Texinfo

The GNU Documentation Format
for Texinfo version 6.5, 25 August 2017

Robert J. Chassell
Richard M. Stallman

This manual is for GNU Texinfo (version 6.5, 25 August 2017), a documentation system
that can produce both online information and a printed manual from a single source using
semantic markup.

Copyright (©) 1988, 1990, 1991, 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2001, 2001, 2003,
2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Free Software
Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “A GNU Manual”, and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License”.

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify
this GNU manual. Buying copies from the FSF supports it in developing GNU
and promoting software freedom.”

Published by the Free Software Foundation
51 Franklin St, Fifth Floor

Boston, MA 02110-1301

USA

ISBN 1-882114-67-1

Cover art by Etienne Suvasa.

Short Contents

Texinfo Copying Conditions., 2
1 Overview of Texinfo 3
2 Writing a Texinfo File. i ... 10
3 Beginning and Ending a Texinfo File..................... 15
4 Nodes . .o e 31
5 Chapter Structuringt 42
6 Cross-references. e 49
7 Marking Text, Words and Phrases....................... 61
8 Quotations and Examples.......... L. 72
9 Listsand Tables.co i 82
10 Special Displays.o 90
11 Indices .. .ov 97
12 Special Insertions. i i i 103
13 Forcing and Preventing Breaks......................... 119
14 Definition Commands, 123
15 Internationalization............. 136
16 Conditionally Visible Text 139
17 Defining New Texinfo Commands. 149
18 Include Files. o 159
19 Formatting and Printing Hardcopy 163
20 texiZ2any: The Generic Translator for Texinfo 176
21 Creating and Installing Info Files....................... 201
22 Generating HTML 211
A @-Command Details i i 222
B Tipsand Hints.co i 247
C Sample Texinfo Files 252
D Using Texinfo Mode 258
E Page Headings........... 270
F Catching Mistakes 275
G Info Format Specification 282
H GNU Free Documentation License 289
Command and Variable Index 297

General Index . .. oot 303

Table of Contents

Texinfo Copying Conditions........................ 2
1 Overview of Texinfo.......................... ... 3
1.1 Reporting Bugs. 3
1.2 Output Formats...... ... 4
1.3 Info Files. ..o)
1.4 Printed BoOKS 6
1.5 Adding Output Formats........... ..., 6
1.6 HiStory ... e 7

2 Writing a Texinfo File......................... 10
2.1 General Syntactic Conventions.................coviiiiiiaa... 10
2.2 COMMENES. . oottt et e 11
2.3 What a Texinfo File Must Have................................ 12
2.4 A Short Sample Texinfo File........... 12

3 Beginning and Ending a Texinfo File......... 15
3.1 Sample Texinfo File Beginning............... 15
3.2 Texinfo File Headero o i, 16
3.2.1 The First Line of a Texinfo File........................... 16

3.2.2 Start of Header..... 17

3.2.3 @setfilename: Set the Output File Name 17

3.2.4 @settitle: Set the Document Title....................... 18

3.25 EndofHeader......... .o i 18

3.3 Document Permissions................ i 18
3.3.1 Q@copying: Declare Copying Permissions................... 19

3.3.2 @insertcopying: Include Permissions Text 20

3.4 Title and Copyright Pages.............cooiiiiiiiiiiiii., 20
341 @titlepage . ..o 20

3.4.2 @titlefont, @center,and @Sp ...t 21

3.4.3 @title, @subtitle, and @author......................... 22

3.4.4 Copyright Page. 23

3.4.5 Heading Generationccoiiiiiiiiiiiiiiiiian. 24

3.5 Generating a Table of Contents................ 24
3.6 The ‘Top’ Node and Master Menu 25
3.6.1 Top Node Example ..., 25

3.6.2 Parts of a Master Menu. ..., 26

3.7 Global Document Commands................ociiiiiiiii... 27
3.7.1 @documentdescription: Summary Text.................. 27

3.7.2 @setchapternewpage: Blank Pages Before Chapters 27

3.7.3 The @headings Command......................oiiii... 28

3.7.4 G@paragraphindent: Controlling Paragraph Indentation ... 29

3.7.5 @firstparagraphindent: Indenting After Headings....... 29
3.7.6 @exampleindent: Environment Indenting................. 30
3.8 Ending a Texinfo File....... i 30
Nodeso 31
4.1 Texinfo Document Structure.................ccoviiiiiiinnn.... 31
4.2 Choosing Node Names. ...t 32
4.3 Writing an @node Line............. i 32
4.4 @node Line Requirements.............. ... 33
4.5 The First Node. ... e 35
4.6 The @top Sectioning Command.................coiiiiiia... 35
4.7 Node and Menu Illustration i, 36
4.8 makeinfo Pointer Creation i 37
4.9 MeNUS. . oottt 38
4.9.1 WritingaMenu i 38
492 A MenuExample..........oi i 39
4.9.3 Menu Location i i 40
494 ThePartsofaMenu..............coiiiiiiiiiiiiii.n. 40
4.9.5 Less Cluttered Menu Entry 40
4.9.6 Referring to Other Info Files......... 41
Chapter Structuring 42
5.1 Tree Structure of Sectionsooiiiiiiiiiiiii... 42
5.2 Structuring Command Types...........cooiiiiiiiiiiiiii. .. 42
5.3 @chapter: Chapter Structuring...........t 43
5.4 @unnumbered, @appendix: Chapters with Other Labeling. 44
5.5 @majorheading, @chapheading: Chapter-level Headings........ 44
5.6 @section: Sections Below Chapters............................ 44
5.7 Qunnumberedsec, @appendixsec, Gheading.................... 45
5.8 @subsection: Subsections Below Sections...................... 45
5.9 The @subsection-like Commands 45
5.10 @subsection and Other Subsub Commands.................. 46
5.11 @part: Groups of Chapters......... ..., 46

5.12 Raise/lower Sections: @raisesections and @lowersections.. 47

Cross-references 49
6.1 What References Are For.......... 49
6.2 Different Cross-reference Commands.............cooviii .. 49
6.3 Parts of a Cross-reference................ 50
6.4 BTl . i 51

6.4.1 @xref with One Argument................ 51
6.4.2 @xref with Two Arguments.................c.ccoiivin... 51
6.4.3 @xref with Three Arguments............................. 52
6.4.4 @xref with Four and Five Arguments..................... 53
6.5 Referring to a Manual asa Whole, 54
0.6 Oret ... 55

6.7 OPXRTeL ... 55

iii

6.8 @anchor: Defining Arbitrary Cross-reference Targets........... 56
6.9 @inforef: Cross-references to Info-only Material............... 57
6.10 G@url, Quref{urll, text] [, replacement]}.................. 57
6.10.1 Q@url Examples..........ooiuiiiiniiiiiiiiiiiiiea 58
6.10.2 URL Line Breaking............ i, 58
6.10.3 @url PDF Output Format............................... 59
6.10.4 PDF Colorsoiniii 59
6.11 Q@cite{reference}..........o 60
Marking Text, Words and Phrases 61
7.1 Indicating Definitions, Commands, etc. 61
7.1.1 Highlighting Commands are Useful........................ 61
7.1.2 @code{sample-code} i 62
7.1.3 @kbd{keyboard-characters} 63
7.14 @key{key-name}............ ... i 64
7.1.5 @samp{text}ouiriri e 65
7.1.6 @verb{chartextchar} i, 65
7.1.7 @var{metasyntactic-variable} 66
7.1.8 @env{environment-variable} 66
7.1.9 @file{filename}.......... i 67
7.1.10 @command{command-name}............ 67
7.1.11 G@option{option-name} 67
7.1.12 @dfn{term} 67
7.1.13 @abbr{abbreviation|, meaning|} 68
7.1.14 @acronym{acronym|, meaning|}.......................... 68
7.1.15 @indicateurl{uniform-resource-locator} 69
7.1.16 @email{email-address|, displayed-text|}.................. 69
7.2 Emphasizing Textc 69
7.2.1 @emph{text} and @strong{text}, 70
7.2.2 @sc{text}: The Small Caps Font.......................... 70
7.2.3 Fonts for Printing o 70
Quotations and Examples 72
8.1 Block Enclosing Commands ..., 72
8.2 @quotation: Block Quotations Ll 73
8.3 @indentedblock: Indented text blocks........... 74
8.4 @example: Example Text............coii i, 74
8.5 @verbatim: Literal Text.......... ... i il 75
8.6 @lisp: Marking a Lisp Example............o il 76
8.7 @display: Examples Using the Text Font...................... 76
8.8 @format: Examples Using the Full Line Width................. 77
8.9 @Qexdent: Undoing a Line’s Indentation 77
8.10 @flushleft and @flushright.................. 7
8.11 @raggedright: Ragged Right Text 78
8.12 @noindent: Omitting Indentation 78
8.13 @indent: Forcing Indentation.............. 79
8.14 @cartouche: Rounded Rectangles 79

815 @small... Block Commands...........c.ccoiiiiiiniinin... 80

iv

9 Listsand Tables......... 82

9.1 Introducing Lists 82
9.2 @itemize: Making an Itemized List............................ 83
9.3 @enumerate: Making a Numbered or Lettered List............. 84
9.4 Making a Two-column Table.......... 85
9.4.1 Using the @table Command...............cooivieiia... 86
9.4.2 @ftable and @vtableouiitiiiiiiiiiia 87
9.4.3 @itemx: Second and Subsequent Items.................... 87
9.5 @multitable: Multi-column Tables.................. 87
9.5.1 Multitable Column Widths 88
9.5.2 Multitable RoOWS. ... 88
10 Special Displays.................. 90
10.1 0 Floats. ..o 90
10.1.1 @float [type][,Jabel]: Floating Material 90
10.1.2 @caption & @shortcaption................coovvuvnnin... 91
10.1.3 @listoffloats: Tables of Contents for Floats........... 91
10.2 Inserting Images..........cooiiiiiiiiii i 92
10.2.1 Tmage Syntaxoovnt e 92
10.2.2 TImage Scalingo 93
10.3 FoOotnotes 94
10.3.1 Footnote Commands.ooiuiiiiiiiieeninnnnnn.. 94
10.3.2 Footnote Styles........ ..o 95
11 Indices........ ... i 97
11.1 Predefined Indices....... ..o, 97
11.2 Defining the Entries of an Index.............. 98
11.3 Making Index Entrieso i 98
11.4 Printing Indices and Menus. ... 99
11.5 Combining Indices 100
11.5.1 @syncodeindex: Combining indices using @code 100
11.5.2 @synindex: Combining indices.......................... 101
11.6 Defining New Indices...........c.oooiiiiii ... 101
12 Special Insertions............................ 103
12.1 Special Characters: Inserting @ {} , \ #..................... 103
12.1.1 Inserting ‘Q’" with @@ and @atchar{}................... 103
12.1.2 Inserting ‘{ ‘}’ with @{ @} and @1 rbracechar{}........ 103
12.1.3 Inserting ,” with @comma{}, 104
12.1.4 Inserting ‘\’ with @backslashchar{}................... 104
12.1.5 Inserting ‘#’ with @hashchar{}, 104
12.2 Inserting Quote Characters..............cooiiiiiiiiiino.n. 105
12.3 Inserting Space.oouui it 105
12.3.1 Multiple Spacesc.oviiiiiii 105
12.3.2 Not Ending a Sentence, 106
12.3.3 Ending a Sentence.......... ..., 107

12.3.4 @frenchspacing val: Control Sentence Spacing......... 107

12.3.5 @dmn{dimension}: Format a Dimension 108

12,4 Inserting ACCEntS.ouuinin e 108
12.5 Inserting Quotation Marks i, 109
12.6 @sub and @sup: Inserting Subscripts and Superscripts........ 111
12.7 @math: Inserting Mathematical Expressions.................. 111
12.8 Glyphs for Textovii e 112
12.8.1 @TeX{} (TgX) and @LaTeX{} (KTEX) 112
12.8.2 @copyright{} (©) .. .o ovviriiiiiiii i 112
12.8.3 Qregisteredsymbol{} (®) 112
12.8.4 @dots (...) and @enddots (...).......couvuiiiiiii.... 113
12.8.5 Qbullet (8).......ouiuiuiritiiiiii i 113
12.8.6 @euro (€): Euro Currency Symbol...................... 113
12.8.7 @pounds (£): Pounds Sterling.......................... 113
12.8.8 @textdegree (°): Degrees Symbol...................... 113
12.8.9 @minus (—): Inserting a Minus Sign..................... 114
12.8.10 @geq (>) and @leq (<): Inserting Relations 114
12.9 Glyphs for Programmingo 114
12.9.1 Glyphs Summary ... 114
12.9.2 @result{} (=): Result of an Expression................ 115
12.9.3 @expansion{} (—): Indicating an Expansion........... 115
12.9.4 e@print{} (): Indicating Generated Output 115
12.9.5 @error{} ([error]): Indicating an Error Message 116
12.9.6 @equiv{} (=): Indicating Equivalence.................. 116
12.9.7 @point{} (%): Indicating Point in a Buffer.............. 116
12.9.8 Click Sequencesoviiiiiiiii e 117
12.10 Inserting Unicode: @U...........ccoiiuiiiiiiiiiniieennnn.. 118
13 Forcing and Preventing Breaks............. 119
13.1 Break Commandsoiiiiiiiiiiiiiiiniinin.. 119
13.2 @+ and @/: Generate and Allow Line Breaks................. 119
13.3 ©- and Ghyphenation: Helping TEX Hyphenate.............. 120
13.4 @allowcodebreaks: Control Line Breaks in @code........... 120
13.5 ew{text}: Prevent Line Breakscooi... 120
13.6 @tie{}: Inserting an Unbreakable Space..................... 121
13.7 @sp n: Insert Blank Linest 121
13.8 @page: Start a New Page.........o it 121
13.9 @group: Prevent Page Breaks 121
13.10 ©@need mils: Prevent Page Breaks................... 122
14 Definition Commands....................... 123
14.1 The Template for a Definition 123
14.2 Definition Command Continuation Lines..................... 124
14.3 Optional and Repeated Arguments 125
14.4 @deffnx, et al.: Two or More ‘First’ Lines................... 125
14.5 The Definition Commands.coooiiiiiiiiii... 125
14.5.1 Functions and Similar Entities................ 126

14.5.2 Variables and Similar Entities 127

14.5.3 Functions in Typed Languages.....................o. ... 128
14.5.4 Variables in Typed Languages 129
14.5.5 Data Types ...coon e 130
14.5.6 Object-Oriented Programming.......................... 130
14.5.6.1 Object-Oriented Variables...................... ... 130
14.5.6.2 Object-Oriented Methods.......................... 132
14.6 Conventions for Writing Definitions................. 133
14.7 A Sample Function Definition, 133
15 Internationalization 136
15.1 @documentlanguage 11[_cc]: Set the Document Language .. 136
15.2 @documentencoding enc: Set Input Encoding 137
16 Conditionally Visible Text.................. 139
16.1 Conditional Commands ..., 139
16.2 Conditional Not Commands................coiiiiiiiia. .. 140
16.3 Raw Formatter Commands.............. ..., 141
16.4 Inline Conditionals: @inline, @inlineifelse, @inlineraw .. 142
16.5 Flags: @set, @clear, conditionals, and @value............... 143
16.5.1 @set and @value.........oouuiiiiniiiiineniien 143
16.5.2 @ifset and @ifclearcooviiiiiiiiiinnn... 144
16.5.3 @inlineifset and @inlineifclear.................... 145
16.5.4 @value Example ... 146

16.6 Testing for Texinfo Commands:
@ifcommanddefined, @ifcommandnotdefined....................... 147
16.7 Conditional Nesting............oooiiiiiiiiiiiii .. 148
17 Defining New Texinfo Commands.......... 149
17.1 Defining Macros.vvuut ittt 149
17.2 Invoking Macrosouuieeii e 150
17.3 Macro Details and Caveats ..., 152
174 ‘@alias new=existing’iiiiiiiiiiiiiiian. 154
17.5 @definfoenclose: Customized Highlighting................. 155
17.6 External Macro Processors: Line Directives.................. 156
17.6.1 “#line’ Directive...... ..o, 156
17.6.2 “#line’ and TEX ... oo 157
17.6.3 ‘“#line’ Syntax Details............... ..., 157
18 Include Files........... 159
18.1 How to Use Include Files........... ..o i, 159
18.2 texinfo-multiple-files-update 159
18.3 Include Files Requirements............. 160
18.4 Sample File with @include...............oiiiiiiiiiia... 160
18.5 @verbatiminclude file: Include a File Verbatim............. 161
18.6 Evolution of Include Files 161

vii

viii

19 Formatting and Printing Hardcopy 163
191 UsSe TEX o oot e e 163
19.2 Format with texi2dvi oo, 163
19.3 Format with tex/texindex..................c.ooiiiiiiia. 165

19.3.1 Formatting Partial Documents.......................... 166

19.3.2 Details of texindexooiiiiiiiii i, 166
19.4 Print with 1pr from Shell i 167
19.5 Printing From an Emacs Shell 168
19.6 Formatting and Printing in Texinfo Mode.................... 168
19.7 Using the Local Variables List................ 170
19.8 TEX Formatting Requirements Summary 170
19.9 Preparing for TEXo 170
19.10 Overfull “hboxes” 172
19.11 @smallbook: Printing “Small” Books....................... 172
19.12 Printing on Ad Paper ... 173
19.13 @pagesizes [width][, height]: Custom Page Sizes........... 173
19.14 Cropmarks and Magnification 174
19.15 PDF Output ... oo e 174
19.16 Obtaining TREX . ..ottt e 175

20 texi2any: The Generic Translator for Texinfo .. 176

20.1 texi2any: A Texinfo Reference Implementation 176
20.2 Invoking texi2any/makeinfo from a Shell................... 177
20.3 Environment Variables Recognized by texi2any............. 183
20.4 texi2any Printed Output........... i 183
20.5 Pointer Validation........... ..o 184
20.6 Customization Variables............ il 184
20.6.1 Customization Variables for @-Commands.............. 185
20.6.2 Customization Variables and Options................... 185
20.6.3 HTML Customization Variables........................ 187
20.6.4 Other Customization Variables 192
20.7 Internationalization of Document Strings.................... 197
20.8 Invoking pod2texi: Convert POD to Texinfo................ 198
20.9 texi2html: Ancestor of texi2any........................... 198
21 Creating and Installing Info Files.......... 201
21.1 Creating an Info File.......o o i 201
21.1.1 makeinfo Advantagesoeiiiiiiiniinn .. 201
21.1.2 Running makeinfo Within Emacs 201
21.1.3 The texinfo-format... Commands 202
21.1.4 Batch Formatting i 203
21.1.5 Tag Files and Split Files. ...t 203
21.2 Installing an Info File oo i 204
21.2.1 The Directory File dir ..., 204
21.2.2 Listing a New Info File...........o it 205
21.2.3 Info Files in Other Directories.......................... 205
21.2.4 Installing Info Directory Files....................... ... 207

21.2.5 Invoking install-info...........c.coeiiiiiieiiiieeannn.. 208

22 Generating HTML 211
22.1 HTML Translation.............ooiiiiiinneeiiin. 211
22.2 HTML Splitting.....c.ovvii e 212
22.3 HTML CSS ..ttt e 213
22.4 HTML Cross-referencesoooeiiiiiiiiiiaaaenna. .. 214

22.4.1 HTML Cross-reference Link Basics 214
22.4.2 HTML Cross-reference Node Name Expansion 215
22.4.3 HTML Cross-reference Command Expansion............ 216
22.4.4 HTML Cross-reference 8-bit Character Expansion....... 218
22.4.5 HTML Cross-reference Mismatch 218

22.4.6 HTML Cross-reference Configuration: htmlxref.cnf ... 219
22.4.7 HTML Cross-reference Link Preservation:

manual-noderename. Cift e 220
Appendix A @-Command Details.............. 222
Al @-Command Syntaxo.eeiueeieeiienienianiea... 222
A2 @-Command Listo 223
A3 @-Command Contextscouuiuuiiiiiiineiiieane... 245
A.4 Obsolete @-Commandsccoueiiiieiiieiinninnn... 246
Appendix B Tips and Hints.................... 247
Appendix C Sample Texinfo Files............. 252
C.1 Short Sample...... .o 252
C.2 GNU Sample Textsoouuetiniii e 253
C.3 Verbatim Copying License 256
C.4 All-permissive Copying License............ ..., 256
Appendix D Using Texinfo Mode.............. 258
D.1 Texinfo Mode Overview........ ..ot 258
D.2 The Usual GNU Emacs Editing Commands 258
D.3 Inserting Frequently Used Commands........................ 259
D.4 Showing the Sectioning Structure of a File 260
D.5 Updating Nodes and Menus..............ooviiiiiiiiia... 261
D.5.1 The Updating Commands............ccooiiinen.... 261

D.5.2 Updating Requirements..............coooiiiiiiiian... 263

D.5.3 Other Updating Commands.....................oooin... 264

D.6 Formatting for Info............ ... i 265
D.7 Printingo 266
D.8 Texinfo Mode Summaryciiiiiiiiiiiina... 267
Appendix E Page Headings.................... 270
E.1 Headings Introducedo i 270
E.2 Standard Heading Formats................. oo 270
E.3 Specifying the Type of Heading 271

E.4 How to Make Your Own Headings................ 272

ix

Appendix F Catching Mistakes................ 275

F.1 makeinfo Preferred i i 275
F.2 Catching Errors with Info Formatting 275
F.3 Debugging with TEX 276
F.4 Using texinfo-show-structurecovviiue... 278
F.5 USINg 0CCUT ... oit i e 279
F.6 Finding Badly Referenced Nodes............................. 279
F.6.1 Using Info-validate..........couiiiieeieeeninnnnnnnnn. 280
F.6.2 Creating an Unsplit File..........., 280
F.6.3 Tagifyinga File....... ... i, 281
F.6.4 Splitting a File Manually................ 281
Appendix G Info Format Specification........ 282
G.1 Info Format General Layout 282
G.2 Info Format Text Constructs.............coiiiiiiiiiiiaa.. 285
G.2.1 Info Format: Menuo i, 285
G.2.2 Info Format: Image...........c..coiiiiiiiiiii ., 286
G.2.3 Info Format: Printindex............... 286
G.2.4 Info Format: Cross-reference............................ 287

Appendix H GNU Free Documentation License .. 289
Command and Variable Index................... 297

General Index. 303

Documentation is like sex: when it is good, it is very, very good; and when it
is bad, it is better than nothing. —Dick Brandon

Texinfo Copying Conditions

GNU Texinfo is free software; this means that everyone is free to use it and free to re-
distribute it on certain conditions. Texinfo is not in the public domain; it is copyrighted
and there are restrictions on its distribution, but these restrictions are designed to permit
everything that a good cooperating citizen would want to do. What is not allowed is to try
to prevent others from further sharing any version of Texinfo that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of the
programs that relate to Texinfo, that you receive source code or else can get it if you want
it, that you can change these programs or use pieces of them in new free programs, and
that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone
else of these rights. For example, if you distribute copies of the Texinfo related programs,
you must give the recipients all the rights that you have. You must make sure that they,
too, receive or can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for the programs that relate to Texinfo. If these programs are modified
by someone else and passed on, we want their recipients to know that what they have is
not what we distributed, so that any problems introduced by others will not reflect on our
reputation.

The precise conditions of the licenses for the programs currently being distributed that
relate to Texinfo are found in the General Public Licenses that accompany them. This
manual is covered by the GNU Free Documentation License (see Appendix H [GNU Free
Documentation License|, page 289).

1 Overview of Texinfo

Texinfo is a documentation system that uses a single source file to produce both online infor-
mation and printed output. This means that instead of writing several different documents,
one for each output format, you need only write one document.

Using Texinfo, you can create a printed document (via the TEX typesetting system) in
PDF or PostScript format, including chapters, sections, cross-references, and indices. From
the same Texinfo source file, you can create an HTML output file suitable for use with a web
browser, you can create an Info file with special features to make browsing documentation
easy, and also create a Docbook file or a transliteration to XML format.

A Texinfo source file is a plain text file containing text interspersed with @-commands
(words preceded by an ‘@’) that tell the Texinfo processors what to do. Texinfo’s markup
commands are almost entirely semantic; that is, they specify the intended meaning of text
in the document, rather than physical formatting instructions. You can edit a Texinfo file
with any text editor, but it is especially convenient to use GNU Emacs since that editor has
a special mode, called Texinfo mode, that provides various Texinfo-related features. (See
Appendix D [Texinfo Mode], page 258.)

Texinfo was devised specifically for the purpose of writing software documentation and
manuals. If you want to write a good manual for your program, Texinfo has many features
which we hope will make your job easier. However, it provides almost no commands for
controlling the final formatting. Texinfo is not intended to be a general-purpose formatting
program, so if you need to lay out a newspaper, devise a glossy magazine ad, or follow the
exact formatting requirements of a publishing house, Texinfo may not be the simplest tool.

Spell “Texinfo” with a capital “T” and the other letters in lowercase. The first syllable
of “Texinfo” is pronounced like “speck”, not “hex”. This odd pronunciation is derived from
the pronunciation of TEX. Pronounce TEX as if the ‘X’ were the last sound in the name
‘Bach’. In the word TgX, the ‘X’ is, rather than the English letter “ex”, actually the Greek
letter “chi”.

Texinfo is the official documentation format of the GNU project. More information,
including manuals for GNU packages, is available at the GNU documentation web page
(http://www.gnu.org/doc/).

1.1 Reporting Bugs

We welcome bug reports and suggestions for any aspect of the Texinfo system: programs,
documentation, installation, etc. Please email them to bug-texinfo@gnu.org. You can get
the latest version of Texinfo via its home page, http://www.gnu.org/software/texinfo.

For bug reports, please include enough information for the maintainers to reproduce the
problem. Generally speaking, that means:

e The version number of Texinfo and the program(s) or manual(s) involved.

The contents of any input files necessary to reproduce the bug.

Precisely how you ran any program(s) involved.

A description of the problem and samples of any erroneous output.

Hardware and operating system names and versions.

http://www.gnu.org/doc/
http://www.gnu.org/doc/
mailto:bug-texinfo@gnu.org
http://www.gnu.org/software/texinfo

Chapter 1: Overview of Texinfo 4

e Anything else that you think would be helpful.

When in doubt whether something is needed or not, include it. It’s better to include too
much than to leave out something important.

It is critical to send an actual input file that reproduces the problem. What’s not critical
is to “narrow down” the example to the smallest possible input—the actual input with which
you discovered the bug will suffice. (Of course, if you do do experiments, the smaller the
input file, the better.)

Patches are most welcome; if possible, please make them with ‘diff -¢’ (see Comparing
and Merging Files) and include ChangeLog entries (see Section “Change Log” in The GNU
Emacs Manual), and follow the existing coding style.

1.2 Output Formats

Here is a brief overview of the output formats currently supported by Texinfo.

Info (Generated via makeinfo.) Info format is mostly a plain text transliteration
of the Texinfo source. It adds a few control characters to provide navigational
information for cross-references, indices, and so on. The Emacs Info subsystem
(see Info), and the standalone info program (see GNU Info), among others, can
read these files. See Section 1.3 [Info Files|, page 5, and Chapter 21 [Creating
and Installing Info Files], page 201.

Plain text (Generated via makeinfo --plaintext.) This is almost the same as Info output
with the navigational control characters are omitted.

HTML (Generated via makeinfo --html.) HTML, standing for Hyper Text Markup
Language, has become the most commonly used language for writing documents
on the World Wide Web. Web browsers, such as Mozilla, Lynx, and Emacs-W3,
can render this language online. There are many versions of HTML, both dif-
ferent standards and browser-specific variations. makeinfo tries to use a subset
of the language that can be interpreted by any common browser, intentionally
not using many newer or less widely-supported tags. Although the native out-
put is thus rather plain, it can be customized at various levels, if desired. For
details of the HTML language and much related information, see http://www.
w3.org/MarkUp/. See Chapter 22 [Generating HTML], page 211.

DVI (Generated via texi2dvi.) The DeVIce Independent binary format is output
by the TEX typesetting program (http://tug.org). This is then read by a DVI
‘driver’, which knows the actual device-specific commands that can be viewed
or printed, notably Dvips for translation to PostScript (see Dvips) and Xdvi
for viewing on an X display (http://sourceforge.net/projects/xdvi/).
See Chapter 19 [Hardcopy], page 163. (Be aware that the Texinfo language is
very different from and much stricter than TEX’s usual languages: plain TEX,
KTEX, ConTEXt, etc.)

PostScript (Generated via texi2dvi --ps.) PostScript is a page description language
that became widely used around 1985 and is still used today. http://en.
wikipedia . org/wiki/PostScript gives a basic description and more pref-
erences. By default, Texinfo uses the dvips program to convert TEX’s DVI
output to PostScript. See Dvips.

http://www.w3.org/MarkUp/
http://www.w3.org/MarkUp/
http://tug.org
http://sourceforge.net/projects/xdvi/
http://en.wikipedia.org/wiki/PostScript
http://en.wikipedia.org/wiki/PostScript

Chapter 1: Overview of Texinfo 5

PDF (Generated via texi2dvi --pdf or texi2pdf.) This format was developed by
Adobe Systems for portable document interchange, based on their previous
PostScript language. It can represent the exact appearance of a document, in-
cluding fonts and graphics, and supporting arbitrary scaling. It is intended to be
platform-independent and easily viewable, among other design goals; http://
en.wikipedia.org/wiki/Portable_Document_Format and http://tug.org/
TUGboat / tb22-3/tb72beebe-pdf . pdf have some background. By default,
Texinfo uses the pdftex program, an extension of TEX, to output PDF; see
http://tug.org/applications/pdftex. See Section 19.15 [PDF Output],
page 174.

Docbook (Generated via makeinfo --docbook.) This is an XML-based format developed
some years ago, primarily for technical documentation. It therefore bears some
resemblance, in broad outline, to Texinfo. See http://www.docbook . org.
Various converters from Docbook to Texinfo have also been developed; see the
Texinfo web pages.

XML (Generated via makeinfo --xml.) XML is a generic syntax specification usable
for any sort of content (a reference is at http://www.w3.org/XML). The
makeinfo XML output, unlike all the other output formats, is a transliteration
of the Texinfo source rather than processed output. That is, it translates the
Texinfo markup commands into XML syntax, for further processing by XML
tools. The XML contains enough information to recreate the original content,
except for syntactic constructs such as Texinfo macros and conditionals. The
Texinfo source distribution includes a utility script txixml2texi to do that
backward transformation.

The details of the output syntax are defined in an XML DTD as usual, which
is contained in a file texinfo.dtd included in the Texinfo source distribution
and available via the Texinfo web pages. Texinfo XML files, and XML files in
general, cannot be viewed in typical web browsers; they won’t follow the DTD
reference and as a result will simply report a (misleading) syntax error.

1.3 Info Files

As mentioned above, Info format is mostly a plain text transliteration of the Texinfo source,
with the addition of a few control characters to separate nodes and provide navigational
information, so that Info-reading programs can operate on it.

Info files are nearly always created by processing a Texinfo source document. makeinfo,
also known as texi2any, is the principal command that converts a Texinfo file into an Info
file; see Chapter 20 [Generic Translator texi2any]|, page 176.

Generally, you enter an Info file through a node that by convention is named ‘Top’.
This node normally contains just a brief summary of the file’s purpose, and a large menu
through which the rest of the file is reached. From this node, you can either traverse the
file systematically by going from node to node, or you can go to a specific node listed in
the main menu, or you can search the index menus and then go directly to the node that
has the information you want. Alternatively, with the standalone Info program, you can
specify specific menu items on the command line (see Info).

http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/Portable_Document_Format
http://tug.org/TUGboat/tb22-3/tb72beebe-pdf.pdf
http://tug.org/TUGboat/tb22-3/tb72beebe-pdf.pdf
http://tug.org/applications/pdftex
http://www.docbook.org
http://www.w3.org/XML

Chapter 1: Overview of Texinfo 6

If you want to read through an Info file in sequence, as if it were a printed manual, you
can hit SPC repeatedly, or you get the whole file with the advanced Info command g *. (See
Section “Advanced Info commands” in Info.)

The dir file in the info directory serves as the departure point for the whole Info system.
From it, you can reach the ‘Top’ nodes of each of the documents in a complete Info system.

If you wish to refer to an Info file via a URI, you can use the (unofficial) syntax exem-
plified by the following. This works with Emacs/W3, for example:

info:emacs#Dissociated’,20Press
info:///usr/info/emacs#Dissociated’,20Press
info://localhost/usr/info/emacs#Dissociated¥%20Press

The info program itself does not follow URIs of any kind.

1.4 Printed Books

A Texinfo file can be formatted and typeset as a printed book or manual. To do this,
you need TEX, a sophisticated typesetting program written by Donald Knuth of Stanford
University.

A Texinfo-based book is similar to any other typeset, printed work: it can have a title
page, copyright page, table of contents, and preface, as well as chapters, numbered or
unnumbered sections and subsections, page headers, cross-references, footnotes, and indices.

TEX is a general purpose typesetting program. Texinfo provides a file texinfo.tex
that contains information (definitions or macros) that TEX uses when it typesets a Texinfo
file. (texinfo.tex tells TEX how to convert the Texinfo @-commands to TEX commands,
which TEX can then process to create the typeset document.) texinfo.tex contains the
specifications for printing a document. You can get the latest version of texinfo.tex from
the Texinfo home page, http://www.gnu.org/software/texinfo/.

In the United States, documents are most often printed on 8.5 inch by 11 inch pages
(216 mm by 280 mm); this is the default size. But you can also print for 7 inch by 9.25 inch
pages (178 mm by 235 mm, the @smallbook size; or on A4 or A5 size paper (@afourpaper,
@afivepaper). See Section 19.11 [@smallbook|, page 172, and Section 19.12 [A4 Paper],
page 173.

TEX is freely distributable. It is written in a superset of Pascal for literate programming
called WEB and can be compiled either in Pascal or (by using a conversion program that
comes with the TEX distribution) in C.

TEX is very powerful and has a great many features. Because a Texinfo file must be
able to present information both on a character-only terminal in Info form and in a typeset
book, the formatting commands that Texinfo supports are necessarily limited.

See Section 19.16 [Obtaining TEX], page 175, for information on acquiring TEX. It is
not part of the Texinfo distribution.

1.5 Adding Output Formats

The output formats in the previous sections handle a wide variety of usage, but of course
there is always room for more.

If you are a programmer and would like to contribute to the GNU project by implement-
ing additional output formats for Texinfo, that would be excellent. The way to do this that

http://www.gnu.org/software/texinfo/

Chapter 1: Overview of Texinfo 7

would be most useful is to write a new back-end for texi2any, our reference implementation
of a Texinfo parser; it creates a tree representation of the Texinfo input that you can use for
the conversion. The documentation in the source file tp/Texinfo/Convert/Converter.pm
is a good place to start. See Chapter 20 [Generic Translator texi2any|, page 176.

Another viable approach is use the Texinfo XML output from texi2any as your input.
This XML is an essentially complete representation of the input, but without the Texinfo
syntax and option peculiarities, as described above.

If you still cannot resist the temptation of writing a new program that reads Texinfo
source directly, let us give some more caveats: please do not underestimate the amount of
work required. Texinfo is by no means a simple language to parse correctly, and remains
under development, so you would be committing to an ongoing task. You are advised to
check that the tests of the language that come with texi2any give correct results with your
new program.

