avoid to use these speci�c T

E

X

MACS

features, if your document needs to be

converted into L

A

T

E

X. Nevertheless, in the far future, the conversion program might gen-

erate encapsulated postscript by default of a more intelligible translation.

166 Compatibility with other formats

17.1.2.2. Not yet implemented conversions

Although we try to keep the conversion algorithm as complete as possible for your needs,

certain things have not yet been implemented. Some examples of not yet implemented

issues are

� Non standard fonts.

� Conversion of tabulars.

� Style parameters.

Any suggestion about desirable extensions of the conversion algorithm should be reported

to

contact@texmacs.org

and we will try to incorporate it as quickly as possible. It may take some time to implement

the correct conversion of style parameters, since these are not the same in T

E

X

MACS

and

L

A

T

E

X. Furthermore, layout di�erences between T

E

X

MACS

and L

A

T

E

X can not entirely be

eliminated.

17.1.2.3. Bugs in the conversion algorithm

The most annoying situation if when a converted T

E

X

MACS

document produces lots of errors

at the compilation or if the result has nothing to do with the original. In that case you

have probably detected a bug in the conversion algorithm (or in the installation of L

A

T

E

X

on your system). Please try to �gure out the source of the bug in this case and report it

by sending an email to

TeXmacs@math.u-psud.fr

17.1.2.4. Work-arounds

T

E

X

MACS

has not been designed to be fully compatible with L

A

T

E

X. As to the conversion

from L

A

T

E

X to T

E

X

MACS

, our main aim is to help you in converting old documents to

T

E

X

MACS

. As long as you did not de�ne weird environments and as long as you did not

use weird style �les and commands, you should be able to convert your old documents

reasonably well. Otherwise, we suggest to modify your old document in a way that is does

convert reasonably well and to apply some �nal changes in the result.

17.1.3. Conversion from L

A

T

E

X to T

E

X

MACS

The current aim of the conversion program from L

A

T

E

X to T

E

X

MACS

, is to help you in trans-

lating old documents into T

E

X

MACS

. Grosso modo, conversions from L

A

T

E

X to T

E

X

MACS

are more problematic than conversions the other way around. Nevertheless, as long as

you restrict yourself to using the most common L

A

T

E

X commands, you should be able to

convert your old documents reasonably well. For example, all T

E

X

MACS

help �les have been

written in L

A

T

E

X in order to validate the L

A

T

E

X to T

E

X

MACS

conversion program.

You may convert a L

A

T

E

X document name.tex into T

E

X

MACS

using File! Import! Latex

and save it under name.tm. If your L

A

T

E

X document was written su�ciently well, then

the converted result should be more or less acceptable, apart from certain unrecognized

commands, which appear in red. A good solution would be to write your own style �le for

converted documents, based on the original style, and in which the unrecognized commands

are de�ned.

17.1 Compatibility with L

A

T

E

X 167

However, in certain less fortunate cases, the converted document will look like a great

mess. This usually stems from the fact that T

E

X and L

A

T

E

X allow users to modify the

parser dynamically, for instance using the \catcode command. In this case, the conversion

program may get confused, by making erroneous assumptions on the mode or the envi-

ronment. As a result, text may be converted as mathematics, mathematics as verbatim,

and so on. Nevertheless, the commands in your source �le name.tex which confused the

conversion program are usually easily localized by comparing the L

A

T

E

X source with its

T

E

X

MACS

conversion. Modulo some hacking of the source, you should be able to remove

the litigious code, so that the document converts reasonably well.

In the future, we also plan to extend the conversion program with a style �le converter and

some additional features which facilitate the translation of user de�ned commands, which

are de�ned in another document than the one you want to convert.

17.2. Conversion of T

E

X

MACS

documents to Html

We have started to implemented the conversion between HTML and T

E

X

MACS

. At this

moment, it is only possible to import HTML documents using File! Import!Html. Most

of HTML 2.0 and parts of HTML 3.0 are currently supported. However, no browsing

facilities have been added yet. In the future, we plan to implement Math-ML.

When importing HTML documents, �les whose names start with http: or ftp: will be

downloaded from the web using wget. If you compiled T

E

X

MACS

yourself, then you can

download wget from

ftp://ftp.gnu.org/pub/gnu/wget/

In the binary distributions, we have included wget.

17.3. Adding new data formats and converters

Using the Guile/Scheme extension language, it is possible to add new data formats and

converters to T

E

X

MACS

in a modular way. Usually, the additional formats and converters

are declared in your personal ~/.TeXmacs/progs/my-init-texmacs.scm or a dedicated

plug-in. Some examples may be found in the directory $TEXMACS_PATH/progs/convert,

like init-html.scm.

Declaring new formats.

A new format is declared using the command

(define-format format

(:name format-name)

options)

Here format is a symbol which stands for the format and format-name a string which

can be used in menus. In fact, a data format usually comes in several variants: a format

format-file for �les, a format format-document for entire documents, a format format-

snippet for snippets, like selections, and format-object for the preferred internal scheme

representation for doing conversions (i.e. the parsed variant of the format). Converters

from format-file to format-document and vice versa are provided automatically.

168 Compatibility with other formats

The user may specify additional options for the automatic recognition of formats by their

�le su�x and contents. The possible su�xes for a format, with the default one listed �rst,

may be speci�ed using

(:suffix default-suffix other-suffix-1 ... other-suffix-n)

A (heuristic) routine for recognizing whether a given document matches the format can be

speci�ed using either one of the following:

(:recognize predicate)

(:must-recognize predicate)

In the �rst case, su�x recognition takes precedence over document recognition and in the

second case, the heuristic recognition is entirely determined by the document recognition

predicate.

Declaring new converters.

New converters are declared using

(converter from to

options)

The actual converter is speci�ed using either one of the following options:

(:function converter)

(:function-with-options converter-with-options)

(:shell prog prog-pre-args from progs-infix-args to prog-

post-args)

In the �rst case, the converter is a routine which takes an object of the from format and

returns a routine of the to format. In the second case, the converter takes an additional

association list as its second argument with options for the converter. In the last case, a

shell command is speci�ed in order to convert between two �le formats. The converter is

activated only then, when prog is indeed found in the path. Also, auxiliary �les may be

created and destroyed automatically.

T

E

X

MACS

automatically computes the transitive closure of all converters using a shortest

path algorithm. In other words, if you have a converter from x to y and a converter from

y to z, then you will automatically have a converter from x to z. A �distance between two

formats via a given converter� may be speci�ed using

(:penalty floating-point-distance)

Further options for converters are:

(:require cond)

(:option option default-value)

The �rst option speci�es a condition which must be satis�ed for this converter to be used.

This option should be speci�ed as the �rst or second option and always after the :penalty

option. The :option option speci�es an option for the converter with its default value.

This option automatically become a user preference and it will be passed to all converters

with options.

17.3 Adding new data formats and converters 169

Appendix A

Configuration of T

E

X

MACS

A.1. Introduction

Before you start using T

E

X

MACS

, it may be wise to con�gure the program �rst in Edit!

Preferences, so that it will �t your needs best. Most importantly, you should choose a �look

and feel� in Edit ! Preferences ! Look and feel. This will enable you for instance to let

the keyboard shortcuts used by T

E

X

MACS

be similar to what you are used to in other

applications.

Also, T

E

X

MACS

comes with a powerful keyboard shortcut system, which attempts to opti-

mize the use of the modi�er keys like

shift

and

control

on your keyboard. However,

on certain systems these modi�er keys are not well con�gured, so that you may wish to

redo this yourself.

A.2. Configuration of the modifier keys

T

E

X

MACS

uses �ve major keyboard modi�ers:

shift

,

control

,

alternate

,

meta

and

hyper

, which are abbreviated as

S-

,

C-

,

A-

,

M-

and

H-

. The

shift

and

control

keys are present on virtually all keyboards and the

alternate

key on almost all. Most

keyboards for PC's nowadays also have a

windows

key, which is usually equivalent to

meta

for T

E

X

MACS

.

Before recon�guring your keyboard, you should �rst check that this is indeed necessary. If

you have keys which correspond to

shift

,

control

,

alternate

and

meta

in a suitable

way, then you probably do not want to do anything. A possible exception is when you

want to use a simple key like

caps-lock

for typing mathematical symbols. In that case,

you should map

caps-lock

to

hyper

.

In order to recon�gure the keyboard, you simply select the logicial modi�er that you want

to correspond to a given physical key in Edit ! Preferences ! Keyboard. For instance,

selecting Windows key!Map to M modi�er, the

windows

key will correspond to the

meta

modi�er. Similarly, when selecting Caps-lock key!Map to H modi�er, the

caps-lock

key

will correspond to the

hyper

modi�er.

Unfortunately, X Window only allows system-wide recon�guration. Consequently, if you

recon�gure the

caps-lock

key inside T

E

X

MACS

, then the new behaviour of

caps-lock

will

a�ect all other applications too. It is therefore important to recon�gure only those keys

which you do not use for something else in other applications. For instance, the

windows

key is not used by many applications, so it generally does not do any harm to recon�gure it.

You may also prefer to perform an appropriate system-wide con�guration. This can be done

using the xmodmap command; see the corresponding manual page for more information.

In certain cases, you already have keys on your keyboard which correspond to

alternate

,

meta

and

hyper

, but not in the way you want. This can be done by remapping the

A-

,

M-

and

H-

pre�xes to other logical modi�ers in the �rst group of submenus of

Edit!Preferences!Keyboard.

171

For instance, for Emacs compatability, you might want to permute the

meta

or

windows

key with

alternate

without making any system-wide changes. This can be done by �nding

out which modi�ers correspond to these keys; usually this will be

Mod1

for

alternate

and

Mod4

for

meta

or

windows

. We next perform the necessary permutation in Edit!

Preferences! Keyboard, by selecting A modi�er! Equivalent for Mod4 and M modi�er!

Equivalent for Mod1.

A.3. Notes for Russian and Ukranian users

In order to type Russian (and similarly for Ukranian) text, you may several options:

� Select Russian as your default language in Edit!Preferences!Language!Russian.

If T

E

X

MACS

starts with Russian menus, then this is done automatically if the

Russian locale is set.

� Select Russian for an entire document using Document! Language!Russian.

� Select Russian for a portion of text in another document using Format!Language!

Russian.

If your X server uses the xkb extension, and is instructed to switch between the Latin and

Russian keyboard modes, you need not do anything special. Just switch your keyboard to

the Russian mode, and go ahead. All the software needed for this is included in modern

Linux distributions, and the xkb extension is enabled by default in XF86Config. With

the xkb extension, keysyms are 2-byte, and Russian letters are at 0x6??. The keyboard

is con�gured by setxkbmap. When X starts, it issues this command with the system-

wide Xkbmap �le (usually living in /etc/X11/xinit), if it exists; and then with the user's

~/.Xkbmap, if it exists. A typical ~/.Xkbmap may look like

ru basic grp:shift_toggle

This means that the keyboard mode is toggled by

l-shift r-shift

. Other popular

choices are

control shift

or

control alternate

, see /usr/X11R6/lib/X11/xkb/ for

more details. This is the preferred keyboard setup for modern Linux systems, if you plan

to use Russian often.

In older Linux systems, the xkb extension is often disabled. Keysyms are 1-byte, and

are con�gured by xmodmap. When X starts, it issues this command with the system-

wide Xmodmap (usually living in /etc/X11/xinit), if it exists; and then with the user's

~/.Xmodmap, if it exists. You can con�gure the mode toggling key combination, and use

a 1-byte Russian encoding (such as koi8-r) in the Russian mode. It is easier to download

the package xruskb, and just run

xrus jcuken-koi8

at the beginning of your X session. This sets the layout jcuken (see below) and the encoding

koi8-r for your keyboard in the Russian mode. If you use such keyboard setup, you should

select Options ! international keyboard ! russian ! koi8-r.

It is also possible to use the Windows cp1251 encoding instead of koi8-r, though this is

rarely done in UNIX. If you do use xrus jcuken-cp1251, select cp1251 instead of koi8-r.

All the methods described above require some special actions to �russify� the keyboard.

This is not di�cult, see the Cyrillic-HOWTO or, better, its updated version

172 Configuration of T

E

X

MACS

http://www.inp.nsk.su/~baldin/Cyrillic-HOWTO-russian/Cyrillic-HOWTO-

russian.html

Also, all of the above methods globally a�ect all X applications: text editors (emacs, nedit,

kedit...), xterms, T

E

X

MACS

etc.

If you need to type Russian only once, or very rarely, a proper keyboard setup may be more

trouble than it's worth. For the bene�t of such occasional users, T

E

X

MACS

has methods

of Russian input which require no preliminary work. Naturally, such methods a�ect only

T

E

X

MACS

, and no other application.

The simplest way to type some Russian on the standard US-style keyboard with no software

setup is to select Edit! Preferences! Keyboard! Cyrillic input method! translit. Then,

typing a Latin letter will produce �the most similar� Russian one. In order to get some

Russian letters, you have to type 2- or 3-letter combinations:

Shorthand for Shorthand(s) for

A-" e

¼

A-" E

�

y o

¼

Y o Y O

�

z h

æ

Z h Z H

Æ

j tab

æ

J tab

Æ

c h

÷

C h C H

×

s h

ø

S h S H

Ø

s c h

ù

S c h S C H

Ù

e tab

ý

E tab

Ý

y u

þ

Y u Y U

Þ

y a

ÿ

Y a Y A

ß

Table A.1. Typing Cyrillic text on a Roman keyboard.

If you want to get, e.g., �ñõ�, and not �ø�, you have to type

s / h

. Of course, the choice

of �optimal� mapping of Latin letters to Russian ones in not unique. You can investigate

the mapping supplied with T

E

X

MACS

and, if you don't like something, override it in your

~/.TeXmacs/progs/my-init-texmacs.scm.

If you select jcuken instead of translit, you get the �o�cial� Russian typewriter layout. It

is so called because the keys �qwerty� produce �éöóêåí�. This input method is most useful

when you have a Russian-made keyboard, which has additional Russian letters written

on the key caps in red, in the jcuken layout (a similar e�ect can be achieved by attaching

transparent stickers with red Russian letters to caps of a US-style keyboard). It is also

useful if you are an experienced Russian typist, and your �ngers remember this layout.

Those who have no Russian letters indicated at the key caps often prefer the yawerty

layout, where the keys �qwerty� produce �ÿâåðòû�. Each Latin letter is mapped into

a �similar� Russian one; some additional Russian letters are produced by

shift

-digits.

T

E

X

MACS

comes with a slightly modi�ed yawerty layout, because it does not rede�ne

the keys

$

,

¿

,

n

, which are important for T

E

X

MACS

, are not rede�ned. The corre-

sponding Russian letters are produced by some

shift

-digit combinations instead.

A.3 Notes for Russian and Ukranian users 173

Appendix B

About GNU T

E

X

MACS

-1.0.5

B.1. Summary

GNU T

E

X

MACS

Installed version 1.0.5

Supported systems Most GNU/Linux systems

Copyright © 1998�2002 by Joris van der Hoeven

License GNU General Public License

Web sites http://www.texmacs.org

http://www.gnu.org/software/texmacs

Contact contact@texmacs.org

Regular mail Dr. Joris van der Hoeven

Dépt. de Mathématiques (Bât. 425)

Université Paris-Sud

91405 Orsay Cedex

France

Table B.1. Summary of the principal information about GNU T

E

X

MACS

.

B.2. The philosophy behind T

E

X

MACS

B.2.1. A short description of GNU T

E

X

MACS

GNU T

E

X

MACS

is a free scienti�c text editor, which was both inspired by T

E

X and GNU

Emacs. The editor allows you to write structured documents via a wysiwyg (what-you-

see-is-what-you-get) and user friendly interface. New styles may be created by the user.

The program implements high-quality typesetting algorithms and T

E

X fonts, which help

you to produce professionally looking documents.

The high typesetting quality still goes through for automatically generated formulas, which

makes T

E

X

MACS

suitable as an interface for computer algebra systems. T

E

X

MACS

also

supports the Guile/Scheme extension language, so that you may customize the interface

and write your own extensions to the editor.

Converters exist for T

E

X/L

A

T

E

X and they are under development for

Html/MathML/Xml. In the future, T

E

X

MACS

is planned to evolve towards a complete

scienti�c o�ce suite, with spreadsheet capacities, a technical drawing editor and a pre-

sentation mode.

GNU T

E

X

MACS

is hosted by the Centre de Ressources Informatiques de Haute Savoie,

Archamps, France.

175

B.2.2. Why freedom is important for scientists

One major objective of T

E

X

MACS

is to promote the development of free software for and

by scientists, by signi�cantly reducing the cost of producing high quality user interfaces. If

you plan to write an interface between T

E

X

MACS

and other software, then please contact us.

As a mathematician, I am deeply convinced that only free programs are acceptable from

a scienti�c point of view. I see two main reasons for this:

� A result computed by a �mathematical� system, whose source code is not public,

can not be accepted as part of a mathematical proof.

� Just as a mathematician should be able to build theorems on top of other theorems,

it should be possible to freely modify and release algorithms of mathematical soft-

ware.

However, it is strange, and a shame, that the main mathematical programs which are

currently being used are proprietary. The main reason for this is that mathematicians often

do not consider programming as a full scienti�c activity. Consequently, the development

of useful software is delegated to �engineers� and the resulting programs are used as black

boxes.

This subdivision of scienti�c activity is very arti�cial: it is often very important from a

scienti�c point of view to know what there is in the black box. Inversely, deep scienti�c

understanding usually leads to the production of better software. Consequently, I think

that scientists should advocate the development of software as a full scienti�c activity,

comparable to writing articles. Then it is clear too that such software should be di�used

in a way which is compatible with the requirements of science: public availability, repro-

ducibility and free usability.

B.3. The authors of T

E

X

MACS

The GNU T

E

X

MACS

system, which is part of the GNU project, was designed and written

by Joris van der Hoeven. The system was inspired both by the T

E

X system, written by D.

Knuth, and by Emacs, written by R. Stallman. Special thanks goes to them, as well as

to the C.N.R.S. (the French national institute for scienti�c research), which employs me

and authorized me to freely distribute this program. Further thanks go to the contributors

below.

B.3.1. Developers of T

E

X

MACS

� Dan Martens made the Windows port.

� Andrey Grozin has constantly helped us with many issues: interfaces to several

computer algebra systems, support for Cyrillic, tools for the manipulation of dic-

tionaries, etc.

� David Allouche replaced the gencc preprocessor by the more standard C++ tem-

plate system. He also made many other patches, bug reports and he did a lot of the

administration of TeXmacs.

� Henri Lesourd is working on native technical drawing support in T

E

X

MACS

. He also

�xed a bug in the presentation mode.

176 About GNU T

E

X

MACS

-1.0.5

� Andreas Seidl has been helping with documentation, a Cygwin package and several

other things.

� Dan Grayson helped me to implement communications with computer algebra sys-

tems via pipes. He also provided some money support for T

E

X

MACS

, and he made

many useful comments and suggestions.

� Karim Belabas designed and developed with me the �rst protocol for interfacing

T

E

X

MACS

with scienti�c computation or computer algebra systems. He also imple-

mented the interface with the Pari system.

� Felix Breuer helped with the support of Unicode and other character encodings. He

also made a donation to the project.

� Josef Weidendorfer made several patches for improving the performance of

T

E

X

MACS

.

� Stéphane Payrard made an important bug�x for destroying windows.

� Josef Weidendorfer for two patches to improve the speed of T

E

X

MACS

.

� Johann Dréo for the new T

E

X

MACS

icon and many other graphics.

� Bill Page and David Mentré for the support of the free version of Axiom.

� Chu-Ching Huang for writing CAS documentation and making a Knoppix CD for

T

E

X

MACS

.

� Mickael Floc'hlay and Arnaud Ébalard for their work on searching for help.

� Gwenael Gabard for some �xes in the L

A

T

E

X to T

E

X

MACS

converter.

� Igor V. Kovalenko and Teemu Ikonen for their help on debugging TeXmacs and a

few patches.

� Gareth McCaughan made several patches and comments.

� Immanuel Normann is working on an OpenMath converter.

� Jonas Lööf for a precise installation procedure on Cygwin.

� Rob Clark made a patch which improves the system time support.

� Stanislav Brabec for several patches so as to increase portability.

B.3.2. Authors and maintainers of plugins for T

E

X

MACS

Axiom � Andrey Grozin, Bill Page, David Mentré and Tim Daly.

DraTeX � Nicolas Ratier.

Eikleides � Mark Arrasmith.

Giac � Bernard Parisse.

GNUplot � Stephan Mucha.

B.3 The authors of T

E

X

MACS

177

Graphviz � Jorik Blaas.

GTybalt � Stefan Weinzierl.

Macaulay 2 � Dan Grayson.

Maple � Christian Even.

Mathemagix � Joris van der Hoeven.

Maxima � Andrey Grozin and James Amundson.

Mupad � Christopher Creutzig and Andrey Grozin.

Octave � Michael Gra�am.

Pari � Karim Belabas.

Python � Ero Carrera.

Qcl � Andrey Grozin.

R � Michael Lachmann.

Reduce � Andrey Grozin.

Scilab � Serge Steer and Claude Gomez.

Shell � Joris van der Hoeven.

XYpic � Nicolas Ratier.

Yacas � Ayal Pinkus.

B.3.3. Administration of T

E

X

MACS

and material support

� Rennes Métropôle and the C.N.R.S. for �nancially supporting the development of

T

E

X

MACS

.

� Christoph Benzmueller and his team for �nancially supporting the development of

T

E

X

MACS

.

� Springer-Verlag for their �nancial support for making a better Windows version.

� Jean-Claude Fernandez, Fabien Salvi and the other persons from the CRI host and

administrate the T

E

X

MACS

website.

� Álvaro Tejero Cantero maintains up the T

E

X

MACS

Wiki.

� Loic Dachary made T

E

X

MACS

accessible on Savannah.

B.3.4. Porting T

E

X

MACS

to other platforms

� Dan Martens is working on a the experimental Windows port.

178 About GNU T

E

X

MACS

-1.0.5

� Marciano Siniscalchi ported T

E

X

MACS

to Cygwin. His work was further perfected

by Loïc Pottier. Andreas Seidl made a the standard Cygwin package.

� Martin Costabel ported T

E

X

MACS

to MacOSX.

� Ralf Treinen and others has been ensuring the portability of T

E

X

MACS

to all archi-

tectures supported by Debian Gnu/Linux.

� Bruno Haible and Gregory Wright helped with porting T

E

X

MACS

to the SUN system

and maintaining it.

� Philipp Tomsich and Chuck Sites for their help with the IRIX port.

B.3.5. Contributors to T

E

X

MACS

packages

� Ralf Treinen maintains the Debian package for T

E

X

MACS

.

� Christophe Merlet and Bo Forslund helped with making a portable RPM package.

� Lenny Cartier maintains the T

E

X

MACS

RPM for Mandrake Cooker.

� Jean Pierre Demailly and Yves Potin made T

E

X

MACS

part of the CNDP project to

support free software.

B.3.6. Internationalization of T

E

X

MACS

Czech. David Rezac.

Danish. Magnus Marius Rohde.

Dutch. Joris van der Hoeven.

Finnish. Teemu Ikonen.

French. Michèle Garoche, Joris van der Hoeven.

German. Dietmar Jung, Hans Dembinski, Jan Ulrich Hasecke, Christoph Strobel,

Joris van der Hoeven, Thomas Langen, Ralf Treinen.

Hungarian. András Kadinger.

Italian. Andrea Centomo, Lucia Gecchelin, Xav and Daniele Pighin, Gian Luigi Grag-

nani.

Polish. Robert Janusz, Emil Nowak, Jan Alboszta.

Portuguese. Ramiro Brito Willmersdorf, Márcio Laurini, Alexandre Taschetto de

Castro.

Romanian. Dan Ignat.

Russian. Andrey Grozin.

Slovene. Ziga Kranjec.

B.3 The authors of T

E

X

MACS

179

Spanish. Álvaro Cantero Tejero, Pablo Ruiz Múzquiz, David Moriano Garcia, O�ray

Vladimir Luna Cárdenas.

Swedish. Harald Ellmann.

Ukrainian. Volodymyr Lisivka.