From time to time, proposals are made to generate traditional Unix man pages from
Texinfo source. However, because man pages have a strict conventional format, creating
a good man page requires a completely different source from that needed for the typical
Texinfo applications of writing a good user tutorial and/or a good reference manual. This
makes generating man pages incompatible with the Texinfo design goal of not having to
document the same information in different ways for different output formats. You might
as well write the man page directly.

As an alternative way to support man pages, you may find the program help2man to be
useful. It generates a traditional man page from the ‘~-help’ output of a program. In fact,
the man pages for the programs in the Texinfo distribution are generated with this. It is
GNU software written by Brendan O’Dea, available from http://www.gnu.org/software/
help2man.

1.6 History

Richard M. Stallman invented the Texinfo format, wrote the initial processors, and created
Edition 1.0 of this manual. Robert J. Chassell greatly revised and extended the manual,
starting with Edition 1.1. Brian Fox was responsible for the standalone Texinfo distribution
until version 3.8, and originally wrote the standalone makeinfo and info programs. Karl
Berry has continued maintenance since Texinfo 3.8 (manual edition 2.22).

Our thanks go out to all who helped improve this work, particularly the indefatigable
Eli Zaretskii and Andreas Schwab, who have provided patches beyond counting. Francois
Pinard and David D. Zuhn, tirelessly recorded and reported mistakes and obscurities. Zack
Weinberg did the impossible by implementing the macro syntax in texinfo.tex. Thanks to
Melissa Weisshaus for her frequent reviews of nearly similar editions. Dozens of others have
contributed patches and suggestions, they are gratefully acknowledged in the ChangeLog
file. Our mistakes are our own.

Beginnings

In the 1970’s at CMU, Brian Reid developed a program and format named Scribe to mark
up documents for printing. It used the @ character to introduce commands, as Texinfo does.
Much more consequentially, it strove to describe document contents rather than formatting,
an idea wholeheartedly adopted by Texinfo.

http://www.gnu.org/software/help2man
http://www.gnu.org/software/help2man

Chapter 1: Overview of Texinfo 8

Meanwhile, people at MIT developed another, not too dissimilar format called Bolio.
This then was converted to using TEX as its typesetting language: BoTEX. The earliest
BoTEX version seems to have been 0.02 on October 31, 1984.

BoTEX could only be used as a markup language for documents to be printed, not for
online documents. Richard Stallman (RMS) worked on both Bolio and BoTgX. He also
developed a nifty on-line help format called Info, and then combined BoTEX and Info to
create Texinfo, a mark up language for text that is intended to be read both online and as
printed hard copy.

Moving forward, the original translator to create Info was written (primarily by RMS
and Bob Chassell) in Emacs Lisp, namely the texinfo-format-buffer and other functions.
In the early 1990s, Brian Fox reimplemented the conversion program in C, now called
makeinfo.

Reimplementing in Perl

In 2012, the C makeinfo was itself replaced by a Perl implementation generically called
texi2any. This version supports the same level of output customization as texi2html,
an independent program originally written by Lionel Cons, later with substantial work by
many others. The many additional features needed to make texi2html a replacement for
makeinfo were implemented by Patrice Dumas. The first never-released version of texi2any
was based on the texi2html code. That implementation, however, was abandoned in favor
of the current program, which parses the Texinfo input into a tree for processing. It still
supports nearly all the features of texi2html.

The new Perl program is much slower than the old C program. We hope the speed
gap will close in the future, but it may not ever be entirely comparable. So why did we
switch? In short, we intend and hope that the present program will be much easier than
the previous C implementation of makeinfo to extend to different output styles, back-end
output formats, and all other customizations. In more detail:

e HTML customization. Many GNU and other free software packages had been happily
using the HTML customization features in texi2html for years. Thus, in effect two
independent implementations of the Texinfo language had developed, and keeping them
in sync was not simple. Adding the HTML customization possible in texi2html to a
C program would have been an enormous effort.

e Unicode, and multilingual support generally, especially of east Asian languages. Al-
though of course it’s perfectly plausible to write such support in C, in the particular
case of makeinfo, it would have been tantamount to rewriting the entire program. In
Perl, much of that comes essentially for free.

e Additional back-ends. The makeinfo code had become convoluted to the point where
adding a new back-end was quite complex, requiring complex interactions with ex-
isting back-ends. In contrast, our Perl implementation provides a clean tree-based
representation for all back-ends to work from. People have requested numerous dif-
ferent back-ends (IXTEX, the latest (X)HTML, ...), and they will now be much more
feasible to implement. Which leads to the last item:

e Making contributions easier. In general, due to the cleaner structure, the Perl program
should be considerably easier than the C for anyone to read and contribute to, with
the resulting obvious benefits.

Chapter 1: Overview of Texinfo 9

See Section 20.1 [Reference Implementation], page 176, for more on the rationale for and
role of texi2any.

2

Th

10

Writing a Texinfo File

is chapter describes Texinfo syntax and what is required in a Texinfo file, and gives a

short sample file.

2.1 General Syntactic Conventions

Th

is section describes the general conventions used in all Texinfo documents.

All printable ASCII characters except ‘@’, ‘{’ and ‘}’ can appear in a Texinfo file and
stand for themselves. ‘@ is the escape character which introduces commands, while
‘{’ and ‘}’ are used to surround arguments to certain commands. To put one of these
special characters into the document, put an ‘@ character in front of it, like this: ‘@@,
‘@e{’, and ‘@}’.

In a Texinfo file, the commands you write to describe the contents of the manual are
preceded by an ‘@’ character; they are called @-commands. (The ‘@ in Texinfo has the
same meaning that ‘\’ has in plain TEX.)

Depending on what they do or what arguments! they take, you need to write @-
commands on lines of their own, or as part of sentences. As a general rule, a command
requires braces if it mingles among other text; but it does not need braces if it is
on a line of its own. For more details of Texinfo command syntax, see Section A.1l
[Command Syntax]|, page 222.

Whitespace following an @-command name is optional and (usually) ignored if present.
The exceptions are contexts when whitespace is significant, e.g., an @example environ-
ment.

Texinfo supports the usual quotation marks used in English and in other languages;
see Section 12.5 [Inserting Quotation Marks], page 109.

Use three hyphens in a row, ‘-==’; to produce a long dash—Ilike this (called an em
dash), used for punctuation in sentences. Use two hyphens, ‘-=’, to produce a medium
dash (called an en dash), used primarily for numeric ranges, as in “June 25-26”. Use
a single hyphen, ‘-’, to produce a standard hyphen used in compound words. For
display on the screen, Info reduces three hyphens to two and two hyphens to one (not
transitively!). Of course, any number of hyphens in the source remain as they are in
literal contexts, such as @code and @example.

Form feed (CTRL-1) characters in the input are handled as follows:

PDF/DVI In normal text, treated as ending any open paragraph; essentially ignored
between paragraphs.

Info Output as-is between paragraphs (their most common use); in other con-
texts, they may be treated as regular spaces (and thus consolidated with
surrounding whitespace).

1

The word argument comes from the way it is used in mathematics and does not refer to a dispute between
two people; it refers to the information presented to the command. According to the Oxford English
Dictionary, the word derives from the Latin for to make clear, prove; thus it came to mean ‘the evidence
offered as proof’, which is to say, ‘the information offered’, which led to its mathematical meaning. In
its other thread of derivation, the word came to mean ‘to assert in a manner against which others may
make counter assertions’, which led to the meaning of ‘argument’ as a dispute.

Chapter 2: Writing a Texinfo File 11

HTML Written as a numeric entity except contexts where spaces are ignored; for
example, in ‘@footnote{ "L foo}’, the form feed is ignored.

XML Keep them everywhere; in attributes, escaped as ‘\f’; also, ‘\’ is escaped
as ‘\\’ and newline as ‘\n’.

Docbook Completely removed, as they are not allowed.

As you can see, because of these differing requirements of the output formats, it’s not
possible to use form feeds completely portably.

e Caution: Last, do not use tab characters in a Texinfo file! (Except perhaps in verbatim
modes.) TEX uses variable-width fonts, which means that it is impractical at best to
define a tab to work in all circumstances. Consequently, TEX treats tabs like single
spaces, and that is not what they look like in the source. Furthermore, makeinfo does
nothing special with tabs, and thus a tab character in your input file will usually have
a different appearance in the output.

To avoid this problem, Texinfo mode in GNU Emacs inserts multiple spaces when you
press the TAB key. Also, you can run untabify in Emacs to convert tabs in a region to
multiple spaces, or use the unexpand command from the shell.

2.2 Comments

You can write comments in a Texinfo file by using the @comment command, which may be
abbreviated to @c. Such comments are for a person looking at the Texinfo source file. All
the text on a line that follows either @comment or @c is a comment; the rest of the line does
not appear in the visible output. (To be precise, the character after the @c or @comment
must be something other than a dash or alphanumeric, or it will be taken as part of the
command.)

Often, you can write the @comment or @c in the middle of a line, and only the text that
follows after the @comment or @c command does not appear; but some commands, such as
@settitle, work on a whole line. You cannot use @comment or @c within a line beginning
with such a command.

In cases of nested command invocations, complicated macro definitions, etc., @c and
@comment may provoke an error when processing with TpX. Therefore, you can also use the
DEL character (ASCII 127 decimal, 0x7f hex, 0177 octal) as a true TEX comment character
(catcode 14, in TEX internals). Everything on the line after the DEL will be ignored.

You can also have long stretches of text ignored by the Texinfo processors with the
@ignore and Q@end ignore commands. Write each of these commands on a line of its own,
starting each command at the beginning of the line. Text between these two commands
does not appear in the processed output. You can use @ignore and @end ignore for writ-
ing comments. (For some caveats regarding nesting of such commands, see Section 16.7
[Conditional Nesting], page 148.)

Chapter 2: Writing a Texinfo File 12

2.3 What a Texinfo File Must Have

By convention, the name of a Texinfo file ends with one of the extensions .texinfo, .texi,
.txi, or .tex.?

In order to be made into a printed manual and other output formats, a Texinfo file must
begin with lines like this:

\input texinfo
@settitle name-of-manual

The contents of the file follow this beginning, and then you must end the Texinfo source
with a line like this:
Qbye
Here’s an explanation:
e The ‘\input texinfo’ line tells TEX to use the texinfo.tex file, which tells TEX how

to translate the Texinfo @-commands into TEX typesetting commands. (Note the use
of the backslash, ‘\’; this is correct for TEX.)

e The @settitle line specifies a title for the page headers (or footers) of the printed
manual, and the default title and document description for the ‘<head>’ in HTML.
Strictly speaking, @settitle is optional—if you don’t mind your document being titled
‘Untitled’.

e The @bye line at the end of the file on a line of its own tells the formatters that the
file is ended and to stop formatting. If you leave this out, you’ll be dumped at TEX’s
prompt at the end of the run.

Furthermore, you will usually provide a Texinfo file with a title page, indices, and the
like, all of which are explained in this manual. But the minimum, which can be useful for
short documents, is just the two lines at the beginning and the one line at the end.

2.4 A Short Sample Texinfo File

Here is a short but complete Texinfo file, so you can see how Texinfo source appears in
practice. The first three parts of the file are mostly boilerplate: when writing a manual,
you simply change the names as appropriate.

The complete file, without interspersed comments, is shown in Section C.1 [Short Sample
Texinfo File], page 252.

See Chapter 3 [Beginning and Ending a File], page 15, for more documentation on the
commands listed here.

Header

The header tells TEX which definitions file to use, names the manual, and carries out other
such housekeeping tasks.

\input texinfo
Osettitle Sample Manual 1.0

2 The longer extensions are preferred, since they describe more clearly to a human reader the nature of
the file. The shorter extensions are for operating systems that cannot handle long file names.

Chapter 2: Writing a Texinfo File 13

Summary Description and Copyright

This segment describes the document and contains the copyright notice and copying per-
missions. This is done with the @copying command.

A real manual includes more text here, according to the license under which it is distributed
See Section C.2 [GNU Sample Texts], page 253.

Qcopying
This is a short example of a complete Texinfo file, version 1.0.

Copyright @copyright{} 2016 Free Software Foundation, Inc.
Q@end copying

Titlepage, Copyright, Contents

The title and copyright segment contains the title and copyright pages for the printed man-
ual. The segment must be enclosed between @titlepage and @end titlepage commands.
The title and copyright page does not appear in the online output.

We use the @insertcopying command to include the permission text from the previous
section, instead of writing it out again; it is output on the back of the title page. The
@contents command generates a table of contents.

Otitlepage
Otitle Sample Title

@c The following two commands start the copyright page.
Gpage

Ovskip Opt plus 1filll

@insertcopying

@end titlepage

@c Output the table of contents at the beginning.
Qcontents

‘Top’ Node and Master Menu

The ‘Top’ node starts off the online output; it does not appear in the printed manual. We
repeat the short description from the beginning of the ‘@copying’ text, but there’s no need
to repeat the copyright information, so we don’t use ‘@insertcopying’ here.

The ‘@top’ command itself helps makeinfo determine the relationships between nodes.
The ‘Top’ node contains at least a top-level menu listing the chapters, and possibly a Master
Menu listing all the nodes in the entire document.

Q@ifnottex
OGnode Top
Otop Short Sample

This is a short sample Texinfo file.
Q@end ifnottex

Chapter 2: Writing a Texinfo File 14

OGmenu
* First Chapter:: The first chapter is the

only chapter in this sample.
* Index:: Complete index.

@end menu

The Body of the Document

The body segment contains all the text of the document, but not the indices or table of
contents. This example illustrates a node and a chapter containing an enumerated list.

Onode First Chapter
Ochapter First Chapter

Q@cindex chapter, first

This is the first chapter.
O@cindex index entry, another

Here is a numbered list.

Q@enumerate
Q@item
This is the first item.

Q@item
This is the second item.
@end enumerate

The End of the Document

This may contain commands for printing indices, and closes with the @bye command, which
marks the end of the document.

Onode Index
Qunnumbered Index

O@printindex cp
Q@bye

Some Results
Here is what the contents of the first chapter of the sample look like:

This is the first chapter.
Here is a numbered list.
1. This is the first item.

2. This is the second item.

15

3 Beginning and Ending a Texinfo File

This chapter expands on the minimal complete Texinfo source file previously given (see
Section 2.4 [Short Sample], page 12).

Certain pieces of information must be provided at the beginning of a Texinfo file, such
the title of the document and the Top node. A table of contents is also generally produced
here.

Straight text outside of any command before the Top node should be avoided. Such text
is treated differently in the different output formats: at the time of writing, it is visible in
TEX and HTML, by default not shown in Info readers, and so on.

3.1 Sample Texinfo File Beginning

The following sample shows what is needed. The elements given here are explained in more
detail in the following sections. Other commands are often included at the beginning of
Texinfo files, but the ones here are the most critical.

See Section C.2 [GNU Sample Texts|, page 253, for the full texts to be used in GNU
manuals.

\input texinfo
@settitle name-of-manual version

Q@copying
This manual is for program, version version.

Copyright @copyright{} years copyright-owner.

@quotation

Permission is granted to ...
Q@end quotation

Q@end copying

@titlepage

@title name-of-manual-when-printed
Osubtitle subtitle-if-any
@subtitle second-subtitle

Q@author author

@c The following two commands
@c start the copyright page.
Opage

Q@vskip Opt plus 1filll
@insertcopying

Published by ...
Q@end titlepage

Chapter 3: Beginning and Ending a Texinfo File 16

@c So the toc is printed at the start.
Q@contents

@ifnottex
Gnode Top
Otop title

This manual is for program, version version.
Q@end ifnottex

Omenu
* First Chapter:: Getting started ...
* Second Chapter::

* Copying:: Your rights and freedoms.
Q@end menu

OGnode First Chapter
Ochapter First Chapter

Q@cindex first chapter
Q@cindex chapter, first

3.2 Texinfo File Header
Texinfo files start with at least two lines. These are the \input texinfo line and the
@settitle line.

Also, if you want to format just part of the Texinfo file in Emacs, you must write the
@settitle line between start-of-header and end-of-header lines. These start- and end-of-
header lines are optional, but they do no harm, so you might as well always include them.

Any command that affects document formatting as a whole makes sense to include in
the header. @synindex (see Section 11.5.2 [@synindex], page 101), for instance, is another
command often included in the header.

Thus, the beginning of a Texinfo file looks approximately like this:

\input texinfo
Osettitle Sample Manual 1.0

(See Section C.2 [GNU Sample Texts|, page 253, for complete sample texts.)

3.2.1 The First Line of a Texinfo File

Every Texinfo file that is to be the top-level input to TEX must begin with a line that looks
like this:

\input texinfo

When the file is processed by TEX, the ‘\input texinfo’ command tells TEX to load the
macros needed for processing a Texinfo file. These are in a file called texinfo.tex, which

Chapter 3: Beginning and Ending a Texinfo File 17

should have been installed on your system along with either the TEX or Texinfo software.
TEX uses the backslash, ‘\’, to mark the beginning of a command, exactly as Texinfo uses
‘@’. The texinfo.tex file causes the switch from ‘\’ to ‘@’; before the switch occurs, TEX
requires ‘\’, which is why it appears at the beginning of the file.

You may optionally follow this line with a comment to tell GNU Emacs to use Texinfo
mode when the file is edited:

\input texinfo @c -*-texinfo-—*-

This may be useful when Emacs doesn’t detect the file type from the file extension auto-
matically.

3.2.2 Start of Header

A start-of-header line is a Texinfo comment that looks like this:
Qc Yx*xstart of header

Write the start-of-header line on the second line of a Texinfo file. Follow the start-of-
header line with an @settitle line and, optionally, with other commands that globally
affect the document formatting, such as @synindex or @footnotestyle; and then by an
end-of-header line (see Section 3.2.5 [End of Header], page 18).

The start- and end-of-header lines allow you to format only part of a Texinfo file for Info
or printing. See Section 21.1.3 [texinfo-format commands], page 202.

The odd string of characters, ‘%**’, is to ensure that no other comment is accidentally
taken for a start-of-header line. You can change it if you wish by setting the tex-start-
of-header and/or tex-end-of-header Emacs variables. See Section 19.6 [Texinfo Mode
Printing], page 168.

3.2.3 @setfilename: Set the Output File Name

The @setfilename line specifies the name of the output file to be generated. When
present, it should be the first Texinfo command (that is, after ‘\input texinfo’). Write
the @setfilename command at the beginning of a line and follow it on the same line by
the Info file name.

@setfilename info-file-name

The name must be different from the name of the Texinfo file. There are two conventions
for choosing the name: you can either remove the extension (such as ‘.texi’) entirely from
the input file name, or (recommended) replace it with the ‘.info’ extension.

When a @setfilename line is present, the Texinfo processors ignore everything written
before the @setfilename line. This is why the very first line of the file (the \input line)
does not show up in the output.

If there is no @setfilename line, makeinfo uses the input file name to determine the
output name: first, any of the extensions .texi, .tex, .txi or .texinfo is removed from
the input file name; then, the output format specific extension is added—.html when
generating HTML, .info when generating Info, etc. The \input line is still ignored in this
processing, as well as leading blank lines.

When producing another output format, makeinfo will replace any final extension with
the output format-specific extension (‘html’ when generating HTML, for example), or add
a dot followed by the extension (‘.html’ for HTML) if the given name has no extension.

Chapter 3: Beginning and Ending a Texinfo File 18

@setfilename used to be required by the Texinfo processors, and some other programs
may still expect it to be present; for example, Automake (see Section “Texinfo” in GNU
Automake).

Although an explicit ‘.info’ extension is preferable, some operating systems cannot
handle long file names. You can run into a problem even when the file name you specify
is itself short enough. This occurs because the Info formatters split a long Info file into
short indirect subfiles, and name them by appending ‘-1’, *=2’, ..., ‘=10’ *~=11’, and so on,
to the original file name. (See Section 21.1.5 [Tag and Split Files], page 203.) The subfile
name texinfo.info-10, for example, is too long for old systems with a 14-character limit
on filenames; so the Info file name for this document is texinfo rather than texinfo.info.
When makeinfo is running on operating systems such as MS-DOS which impose severe
limits on file names, it may remove some characters from the original file name to leave
enough space for the subfile suffix, thus producing files named texin-10, gcc.i12, etc.

See also the ——output option in Section 20.2 [Invoking texi2any|, page 177.

3.2.4 @settitle: Set the Document Title

A Texinfo file should contain a line that looks like this:
@settitle title

Write the @settitle command at the beginning of a line and follow it on the same
line by the title. Do not write anything else on the line. The @settitle command should
precede everything that generates actual output. The best place for it is right after the
@setfilename command (described in the previous section).

This command tells TEX the title to use in a header or footer for double-sided output,
in case such headings are output. For more on headings for TEX, see Section 3.4.5 [Heading
Generation], page 24.

In the HTML file produced by makeinfo, title serves as the document ‘<title>’. It
also becomes the default document description in the ‘<head>’ part (see Section 3.7.1
[@documentdescription|, page 27).

When the title page is used in the output, the title in the @settitle command does
not affect the title as it appears on the title page. Thus, the two do not need not to
match exactly. A practice we recommend is to include the version or edition number of
the manual in the @settitle title; on the title page, the version number generally appears
as a @subtitle so it would be omitted from the @title. See Section 3.4.1 [@titlepage],
page 20.

3.2.5 End of Header

Follow the header lines with an end-of-header line, which is a Texinfo comment that looks
like this:

O@c %**end of header

See Section 3.2.2 [Start of Header|, page 17.

3.3 Document Permissions

The copyright notice and copying permissions for a document need to appear in several
places in the various Texinfo output formats. Therefore, Texinfo provides a command

Chapter 3: Beginning and Ending a Texinfo File 19

(@copying) to declare this text once, and another command (@insertcopying) to insert
the text at appropriate points.

This section is about the license of the Texinfo document. If the document is a software
manual, the software is typically under a different license—for GNU and many other free
software packages, software is usually released under the GNU GPL, and manuals are re-
leased under the GNU FDL. It is helpful to state the license of the software of the manual,
but giving the complete text of the software license is not necessarily required.

3.3.1 @copying: Declare Copying Permissions

The Q@copying command should be given very early in the document; the recommended
location is right after the header material (see Section 3.2 [Texinfo File Header], page 16).
It conventionally consists of a sentence or two about what the program is, identification of
the documentation itself, the legal copyright line, and the copying permissions. Here is a
skeletal example:

Q@copying

This manual is for program (version version, updated

date), which ...

Copyright Qcopyright{} years copyright-owner.

@quotation
Permission is granted to ...
Q@end quotation
Q@end copying
The @quotation has no legal significance; it’s there to improve readability in some
contexts.

The text of @copying is output as a comment at the beginning of Info, HTML, XML,
and Docbook output files. It is not output implicitly in plain text or TEX; it’s up to you to
use @insertcopying to emit the copying information. See the next section for details.

The @copyright{} command generates a ‘c’ inside a circle when the output format
supports this glyph (print and HTML always do, for instance). When the glyph is not
supported in the output, it generates the three-character sequence ‘(C)’.

The copyright notice itself has the following legally-prescribed form:

Copyright () years copyright-owner.

The word ‘Copyright” must always be written in English, even if the document is other-
wise written in another language. This is due to international law.

The list of years should include all years in which a version was completed (even if it was
released in a subsequent year). It is simplest for each year to be written out individually
and in full, separated by commas.

The copyright owner (or owners) is whoever holds legal copyright on the work. In the
case of works assigned to the FSF, the owner is ‘Free Software Foundation, Inc.’.

The copyright ‘line’ may actually be split across multiple lines, both in the source doc-
ument and in the output. This often happens for documents with a long history, having
many different years of publication. If you do use several lines, do not indent any of them
(or anything else in the @copying block) in the source file.

Chapter 3: Beginning and Ending a Texinfo File 20

See Section “Copyright Notices” in GNU Maintainer Information, for additional infor-
mation. See Section C.2 [GNU Sample Texts|, page 253, for the full text to be used in GNU
manuals. See Appendix H [GNU Free Documentation License], page 289, for the license
itself under which GNU and other free manuals are distributed.

3.3.2 @insertcopying: Include Permissions Text
The @insertcopying command is simply written on a line by itself, like this:
@insertcopying

This inserts the text previously defined by @copying. To meet legal requirements, it
must be used on the copyright page in the printed manual (see Section 3.4.4 [Copyright],
page 23).

The @copying command itself causes the permissions text to appear in an Info file before
the first node. The text is also copied into the beginning of each split Info output file, as
is legally necessary. This location implies a human reading the manual using Info does not
see this text (except when using the advanced Info command g *), but this does not matter
for legal purposes, because the text is present.

Similarly, the @copying text is automatically included at the beginning of each HTML
output file, as an HTML comment. Again, this text is not visible (unless the reader views
the HTML source).

The permissions text defined by @copying also appears automatically at the beginning
of the XML and Docbook output files.

3.4 Title and Copyright Pages

In hard copy output, the manual’s name and author are usually printed on a title page.
Copyright information is usually printed on the back of the title page.

The title and copyright pages appear in printed manuals, but not in most other output
formats. Because of this, it is possible to use several slightly obscure typesetting commands
that are not to be used in the main text. In addition, this part of the beginning of a Texinfo
file contains the text of the copying permissions that appears in the printed manual.

3.4.1 Qtitlepage

Start the material for the title page and following copyright page with @titlepage on a
line by itself and end it with @end titlepage on a line by itself.

The @end titlepage command starts a new page and turns on page numbering (see
Section 3.4.5 [Heading Generation], page 24). All the material that you want to appear on
unnumbered pages should be put between the @titlepage and @end titlepage commands.
You can force the table of contents to appear there with the @setcontentsaftertitlepage
command (see Section 3.5 [Contents], page 24).

By using the @page command you can force a page break within the region delineated
by the @titlepage and @end titlepage commands and thereby create more than one
unnumbered page. This is how the copyright page is produced. (The @titlepage command
might perhaps have been better named the @titleandadditionalpages command, but that
would have been rather long!)

Chapter 3: Beginning and Ending a Texinfo File 21

When you write a manual about a computer program, you should write the version of
the program to which the manual applies on the title page. If the manual changes more
frequently than the program or is independent of it, you should also include an edition
number! for the manual. This helps readers keep track of which manual is for which version
of the program. (The ‘Top’ node should also contain this information; see Section 3.6 [The
Top Node], page 25.)

Texinfo provides two main methods for creating a title page. One method uses the
@titlefont, @sp, and @center commands to generate a title page in which the words on
the page are centered.

The second method uses the @title, @subtitle, and @author commands to create a
title page with black rules under the title and author lines and the subtitle text set flush
to the right hand side of the page. With this method, you do not specify any of the actual
formatting of the title page. You specify the text you want, and Texinfo does the formatting.

You may use either method, or you may combine them; see the examples in the sections
below.

For sufficiently simple documents, and for the bastard title page in traditional book
frontmatter, Texinfo also provides a command @shorttitlepage which takes the rest of
the line as the title. The argument is typeset on a page by itself and followed by a blank

page.
3.4.2 @titlefont, @center, and @sp

You can use the @titlefont, @sp, and @center commands to create a title page for a
printed document. (This is the first of the two methods for creating a title page in Texinfo.)

Use the @titlefont command to select a large font suitable for the title itself. You can
use @titlefont more than once if you have an especially long title.

For HTML output, each @titlefont command produces an <hl1> heading, but the
HTML document <title> is not affected. For that, you must put a @settitle command
before the @titlefont command (see Section 3.2.4 [@settitle], page 18).

For example:
Otitlefont{Texinfo}

Use the @center command at the beginning of a line to center the remaining text on
that line. Thus,

@center Qtitlefont{Texinfo}
centers the title, which in this example is “Texinfo” printed in the title font.
Use the @sp command to insert vertical space. For example:
O@sp 2

This inserts two blank lines on the printed page. (See Section 13.7 [@sp], page 121, for more
information about the @sp command.)

1 We have found that it is helpful to refer to versions of independent manuals as ‘editions’ and versions of
programs as ‘versions’; otherwise, we find we are liable to confuse each other in conversation by referring
to both the documentation and the software with the same words.

Chapter 3: Beginning and Ending a Texinfo File 22

A template for this method looks like this:

Otitlepage

@sp 10

Q@center Qtitlefont{name-of-manual-when-printed}
Osp 2

Qcenter subtitle-if-any

Gsp 2

Q@center author

Q@end titlepage
The spacing of the example fits an 8.5 by 11 inch manual.

You can in fact use these commands anywhere, not just on a title page, but since they
are not logical markup commands, we don’t recommend them.

3.4.3 0title, @subtitle, and @author

You can use the @title, @subtitle, and @author commands to create a title page in which
the vertical and horizontal spacing is done for you automatically. This contrasts with the
method described in the previous section, in which the @sp command is needed to adjust
vertical spacing.

Write the @title, @subtitle, or @author commands at the beginning of a line followed
by the title, subtitle, or author. The @author command may be used for a quotation in an
@quotation block (see Section 8.2 [@quotation|, page 73); except for that, it is an error to
use any of these commands outside of @titlepage.

The @title command produces a line in which the title is set flush to the left-hand side
of the page in a larger than normal font. The title is underlined with a black rule. The
title must be given on a single line in the source file; it will be broken into multiple lines of
output is needed.

For long titles, the @ command may be used to specify the line breaks in long titles
if the automatic breaks do not suit. Such explicit line breaks are generally reflected in all
output formats; if you only want to specify them for the printed output, use a conditional
(see Chapter 16 [Conditionals], page 139). For example:

O@title This Long Title@inlinefmt{tex,@*} Is Broken in Q@TeX{}

The @subtitle command sets subtitles in a normal-sized font flush to the right-hand
side of the page.

The @author command sets the names of the author or authors in a middle-sized font
flush to the left-hand side of the page on a line near the bottom of the title page. The
names are followed by a black rule that is thinner than the rule that underlines the title.

There are two ways to use the @author command: you can write the name or names on
the remaining part of the line that starts with an @author command:

Q@author by Jane Smith and John Doe
or you can write the names one above each other by using multiple @author commands:

Q@author Jane Smith
@author John Doe

Chapter 3: Beginning and Ending a Texinfo File 23

A template for this method looks like this:
@titlepage
Otitle name-of-manual-when-printed
Q@subtitle subtitle-if-any
Osubtitle second-subtitle
Q@author author
Gpage

Q@end titlepage

3.4.4 Copyright Page

By international treaty, the copyright notice for a book must be either on the title page
or on the back of the title page. When the copyright notice is on the back of the title
page, that page is customarily not numbered. Therefore, in Texinfo, the information on the
copyright page should be within @titlepage and @end titlepage commands.

Use the @page command to cause a page break. To push the copyright notice and
the other text on the copyright page towards the bottom of the page, use the following
incantation after @page

Q@vskip Opt plus 1filll
The @vskip command inserts whitespace in the TEX output; it is ignored in all other output
formats. The ‘Opt plus 1fi111’ means to put in zero points of mandatory whitespace, and
as much optional whitespace as needed to push the following text to the bottom of the page.
Note the use of three ‘1’s in the word ‘fi111’; this is correct.

To insert the copyright text itself, write @insertcopying next (see Section 3.3 [Docu-
ment Permissions|, page 18):

@insertcopying

Follow the copying text by the publisher, ISBN numbers, cover art credits, and other
such information.

Here is an example putting all this together:

@titlepage

OGpage

@vskip Opt plus 1£filll
@insertcopying

Published by ...

Cover art by ...
Q@end titlepage

We have one more special case to consider: for plain text output, you must insert the
copyright information explicitly if you want it to appear. For instance, you could have the
following after the copyright page:

Q@ifplaintext
Q@insertcopying

Chapter 3: Beginning and Ending a Texinfo File 24

Q@end ifplaintext
You could include other title-like information for the plain text output in the same place.

3.4.5 Heading Generation

Like all @end commands (see Chapter 8 [Quotations and Examples|, page 72), the @end
titlepage command must be written at the beginning of a line by itself, with only one
space between the @end and the titlepage. It not only marks the end of the title and
copyright pages, but also causes TEX to start generating page headings and page numbers.

Texinfo has two standard page heading formats, one for documents printed on one side
of each sheet of paper (single-sided printing), and the other for documents printed on both
sides of each sheet (double-sided printing).

In full generality, you can control the headings in different ways:

e The conventional way is to write a @setchapternewpage command before the title page
commands, if required, and then have the @end titlepage command start generating
page headings in the manner desired.

Most documents are formatted with the standard single-sided or double-sided headings,
(sometimes) using @setchapternewpage odd for double-sided printing and (almost al-
ways) no @setchapternewpage command for single-sided printing (see Section 3.7.2
[@setchapternewpage|, page 27).

e Alternatively, you can use the @headings command to prevent page headings from
being generated or to start them for either single or double-sided printing. Write a
@headings command immediately after the @end titlepage command. To turn off
headings, write @headings off. See Section 3.7.3 [@headings], page 28.

e Or, you may specify your own page heading and footing format. See Appendix E
[Headings], page 270.

3.5 Generating a Table of Contents

The @chapter, @section, and other structuring commands (see Chapter 5 [Chapter Struc-
turing], page 42) supply the information to make up a table of contents, but they do not
cause an actual table to appear in the manual. To do this, you must use the @contents
and/or @summarycontents command(s).

Q@contents
Generates a table of contents in a printed manual, including all chapters, sec-
tions, subsections, etc., as well as appendices and unnumbered chapters. Head-
ings generated by @majorheading, @chapheading, and the other @...heading
commands do not appear in the table of contents (see Section 5.2 [Structuring
Command Types|, page 42).

O@shortcontents
Osummarycontents
(@summarycontents is a synonym for @shortcontents.)

Generates a short or summary table of contents that lists only the chapters, ap-
pendices, and unnumbered chapters. Sections, subsections and subsubsections
are omitted. Only a long manual needs a short table of contents in addition to
the full table of contents.

Chapter 3: Beginning and Ending a Texinfo File 25

Both contents commands should be written on a line by themselves, and placed near the
beginning of the file, after the @end titlepage (see Section 3.4.1 [@titlepage|, page 20),
before any sectioning command. The contents commands automatically generate a chapter-
like heading at the top of the first table of contents page, so don’t include any sectioning
command such as @unnumbered before them.

Since an Info file uses menus instead of tables of contents, the Info formatting com-
mands ignore the contents commands. But the contents are included in plain text output
(generated by makeinfo --plaintext) and in other output formats, such as HTML.

When makeinfo writes a short table of contents while producing HTML output, the links
in the short table of contents point to corresponding entries in the full table of contents
rather than the text of the document. The links in the full table of contents point to the
main text of the document.

3.6 The ‘Top’ Node and Master Menu

The ‘Top’ node is the node in which a reader enters an Info manual. As such, it should
begin with a brief description of the manual (including the version number), and end with
a master menu for the whole manual. Of course you should include any other general
information you feel a reader would find helpful.

It is conventional and desirable to write a @top sectioning command line containing the
title of the document immediately after the @node Top line (see Section 4.6 [@top Command],
page 35).

The contents of the ‘Top’ node should appear only in the online output; none of it
should appear in printed output, so enclose it between @ifnottex and @end ifnottex
commands. (TEX does not print either an @node line or a menu; they appear only in
Info; strictly speaking, you are not required to enclose these parts between @ifnottex and
@end ifnottex, but it is simplest to do so. See Chapter 16 [Conditionally Visible Text],
page 139.)

3.6.1 Top Node Example
Here is an example of a Top node.

@ifnottex
OGnode Top
Otop Sample Title

This is the text of the top node.
@end ifnottex

Additional general information.
Omenu
* First Chapter::

* Second Chapter::

* Index::
@end menu

Chapter 3: Beginning and Ending a Texinfo File 26

3.6.2 Parts of a Master Menu

A master menu is the main menu. It is customary to include a detailed menu listing all the
nodes in the document in this menu.