B.3.7. Other contributors

Final thanks go to all others who have contributed to T

E

X

MACS

, for instance by sending

bug reports or by giving suggestions for future releases: Alexandre Abbes, Alessio Abo-

gani, Aaron Acton, Till Adam, Murali Agastya, Guillaume Allègre, Larry D'Anna, Eizo

Akiyama, Javed Alam, Doublet Alban, Michele Alessandrin, Andreas Almroth, Tom Als-

berg, James Amundson, Piero D'Ancona, Daniel Andor, Ayal Anis, Javier Arantegui

Jimenez, André Arnold, Uwe Assmann, Philippe Audebaud, Daniel Augot, Olaf Bach-

mann, Franky Backeljauw, Nick Bailey, Adrian Soto Banuelos, Pierre Barbier de Reuille,

Marc Barisch, Giovanni Maniscalco Basile, Claude Baudouin, Marten Bauer, Luc Béhar,

Roman Belenov, Odile Bénassy, Paul Benham, Roy C. Bentley, Attila Bergou, Christophe

Bernard, Konrad Bernloehr, Karl Berry, Matthias Berth, Matteo Bertini, Cédric Bertolini,

Matthew Bettencourt, Raktim Bhattacharya, Anne-Laure Biolley, Benedikt Birkenbach,

Giovanni Biczó, Jim Blandy, Sören Blom, Christof Boeckler, François Bochatay, Christof

Boeckler, Anton Bol�ng, Robert Borys, Didier Le Botlan, Mohsen Bouaissa, Thierry

Bouche, Adrien Bourdet, Michel Brabants, Didier Bretin, Jean-Yves Briend, Henrik Brink,

Simon Britnell, Alexander M. Budge, Daniel Bump, Yoel Callev, José Cano, Charles James

Leonardo Quarra Cappiello, Patrick Cardona, Niclas Carlsson, Dominique Caron, António

Carvalho, Michel Castagner, Topher Cawl�eld, Carlo Cecati, Beni Cherniavsky, Kuo-

Ping Chiao, Teddy Fen-Chong, Henri Cohen, Johann Cohen-Tanugi, Vincenzo Colosimo,

Dominique Colnet, Claire M. Connelly, Christoph Conrad, Riccardo Corradini, Paulo

Correia, Olivier Cortes, Robert J. Cristel, Maxime Curioni, Allan Curtis, Jason Dagit,

Stefano Dal Pra, François Dausseur, Thierry Dalon, Jon Davidson, Mike Davidson, Thomas

Delzant, Jean-Pierre Demailly, Peter Denisevich, Alessio Dessi, Benno Dielmann, Lucas

Dixon, Mikael Djurfeldt, Gabriel Dos Reis, Alban Doublet, Steingrim Dovland, Michael

John Downes, Benjamin Drieu, Jose Duato, Amit Dubey, Daniel Duparc, Guillaume Duval,

Tim Ebringer, Dirk Eddelbuettel, Magnus Ekdahl, Ulf Ekström, Sreedhar Ellisetty, Luis

A. Escobar, Thomas Esser, Stephan Fabel, Robin Fairbairns, Tony Falcone, Vladimir

Fedonov, Hilaire Fernandes, Ken Feyl, Juan Flynn, Jens Finke, Thomas Fischbacher,

Cedric Foellmi, Enrico Forestieri, Ted Forringer, Christian Forster, Charlie Fortner, Stefan

Freinatis, Michael P Friedlander, Nils Frohberg, Rudi Gaelzer, Maciej Gajewski, Lionel

Garnier, Philippe Gogol, Björn Gohla, Patrick Gonzalez, Nirmal Govind, Albert Graef,

Michael Gra�am, Klaus Graichen, Ian Grant, Frédéric Grasset, Guido Grazioli, Wilco

Greven, Cyril Grunspan, Laurent Guillon, Yves Guillou, Tae-Won Ha, Harri Haataja,

Sébastien Hache, Irwan Hadi, James W. Haefner, Sam Halliday, Ola Hamfors, Aaron

Hammack, Guillaume Hanrot, Alexander K. Hansen, Peter I. Hansen, Zaid Harchaoui,

Jesper Harder, Philipp Hartmann, P. L. Hayes, Karl M. Hegbloom, Jochen Heinloth,

Gunnar Hellmund, Ralf Hemmecke, Roy Henk, John Hernlund, Alain Herreman, Alexander

Heuer, Johannes Hirn, Santiago Hirschfeld, Andreas Horn, Peter Horn, Chu-Ching Huang,

Sylvain Huet, Ed Hurst, Karl Jarrod Hyder, Richard Ibbotson, Benjamin T. Ingram,

Alexander Isacson, Michael Ivanov, Vladimir G. Ivanovic, Maik Jablonski, Frederic de

Jaeger, Pierre Jarillon, Neil Jerram, Paul E. Johnson, Pierre-Henri Jondot, Peter Jung,

Antoun Kanawati, Tim Kaulmann, Mukund S. Kalisi, Antoun Kanawati, Yarden Katz,

Bernhard Keil, Samuel Kemp, Jeremy Kephart, Michael Kettner, Salman Khilji, Iwao

180 About GNU T

E

X

MACS

-1.0.5

Kimura, Simon Kirkby, Ronny Klein, Peter Koepke, Matthias Koeppe, John Kollar, Denis

Kovacs, Je� Kowalczyk, Dmitri Kozionov, Ralph Krause, Neel Krishnaswami, Anthony

Lander, Friedrich Laher, Winter Laite, Anthony Lander, Russell Lang, David Latreyte,

Christopher Lee, Milan Lehocky, Torsten Leidig, Patrick Lenz, Kalle Lertola, Tristan

Ley, Joerg Lippmann, Marc Longo, Pierre Lorenzon, Ralph Lõvi, V. S. Lugovsky, Gregory

Lussiana, Bud Maddock, Duraid Madina, Camm Maguire, Yael Maguire, Paul Magwene,

Jeremiah Mahler, Vincent Maillot, Giacomo Mallucci, Lionel Elie Mamane, Sourav K.

Mandal, Andy P. Manners, Yun Mao, Chris Marcellin, Sylvain Marchand, Bernd Mark-

graf, Eric Marsden, Chris Marston, Evan Martin, Carlos Dehesa Martínez, Paulo Jorge

de Oliveira Cantante de Matos, Tom McArdell, Bob McElrath, Alisdair McDiarmid,

Robert Medeiros, Phil Mendelsohn, Sébastien de Menten, Jean-Michel Mermet, Jon Mer-

riman, Herve le Meur, Ingolf Meyer, Amir Michail, Franck Michel, Jan David Mol, Klaus-

Dieter Möller, Juan Fresneda Montano, André Moreau, Vijayendra Munikoti, Arkadiusz

Miskiewicz, Sasha Mitelman, Dirk Moebius, Jack Mo�tt, Harvey Monder, Guillaume

Morin, Julian Morrison, Bernard Mourrain, Stephan Mucha, Toby Muhlhofer, Nathan

Myers, Norbert Nemec, Thomas Neumann, Thien-Thi Nguyen, Han-Wen Nienhuys, Nix

N. Nix, Eduardo Nogueira, Immanuel Normann, Jean-Baptiste Note, Ralf Nuetzel, Kostas

Oikonomou, Ondrej Pacovsky, Bill Page, Santtu Pajukanta, Pierre Pansu, Ilya Papi-

ashvili, Bernard Parisse, Frédéric Parrenin, André Pascual, Fernández Pascual, Frédéric

Parrenin, Yannick Patois, Alen L. Peacock, François Pellegrini, Antonio Costa Pereira,

Enrique Perez-Terron, Jacob Perkins, Bernard Perrot, Jan Peters, Jean Peyratout, Jacques

Peyriere, Valery Pipin, Dimitri Pissarenko, Yves Pocchiola, Martin Pollet, Benjamin

Poussin, Benjamin Podszun, Isaías V. Prestes, Rui Prior, Julien Puydt, Nguyen-Dai Quy,

Manoj Rajagopalan, Ramakrishnan, Adrien Ramparison, Nicolas Ratier, Olivier Ravard,

Leo Razoumov, Kenneth Reinhardt, Cesar A. Rendon, Diego Restrepo, Christian Requena,

Chris Retford, Robert Ribnitz, Thomas CLive Richards, Sta�an Ringbom, Eric Ringeisen,

Christian Ritter, William G. Ritter, Will Robinson, Pascal Romon, Juan Pablo Romero,

Juergen Rose, Mike Rosellini, Mike Rosing, Bernard Rousseau, Eyal Rozenberg, Olivier

Ruatta, Filippo Rusconi, Gaetan Ryckeboer, Philippe Sam-Long, John Sandeman, Duncan

Sands, Breton Saunders, Claire Sausset, David Sauzin, Gilles Schae�er, Guido Schim-

mels, Rainer Schöpf, David Schweikert, Stefan Schwertheim, Rui Miguel Seabra, Chung-

Tsun Shieh, Sami Sieranoja, Vasco Alexandre da Silva Costa, Marciano Siniscalchi, Daniel

Skarda, Murray Smigel, Vaclav Smilauer, Dale P. Smith, Luke Snow, René Snyders, Pekka

Sorjonen, Kasper Souren, Rodney Sparapani, Bas Spitters, Bas Spitters, Ivan Stanisavl-

jevic, Starseeker, Harvey J. Stein, Peter Sties, Bernard Stloup, Peter Stoehr, Thierry

Stoehr, James Su, Przemyslaw Sulek, Ben Sussman, Roman Svetlov, Milan Svoboda,

Dan Synek, Pan Tadeusz, Luca Tagliacozzo, Sam Tannous, John Tapsell, Dung TaQuang,

Gerald Teschl, Laurent Thery, Eric Thiébaut, Nicolas Thiery, Helfer Thomas, Reuben

Thomas, Dylan Thurston, Kurt Ting, Janus N. Tøndering, Philippe Trébuchet, Marco Tre-

visani, Boris Tschirschwitz, Elias Tsigaridas, Michael M. Tung, Andreas Umbach, Miguel

A. Valle, Rémi Vanicat, Harro Verkouter, Jacques Vernin, Sawan Vithlani, Philip A. Viton,

Marius Vollmer, Guy Wallet, Adam Warner, Thomas Wawrzinek, Maarten Wegewijs,

Duke Whang, Lars Willert, Grayson Williams, Barton Willis, Claus-Peter Wirth, Ben

Wise, Wiebe van der Worp, Pengcheng Wu, Damien Wyart, Wang Yin, Lukas Zapletal,

Volker Zell, Oleg Zhirov, Vadim V. Zhytnikov, Richard Zidlicky, Sascha Ziemann, Rein-

hard Zierke, Paul Zimmermann.

B.3.8. Contacting us

You can either contact us by email at

B.3 The authors of T

E

X

MACS

181

contact@texmacs.org

or by regular mail at

Joris van der Hoeven

Dépt. de Mathématiques (Bât. 425)

Université Paris-Sud

91405 Orsay Cedex

France

There are also several T

E

X

MACS

mailing lists:

texmacs-users@texmacs.org

texmacs-info@texmacs.org

texmacs-dev@gnu.org

B.4. Important changes in T

E

X

MACS

Below, we brie�y describe the most important changes which have occurred in T

E

X

MACS

since version 0.3.3.15. We also maintain a more detailed change log.

In general, when upgrading to a new version, we recommend you to make backups of your

old T

E

X

MACS

�les before opening them with the newer version of T

E

X

MACS

. In the unlikely

case when your old �le does not open in the correct way, please send a bug report to

bugs@texmacs.org

and send your old document as an attached �le. Do not forget to mention your version of

T

E

X

MACS

and the system you are using.

B.4.1. Improved titles (1.0.4.1)

From now on, titles of documents are more structured. This makes it easier to render

the same title information in the appropriate ways for di�erent styles. Old-style titles are

automatically upgraded, but the result is only expected to be correct for documents with

a single author. For documents with multiple authors, you may have to re-enter the title

using our new interface.

B.4.2. Improved style sheets and source editing mode (1.0.3.5)

We are making it easier for users to edit style sheets. This improvement made it necessary

to simplify many of the standard T

E

X

MACS

styles and packages, so that it will be easier

to customize them. However, if you already designed some style �les, then this may break

some of their features. We mainly redesigned the list environments, the section environ-

ments and automatic numbering. Please report any problems to us.

B.4.3. Renaming of tags and environment variables (1.0.2.7 �

1.0.2.8)

Most environment variables and some tags have been renamed, so that these names no

longer contain whitespace and only dashes (and no underscores) as separators.

182 About GNU T

E

X

MACS

-1.0.5

B.4.4. Macro expansion (1.0.2.3 � 1.0.2.7)

An important internal change concerning the data format has been made: macro expan-

sions and function applications like

(expand tag arg-1 ... arg-n)

(apply tag arg-1 ... arg-n)

are now replaced by hard-coded tags

(tag arg-1 ... arg-n)

Moreover, functions have systematically been replaced by macros. The few built-in func-

tions which may take an arbitrary number of arguments have been rewritten using the new

xmacro construct. If you ever wrote such a function yourself, then you will need to rewrite

it too.

The new approach favorites a uniform treatment of macros and functions and makes

the internal representation match with the corresponding Scheme representation. More

and more information about tags will gradually be stored in the D.R.D. (Data Relation

De�nition). This information is mostly determined automatically using heuristics.

Notice that some perverse errors might arise because of the above changes. Please keep

copies of your old �les and report any suspicious behaviour to us.