Like any other menu, a master menu is enclosed in @menu and @end menu and does not
appear in the printed output.

Generally, a master menu is divided into parts.

e The first part contains the major nodes in the Texinfo file: the nodes for the chapters,
chapter-like sections, and the appendices.

e The second part contains nodes for the indices.

e The third and subsequent parts contain a listing of the other, lower-level nodes, often
ordered by chapter. This way, rather than go through an intermediary menu, an
inquirer can go directly to a particular node when searching for specific information.
These menu items are not required; add them if you think they are a convenience. If
you do use them, put @detailmenu before the first one, and @end detailmenu after
the last; otherwise, makeinfo will get confused.

Each section in the menu can be introduced by a descriptive line. So long as the line
does not begin with an asterisk, it will not be treated as a menu entry. (See Section 4.9.1
[Writing a Menu]|, page 38, for more information.)

For example, the master menu for this manual looks like the following (but has many
more entries):

@menu
* Copying Conditions:: Your rights.
* Overview:: Texinfo in brief.

* Command and Variable Index::
* General Index::

@detailmenu
—--- The Detailed Node Listing ---

Overview of Texinfo

* Reporting Bugs::

Beginning a Texinfo File
* Sample Beginning::

@end detailmenu
@end menu

Chapter 3: Beginning and Ending a Texinfo File 27

3.7 Global Document Commands

Besides the basic commands mentioned in the previous sections, here are additional com-
mands which affect the document as a whole. They are generally all given before the Top
node, if they are given at all.

3.7.1 @documentdescription: Summary Text

When producing HTML output for a document, makeinfo writes a ‘<meta>’ element in the
‘<head>’ to give some idea of the content of the document. By default, this description is the
title of the document, taken from the @settitle command (see Section 3.2.4 [@settitle],
page 18). To change this, use the @documentdescription environment, as in:

Q@documentdescription

descriptive text.

@end documentdescription

This will produce the following output in the ‘<head>’ of the HTML:
<meta name=description content="descriptive text.">
@documentdescription must be specified before the first node of the document.

3.7.2 @setchapternewpage: Blank Pages Before Chapters

In an officially bound book, text is usually printed on both sides of the paper, chapters start
on right-hand pages, and right-hand pages have odd numbers. But in short reports, text
often is printed only on one side of the paper. Also in short reports, chapters sometimes
do not start on new pages, but are printed on the same page as the end of the preceding
chapter, after a small amount of vertical whitespace.

You can use the @setchapternewpage command with various arguments to specify how
TEX should start chapters and whether it should format headers for printing on one or both
sides of the paper (single-sided or double-sided printing).

Write the @setchapternewpage command at the beginning of a line followed by its
argument.

For example, you would write the following to cause each chapter to start on a fresh
odd-numbered page:

O@setchapternewpage odd
You can specify one of three alternatives with the @setchapternewpage command:

O@setchapternewpage off
Cause TEX to typeset a new chapter on the same page as the last chapter, after
skipping some vertical whitespace. Also, cause TEX to format page headers for
single-sided printing.

@setchapternewpage on
Cause TEX to start new chapters on new pages and to format page headers
for single-sided printing. This is the form most often used for short reports or
personal printing. This is the default.

O@setchapternewpage odd
Cause TEX to start new chapters on new, odd-numbered pages (right-handed
pages) and to typeset for double-sided printing. This is the form most often
used for books and manuals.

Chapter 3: Beginning and Ending a Texinfo File 28

Texinfo does not have a @setchapternewpage even command, because there is no print-
ing tradition of starting chapters or books on an even-numbered page.

If you don’t like the default headers that @setchapternewpage sets, you can explicit
control them with the @headings command. See Section 3.7.3 [@headings], page 28.

At the beginning of a manual or book, pages are not numbered—for example, the title
and copyright pages of a book are not numbered. By convention, table of contents and
frontmatter pages are numbered with roman numerals and not in sequence with the rest of
the document.

The @setchapternewpage has no effect in output formats that do not have pages, such
as Info and HTML.

We recommend not including any @setchapternewpage command in your document
source at all, since such desired pagination is not intrinsic to the document. For a particular
hard copy run, if you don’t want the default output (no blank pages, same headers on all
pages) use the ——texinfo option to texi2dvi to specify the output you want.

3.7.3 The @headings Command

The @headings command is rarely used. It specifies what kind of page headings and footings
to print on each page. Usually, this is controlled by the @setchapternewpage command.
You need the @headings command only if the @setchapternewpage command does not do
what you want, or if you want to turn off predefined page headings prior to defining your
own. Write a Gheadings command immediately after the @end titlepage command.

You can use @headings as follows:

OGheadings off
Turn off printing of page headings.

OGheadings single
Turn on page headings appropriate for single-sided printing.

OGheadings double
Turn on page headings appropriate for double-sided printing.

Oheadings singleafter

QGheadings doubleafter
Turn on single or double headings, respectively, after the current page is
output.

QGheadings on
Turn on page headings: single if ‘@setchapternewpage on’, double otherwise.

For example, suppose you write @setchapternewpage off before the @titlepage com-
mand to tell TEX to start a new chapter on the same page as the end of the last chapter.
This command also causes TEX to typeset page headers for single-sided printing. To cause
TEX to typeset for double sided printing, write @headings double after the @end titlepage
command.

You can stop TEX from generating any page headings at all by writing @headings off
on a line of its own immediately after the line containing the @end titlepage command,
like this:

@end titlepage

Chapter 3: Beginning and Ending a Texinfo File 29

Oheadings off

The @headings off command overrides the @end titlepage command, which would oth-
erwise cause TEX to print page headings.

You can also specify your own style of page heading and footing. See Appendix E [Page
Headings|, page 270, for more information.

3.7.4 @paragraphindent: Controlling Paragraph Indentation

The Texinfo processors may insert whitespace at the beginning of the first line of each para-
graph, thereby indenting that paragraph. You can use the @paragraphindent command to
specify this indentation. Write a @paragraphindent command at the beginning of a line
followed by either ‘asis’ or a number:

O@paragraphindent indent

The indentation is according to the value of indent:

asis Do not change the existing indentation (not implemented in TEX).
none

0 Omit all indentation.

n Indent by n space characters in Info output, by n ems in TEX.

The default value of indent is 3. @paragraphindent is ignored for HTML output.

It is best to write the @paragraphindent command before the end-of-header line at
the beginning of a Texinfo file, so the region formatting commands indent paragraphs as
specified. See Section 3.2.2 [Start of Header|, page 17.

3.7.5 @firstparagraphindent: Indenting After Headings

As you can see in the present manual, the first paragraph in any section is not indented
by default. Typographically, indentation is a paragraph separator, which means that
it is unnecessary when a new section begins. This indentation is controlled with the
@firstparagraphindent command:

@firstparagraphindent word

The first paragraph after a heading is indented according to the value of word:

none Prevents the first paragraph from being indented (default). This option is
ignored by makeinfo if @paragraphindent asis is in effect.

insert Include normal paragraph indentation. This respects the paragraph indentation
set by a @paragraphindent command (see Section 3.7.4 [@paragraphindent],
page 29).

@firstparagraphindent is ignored for HTML and Docbook output.

It is best to write the @f irstparagraphindent command before the end-of-header line
at the beginning of a Texinfo file, so the region formatting commands indent paragraphs as
specified. See Section 3.2.2 [Start of Header|, page 17.

Chapter 3: Beginning and Ending a Texinfo File 30

3.7.6 Gexampleindent: Environment Indenting

The Texinfo processors indent each line of @example and similar environments. You can
use the @exampleindent command to specify this indentation. Write an @exampleindent
command at the beginning of a line followed by either ‘asis’ or a number:

Q@exampleindent indent

The indentation is according to the value of indent:

asis Do not change the existing indentation (not implemented in TEX).
0 Omit all indentation.
n Indent environments by n space characters in Info output, by n ems in TEX.

The default value of indent is 5 spaces in Info, and 0.4in in TEX, which is somewhat
less. (The reduction is to help TEX fit more characters onto physical lines.)

It is best to write the @exampleindent command before the end-of-header line at the be-
ginning of a Texinfo file, so the region formatting commands indent paragraphs as specified.
See Section 3.2.2 [Start of Header], page 17.

3.8 Ending a Texinfo File

The end of a Texinfo file should include commands to create indices (see Section 11.4
[Printing Indices & Menus], page 99), and the @bye command to mark the last line to be
processed. For example:

Onode Index
Qunnumbered Index

O@printindex cp

Q@bye
An @bye command terminates Texinfo processing. None of the formatters process any-
thing following @bye; any such text is completely ignored. The @bye command should be
on a line by itself.
Thus, if you wish, you may follow the @bye line with arbitrary notes. Also, you may

follow the @bye line with a local variables list for Emacs, most typically a ‘compile-command’
(see Section 19.7 [Using the Local Variables List|, page 170).

31

4 Nodes

A node is a region of text that begins at a @node command, and continues until the next
@node command. To specify a node, write a @node command at the beginning of a line, and
follow it with the name of the node. Each node contains the discussion of one topic. Info
readers display one node at a time, and provide commands for the user to move to related
nodes. The HTML output can be similarly navigated.

Nodes are used as the targets of cross-references. Cross-references, such as the one at
the end of this sentence, are made with @xref and related commands; see Chapter 6 [Cross
References|, page 49. Cross-references can be sprinkled throughout the text, and provide a
way to represent links that do not fit a hierarchical structure.

Normally, you put a node command immediately before each chapter structuring
command—for example, an @section or @subsection line. (See Chapter 5 [Chapter
Structuring], page 42.). You must do this even if you do not intend to format the file for
Info. This is because TEX uses both @node names and chapter-structuring names in the
output for cross-references. The only time you are likely to use the chapter structuring
commands without also using nodes is if you are writing a document that contains no cross
references and will only be printed, not transformed into Info, HTML, or other formats.

4.1 Texinfo Document Structure

Nodes can contain menus, which contain the names of child nodes within the parent node;
for example, a node corresponding to a chapter would have a menu of the sections in that
chapter. The menus allow the user to move to the child nodes in a natural way in the online
output.

In addition, nodes contain node pointers that name other nodes. The ‘Next’ and ‘Pre-
vious’ pointers form nodes at the same sectioning level into a chain. As you might imagine,
the ‘Next’ pointer links to the next node, and the ‘Previous’ pointer links to the previous
node. Thus, for example, all the nodes that are at the level of sections within a chapter
are linked together, and the order in this chain is the same as the order of the children in
the menu of the parent chapter. Each child node records the parent node name as its ‘Up’
pointer.

The Info and HTML output from makeinfo for each node includes links to the ‘Next’,
‘Previous’, and ‘Up’ nodes. The HTML also uses the accesskey attribute with the values
‘n’, ‘p’, and ‘u’ respectively. This allows people using web browsers to follow the navigation
using (typically) M-Iletter, e.g., M-n for the ‘Next’ node, from anywhere within the node.
Node pointers and menus provide structure for Info files just as chapters, sections, subsec-
tions, and the like provide structure for printed books. The two structures are theoretically
distinct; in practice, however, the tree structure of printed books is essentially always used
for the node and menu structure also, as this leads to a document which is easiest to follow.
See Section 4.1 [Texinfo Document Structure], page 31.

Typically, the sectioning structure and the node structure are completely parallel, with
one node for each chapter, section, etc., and with the nodes following the same hierarchical
arrangement as the sectioning. Thus, if a node is at the logical level of a chapter, its child
nodes are at the level of sections; similarly, the child nodes of sections are at the level of
subsections.

Chapter 4: Nodes 32

Although it is technically possible to create Texinfo documents with only one structure
or the other, or for the two structures not to be parallel, or for either the sectioning or node
structure to be abnormally formed, etc., this is not at all recommended. To the best of
our knowledge, all the Texinfo manuals currently in general use do follow the conventional
parallel structure.

4.2 Choosing Node Names

The name of a node identifies the node. For all the details of node names, see Section 4.4
[Node Line Requirements|, page 33).

Here are some suggestions for node names:
e Try to pick node names that are informative but short.

In the Info file, the file name, node name, and pointer names are all inserted on one
line, which may run into the right edge of the window. (This does not cause a problem
with Info, but is ugly.)

e Try to pick node names that differ from each other near the beginnings of their names.
This way, it is easy to use automatic name completion in Info.

e Conventionally, node names are capitalized in the same way as section and chapter
titles. In this manual, initial and significant words are capitalized; others are not. In
other manuals, just initial words and proper nouns are capitalized. Either way is fine;
we recommend just being consistent.

Because node names are used in cross-references, it is not desirable to casually change
them once published. Such name changes invalidate references from other manuals, from
mail archives, and so on. See Section 22.4.7 [HTML Xref Link Preservation|, page 220.

The pointers from a given node enable you to reach other nodes and consist simply of
the names of those nodes. The pointers are usually not specified explicitly, as makeinfo
can determine them (see Section 4.8 [makeinfo Pointer Creation], page 37).

Normally, a node’s ‘Up’ pointer contains the name of the node whose menu mentions
that node. The node’s ‘Next’ pointer contains the name of the node that follows the present
node in that menu and its ‘Previous’ pointer contains the name of the node that precedes
it in that menu. When a node’s ‘Previous’ node is the same as its ‘Up’ node, both pointers
name the same node.

Usually, the first node of a Texinfo file is the ‘Top’ node, and its ‘Up’ pointer points to
the dir file, which contains the main menu for all of Info.

4.3 Writing an @node Line

The easiest way to write an @node line is to write @node at the beginning of a line and then
the name of the node, like this:

@node node-name

After you have inserted an @node line, you should immediately write an @-command for
the chapter or section and insert its name. Next (and this is important!), put in several
index entries. Usually, you will find at least two and often as many as four or five ways of
referring to the node in the index. Use them all. This will make it much easier for people
to find the node.

Chapter 4: Nodes 33

If you wish, you can ignore @node lines altogether in your first draft and then use the
texinfo-insert-node-lines command to create @node lines for you. However, we do not
recommend this practice. It is better to name the node itself at the same time that you write
a segment so you can easily make cross-references. Useful cross-references are an especially
important feature of a good Texinfo manual.

Even when you explicitly specify all pointers, you cannot write the nodes in the Texinfo
source file in an arbitrary order! Because formatters must process the file sequentially,
irrespective of node pointers, you must write the nodes in the order you wish them to
appear in the output. For Info format one can imagine that the order may not matter, but
it matters for the other formats.

You may optionally follow the node name argument to @node with up to three optional
arguments on the rest of the same line, separating the arguments with commas. These
are the names of the ‘Next’, ‘Previous’, and ‘Up’ pointers, in that order. We recommend
omitting them if your Texinfo document is hierarchically organized, as virtually all are (see
Section 4.8 [makeinfo Pointer Creation], page 37).

Any spaces before or after each name on the @node line are ignored.

The template for a fully-written-out node line with ‘Next’, ‘Previous’, and ‘Up’ pointers
looks like this:

Gnode node-name, next, previous, up

The node-name argument must be present, but the others are optional. If you
wish to specify some but not others, just insert commas as needed, as in: ‘@node
mynode, , ,uppernode’. However, we recommend leaving off all the pointers and letting
makeinfo determine them.

If you are using GNU Emacs, you can use the update node commands provided by
Texinfo mode to insert the names of the pointers; or (recommended), you can leave the
pointers out of the Texinfo file and let makeinfo insert node pointers into the Info file it
creates. (See Appendix D [Texinfo Mode], page 258, and Section 4.8 [makeinfo Pointer
Creation], page 37.)

Alternatively, you can insert the ‘Next’, ‘Previous’, and ‘Up’ pointers yourself. If you
do this, you may find it helpful to use the Texinfo mode keyboard command C-c C-c n.
This command inserts ‘@node’ and a comment line listing the names of the pointers in their
proper order. The comment line helps you keep track of which arguments are for which
pointers. This comment line is especially useful if you are not familiar with Texinfo.

4.4 Onode Line Requirements

Names used with @node have several requirements:
e All the node names in a single Texinfo file must be unique.

This means, for example, that if you end every chapter with a summary, you must
name each summary node differently. You cannot just call them all “Summary”. You
may, however, duplicate the titles of chapters, sections, and the like. Thus you can end
each chapter with a section called “Summary”, so long as the node names for those
sections are all different.

e Node names can contain @-commands. The output is generally the natural result of
the command; for example, using @TeX{} in a node name results in the TEX logo being

Chapter 4: Nodes 34

output, as it would be in normal text. Cross-references should use @TeX{} just as the
node name does.

For Info and HTML output, especially, it is necessary to expand commands to some
sequence of plain characters; for instance, @TeX{} expands to the three letters ‘TeX’
in the Info node name. However, cross-references to the node should not take the
“shortcut” of using ‘TeX’; stick to the actual node name, commands and all.

Some commands do not make sense in node names; for instance, environments (e.g.,
@quotation), commands that read a whole line as their argument (e.g., @sp), and
plenty of others.

For the complete list of commands that are allowed, and their expansion for HTML
identifiers and file names, see Section 22.4.3 [HTML Xref Command Expansion],
page 216. The expansions for Info are generally given with main the description of
the command.

Prior to the Texinfo 5 release in 2013, this feature was supported in an ad hoc way (the
--commands-in-node-names option to makeinfo). Now it is part of the language.

e Unfortunately, you cannot reliably use periods, commas, or colons within a node name;
these can confuse the Info reader. Also, a node name may not start with a left paren-
thesis preceding a right parenthesis, as in (not)allowed, since this syntax is used to
specify an external manual. (Perhaps these limitations will be removed some day.)

makeinfo warns about such problematic usage in node names, menu items, and cross-
references. If you don’t want to see the warnings, you can set the customization variable
INFO_SPECIAL_CHARS_WARNING to ‘0’ (see Section 20.6.4 [Other Customization Vari-
ables|, page 192).
Also, if you insist on using these characters in node names (accepting the resulting
substandard Info output), in order not to confuse the Texinfo processors you must still
escape those characters, by using either special insertions (see Section 12.1.3 [Inserting
a Commal, page 104) or @asis (see [@asis|, page 86). For example:

@node foo®asis{::}bar
As an example of avoiding the special characters, the following is a section title in this
manual:

@section @code{@@unnumbered}, @code{@@appendix}: ...

But the corresponding node name lacks the commas and the subtitle:

Onode @unnumbered Qappendix
e Case is significant in node names.

e Spaces before and after names on the ‘@node’ line are ignored. Multiple whitespace
characters “inside” a name are collapsed to a single space. For example:

@node foo bar
@node foo bar,
@node foo bar ,
Onode foo bar,
Onode foo bar ,

all define the same node, namely ‘foo bar’. In menu entries, this is the name that
should be used: no leading or trailing spaces, and a single internal space. (For cross-

Chapter 4: Nodes 35

references, the node name used in the Texinfo sources is automatically normalized in
this way.)

e The next/previous/up pointers on @node lines must be the names of nodes. (It’s
recommended to leave out these explicit node pointer names, which automatically
avoids any problem here; see Section 4.8 [makeinfo Pointer Creation], page 37.)

4.5 The First Node

The first node of a Texinfo file is the Top node, except in an included file (see Chapter 18
[Include Files|, page 159). The Top node should contain a short summary, copying permis-
sions, and a master menu. See Section 3.6 [The Top Node|, page 25, for more information
on the Top node contents and examples.

Here is a description of the node pointers to be used in the Top node:

e The Top node (which must be named ‘top’ or ‘Top’) should have as its ‘Up’ node the
name of a node in another file, where there is a menu that leads to this file. Specify
the file name in parentheses.

Usually, all Info files are available through a single virtual Info tree, constructed from
multiple directories. In this case, use ‘(dir)’ as the parent of the Top node; this
specifies the top-level node in the dir file, which contains the main menu for the Info
system as a whole. (Each directory with Info files is intended to contain a file named
dir.)

That’s fine for Info, but for HTML output, one might well want the Up link from the
Top node to go somewhere other than ‘dir.html’. For example, for GNU the natural
place would be http://www.gnu.org/manual/ (a web page collecting links to most
GNU manuals), better specified as just /manual/ if the manual will be installed on
www.gnu.org. This can be specified with the TOP_NODE_UP_URL customization variable
(see Section 20.6.3 [HTML Customization Variables|, page 187), as in

$ makeinfo --html -c TOP_NODE_UP_URL=/manual/ ...
All links to (dir) will be replaced by the given url.

e The ‘Prev’ node of the Top node is usually either omitted or also set to (dir). Either
is fine.

e The ‘Next’ node of the Top node should be the first chapter in your document.
See Section 21.2 [Installing an Info File|, page 204, for more information about installing
an Info file in the info directory.

It is usually best to leave the pointers off entirely and let the tools implicitly define them,
with this simple result:

Gnode Top

4.6 The @top Sectioning Command

The @top command is a special sectioning command that you should only use after a ‘@node
Top’ line at the beginning of a Texinfo file. The @top command tells the makeinfo formatter
which node is to be used as the root of the node tree.

It produces the same sort of output as @unnumbered (see Section 5.4 [@unnumbered
@appendix|, page 44).

http://www.gnu.org/manual/

Chapter 4: Nodes 36

The @top node is conventionally wrapped in an @ifnottex conditional so that it will
not appear in TEX output (see Chapter 16 [Conditionals], page 139). Thus, in practice, a
Top node usually looks like this:

Q@ifnottex
OGnode Top
@top your-manual-title

very-high-level-summary
Q@end ifnottex

@top is ignored when raising or lowering sections. That is, it is never lowered and nothing
can be raised to it (see Section 5.12 [Raise/lower sections|, page 47).

4.7 Node and Menu Illustration

Here is a diagram that illustrates a Texinfo file with three chapters, each of which contains
two sections.

The “root” is at the top of the diagram and the “leaves” are at the bottom. This is how
such a diagram is drawn conventionally; it illustrates an upside-down tree. For this reason,
the root node is called the ‘“Top’ node, and ‘Up’ node pointers carry you closer to the root.

Section Section Section Section Section Section
1.1 1.2 2.1 2.2 3.1 3.2

Using explicit pointers (not recommended, but for shown for purposes of the example),
the fully-written command to start Chapter 2 would be this:

Onode Chapter 2, Chapter 3, Chapter 1, Top
Qcomment node-name, next, previous, up

This @node line says that the name of this node is “Chapter 2”, the name of the ‘Next’ node
is “Chapter 3”7, the name of the ‘Previous’ node is “Chapter 17, and the name of the ‘Up’
node is “Top”. You can (and should) omit writing out these node names if your document
is hierarchically organized (see Section 4.8 [makeinfo Pointer Creation], page 37), but the
pointer relationships still obtain.

Note: ‘Next’ and ‘Previous’ refer to nodes at the same hierarchical level in
the manual, not necessarily to the next node within the Texinfo file. In the
Texinfo file, the subsequent node may be at a lower level—a section-level node
most often follows a chapter-level node, for example. (The ‘Top’ node contains
the exception to this rule. Since the ‘Top’ node is the only node at that level,
‘Next’ refers to the first following node, which is almost always a chapter or
chapter-level node.)

Chapter 4: Nodes 37

To go to Sections 2.1 and 2.2 using Info, you need a menu inside Chapter 2. (See
Section 4.9 [Menus], page 38.) You would write the menu just before the beginning of
Section 2.1, like this:

Omenu
* Sect. 2.1:: Description of this section.
* Sect. 2.2:: Description.

@end menu
Using explicit pointers, the node for Sect. 2.1 is written like this:

OGnode Sect. 2.1, Sect. 2.2, Chapter 2, Chapter 2
Qcomment mnode-name, next, previous, up

In Info format, the ‘Next’ and ‘Previous’ pointers of a node usually lead to other nodes
at the same level—from chapter to chapter or from section to section (sometimes, as shown,
the ‘Previous’ pointer points up); an ‘Up’ pointer usually leads to a node at the level above
(closer to the ‘Top’ node); and a ‘Menu’ leads to nodes at a level below (closer to ‘leaves’). (A
cross-reference can point to a node at any level; see Chapter 6 [Cross References|, page 49.)

A @node command and a chapter structuring command are conventionally used together,
in that order, often followed by indexing commands. (As shown in the example above, you
may follow the @node line with a comment line, e.g., to show which pointer is which if
explicit pointers are used.) The Texinfo processors use this construct to determine the
relationships between nodes and sectioning commands.

Here is the beginning of the chapter in this manual called “Ending a Texinfo File”. This
shows an @node line followed by an @chapter line, and then by indexing lines.

Onode Ending a File

Q@chapter Ending a Texinfo File
@cindex Ending a Texinfo file
@cindex Texinfo file ending
@cindex File ending

An earlier version of the manual used explicit node pointers. Here is the beginning of
the same chapter for that case. This shows an @node line followed by a comment line, a
@chapter line, and then by indexing lines.

OGnode Ending a File, Structuring, Beginning a File, Top
Qcomment node-name, next, previous, up
@chapter Ending a Texinfo File
@cindex Ending a Texinfo file

4.8 makeinfo Pointer Creation

The makeinfo program can automatically determine node pointers for a hierarchically or-
ganized document. This implicit node pointer creation feature in makeinfo relieves you
from the need to update menus and pointers manually or with Texinfo mode commands.
(See Section D.5 [Updating Nodes and Menus|, page 261.) We highly recommend taking
advantage of this.

To do so, write your @node lines with just the name of the node:
OGnode My Node

Chapter 4: Nodes 38

You do not need to write out the ‘Next’, ‘Previous’, and ‘Up’ pointers.

Then, you must write a sectioning command, such as @chapter or @section, on the line
immediately following each truncated @node line (except that comment lines may intervene).
This is where it normally goes.

Also, you must write the name of each node (except for the ‘Top’ node) in a menu that
is one or more hierarchical levels above the node’s level.

Finally, you must follow the ‘Top’ @node line with a line beginning with @top to mark
the top-level node in the file. See Section 4.6 [@top Command], page 35.

If you use a detailed menu in your master menu (see Section 3.6.2 [Master Menu Parts],
page 26), mark it with the @detailmenu ... @end detailmenu environment, or makeinfo
will get confused, typically about the last and/or first node in the document.

In most cases, you will want to take advantage of this feature and not redundantly
specify node pointers that the programs can determine. However, Texinfo documents are
not required to be organized hierarchically or in fact to contain sectioning commands at all
(for example, if you never intend the document to be printed), so node pointers may still
be specified explicitly, in full generality.

4.9 Menus

Menus contain pointers to subordinate nodes. In online output, you use menus to go to
such nodes. Menus have no effect in printed manuals and do not appear in them.

4.9.1 Writing a Menu

A menu consists of a @menu command on a line by itself, followed by menu entry lines or
menu comment lines, and then followed by an @end menu command on a line by itself.

A menu looks like this:

Gmenu
Larger Units of Text

* Files:: All about handling files.
* Multiples: Buffers. Multiple buffers; editing

several files at once.
Q@end menu

)

In a menu, every line that begins with an ‘* ’ is a menu entry. (Note the space after the
asterisk.)

)

A line that does not start with an ‘* > may also appear in a menu. Such a line is not a
menu entry but rather a menu comment line that appears in the Info file. In the example
above, the line ‘Larger Units of Text’ is such a menu comment line; the two lines starting
with ‘* ’ are menu entries.

Technically, menus can carry you to any node, regardless of the structure of the docu-
ment; even to nodes in a different Info file. However, we do not recommend making use of
this, because it is hard for readers to follow. Also, the makeinfo implicit pointer creation
feature (see Section 4.8 [makeinfo Pointer Creation|, page 37) and GNU Emacs Texinfo

Chapter 4: Nodes 39

mode updating commands work only to create menus of subordinate nodes in a hierarchi-
cally structured document. It is much better to use cross-references to refer to arbitrary
nodes.

makeinfo can automatically generate menus in nodes for Info and HTML output, based
on the chapter structure of the document. To specify that you want it to do this, place the
line ‘@validatemenus off’ near the beginning of the document.

In Info, a user selects a node with the m (Info-menu) command. The menu entry name
is what the user types after the m command. In the HTML output from makeinfo, the
accesskey attribute is used with the values ‘1’...‘9’ for the first nine entries. This allows
people using web browsers to follow the first menu entries using (typically) M-digit, e.g.,
M-1 for the first entry.

4.9.2 A Menu Example

A menu looks like this in Texinfo:

Omenu
* menu entry name: Node name. A short description.
* Node name:: This form is preferred.

@end menu

This produces:

* menu:
* menu entry name: Node name. A short description.
* Node name:: This form is preferred.

Here is an example as you might see it in a Texinfo file:

Omenu
Larger Units of Text

* Files:: All about handling files.
* Multiples: Buffers. Multiple buffers; editing

several files at once.
@end menu

This produces:

* menu:
Larger Units of Text

* Files:: All about handling files.
* Multiples: Buffers. Multiple buffers; editing
several files at once.

In this example, the menu has two entries. ‘Files’ is both a menu entry name and the
name of the node referred to by that name. ‘Multiples’ is the menu entry name; it refers
to the node named ‘Buffers’. The line ‘Larger Units of Text’ is a comment; it appears
in the menu, but is not an entry.

Since no file name is specified with either ‘Files’ or ‘Buffers’, they must be the names
of nodes in the same Info file (see Section 4.9.6 [Referring to Other Info Files|, page 41).

Chapter 4: Nodes 40

4.9.3 Menu Location

There may be at most one menu in a node. A menu is conventionally located at the end of
a node, without any regular text or additional commands between the @end menu and the
beginning of the next node.

This convention is useful, since a reader who uses the menu could easily miss any such
text. Also, any such post-menu text will be considered part of the menu in Info output
(which has no marker for the end of a menu). Thus, a line beginning with ‘* ’ will likely be
incorrectly handled.

It’s usually best if a node with a menu does not contain much text. If you find yourself
with a lot of text before a menu, we generally recommend moving all but a couple of
paragraphs into a new subnode. Otherwise, it is easy for readers to miss the menu.

4.9.4 The Parts of a Menu

A menu entry has three parts, only the second of which is required:
1. The menu entry name (optional).
2. The name of the node (required).
3. A description of the item (optional).

The template for a generic menu entry looks like this (but see the next section for one
more possibility):

* menu-entry-name: node-name. description

Follow the menu entry name with a single colon, and follow the node name with tab,
comma, newline, or the two characters period and space (‘. 7).

The third part of a menu entry is a descriptive phrase or sentence. Menu entry names and
node names are often short; the description explains to the reader what the node is about.
A useful description complements the node name rather than repeats it. The description,
which is optional, can spread over multiple lines; if it does, some authors prefer to indent
the second line while others prefer to align it with the first (and all others). It’s up to you.
An empty line, or the next menu entry, ends a description.

Space characters in a menu are preserved as-is in the Info output; this allows you to
format the menu as you wish. Unfortunately you must type node names without any extra
spaces or some versions of some Info readers will not find the node (see Section 4.4 [Node
Line Requirements|, page 33).

makeinfo warns when the text of a menu item (and node names and cross-references)
contains a problematic construct that will interfere with its parsing in Info. If you don’t want
to see the warnings, you can set the customization variable INFO_SPECIAL_CHARS_WARNING
to ‘0’ (see Section 20.6.4 [Other Customization Variables|, page 192).

4.9.5 Less Cluttered Menu Entry

When the menu entry name and node name are the same, you can write the name imme-
diately after the asterisk and space at the beginning of the line and follow the name with
two colons.

Chapter 4: Nodes 41

For example, write

* Name: : description
instead of
* Name: Name. description

We recommend using the node name for the menu entry name whenever possible, since
it reduces visual clutter in the menu.

4.9.6 Referring to Other Info Files

You can create a menu entry that enables a reader in Info to go to a node in another Info
file by writing the file name in parentheses just before the node name. Some examples:

O@menu
*x first-entry-name: (filename)nodename. description
* (filename)second-node: : description

@end menu

For example, to refer directly to the ‘Outlining’ and ‘Rebinding’ nodes in the Emacs
Manual, you could write a menu like this:

Omenu

* Qutlining: (emacs)Outline Mode. The major mode for
editing outlines.

* (emacs)Rebinding:: How to redefine the
meaning of a key.

@end menu

If you do not list the node name, but only name the file, then Info presumes that you
are referring to the ‘Top’ node. Examples:

* Info: (info). Documentation browsing system.
* (emacs):: The extensible, self-documenting
text editor.

The GNU Emacs Texinfo mode menu updating commands only work with nodes within

the current buffer, so you cannot use them to create menus that refer to other files. You
must write such menus by hand.

42

5 Chapter Structuring

Texinfo’s chapter structuring commands divide a document into a hierarchy of chapters,
sections, subsections, and subsubsections. These commands generate large headings in the
text, like the one above. They also provide information for generating the table of contents
(see Section 3.5 [Generating a Table of Contents|, page 24).

Normally you put a @node command immediately before each chapter structuring com-
mand. See Chapter 4 [Nodes], page 31.

5.1 Tree Structure of Sections

A Texinfo file is usually structured like a book with chapters, sections, subsections, and
the like. This structure can be visualized as a tree (or rather as an upside-down tree)
with the root at the top and the levels corresponding to chapters, sections, subsection, and
subsubsections.

Here is a diagram that shows a Texinfo file with three chapters, each with two sections.

Section Section Section Section Section Section
1.1 1.2 2.1 2.2 3.1 3.2

In a Texinfo file that has this structure, the beginning of Chapter 2 would be written
like this:

Onode Chapter 2
Ochapter Chapter 2

For purposes of example, here is how it would be written with explicit node pointers:

@Gnode Chapter 2, Chapter 3, Chapter 1, Top
@chapter Chapter 2

The chapter structuring commands are described in the sections that follow; the @node
command is described in the previous chapter (see Chapter 4 [Nodes], page 31).

5.2 Structuring Command Types

The chapter structuring commands fall into four groups or series, each of which contains
structuring commands corresponding to the hierarchical levels of chapters, sections, subsec-
tions, and subsubsections.

The four groups of commands are the @chapter series, the @unnumbered series, the
@appendix series, and the @heading series. Each command produces a title with a different

Chapter 5: Chapter Structuring 43

appearance in the body of the document. Some of the commands list their titles in the
tables of contents, while others do not. Here are the details:

e The @chapter and @appendix series of commands produce numbered or lettered entries
both in the body of a document and in its table of contents.

e The Gunnumbered series of commands produce unnumbered entries both in the body of
a document and in its table of contents. The @top command, which has a special use,
is a member of this series (see Section 4.6 [@top Command], page 35). An @unnumbered
section is a normal part of the document structure.

e The @heading series of commands produce simple unnumbered headings that do not
appear in a table of contents, are not associated with nodes, and cannot be cross-
referenced. These heading commands never start a new page.

When a @setchapternewpage command says to do so, the @chapter, Qunnumbered, and
@appendix commands start new pages in the printed manual; the @heading commands do
not. See Section 3.7.2 [@setchapternewpage|, page 27.

Here is a summary:

No new page

Numbered Unnumbered Lettered /numbered Unnumbered

In contents In contents In contents Not in contents
Q@top @majorheading

Q@chapter @unnumbered @appendix @chapheading

@section @unnumberedsec Q@appendixsec @heading

O@subsection @unnumberedsubsec @appendixsubsec @subheading

@subsubsection @unnumberedsubsubsec @appendixsubsubsec @subsubheading

5.3 @chapter: Chapter Structuring

@chapter identifies a chapter in the document-the highest level of the normal document
structuring hierarchy. Write the command at the beginning of a line and follow it on the
same line by the title of the chapter. The chapter is numbered automatically, starting
from 1.

For example, the present chapter in this manual is entitled “@chapter: Chapter Struc-
turing”; the @chapter line looks like this:

Q@chapter @code{@@chapter}: Chapter Structuring
In TEX, the @chapter command produces a chapter heading in the document.

In Info and plain text output, the @chapter command causes the title to appear on a
line by itself, with a line of asterisks inserted underneath. So, the above example produces
the following output:

5 Chapter Structuring
stk sk sk ok sk ok sk sk ok sk ok ok ok sk ok

In HTML, the @chapter command produces an <h2>-level header by default (controlled
by the CHAPTER_HEADER_LEVEL customization variable, see Section 20.6.4 [Other Customiza-
tion Variables], page 192).

In the XML and Docbook output, a <chapter> element is produced that includes all
the following sections, up to the next chapter.

Chapter 5: Chapter Structuring 44

5.4 Qunnumbered, @appendix: Chapters with Other Labeling

Use the @unnumbered command to start a chapter-level element that appears without chap-
ter numbers of any kind. Use the @appendix command to start an appendix that is labeled
by letter (‘A’, ‘B’, ...) instead of by number; appendices are also at the chapter level of
structuring.

Write an @appendix or @unnumbered command at the beginning of a line and follow it
on the same line by the title, just as with @chapter.

Texinfo also provides a command @centerchap, which is analogous to @unnumbered, but
centers its argument in the printed and HTML outputs. This kind of stylistic choice is not
usually offered by Texinfo. It may be suitable for short documents.

With @unnumbered, if the name of the associated node is one of these English words
(case-insensitive):
Acknowledgements Colophon Dedication Preface
then the Docbook output uses corresponding special tags (<preface>, etc.) instead of the

default <chapter>. The argument to @unnumbered itself can be anything, and is output as
the following <title> text as usual.

5.5 @majorheading, @chapheading: Chapter-level Headings

The @majorheading and @chapheading commands produce chapter-like headings in the
body of a document.

However, neither command produces an entry in the table of contents, and neither
command causes TEX to start a new page in a printed manual.

In TEX, a @majorheading command generates a larger vertical whitespace before the
heading than a @chapheading command but is otherwise the same.

In Info and plain text, the @majorheading and @chapheading commands produce the
same output as @chapter: the title is printed on a line by itself with a line of asterisks
underneath. Similarly for HTML. The only difference is the lack of numbering and the lack
of any association with nodes. See Section 5.3 [@chapter], page 43.

5.6 @section: Sections Below Chapters

An @section command identifies a section within a chapter unit, whether created with
@chapter, Qunnumbered, or @appendix, following the numbering scheme of the chapter-
level command. Thus, within a @chapter chapter numbered ‘1’; the sections are numbered
‘1.1°, ‘1.2°, etc.; within an @appendix “chapter” labeled ‘A’, the sections are numbered
‘AT, ‘A2’ etc.; within an Gunnumbered chapter, the section gets no number. The output
is underlined with ‘=" in Info and plain text.

To make a section, write the @section command at the beginning of a line and follow
it on the same line by the section title. For example,

O@section This is a section
might produce the following in Info:

5.7 This is a section

Chapter 5: Chapter Structuring 45

Section titles are listed in the table of contents.

The TgX, HTML, Docbook, and XML output is all analogous to the chapter-level output,
just “one level down”; see Section 5.3 [@chapter], page 43.

5.7 Qunnumberedsec, @appendixsec, @heading

The Qunnumberedsec, @appendixsec, and @heading commands are, respectively, the un-
numbered, appendix-like, and heading-like equivalents of the @section command (see the
previous section).

Qunnumberedsec and @appendixsec do not need to be used in ordinary circumstances,
because @section may also be used within Gunnumbered and @appendix chapters; again,
see the previous section.

OQunnumberedsec
The Gunnumberedsec command may be used within an unnumbered chapter or
within a regular chapter or appendix to produce an unnumbered section.

O@appendixsec

Q@appendixsection
@appendixsection is a longer spelling of the @appendixsec command; the two
are synonymous.

Conventionally, the @appendixsec or @appendixsection command is used only
within appendices.

Gheading You may use the @heading command (almost) anywhere for a section-style
heading that will not appear in the table of contents. The @heading-series
commands can appear inside most environments, for example, though patho-
logical and useless locations such as inside @titlepage, as an argument to
another command, etc., are not allowed.

5.8 @subsection: Subsections Below Sections

Subsections are to sections as sections are to chapters; see Section 5.6 [@section], page 44.

In Info and plain text, subsection titles are underlined with ‘-’. For example,
O@subsection This is a subsection

might produce

1.2.3 This is a subsection

Subsection titles are listed in the table of contents.

The TeX, HTML, Docbook, and XML output is all analogous to the chapter-level output,
just “two levels down”; see Section 5.3 [@chapter], page 43.

5.9 The O@subsection-like Commands

The @unnumberedsubsec, @appendixsubsec, and @subheading commands are, respec-
tively, the unnumbered, appendix-like, and heading-like equivalents of the @subsection
command. (See Section 5.8 [@subsection], page 45.)

Chapter 5: Chapter Structuring 46

Qunnumberedsubsec and Qappendixsubsec do not need to be used in ordinary cir-
cumstances, because @subsection may also be used within sections of @unnumbered and
@appendix chapters (see Section 5.6 [@section|, page 44).

An @subheading command produces a heading like that of a subsection except
that it is not numbered and does not appear in the table of contents. Similarly, an
@unnumberedsubsec command produces an unnumbered heading like that of a subsection
and an Qappendixsubsec command produces a subsection-like heading labeled with a
letter and numbers; both of these commands produce headings that appear in the table
of contents. In Info and plain text, the @subsection-like commands generate a title
underlined with hyphens.

5.10 @subsection and Other Subsub Commands

The fourth and lowest level sectioning commands in Texinfo are the ‘subsub’ commands.
They are:

@subsubsection
Subsubsections are to subsections as subsections are to sections. (See Section 5.8
[@subsection], page 45.) Subsubsection titles appear in the table of contents.

Ounnumberedsubsubsec
Unnumbered subsubsection titles appear in the table of contents, but lack num-
bers. Otherwise, unnumbered subsubsections are the same as subsubsections.

Q@appendixsubsubsec
Conventionally, appendix commands are used only for appendices and are let-
tered and numbered appropriately. They also appear in the table of contents.

O@subsubheading
The @subsubheading command may be used anywhere that you want a small
heading that will not appear in the table of contents.

As with subsections, @unnumberedsubsubsec and @appendixsubsubsec do not need
to be used in ordinary circumstances, because @subsubsection may also be used within
subsections of @unnumbered and @appendix chapters (see Section 5.6 [@section], page 44).

In Info, ‘subsub’ titles are underlined with periods. For example,
O@subsubsection This is a subsubsection
might produce

1.2.3.4 This is a subsubsection

The TgX, HTML, Docbook, and XML output is all analogous to the chapter-level output,
just “three levels down”; see Section 5.3 [@chapter]|, page 43.

5.11 @part: Groups of Chapters

The final sectioning command is @part, to mark a part of a manual, that is, a group of
chapters or (rarely) appendices. This behaves quite differently from the other sectioning
commands, to fit with the way such “parts” are conventionally used in books.

Chapter 5: Chapter Structuring 47

No @node command is associated with @part. Just write the command on a line by
itself, including the part title, at the place in the document you want to mark off as starting
that part. For example:

Opart Part I:0@* The beginning

As can be inferred from this example, no automatic numbering or labeling of the @part
text is done. The text is taken as-is.

Because parts are not associated with nodes, no general text can follow the @part line.
To produce the intended output, it must be followed by a chapter-level command (including
its node). Thus, to continue the example:

Opart Part I:@* The beginning

@node Introduction
Ochapter Introduction

In the TEX output, the @part text is included in both the normal and short tables of
contents (see Section 3.5 [Contents|, page 24), without a page number (since that is the
normal convention). In addition, a “part page” is output in the body of the document, with
just the @part text. In the example above, the @+ causes a line break on the part page
(but is replaced with a space in the tables of contents). This part page is always forced
to be on an odd (right-hand) page, regardless of the chapter pagination (see Section 3.7.2
[@setchapternewpage|, page 27).

In the HTML output, the @part text is similarly included in the tables of contents, and a
heading is included in the main document text, as part of the following chapter or appendix
node.

In the XML and Docbook output, the <part> element includes all the following chapters,
up to the next <part>. A <part> containing chapters is also closed at an appendix.

In the Info and plain text output, @part has no effect.

@part is ignored when raising or lowering sections (see next section). That is, it is never
lowered and nothing can be raised to it.

5.12 Raise/lower Sections: @raisesections and
@lowersections

The @raisesections and @lowersections commands implicitly raise and lower the hier-
archical level of following chapters, sections and the other sectioning commands (excluding
parts).

That is, the @raisesections command changes sections to chapters, subsections to
sections, and so on. Conversely, the @lowersections command changes chapters to sec-
tions, sections to subsections, and so on. Thus, a @lowersections command cancels a
@raisesections command, and vice versa.

You can use @lowersections to include text written as an outer or standalone Texinfo
file in another Texinfo file as an inner, included file (see Chapter 18 [Include Files], page 159).
Typical usage looks like this:

@lowersections

Chapter 5: Chapter Structuring 48

@include somefile.texi
Q@raisesections

(Without the @raisesections, all the subsequent sections in the main file would also be
lowered.)

If the included file being lowered has a @top node, you’ll need to conditionalize its
inclusion with a flag (see Section 16.5.1 [@set @value], page 143).

As a practical matter, you generally only want to raise or lower large chunks, usually
in external files as shown above. The final result has to have menus that take the raising
and lowering into account, so you cannot just arbitrarily sprinkle @raisesections and
@lowersections commands throughout the document.

Repeated use of the commands continues to raise or lower the hierarchical level a step at
a time. An attempt to raise above ‘chapter’ reproduces chapter commands; an attempt to
lower below ‘subsubsection’ reproduces subsubsection commands. Also, lowered subsubsec-
tions and raised chapters will not work with makeinfo’s feature of implicitly determining
node pointers, since the menu structure cannot be represented correctly.

Write each @raisesections and @lowersections command on a line of its own.

49

6 Cross-references

Cross-references are used to refer the reader to other parts of the same or different Texinfo
files.

6.1 What References Are For

Often, but not always, a printed document should be designed so that it can be read
sequentially. People tire of flipping back and forth to find information that should be
presented to them as they need it.

However, in any document, some information will be too detailed for the current context,
or incidental to it; use cross-references to provide access to such information. Also, an online
help system or a reference manual is not like a novel; few read such documents in sequence
from beginning to end. Instead, people look up what they need. For this reason, such
creations should contain many cross references to help readers find other information that
they may not have read.

In a printed manual, a cross-reference results in a page reference, unless it is to another
manual altogether, in which case the cross-reference names that manual. In Info, a cross-
reference results in an entry that you can follow using the Info ‘£’ command. (See Section
“Following cross-references” in Info.) In HTML, a cross-reference results in an hyperlink.

The various cross-reference commands use nodes (or anchors, see Section 6.8 [@anchor],
page 56) to define cross-reference locations. TEX needs nodes to define cross-reference
locations. When TEX generates a DVI file, it records each node’s page number and uses the
page numbers in making references. Thus, even if you are writing a manual that will only
be printed, and not used online, you must nonetheless write @node lines in order to name
the places to which you make cross-references.

6.2 Different Cross-reference Commands
There are three different cross-reference commands:

O@xref Used to start a sentence in the printed manual and in HTML with ‘See ...’ or

an Info cross-reference saying ‘*Note name: node.’.

@ref Used within or, more often, at the end of a sentence; produces just the reference
in the printed manual and in HTML without the preceding ‘See’ (same as @xref
for Info).

O@pxref Used within parentheses, at the end of a sentence, or otherwise before punctua-

tion, to make a reference. Its output starts with a lowercase ‘see’ in the printed
manual and in HTML, and a lowercase ‘*note’ in Info. (‘p’ is for ‘parenthesis’.)

Additionally, there are commands to produce references to documents outside the Texinfo
system. The @cite command is used to make references to books and manuals. @url
produces a URL, for example a reference to a page on the World Wide Web. @inforef is
used to make a reference to an Info file for which there is no printed manual.

Chapter 6: Cross-references 50

6.3 Parts of a Cross-reference
A cross-reference command requires only one argument, which is the name of the node to
which it refers. Here is a simple example:
@xref{Node name}.
In Info output, this produces
*Note Node name::.
In a printed manual, the output is
See Section nnn [Node name], page ppp.

A cross-reference command may contain up to four additional arguments. By using these
arguments, you can provide a cross-reference name, a topic description or section title for
the printed output, the name of a different manual file, and the name of a different printed
manual. To refer to another manual as a whole, the manual file and/or the name of the
printed manual are the only required arguments (see Section 6.5 [Referring to a Manual as
a Whole|, page 54).

Here is an example of a full five-part cross-reference:

Oxref{Node name, Online Label, Printed Label,

info-file-name, A Printed Manual}, for details.
which produces

*Note Online Label: (info-file-name)Node name,

for details.

in Info and
See section “Printed Label” in A Printed Manual, for details.
in a printed book.
The five possible arguments for a cross-reference are:

1. The node or anchor name (required, except for reference to whole manuals). This is the
location to which the cross-reference takes you. In a printed document, the location
of the node provides the page reference only for references within the same document.
Use @node to define the node (see Section 4.3 [Writing a Node], page 32), or @anchor
(see Section 6.8 [@anchor]|, page 56).

Write a node name in a cross-reference in exactly the same way as in the @node line,
including the same capitalization; otherwise, the formatters may not find the reference.

2. A label for online output. It is usually omitted; then the topic description (third
argument) is used if it was specified; if that was omitted as well, the node name is
used.

3. A label for printed output. Often, this is the title or topic of the section. This is used
as the name of the reference in the printed manual. If omitted, the node name is used.

4. The name of the manual file in which the reference is located, if it is different from the
current file. This name is used both for Info and HTML.

5. The name of a printed manual from a different Texinfo file.

The template for a full five argument cross-reference looks like this:

O@xref{node-name, online-label, printed-label,
info-file-name, printed-manual-title}

Chapter 6: Cross-references 51

Whitespace before and after the commas separating these arguments is ignored. To
include a comma in one of the arguments, use @comma{} (see Section 12.1.3 [Inserting a
Commal, page 104).

When processing with TeX, a comma is automatically inserted after the page number
for cross-references to within the same manual, unless the closing brace of the argument
is followed by non-whitespace (such as a comma or period). This gives you the choice of
whether to have a comma there in Info or HTML output. For example,

Oxref{Another Section} for more information

produces ‘See Another Section, page ppp, for more information’ in the printed output, and
‘*Note Another Section:: for more information’ in the Info output.

If an unwanted comma is added, follow the argument with a command such as ‘@:’. For
example, ‘@xref{Hurricanes}@: —-—- for the details’ produces

See Hurricanes, page ppp — for the details
instead of ‘See Hurricanes, page ppp, — for the details’.

Cross-references with one, two, three, four, and five arguments are described separately
following the description of @xref.

makeinfo warns when the text of a cross-reference (and node names and menu items)
contains a problematic construct that will interfere with its parsing in Info. If you don’t want
to see the warnings, you can set the customization variable INFO_SPECIAL_CHARS_WARNING
to ‘0’ (see Section 20.6.4 [Other Customization Variables|, page 192).

6.4 Oxref

The @xref command generates a cross-reference for the beginning of a sentence.

6.4.1 @xref with One Argument

The simplest form of @xref takes one argument, the name of another node in the same
Texinfo file.

For example,
Oxref{Tropical Storms}.
produces
*Note Tropical Storms::.
in Info and
See Section 3.1 [Tropical Storms], page 24.

in a printed manual.

6.4.2 @xref with Two Arguments
With two arguments, the second is used as a label for the online output.
The template is like this:
Oxref{node-name, online-label}.
For example,
O@xref{Electrical Effects, Lightning}.

Chapter 6: Cross-references 52

produces:
*Note Lightning: Electrical Effects.
in Info and
See Section 5.2 [Electrical Effects], page 57.
in a printed manual, where the node name is printed.

The second argument to cross-references must observe some of the restrictions for node
names (see Section 4.4 [Node Line Requirements], page 33). The most common issue is that
colons cannot be used, since that interferes with the parsing of the Info file.

6.4.3 Oxref with Three Arguments

A third argument replaces the node name in the TEX output. The third argument should
be the name of the section in the printed output, or else state the topic discussed by that
section.

The template is like this:
@xref{node-name, online-label, printed-label}.
For example,

O@xref{Electrical Effects, Lightning, Thunder and Lightning},
for details.

produces

*Note Lightning: Electrical Effects, for details.
in Info and

See Section 5.2 [Thunder and Lightning], page 57, for details.
in a printed manual.

If a third argument is given and the second one is empty, then the third argument serves
for both. (Note how two commas, side by side, mark the empty second argument.)

Oxref{Electrical Effects, , Thunder and Lightning},
for details.

produces

*Note Thunder and Lightning: Electrical Effects, for details.
in Info and

See Section 5.2 [Thunder and Lightning], page 57, for details.
in a printed manual.

The third argument to cross-references must observe some of the restrictions for node
names (see Section 4.4 [Node Line Requirements], page 33). The most common issue is that
colons cannot be used, since that interferes with the parsing of the Info file.

As a practical matter, it is often best to write cross-references with just the first argument
if the node name and the section title are the same (or nearly so), and with the first and
third arguments only if the node name and title are different.

Texinfo offers a setting to use the section title instead of node names by default in
cross-references (an explicitly specified third argument still takes precedence):

@xrefautomaticsectiontitle on

Chapter 6: Cross-references 53

Typically this line would be given near the beginning of the document and used for the
whole manual. But you can turn it off if you want (@xrefautomaticsectiontitle off),
for example, if you’re including some other sub-document that doesn’t have suitable section
names.

6.4.4 Oxref with Four and Five Arguments

In a cross-reference, a fourth argument specifies the name of another Info file, different from
the file in which the reference appears, and a fifth argument specifies its title as a printed
manual.

The full template is:

O@xref{node-name, online-label, printed-label,
info-file-name, printed-manual-title}.

For example,

Oxref{Electrical Effects, Lightning, Thunder and Lightning,
weather, An Introduction to Meteorology}.

produces this output in Info:
*Note Lightning: (weather)Electrical Effects.

As you can see, the name of the Info file is enclosed in parentheses and precedes the name
of the node.

In a printed manual, the reference looks like this:
See section “Thunder and Lightning” in An Introduction to Meteorology.

The title of the printed manual is typeset like @cite; and the reference lacks a page number
since TEX cannot know to which page a reference refers when that reference is to another
manual.

Next case: often, you will leave out the second argument when you use the long version
of @xref. In this case, the third argument, the topic description, will be used as the cross-
reference name in Info. For example,

Oxref{Electrical Effects, , Thunder and Lightning,
weather, An Introduction to Meteorology}.

produces

*Note Thunder and Lightning: (weather)Electrical Effects.
in Info and

See section “Thunder and Lightning” in An Introduction to Meteorology.
in a printed manual.

Next case: If the node name and the section title are the same in the other manual, you
may also leave out the section title. In this case, the node name is used in both instances.
For example,

Oxref{Electrical Effects,,,
weather, An Introduction to Meteorology}.

produces
*Note (weather)Electrical Effects::.

in Info and

Chapter 6: Cross-references 54

See section “Electrical Effects” in An Introduction to Meteorology.
in a printed manual.

A very unusual case: you may want to refer to another manual file that is within a single
printed manual—when multiple Texinfo files are incorporated into the same TEX run but
can create separate Info or HTML output files. In this case, you need to specify only the
fourth argument, and not the fifth.

Finally, it’s also allowed to leave out all the arguments except the fourth and fifth, to
refer to another manual as a whole. See the next section.

6.5 Referring to a Manual as a Whole

Ordinarily, you must always name a node in a cross-reference. However, it’s not unusual to
want to refer to another manual as a whole, rather than a particular section within it. In
this case, giving any section name is an unnecessary distraction.

So, with cross-references to other manuals (see Section 6.4.4 [Four and Five Arguments],
page 53), if the first argument is either ‘Top’ (capitalized just that way) or omitted entirely,
and the third argument is omitted, the printed output includes no node or section name.
(The Info output includes ‘Top’ if it was given.) For example,

@xref{Top,,, make, The GNU Make Manuall}.
produces

*Note (make)Top::.
and

See The GNU Make Manual.

Info readers will go to the Top node of the manual whether or not the ‘Top’ node is explicitly
specified.

It’s also possible (and is historical practice) to refer to a whole manual by specifying the
‘Top’ node and an appropriate entry for the third argument to the @xref command. Using
this idiom, to make a cross-reference to The GNU Make Manual, you would write:

O@xref{Top,, Overview, make, The GNU Make Manual}.
which produces

*xNote Overview: (make)Top.
in Info and

See section “Overview” in The GNU Make Manual.
in a printed manual.

In this example, ‘Top’ is the name of the first node, and ‘Overview’ is the name of the
first section of the manual. There is no widely-used convention for naming the first section
in a printed manual, this is just what the Make manual happens to use. This arbitrariness
of the first name is a principal reason why omitting the third argument in whole-manual
cross-references is preferable.

Chapter 6: Cross-references 55

6.6 Qref

@ref is nearly the same as @xref except that it does not generate a ‘See’ in the printed
output, just the reference itself. This makes it useful as the last part of a sentence.

For example,

For more information, @pxref{This}, and @ref{That}.
produces in Info:

For more information, *note This::, and *note That::.
and in printed output:

For more information, see Section 1.1 [This], page 1, and Section 1.2 [That],
page 2.
The @ref command can tempt writers to express themselves in a manner that is suitable
for a printed manual but looks awkward in the Info format. Bear in mind that your audience
could be using both the printed and the Info format. For example:

Sea surges are described in @ref{Hurricanes}.
looks ok in the printed output:

Sea surges are described in Section 6.7 [Hurricanes|, page 72.
but is awkward to read in Info, “note” being a verb:

Sea surges are described in *note Hurricanes::.

6.7 Qpxref

The parenthetical reference command, @pxref, is nearly the same as @xref, but it is best
used at the end of a sentence or before a closing parenthesis. The command differs from
O@xref in that TEX typesets the reference for the printed manual with a lowercase ‘see’
rather than an uppercase ‘See’.

With one argument, a parenthetical cross-reference looks like this:
. storms cause flooding (@pxref{Hurricanes})
which produces
storms cause flooding (*note Hurricanes::)
in Info and
. storms cause flooding (see Section 6.7 [Hurricanes], page 72) ...
in a printed manual.
With two arguments, a parenthetical cross-reference has this template:
(@pxref{node-name, cross-reference-name})
which produces
(*note cross-reference-name: node-name.)
in Info and
. (see Section nnn [node-name]|, page ppp) . ..
in a printed manual.

@pxref can be used with up to five arguments, just like @xref (see Section 6.4 [@xref],
page 51).

Chapter 6: Cross-references 56

In past versions of Texinfo, it was not allowed to write punctuation after a @pxref, so
it could be used only before a right parenthesis. This is no longer the case, so now it can
be used (for example) at the end of a sentence, where a lowercase “see” works best. For
instance:

. For more information, @pxref{More}.
which outputs (in Info):
. For more information, *note More::.

As a matter of style, @pxref is best used at the ends of sentences. Although it technically
works in the middle of a sentence, that location breaks up the flow of reading.

6.8 Q@anchor: Defining Arbitrary Cross-reference Targets

An anchor is a position in your document, labelled so that cross-references can refer to it,
just as they can to nodes. You create an anchor with the @anchor command, and give the
label as a normal brace-delimited argument. For example:

This marks the @anchor{x-spotl}spot.

@xref{x-spot, ,the spot}.
produces:

This marks the spot.

See [the spotl], page 1.

As you can see, the @anchor command itself produces no output. This example defines
an anchor ‘x-spot’ just before the word ‘spot’. You can refer to it later with an @xref or
other cross reference command, as shown (see Chapter 6 [Cross References|, page 49).

It is best to put @anchor commands just before the position you wish to refer to; that
way, the reader’s eye is led on to the correct text when they jump to the anchor. You
can put the @anchor command on a line by itself if that helps readability of the source.
Whitespace (including newlines) is ignored after @anchor.

Anchor names and node names may not conflict. Anchors and nodes are given similar
treatment in some ways; for example, the goto-node command takes either an anchor name
or a node name as an argument. (See Section “Go to node” in Info.)

Also like node names, anchor names cannot include some characters (see Section 4.4
[Node Line Requirements|, page 33).

Because of this duality, when you delete or rename a node, it is usually a good idea
to define an @anchor with the old name. That way, any links to the old node, whether
from other Texinfo manuals or general web pages, keep working. You can also do this
with the RENAMED_NODES_FILE feature of makeinfo (see Section 22.4.7 [HTML Xref Link
Preservation], page 220). Both methods keep links on the web working; the only substantive
difference is that defining anchors also makes the old node names available when reading
the document in Info.

Chapter 6: Cross-references 57

6.9 Q@inforef: Cross-references to Info-only Material

@inforef is used for making cross-references to Info documents—even from a printed man-
ual. This might be because you want to refer to conditional @ifinfo text (see Chapter 16
[Conditionals], page 139), or because printed output is not available (perhaps because there
is no Texinfo source), among other possibilities.

The command takes either two or three arguments, in the following order:
1. The node name.

2. The cross-reference name (optional).
3. The Info file name.

The template is:
@inforef{node-name, cross-reference-name, info-file-name}
For example,

@inforef{Advanced, Advanced Info commands, info},
for more information.

produces (in Info):

*Note Advanced Info commands: (info)Advanced,
for more information.

and (in the printed output):
See Info file info, node ‘Advanced’, for more information.

(This particular example is not realistic, since the Info manual is written in Texinfo, so
all formats are available. In fact, we don’t know of any extant Info-only manuals.)

The converse of @inforef is @cite, which is used to refer to printed works for which no
Info form exists. See Section 6.11 [@cite], page 60.

6.10 Qurl, @uref{url[, text] [, replacement]}

Quref produces a reference to a uniform resource locator (url). It takes one mandatory
argument, the url, and two optional arguments which control the text that is displayed.
In HTML and PDF output, @uref produces a link you can follow. (To merely indicate
a url without creating a link people can follow, use @indicateurl, see Section 7.1.15
[@indicateurl], page 69.)

@url is a synonym for @uref. (Originally, @url had the meaning of @indicateurl, but
in practice it was almost always misused. So we’ve changed the meaning.)

The second argument, if specified, is the text to display (the default is the url itself); in
Info, DVI, and PDF output, but not in HTML output, the url is output in addition to this
text.

The third argument, if specified, is the text to display, but in this case the url is not
output in any format. This is useful when the text is already sufficiently referential, as in
a man page. Also, if the third argument is given, the second argument is ignored.

Chapter 6: Cross-references

6.10.1 @url Examples

o8

First, here is an example of the simplest form of @url, with just one argument. The given

url is both the target and the visible text of the link:

The official GNU ftp site is Quref{http://ftp.gnu.org/gnu}.

produces:
The official GNU ftp site is http://ftp.gnu.org/gnu.

Two-argument form of Qurl
Here is an example of the two-argument form:

The official @uref{http://ftp.gnu.org/gnu, GNU ftp site}
holds programs and texts.

which produces:

The official GNU ftp site (http://ftp.gnu.org/gnu)
holds programs and texts.

that is, the Info (and TEX, etc.) output is this:

The official GNU ftp site (http://ftp.gnu.org/gnu)
holds programs and texts.

while the HTML output is this:

The official GNU ftp site

holds programs and texts.

Three-argument form of Qurl
Finally, an example of the three-argument form:
The @uref{/man.cgi/1/1s,,ls} program ...
which, except for HTML, produces:
The 1s program . ..
but with HTML:
The 1s program ...

By the way, some people prefer to display urls in the unambiguous format:

<URL:http://host/path>

You can use this form in the input file if you wish. We feel it’s not necessary to include
the ‘<URL:’ and ‘>’ in the output, since to be useful any software that tries to detect urls

in text already has to detect them without the ‘<URL:’.

6.10.2 URL Line Breaking

TEX allows line breaking within urls at only a few characters (which are special in urls):
‘&, <) 27 and ¢/ (but not between two ¢/’ characters). A tiny amount of stretchable

space is also inserted around these characters to help with line breaking.

For HTML output, modern browsers will also do line breaking within displayed urls. If
you need to allow breaks at other characters you can insert @/ as needed (see Section 13.2

[Line Breaks|, page 119).

http://ftp.gnu.org/gnu
http://ftp.gnu.org/gnu
/man.cgi/1/ls

Chapter 6: Cross-references 59

By default, in TEX any such breaks at special characters will occur after the charac-
ter. Some people prefer such breaks to happen before the special character. This can be
controlled with the @urefbreakstyle command (this command has effect only in TEX):

Qurefbreakstyle how

where the argument how is one of these words:

‘after’ (the default) Potentially break after the special characters.
‘before’ Potentially break before the special characters.
‘none’ Do not consider breaking at the special characters at all; any potential breaks

must be manually inserted.

6.10.3 @Qurl PDF Output Format

If the ultimate purpose of a PDF is only to be viewed online, perhaps similar to HTML in
some inchoate way, you may not want the urls to be included in the visible text (just as
urls are not visible to readers of web pages). Texinfo provides a PDF-specific option for
this, which must be used inside @tex:

Otex
\global\urefurlonlylinktrue
Q@end tex

The result is that @url{http://www.gnu.org, GNU} has the visible output of just
‘GNU’, with a link target of http://www.gnu.org. Ordinarily, the visible output would
include both the label and the url: ‘GNU (http://www.gnu.org)’.

This option only has effect when the PDF output is produced with the pdfTEX program,
not with other ways of getting from Texinfo to PDF (e.g., TEX to DVI to PDF). Conse-
quently, it is ok to specify this option unconditionally within @tex, as shown above. It is
ignored when DVI is being produced.

6.10.4 PDF Colors

By default, urls and cross-reference links are printed in black in PDF output. Very occa-
sionally, however, you may want to highlight such “live” links with a different color, as is
commonly done on web pages. Texinfo provides a PDF-specific option for specifying these
colors, which must be used inside @tex:

Otex

\global\def\linkcolor{l 0 0} % red
\global\def\urlcolor{0 1 0} % green
Q@end tex

\urlcolor changes the color of @url output (both the actual url and any textual label),
while \1linkcolor changes the color for cross-references to nodes, etc. They are independent.

The three given values must be numbers between 0 and 1, specifying the amount of red,
green, and blue respectively.

These definitions only have an effect when the PDF output is produced with the pdfTEX
program, not with other ways of getting from Texinfo to PDF (e.g., TEX to DVI to PDF).
Consequently, it is ok to specify this option unconditionally within @tex, as shown above.
It is ignored when DVI is being produced.

http://www.gnu.org
http://www.gnu.org

Chapter 6: Cross-references 60

We do not recommend colorizing just for fun; unless you have a specific reason to use
colors, best to skip it.

6.11 @cite{reference}
Use the @cite command for the name of a book that lacks a companion Info file. The
command produces italics in the printed manual, and quotation marks in the Info file.

If a book is written in Texinfo, it is better to use a cross-reference command since a
reader can easily follow such a reference in Info. See Section 6.4 [@xref], page 51.

61

7 Marking Text, Words and Phrases

In Texinfo, you can mark words and phrases in a variety of ways. The Texinfo formatters
use this information to determine how to highlight the text. You can specify, for example,
whether a word or phrase is a defining occurrence, a metasyntactic variable, or a symbol
used in a program. Also, you can emphasize text, in several different ways.

7.1 Indicating Definitions, Commands, etc.

Texinfo has commands for indicating just what kind of object a piece of text refers to. For
example, email addresses are marked by @email; that way, the result can be a live link to
send email when the output format supports it. If the email address was simply marked as
“print in a typewriter font”, that would not be possible.

7.1.1 Highlighting Commands are Useful

The commands serve a variety of purposes:

Q@code{sample-code}
Indicate text that is a literal example of a piece of a program. See Section 7.1.2
[@code], page 62.

@kbd{keyboard-characters}
Indicate keyboard input. See Section 7.1.3 [@kbd], page 63.

Qkey{key-name}
Indicate the conventional name for a key on a keyboard. See Section 7.1.4
[@key], page 64.

@samp{text}
Indicate text that is a literal example of a sequence of characters. See
Section 7.1.5 [@samp|, page 65.

Qverb{text}
Write a verbatim sequence of characters. See Section 7.1.6 [@verb], page 65.

@var{metasyntactic-variable}
Indicate a metasyntactic variable. See Section 7.1.7 [@var]|, page 66.

Q@env{environment-variable}
Indicate an environment variable. See Section 7.1.8 [@env], page 66.

@file{file-name}
Indicate the name of a file. See Section 7.1.9 [@file|, page 67.

Q@command{command-name}
Indicate the name of a command. See Section 7.1.10 [@command], page 67.

Qoption{option}
Indicate a command-line option. See Section 7.1.11 [@option|, page 67.

@dfn{term}
Indicate the introductory or defining use of a term. See Section 7.1.12 [@dfn],
page 67.

Chapter 7: Marking Text, Words and Phrases 62

Qcite{reference}
Indicate the name of a book. See Section 6.11 [@cite], page 60.

@abbr{abbreviation}
Indicate an abbreviation, such as ‘Comput.’.

Q@acronym{acronym}
Indicate an acronym. See Section 7.1.14 [@acronym|, page 68.

Q@indicateurl{uniform-resource-locator}
Indicate an example (that is, nonfunctional) uniform resource locator. See
Section 7.1.15 [@indicateurl], page 69. (Use @url (see Section 6.10 [@url],
page 57) for live urls.)

@email{email-address[, displayed-text]}
Indicate an electronic mail address. See Section 7.1.16 [@email|, page 69.

7.1.2 @code{sample-code}

Use the @code command to indicate text that is a piece of a program and which consists of
entire syntactic tokens. Enclose the text in braces.

Thus, you should use @code for an expression in a program, for the name of a variable
or function used in a program, or for a keyword in a programming language.

Use @code for command names in languages that resemble programming languages, such
as Texinfo. For example, @code and @samp are produced by writing ‘@code{@0code}’ and
‘@code{@@samp}’ in the Texinfo source, respectively.

It is incorrect to alter the case of a word inside a @code command when it appears at the
beginning of a sentence. Most computer languages are case sensitive. In C, for example,
Printf is different from the identifier printf, and most likely is a misspelling of it. Even
in languages which are not case sensitive, it is confusing to a human reader to see identifiers
spelled in different ways. Pick one spelling and always use that. If you do not want to
start a sentence with a command name written all in lowercase, you should rearrange the
sentence.

In the Info output, @code results in single quotation marks around the text. In other
formats, @code argument is typeset in a typewriter (monospace) font. For example,

The function returns Qcode{nil}.
produces this:
The function returns nil.
Here are some cases for which it is preferable not to use @code:
e For shell command names, such as 1s (use @command).
e For environment variables, such as TEXINPUTS (use @env).
e For shell options, such as ‘-c’, when such options stand alone (use @option).

e An entire shell command often looks better if written using @samp rather than @code.
In this case, the rule is to choose the more pleasing format.

e For a string of characters shorter than a syntactic token. For example, if you are
writing about ‘goto-ch’, which is just a part of the name for the goto-char Emacs
Lisp function, you should use @samp.