B.4.5. Formatting tags (1.0.2 � 1.0.2.1)

All formattings constructs without arguments (like line breaks, indentation directives, etc.)

have been replaced by tags of arity zero. This makes most new documents badly unreadable

for older versions of T

E

X

MACS

and subtle errors might occasionnaly occur when saving or

loading, or during other editing operations.

B.4.6. Keyboard (1.0.0.11 � 1.0.1)

The T

E

X

MACS

keybindings have been rationalized. Here follows a list of the major changes:

� The

E-

pre�x has been renamed to

M-

.

�

escape

is equivalent to

M-

and

escape

-

escape

to

A-

.

� Mode dependent commands are now pre�xed by

A-

. In particular, accents are

typed using

A-

instead of

E-

.

� Variants are now obtained using

tab

instead of

�

and you can circle back using

shift-tab

.

� Greek characters are now typed using

A-C-

,

F5

, or the hyper modi�er, which

can be con�gured in Edit! Preferences. You may also obtain Greek characters as

variants of Latin characters. For instance,

p tab

yields �.

� The signi�cation of the cursor keys in combination with control, alt and meta has

changed.

B.4 Important changes in T

E

X

MACS

183

You may choose between several �look and feels� for the keyboard behaviour in Edit !

Preferences!Look and feel. The default is Emacs, but you may choose Old style if you want

to keep the behaviour to which you may be used now.

B.4.7. Menus (1.0.0.7 � 1.0.1)

Several changes have been made in the menus. Here follows a list of the major changes:

� Bu�er has been renamed as Go.

� Several items from File have been moved to View.

� The Edit! Import and Edit!Export items have been moved to Tools! Selections.

� The Insert menu has been split up into the menus Insert, Text and Mathematics.

� The Text and Paragraph menus have been merged together in one Format menu.

� Options has been spread out across Document, View, Tools and Edit!Preferences.

B.4.8. Style �les (1.0.0.4)

Many changes have been made in the organization of the T

E

X

MACS

style �les. Personal style

�les which depend on intermediate T

E

X

MACS

packages may require some slight adaptations.

We are working towards a stabilization of the standard style �les and packages. At the

end of this process, it should be easy to adapt existing L

A

T

E

X style �les for journals to

T

E

X

MACS

by customizing these standard style �les and packages. As soon as we have time,

we plan to provide online documentation on how to do this at Help!Online documentation.

B.4.9. Tabular material (0.3.5)

The way tabular material is treated has completely changed. It has become much easier to

edit tables, matrices, equation arrays, etc. Also, many new features have been implemented,

such as background color, border, padding, hyphenation, subtables, etc. However, the

upgrading of old tabular material might sometimes be erroneous, in which case we invite

you to submit a bug report.

B.4.10. Document format (0.3.4)

The TeXmacs document format has profoundly changed in order to make TeXmacs com-

patible with XML in the future. Most importantly, the old style environments like

<assign|env|<environment|open|close>>,

which are applied via matching pairs <begin|env>text<end|env>, have been replaced by

macros

<assign|env|<macro|body|open<body>close>>,

which are applied via single macro expansions <expand|env|text>. Similarly, matching

pairs <set|var|val>text<reset|var> of environment variable changes are replaced by a

<with|var|val|text> construct (close to XML attributes). From a technical point of view,

these changes lead to several complications if the text body consists of several paragraphs.

As a consequence, badly structured documents may sometimes display di�erently in the

new version (although I only noticed one minor change in my own documents). Further-

more, in order to maintain the higher level of structure in the document, the behaviour of

the editor in relation to multiparagraph environments has slightly changed.

184 About GNU T

E

X

MACS

-1.0.5

Appendix C

Contributing to GNU T

E

X

MACS

C.1. Use T

E

X

MACS

One of the best ways to contribute to GNU T

E

X

MACS

is by using it a lot, talk about it

to friends and collegues, and to report me about bugs or other unnatural behaviour.

Please mention the fact that you wrote articles using T

E

X

MACS

when submitting them.

You can do this by putting the made-by-TeXmacs tag somewhere inside your title using

Text!Title!TeXmacs notice.

Besides these general (but very important) ways to contribute, your help on the more

speci�c subjects below would be appreciated. Don't hesitate to contact us if you want

to contribute to these or any other issues. In the Help menu you can �nd documentation

about the source code of T

E

X

MACS

, its document format, how to write interfaces with other

formats, and so on.

C.2. Making donations to the T

E

X

MACS

project

Making donations to TeXmacs through the SPI organization.

One very important way to support T

E

X

MACS

is by donating money to the project.

T

E

X

MACS

is currently one of the projets of SPI (Software in the Public Interest; see

http://www.spi-inc.org). You may make donations of money to TeXmacs via this orga-

nization, by noting on your check or e-mail for wire transfers that your money should

go to the TeXmacs project. You may also make donations of equipment or services or

donations through vendors. See the SPI website for more information. We will main-

tain a webpage with a list of donors soon (if you agree to be on the list).

Details on how to donate money.

To make a donation, write a check or money order to:

Software in the Public Interest, Inc.

and mail it to the following address:

Software in the Public Interest, Inc.

P.O. Box 502761

Indianapolis, IN 46250-7761

United States

To make an electronic transfer (this will work for non-US too), you need to give your bank

the routing number and account number as follows:

185

The SPI bank account is at American Express Centurion Bank.

Routing Number: 124071889

Account Number: 1296789

Don't forget to note on your check or e-mail for wire transfers that the money should be

spent on the TeXmacs projet. In addition you may specify a more speci�c purpose on

which you would like us to spend the money. You may also contact us for a more detailed

discussion on this issue.

Important notes.

Let the SPI Treasurer (treasurer@spi-inc.org) know if you have problems. When you

have completed the electronic wire, please send a copy of the receipt to the above address

so there is a copy of your donation. The copy you send to the treasurer is important. You

may also want to contact the TeXmacs team in order to make sure that the money arrived

on the TeXmacs account.

Note: The SPI address and account numbers may change from time to time. Please do

not copy the address and account numbers, but rather point to the page http://www.spi-

inc.org/donations to ensure that donors will always see the most current information.

Donations in Europe can be done through our partner in Germany, �s e.V. If you are

interested in using their bank account (to save international money transfer costs), please

check the instructions on http://www.ffis.de/Verein/spi-en.html.

C.3. Contribute to the GNU T

E

X

MACS

documentation

There is a high need for good documentation on T

E

X

MACS

as well as people who are willing

to translate the existing documentation into other languages. The aim of this site is to

provide high quality documentation. Therefore, you should carefully read the guide-lines

on how to write such documentation.

C.3.1. Introduction on how to contribute

High quality documentation is both a matter of content and structure. The content itself

has to be as pedagogic as possible for the targeted group of readers. In order to achieve

this, you should not hesitate to provide enough examples and illustrative screen shots

whenever adequate. Although the documentation is not necessarily meant to be complete,

we do aim at providing relatively stable documentation. In particular, you should have

checked your text against spelling errors. The more experimental documentation should

be put in the incoming directory or on the T

E

X

MACS

Wiki.

It is also important that you give your documentation as much structure as possible,

using special markup from the tmdoc style �le. This structure can be used in order to

automatically compile printable books from your documentation, to make it suitable for

di�erent ways of viewing, or to make it possible to e�ciently search a certain type of

information in the documentation. In particular, you should always provide copyright and

license information, as well as indications on how to traverse your documentation, if it

contains many �les.

186 Contributing to GNU T

E

X

MACS

Warning C.1. Don't forget to select Document ! Language ! Your language for each

translated �le. This will cause some content to be translated automatically, like the menus

or some names of keys. Also, we recommend to run the T

E

X

MACS

spell checker on each

translated document; this also requires the prior selection of the right document language.

C.3.2. Using cvs

The present T

E

X

MACS

documentation is currently maintained on texmacs.org using cvs

(Concurrent Version System). In order to contribute, you should �rst create an account

as explained on

http://www.texmacs.org/tmweb/download/cvs.en.html

In fact, the cvs system is not ideal for our documentation purpose, because it is not very

dynamic. In the future, we plan to create a dedicated publication website, which will allow

you to save documents directly to the web. It should also allow the automatic conversion

of the documentation to other formats, the compilation of books, etc.

C.3.3. Conventions for the names of �les

Most documentation should be organized as a function of the topic in a directory tree. The

subdirectories of the top directory are the following:

devel. Documentation for developers.

examples. Examples of T

E

X

MACS

documents.

incoming. Incoming documentation, which is still a bit experimental.

main. The main documentation.

meta. How to write documentation and the compilation of documentation.

Please try to keep the number of entries per directory reasonably small.

File names in the main directory should be of the form type-name.language.tm. In the

other directories, they are of the form name.language.tm. Here type is a major indication

for the type of documentation; it should be one of the following:

adv. Documentation for advanced users.

man. For inclusion in the T

E

X

MACS

manual.

tut. For inclusion in the T

E

X

MACS

tutorial.

You should try to keep the documentation on the same topic together, regardless of the

type. Indeed, this allows you to �nd more easily all existing documentation on a particular

topic. Also, it may happen that you want to include some documentation which was

initially meant for the tutorial in the manual. The language in which is the documen-

tation has been written should be a two letter code like en, fr, etc. The main name of

your �le should be the same for the translations in other languages. For instance, man-

keyboard.en.tm should not be translated as man-clavier.fr.tm.

C.3 Contribute to the GNU T

E

X

MACS

documentation 187

C.3.4. Copyright information & the Free Documentation License

All documentation on the texmacs-doc site falls under the GNU Free Documentation

License. If you write documentation for T

E

X

MACS

on this site, then you have to agree that

it will be distributed under this license too. The copyright notice

Permission is granted to copy, distribute and/or modify this

document under the terms of the GNU Free Documentation License,

Version 1.1 or any later version published by the Free Software

Foundation; with no Invariant Sections, with no Front-Cover

Texts, and with no Back-Cover Texts. A copy of the license

is included in the section entitled "GNU Free Documentation

License".

should be speci�ed at the end of each �le. This should be done inside the tmdoc-license

macro, in a similar way as at the end of the present document. When automatically

generating a printed book from several documentation �les, this will enable us to include

the license only once.

You keep (part of) the copyright of all documentation that you will write for T

E

X

MACS

on

the o�cial texmacs-doc site. When you or others make additions to (or modi�cations in,

or translations of) the document, then you should add your own name (at an appropriate

place, usually at the end) to the existing copyright information. The copyright notice

should be speci�ed using the tmdoc-copyright function just before the license information at

the end of the document. The �rst argument of this function contains a year or a period.

Each remaining argument indicates one of the copyright holders. When combining (pieces

of) several documents into another one, you should merge the copyright holders. For cover

information (on a printed book for instance), you are allowed to list only the principal

authors, but a complete list should be given at a clearly indicated place.

C.3.5. Traversing the T

E

X

MACS

documentation

As a general rule, you should avoid the use of sectioning commands inside the T

E

X

MACS

documentation and try to write small help pages on well identi�ed topics. At a second

stage, you should write recursive �meta help �les� which indicate how to traverse the

documentation in an automatic way. This allows the reuse of a help page for di�erent

purposes (a printed manual, a web-oriented tutorial, etc.).

The tmdoc style provides three markup macros for indicating how to traverse documen-

tation. The traverse macro is used to encapsulate regions with traversal information. The

branch macro indicates a help page which should be considered as a subsection and the

continue macro indicates a follow-up page. Both the branch and the continue macro take

two arguments. The �rst argument describes the link and the second argument gives the

physical relative address of the linked �le.

Typically, at the end of a meta help �le you will �nd several branch or continue macros,

inside one traverse macro. At the top of the document, you should also specify a title

for your document using the tmdoc-title macro. When generating a printed manual from

the documentation, a chapter-section-subsection structure will automatically be generated

from this information and the document titles. Alternatively, one might automatically

generate additional buttons for navigating inside the documentation using a browser.

188 Contributing to GNU T

E

X

MACS

C.3.6. Using the tmdoc style

Besides the copyright information macros and traversal macros, which have been docu-

mented before, the tmdoc style comes with a certain number of other macros and functions,

which you should use whenever appropriate:

key. This macro is used to indicate keyboard input like

C-x C-s

. The specialized

macros kbd-gen, kbd-text, kbd-math, kbd-symb, kbd-big, kbd-large, kbd-ia, kbd-exec

and kbd-table are used for keyboard input corresponding to a speci�c type of action

or mode. For instance, kbd-math corresponds to keyboard shortcuts for mathemat-

ical operations, such as

A-f

, which starts a fraction.

menu. This function with an arbitrary number of arguments indicates a menu like

File or Document ! Language. Menu entries are automatically translated by this

function.

markup. This macro is used in order to indicate a macro or a function like section.

tmstyle. This macro indicates the name of a T

E

X

MACS

style �le or package like article.

tmpackage. This macro indicates the name of a T

E

X

MACS

package like std-markup.

tmdtd. This macro indicates the name of a T

E

X

MACS

d.t.d. like number-env.