Chapter 7: Marking Text, Words and Phrases 63

e In general, when writing about the characters used in a token; for example, do not use
@code when you are explaining what letters or printable symbols can be used in the
names of functions. (Use @samp.) Also, you should not use @code to mark text that
is considered input to programs unless the input is written in a language that is like
a programming language. For example, you should not use @code for the keystroke
commands of GNU Emacs (use @kbd instead) although you may use @code for the
names of the Emacs Lisp functions that the keystroke commands invoke.

By default, TEX will consider breaking lines at ‘-’ and ‘_’ characters within @code
and related commands. This can be controlled with @allowcodebreaks (see Section 13.4
[@allowcodebreaks], page 120). The HTML output attempts to respect this for ‘-’, but
ultimately it is up to the browser’s behavior. For Info, it seems better never to make such
breaks.

For Info, the quotes are omitted in the output of the @code command and related com-
mands (e.g., @kbd, @command), in typewriter-like contexts such as the @example environment
(see Section 8.4 [@example], page 74) and @code itself, etc.

To control which quoting characters are implicitly inserted by Texinfo processors in
the output of ‘@code’, etc., see the OPEN_QUOTE_SYMBOL and CLOSE_QUOTE_SYMBOL cus-
tomization variables (see Section 20.6.4 [Other Customization Variables|, page 192). This
is separate from how actual quotation characters in the input document are handled (see
Section 12.2 [Inserting Quote Characters], page 105).

7.1.3 @kbd{keyboard-characters}
Use the @kbd command for characters of input to be typed by users. For example, to refer
to the characters M-a, write:
@kbd{M-a}
and to refer to the characters M-x shell, write:
@kbd{M-x shell}

By default, the @kbd command produces a different font (slanted typewriter instead of
normal typewriter), so users can distinguish the characters that they are supposed to type
from those that the computer outputs.

Since the usage of @kbd varies from manual to manual, you can control the font switching
with the @kbdinputstyle command. This command has no effect on Info output. Write
this command at the beginning of a line with a single word as an argument, one of the
following:

‘code’ Always use the same font for @kbd as @code.
‘example’ Use the distinguishing font for @kbd only in @example and similar environments.
‘distinct’

(the default) Always use the distinguishing font for @kbd.

You can embed another @-command inside the braces of a @kbd command. Here, for
example, is the way to describe a command that would be described more verbosely as
“press the ‘r’ key and then press the RETURN key”:

@kbd{r @key{RET}}
This produces: r RET. (The present manual uses the default for @kbdinputstyle.)

Chapter 7: Marking Text, Words and Phrases 64

You also use the @kbd command if you are spelling out the letters you type; for example:

To give the @code{logout} command,
type the characters @kbd{l o g o u t @key{RET}}.

This produces:
To give the logout command, type the characters 1 o g o u t RET.

(Also, this example shows that you can add spaces for clarity. If you explicitly want to
mention a space character as one of the characters of input, write @key{SPC} for it.)

7.1.4 @key{key-name}

Use the @key command for the conventional name for a key on a keyboard, as in:
Qkey{RET}

You can use the @key command within the argument of an @kbd command when the
sequence of characters to be typed includes one or more keys that are described by name.

For example, to produce C-x ESC and M-TAB you would type:

@kbd{C-x @key{ESC}}
@kbd{M-Qkey{TAB}}

Here is a list of the recommended names for keys:

SPC Space
RET Return
LFD Linefeed (however, since most keyboards nowadays do not have a

Linefeed key, it might be better to call this character C-j)

TAB Tab
BS Backspace
ESC Escape

DELETE Delete

SHIFT Shift
CTRL Control
META Meta

There are subtleties to handling words like ‘meta’ or ‘ctrl’ that are names of modifier
keys. When mentioning a character in which the modifier key is used, such as Meta-a, use
the @kbd command alone; do not use the @key command; but when you are referring to the
modifier key in isolation, use the @key command. For example, write ‘@kbd{Meta-al}’ to
produce Meta-a and ‘@key{META}’ to produce META.

As a convention in GNU manuals, @key should not be used in index entries.

Chapter 7: Marking Text, Words and Phrases 65

7.1.5 @samp{text}

Use the @samp command to indicate text that is a literal example or ‘sample’ of a sequence
of characters in a file, string, pattern, etc. Enclose the text in braces. The argument appears
within single quotation marks in both the Info file and the printed manual; in addition, it
is printed in a fixed-width font.

To match @samp{foo} at the end of the line,
use the regexp @samp{foo$}.

produces
To match ‘foo’ at the end of the line, use the regexp ‘foo$’.

Any time you are referring to single characters, you should use @samp unless @kbd or
@key is more appropriate. Also, you may use @samp for entire statements in C and for entire
shell commands—in this case, @samp often looks better than @code. Basically, @samp is a
catchall for whatever is not covered by @code, @kbd, @key, @command, etc.

Only include punctuation marks within braces if they are part of the string you are
specifying. Write punctuation marks outside the braces if those punctuation marks are
part of the English text that surrounds the string. In the following sentence, for example,
the commas and period are outside of the braces:

In English, the vowels are @samp{a}, @samp{e},
@samp{i}, @samp{o}, @samp{u}, and sometimes
@samp{y}.

This produces:

In English, the vowels are ‘a’, ‘e’, ‘i’, ‘o’, ‘u’, and sometimes ‘y’.

7.1.6 @verb{chartextchar}
Use the @verb command to print a verbatim sequence of characters.

Like IXTEX’s \verb command, the verbatim text can be quoted using any unique de-
limiter character. Enclose the verbatim text, including the delimiters, in braces. Text is
printed in a fixed-width font:

How many @verb{|@|}-escapes does one need to print this
Qverb{.@a @b.Qc.} string or Q@verb{+@’e?‘{}!‘\+} this?

produces
How many Q@-escapes does one need to print this
@a @b.@c string or @’e?‘{}!‘\ this?

This is in contrast to @samp (see the previous section), @code, and similar commands;
in those cases, the argument is normal Texinfo text, where the three characters @{} are
special, as usual. With @verb, nothing is special except the delimiter character you choose.

The delimiter character itself may appear inside the verbatim text, as shown above. As
another example, ‘@verb{. ..} prints a single (fixed-width) period.

It is not reliable to use @verb inside other Texinfo constructs. In particular, it does not
work to use @verb in anything related to cross-referencing, such as section titles or figure
captions.

Chapter 7: Marking Text, Words and Phrases 66

7.1.7 @var{metasyntactic-variable}

Use the @var command to indicate metasyntactic variables. A metasyntactic variable is
something that stands for another piece of text. For example, you should use a metasyntactic
variable in the documentation of a function to describe the arguments that are passed to
that function.

Do not use @var for the names of normal variables in computer programs. These are
specific names, so @code is correct for them (@code). For example, the Emacs Lisp variable
texinfo-tex-command is not a metasyntactic variable; it is properly formatted using @code.

Do not use @var for environment variables either; @env is correct for them (see the next
section).

The effect of @var in the Info file is to change the case of the argument to all uppercase.
In the printed manual and HTML output, the argument is output in slanted type.

For example,

To delete file @var{filename},
type @samp{rm @var{filename}}.

produces
To delete file filename, type ‘rm filename’.
(Note that @var may appear inside @code, @samp, @file, etc.)

Write a metasyntactic variable all in lowercase without spaces, and use hyphens to make
it more readable. Thus, the Texinfo source for the illustration of how to begin a Texinfo
manual looks like this:

\input texinfo
Q@@settitle @var{name-of-manual}

This produces:

\input texinfo
@settitle name-of-manual

In some documentation styles, metasyntactic variables are shown with angle brackets,
for example:

., type rm <filename>

However, that is not the style that Texinfo uses.

7.1.8 @env{environment-variable}

Use the @env command to indicate environment variables, as used by many operating
systems, including GNU. Do not use it for metasyntactic variables; use @var for those (see
the previous section).

@env is equivalent to @code in its effects. For example:
The @env{PATH} environment variable
produces

The PATH environment variable . . .

Chapter 7: Marking Text, Words and Phrases 67

7.1.9 efile{file-name}

Use the @file command to indicate text that is the name of a file, buffer, or directory, or
is the name of a node in Info. You can also use the command for file name suffixes. Do not
use @file for symbols in a programming language; use @code.

@file is equivalent to code in its effects. For example,

The @file{.el} files are in
the @file{/usr/local/emacs/lisp} directory.

produces

The .el files are in the /usr/local/emacs/1lisp directory.

7.1.10 @command{command-name}
Use the @command command to indicate command names, such as 1s or cc.
@command is equivalent to @code in its effects. For example:
The command Q@command{ls} lists directory contents.
produces
The command 1s lists directory contents.

You should write the name of a program in the ordinary text font, rather than using
@command, if you regard it as a new English word, such as ‘Emacs’ or ‘Bison’.

When writing an entire shell command invocation, as in ‘ls -1’, you should use either
@samp or @code at your discretion.

7.1.11 @option{option-name}

Use the @option command to indicate a command-line option; for example, -1 or --version
or ——output=filename.

@option is equivalent to @code in its effects. For example:
The option @option{-1} produces a long listing.
produces

The option -1 produces a long listing.

7.1.12 @dfn{term}

Use the @dfn command to identify the introductory or defining use of a technical term. Use
the command only in passages whose purpose is to introduce a term which will be used
again or which the reader ought to know. Mere passing mention of a term for the first time
does not deserve @dfn. The command generates italics in the printed manual, and double
quotation marks in the Info file. For example:

Getting rid of a file is called @dfn{deleting} it.
produces
Getting rid of a file is called deleting it.

As a general rule, a sentence containing the defining occurrence of a term should be a
definition of the term. The sentence does not need to say explicitly that it is a definition,
but it should contain the information of a definition—it should make the meaning clear.

Chapter 7: Marking Text, Words and Phrases 68

7.1.13 @abbr{abbreviation|, meaning]|}

You can use the @abbr command for general abbreviations. The abbreviation is given as the
single argument in braces, as in ‘@abbr{Comput.}’. As a matter of style, or for particular
abbreviations, you may prefer to omit periods, as in ‘@abbr{Mr} Stallman’.

@abbr accepts an optional second argument, intended to be used for the meaning of the
abbreviation.

If the abbreviation ends with a lowercase letter and a period, and is not at the end of a
sentence, and has no second argument, remember to use the @. command (see Section 12.3.3
[Ending a Sentence|, page 107) to get the correct spacing. However, you do not have to
use @. within the abbreviation itself; Texinfo automatically assumes periods within the
abbreviation do not end a sentence.

In TEX and in the Info output, the first argument is printed as-is; if the second argument
is present, it is printed in parentheses after the abbreviation. In HT'ML the <abbr> tag is
used; in Docbook, the <abbrev> tag is used. For instance:

Q@abbr{Comput. J., Computer Journal}
produces:
Comput. J. (Computer Journal)

For abbreviations consisting of all capital letters, you may prefer to use the @acronym
command instead. See the next section for more on the usage of these two commands.

7.1.14 Qacronym{acronym|, meaning]|}

You can use the @acronym command for abbreviations written in all capital letters, such as
‘NASA’. The abbreviation is given as the single argument in braces, as in ‘Gacronym{NASA}’.
As a matter of style, or for particular acronyms, you may prefer to use periods, as in
‘Qacronym{N.A.S.A.}".

@acronym accepts an optional second argument, intended to be used for the meaning of
the acronym.

If the acronym is at the end of a sentence, and if there is no second argument, remember
to use the @. or similar command (see Section 12.3.3 [Ending a Sentence], page 107) to get
the correct spacing.

In TEX, the acronym is printed in slightly smaller font. In the Info output, the argu-
ment is printed as-is. In either format, if the second argument is present, it is printed in
parentheses after the acronym. In HTML and Docbook the <acronym> tag is used.

For instance (since GNU is a recursive acronym, we use @acronym recursively):

Qacronym{GNU, Qacronym{GNU}’s Not Unix}
produces:
GNU (GNU’s Not Unix)

In some circumstances, it is conventional to print family names in all capitals. Don’t
use Gacronym for this, since a name is not an acronym. Use @sc instead (see Section 7.2.2
[Smallcaps], page 70).

@abbr and Qacronym are closely related commands: they both signal to the reader that
a shortened form is being used, and possibly give a meaning. When choosing whether to
use these two commands, please bear the following in mind.

Chapter 7: Marking Text, Words and Phrases 69

— In common English usage, acronyms are a subset of abbreviations: they include pro-
nounceable words like ‘NATO’, ‘radar’, and ‘snafu’; some sources also include syllable
acronyms like ‘Usenet’, hybrids like ‘SIGGRAPH’, and unpronounceable initialisms like
‘FBI’.

— In Texinfo, an acronym (but not an abbreviation) should consist only of capital letters
and periods, no lowercase.

— In TgX, an acronym (but not an abbreviation) is printed in a slightly smaller font.

— Some browsers place a dotted bottom border under abbreviations but not acronyms.

— It usually turns out to be quite difficult and/or time-consuming to consistently use
@acronym for all sequences of uppercase letters. Furthermore, it looks strange for some
acronyms to be in the normal font size and others to be smaller. Thus, a simpler
approach you may wish to consider is to avoid @acronym and just typeset everything
as normal text in all capitals: ‘GNU’, producing the output ‘GNU’.

— In general, it’s not essential to use either of these commands for all abbreviations; use
your judgment. Text is perfectly readable without them.

7.1.15 @indicateurl{uniform-resource-locator}

Use the @indicateurl command to indicate a uniform resource locator on the World Wide
Web. This is purely for markup purposes and does not produce a link you can follow (use
the @url or Quref command for that, see Section 6.10 [@url], page 57). @indicateurl is
useful for urls which do not actually exist. For example:

For example, the url might be @indicateurl{http://example.org/path}.
which produces:
For example, the url might be ‘http://example.org/path’.

The output from @indicateurl is more or less like that of @samp (see Section 7.1.5
[@samp], page 65).

7.1.16 @email{email-address|, displayed-text]}

Use the @email command to indicate an electronic mail address. It takes one mandatory
argument, the address, and one optional argument, the text to display (the default is the
address itself).

In Info, the address is shown in angle brackets, preceded by the text to display if any.
In TEX, the angle brackets are omitted. In HTML output, @email produces a ‘mailto’ link
that usually brings up a mail composition window. For example:

Send bug reports to Gemail{bug-texinfo@@gnu.org},
suggestions to the @email{bug-texinfo@Ognu.org, same place}.

produces

Send bug reports to bug-texinfo@gnu.org,
suggestions to the same place.

7.2 Emphasizing Text

Usually, Texinfo changes the font to mark words in the text according to the category the
words belong to; an example is the @code command. Most often, this is the best way to

mailto:bug-texinfo@gnu.org
mailto:bug-texinfo@gnu.org

Chapter 7: Marking Text, Words and Phrases 70

mark words. However, sometimes you will want to emphasize text without indicating a
category. Texinfo has two commands to do this. Also, Texinfo has several commands that
specify the font in which text will be output. These commands have no effect in Info and
only one of them, the @r command, has any regular use.

7.2.1 @emph{text} and @strong{text}

The @emph and @strong commands are for emphasis; @strong is stronger. In printed
output, @emph produces italics and @strong produces bold. In the Info output, @emph
surrounds the text with underscores (‘_’), and @strong puts asterisks around the text.
For example,
@strong{Caution:} @samp{rm * .[~.]x}
removes Q@emph{all} files in the directory.
produces the following:
Caution: ‘rm * . [~.]* removes all files in the directory.
The @strong command is seldom used except to mark what is, in effect, a typographical
element, such as the word ‘Caution’ in the preceding example.

Caution: Do not use @strong with the word ‘Note’ followed by a space; Info
will mistake the combination for a cross-reference. Use a phrase such as Please
notice or Caution instead, or the optional argument to @quotation—‘Note’ is
allowable there.

7.2.2 @sc{text}: The Small Caps Font

Use the ‘@sc’ command to set text in A SMALL CAPS FONT (where possible). Write the text
you want to be in small caps between braces in lowercase, like this:
Richard @sc{Stallman} commencé GNU.
This produces:
Richard STALLMAN commencé GNU.
As shown here, we recommend reserving @sc for special cases where you want typo-

graphic small caps; family names are one such, especially in languages other than English,
though there are no hard-and-fast rules about such things.

TEX typesets any uppercase letters between the braces of an @sc command in full-size
capitals; only lowercase letters are printed in the small caps font. In the Info output, the
argument to @sc is printed in all uppercase. In HTML, the argument is uppercased and
the output marked with the <small> tag to reduce the font size, since HTML cannot easily
represent true small caps.

Overall, we recommend using standard upper- and lowercase letters wherever possible.

7.2.3 Fonts for Printing

Texinfo provides one command to change the size of the main body font in the TEX output
for a document: @fonttextsize. It has no effect in other output. It takes a single argument
on the remainder of the line, which must be either ‘10’ or ‘11’. For example:
@fonttextsize 10
The effect is to reduce the body font to a 10pt size (the default is 11pt). Fonts for
other elements, such as sections and chapters, are reduced accordingly. This should only be

Chapter 7: Marking Text, Words and Phrases 71

used in conjunction with @smallbook (see Section 19.11 [@smallbook], page 172) or similar,
since 10 pt fonts on standard paper (8.5x11 or A4) are too small. One reason to use this
command is to save pages, and hence printing cost, for physical books.

Texinfo does not at present have commands to switch the font family to use, or more
general size-changing commands.

Texinfo also provides a number of font commands that specify font changes in the printed
manual and (where possible) in the HTML output. They have no effect in Info. All the
commands apply to a following argument surrounded by braces.

@b selects bold face;
@i selects an italic font;
Or selects a roman font, which is the usual font in which text is printed. It may or

may not be seriffed.

O@sansserif
selects a sans serif font;

@slanted selects a slanted font;
ot selects the fixed-width, typewriter-style font used by @code;
(The commands with longer names were invented much later than the others, at which

time it did not seem desirable to use very short names for such infrequently needed features.)

The @r command can be useful in example-like environments, to write comments in the
standard roman font instead of the fixed-width font. This looks better in printed output,
and produces a <lineannotation> tag in Docbook output.

For example,

@lisp
(+22) ; 0r{Add two plus two.}
Q@end lisp
produces
+22) ; Add two plus two.

The @t command can occasionally be useful to produce output in a typewriter font where
that is supported (e.g., HTML and PDF), but no distinction is needed in Info or plain text:
@t{foo} produces foo, cf. @code{foo} producing foo.

In general, the other font commands are unlikely to be useful; they exist primarily to

make it possible to document the functionality of specific font effects, such as in TpX and
related packages.

72

8 Quotations and Examples

Quotations and examples are blocks of text consisting of one or more whole paragraphs
that are set off from the bulk of the text and treated differently. They are usually indented
in the output.

In Texinfo, you always begin a quotation or example by writing an @-command at the
beginning of a line by itself, and end it by writing an @end command that is also at the
beginning of a line by itself. For instance, you begin an example by writing @example by
itself at the beginning of a line and end the example by writing @end example on a line
by itself, at the beginning of that line, and with only one space between the @end and the
example.

8.1 Block Enclosing Commands

Here is a summary of commands that enclose blocks of text, also known as environments.
They’re explained further in the following sections.

@quotation
Indicate text that is quoted. The text is filled, indented (from both margins),
and printed in a roman font by default.

O@indentedblock
Like @quotation, but the text is indented only on the left.

@example Illustrate code, commands, and the like. The text is printed in a fixed-width
font, and indented but not filled.

@lisp Like @example, but specifically for illustrating Lisp code. The text is printed
in a fixed-width font, and indented but not filled.

Q@verbatim
Mark a piece of text that is to be printed verbatim; no character substitutions
are made and all commands are ignored, until the next @end verbatim. The
text is printed in a fixed-width font, and not indented or filled. Extra spaces
and blank lines are significant, and tabs are expanded.

@display Display illustrative text. The text is indented but not filled, and no font is
selected (so, by default, the font is roman).

@format Like @display (the text is not filled and no font is selected), but the text is not
indented.

O@smallquotation

O@smallindentedblock

O@smallexample

@smalllisp

@smalldisplay

O@smallformat
These @small. .. commands are just like their non-small counterparts, except
that they output text in a smaller font size, where possible.

Chapter 8: Quotations and Examples 73

@flushleft
@flushright
Text is not filled, but is set flush with the left or right margin, respectively.

Oraggedright
Text is filled, but only justified on the left, leaving the right margin ragged.

Q@cartouche
Highlight text, often an example or quotation, by drawing a box with rounded
corners around it.

The @exdent command is used within the above constructs to undo the indentation of
a line.

The @noindent command may be used after one of the above constructs (or at the
beginning of any paragraph) to prevent the following text from being indented as a new
paragraph.

8.2 @quotation: Block Quotations

The text of a quotation is processed like normal text (regular font, text is filled) except
that:

e both the left and right margins are closer to the center of the page, so the whole of the
quotation is indented;
e the first lines of paragraphs are indented no more than other lines; and

e an Gauthor command may be given to specify the author of the quotation.

This is an example of text written between a @quotation command and an @end
quotation command. A @quotation command is most often used to indicate
text that is excerpted from another (real or hypothetical) printed work.

Write a @quotation command as text on a line by itself. This line will disappear from
the output. Mark the end of the quotation with a line beginning with and containing only
@end quotation. The @end quotation line will likewise disappear from the output.

@quotation takes one optional argument, given on the remainder of the line. This text,
if present, is included at the beginning of the quotation in bold or otherwise emphasized,
and followed with a ‘:’. For example:

Qquotation Note
This is

a foo.

@end quotation

produces
Note: This is a foo.
If the @quotation argument is one of these English words (case-insensitive):
Caution Important Note Tip Warning

then the Docbook output uses corresponding special tags (<note>, etc.) instead of the
default <blockquote>. HTML output always uses <blockquote>.

Chapter 8: Quotations and Examples 74

If the author of the quotation is specified in the @quotation block with the @author
command, a line with the author name is displayed after the quotation:
@quotation
People sometimes ask me if it is a sin in the Church of Emacs to use
vi. Using a free version of vi is not a sin; it is a penance. So happy
hacking.

Q@author Richard Stallman
Q@end quotation

produces
People sometimes ask me if it is a sin in the Church of Emacs to use vi. Using

a free version of vi is not a sin; it is a penance. So happy hacking.
—Richard Stallman

Texinfo also provides a command @smallquotation, which is just like @quotation but
uses a smaller font size where possible. See Section 8.15 [@small...], page 80.

8.3 @indentedblock: Indented text blocks

The @indentedblock environment is similar to @quotation, except that text is only in-
dented on the left (and there is no optional argument for an author). Thus, the text font
remains unchanged, and text is gathered and filled as usual, but the left margin is increased.
For example:

This is an example of text written between an @indentedblock command and an

@end indentedblock command. The @indentedblock environment can contain any

text or other commands desired.

This is written in the Texinfo source as:

Q@indentedblock

This is an example ...

Q@end indentedblock

Texinfo also provides a command @smallindentedblock, which is just like
@indentedblock but uses a smaller font size where possible. See Section 8.15 [@small. . .],
page 80.

8.4 Qexample: Example Text

The @example environment is used to indicate an example that is not part of the running
text, such as computer input or output. Write an @example command at the beginning of
a line by itself. Mark the end of the example with an @end example command, also written
at the beginning of a line by itself.

An @example environment has the following characteristics:

e FEach line in the input file is a line in the output; that is, the source text is not filled as
it normally is.

e Extra spaces and blank lines are significant.
e The output is indented.
e The output uses a fixed-width font.

Chapter 8: Quotations and Examples 75

e Texinfo commands are expanded; if you want the output to be the input verbatim, use
the @verbatim environment instead (see Section 8.5 [@verbatim], page 75).

For example,

Q@example

cp foo @var{desti}; \
cp foo @var{dest2}

Q@end example

produces

cp foo destl; \
cp foo dest2

The lines containing @example and @end example will disappear from the output. To
make the output look good, you should put a blank line before the @example and another
blank line after the @end example. Blank lines inside the beginning @example and the
ending @end example, on the other hand, do appear in the output.

Caution: Do not use tabs in the lines of an example! (Or anywhere else in
Texinfo, except in verbatim environments.) TEX treats tabs as single spaces,
and that is not what they look like. In Emacs, you can use M-x untabify to
convert tabs in a region to multiple spaces.

Examples are often, logically speaking, “in the middle” of a paragraph, and the text
that continues afterwards should not be indented, as in the example above. The @noindent
command prevents a piece of text from being indented as if it were a new paragraph (see
Section 8.12 [@noindent]|, page 78).

If you want to embed code fragments within sentences, instead of displaying them, use
the @code command or its relatives (see Section 7.1.2 [@code], page 62).

If you wish to write a “comment” on a line of an example in the normal roman font, you
can use the @r command (see Section 7.2.3 [Fonts], page 70).

8.5 @verbatim: Literal Text

Use the @verbatim environment for printing of text that may contain special characters
or commands that should not be interpreted, such as computer input or output (@example
interprets its text as regular Texinfo commands). This is especially useful for including
automatically generated files in a Texinfo manual.

In general, the output will be just the same as the input. No character substitutions are
made, e.g., all spaces and blank lines are significant, including tabs. In the printed manual,
the text is typeset in a fixed-width font, and not indented or filled.

Write a @verbatim command at the beginning of a line by itself. This line will disappear
from the output. Mark the end of the verbatim block with an @end verbatim command,
also written at the beginning of a line by itself. The @end verbatim will also disappear
from the output.

For example:

Q@verbatim

{

TAB@command with strange characters: @’e

Chapter 8: Quotations and Examples 76

expandTABme
b

@end verbatim
This produces:
{

@command with strange characters: Q@’e
expand me

}

Since the lines containing @verbatim and @end verbatim produce no output, typically
you should put a blank line before the @verbatim and another blank line after the @end
verbatim. Blank lines between the beginning @verbatim and the ending @end verbatim
will appear in the output.

You can get a “small” verbatim by enclosing the @verbatim in an @smallformat envi-
ronment, as shown here:
Osmallformat
Q@verbatim

. still verbatim, but in a smaller font ...

@end verbatim
@end smallformat

Finally, a word of warning: it is not reliable to use @verbatim inside other Texinfo
constructs.

See also Section 18.5 [@verbatiminclude|, page 161.

8.6 @lisp: Marking a Lisp Example
The @1lisp command is used for Lisp code. It is synonymous with the @example command.

This is an example of text written between an
@lisp command and an Q@end lisp command.

Use @lisp instead of @example to preserve information regarding the nature of the
example. This is useful, for example, if you write a function that evaluates only and all the
Lisp code in a Texinfo file. Then you can use the Texinfo file as a Lisp library. Mark the
end of @lisp with @end 1lisp on a line by itself.

8.7 @display: Examples Using the Text Font

The @display command begins another kind of environment, where the font is left un-
changed, not switched to typewriter as with @example. Each line of input still produces a
line of output, and the output is still indented.

This is an example of text written between a @display command
and an @end display command. The @display command
indents the text, but does not fill it.

Texinfo also provides the environment @smalldisplay, which is like @display but uses
a smaller font size. See Section 8.15 [@small. . .|, page 80.

Chapter 8: Quotations and Examples 77

8.8 @format: Examples Using the Full Line Width

The @format command is similar to @display, except it leaves the text unindented. Like
@display, it does not select the fixed-width font.

This is an example of text written between a @format command
and an @end format command. As you can see

from this example,

the @format command does not fill the text.

Texinfo also provides the environment @smallformat, which is like @format but uses a
smaller font size. See Section 8.15 [@small. . .|, page 80.

8.9 Q@exdent: Undoing a Line’s Indentation

The @exdent command removes any indentation a line might have. The command is written
at the beginning of a line and applies only to the text that follows the command that is
on the same line. Do not use braces around the text. In a printed manual, the text on an
@exdent line is printed in the roman font.

@exdent is usually used within examples. Thus,

Q@example
This line follows an @Q@example command.
Q@exdent This line is exdented.
This line follows the exdented line.
The @Q@end example comes on the next line.
Q@end example
produces
This line follows an Q@example command.
This line is exdented.
This line follows the exdented line.
The Qend example comes on the next line.
In practice, the @exdent command is rarely used. Usually, you un-indent text by ending
the example and returning the page to its normal width.

@exdent has no effect in HTML output.

8.10 @flushleft and @flushright

The @flushleft and @flushright commands line up the ends of lines on the left and right
margins of a page, but do not fill the text. The commands are written on lines of their
own, without braces. The @flushleft and @flushright commands are ended by @end
flushleft and @end flushright commands on lines of their own.
For example,

@flushleft

This text is

written flushleft.

Q@end flushleft
produces

This text is

Chapter 8: Quotations and Examples 78

written flushleft.

@flushright produces the type of indentation often used in the return address of letters.
For example,

@flushright

Here is an example of text written
flushright. The @code{@flushright} command
right justifies every line but leaves the
left end ragged.

Q@end flushright

produces

Here is an example of text written
flushright. The @flushright command
right justifies every line but leaves the
left end ragged.

8.11 Oraggedright: Ragged Right Text

The @raggedright fills text as usual, but the text is only justified on the left; the right
margin is ragged. The command is written on a line of its own, without braces. The
Q@raggedright command is ended by @end raggedright on a line of its own. This command
has no effect in Info and HTML output, where text is always set ragged right.

The @raggedright command can be useful with paragraphs containing lists of commands
with long names, when it is known in advance that justifying the text on both margins will
make the paragraph look bad.

An example (from elsewhere in this manual):

O@raggedright

Commands for double and single angle quotation marks:
Q@code{@@guillemetleft@{@}}, @code{@0guillemetright@{a@}},
Q@code{@@guillemotleft@{@}}, @code{@Cguillemotright@{@}},
Q@code{@@guilsinglleft@{@}}, @code{@Oguilsinglright@{@}}.
Q@end raggedright

produces

Commands for double and single angle quotation marks: @guillemetleft{},
Qguillemetright{}, Qguillemotleft{}, @guillemotright{}, Gguilsinglleft{},
Qguilsinglright{}.

8.12 @noindent: Omitting Indentation

An example or other inclusion can break a paragraph into segments. Ordinarily, the format-
ters indent text that follows an example as a new paragraph. You can prevent this on a case-
by-case basis by writing @noindent at the beginning of a line, preceding the continuation
text. You can also disable indentation for all paragraphs globally with @paragraphindent
(see Section 3.7.4 [@paragraphindent], page 29).

Here is an example showing how to eliminate the normal indentation of the text after
an @example, a common situation:

Chapter 8: Quotations and Examples 79

Q@example
This is an example
Q@end example

OGnoindent

This line is not indented. As you can see, the
beginning of the line is fully flush left with the
line that follows after it.

produces:

This is an example

This line is not indented. As you can see, the
beginning of the line is fully flush left with the
line that follows after it.

The standard usage of @noindent is just as above: at the beginning of what would
otherwise be a paragraph, to eliminate the indentation that normally happens there. It can
either be followed by text or be on a line by itself. There is no reason to use it in other
contexts, such as in the middle of a paragraph or inside an environment (see Chapter 8
[Quotations and Examples|, page 72).

You can control the number of blank lines in the Info file output by adjusting the input
as desired: a line containing just @noindent does not generate a blank line, and neither
does an @end line for an environment.

Do not put braces after a @noindent command; they are not used, since @noindent is
a command used outside of paragraphs (see Section A.1 [Command Syntax], page 222).

8.13 @indent: Forcing Indentation

To complement the @noindent command (see the previous section), Texinfo provides
the @indent command to force a paragraph to be indented. For instance, this paragraph
(the first in this section) is indented using an @indent command.

And indeed, the first paragraph of a section is the most likely place to use @indent, to
override the normal behavior of no indentation there (see Section 3.7.4 [@paragraphindent],
page 29). It can either be followed by text or be on a line by itself.

As a special case, when @indent is used in an environment where text is not filled, it
produces a paragraph indentation space in the TEX output. (These environments are where
a line of input produces a line of output, such as @example and @display; for a summary
of all environments, see Section 8.1 [Block Enclosing Commands], page 72.)

Do not put braces after an @indent command; they are not used, since @indent is a
command used outside of paragraphs (see Section A.1 [Command Syntax], page 222).

8.14 @cartouche: Rounded Rectangles

In a printed manual, the @cartouche command draws a box with rounded corners around
its contents. In HTML, a normal rectangle is drawn. @cartouche has no effect in Info
output.

Chapter 8: Quotations and Examples 80

You can use this command to further highlight an example or quotation. For instance,
you could write a manual in which one type of example is surrounded by a cartouche for
emphasis.

For example,

@cartouche

Q@example

% pwd
/usr/local/share/emacs
Q@end example

@end cartouche

surrounds the two-line example with a box with rounded corners, in the printed manual.

The output from the example looks like this (if you’re reading this in Info, you’ll see the
@cartouche had no effect):

% pwd
/usr/local/share/emacs

@cartouche also implies @group (see Section 13.9 [@group], page 121).

8.15 @small... Block Commands

In addition to the regular @example and similar commands, Texinfo has “small” example-
style commands. These are @smallquotation, @smallindentedblock, @smalldisplay,
@smallexample, @smallformat, and @smalllisp.

In Info output, the @small. .. commands are equivalent to their non-small companion
commands.
In TEX, however, the @small. .. commands typeset text in a smaller font than the non-

small example commands. Thus, for instance, code examples can contain longer lines and
still fit on a page without needing to be rewritten.

A smaller font size is also requested in HTML output, and (as usual) retained in the
Texinfo XML transliteration.

Mark the end of a @small. .. block with a corresponding @end small. ... For example,
pair @smallexample with @end smallexample.

Here is an example of the font used by the @smallexample command (in Info, the output
will be the same as usual):

. to make sure that you have the freedom to
distribute copies of free software (and charge for
this service if you wish), that you receive source
code or can get it if you want it, that you can
change the software or use pieces of it in new free
programs; and that you know you can do these things.

The @small... commands use the same font style as their normal counterparts:
@smallexample and @smalllisp use a fixed-width font, and everything else uses the
regular font. They also have the same behavior in other respects—whether filling is done
and whether margins are narrowed.

81

As a general rule, a printed document looks better if you use only one of (for instance)
@example or @smallexample consistently within a chapter.

82

9 Lists and Tables

Texinfo has several ways of making lists and tables. Lists can be bulleted or numbered;
two-column tables can highlight the items in the first column; multi-column tables are also
supported.

9.1 Introducing Lists

Texinfo automatically indents the text in lists or tables, and numbers an enumerated list.
This last feature is useful if you modify the list, since you do not need to renumber it
yourself.

Numbered lists and tables begin with the appropriate @-command at the beginning of
a line, and end with the corresponding @end command on a line by itself. The table and
itemized-list commands also require that you write formatting information on the same line
as the beginning @-command.

Begin an enumerated list, for example, with an @enumerate command and end the list
with an @end enumerate command. Begin an itemized list with an @itemize command,
followed on the same line by a formatting command such as @bullet, and end the list with
an @end itemize command.

Precede each element of a list with an @item or @itemx command.

Here is an itemized list of the different kinds of table and lists:

e Itemized lists with and without bullets.
e Enumerated lists, using numbers or letters.

e Two-column tables with highlighting.

Here is an enumerated list with the same items:

1. Itemized lists with and without bullets.
2. Enumerated lists, using numbers or letters.

3. Two-column tables with highlighting.

And here is a two-column table with the same items and their @-commands:

@itemize Itemized lists with and without bullets.

Q@enumerate
Enumerated lists, using numbers or letters.

Otable
@ftable
@vtable Two-column tables, optionally with indexing.

Chapter 9: Lists and Tables 83

9.2 Qitemize: Making an Itemized List

The @itemize command produces a sequence of “items”, each starting with a bullet or
other mark inside the left margin, and generally indented.