Notice that the contents of none of the above tags should be translated into foreign lan-

guages. Indeed, for menu tags, the translations are done automatically, so as to keep the

translations synchronized with the translations of the actual T

E

X

MACS

menus. In the cases

of markup, styles, packages and d.t.d.s, it is important to keep the original name, because

it often corresponds to a �le name.

The following macros and functions are used for linking and indexing purposes, although

they should be improved in the future:

simple-link. This macro takes an URL x as argument and is a hyperlink with name

and destination x.

hyper-link. This macro is a usual hyperlink.

concept-link. This macro takes a concept as argument. Later on an appropriate hyper-

link might be created automatically from this and the other documentation.

only-index. Index a simple string.

def-index. De�nition of a new concept; the text is printed in italic and indexed.

re-index. Reappearance of an already de�ned concept; the text is printed in roman

and put in the index.

The following tags are also frequently used:

icon. Link to an icon in a central directory like $TEXMACS_PATH/doc/images/pixmaps.

screenshot. Link to a screenshot. The actual screenshots are stored in a central direc-

tory like $TEXMACS_PATH/doc/images/screenshots.

C.3 Contribute to the GNU T

E

X

MACS

documentation 189

scheme. The Scheme language.

cpp. The C++ language.

framed-fragment. For displaying a piece of code in a nice frame.

scheme-fragment. For multi-paragraph Scheme code.

cpp-fragment. For multi-paragraph C++ code.

tm-fragment. For a piece of T

E

X

MACS

markup code in Scheme format.

scheme-code. For a short piece of Scheme code.

cpp-code. For a short piece of C++ code.

descriptive-table. For descriptive tables; such tables can be used to document lists of

keyboard shortcuts, di�erent types of markup, etc.

The tmdoc style inherits from the generic style and you should use macros like em,

verbatim, itemize, etc. from this style whenever appropriate.

C.4. Internationalization

The support of a maximal number of foreign languages is another major challenge in

which your help would be appreciated. Making the translations to support a new language

usually requires several days of work. We therefore recommend you to �nd some friends

or collegues who are willing to help you.

The procedure for adding a new language is as follows

� You copy the �le english-new.scm to english-yourlanguage.dic in

langs/natural/dic and �ll out the corresponding translations. You may want

to use Andrey Grozin's dictionary tool at

http://www.texmacs.org/Data/dictool.py.gz

In order to use it, may sure that Python is installed on your system, download the

�le, gunzip it, make it executable and run it.

� You tell me about any special typographical rules in your language and handy

keystrokes for producing special characters.

� I take care of the hyphenation and typographical issues, but you test them.

� If you have enough time, you may also consider the translation of (part of) the

existing documentation.

Of course, the support for languages get out of date each time that new features are added

to T

E

X

MACS

. For this reason, we also maintain a �le miss-english-yourlanguage.dic

with all missing translation for your language, once that it has been added. Please do not

hesitate to send inclomplete versions of english-yourlanguage.dic or miss-english-

yourlanguage.dic; someone else may be willing to complete them.

190 Contributing to GNU T

E

X

MACS

C.5. Writing data converters

If you are familiar with T

E

X, L

A

T

E

X, Html, Xml, Sgml, Mathml, Pdf, Rtf, or any other

frequently used data format, please consider contributing to writing good converters for

one or more of these formats. In Help! Source code! Data format you will �nd details

about the T

E

X

MACS

data format and in Help!Source code!Data conversion we give some

suggestions which might be helpful for these projects.

C.6. Porting T

E

X

MACS

to other platforms

Currently, T

E

X

MACS

is supported on most major Unix/X-Window platforms and a Win-

dows port should be ready soon. Nevertheless, your help is appreciated in order to keep

the existing ports working. Some remaining challenges for porting T

E

X

MACS

are:

� A native port for MacOS-X.

� Ports to PDAs, �rst of all those which run Linux. It should be noticed that, with

the current support for Freetype, T

E

X

MACS

no longer depends on T

E

X/L

A

T

E

X for

its fonts. We expect it to be possible to obtain a reasonable ports for T

E

X

MACS

on

PDAs with 32Mb and at least 100MHz clock-speed. Of course, one also needs to

customize the menus and/or icon bars, but this should not be hard.

T

E

X

MACS

ports to PDAs would be particularly interesting in combination with the

available plug-ins for doing scienti�c computations.

C.7. Interfacing T

E

X

MACS

with other systems

It is quite easy to write interfaces between T

E

X

MACS

and computer algebra systems or other

scienti�c programs with structured output. Please consider writing interfaces between

T

E

X

MACS

and your favorite system(s). T

E

X

MACS

has already been interfaced with several

other free systems, like Giac, Macaulay 2, Maxima, GNU Octave, Pari, Qcl, gTybalt, Yacas.

Detailed documentation on how to add new interfaces is available in the Help! Interfacing

menu.

C.8. T

E

X

MACS

over the network and over the web

With the current technology of mutator tags, it should be quite easy to write a plug-in

for T

E

X

MACS

for doing instant messenging or live-conferencing. We are very interested in

people who would like to help with this. The same techniques might be used for collabo-

rative authoring and educational purposes.

Besides live conferencing, we are also interested by people who are willing to program better

integration of T

E

X

MACS

with the web. As a �rst step, this would require an internal C++

plug-in based onWget or Curl for accessing web-pages, which supports cookies, security,

etc. At a second stage, these features should be exploited by the Html converters. At the

last stage, one might develop more general web-based services.

C.9. Become a T

E

X

MACS

developer

Apart from the kind of contributions which have been described in more detail above,

there are many more issues where your help would be appreciated. Please take a look at

our plans for the future for more details. Of course, you should feel free to come up with

your own ideas and share them with us on the texmacs-dev@gnu.org mailing list!

C.9 Become a T

E

X

MACS

developer 191

Appendix D

Interfacing T

E

X

MACS

with other programs

D.1. Introduction

In this chapter we describe how to interface T

E

X

MACS

with an extern application. Such

interfaces should be distributed in the form of plugins. The plug-in may either contain the

extern application, or provide the �glue� between T

E

X

MACS

and the application. Usually,

interfaces are used interactively in shell sessions (see Text! Session). But they may also

be designed for background tasks, such as spell checking or typesetting.

The communication between T

E

X

MACS

and the application takes place using a customizable

input format and the special T

E

X

MACS

meta-format for output from the plug-in. The meta-

format enables you to send structured output to T

E

X

MACS

, using any common format like

verbatim, L

A

T

E

X, Postscript, HTML, or T

E

X

MACS

itself. This is useful when adding a

T

E

X

MACS

interface to an existing system, since L

A

T

E

X or Postscript output routines are

often already implemented. It will then su�ce to put the appropriate markers in order to

make a �rst interface with T

E

X

MACS

.

As soon as basic communication between your application and T

E

X

MACS

is working, you

may improve the interface in many ways. Inside shell sessions, there is support for prompts,

default inputs, tab-completion, mathematical and multi-line input, etc. In general, your

application may take control of T

E

X

MACS

and modify the user interface (menus, keyboard,

etc.) or add new Scheme routines to T

E

X

MACS

. Your application may even extend the

typesetter.

In the directory $TEXMACS_PATH/examples/plugins, you can �nd many examples of simple

plug-ins. In the next sections, we will give a more detailed explanation of the interfacing

features of T

E

X

MACS

on the hand of these examples. In order to try one of these examples,

we recall that you just have to copy it to either one of the directories

$TEXMACS_PATH/plugins

$TEXMACS_HOME_PATH/plugins

and run the Makefile (if there is one).

D.2. Basic input/output using pipes

The con�guration and the compilation of the minimal plug-in is described in the chapter

about plug-ins. We will now study the source �le minimal/src/minimal.cpp. Essentially,

the main routine is given by

int

main () {

display-startup-banner

while (true) {

read-input

display-output

}

return 0;

}

193

By default, T

E

X

MACS

just send a '\n'-terminated string to the application as the input.

Consequently, the code for read-input is given by

char buffer[100];

cin.getline (buffer, 100, '\n');

The output part is more complicated, since T

E

X

MACS

needs to have a secure way for

knowing whether the output has �nished. This is accomplished by encapsulating each piece

of output (in our case both the display banner and the interactive output) inside a block

of the form

DATA_BEGIN

format:message

DATA_END

Here DATA_BEGIN and DATA_END stand for special control characters:

#define DATA_BEGIN ((char) 2)

#define DATA_END ((char) 5)

#define DATA_ESCAPE ((char) 27)

The DATA_ESCAPE is used for producing the DATA_BEGIN and DATA_END characters in the

message using the rewriting rules

DATA_ESCAPE DATA_BEGIN
�

DATA_BEGIN

DATA_ESCAPE DATA_END

�

DATA_END

DATA_ESCAPE DATA_ESCAPE

�

DATA_ESCAPE

The format speci�es the format of the message . For instance, in our example, the code

of display-startup-banner is given by

cout << DATA_BEGIN << "verbatim:";

cout << "Hi there!";

cout << DATA_END;

fflush (stdout);

Similarly, the code of display-output is given by

cout << DATA_BEGIN << "verbatim:";

cout << "You typed " << buffer;

cout << DATA_END;

fflush (stdout);

Remark D.1. For synchronization purposes, T

E

X

MACS

will assume that the output is

�nished as soon as it encounters the

DATA_END

which closes the initial

DATA_BEGIN

. So all

output has to be inside one single outer

DATA_BEGIN

-

DATA_END

block: if you send more

blocks, then T

E

X

MACS

will retake control before reading all your output. It is possible to

nest

DATA_BEGIN

-

DATA_END

blocks though, as we will see below.

Remark D.2. In our example, the C++ code for the application is included in the plug-in.

In the case when you are writing a T

E

X

MACS

interface for an existing application myapp , the

convention is to create a --texmacs option for this program. Then it is no longer necessary

to have myapp/src and myapp/bin directories for your plug-in and it su�ces to con�gure

the plug-in by putting something like the following in myapp/progs/init-myapp.scm:

194 Interfacing T

E

X

MACS

with other programs

(plugin-configure myapp

(:require (url-exists-in-path? "myapp"))

(:launch "myapp --texmacs")

(:session "Myapp"))

In the case when you do not have the possibility to modify the source code of myapp , you

typically have to write an input/output �lter tm_myapp for performing the appropriate

rewritings. By looking at the standard plug-ins distributed with T

E

X

MACS

in

$TEXMACS_PATH/plugins

you can �nd several examples of how this can be done.

D.3. Formatted and structured output

In the previous section, we have seen that output from applications is encapsulated in

blocks of the form

DATA_BEGIN

format:message

DATA_END

In fact, the message may recursively contain blocks of the same form. Currently imple-

mented formats include verbatim, latex, html, ps, scheme. The scheme format is used

for sending T

E

X

MACS

trees in the form of Scheme expressions.

The formula plug-in.

The formula plug-in demonstrates the use of L

A

T

E

X as the output format. It consists of

the �les

formula/Makefile

formula/progs/init-formula.scm

formula/src/formula.cpp

The body of the main loop of formula.cpp is given by

int i, nr;

cin >> nr;

cout << DATA_BEGIN << "latex:";

cout << "$";

for (i=1; i<nr; i++)

cout << "x_{" << i << "}+";

cout << "x_{" << i << "}$";

cout << DATA_END;

fflush (stdout);

Similarly, the use of nested output blocks is demonstrated by the nested plug-in; see in

particular the source �le nested/src/nested.cpp.

Remark D.3. At the moment, we only implemented L

A

T

E

X as a standard transmission

format for mathematical formulas, because this is the format which is most widely used. In

the future, we intend to implement more semantically secure formats, and we recommend

you to keep in mind the possibility of sending your output in tree format.

D.3 Formatted and structured output 195

Nevertheless, we enriched standard L

A

T

E

X with the * and \bignone commands for mul-

tiplication and closing big operators. This allows us to distinguish between

a * (b + c)

(i.e. a multiplied by b+ c) and

f(x + y)

(i.e. f applied to x+ y). Similarly, in

\sum_{i=1}^m a_i \bignone + \sum_{j=1}^n b_j \bignone

the \bignone command is used in order to specify the scopes of the \sum operators.

It turns out that the systematic use of the * and \bignone commands, in combination

with clean L

A

T

E

X output for the remaining constructs, makes it a priori possible to asso-

ciate an appropriate meaning to your output. In particular, this usually makes it possible

to write additional routines for copying and pasting formulae between di�erent systems.