Begin an itemized list by writing @itemize at the beginning of a line. Follow the
command, on the same line, with a character or a Texinfo command that generates a mark.
Usually, you will use @bullet after @itemize, but you can use @minus, or any command
or character that results in a single character in the Info file. (When you write the mark
command such as @bullet after an @itemize command, you may omit the ‘{}’.) If you
don’t specify a mark command, the default is @ullet. If you don’t want any mark at all,
but still want logical items, use @w{} (in this case the braces are required).

After the @itemize, write your items, each starting with @item. Text can follow on the
same line as the @item. The text of an item can continue for more than one paragraph.

There should be at least one @item inside the @itemize environment. If none are
present, makeinfo gives a warning. If you just want indented text and not a list of items,
use @indentedblock; see Section 8.3 [@indentedblock]|, page 74.

Index entries and comments that are given before an @item including the first, are auto-
matically moved (internally) to after the @item, so the output is as expected. Historically
this has been a common practice.

Usually, you should put a blank line between items. This puts a blank line in the Info
file. (TEX inserts the proper vertical space in any case.) Except when the entries are very
brief, these blank lines make the list look better.

Here is an example of the use of @itemize, followed by the output it produces. @bullet
produces an ‘*’ in Info and a round dot in other output formats.

Q@itemize @bullet
Q@item
Some text for foo.

Q@item

Some text
for bar.
@end itemize

This produces:

e Some text for foo.

e Some text for bar.

Ttemized lists may be embedded within other itemized lists. Here is a list marked with
dashes embedded in a list marked with bullets:

Chapter 9: Lists and Tables 84

Q@itemize Q@bullet
Q@item
First item.

Q@itemize @minus
Q@item
Inner item.

Q@item
Second inner item.
Q@end itemize

Q@item
Second outer item.
Q@end itemize

This produces:
e First item.
— Inner item.
— Second inner item.

e Second outer item.

9.3 Qenumerate: Making a Numbered or Lettered List

@enumerate is like @itemize (see Section 9.2 [@itemize], page 83), except that the labels
on the items are successive integers or letters instead of bullets.

Write the @enumerate command at the beginning of a line. The command does not
require an argument, but accepts either a number or a letter as an option. Without an
argument, @enumerate starts the list with the number ‘1’. With a numeric argument, such
as ‘3’, the command starts the list with that number. With an upper- or lowercase letter,
such as ‘a’ or ‘A’, the command starts the list with that letter.

Write the text of the enumerated list in the same way as an itemized list: write a line
starting with @item at the beginning of each item in the enumeration. It is ok to have text
following the @item, and the text for an item can continue for several paragraphs.

You should put a blank line between entries in the list. This generally makes it easier
to read the Info file.

Here is an example of @enumerate without an argument:

Q@enumerate
Q@item
Underlying causes.

Q@item
Proximate causes.
Q@end enumerate

This produces:

1. Underlying causes.

Chapter 9: Lists and Tables 85

2. Proximate causes.

Here is an example with an argument of 3:

Q@enumerate 3
Qitem
Predisposing causes.

Q@item
Precipitating causes.

Q@item
Perpetuating causes.
Q@end enumerate

This produces:
3. Predisposing causes.
4. Precipitating causes.

5. Perpetuating causes.

Here is a brief summary of the alternatives. The summary is constructed using
@enumerate with an argument of a.

a. Qenumerate
Without an argument, produce a numbered list, with the first item numbered 1.
b. @enumerate unsigned-integer

With an (unsigned) numeric argument, start a numbered list with that number. You
can use this to continue a list that you interrupted with other text.

c. Q@enumerate upper-case-letter

With an uppercase letter as argument, start a list in which each item is marked by a
letter, beginning with that uppercase letter.

d. @enumerate lower-case-letter

With a lowercase letter as argument, start a list in which each item is marked by a
letter, beginning with that lowercase letter.

You can also nest enumerated lists, as in an outline.

9.4 Making a Two-column Table

@table is similar to @itemize (see Section 9.2 [@itemize], page 83), but allows you to
specify a name or heading line for each item. The @table command is used to produce two-
column tables, and is especially useful for glossaries, explanatory exhibits, and command-
line option summaries.

Chapter 9: Lists and Tables 86

9.4.1 Using the @table Command

Use the @table command to produce a two-column table. This command is typically used
when you have a list of items and a brief text with each one, such as a list of definitions.

Write the @table command at the beginning of a line, after a blank line, and follow it
on the same line with an argument that is an ‘indicating’ command, such as @code, @samp,
@var, @option, or @kbd (see Section 7.1 [Indicating], page 61). This command will be
applied to the text in the first column. For example, @table @code will cause the text in
the first column to be output as if it had been the argument to a @code command.

You may use the @asis command as an argument to @table. Qasis is a command that
does nothing: if you use this command after @table, the first column entries are output
without added highlighting (“as is”).

The @table command works with other commands besides those explicitly mentioned
here. However, you can only use predefined Texinfo commands that take an argument in
braces. You cannot reliably use a new command defined with @macro, although an @alias
(for a suitable predefined command) is acceptable. See Chapter 17 [Defining New Texinfo
Commands], page 149.

Begin each table entry with an @item command at the beginning of a line. Write the
text for the first column on the same line as the @item command. Write the text for the
second column on the line following the @item line and on subsequent lines. You may write
as many lines of supporting text as you wish, even several paragraphs. But only the text
on the same line as the @item will be placed in the first column (including any footnotes).
You do not need to type anything for an empty second column.

Normally, you should put a blank line before an @item line (except the first one). This
puts a blank line in the Info file. Except when the entries are very brief, a blank line looks
better. End the table with a line consisting of @end table, followed by a blank line. TEX
will always start a new paragraph after the table, so the blank line is needed for the Info
output to be analogous.

For example, the following table highlights the text in the first column with the @samp
command:

@table @samp

Q@item foo

This is the text for
@samp{foo}.

@item bar
Text for @samp{bar}.
@end table

This produces:
‘foo’ This is the text for ‘foo’.
‘bar’ Text for ‘bar’.

If you want to list two or more named items with a single block of text, use the @itemx
command. (See Section 9.4.3 [@itemx], page 87.)

The @table command (see Section 9.4.1 [@table], page 86) is not supported inside
@display. Since @display is line-oriented, it doesn’t make sense to use them together.

Chapter 9: Lists and Tables 87

If you want to indent a table, try @quotation (see Section 8.2 [@quotation]|, page 73) or
@indentedblock (see Section 8.3 [@indentedblock], page 74).

9.4.2 0ftable and @vtable

The @ftable and @vtable commands are the same as the @table command except that
@ftable automatically enters each of the items in the first column of the table into the
index of functions and @vtable automatically enters each of the items in the first column of
the table into the index of variables. This simplifies the task of creating indices. Only the
items on the same line as the @item or @itemx commands are indexed, and they are indexed
in exactly the form that they appear on that line. See Chapter 11 [Indices], page 97, for
more information about indices.

Begin a two-column table using @ftable or @vtable by writing the @-command at the
beginning of a line, followed on the same line by an argument that is a Texinfo command
such as @code, exactly as you would for a @table command; and end the table with an
@end ftable or @end vtable command on a line by itself.

See the example for @table in the previous section.

9.4.3 Qitemx: Second and Subsequent Items

Use the @itemx command inside a table when you have two or more first column entries
for the same item, each of which should appear on a line of its own.

Use @item for the first entry, and @itemx for all subsequent entries; @itemx must always
follow an @item command, with no blank line intervening.

The @itemx command works exactly like @item except that it does not generate ex-
tra vertical space above the first column text. If you have multiple consecutive @itemx
commands, do not insert any blank lines between them.

For example,

Q@table Qcode

Q@item upcase

Q@itemx downcase

These two functions accept a character or a string as
argument, and return the corresponding uppercase (lowercase)
character or string.

Q@end table

This produces:

upcase
downcase These two functions accept a character or a string as argument, and return the
corresponding uppercase (lowercase) character or string.

(Note also that this example illustrates multi-line supporting text in a two-column table.)

9.5 OGmultitable: Multi-column Tables

@multitable allows you to construct tables with any number of columns, with each column
having any width you like.

Chapter 9: Lists and Tables 88

You define the column widths on the @multitable line itself, and write each row of the
actual table following an @item command, with columns separated by a @tab command.
Finally, @end multitable completes the table. Details in the sections below.

9.5.1 Multitable Column Widths

You can define the column widths for a multitable in two ways: as fractions of the line
length; or with a prototype row. Mixing the two methods is not supported. In either case,
the widths are defined entirely on the same line as the @multitable command.

1. To specify column widths as fractions of the line length, write @columnfractions and
the decimal numbers (presumably less than 1; a leading zero is allowed and ignored)
after the @Gmultitable command, as in:

@multitable Q@columnfractions .33 .33 .33

The fractions need not add up exactly to 1.0, as these do not. This allows you to
produce tables that do not need the full line length.

2. To specify a prototype row, write the longest entry for each column enclosed in braces
after the @Gmultitable command. For example:

Omultitable {some text for column one} {for column two}

The first column will then have the width of the typeset ‘some text for column one’,
and the second column the width of ‘for column two’.

The prototype entries need not appear in the table itself.

Although we used simple text in this example, the prototype entries can contain Texinfo
commands; markup commands such as @code are particularly likely to be useful.

9.5.2 Multitable Rows

After the @multitable command defining the column widths (see the previous section),
you begin each row in the body of a multitable with @item, and separate the column entries
with @tab. Line breaks are not special within the table body, and you may break input
lines in your source file as necessary.

You can also use @headitem instead of @item to produce a heading row. The TEX output
for such a row is in bold, and the HT'ML and Docbook output uses the <thead> tag. In
Info, the heading row is followed by a separator line made of dashes (‘= characters).

The command @headitemfont can be used in templates when the entries in a @headitem
row need to be used in a template. It is a synonym for @b, but using @headitemfont avoids
any dependency on that particular font style, in case we provide a way to change it in the
future.

Here is a complete example of a multi-column table (the text is from The GNU Emacs
Manual, see Section “Splitting Windows” in The GNU Emacs Manual):

Omultitable @columnfractions .15 .45 .4
QGheaditem Key @tab Command @tab Description
@item C-x 2

Q@tab @code{split-window-vertically}

Otab Split the selected window into two windows,
with one above the other.

@item C-x 3

89

Q@tab @code{split-window-horizontally}

O@tab Split the selected window into two windows
positioned side by side.

Q@item C-Mouse-2

@tab

@tab In the mode line or scroll bar of a window,
split that window.

@end multitable

produces:

Key Command Description

Cx2 split-window-vertically Split the selected window into
two windows, with one above the
other.

Cx3 split-window-horizontally Split the selected window into two
windows positioned side by side.

C-Mouse-2 In the mode line or scroll bar of a

window, split that window.

90

10 Special Displays

The commands in this chapter allow you to write text that is specially displayed (output
format permitting), outside of the normal document flow.

One set of such commands is for creating “floats”, that is, figures, tables, and the like,
set off from the main text, possibly numbered, captioned, and/or referred to from elsewhere
in the document. Images are often included in these displays.

Another group of commands is for creating footnotes in Texinfo.

10.1 Floats

A float is a display which is set off from the main text. It is typically labeled as being a
“Figure”, “Table”, “Example”, or some similar type.

A float is so-named because, in principle, it can be moved to the bottom or top of
the current page, or to a following page, in the printed output. (Floating does not make
sense in other output formats.) In the present version of Texinfo, however, this floating is
unfortunately not yet implemented. Instead, the floating material is simply output at the
current location, more or less as if it were an @group (see Section 13.9 [@group], page 121).

10.1.1 efloat [type][,label]: Floating Material

To produce floating material, enclose the material you want to be displayed separate between
@float and @end float commands, on lines by themselves.

Floating material often uses @image to display an already-existing graphic (see
Section 10.2 [Images], page 92), or @multitable to display a table (see Section 9.5
[Multi-column Tables|, page 87). However, the contents of the float can be anything.
Here’s an example with simple text:

@float Figure,fig:exl
This is an example float.
Q@end float

And the output:

This is an example float.
Figure 10.1

As shown in the example, @float takes two arguments (separated by a comma), type
and label. Both are optional.

type Specifies the sort of float this is; typically a word such as “Figure”, “Table”,
etc. If this is not given, and label is, any cross-referencing will simply use a
bare number.

label Specifies a cross-reference label for this float. If given, this float is automat-
ically given a number, and will appear in any @listoffloats output (see
Section 10.1.3 [@1listoffloats]|, page 91). Cross references to label are allowed.

On the other hand, if label is not given, then the float will not be numbered
and consequently will not appear in the @listoffloats output or be cross-
referenceable.

Chapter 10: Special Displays 91

Ordinarily, you specify both type and label, to get a labeled and numbered float.

In Texinfo, all floats are numbered in the same way: with the chapter number (or
appendix letter), a period, and the float number, which simply counts 1, 2, 3, ..., and is
reset at each chapter. Each float type is counted independently.

Floats within an @unnumbered, or outside of any chapter, are simply numbered consec-
utively from 1.

These numbering conventions are not, at present, changeable.

10.1.2 @caption & @shortcaption

You may write a @caption anywhere within a @float environment, to define a caption for
the float. It is not allowed in any other context. @caption takes a single argument, enclosed
in braces. Here’s an example:

@float

An example float, with caption.
Q@caption{Caption for example float.}
Q@end float

The output is:

An example float, with caption.
Caption for example float.

@caption can appear anywhere within the float; it is not processed until the @end float.
The caption text is usually a sentence or two, but may consist of several paragraphs if
necessary.

In the output, the caption always appears below the float; this is not currently change-
able. It is preceded by the float type and/or number, as specified to the @float command
(see the previous section).

The @shortcaption command likewise may be used only within @float, and takes a
single argument in braces. The short caption text is used instead of the caption text in a list
of floats (see the next section). Thus, you can write a long caption for the main document,
and a short title to appear in the list of floats. For example:

@float

. as above ...
@shortcaption{Text for list of floats.}
@end float

The text for @shortcaption may not contain comments (@c), verbatim text (@verb),
environments such as @example, footnotes (@footnote) or other complex constructs. The
same constraints apply to @caption unless there is a @shortcaption.

10.1.3 @listoffloats: Tables of Contents for Floats

You can write a @listoffloats command to generate a list of floats for a given float type
(see Section 10.1.1 [@float], page 90), analogous to the document’s overall table of contents.
Typically, it is written in its own @unnumbered node to provide a heading and structure,
rather like @printindex (see Section 11.4 [Printing Indices & Menus], page 99).

Chapter 10: Special Displays 92

@listoffloats takes one optional argument, the float type. Here’s an example:

OGnode List of Figures
OQunnumbered List of Figures
@listoffloats Figure

And here’s what the output from @listoffloats looks like, given the example figure earlier
in this chapter (the Info output is formatted as a menu):

Figure 10. 1 .o 90

Without any argument, @listoffloats generates a list of floats for which no float type
was specified, i.e., no first argument to the @float command (see Section 10.1.1 [@float],
page 90).

Each line in the list of floats contains the float type (if any), the float number, and
the caption, if any—the @shortcaption argument, if it was specified, else the @caption
argument. In Info, the result is a menu where each float can be selected. In HTML, each
line is a link to the float. In printed output, the page number is included.

Unnumbered floats (those without cross-reference labels) are omitted from the list of
floats.

10.2 Inserting Images

You can insert an image given in an external file with the @image command. Although
images can be used anywhere, including the middle of a paragraph, we describe them in
this chapter since they are most often part of a displayed figure or example.

10.2.1 Image Syntax

Here is the synopsis of the @image command:
Q@image{filename[, width|, height|, alttext|, extension||]|}

The filename argument is mandatory, and must not have an extension, because the
different processors support different formats:

o TEX (DVI output) reads the file filename.eps (Encapsulated PostScript format).

e pdfTEX reads filename.pdf, filename.png, filename.jpg, or filename.jpeg (in
that order). It also tries uppercase versions of the extensions. The PDF format does
not support EPS images, so such must be converted first.

e For Info, makeinfo includes filename.txt verbatim (more or less as if it were in
@verbatim). The Info output may also include a reference to filename.png or
filename. jpg. (See below.)

e For HTML, makeinfo outputs a reference to filename.png, filename.jpg,
filename. jpeg or filename.gif (in that order). If none of those exist, it gives an
error, and outputs a reference to filename. jpg anyway.

e For Docbook, makeinfo outputs references to filename.eps, filename.gif
filename. jpeg, filename.jpg, filename.pdf, filename.png and filename.svg,
for every file found. Also, filename.txt is included verbatim, if present. (The
subsequent Docbook processor is supposed to choose the appropriate one.)

Chapter 10: Special Displays 93

e For Info and HTML output, makeinfo uses the optional fifth argument extension to
@image for the filename extension, if it is specified and the file is found. Any leading
period should be included in extension. For example:

Q@image{foo,,,,.xpm}

If you want to install image files for use by Info readers too, we recommend putting
them in a subdirectory like ‘foo-figures’ for a package foo. Copying the files into
$(infodir)/foo-figures/ should be done in your Makefile.

The width and height arguments are described in the next section.
For TEX output, if an image is the only thing in a paragraph it will ordinarily be displayed
on a line by itself, respecting the current environment indentation, but without the normal

paragraph indentation. If you want it centered, use @center (see Section 3.4.2 [@titlefont
@center @sp|, page 21).

For HTML output, makeinfo sets the alt attribute for inline images to the optional
alttext (fourth) argument to @image, if supplied. If not supplied, makeinfo uses the full
file name of the image being displayed. The alttext is processed as Texinfo text, so special
characters such as ‘"’ and ‘<’ and ‘&’ are escaped in the HTML output; also, you can get
an empty alt string with @- (a command that produces no output; see Section 13.3 [@-
@hyphenation|, page 120).

For Info output, the alt string is also processed as Texinfo text and output. In this
case, ‘\’ is escaped as ‘\\’ and ‘"’ as ‘\"’; no other escapes are done.

In Info output, makeinfo writes a reference to the binary image file (trying filename
suffixed with extension, .extension, .png, or .jpg, in that order) if one exists. It also
literally includes the .txt file if one exists. This way, Info readers which can display images
(such as the Emacs Info browser, running under X) can do so, whereas Info readers which
can only use text (such as the standalone Info reader) can display the textual version.

The implementation of this is to put the following construct into the Info output:
"@"H[image src="binaryfile" text="txtfile"
alt="alttext ... "@"H]

where ‘"@ and ‘"H’ stand for the actual null and backspace control characters. If one of the
files is not present, the corresponding argument is omitted.

The reason for mentioning this here is that older Info browsers (this feature was intro-
duced in Texinfo version 4.6) will display the above literally, which, although not pretty,
should not be harmful.

10.2.2 Image Scaling

The optional width and height arguments to the @image command (see the previous section)
specify the size to which to scale the image. They are only taken into account in TEX. If
neither is specified, the image is presented in its natural size (given in the file); if only one is
specified, the other is scaled proportionately; and if both are specified, both are respected,
thus likely distorting the original image by changing its aspect ratio.

The width and height may be specified using any valid TEX dimension, namely:
pt point (72.27pt = 1in)
pc pica (1pc = 12pt)

Chapter 10: Special Displays 94

bp big point (72bp = lin)

in inch

cm centimeter (2.54cm = lin)
mm millimeter (10mm = lcm)

dd didét point (1157dd = 1238pt)
cc cicero (lcc = 12dd)

Sp scaled point (65536sp = 1pt)

For example, the following will scale a file ridt.eps to one inch vertically, with the

width scaled proportionately:
Q@image{ridt,,1lin}

For @image to work with TEX, the file epsf.tex must be installed somewhere that TEX
can find it. (The standard location is texmf/tex/generic/dvips/epsf.tex, where texmf
is a root of your TgX directory tree.) This file is included in the Texinfo distribution and
is also available from ftp://tug.org/tex/epsft.tex, among other places.

@image can be used within a line as well as for displayed figures. Therefore, if you intend
it to be displayed, be sure to leave a blank line before the command, or the output will run
into the preceding text.

Image scaling is presently implemented only in TEX, not in HTML or any other sort of
output.

10.3 Footnotes

A footnote is for a reference that documents or elucidates the primary text.!

Footnotes are distracting; use them sparingly at most, and it is best to avoid them
completely. Standard bibliographical references are usually better placed in a bibliography
at the end of a document instead of in footnotes throughout.

10.3.1 Footnote Commands

In Texinfo, footnotes are created with the @footnote command. This command is followed
immediately by a left brace, then by the text of the footnote, and then by a terminating
right brace. Footnotes may be of any length (they will be broken across pages if necessary),
but are usually short. The template is:

ordinary text@footnote{text of footnote}

As shown here, the @footnote command should come right after the text being foot-
noted, with no intervening space; otherwise, the footnote marker might end up starting a
line.

For example, this clause is followed by a sample footnote?; in the Texinfo source, it looks
like this:

...a sample footnote@footnote{Here is the sample

1A footnote should complement or expand upon the primary text, but a reader should not need to read
a footnote to understand the primary text. For a thorough discussion of footnotes, see The Chicago
Manual of Style, which is published by the University of Chicago Press.

2 Here is the sample footnote.

ftp://tug.org/tex/epsf.tex

Chapter 10: Special Displays 95

footnote.}; in the Texinfo source...

As you can see, this source includes two punctuation marks next to each other; in this
case, ‘.};’ is the sequence. This is normal (the first ends the footnote and the second
belongs to the sentence being footnoted), so don’t worry that it looks odd. (Another style,
perfectly acceptable, is to put the footnote after punctuation belonging to the sentence, as
in ‘;@footnote{...".)

In a printed manual or book, the reference mark for a footnote is a small, superscripted
number; the text of the footnote appears at the bottom of the page, below a horizontal line.

In Info, the reference mark for a footnote is a pair of parentheses with the footnote
number between them, like this: ‘(1)’. The reference mark is followed by a cross-reference
link to the footnote text if footnotes are put in separate nodes (see Section 10.3.2 [Footnote
Styles|, page 95).

In the HTML output, footnote references are generally marked with a small, super-
scripted number which is rendered as a hypertext link to the footnote text.

Footnotes cannot be nested, and cannot appear in section headings of any kind or other
“unusual” places.

A final tip: footnotes in the argument of an @item command for an @table must be
entirely on the same line as the @item (as usual). See Section 9.4 [Two-column Tables],
page 85.

10.3.2 Footnote Styles

Info has two footnote styles, which determine where the text of the footnote is located:

e In the ‘End’ node style, all the footnotes for a single node are placed at the end of that
node. The footnotes are separated from the rest of the node by a line of dashes with
the word ‘Footnotes’ within it. Each footnote begins with an ‘(n)’ reference mark.
Here is an example of the Info output for a single footnote in the end-of-node style:

————————— Footnotes ——————-—-

(1) Here is a sample footnote.

e In the ‘Separate’ node style, all the footnotes for a single node are placed in an auto-
matically constructed node of their own. In this style, a “footnote reference” follows
each ‘(n)’ reference mark in the body of the node. The footnote reference is actually
a cross-reference which you use to reach the footnote node.

The name of the node with the footnotes is constructed by appending ‘~Footnotes’ to
the name of the node that contains the footnotes. (Consequently, the footnotes’ node
for the Footnotes node is Footnotes-Footnotes!) The footnotes’ node has an ‘Up’
node pointer that leads back to its parent node.

Here is how the first footnote in this manual looks after being formatted for Info in the
separate node style:

File: texinfo.info Node: Overview-Footnotes, Up: Overview

(1) The first syllable of "Texinfo" is pronounced like "speck", not
"hex". ...

Unless your document has long and important footnotes (as in, say, Gibbon’s Decline
and Fall . ..), we recommend the ‘end’ style, as it is simpler for readers to follow.

96

Use the @footnotestyle command to specify an Info file’s footnote style. Write this
command at the beginning of a line followed by an argument, either ‘end’ for the end node
style or ‘separate’ for the separate node style.

For example,

@footnotestyle end
or
@footnotestyle separate

Write a @footnotestyle command before or shortly after the end-of-header line at the
beginning of a Texinfo file. (You should include any @footnotestyle command between
the start-of-header and end-of-header lines, so the region formatting commands will format
footnotes as specified.)

In HTML, when the footnote style is ‘end’, or if the output is not split, footnotes are

put at the end of the output. If set to ‘separate’, and the output is split, they are placed
in a separate file.

97

11 Indices

Using Texinfo, you can generate indices without having to sort and collate entries manually.
In an index, the entries are listed in alphabetical order, together with information on how
to find the discussion of each entry. In a printed manual, this information consists of page
numbers. In an Info file, this information is a menu entry leading to the first node referenced.

Texinfo provides several predefined kinds of index: an index for functions, an index for
variables, an index for concepts, and so on. You can combine indices or use them for other
than their canonical purpose. Lastly, you can define your own new indices.

11.1 Predefined Indices

Texinfo provides six predefined indices. Here are their nominal meanings, abbreviations,
and the corresponding index entry commands:

3)

cp (@cindex) concept index, for general concepts.

‘fn’ (efindex) function index, for function and function-like names (such as entry
points of libraries).

‘ky’ (@kindex) keystroke index, for keyboard commands.

‘pg’ (@pindex) program index, for names of programs.

‘tp’ (@tindex) data type index, for type names (such as structures defined in header
files).

‘vr’ (@vindex) variable index, for variable names (such as global variables of li-
braries).

Not every manual needs all of these, and most manuals use only two or three at most. The
present manual, for example, has two indices: a concept index and an @-command index
(that is actually the function index but is called a command index in the chapter heading).

You are not required to use the predefined indices strictly for their canonical purposes.
For example, suppose you wish to index some C preprocessor macros. You could put them
in the function index along with actual functions, just by writing @findex commands for
them; then, when you print the “Function Index” as an unnumbered chapter, you could
give it the title ‘Function and Macro Index’ and all will be consistent for the reader.

On the other hand, it is best not to stray too far from the meaning of the predefined
indices. Otherwise, in the event that your text is combined with other text from other
manuals, the index entries will not match up. Instead, define your own new index (see
Section 11.6 [New Indices|, page 101).

We recommend having a single index in the final document whenever possible, how-
ever many source indices you use, since then readers have only one place to look. Two
or more source indices can be combined into one output index using the @synindex or
@syncodeindex commands (see Section 11.5 [Combining Indices|, page 100).

Chapter 11: Indices 98

11.2 Defining the Entries of an Index

The data to make an index come from many individual indexing commands scattered
throughout the Texinfo source file. Each command says to add one entry to a particu-
lar index; after formatting, the index will give the current page number or node name as
the reference.

An index entry consists of an indexing command at the beginning of a line followed, on
the rest of the line, by the entry.

For example, this section begins with the following five entries for the concept index:

Q@cindex Defining indexing entries
O@cindex Index entries, defining
Q@cindex Entries for an index
Ocindex Specifying index entries
Ocindex Creating index entries

Each predefined index has its own indexing command—@cindex for the concept index,
@findex for the function index, and so on, as listed in the previous section.

Index entries should precede the visible material that is being indexed. For instance:

@cindex hello
Hello, there!

Among other reasons, that way following indexing links (in whatever context) ends up
before the material, where readers want to be, instead of after.

By default, entries for a concept index are printed in a small roman font and entries
for the other indices are printed in a small @code font. You may change the way part of
an entry is printed with the usual Texinfo commands, such as @file for file names (see
Chapter 7 [Marking Text|, page 61), and @r for the normal roman font (see Section 7.2.3
[Fonts], page 70).

For the printed output, you may specify an explicit sort key for an index entry using
@sortas immediately following the index command. For example: ‘@findex @sortas{\} \
@r{(literal \ in @code{@®@math})’ sorts the index entry this produces under backslash.

To reduce the quantity of sort keys you need to provide explicitly, you may choose
to ignore certain characters in index entries for the purposes of sorting. The characters
that you can currently choose to ignore are ‘\’, ‘-’, ‘<’ and ‘@, which are ignored by
giving as an argument to the @set command, respectively, txiindexbackslashignore,
txiindexhyphenignore, txiindexlessthanignore and txiindexatsignignore. For ex-
ample, specifying ‘@set txiindexbackslashignore’ causes the ‘\mathopsup’ entry in the
index for this manual to be sorted as if it were ‘mathopsup’, so that it appears among the
other entries beginning ‘M’.

Caution: Do not use a colon in an index entry. In Info, a colon separates the
menu entry name from the node name, so a colon in the entry itself confuses
Info. See Section 4.9.4 [Menu Parts], page 40, for more information about the
structure of a menu entry.

11.3 Making Index Entries

Concept index entries consist of text. The best way to write an index is to devise entries
which are terse yet clear. If you can do this, the index usually looks better if the entries

Chapter 11: Indices 99

are written just as they would appear in the middle of a sentence, that is, capitalizing
only proper names and acronyms that always call for uppercase letters. This is the case
convention we use in most GNU manuals’ indices.

If you don’t see how to make an entry terse yet clear, make it longer and clear—not terse
and confusing. If many of the entries are several words long, the index may look better if
you use a different convention: to capitalize the first word of each entry. Whichever case
convention you use, use it consistently.

In any event, do not ever capitalize a case-sensitive name such as a C or Lisp function
name or a shell command; that would be a spelling error. Entries in indices other than
the concept index are symbol names in programming languages, or program names; these
names are usually case-sensitive, so likewise use upper- and lowercase as required.

It is a good idea to make index entries unique wherever feasible. That way, people using
the printed output or online completion of index entries don’t see undifferentiated lists.
Consider this an opportunity to make otherwise-identical index entries be more specific, so
readers can more easily find the exact place they are looking for.

When you are making index entries, it is good practice to think of the different ways
people may look for something. Different people do not think of the same words when they
look something up. A helpful index will have items indexed under all the different words
that people may use. For example, one reader may think it obvious that the two-letter
names for indices should be listed under “Indices, two-letter names, since “Indices” are the
general concept. But another reader may remember the specific concept of two-letter names
and search for the entry listed as “T'wo letter names for indices”. A good index will have
both entries and will help both readers.

Like typesetting, the construction of an index is a skilled art, the subtleties of which
may not be appreciated until you need to do it yourself.

11.4 Printing Indices and Menus

To print an index means to include it as part of a manual or Info file. This does not happen
automatically just because you use @cindex or other index-entry generating commands in
the Texinfo file; those just cause the raw data for the index to be accumulated. To generate
an index, you must include the @printindex command at the place in the document where
you want the index to appear. Also, as part of the process of creating a printed manual,
you must run a program called texindex (see Chapter 19 [Hardcopy]|, page 163) to sort the
raw data to produce a sorted index file. The sorted index file is what is actually used to
print the index.

Texinfo offers six separate types of predefined index, which suffice in most cases. See
Chapter 11 [Indices], page 97, for information on this, as well defining your own new indices,
combining indices, and, most importantly advice on writing the actual index entries. This
section focuses on printing indices, which is done with the @printindex command.

@printindex takes one argument, a two-letter index abbreviation. It reads the corre-
sponding sorted index file (for printed output), and formats it appropriately into an index.

The @printindex command does not generate a chapter heading for the index, since
different manuals have different needs. Consequently, you should precede the @printindex
command with a suitable section or chapter command (usually @appendix or @unnumbered)

Chapter 11: Indices 100

to supply the chapter heading and put the index into the table of contents. Precede the
chapter heading with an @node line as usual.

For example:

Onode Variable Index
@unnumbered Variable Index

Oprintindex vr

@node Concept Index
Qunnumbered Concept Index

Oprintindex cp
If you have more than one index, we recommend placing the concept index last.

e In printed output, @printindex produces a traditional two-column index, with dot
leaders between the index terms and page numbers.

e In Info output, @printindex produces a special menu containing the line number of
the entry, relative to the start of the node. Info readers can use this to go to the exact
line of an entry, not just the containing node. (Older Info readers will just go to the
node.) Here’s an example:

* First index entry: Top. (line 7)

The actual number of spaces is variable, to right-justify the line number; it’s been
reduced here to make the line fit in the printed manual.

e In plain text output, @printindex produces the same menu, but the line numbers are
relative to the start of the file, since that’s more convenient for that format.

e In HTML output, @printindex produces links to the index entries.
e In XML and Docbook output, it simply records the index to be printed.

11.5 Combining Indices

Sometimes you will want to combine two disparate indices such as functions and concepts,
perhaps because you have few enough entries that a separate index would look silly.

You could put functions into the concept index by writing @cindex commands for them
instead of @findex commands, and produce a consistent manual by printing the concept
index with the title ‘Function and Concept Index’ and not printing the ‘Function Index’ at
all; but this is not a robust procedure. It works only if your document is never included
as part of another document that is designed to have a separate function index; if your
document were to be included with such a document, the functions from your document
and those from the other would not end up together. Also, to make your function names
appear in the right font in the concept index, you would need to enclose every one of them
between the braces of @code.

11.5.1 @syncodeindex: Combining indices using @code

When you want to combine functions and concepts into one index, you should index the
functions with @findex and index the concepts with @cindex, and use the @syncodeindex
command to redirect the function index entries into the concept index.

The @syncodeindex command takes two arguments; they are the name of the index to
redirect, and the name of the index to redirect it to. The template looks like this:

Chapter 11: Indices 101

Osyncodeindex from to

For this purpose, the indices are given two-letter names:

‘cp’ concept index
‘fn’ function index
‘vr’ variable index
‘ky’ key index

‘pg’ program index
‘tp’ data type index

Write a @syncodeindex command before or shortly after the end-of-header line at the
beginning of a Texinfo file. For example, to merge a function index with a concept index,
write the following;:

@syncodeindex fn cp

This will cause all entries designated for the function index to merge in with the concept
index instead.

To merge both a variables index and a function index into a concept index, write the
following;:

O@syncodeindex vr cp
@syncodeindex fn cp

The @syncodeindex command puts all the entries from the ‘from’ index (the redirected
index) into the @code font, overriding whatever default font is used by the index to which
the entries are now directed. This way, if you direct function names from a function index
into a concept index, all the function names are printed in the @code font as you would
expect.

11.5.2 @synindex: Combining indices

The @synindex command is nearly the same as the @syncodeindex command, except that
it does not put the ‘from’ index entries into the @code font; rather it puts them in the roman
font. Thus, you use @synindex when you merge a concept index into a function index.

See Section 11.4 [Printing Indices & Menus], page 99, for information about printing an
index at the end of a book or creating an index menu in an Info file.

11.6 Defining New Indices

In addition to the predefined indices (see Section 11.1 [Predefined Indices]|, page 97), you may
use the @defindex and @defcodeindex commands to define new indices. These commands
create new indexing @-commands with which you mark index entries. The @defindex
command is used like this:

@defindex name
New index names are usually two-letter words, such as ‘au’. For example:

@defindex au

Chapter 11: Indices 102

This defines a new index, called the ‘au’ index. At the same time, it creates a new
indexing command, @auindex, that you can use to make index entries. Use this new indexing
command just as you would use a predefined indexing command.

For example, here is a section heading followed by a concept index entry and two ‘au’
index entries.

O@section Cognitive Semantics
O@cindex kinesthetic image schemas
@auindex Johnson, Mark

Q@auindex Lakoff, George

(Evidently, ‘au’ serves here as an abbreviation for “author”.)

Texinfo constructs the new indexing command by concatenating the name of the index
with ‘index’; thus, defining an ‘xy’ index leads to the automatic creation of an @xyindex
command.

Use the @printindex command to print the index, as you do with the predefined indices.
For example:

@node Author Index
Qunnumbered Author Index

Oprintindex au

The @defcodeindex is like the @defindex command, except that, in the printed output,
it prints entries in an @code font by default instead of a roman font.

You should define new indices before the end-of-header line of a Texinfo file, and (of
course) before any @synindex or @syncodeindex commands (see Section 3.2 [Texinfo File
Header]|, page 16).

As mentioned earlier (see Section 11.1 [Predefined Indices|, page 97), we recommend
having a single index in the final document whenever possible, however many source indices
you use, since then readers have only one place to look.

When creating an index, TEX creates a file whose extension is the name of the index
(see [Names of index files], page 165). Therefore you should avoid using index names that
collide with extensions used for other purposes, such as ‘.aux’ or ‘.xml’. makeinfo already
reports an error if a new index conflicts well-known extension name.

103

12 Special Insertions

Texinfo provides several commands for inserting characters that have special meaning in
Texinfo, such as braces, and for other graphic elements that do not correspond to simple
characters you can type.

These are:
e The Texinfo special characters: ‘@ {} , \ #.
e Whitespace within and around a sentence.
e Accents.
e Dots and bullets.
e The TEX logo and the copyright symbol.
e The euro and pounds currency symbols.
e The degrees symbol.
e The minus sign.
e Mathematical expressions.
e Glyphs for examples of programming: evaluation, macros, errors, etc.

e Footnotes.

12.1 Special Characters: Inserting @ {} , \ #

‘@’ and curly braces are the basic special characters in Texinfo. To insert these characters
so they appear in text, you must put an ‘@’ in front of these characters to prevent Texinfo
from misinterpreting them. Alphabetic commands are also provided.

The other characters (comma, backslash, hash) are special only in restricted contexts,
as explained in the respective sections.

12.1.1 Imnserting ‘@Q’ with @@ and @atchar{}

@@ produces a single ‘@’ character in the output. Do not put braces after an @@ command.

@atchar{} also produces a single ‘@ character in the output. It does need following
braces, as usual for alphabetic commands. In inline conditionals (see Section 16.4 [Inline
Conditionals|, page 142), it can be necessary to avoid using the literal ‘@’ character in the
source (and may be clearer in other contexts).

12.1.2 Inserting ‘{ ‘}’ with @{ @} and @1 rbracechar{}

@{ produces a single ‘{’ in the output, and @} produces a single ‘}’. Do not put braces after
either an @{ or an @} command.

@lbracechar{} and @rbracechar{} also produce single ‘{’ and ‘}’ characters in the
output. They do need following braces, as usual for alphabetic commands. In inline condi-
tionals (see Section 16.4 [Inline Conditionals|, page 142), it can be necessary to avoid using
literal brace characters in the source (and may be clearer in other contexts).

Chapter 12: Special Insertions 104

12.1.3 Inserting ¢, with @comma{}

Ordinarily, a comma ‘,’ is a normal character that can be simply typed in your input where
you need it.

However, Texinfo uses the comma as a special character only in one context: to separate
arguments to those Texinfo commands, such as @acronym (see Section 7.1.14 [@acronym],
page 68) and @xref (see Chapter 6 [Cross References|, page 49), as well as user-defined
macros (see Section 17.1 [Defining Macros|, page 149), which take more than one argument.

Since a comma character would confuse Texinfo’s parsing for these commands, you must
use the command ‘@comma{}’ instead if you want to pass an actual comma. Here are some
examples:

Q@acronym{ABC, A Bizarre Q@comma{}}
@xref{Comma,, The @comma{} symbol}
O@mymac{One argument@comma{} containing a comma}

Although ‘@comma{}’ can be used nearly anywhere, there is no need for it anywhere
except in this unusual case.

(Incidentally, the name ‘@comma’ lacks the ‘char’ suffix used in its companion commands
only for historical reasons. It didn’t seem important enough to define a synonym.)

12.1.4 Inserting ‘\’ with @backslashchar{}

Ordinarily, a backslash ‘\’ is a normal character in Texinfo that can be simply typed in
your input where you need it. The result is to typeset the backslash from the typewriter
font.

However, Texinfo uses the backslash as a special character in one restricted context: to
delimit formal arguments in the bodies of user-defined macros (see Section 17.1 [Defining
Macros], page 149).

Due to the vagaries of macro argument parsing, it is more reliable to pass an alphabetic
command that produces a backslash instead of using a literal \. Hence @backslashchar{}.
Here is an example macro call:

@mymac{One argument@backslashchar{} with a backslash}

Texinfo documents may also use \ as a command character inside @math (see Section 12.7
[Inserting Math]|, page 111). In this case, @\ or \backslash produces a “math” backslash
(from the math symbol font), while @backslashchar{} produces a typewriter backslash as
usual.

Although ‘@backslashchar{}’ can be used nearly anywhere, there is no need for it
except in these unusual cases.

12.1.5 Inserting ‘#’ with @hashchar{}

Ordinarily, a hash ‘#’ is a normal character in Texinfo that can be simply typed in your
input where you need it. The result is to typeset the hash character from the current font.

This character has many other names, varying by locale, such as “number sign”,
“pound”, and “octothorp”. It is also sometimes called “sharp” or “sharp sign” since it
vaguely resembles the musical symbol by that name. In situations where Texinfo is used,
“hash” is the most common in our experience.

Chapter 12: Special Insertions 105

However, Texinfo uses the hash character as a special character in one restricted context:
to introduce the so-called #line directive and variants (see Section 17.6 [External Macro
Processors], page 156).

So, in order to typeset an actual hash character in such a place (for example, in a program
that needs documentation about #line), it’s necessary to use @hashchar{} or some other
construct. Here’s an example:

@hashchar{} 10 "example.c"

Although ‘@hashchar{}’ can be used nearly anywhere, there is no need for it anywhere
except this unusual case.

12.2 Inserting Quote Characters

As explained in the early section on general Texinfo input conventions (see Section 2.1 [Con-
ventions|, page 10), Texinfo source files use the ASCII character ¢ (96 decimal) to produce
a left quote (‘), and ASCII > (39 decimal) to produce a right quote (’). Doubling these
input characters (¢ ¢ and ’?) produces double quotes (“ and ”). These are the conventions

used by TgX.

This works all right for text. However, in examples of computer code, readers are
especially likely to cut and paste the text verbatim—and, unfortunately, some document
viewers will mangle these characters. (The free PDF reader xpdf works fine, but other PDF
readers, both free and nonfree, have problems.)

If this is a concern for you, Texinfo provides these two commands:

Q@codequoteundirected on-off
causes the output for the ’ character in code environments to be the undirected
single quote, like this: '.

Q@codequotebacktick on-off
causes the output for the
character (standalone grave accent), like this:

¢ character in code environments to be the backtick

If you want these settings for only part of the document, @codequote. .. off will restore
the normal behavior, as in @codequoteundirected off.

These settings affect @code, @example, @kbd, @samp, @verb, and @verbatim. See
Section 7.1.1 [Useful Highlighting], page 61.

This feature used to be controlled by using @set to change the values of the corresponding
variables txicodequoteundirected and txicodequotebacktick; they are still supported,
but the command interface is preferred.

12.3 Inserting Space

The following sections describe commands that control spacing of various kinds within and
after sentences.

12.3.1 Multiple Spaces

Ordinarily, multiple whitespace characters (space, tab, and newline) are collapsed into a
single space.

Chapter 12: Special Insertions 106

Occasionally, you may want to produce several consecutive spaces, either for purposes
of example (e.g., what your program does with multiple spaces as input), or merely for
purposes of appearance in headings or lists. Texinfo supports three commands: @SPACE,
@TAB, and @NL, all of which insert a single space into the output. (Here, @SPACE represents
an ‘@ character followed by a space, i.e., ‘@ ’, TAB represents an actual tab character, and
QNL represents an ‘@’ character and end-of-line, i.e., when ‘@’ is the last character on a line.)

For example,

Spacey@ @ @ @
example.

produces
Spacey example.
Other possible uses of @SPACE have been subsumed by @multitable (see Section 9.5
[Multi-column Tables], page 87).
Do not follow any of these commands with braces.

To produce a non-breakable space, see Section 13.6 [@tie], page 121.

12.3.2 Not Ending a Sentence

When a period, exclamation point or question mark is at the end of a sentence, slightly
more space is inserted after it in a typeset manual.

Usually, Texinfo can determine automatically when a period ends a sentence. However,
special commands are needed in some circumstances. Use the @: command after a period,
question mark, exclamation mark or colon that should not be followed by extra space. This
is necessary in the following situations:

1. After a period that ends a lowercase abbreviation which is not at the end of a sentences.

2. When a parenthetical remark in the middle of a sentence (like this one!) ends with a pe-
riod, exclamation point or question mark, @: should be used after the right parenthesis.
Similarly for right brackets and right quotes (both single and double).

For example:
‘foo vs.@: bar (or?)@: baz’,

The first line below shows the output, and for comparison, the second line shows the spacing
when the ‘@:” commands were not used.

foo vs. bar (or?) baz
foo vs. bar (or?) baz

If you look carefully, you will see a bit of extraneous space after the ‘vs.” and ‘(or?)’.

It may help you to remember what @: does by imagining that it stands for an invisible
lower-case character that stops a word ending in a period.

A few Texinfo commands force normal interword spacing, so that you don’t have to
insert @: where you otherwise would. These are the code-like highlighting commands,
@var, Q@abbr, and @acronym (see Section 7.1.1 [Useful Highlighting], page 61). For example,
in ‘G@code{foo. bar}’ the period is not considered to be the end of a sentence, and no extra
space is inserted.

@: has no effect on the HTML or Docbook output.

Chapter 12: Special Insertions 107

12.3.3 Ending a Sentence

As mentioned above, Texinfo normally inserts additional space after the end of a sentence.
It uses the same heuristic for this as TEX: a sentence ends with a period, exclamation
point, or question mark, either preceded or followed by optional closing punctuation, and
then whitespace, and not preceded by a capital letter.

Use @. instead of a period, @! instead of an exclamation point, and @7 instead of a
question mark at the end of a sentence that does end with a capital letter. Do not put
braces after any of these commands. For example:

Give it to M.I.B. and to M.E.W@. Also, give it to R.J.Ca@.
Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.

The output follows. In printed output and Info, you can see the desired extra whitespace
after the ‘W’ in the first line.

Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.
Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.

In the HTML output, @. is equivalent to a simple ‘.’; likewise for @! and @7.

The “closing punctuation” mentioned above is defined as a right parenthesis (), right
bracket (‘1’), or right quote, either single or double (‘'’ and ‘''’; the many possible ad-
ditional Unicode right quotes are not included). These characters can be thought of as
invisible with respect to whether a given period ends a sentence. (This is the same rule as
TEX.) For instance, the periods in ‘foo.) Bar’ and ‘foo.'' Bar’ do end sentences.

The meanings of @: and @., etc. in Texinfo are designed to work well with the Emacs
sentence motion commands (see Section “Sentences” in The GNU Emacs Manual). It may
help to imagine that the ‘@’ in ‘@.’, etc., is an invisible lower-case letter ‘a’ which makes an
upper-case letter before it immaterial for the purposes of deciding whether the period ends
the sentence.

A few Texinfo commands are not considered as being an abbreviation, even though they
may end with a capital letter when expanded, so that you don’t have to insert @. and
companions. Notably, this is the case for code-like highlighting commands, @var arguments
ending with a capital letter, @LaTeX, and @TeX. For example, that sentence ended with . ..
Q@code{@@TeX}.’; @. was not needed. Similarly, in ... @var{VARNAME}. Text the period
after VARNAME ends the sentence; there is no need to use @..

12.3.4 @frenchspacing val: Control Sentence Spacing

In American typography, it is traditional and correct to put extra space at the end of a
sentence. This is the default in Texinfo (implemented in Info and printed output; for HTML,
we don’t try to override the browser). In French typography (and others), this extra space
is wrong; all spaces are uniform.

Therefore Texinfo provides the @frenchspacing command to control the spacing after
punctuation. It reads the rest of the line as its argument, which must be the single word
‘on’ or ‘off’ (always these words, regardless of the language of the document). Here is an
example:

@frenchspacing on
This is text. Two sentences. Three sentences. French spacing.

Chapter 12: Special Insertions 108

O@frenchspacing off
This is text. Two sentences. Three sentences. Non-French spacing.

produces:
This is text. Two sentences. Three sentences. French spacing.
This is text. Two sentences. Three sentences. Non-French spacing.

@frenchspacing also affects the output after @., @', and @7 (see Section 12.3.3 [Ending
a Sentence], page 107).

@frenchspacing has no effect on the HTML or Docbook output; for XML, it outputs a
transliteration of itself (see Section 1.2 [Output Formats|, page 4).

12.3.5 @dmn{dimension}: Format a Dimension

You can use the @mn command to format a dimension with a little extra space in the printed
output. That is, on seeing @dmn, TEX inserts just enough space for proper typesetting; in
other output formats, the formatting commands insert no space at all.

To use the @dmn command, write the number and then follow it immediately, with no
intervening space, by @dmn, and then by the dimension within braces. For example,

A4 paper is 8.27@dmn{in} wide.
produces
A4 paper is 8.27 in wide.

Not everyone uses this style. Some people prefer ‘8.27 in.” or ‘8.27 inches’. In these cases,
however, you need to use @tie (see Section 13.6 [@tie], page 121) or @w (see Section 13.5
[ew], page 120) so that no line break can occur between the number and the dimension.
Also, if you write a period after an abbreviation within a sentence (as with the ‘in.” above),
you should write ‘@:’ after the period to prevent TEX from inserting extra whitespace, as
shown here. See Section 12.3.2 [Not Ending a Sentence|, page 106.

12.4 Inserting Accents

Here is a table with the commands Texinfo provides for inserting floating accents. They
all need an argument, the character to accent, which can either be given in braces as usual
(@'{e}), or, as a special case, the braces can be omitted, in which case the argument is the
next character (@'e). This is to make the source as convenient as possible to type and read,
since accented characters are very common in some languages.

If the command is alphabetic, such as @dotaccent, then there must be a space between
the command name and argument if braces are not used. If the command is non-alphabetic,
such as @', then there must not be a space; the argument is the very next character.

Exception: the argument to @tieaccent must be enclosed in braces (since it is two
characters instead of one).

To get the true accented characters output in Info, not just the ASCII transliterations,
it is necessary to specify @documentencoding with an encoding which supports the required
characters (see Section 15.2 [@documentencoding], page 137). In this case, you can also use
non-ASCII (e.g., pre-accented) characters in the source file.

Chapter 12: Special Insertions 109

Command Output What

@"o 0 umlaut accent

@’0 0 acute accent

@,{c} C cedilla accent

@=o0 0 macron/overbar accent
@ o 0 circumflex accent

@‘o 0 grave accent

@ o 0 tilde accent
@dotaccent{o} o} overdot accent

OH{o} 0 long Hungarian umlaut
Qogonek{a}) ogonek
@ringaccent{o} o ring accent
@tieaccent{oo} 00 tie-after accent

Qu{o} 0 breve accent
@ubaraccent{o} 0 underbar accent
@udotaccent{o} 0 underdot accent

ev{o}) caron/hacek/check accent

This table lists the Texinfo commands for inserting other characters commonly used in
languages other than English.

Q@exclamdown{} i upside-down !
@questiondown{} | upside-down ?
@aa{} ©AA{} a A a,A with circle
Q@ae{} @AE{} x B ae,AE ligatures
@dh{} eDH{} ob Icelandic eth
@dotless{i} 1 dotless i
@dotless{j}] dotless j

e1{} eL{} L suppressed-L,]1
Q@o{} @o{} o0 0,0 with slash
Q@oe{} @OE{} e (B oe,OF ligatures
Qordf{} Qordm{} 22 Spanish ordinals
@ss{} b es-zet or sharp S
@th{} @TH{} b b Icelandic thorn

12.5 Inserting Quotation Marks

Use doubled single-quote characters to begin and end quotations: ‘¢...’°. TEX converts
two single quotes to left- and right-hand doubled quotation marks, “like this”, and Info
converts doubled single-quote characters to ASCII double-quotes: “¢...?’ becomes "...".

You may occasionally need to produce two consecutive single quotes; for example, in
documenting a computer language such as Maxima where ’’ is a valid command. You
can do this with the input ’>@w{}’; the empty @w command stops the combination into the
double-quote characters.

The left quote character (¢, ASCII code 96) used in Texinfo is a grave accent in ANSI
and ISO character set standards. We use it as a quote character because that is how TEX
is set up, by default.

Chapter 12: Special Insertions 110

Texinfo supports several other quotation marks used in languages other than English.
Below is a table with the commands Texinfo provides for inserting quotation marks.

In order to get the symbols for the quotation marks in encoded Info output, it is necessary
to specify @documentencoding UTF-8. (See Section 15.2 [@documentencoding], page 137.)
Double guillemets are also present in ISO 8859-1 (aka Latin 1) and ISO 8859-15 (aka
Latin 9).

The standard TEX fonts support the usual quotation marks used in English (the ones
produced with single and doubled ASCII single-quotes). For the other quotation marks,
TEX uses European Computer Modern (EC) fonts (ecrm1000 and other variants). These
fonts are freely available, of course; you can download them from http://ctan.org/pkg/
ec, among other places.

The free EC fonts are bitmap fonts created with Metafont. Especially for on-line viewing,
Type 1 (vector) versions of the fonts are preferable; these are available in the CM-Super
font package (http://ctan.org/pkg/cm-super).

Both distributions include installation instructions.

Command Glyph Unicode name (point)

@quotedblleft{} °° “ Left double quotation mark (U+201C)

Qquotedblright{} '' 7 Right double quotation mark (U+201D)

Qquoteleft{} ° ‘ Left single quotation mark (U+2018)

@quoteright{} ' ’ Right single quotation mark (U+2019)

@quotedblbase{} » Double low-9 quotation mark (U+201E)

@quotesinglbase{}) Single low-9 quotation mark (U+201A)

Qguillemetleft{} « Left-pointing double angle quotation
mark (U+00AB)

Qguillemetright{} » Right-pointing double angle quotation
mark (U+00BB)

Qguilsinglleft{} < Single left-pointing angle quotation
mark (U+2039)

Qguilsinglright{} > Single right-pointing angle quotation

mark (U+203A)

For the double angle quotation marks, Adobe and IXTEX glyph names are also supported:
@guillemotleft and @guillemotright. These names are incorrect; a “guillemot” is a bird
species (a type of auk).

Traditions for quotation mark usage vary to a great extent between languages (http://
en.wikipedia.org/wiki/Quotation_mark). Texinfo does not provide commands or config-
urations for typesetting quotation marks according to the numerous traditions. Therefore,
you have to choose the commands appropriate for the language of your manual. Some-
times aliases (see Section 17.4 [@alias|, page 154) can simplify the usage and make the
source code more readable. For example, in German, @quotedblbase is used for the left
double quote, and the right double quote is the glyph produced by @quotedblleft, which
is counter-intuitive. Thus, in this case the following aliases would be convenient:

@alias lggq = quotedblbase
@alias rgqq = quotedblleft

http://ctan.org/pkg/ec
http://ctan.org/pkg/ec
http://ctan.org/pkg/cm-super
http://en.wikipedia.org/wiki/Quotation_mark
http://en.wikipedia.org/wiki/Quotation_mark

Chapter 12: Special Insertions 111

12.6 @sub and @sup: Inserting Subscripts and Superscripts

You can insert subscripts and superscripts, in either text or math, with the @sub and @sup
commands. (For other mathematical expressions, see the next section.) For example, here
is a purely textual subscript and superscript:

here@sub{below}@sup{above}

produces:

herebelowabove

Inside @math, @sub and @sup produce mathematical subscripts and superscripts. This
uses a different font in the TEX output (math italic instead of text italic); it makes no
difference in the other output formats. Here’s an example:

@math{e@sup{x}}

produces:

e(L‘

In Info and plain text, regardless of being used inside @math, @sub{text} is output as
‘_{text} and @sup{text} as ‘"{text}’, including the literal braces (to mark the beginning
and end of the “script” text to the reader).

When the output format (and display program) permit (TEX math, HTML), the super-
script is set above the subscript when both commands are given consecutively.

12.7 @math: Inserting Mathematical Expressions

You can write a short mathematical expression with the @math command. Write the math-
ematical expression between braces, like this:

@math{(a + b) = (b + a)}
This produces the following in TEX:
(a +b) = (b + a)
and the following in other formats:
(a+b) =(b+a

The @math command has no special effect on the Info and HTML output. makeinfo
expands any @-commands as usual, but it does not try to use produce good mathemat-
ical formatting in any way (no use of MathML, etc.). The HTML output is enclosed by
..., but nothing more.

However, as far as the TEX output is concerned, plain TEX mathematical commands are
allowed in @math, starting with ‘\’. In essence, @math switches into plain TEX math mode.
(Exception: the plain TEX command \sup, which typesets the mathematical operator name
‘sup’, must be accessed as \mathopsup, due to the conflict with Texinfo’s @sup command.)

This allows you to use all the plain TEX math control sequences for symbols, functions,
and so on, and thus get proper formatting in the TEX output, at least.

The @sub and @sup commands described in the previous section produce subscripts and
superscripts in HTML output as well as TEX; the plain TEX characters _ and ~ for subscripts

and superscripts are recognized by TEX inside @math, but do nothing special in HTML or
other output formats.

Chapter 12: Special Insertions 112

It’s best to use ‘\’ instead of ‘@ for any such mathematical commands; otherwise,
makeinfo will complain. On the other hand, makeinfo does allow input with matching
(but unescaped) braces, such as ‘k_{75}’; it complains about such bare braces in regular
input.

Here’s an example:
OGmath{\sin 2\pi \equiv \cos 3\pi}
which looks like this in TEX:
sin 2mr = cos 37
but which looks like the input in Info and HTML:
\sin 2\pi \equiv \cos 3\pi

Since ‘\’ is an escape character inside @math, you can use @\ to get a literal backslash
(\\ will work in TEX, but you’d get the literal two characters ‘\\” in Info). @\ is not defined
outside of @math, since a ‘\’ ordinarily produces a literal (typewriter) ‘\’. You can also use
@backslashchar{} in any mode to get a typewriter backslash. See Section 12.1.4 [Inserting
a Backslash], page 104.

For displayed equations, you must at present use TEX directly (see Section 16.3 [Raw
Formatter Commands|, page 141).

12.8 Glyphs for Text

Texinfo has support for a few additional glyphs that are commonly used in printed text but
not available in ASCII. Of course, there are many thousands more. It is possible to use
Unicode characters as-is as far as makeinfo is concerned, but TEX is not so lucky.

12.8.1 oTex{} (TEX) and GLaTeX{} (BTEX)

Use the @TeX{} command to generate ‘TEX’. In a printed manual, this is a special logo that
is different from three ordinary letters. In Info, it just looks like ‘TeX’.

Similarly, use the @LaTeX{} command to generate ‘I4TEX’, which is even more special
in printed manuals (and different from the incorrect La@TeX{}. In Info, the result is just
‘LaTeX’. (I4TEX is another macro package built on top of TEX, very loosely analogous to
Texinfo in that it emphasizes logical structure, but much (much) larger.)

The spelling of these commands are unusual for Texinfo, in that they use both uppercase
and lowercase letters.

12.8.2 @copyright{} (©)

Use the @copyright{} command to generate the copyright symbol, ‘(©’. Where possible,
this is a ‘¢’ inside a circle; in Info, this is ‘(C)’.

Legally, it’s not necessary to use the copyright symbol; the English word ‘Copyright’
suffices, according to international treaty.

12.8.3 @registeredsymbol{} (®)

Use the @registeredsymbol{} command to generate the registered symbol, ‘®, Where
possible, this is an ‘R’ inside a circle; in Info, this is ‘(R)’.

Chapter 12: Special Insertions 113

12.8.4 @dots (...) and @enddots (...)

An ellipsis (a sequence of dots) would be spaced wrong when typeset as a string of periods,
so a special command is used in Texinfo: use the @dots{} command to generate a normal
ellipsis, which is three dots in a row, appropriately spaced . .. like so. To emphasize: do
not simply write three periods in the input file; that would work for the Info file output,
but would produce the wrong amount of space between the periods in the printed manual.

The @enddots{} command generates an end-of-sentence ellipsis, which also has three
dots, but with different spacing afterwards, ... Look closely to see the difference.

Here is an ellipsis: ... Here are three periods in a row: ...

In printed (and usually HTML) output, the three periods in a row are much closer
together than the dots in the ellipsis.

12.8.5 @bullet (o)

Use the @bullet{} command to generate a large round dot, or the closest possible thing to
one. In Info, an asterisk is used. Here is a bullet: e

When you use @bullet in @itemize, you do not need to type the braces, because
@itemize supplies them. (see Section 9.2 [@itemize], page 83).

12.8.6 @euro (€): Euro Currency Symbol

Use the @euro{} command to generate “€’. Where possible, this is the symbol for the Euro
currency. Otherwise, the word ‘Euro’ is used.

Texinfo cannot magically synthesize support for the Euro symbol where the underlying
system (fonts, software, whatever) does not support it. Therefore, you may find it preferable
to use the word “Euro”. (In banking contexts, the abbreviation for the Euro is EUR.)

In order to get the Euro symbol in encoded Info output, for example, it is necessary to
specify @documentencoding IS0-8859-15 or @documentencoding UTF-8 (See Section 15.2
[@documentencoding], page 137.) The Euro symbol is in ISO 8859-15 (aka Latin 9), and is
not in the more widely-used ISO 8859-1 (Latin 1).

The Euro symbol does not exist in the standard TEX fonts (which were designed before
the Euro was legislated into existence). Therefore, TEX uses an additional font, named
feymr10 (along with other variables). It is freely available, of course; you can download
it from http://ctan.org/pkg/eurosym, among other places. The distribution includes
installation instructions.

12.8.7 @pounds (£): Pounds Sterling

Use the @pounds{} command to generate ‘£’. Where possible, this is the symbol for the
pounds sterling British currency. Otherwise, it is ‘#’.

12.8.8 @textdegree (°): Degrees Symbol

[Yep)

Use the @textdegree{} command to generate ‘°’. Where possible, this is the normal symbol

for degrees. Otherwise, it is an ‘o’.

http://ctan.org/pkg/eurosym

Chapter 12: Special Insertions 114

12.8.9 @minus (—): Inserting a Minus Sign

Use the @minus{} command to generate a minus sign. In a fixed-width font, this is a single
hyphen, but in a proportional font, the symbol is the customary length for a minus sign—a
little longer than a hyphen, shorter than an em-dash:

‘—’ is a minus sign generated with ‘@minus{}’,
‘-’ is a hyphen generated with the character ‘-,

‘—’ is an em-dash for text.
In the fixed-width font used by Info, @minus{} is the same as a hyphen.

You should not use @minus{} inside @code or @example because the width distinction
is not made in the fixed-width font they use.

When you use @minus to specify the mark beginning each entry in an itemized list, you
do not need to type the braces (see Section 9.2 [@itemize], page 83).

If you actually want to typeset some math that does a subtraction, it is better to
use @math. Then the regular ‘=’ character produces a minus sign, as in @math{a-b} (see
Section 12.7 [Inserting Math], page 111).

12.8.10 Ggeq (>) and @leq (<): Inserting Relations

Use the @geq{} and @leq{} commands to generate greater-than-or-equal and less-than-
equal-signs, ‘>’ and ‘<’. When those symbols are not available, the ASCII sequences ‘>=’
and ‘<=’ are output.

12.9 Glyphs for Programming

In Texinfo, code is often illustrated in examples that are delimited by @example and @end
example, or by @lisp and @end lisp. In such examples, you can indicate the results of
evaluation or an expansion using ‘=’ or ‘—’. Likewise, there are commands to insert glyphs
to indicate printed output, error messages, equivalence of expressions, the location of point
in an editor, and GUI operation sequences.

The glyph-insertion commands do not need to be used within an example, but most
often they are. All glyph-insertion commands are followed by empty braces.

12.9.1 Glyphs Summary

Here is a summary of the glyph commands:

= @result{} indicates the result of an expression.
— @expansion{} indicates the results of a macro expansion.
o @print{} indicates printed output.
error error{} indicates the following text is an error message.
@ {2} indicates the foll g text g

= Qequiv{} indicates the exact equivalence of two forms.
* @point{} shows the location of point.

A — B @clicksequence{A @click{} B indicates a GUI operation sequence: first A,
then clicking B, or choosing B from a menu, or otherwise selecting it.

Chapter 12: Special Insertions 115

12.9.2 @result{} (=): Result of an Expression
Use the @result{} command to indicate the result of evaluating an expression.

The @result{} command is displayed as ‘=", either a double stemmed arrow or (when
that is not available) the ASCII sequence ‘=>’.

Thus, the following,

(cdr '(1 2 3))
= (2 3)

may be read as “(cdr '(1 2 3)) evaluates to (2 3)”.

12.9.3 @expansion{} (+—): Indicating an Expansion

When an expression is a macro call, it expands into a new expression. You can indicate the
result of the expansion with the @expansion{} command.

The @expansion{} command is displayed as ‘", either a long arrow with a flat base or
(when that is not available) the ASCII sequence ‘==>".

For example, the following
@lisp
(third '(a b ¢))
@expansion{} (car (cdr (cdr '(a b c))))

@result{} c
Q@end lisp

produces

(third '(a b c))
— (car (cdr (cdr '(a b ¢))))
= C

which may be read as:

(third '(a b c)) expands to (car (cdr (cdr '(a b c)))); the result of eval-
uating the expression is c.

Often, as in this case, an example looks better if the @expansion{} and @result{} com-
mands are indented.

12.9.4 @print{} (-): Indicating Generated Output

Sometimes an expression will generate output during its execution. You can indicate such
displayed output with the @print{} command.

The @print{} command is displayed as ‘ 4’, either a horizontal dash butting against a
vertical bar or (when that is not available) the ASCII sequence ‘-|’.

In the following example, the printed text is indicated with ¢ 4’, and the value of the
expression follows on the last line.

(progn (print 'foo) (print 'bar))
- foo
- bar
= bar

Chapter 12: Special Insertions 116

In a Texinfo source file, this example is written as follows:
@lisp
(progn (print 'foo) (print 'bar))
@print{} foo
@print{} bar
@result{} bar
@end lisp

12.9.5 @error{} ([emor]): Indicating an Error Message

A piece of code may cause an error when you evaluate it. You can designate the error
message with the @error{} command.

The @error{} command is displayed as ’, either the word ‘error’ in a box in the
printed output, the word error followed by an arrow in other formats or (when no arrow is
available) ‘error-->’.

Thus,
@lisp
(+ 23 'x)
Q@error{} Wrong type argument: integer-or-marker-p, x
Q@end lisp
produces
(+ 23 'x)

Wrong type argument: integer-or-marker-p, x
This indicates that the following error message is printed when you evaluate the expression:
Wrong type argument: integer-or-marker-p, x
The word ¢ " itself is not part of the error message.

12.9.6 @equiv{} (=): Indicating Equivalence

Sometimes two expressions produce identical results. You can indicate the exact equivalence
of two forms with the @equiv{} command. The @equiv{} command is displayed as ‘=",
either a standard mathematical equivalence sign (three parallel horizontal lines) or (when

that is not available) as the ASCII sequence ‘==’
Thus,
@lisp
(make-sparse-keymap) Qequiv{} (list 'keymap)
Q@end lisp

produces

(make-sparse-keymap) = (list 'keymap)
This indicates that evaluating (make-sparse-keymap) produces identical results to evalu-
ating (list 'keymap).

12.9.7 @point{} (x): Indicating Point in a Buffer

Sometimes you need to show an example of text in an Emacs buffer. In such examples, the
convention is to include the entire contents of the buffer in question between two lines of
dashes containing the buffer name.

Chapter 12: Special Insertions 117

You can use the ‘@point{} command to show the location of point in the text in the
buffer. (The symbol for point, of course, is not part of the text in the buffer; it indicates
the place between two characters where point is located.)

The @point{} command is displayed as ‘x’, either a pointed star or (when that is not
available) the ASCII sequence ‘-!-".

The following example shows the contents of buffer foo before and after evaluating a
Lisp command to insert the word changed.

—————————— Buffer: foo ----------
This is the xcontents of foo.
—————————— Buffer: foo --———=-——-—-

(insert "changed ")

= nil
—————————— Buffer: foo --——————-—-
This is the changed *contents of foo.
—————————— Buffer: foo -—-————-———-

In a Texinfo source file, the example is written like this:

Q@example

—————————— Buffer: foo -—-————————-
This is the @point{}contents of foo.
—————————— Buffer: foo —-————-----

(insert "changed ")
@result{} nil

—————————— Buffer: foo ----------
This is the changed @point{}contents of foo.
—————————— Buffer: foo --———-——-—-

Q@end example

12.9.8 Click Sequences

When documenting graphical interfaces, it is necessary to describe sequences such as ‘Click

on ‘File’, then choose ‘Open’, then ...’. Texinfo offers commands @clicksequence and

click to represent this, typically used like this:
. Q@clicksequence{File @click{} Open}
which produces:
... File — Open ...

The @click command produces a right arrow by default; this glyph is also available
independently via the command @arrow{}.

You can change the glyph produced by @click with the command @clickstyle, which
takes a command name as its single argument on the rest of the line, much like @itemize
and friends (see Section 9.2 [@itemize], page 83). The command should produce a glyph,
and the usual empty braces ‘{}’ are omitted. Here’s an example:

@clickstyle Q@result

Chapter 12: Special Insertions 118

. @clicksequence{File @click{} Open} ...
now produces:
... File = Open . ..

12.10 Inserting Unicode: QU

The command @U{hex} inserts a representation of the Unicode character U+hex. For exam-
ple, @U{0132} inserts the Dutch ‘I1J’ ligature (poorly shown here as simply the two letters
‘" and *J").

The hex value should be at least four hex digits; leading zeros are not added. In general,
hex must specify a valid normal Unicode character; e.g., U+10FFFF (the very last code
point) is invalid by definition, and thus cannot be inserted this way.

@U is useful for inserting occasional glyphs for which Texinfo has no dedicated command,
while allowing the Texinfo source to remain purely 7-bit ASCII for maximum portability.

This command has many limitations—the same limitations as inserting Unicode char-
acters in UTF-8 or another binary form. First and most importantly, TEX knows nothing
about most of Unicode. Supporting specific additional glyphs upon request is possible, but
it’s not viable for texinfo.tex to support whole additional scripts (Japanese, Urdu, .. .).
The @U command does nothing to change this. If the specified character is not supported
in TEX, an error is given. (See Section 15.2 [@documentencoding], page 137.)

In HTML, XML, and Docbook, the output from @U is always an entity reference of the
form ‘&#xhex;’, as in ‘Ĳ’ for the example above. This should work even when an
HTML document uses some other encoding (say, Latin 1) and the given character is not
supported in that encoding.

In Info and plain text, if the document encoding is specified explicitly to be UTF-8, the
output will be the UTF-8 representation of the character U+hex (presuming it’s a valid
character). In all other cases, the output is the ASCII sequence ‘U+hex’, as in the six ASCII
characters ‘U+0132’ for the example above.

That’s all. No magic!

119

13 Forcing and Preventing Breaks

Line and page breaks can sometimes occur in the ‘wrong’ place in one or another form of
output. It’s up to you to ensure that text looks right in all the output formats.

For example, in a printed manual, page breaks may occur awkwardly in the middle of
an example; to prevent this, you can hold text together using a grouping command that
keeps the text from being split across two pages. Conversely, you may want to force a page
break where none would occur normally.

You can use the break, break prevention, or pagination commands to fix problematic
line and page breaks.