The markup plug-in.

It is important to remind that structured output can be combined with the power of

T

E

X

MACS

as a structured editor. For instance, the markup plug-in demonstrates the de�-

nition of an additional tag foo, which is used as an additional primitive in the output of

the application. More precisely, the markup plug-in consists of the following �les:

markup/Makefile

markup/packages/session/markup.ts

markup/progs/init-markup.scm

markup/src/markup.cpp

The style package markup.ts contains the following de�nition for foo:

hwithjmodejmathjhassignjfoojhmacrojx jhfracj1j1+x iiii

The foo tag is used in the following way in the body of the main loop of markup.cpp:

char buffer[100];

cin.getline (buffer, 100, '\n');

cout << DATA_BEGIN << "latex:";

cout << "$\\foo{" << buffer << "}$";

cout << DATA_END;

fflush (stdout);

Notice that the style package markup.ts also de�nes the markup-output environment:

hassignjmarkup-output jhmacrojbody jhgeneric-outputjhwithjpar-mode jcenterj

bodyiiii

This has the e�ect of centering the output in sessions started using Text ! Session !

Markup.

196 Interfacing T

E

X

MACS

with other programs

D.4. Output channels, prompts and default input

Besides blocks of the form

DATA_BEGIN

format:message

DATA_END

the T

E

X

MACS

meta-format also allows you to use blocks of the form

DATA_BEGIN

channel#message

DATA_END

Here channel speci�es an �output channel� to which the body message has to be sent.

The default output channel is output, but we also provide channels prompt and input for

specifying the prompt and a default input for the next input in a session. Default inputs

may be useful for instance be useful for demo modes of computer algebra systems. In the

future, we also plan to support error and status channels.

The prompt plug-in.

The prompt plug-in shows how to use prompts. It consists of the �les

prompt/Makefile

prompt/progs/init-prompt.scm

prompt/src/prompt.cpp

The routine for displaying the next prompt is given by

void

next_input () {

counter++;

cout << DATA_BEGIN << "prompt#";

cout << "Input " << counter << "] ";

cout << DATA_END;

}

This routine is both used for displaying the startup banner

cout << DATA_BEGIN << "verbatim:";

cout << "A LaTeX -> TeXmacs converter";

next_input ();

cout << DATA_END;

fflush (stdout);

and in the body of the main loop

char buffer[100];

cin.getline (buffer, 100, '\n');

cout << DATA_BEGIN << "verbatim:";

cout << DATA_BEGIN;

cout << "latex:$" << buffer << "$";

cout << DATA_END;

next_input ();

cout << DATA_END;

fflush (stdout);

D.4 Output channels, prompts and default input 197

D.5. Sending commands to T

E

X

MACS

The application may use command as a very particular output format in order to send

Scheme commands to T

E

X

MACS

. In other words, the block

DATA_BEGIN

command:cmd

DATA_END

will send the command cmd to T

E

X

MACS

. Such commands are executed immediately after

reception of

DATA_END

. We also recall that such command blocks may be incorporated

recursively in larger

DATA_BEGIN

-

DATA_END

blocks.

The menus plug-in.

The nested plug-in shows how an application can modify the T

E

X

MACS

menus in an

interactive way. The plug-in consists of the �les

menus/Makefile

menus/progs/init-menus.scm

menus/src/menus.cpp

The body of the main loop of menus.cpp simply contains

char buffer[100];

cin.getline (buffer, 100, '\n');

cout << DATA_BEGIN << "verbatim:";

cout << DATA_BEGIN << "command:(menus-add \""

<< buffer << "\")" << DATA_END;

cout << "Added " << buffer << " to menu";

cout << DATA_END;

fflush (stdout);

The Scheme macro menus-add is de�ned in init-menus.scm:

(menu-bind menus-menu

("Hi" (insert "Hello world")))

(menu-extend texmacs-extra-menu

(if (equal? (get-env "prog language") "menus")

(=> "Menus" (link menus-menu))))

(define-macro (menus-add s)

`(menu-extend menus-menu

(,s (insert ,s))))

The con�guration of menus proceeds as usual:

(plugin-configure menus

(:require (url-exists-in-path? "menus.bin"))

(:launch "menus.bin")

(:session "Menus"))

198 Interfacing T

E

X

MACS

with other programs

D.6. Background evaluations

Until now, we have always considered interfaces between T

E

X

MACS

and applications which

are intended to be used interactively in shell sessions. But there also exists a Scheme

command

(plugin-eval plugin session expression)

for evaluating an expression using the application. Here plugin is the name of the plug-in,

session the name of the session and expression a Scheme expression which represents

a T

E

X

MACS

tree.

The substitute plug-in.

Background evaluations may for instance be used in order to provide a feature which

allows the user to select an expression and replace it by its evaluation. For instance,

the substitute plug-in converts mathematical L

A

T

E

X expressions into T

E

X

MACS

, and it

provides the

C-F12

keyboard shortcut for replacing a selected text by its conversion. The

plug-in consists of the following �les

substitute/Makefile

substitute/progs/init-substitute.scm

substitute/src/substitute.cpp

The main evaluation loop of substitute.cpp simply consists of

char buffer[100];

cin.getline (buffer, 100, '\n');

cout << DATA_BEGIN;

cout << "latex:$" << buffer << "$";

cout << DATA_END;

fflush (stdout);

Moreover, the con�guration �le init-substitute.scm contains the following code for

replacing a selected region by its evaluation

(define (substitute-substitute)

(import-from (texmacs plugin plugin-cmd))

(if (selection-active-any?)

(let* ((t (tree->stree (the-selection)))

(u (plugin-eval "substitute" "default" t)))

(clipboard-cut "primary")

(insert (stree->tree u)))))

as well as the keyboard shortcut for

C-F12

:

(kbd-map

("C-F12" (substitute-substitute)))

Notice that these routines should really be de�ned in a separate module for larger plug-ins.

The secure plug-in.

D.6 Background evaluations 199

Another example of using an interface in the background is the secure plug-in which

consists of the �les

secure/Makefile

secure/packages/secure.ts

secure/progs/init-secure.scm

secure/progs/secure-secure.scm

secure/src/secure.cpp

Just as substitute.cpp above, the main program secure.cpp just converts mathemat-

ical L

A

T

E

X expressions to T

E

X

MACS

. The secure-secure.scm module contains the secure

Scheme routine latexer:

(tm-define (latexer s)

(:type (tree -> object))

(:synopsis "convert LaTeX string to TeXmacs tree using

plugin")

(:secure #t)

(plugin-eval "secure" "default" (tree->string s)))

It is important to de�ne latexer as being secure, so that it can be used in order to de�ne

additional markup using the extern primitive. This is done in the style �le secure.ts:

See a LaTeX math command as a TeXmacs expression via plug-in

hassignjlatexer jhmacrojx jhexternjlatexerjxiii

After compilation, installation, relaunching T

E

X

MACS

and selecting Document ! Use

package! secure, you will now be able to use latexer as a new primitive. The primitive takes

a mathematical L

A

T

E

X expression as its argument and displays its T

E

X

MACS

conversion.

D.7. Mutator tags

A mutator tag is of the form hmutatorjbody jcmdi, where body is the visible body of the tag

and cmd a secure Scheme script which is called periodically and which is allowed to modify

the body of the mutator (or even any other part of the document). During the execution

of cmd the function mutator-path yields the position of the body in the document tree.

Mutator tags are a particularly interesting feature of T

E

X

MACS

for producing highly inter-

active documents. For instance, inside computer algebra sessions, the output is retrieved

inside a mutator tag (which automatically removes itself when the output is complete). In

the future, mutators might be used for live conferencing or in interfaces with proof systems.

Remark D.4. Mutator tags only work properly when the explicitly occur in the document;

they will not work if they merely occur in the body of a macro, even if the body of the

mutator remains accessible.

Indeed, the current implementation of T

E

X

MACS

searches for mutator tags in all documents

after a small period of inactivity. Documents which are known not to contain mutator tags

are ignored during this research. Of course, this implementation is both quite e�cient and

incompatible with the macro system. So there is room for future improvements.

200 Interfacing T

E

X

MACS

with other programs

Remark D.5. For e�ciency reasons, it is recommended that mutator tags mainly modify

there own bodies and not other parts of the document, except at really exceptional occa-

sions.

The mutator plug-in.

A very simple example with two types of mutators is provided in the mutator plug-in.

It provides the user with two keyboard shortcuts

C-F11

and

C-F12

, which respectively

insert the current time and some blinking text. The plug-in consists of the single �le

mutator/progs/init-mutator.scm

The

C-F11

key simply inserts hmutatorjtextj(mutate-date)i into the main text:

(kbd-map ("C-F11" (insert '(mutator "" "(mutate-date)"))))

The secure Scheme routine mutate-date is de�ned as follows:

(tm-define (mutate-date)

(:secure #t)

(let* ((p (the-mutator-path))

(date (var-eval-system "date +\"%H:%M:%S\"")))

(tm-assign-diff p date)))

The tm-assign-diff command is convenient, because it only modi�es the document if a

real change occurred.

The insertion of blinking content is slightly more complex, since it also takes into account

the current content of the mutator tag. The

C-F12

key inserts hmutator j text j (mutate-

blink)i into the main text and puts the cursor after the text in the body of the mutator:

(kbd-map ("C-F12" (insert-go-to '(mutator "text" "(mutate-

blink)") '(0 4))))

The secure Scheme routine mutate-blink is de�ned as follows:

(tm-define (mutate-blink)

(:secure #t)

(let* ((mod (lambda (x y) (* y (- (/ x y) (floor (/ x

y))))))

(p (the-mutator-path))

(t (tm-subtree p))

(s (string->number (var-eval-system "date +\"%S\"")))

(e (mod s 4)))

(if (and (<= e 1) (not (match? t '(strong :1))))

(tm-ins-unary p 'strong))

(if (and (>= e 2) (match? t '(strong :1)))

(tm-rem-unary p))))

Remark D.6. Notice that the above examples are only meant to illustrate the use of muta-

tors. Ideally speaking, dates and blinking content should not make use of mutators, since

mutators continuously modify the document (think about undoing changes, for instance).

In the future, we plan to add primitives like animations and movies to T

E

X

MACS

, for which

the content remains �xed, but whose presentation changes over time.

D.7 Mutator tags 201

D.8. Mathematical and customized input

The T

E

X

MACS

meta-format allows application output to contain structured text like math-

ematical formulas. In a similar way, you may use general T

E

X

MACS

content as the input

for your application. By default, only the text part of such content is kept and sent to the

application as a string. Moreover, all characters in the range 0�31 are ignored, except for

'\t' and '\n' which are transformed into spaces. There are two methods to customize

the way input is sent to your application. First of all, the con�guration option

(:serializer ,routine)

speci�es a scheme function for converting T

E

X

MACS

trees to string input for your applica-

tion, thereby overriding the default method. This method allows you for instance to treat

multi-line input in a particular way or the perform transformations on the T

E

X

MACS

tree.

The :serialize option is a very powerful, but also a very abstract way to customize input:

it forces you to write a complete input transformation function. In many circumstances,

the user really wants to rewrite two dimensional mathematical input to a more standard

form, like rewriting

a

b

to ((a)/(b)). Therefore, a second way for customizing the input is

to use the command

(plugin-input-converters myplugin

rules)

This command speci�es input conversion rules for myplugin for �mathematical input� and

reasonable defaults are provided by T

E

X

MACS

. Each rule is of one of the following two forms:

Leaf transformation rules.

Given two strings symbol and conversion , the rule

(symbol conversion)

speci�es that the T

E

X

MACS

symbol symbol should be converted to conversion .

Tag transformation rules.

Given a symbol tag and a Scheme function routine , the rule

(tag routine)

speci�es that routine will be used as the conversion routine for tag . This routine

should just write a string to the standard output. The Scheme function plugin-

input may be used for the recursive transformation of the arguments of the tag.

The input plug-in.

The input plug-in demonstrates the use of customized mathematical input. It consists of

the �les

input/Makefile

input/packages/session/input.ts

input/progs/init-input.scm

input/progs/input-input.scm

202 Interfacing T

E

X

MACS

with other programs

input/src/input.cpp

The Scheme con�guration code in init-input.scm is given by

(plugin-configure input

(:require (url-exists-in-path? "input.bin"))

(:initialize (input-initialize))

(:launch "input.bin")

(:session "Input"))

Here input-initialize is an initialization routine which adds the new input conversion

rules in a lazy way:

(define (input-initialize)

(import-from (texmacs plugin plugin-convert))

(lazy-input-converter (input-input) input))

In other words, the module input-input.scm will only be loaded when we explicitly

request to make a conversion. The conversion rules in input-input.scm are given by

(plugin-input-converters input

(frac input-input-frac)

(special input-input-special)

("<vee>" "||")

("<wedge>" "&&"))

This will cause _ and ^ to be rewritten as || and && respectively. Fractions

a

b

are rewritten

as ((a):(b)) using the routine

(define (input-input-frac t)

(display "((")

(plugin-input (car t))

(display "):(")

(plugin-input (cadr t))

(display "))"))

In the additional style �le input.ts we also de�ned some additional markup special:

hassignjspecial j

hmacrojbody j

hblockj

htformatj

hcwithj1j1j1j1jcell-background jpastel greenij

htablej

hrowjhcelljbodyiiiiiii

This tag is rewritten using the special conversion rule

(define (input-input-special t)

(display "[[[SPECIAL:")

(plugin-input (car t))

(display "]]]"))

D.8 Mathematical and customized input 203

As to the C++ code in input.cpp, the startup banner automatically puts the shell session

in mathematical input mode:

cout << DATA_BEGIN << "verbatim:";

cout << DATA_BEGIN << "command:(session-use-math-input #t)"

<< DATA_END;

cout << "Convert mathematical input into plain text";

cout << DATA_END;

fflush (stdout);

In the main loop, we content ourselves the reproduce the input as output:

char buffer[100];

cin.getline (buffer, 100, '\n');

cout << DATA_BEGIN << "verbatim:";

cout << buffer;

cout << DATA_END;

fflush (stdout);

D.9. Tab-completion

By default, T

E

X

MACS

looks into your document for possible tab-completions. Inside sessions

for your application, you might wish to customize this behaviour, so as to complete built-

in commands. In order to do this, you have to specify the con�guration option

(:tab-completion #t)

in your init-myplugin.scm �le, so that T

E

X

MACS

will send special tab-completion requests

to your application whenever you press

tab

inside a session. These commands are of the

form

DATA_COMMAND

(complete input-string cursor-position)

return

Here DATA_COMMAND stands for the special character '\20' (ASCII 16). The input-string

is the complete string in which the

tab

occurred and the cursor-position is an integer

which speci�es the position of the cursor when you pressed

tab

. T

E

X

MACS

expects your

application to return a tuple with all possible tab-completions of the form

DATA_BEGIN
scheme:(tuple root completion-1 � completion-

n)

DATA_END

Here root corresponds to a substring before the cursor for which completions could be

found. The strings completion-1 until completion-n are the list of completions as they

might be inserted at the current cursor position. If no completions could be found, then

you may also return the empty string.

Remark D.7. In principle, the tab-completion mechanism should still work in mathe-

matical input mode. In that case, the input-string will correspond to the serialization

of the T

E

X

MACS

input.

204 Interfacing T

E

X

MACS

with other programs

Remark D.8. The way T

E

X

MACS

sends commands to your application can be customized

in a similar way as for the input: we provide a :commander con�guration option for this,

which works in a similar way as the :serializer option.

The complete plug-in.

A very rudimentary example of how the tab-completion mechanism works is given by the

complete plug-in, which consists of the following �les:

complete/Makefile

complete/progs/init-complete.scm

complete/src/complete.cpp

The startup banner in complete.cpp takes care of part of the con�guration:

cout << DATA_BEGIN << "verbatim:";

format_plugin ();

cout << "We know how to complete 'h'";

cout << DATA_END;

fflush (stdout);

Here format_plugin is given by

void

format_plugin () {

// The configuration of a plugin can be completed at startup

time.

// This may be interesting for adding tab-completion a

posteriori.

cout << DATA_BEGIN << "command:";

cout << "(plugin-configure complete (:tab-completion #t))";

cout << DATA_END;

}

In the main loop, we �rst deal with regular input:

char buffer[100];

cin.getline (buffer, 100, '\n');

if (buffer[0] != DATA_COMMAND) {

cout << DATA_BEGIN << "verbatim:";

cout << "You typed " << buffer;

cout << DATA_END;

}

We next treat the case when a tab-completion command is sent to the application:

else {

cout << DATA_BEGIN << "scheme:";

cout << "(tuple \"h\" \"ello\" \"i there\" \"ola\"

\"opsakee\")";

cout << DATA_END;

}

fflush (stdout);

D.9 Tab-completion 205

As you notice, the actual command is ignored, so our example is really very rudimentary.

D.10. Dynamic libraries

Instead of connecting your system to T

E

X

MACS

using a pipe, it is also possible to connect

it as a dynamically linked library. Although communication through pipes is usually easier

to implement, more robust and compatible with gradual output, the second option is faster.

In order to dynamically link your application to T

E

X

MACS

, you should follow the T

E

X

MACS

communication protocol, which is speci�ed in the following header �le:

$TEXMACS_PATH/include/TeXmacs.h

In this �le it is speci�ed that your application should export a data structure

typedef struct package_exports_1 {

char* version_protocol; /* "TeXmacs communication protocol

1" */

char* version_package;

char* (*install) (TeXmacs_exports_1* TeXmacs,

char* options, char** errors);

char* (*evaluate) (char* what, char* session, char**

errors);

} package_exports_1;

which contains an installation routine for your application, as well as an evaluation routine

for further input (for more information, see the header �le). T

E

X

MACS

will on its turn

export a structure

typedef struct TeXmacs_exports_1 {

char* version_protocol; /* "TeXmacs communication protocol

1" */

char* version_TeXmacs;

} TeXmacs_exports_1;

It is assumed that each application takes care of its own memory management. Hence,

strings created by T

E

X

MACS

will be destroyed by T

E

X

MACS

and strings created by the

application need to be destroyed by the application.

The string version_protocol should contain "TeXmacs communication protocol 1"

and the string version_package the version of your package. The routine install will

be called once by T

E

X

MACS

in order to initialize your system with options options. It

communicates the routines exported by T

E

X

MACS

to your system in the form of a pointer

to a structure of type TeXmacs_exports_1. The routine should return a status message like

"yourcas-version successfully linked to TeXmacs"

If installation failed, then you should return NULL and *errors should contain an error

message.

The routine evaluate is used to evaluate the expression what inside a T

E

X

MACS

-session

with name session. It should return the evaluation of what or NULL if an error occurred.

*errors either contains one or more warning messages or an error message, if the evalua-

tion failed. The formats being used obey the same rules as in the case of communication

by pipes.

206 Interfacing T

E

X

MACS

with other programs

Finally, the con�guration �le of your plug-in should contain something as follows:

(plugin-configure myplugin

(:require (url-exists? (url "$LD_LIBRARY_PATH"

"libmyplugin.so")))

(:link "libmyplugin.so" "myplugin_exports" "")

further-configuration)

Here myplugin_exports is a pointer to a structure of the type package_exports_1.

Remark D.9. It is possible that the communication protocol changes in the future. In that

case, the data structures TeXmacs_exports_1 and package_exports_1 will be replaced by

data structures TeXmacs_exports_n and package_exports_n, where n is the version of the

protocol. These structures will always have the abstract data structures TeXmacs_exports

and package_exports in common, with information about the versions of the protocol,

T

E

X

MACS

and your package.

The dynlink plug-in.

The dynlink plug-in gives an example of how to write dynamically linked libraries. It

consists of the following �les:

dynlink/Makefile

dynlink/progs/init-dynlink.scm

dynlink/src/dynlink.cpp

The Makefile contains

tmsrc = /home/vdhoeven/texmacs/src/TeXmacs

CXX = g++

LD = g++

lib/libtmdynlink.so: src/dynlink.cpp

$(CXX) -I$(tmsrc)/include -c src/dynlink.cpp -o

src/dynlink.o

$(LD) -shared -o lib/libtmdynlink.so src/dynlink.o

so that running it will create a dynamic library dynlink/lib/libdynlink.so from

dynlink.cpp. The tmsrc variable should contain $TEXMACS_PATH, so as to �nd the include

�le TeXmacs.h. The con�guration �le init-dynlink.scm simply contains

(plugin-configure dynlink

(:require (url-exists? (url "$LD_LIBRARY_PATH"

"libtmdynlink.so")))

(:link "libtmdynlink.so" "dynlink_exports" "")

(:session "Dynlink"))

As to the C++ �le dynlink.cpp, it contains a string

static char* output= NULL;

with the last output, the initialization routine

D.10 Dynamic libraries 207

char*

dynlink_install (TeXmacs_exports_1* TM, char* opts, char**

errs) {

output= (char*) malloc (50);

strcpy (output, "\2verbatim:Started dynamic link\5");

return output;

}

the evaluation routine

char*

dynlink_eval (char* what, char* session, char** errors) {

free (output);

output= (char*) malloc (50 + strlen (what));

strcpy (output, "\2verbatim:You typed ");

strcat (output, what);

strcat (output, "\5");

return output;

}

and the data structure with the public exports:

package_exports_1 dynlink_exports= {

"TeXmacs communication protocol 1",

"Dynlink 1",

dynlink_install,

dynlink_eval

};

Notice that the application takes care of the memory allocation and deallocation of output.

D.11. Miscellaneous features

Several other features are supported in order to write interfaces between T

E

X

MACS

and

extern applications. Some of these are very hairy or quite speci�c. Let us brie�y describe

a few miscellaneous features:

Interrupts.

The �stop� icon can be used in order to interrupt the evaluation of some input. When

pressing this button, T

E

X

MACS

will just send a SIGINT signal to your application. It expects

your application to �nish the output as usual. In particular, you should close all open

DATA_BEGIN

-blocks.

Testing whether the input is complete.

Some systems start a multiline input mode as soon as you start to de�ne a function or

when you enter an opening bracket without a matching closing bracket. T

E

X

MACS

allows

your application to implement a special predicate for testing whether the input is complete.

First of all, this requires you to specify the con�guration option

(:test-input-done #t)

208 Interfacing T

E

X

MACS

with other programs

As soon as you will press

return

in your input, T

E

X

MACS

will then send the command

DATA_COMMAND
(input-done? input-string)

return

Your application should reply with a message of the form

DATA_BEGIN

scheme:done

DATA_END

where done is either #t or #f. The multiline plug-in provides an example of this mech-

anism (see in particular the �le multiline/src/multiline.cpp).

D.12. Plans for the future

There are many improvements to be made in the T

E

X

MACS

interface to computer algebra

systems. First of all, the computer algebra sessions have to be improved (better hyphen-

ation, folding, more dynamic subexpressions, etc.).

As to interfaces with computer algebra systems, out main plans consist of providing tools

for semantically safe communication between several system. This probably will be imple-

mented in the form of a set of plug-ins which will provide conversion services.

D.12 Plans for the future 209

Index

A modi�er

Equivalent for Mod4 172

abbr . 139

above . 116

abstract . 157

acmconf . 138

acronym . 140

action . 119

active . 132

active* . 132

add-to-counter-group 151

Algorithm 35

algorithm 152

aligned-item 145

allouche 139

amsart . 138

and . 131

appendix 162

arg 124, 124, 124, 125, 125, 129

article . 48, 60, 60, 60, 60, 95, 95, 137, 138,

138, 138, 189

assign . 123

associate 76, 136, 136

attr . 136

author-address 158, 161

author-by 161

author-email 158, 161

author-homepage 158, 161

author-name 158

author-note 158

author-render-name 161

auxiliary . 77

axiom . 139

backup . 136

below . 116

bib-list . 146

bibliography 162

big . 114

big-�gure 156

big-table . 156

binom . 143

blanc-page 150

block . 141

block content 118, 120

block context 118, 119, 123

block* . 141

body . 76, 152

book 95, 95, 137, 138, 138

bpr . 139

Caps-lock key

Map to H modi�er 171

case 127, 127

cell . 118

center . 141

chapter . 162

choice . 143

choose . 143

cite . 145

cite* . 139

cite-detail 145

close-tag 133, 133

code . 141

code* . 140

collection 76, 136

compact-item 145

compound 126

concat . 107

counter-in-g 151

counter-x 151

cwith . 117

date 130, 130, 130

datoms . 113

dbox . 136

description 144

description-align 144

description-compact 144

description-dash 144

description-long 144

det . 143

dfn . 139

display-in-g 151

display-x 151

div . 131

dlines . 113

doc-AMS-class 158, 161

doc-author 160

doc-author-block 160

doc-author-data 158, 159

doc-author-main 159

doc-author-note 159, 161

doc-authors 160

doc-data . 157

doc-data-abstract 159

doc-data-hidden 159

doc-data-main 159

doc-data-main* 159

doc-data-note 159

doc-date 158, 160

doc-keywords 158, 161

doc-make-title 160

doc-note . 158

211

doc-render-title 160

doc-running-author 158

doc-running-title 158

doc-subtitle 158, 160

doc-title . 158

doc-title-block 160

doc-title-note 161

Document 11, 13

document 107

Color

Background 89

Foreground 89

Font . 90

Dpi 12

Size 16

Language 12, 13, 18, 89, 130, 189

Russian 172

Your language 187

Magni�cation 89

Master

Attach 31

Package 48, 48

Page . 16

Breaking 35

Layout 16

Screen layout 16

Margins as on paper 12

Size 12, 97

Type 16, 30, 98

Paper 12

Style 12, 13, 38, 47, 47, 137

Other 165

source 47

Update

All 30

Bibliography 30

Table of contents 30

Use package 38, 48, 137

Program 44

secure 200

View 50, 76

Closing style 104

Compacti�cation 51, 104

Edit source tree 50, 89

Informative �ags 90, 135

Detailed 135

Page layout

Margins as on paper 98

Show header and footer 98

Source tags 133

Source tree 50

Special 51, 104

Style 104

document style 13

dpages . 113

drd-props 126

dueto . 155

dynamic scoping 87

Edit

Copy . 33

Copy to 33

Scheme 81

Cut . 33

Export 33

Import 33

Paste 33

Paste from 33

Scheme 81

Preferences 11, 16, 17, 71, 171

Keyboard 171, 171, 172

Automatic quotes 18

Cyrillic input method

translit 173

Language

Russian 172

Look and feel 171

Printer 12, 97

Font type

True Type 12

Security 119

Accept all scripts 135

Redo . 34

Replace 33

Search 33

Spell . 34

Undo 34

em . 139

enumerate 144

enumerate-alpha 144

enumerate-Alpha 144

enumerate-numeric 144

enumerate-roman 144

enumerate-Roman 144

env . 60, 60

env . 153

env-base 60

env-base 153

env-float 60

env-float 156

env-math 60

env-math 154

env-theorem 60

env-theorem 155

environments 13

eqnarray . 154

eqnarray* 154

equal . 131

equation . 154

equation* 154

error . 136

errput . 152

eval 128, 129

eval-args . 125

evens . 126

exam . 138

exercise-name 156

exercise-sep 156

extern . 135

�gure-name 157

�gure-sep 157

212 Index

File . 189

Export

Latex 165

Pdf 12

Postscript 12

Scheme 81

XML 79

Import

Html 168

Latex 167

Scheme 81

XML 79

Load 11, 12

New 12, 47

Print

Print all 12

Print all to �le 12

Save . 12

Save as 12

�lter . 126

�ag 135, 135

Flexibility 35

�oat 120, 120, 120

fold . 142

foo 133, 133

footnote . 156

footnote-sep 157

Format 13, 13

Color 89

Condensed 93

Display style 93, 115

Font . 90

Formula style

on 21

Index level 92

Language 18, 89

Russian 172

Size . 92

frac . 115

generic 95, 95, 137, 138, 138, 190

get-arity . 126

get-label . 126

giac . 139

glossary . 148

glossary-1 148

glossary-2 148

glossary-dots 148

glossary-dup 148

glossary-explain 148

glossary-line 148

Go . 12

greater . 131

greatereq 131

group . 120

group-common-counter 151

group-individual-counters 151

header 60, 161

header-article 60, 60, 137

header-author 161

header-book 60, 137

header-primary 161

header-secondary 162

header-title 157

header-title 161

Help . 185

Interfacing 191

Scheme 34

Source code

Data conversion 191

Data format 191

h�ush . 148

higher-level macro 126

hlink 119, 132

hrule . 142

hspace 109, 109

htab 109, 109, 109, 109, 109, 110

huge . 140

hybrid 133, 134

identity . 136

if . 127, 127

if* . 113

inactive 132, 132

inactive* 132

inc-x . 150

include . 119

indent 134, 152

indent-both 149

indent-left 149

indent-right 149

index . 147

index-1 . 147

index-1* . 147

index-2 . 147

index-2* . 147

index-3 . 147

index-3* . 147

index-4 . 147

index-4* . 147

index-5 . 147

index-5* . 147

index-complex 147

index-dots 147

index-line 147

initial . 76

initial environment 123

inline content 118

inline-tag 133

input . 152

Insert

Executable 54

Image 29

Small �gure 35

Link

Action 29

Citation 30

Hyperlink 29

Include 29, 31

Index entry 31, 31, 31

Invisible citation 30

Label 29

Index 213

Reference 29

Macro 54

Mathematics

Equation 29

Equations 29

Fraction 33

Page insertion

Floating �gure 35

Floating object 35

Floating table 35

Footnote 35

Position �oat 35

Session 44

Space 15

Speci�c

Latex 166, 166

Texmacs 166, 166

Switch

Fold 142

Unfold 142

Table 25

Small table 35

is-tuple . 132

itemize . 143

itemize-arrow 143

itemize-dot 143

itemize-minus 143

jsc . 138

kbd . 140

label . 118

large . 140

larger . 140

latex . 133

LaTeX . 142

left 114, 114, 114

left-�ush . 148

length 130, 132

less . 131

lesseq . 131

letter 95, 95, 138

Limits . 35

line content 120

line context 118, 118, 120

line-break 110

list . 60

list-of-�gures 163

list-of-tables 163

localize . 150

logical paragraphs 110

look-up . 132

lprime . 116

lsub . 115

lsup . 115

M modi�er

Equivalent for Mod1 172

macaulay2 139

macro . 124

made-by-TeXmacs 142

map . 150

map-args 125, 125, 125

margin-�rst-other 149

markup.ts 196, 196

math . 140

Mathematics

Size tag 140

matrix . 143

maxima . 47

meaning . 136

merge 130, 132

mid . 114

middle-tag 133

minus . 131

mod . 131

move . 112

multi-paragraph cell 118

mutator 119, 200

name . 139

neg . 116

new-counter 150

new-counter-group 151

new-dpage 136

new-dpage* 136

new-env . 154

new-exercise 153, 153

new-line . 110

new-list . 63

new-page 112

new-page* 112

new-remark 153

new-theorem 153

next-line . 110

next-x . 151

no-break . 110

no-indent 111

no-indent* 111

no-page-break 111

no-page-break* 112

nocite . 145

normal-size 140

not . 131

number . 130

number-env 189

number-europe 47, 138, 138, 153

number-long-article 137, 138

number-us 138

op . 140

open-tag 133, 133

Options

Security 29

or . 131

orphans and widows 111

output . 152

over . 131

overline . 142

padded-bothlined 149

padded-centered 149

padded-normal 149

padded-std-bothlined 149

page �lling 111

page-break 112

214 Index

page-break* 112

pageref . 119

paragraph 107, 162

Number of columns 35

part . 162

pdf . 12

person . 139

phantom 142

plus . 130

program . 152

project . 76

proof . 155

provides . 124

quasi . 129

quasiquote 128, 129

quotation 141

quote 128, 128

quote-arg 129, 129

quote-env 141

quote-value 129, 129

range 130, 132

raw-data . 121

really-huge 140

really-large 140

really-small 140

really-tiny 140

reference 118

references 76

render-bibitem 146

render-big-�gure 157

render-cite 145

render-cite-detail 145

render-exercise 155

render-list 145

render-proof 156

render-remark 155

render-small-�gure 157

render-theorem 155

repeat . 113

reset-x . 150

resize . 112

rewrite-inactive 136

right . 114

right-�ush 148

right�ush 134

row . 117

rprime . 116

rsub . 115

rsup . 115

samp . 139

section . 162

section-article 60

section-base 60, 66

section-base . . 145, 162, 162, 163, 164, 164

sectional-centered 164

sectional-centered-bold 164

sectional-centered-italic 164

sectional-normal 164

sectional-normal-italic 164

sectional-sep 163

sectional-short 164

sectional-short-bold 164, 164

sectional-short-italic 164

sectional-short-style 163

seminar . 137

session . 60

Close session 43

Input mode

Mathematical input 44

Multiline input 44

Insert �elds 43

Fold input �eld 44

Insert text �eld 43

Interrupt execution 43

Remove �elds 43

Remove all output �elds 44

Split session 44

session . 152

session . 152

set-footer 150

set-header 150

shrink-inline 143

simple-page 150

small . 140

small-�gure 156

small-table 156

smaller . 140

source 47, 61, 61, 138

Source . 54

Activation 53

Activate 53

Activate once 53

Arithmetic 59

Condition 59

De�ne 54

Evaluation 57

Flow control 58

Macro 54

Presentation 53

Apply macro 54

Apply macro once 54

Compact 53

Stretched 53

Text . 59

Tuple 59

Source tags 50

space 109, 109

speci�c . 120

sqrt 115, 115

src-arg . 134

src-error . 134

src-integer 134

src-length 134

src-macro 134

src-package 134

src-package-dtd 134

src-style-�le 134

src-title . 134

src-tt . 134

src-var . 134

Index 215

std . 60, 60

std . 139

std-automatic 60

std-automatic 145

std-counter 60

std-latex 61

std-list 60

std-list 63, 143, 144

std-markup 60, 60, 61, 189

std-markup 60, 139

std-math 60

std-math 143

std-symbol 60

std-symbol 142

std-utils 60, 69, 162

std-utils 148, 150

strong . 139

structured-list 138, 138

structured-list 144

structured-section 65, 138, 138, 162

style . 76, 76

style-only 133

style-only* 133

style-with 133

style-with* 133

subindex . 147

subparagraph 162

subsection 162

subsubindex 147

subsubsection 162

subtable . 118

surround . 108

switch . 142

symbol . 133

table . 117

Cell background color 27

Cell border 26

Cell height

Set height 26

Cell operation mode 25

Cell width

Set width 26

Horizontal cell alignment 26

Horizontal table alignment 26

Special cell properties

Distribute unused space 26

Hyphenation

Multi-paragraph 103

Special table properties 26

Border 27

Extract format 27

Vertical cell alignment 26

Vertical table alignment 26

table-of-contents 162

tabular . 118

tabular* . 141

tag . 136

TeX . 142

TeXmacs 76, 141

TeXmacs-version 142

Text

Automatic

Bibliography 30

Index 31

Table of contents 30

Color

Red 33

Content tag 139

Abbreviation 139

Acronym 140

Cite 139

Code 140

De�nition 139

Emphasize 139

Keyboard 140

Name 139

Person 139

Sample 139

Strong 139

Variable 140

Verbatim 140

content tags 14

Description 15

Enumerate 13, 15

Roman 15

Environment 13, 15, 155, 155, 155, 155

Font shape

Italic 11

Itemize 13, 14

Mathematics 21

Equations 25

Section 13

Session 41, 43, 193

Markup 196

Minimal 40

Other 43

Size tag 140

Title . 157

Author 158

Insert author 158

Insert title 157

TeXmacs notice 185

textput . 152

Texts . 47

tformat 117, 117, 117

the-glossary 163

the-index 163

the-x . 150

theorem-name 156

theorem-sep 156

times . 131

tiny . 140

title-base 60, 69

title-generic 60

tmarker . 118

tmarticle 138

tmbook . 138

tmdoc 138, 186, 188, 189, 190

tmlen 85, 85

toc-1 . 146

216 Index

toc-2 . 146

toc-3 . 147

toc-4 . 147

toc-5 . 147

toc-dots . 147

toc-main-1 146

toc-main-2 146

toc-normal-1 146

toc-normal-2 146

toc-normal-3 146

toc-small-1 146

toc-small-2 146

toc-strong-1 146

toc-strong-2 146

Tools

Update

Inclusions 31

transform-bibitem 146

translate . 130

tree . 116

tt . 140

tuple 76, 77, 77, 131

twith . 117

underline 142

unequal . 131

unfold . 142

unknown 136

unquote 128, 128

unquote* 129

value 124, 124, 129

var . 140

varsession 44, 139, 152

vdh . 139

verbatim 140, 141

verse . 141

very-large 140

very-small 140

View

Presentation mode 137

vspace 108, 109

vspace* 109, 109

while . 127

wide . 116

wide* . 116

wide-bothlined 149

wide-centered 148, 149

wide-framed 149

wide-framed-colored 149

wide-normal 148, 149

wide-std-bothlined 149

wide-std-framed 149

wide-std-framed-colored 149

wide-std-underlined 149

wide-underlined 149

Windows key

Map to M modi�er 171

with . 123

World 39, 39

Hello world 39

write . 135

x-clean . 164

x-display-numbers 163

x-header . 164

x-numbered-title 163

x-sep . 163

x-text . 163

x-title . 163

x-toc . 164

xmacro . 125

xor . 131

yes-indent 111

yes-indent* 111

Index 217