13.1 Break Commands

The break commands create or allow line and paragraph breaks:

x Force a line break.
@sp n Skip n blank lines.
e- Insert a discretionary hyphen.

Ohyphenation{hy-phen-a-ted words}
Define hyphen points in hy-phen-a-ted words.

These commands hold text together on a single line:
@w{text} Prevent text from being split and hyphenated across two lines.
Qtief{} Insert a normal interword space at which a line break may not occur.

The pagination commands apply only to printed output, since other output formats do
not have pages.

@page Start a new page.
Q@group Hold text together that must appear on one page.

Oneed mils
Start a new page if not enough space on this one.

13.2 0x and @/: Generate and Allow Line Breaks

The @+ command forces a line break in all output formats. The @/ command allows a line
break (printed manual only).

Here is an example with @*:
This sentence is broken @*into two lines.
produces

This sentence is broken
into two lines.

The @/ command can be useful within long urls or other identifiers where TEX can’t
find a good place to break. TEX will automatically break urls at the natural places (see
Section 6.10.2 [URL Line Breaking], page 58), so only use @/ if you need it. @/ has no effect
in the other output format.

Chapter 13: Forcing and Preventing Breaks 120

13.3 @- and Ghyphenation: Helping TEX Hyphenate

Although TEX’s hyphenation algorithm is generally pretty good, it does miss useful hyphen-
ation points from time to time. (Or, far more rarely, insert an incorrect hyphenation.) So,
for documents with an unusual vocabulary or when fine-tuning for a printed edition, you
may wish to help TEX out. Texinfo supports two commands for this:

e- Insert a discretionary hyphen, i.e., a place where TEX can (but does not have
to) hyphenate. This is especially useful when you notice an overfull hbox is due
to TEX missing a hyphenation (see Section 19.10 [Overfull hboxes], page 172).
TEX will not insert any hyphenation points itself into a word containing @-.

@hyphenation{hy-phen-a-ted words}
Tell TEX how to hyphenate hy-phen-a-ted words. As shown, you put a ‘-
each hyphenation point. For example:

)

at

Ohyphenation{man-u-script man-u-scripts}
TEX only uses the specified hyphenation points when the words match exactly,
so give all necessary variants, such as plurals.

Info, HTML, and other non-TEX output is not hyphenated, so none of these commands
have any effect there.

13.4 ©@allowcodebreaks: Control Line Breaks in @code

Ordinarily, TEX considers breaking lines at ‘-’ and ‘_’ characters within @code and re-
lated commands (see Section 7.1.2 [@code], page 62), more or less as if they were “empty”
hyphenation points.

This is necessary since many manuals, especially for Lisp-family languages, must doc-
ument very long identifiers. On the other hand, some manuals don’t have this problems,
and you may not wish to allow a line break at the underscore in, for example, SIZE_MAX,
or even worse, after any of the four underscores in __typeof__.

So Texinfo provides this command:

O@allowcodebreaks false
to prevent from breaking at ‘-’ or ‘_’ within @code. You can go back to allowing such breaks
with @allowcodebreaks true. Write these commands on lines by themselves.

These commands can be given anywhere in the document. For example, you may have
just one problematic paragraph where you need to turn off the breaks, but want them in
general, or vice versa.

This command has no effect except in HTML and TEX output.

13.5 @w{text}: Prevent Line Breaks

@w{text} outputs text, while prohibiting line breaks within text.

Thus, you can use @w to produce a non-breakable space, fixed at the width of a normal
interword space:

ow{ } @w{ } @w{ } indentation.
produces:

indentation.

Chapter 13: Forcing and Preventing Breaks 121

The space from @w{ }, as well as being non-breakable, also will not stretch or shrink.
Sometimes that is what you want, for instance if you're doing manual indenting. However,
usually you want a normal interword space that does stretch and shrink (in the printed
output); for that, see the @tie command in the next section.

You can also use the @w command to prevent TEX from automatically hyphenating a
long name or phrase that happens to fall near the end of a line. makeinfo does not ever
hyphenate words.

You can also use @w to avoid unwanted keyword expansion in source control systems. For
example, to literally write Id in your document, use @w{$}I1d$. This trick isn’t effective
in Info or plain text output, though.

13.6 @tie{}: Inserting an Unbreakable Space

The @tie{} command produces a normal interword space at which a line break may not
occur. Always write it with following (empty) braces, as usual for commands used within
a paragraph. Here’s an example:

Q@TeX{} was written by Donald E.@tie{}Knuth.
produces:
TEX was written by Donald E. Knuth.
There are two important differences between @tie{} and ew{ }:

e The space produced by @tie{} will stretch and shrink slightly along with the normal
interword spaces in the paragraph; the space produced by @w{ } will not vary.

e @tieq{} allows hyphenation of the surrounding words, while @w{ } inhibits hyphenation
of those words (for TgXnical reasons, namely that it produces an ‘\hbox’).

13.7 @sp n: Insert Blank Lines

A line beginning with and containing only @sp n generates n blank lines of space in both
the printed manual and the Info file. @sp also forces a paragraph break. For example,

@sp 2
generates two blank lines.

The @sp command is most often used in the title page.

13.8 @page: Start a New Page

A line containing only @page starts a new page in a printed manual. In other formats,
without the concept of pages, it starts a new paragraph. A @page command is often used
in the @titlepage section of a Texinfo file to start the copyright page.

13.9 @group: Prevent Page Breaks

The @group command (on a line by itself) is used inside an @example or similar construct to
begin an unsplittable vertical group, which will appear entirely on one page in the printed
output. The group is terminated by a line containing only @end group. These two lines
produce no output of their own, and in the Info file output they have no effect at all.

Chapter 13: Forcing and Preventing Breaks 122

Although @group would make sense conceptually in a wide variety of contexts, its
current implementation works reliably only within @example and variants, and within
@display, @format, @flushleft and @flushright. See Chapter 8 [Quotations and Ex-
amples], page 72. (What all these commands have in common is that each line of input
produces a line of output.) In other contexts, @group can cause anomalous vertical spacing.

This formatting requirement means that you should write:
Q@example
Q@group
@end group
Q@end example

with the @group and @end group commands inside the @example and Q@end example com-
mands.

The @group command is most often used to hold an example together on one page. In
this Texinfo manual, more than 100 examples contain text that is enclosed between @group
and @end group.

If you forget to end a group, you may get strange and unfathomable error messages when
you run TEX. This is because TEX keeps trying to put the rest of the Texinfo file onto the
one page and does not start to generate error messages until it has processed considerable
text. It is a good rule of thumb to look for a missing @end group if you get incomprehensible
error messages in TEX.

13.10 @need mils: Prevent Page Breaks

A line containing only @need n starts a new page in a printed manual if fewer than n
mils (thousandths of an inch) remain on the current page. Do not use braces around the
argument n. The @need command has no effect on other output formats since they are not
paginated.

This paragraph is preceded by a @need command that tells TEX to start a new page if
fewer than 800 mils (eight-tenths inch) remain on the page. It looks like this:

@need 800
This paragraph is preceded by ...

The @need command is useful for preventing orphans: single lines at the bottoms of
printed pages.

123

14 Definition Commands

The @deffn command and the other definition commands enable you to describe functions,
variables, macros, commands, user options, special forms and other such artifacts in a
uniform format.

In the Info file, a definition causes the entity category—Function’, ‘Variable’, or
whatever—to appear at the beginning of the first line of the definition, followed by the
entity’s name and arguments. In the printed manual, the command causes TEX to print
the entity’s name and its arguments on the left margin and print the category next to the
right margin. In both output formats, the body of the definition is indented. Also, the
name of the entity is entered into the appropriate index: @deffn enters the name into the
index of functions, @defvr enters it into the index of variables, and so on (see Section 11.1
[Predefined Indices], page 97).

A manual need not and should not contain more than one definition for a given name. An
appendix containing a summary should use @table rather than the definition commands.

14.1 The Template for a Definition

The @deffn command is used for definitions of entities that resemble functions. To write
a definition using the @deffn command, write the @deffn command at the beginning of
a line and follow it on the same line by the category of the entity, the name of the entity
itself, and its arguments (if any). Then write the body of the definition on succeeding lines.
(You may embed examples in the body.) Finally, end the definition with an @end deffn
command written on a line of its own.

The other definition commands follow the same format: a line with the @def... com-
mand and whatever arguments are appropriate for that command; the body of the definition;
and a corresponding @end line.

The template for a definition looks like this:

Q@deffn category name arguments...
body-of-definition
Q@end deffn
For example,
@deffn Command forward-word count
This command moves point forward @var{count} words
(or backward if @var{count} is negative).
Q@end deffn

produces
forward-word count [Command]

This command moves point forward count words (or backward if count
is negative). ...

Capitalize the category name like a title. If the name of the category contains spaces,
as in the phrase ‘Interactive Command’, enclose it in braces. For example:

@deffn {Interactive Command} isearch-forward

@end deffn

Chapter 14: Definition Commands 124

Otherwise, the second word will be mistaken for the name of the entity. As a general
rule, when any of the arguments in the heading line except the last one are more than one
word, you need to enclose them in braces. This may also be necessary if the text contains
commands, for example, ‘{declaraci@'on}’ if you are writing in Spanish.

Some of the definition commands are more general than others. The @deffn command,
for example, is the general definition command for functions and the like—for entities that
may take arguments. When you use this command, you specify the category to which the
entity belongs. Three predefined, specialized variations (@defun, @defmac, and @defspec)
specify the category for you: “Function”, “Macro”, and “Special Form” respectively. (In
Lisp, a special form is an entity much like a function.) Similarly, the general @defvr
command is accompanied by several specialized variations for describing particular kinds of
variables.

See Section 14.7 [Sample Function Definition|, page 133, for a detailed example of a
function definition, including the use of @example inside the definition.

14.2 Definition Command Continuation Lines

The heading line of a definition command can get very long. Therefore, Texinfo has a
special syntax allowing them to be continued over multiple lines of the source file: a lone
‘@’ at the end of each line to be continued. Here’s an example:

@defun fn-name @

argl arg2 arg3
This is the basic continued defun.
@end defun

produces:

fn-name argl arg? arg3 [Function]
This is the basic continued defun.

As you can see, the continued lines are combined, as if they had been typed on one source
line.

Although this example only shows a one-line continuation, continuations may extend
over any number of lines, in the same way; put an @ at the end of each line to be continued.

In general, any number of spaces or tabs before the @ continuation character are collapsed
into a single space. There is one exception: the Texinfo processors will not fully collapse
whitespace around a continuation inside braces. For example:

Q@deffn {Category @
Name} ...

The output (not shown) has excess space between ‘Category’ and ‘Name’. To avoid this,
elide the unwanted whitespace in your input, or put the continuation @ outside braces.

@ does not function as a continuation character in any other context. Ordinarily, ‘@’
followed by a whitespace character (space, tab, newline) produces a normal interword space
(see Section 12.3.1 [Multiple Spaces], page 105).

Chapter 14: Definition Commands 125

14.3 Optional and Repeated Arguments

Some entities take optional or repeated arguments, conventionally specified by using square
brackets and ellipses: an argument enclosed within square brackets is optional, and an
argument followed by an ellipsis is optional and may be repeated more than once.

Thus, [optional-arg] means that optional-arg is optional and repeated-args. .. stands
for zero or more arguments. Parentheses are used when several arguments are grouped into
additional levels of list structure in Lisp.

Here is the @defspec line of an example of an imaginary (complicated) special form:

foobar (var [from to [inc]]) body. .. [Special Form]
In this example, the arguments from and to are optional, but must both be present or both
absent. If they are present, inc may optionally be specified as well. These arguments are
grouped with the argument var into a list, to distinguish them from body, which includes
all remaining elements of the form.
In a Texinfo source file, this @defspec line is written like this:
@defspec foobar (var [from to [inc]]) body@dots{}

The function is listed in the Command and Variable Index under ‘foobar’.

14.4 @deffnx, et al.: Two or More ‘First’ Lines

To create two or more ‘first’ or header lines for a definition, follow the first @deffn line by
a line beginning with @deffnx. The @deffnx command works exactly like @deffn except
that it does not generate extra vertical white space between it and the preceding line.

For example,

@deffn {Interactive Command} isearch-forward
@deffnx {Interactive Command} isearch-backward
These two search commands are similar except ...

Q@end deffn
produces
isearch-forward [Interactive Command]
isearch-backward [Interactive Command]

These two search commands are similar except . ..

Each definition command has an ‘x’ form: @defunx, @defvrx, @deftypefunx, etc.

The ‘x’ forms work similarly to @itemx (see Section 9.4.3 [@itemx], page 87).

14.5 The Definition Commands

Texinfo provides more than a dozen definition commands, all of which are described in this
section.

The definition commands automatically enter the name of the entity in the appropriate
index: for example, @deffn, @defun, and @defmac enter function names in the index of
functions; @defvr and @defvar enter variable names in the index of variables.

Although the examples that follow mostly illustrate Lisp, the commands can be used for
other programming languages.

Chapter 14: Definition Commands 126

14.5.1 Functions and Similar Entities
This section describes the commands for describing functions and similar entities:

Q@deffn category name arguments. ..

The @deffn command is the general definition command for functions, interac-
tive commands, and similar entities that may take arguments. You must choose
a term to describe the category of entity being defined; for example, “Function”
could be used if the entity is a function. The @deffn command is written at the
beginning of a line and is followed on the same line by the category of entity
being described, the name of this particular entity, and its arguments, if any.
Terminate the definition with @end deffn on a line of its own.

For example, here is a definition:

@deffn Command forward-char nchars
Move point forward @var{nchars} characters.
@end deffn

This shows a rather terse definition for a “command” named forward-char
with one argument, nchars.

@deffn prints argument names such as nchars in slanted type in the printed out-
put, because we think of these names as metasyntactic variables—they stand for
the actual argument values. Within the text of the description, however, write
an argument name explicitly with @var to refer to the value of the argument.
In the example above, we used ‘@var{nchars}’ in this way.

In the extremely unusual case when an argument name contains ‘--’, or another
character sequence which is treated specially (see Section 2.1 [Conventions],
page 10), use @code around the special characters. This avoids the conversion
to typographic en-dashes and em-dashes.

The template for @deffn is:

Q@deffn category name arguments...
body-of-definition
Q@end deffn

Q@defun name arguments. ..
The @defun command is the definition command for functions. @defun is equiv-
alent to ‘@deffn Function ...’. Terminate the definition with @end defun on
a line of its own. Thus, the template is:

@defun function-name arguments...
body-of-definition
Q@end defun
@defmac name arguments. ..
The @defmac command is the definition command for macros. @defmac is
equivalent to ‘@deffn Macro ...’ and works like @defun.

Q@defspec name arguments. ..
The @defspec command is the definition command for special forms. (In Lisp,
a special form is an entity much like a function; see Section “Special Forms”
in GNU Emacs Lisp Reference Manual.) @defspec is equivalent to ‘@deffn
{Special Form} ...” and works like @defun.

Chapter 14: Definition Commands 127

All these commands create entries in the index of functions.

14.5.2 Variables and Similar Entities
Here are the commands for defining variables and similar entities:

Q@defvr category name

The @defvr command is a general definition command for something like a
variable—an entity that records a value. You must choose a term to describe
the category of entity being defined; for example, “Variable” could be used if
the entity is a variable. Write the @defvr command at the beginning of a line
and follow it on the same line by the category of the entity and the name of
the entity.
We recommend capitalizing the category name like a title. If the name of the
category contains spaces, as in the name “User Option”, enclose it in braces.
Otherwise, the second word will be mistaken for the name of the entity. For
example,

@defvr {User Option} fill-column

This buffer-local variable specifies

the maximum width of filled lines.

Q@end defvr
Terminate the definition with @end defvr on a line of its own.

The template is:

Q@defvr category name
body-of-definition
Q@end defvr

@defvr creates an entry in the index of variables for name.

Q@defvar name
The @defvar command is the definition command for variables. @defvar is

)

equivalent to ‘@defvr Variable ...’.
For example:
@defvar kill-ring

@end defvar

The template is:
@defvar name
body-of-definition
Q@end defvar

@defvar creates an entry in the index of variables for name.

Q@defopt name
The @defopt command is the definition command for user options, i.e., variables
intended for users to change according to taste; Emacs has many such (see
Section “Variables” in The GNU Emacs Manual). @defopt is equivalent to
‘@defvr {User Option} ...’ and works like @defvar. It creates an entry in
the index of variables.

Chapter 14: Definition Commands 128

14.5.3 Functions in Typed Languages

The @deftypefn command and its variations are for describing functions in languages in
which you must declare types of variables and functions, such as C and C++.

Q@deftypefn category data-type name arguments. ..
The @deftypefn command is the general definition command for functions and
similar entities that may take arguments and that are typed. The @deftypefn
command is written at the beginning of a line and is followed on the same line
by the category of entity being described, the type of the returned value, the
name of this particular entity, and its arguments, if any.
For example,

@deftypefn {Library Function} int foobar @
(int @var{foo}, float @var{bar})

@end deftypefn

produces:

int foobar (int foo, float bar) [Library Function]

This means that foobar is a “library function” that returns an int, and its
arguments are foo (an int) and bar (a float).

Since in typed languages, the actual names of the arguments are typically scat-
tered among data type names and keywords, Texinfo cannot find them without
help. You can either (a) write everything as straight text, and it will be printed
in slanted type; (b) use @var for the variable names, which will uppercase the
variable names in Info and use the slanted typewriter font in printed output;
(c) use @var for the variable names and @code for the type names and keywords,
which will be dutifully obeyed.

The template for @deftypefn is:

@deftypefn category data-type name arguments ...
body-of-description
Q@end deftypefn
Note that if the category or data type is more than one word then it must be
enclosed in braces to make it a single argument.

If you are describing a procedure in a language that has packages, such as Ada,
you might consider using @deftypefn in a manner somewhat contrary to the
convention described in the preceding paragraphs. For example:
@deftypefn stacks private push @
(@var{s}:in out stack; @
@var{n}:in integer)

Q@end deftypefn
(In these examples the @deftypefn arguments are shown using continuations

(see Section 14.2 [Def Cmd Continuation Lines|, page 124), but could be on a
single line.)

Chapter 14: Definition Commands 129

In this instance, the procedure is classified as belonging to the package stacks
rather than classified as a ‘procedure’ and its data type is described as private.
(The name of the procedure is push, and its arguments are s and n.)

@deftypefn creates an entry in the index of functions for name.

Q@deftypefun data-type name arguments. ..
The @deftypefun command is the specialized definition command for functions
in typed languages. The command is equivalent to ‘@deftypefn Function ...".

The template is:

@deftypefun type name arguments...
body-of-description
Q@end deftypefun

@deftypefun creates an entry in the index of functions for name.

Ordinarily, the return type is printed on the same line as the function name and argu-
ments, as shown above. In source code, GNU style is to put the return type on a line by
itself. So Texinfo provides an option to do that: @deftypefnnewline on.

This affects typed functions only—not untyped functions, not typed variables, etc..
Specifically, it affects the commands in this section, and the analogous commands for
object-oriented languages, namely @deftypeop and @deftypemethod (see Section 14.5.6.2
[Object-Oriented Methods|, page 132).

Specifying @deftypefnnewline off reverts to the default.

14.5.4 Variables in Typed Languages

Variables in typed languages are handled in a manner similar to functions in typed lan-
guages. See Section 14.5.3 [Typed Functions|, page 128. The general definition com-
mand @deftypevr corresponds to @deftypefn and the specialized definition command
@deftypevar corresponds to @deftypefun.

@deftypevr category data-type name
The @deftypevr command is the general definition command for something
like a variable in a typed language—an entity that records a value. You must
choose a term to describe the category of the entity being defined; for example,
“Variable” could be used if the entity is a variable.

The @deftypevr command is written at the beginning of a line and is followed
on the same line by the category of the entity being described, the data type,
and the name of this particular entity.

For example:

@deftypevr {Global Flag} int enable

Q@end deftypevr

produces the following:

int enable [Global Flag]

Chapter 14: Definition Commands 130

The template is:
Q@deftypevr category data-type name
body-of-description
@end deftypevr

@deftypevar data-type name
The @deftypevar command is the specialized definition command for variables
in typed languages. @deftypevar is equivalent to ‘@deftypevr Variable ...’.
The template is:
@deftypevar data-type name
body-of-description
Q@end deftypevar

These commands create entries in the index of variables.

14.5.5 Data Types
Here is the command for data types:

Q@deftp category name attributes. ..

The @deftp command is the generic definition command for data types. The
command is written at the beginning of a line and is followed on the same line
by the category, by the name of the type (which is a word like int or float),
and then by names of attributes of objects of that type. Thus, you could use
this command for describing int or float, in which case you could use data
type as the category. (A data type is a category of certain objects for purposes
of deciding which operations can be performed on them.)

In Lisp, for example, pair names a particular data type, and an object of that
type has two slots called the CAR and the CDR. Here is how you would write
the first line of a definition of pair.

@deftp {Data typel} pair car cdr
@end deftp
The template is:

Q@deftp category name-of-type attributes...
body-of-definition
Q@end deftp

@deftp creates an entry in the index of data types.

14.5.6 Object-Oriented Programming

Here are the commands for formatting descriptions about abstract objects, such as are used
in object-oriented programming. A class is a defined type of abstract object. An instance
of a class is a particular object that has the type of the class. An instance variable is a
variable that belongs to the class but for which each instance has its own value.

14.5.6.1 Object-Oriented Variables

These commands allow you to define different sorts of variables in object-oriented program-
ming languages.

Chapter 14: Definition Commands 131

Q@defcv category class name
The @defcv command is the general definition command for variables associated
with classes in object-oriented programming. The @defcv command is followed
by three arguments: the category of thing being defined, the class to which it
belongs, and its name. For instance:

@defcv {Class Option} Window border-pattern
Q@end defcv
produces:

border-pattern [Class Option of Window]

@defcv creates an entry in the index of variables.

@deftypecv category class data-type name
The @deftypecv command is the definition command for typed class variables
in object-oriented programming. It is analogous to @defcv with the addition of
the data-type parameter to specify the type of the instance variable. Ordinarily,
the data type is a programming language construct that should be marked with
Q@code. For instance:

@deftypecv {Class Option} Window @code{int} border-pattern

@end deftypecv

produces:

int border-pattern [Class Option of Window]

@deftypecv creates an entry in the index of variables.

@defivar class name
The @defivar command is the definition command for instance variables in
object-oriented programming. @defivar is equivalent to ‘@defcv {Instance
Variable} ...’. For instance:

@defivar Window border-pattern

Q@end defivar
produces:

border-pattern [Instance Variable of Window]

@defivar creates an entry in the index of variables.

Q@deftypeivar class data-type name
The @deftypeivar command is the definition command for typed instance
variables in object-oriented programming. It is analogous to @defivar with
the addition of the data-type parameter to specify the type of the instance

Chapter 14: Definition Commands 132

variable. Ordinarily, the data type is a programming language construct that
should be marked with @code. For instance:

@deftypeivar Window @code{int} border-pattern

Q@end deftypeivar

produces:

int border-pattern [Instance Variable of Window]

@deftypeivar creates an entry in the index of variables.

14.5.6.2 Object-Oriented Methods

These commands allow you to define different sorts of function-like entities resembling
methods in object-oriented programming languages. These entities take arguments, as
functions do, but are associated with particular classes of objects.

@defop category class name arguments. ..
The @defop command is the general definition command for these method-like
entities.

For example, some systems have constructs called wrappers that are associated
with classes as methods are, but that act more like macros than like functions.
You could use @defop Wrapper to describe one of these.

Sometimes it is useful to distinguish methods and operations. You can think of
an operation as the specification for a method. Thus, a window system might
specify that all window classes have a method named expose; we would say
that this window system defines an expose operation on windows in general.
Typically, the operation has a name and also specifies the pattern of arguments;
all methods that implement the operation must accept the same arguments,
since applications that use the operation do so without knowing which method
will implement it.

Often it makes more sense to document operations than methods. For example,
window application developers need to know about the expose operation, but
need not be concerned with whether a given class of windows has its own method
to implement this operation. To describe this operation, you would write:

Q@defop Operation windows expose

The @defop command is written at the beginning of a line and is followed on
the same line by the overall name of the category of operation, the name of the
class of the operation, the name of the operation, and its arguments, if any.

The template is:

Odefop category class name arguments...
body-of-definition
Q@end defop

@defop creates an entry, such as ‘expose on windows’, in the index of functions.

Chapter 14: Definition Commands 133

Q@deftypeop category class data-type name arguments. ..
The @deftypeop command is the definition command for typed operations in
object-oriented programming. It is similar to @defop with the addition of the
data-type parameter to specify the return type of the method. @deftypeop
creates an entry in the index of functions.

@defmethod class name arguments. ..
The @defmethod command is the definition command for methods in object-
oriented programming. A method is a kind of function that implements an
operation for a particular class of objects and its subclasses.

@defmethod is equivalent to ‘@defop Method ...’. The command is written at
the beginning of a line and is followed by the name of the class of the method,
the name of the method, and its arguments, if any.

For example:

@defmethod bar-class bar-method argument

@end defmethod

illustrates the definition for a method called bar-method of the class bar-class.
The method takes an argument.

@defmethod creates an entry in the index of functions.

Q@deftypemethod class data-type name arguments. ..
The @deftypemethod command is the definition command for methods in
object-oriented typed languages, such as C++ and Java. It is similar to the
@defmethod command with the addition of the data-type parameter to specify
the return type of the method. @deftypemethod creates an entry in the index
of functions.

The typed commands are affected by the @deftypefnnewline option (see Section 14.5.3
[Functions in Typed Languages|, page 128).

14.6 Conventions for Writing Definitions

When you write a definition using @deffn, @defun, or one of the other definition commands,
please take care to use arguments that indicate the meaning, as with the count argument
to the forward-word function. Also, if the name of an argument contains the name of a
type, such as integer, take care that the argument actually is of that type.

14.7 A Sample Function Definition

A function definition uses the @defun and @end defun commands. The name of the function
follows immediately after the @defun command and it is followed, on the same line, by the
parameter list.

Here is a definition from Section “Calling Functions” in The GNU Emacs Lisp Reference
Manual.

apply function &rest arguments [Function]
apply calls function with arguments, just like funcall but with one dif-
ference: the last of arguments is a list of arguments to give to function,

Chapter 14: Definition Commands 134

rather than a single argument. We also say that this list is appended to
the other arguments.

apply returns the result of calling function. As with funcall, function
must either be a Lisp function or a primitive function; special forms and
macros do not make sense in apply.
(setq f 'list)
= list
(apply £ 'x 'y 'z)
Wrong type argument: listp, z
(apply '+ 1 2 '(3 4))
= 10
(apply '+ '(1 2 3 4))
= 10

(apply 'append '((a b ¢) nil (x y z) nil))
= (abcxyz)
An interesting example of using apply is found in the description of
mapcar.

In the Texinfo source file, this example looks like this:

@defun apply function &rest arguments

Q@code{apply} calls @var{function} with

@var{arguments}, just like @code{funcall} but with one
difference: the last of @var{arguments} is a list of
arguments to give to @var{function}, rather than a single
argument. We also say that this list is @dfn{appended}
to the other arguments.

Qcode{apply} returns the result of calling
Ovar{function}. As with Qcode{funcall},

@var{function} must either be a Lisp function or a
primitive function; special forms and macros do not make
sense in Qcode{apply}.

Q@example
(setq f 'list)
@result{} list
(apply £ 'x 'y 'z)
Q@error{} Wrong type argument: listp, =z
(apply '+ 1 2 '(3 4))
@result{} 10
(apply '+ '(1 2 3 4))
@result{} 10

(apply 'append '((a b c¢) nil (x y z) nil))
Q@result{} (a b cxy z)
Q@end example

135

An interesting example of using @code{apply} is found
in the description of @code{mapcar}.
@end defun
In this manual, this function is listed in the Command and Variable Index under apply.

Ordinary variables and user options are described using a format like that for functions
except that variables do not take arguments.

136

15 Internationalization

Texinfo has some support for writing in languages other than English, although this area still
needs considerable work. (If you are the one helping to translate the fixed strings written
to documents, see Section 20.7 [Internationalization of Document Strings|, page 197.)

For a list of the various accented and special characters Texinfo supports, see Section 12.4
[Inserting Accents|, page 108.

15.1 @documentlanguage 11[_cc]: Set the Document
Language

The @documentlanguage command declares the current document locale. Write it on a line
by itself, near the beginning of the file.

@documentlanguage 11[_cc]

Include a two-letter ISO 639-2 language code (1I) following the command name, option-
ally followed by an underscore and two-letter ISO 3166 two-letter country code (cc). If you
have a multilingual document, the intent is to be able to use this command multiple times,
to declare each language change. If the command is not used at all, the default is en_US
for US English.

As with GNU Gettext (see Gettext), if the country code is omitted, the main dialect
is assumed where possible. For example, de is equivalent to de_DE (German as spoken in
Germany).

For Info and other online output, this command changes the translation of various doc-
ument strings such as “see” in cross-references (see Chapter 6 [Cross References|, page 49),
“Function” in defuns (see Chapter 14 [Definition Commands|, page 123), and so on. Some
strings, such as “Node:”, “Next:”, “Menu:”, etc., are keywords in Info output, so are not
translated there; they are translated in other output formats.

For TgX, this command causes a file txi-locale.tex to be read (if it exists). If
@documentlanguage argument contains the optional ‘_cc’ suffix, this is tried first. For
example, with @documentlanguage de_DE, TgX first looks for txi-de_DE.tex, then
txi-de.tex.

Such a txi-=* file is intended to redefine the various English words used in TEX output,
such as ‘Chapter’, ‘See’, and so on. We are aware that individual words like these cannot
always be translated in isolation, and that a very different strategy would be required
for ideographic (among other) scripts. Help in improving Texinfo’s language support is
welcome.

@documentlanguage also changes TEX’s current hyphenation patterns, if the TEX pro-
gram being run has the necessary support included. This will generally not be the case
for tex itself, but will usually be the case for up-to-date distributions of the extended TEX
programs etex (DVI output) and pdftex (PDF output). texi2dvi will use the extended
TEXs if they are available (see Section 19.2 [Format with texi2dvi], page 163).

In September 2006, the W3C Internationalization Activity released a new recommenda-
tion for specifying languages: http://www.rfc-editor.org/rfc/bcp/bepa7.txt. When
Gettext supports this new scheme, Texinfo will too.

http://www.rfc-editor.org/rfc/bcp/bcp47.txt

Chapter 15: Internationalization 137

Since the lists of language codes and country codes are updated relatively frequently, we
don’t attempt to list them here. The valid language codes are on the official home page for
ISO 639, http://www.loc.gov/standards/iso639-2/. The country codes and the official
web site for ISO 3166 can be found via http://en.wikipedia.org/wiki/IS0_3166.

15.2 @documentencoding enc: Set Input Encoding

The @documentencoding command declares the input document encoding, and can also
affect the encoding of the output. Write it on a line by itself, with a valid encoding specifi-
cation following, near the beginning of the file.

Q@documentencoding enc

Texinfo supports these encodings:
US-ASCII This has no particular effect, but it’s included for completeness.
UTF-8 The vast global character encoding, expressed in 8-bit bytes.

I50-8859-1

IS0-8859-15

IS0-8859-2
These specify the standard encodings for Western European (the first two) and
Eastern European languages (the third), respectively. ISO 8859-15 replaces
some little-used characters from 8859-1 (e.g., precomposed fractions) with more
commonly needed ones, such as the Euro symbol (€).

A full description of the encodings is beyond our scope here; one useful reference
is http://czyborra.com/charsets/is08859.html.

koi8-r This is the commonly used encoding for the Russian language.
koi8-u This is the commonly used encoding for the Ukrainian language.

Specifying an encoding enc has the following effects:

In Info output, a so-called ‘Local Variables’ section (see Section “File Variables” in The
GNU Emacs Manual) is output including enc. This allows Info readers to set the encoding
appropriately. It looks like this:

Local Variables:
coding: enc
End:
Also, in Info and plain text output, unless the option --disable-encoding is given to
makeinfo, accent constructs and special characters, such as @'e, are output as the actual
8-bit or UTF-8 character in the given encoding where possible.

In HTML output, a ‘<meta>’ tag is output, in the ‘<head>’ section of the HIT'ML, that
specifies enc. Web servers and browsers cooperate to use this information so the correct
encoding is used to display the page, if supported by the system. That looks like this:

<meta http-equiv="Content-Type" content="text/html;
charset=enc">

In XML and Docbook output, UTF-8 is always used for the output, according to the
conventions of those formats.

http://www.loc.gov/standards/iso639-2/
http://en.wikipedia.org/wiki/ISO_3166
http://czyborra.com/charsets/iso8859.html

Chapter 15: Internationalization 138

In TEX output, the characters which are supported in the standard Computer Modern
fonts are output accordingly. For example, this means using constructed accents rather
than precomposed glyphs. Using a missing character generates a warning message, as does
specifying an unimplemented encoding.

Although modern TEX systems support nearly every script in use in the world, this
wide-ranging support is not available in texinfo.tex, and it’s not feasible to duplicate or
incorporate all that effort. (Our plan to support other scripts is to create a WITEX back-end
to texi2any, where the support is already present.)

For maximum portability of Texinfo documents across the many different user envi-
ronments in the world, we recommend sticking to 7-bit ASCII in the input unless your
particular manual needs a substantial amount of non-ASCII, e.g., it’s written in German.
You can use the @U command to insert an occasional needed character (see Section 12.10
[Inserting Unicode|, page 118).

139

16 Conditionally Visible Text

The conditional commands allow you to use different text for different output formats, or
for general conditions that you define. For example, you can use them to specify different
text for the printed manual and the Info output.

The conditional commands comprise the following categories.
e Commands specific to an output format (Info, TgX, HTML, .. .).
e Commands specific to any output format excluding a given one (e.g., not Info, not TEX,
e ‘Raw’ formatter text for any output format, passed straight through with minimal (but
not zero) interpretation of @-commands.

e Format-independent variable substitutions, and testing if a variable is set or clear.

16.1 Conditional Commands

Texinfo has an @ifformat environment for each output format, to allow conditional inclu-
sion of text for a particular output format.

@ifinfo begins segments of text that should be ignored by TEX when it typesets the
printed manual, and by makeinfo when not producing Info output. The segment of text
appears only in the Info file and, for historical compatibility, the plain text output.

The environments for the other formats are analogous:

@ifdocbook ... @end ifdocbook
Text to appear only in the Docbook output.

@ifhtml ... @end ifhtml
Text to appear only in the HTML output.

Q@ifplaintext ... @end ifplaintext
Text to appear only in the plain text output.

@iftex ... @end iftex
Text to appear only in the printed manual.

@ifxml ... @end ifxml
Text to appear only in the XML output.

The @if... and @end if... commands must appear on lines by themselves in your
source file. The newlines following the commands are (more or less) treated as whitespace,
so that the conditional text is flowed normally into a surrounding paragraph.

The @if... constructs are intended to conditionalize normal Texinfo source; see
Section 16.3 [Raw Formatter Commands], page 141, for using underlying format commands
directly.

Here is an example showing all these conditionals:

Q@iftex

This text will appear only in the printed manual.
Q@end iftex

@ifinfo

Chapter 16: Conditionally Visible Text 140

However, this text will appear only in Info and plain text.
@end ifinfo

@ifhtml

And this text will only appear in HTML.

Q@end ifhtml

Q@ifplaintext

Whereas this text will only appear in plain text.
@end ifplaintext

Q@ifxml

Notwithstanding that this will only appear in XML.
Q@end ifxml

@ifdocbook

Nevertheless, this will only appear in Docbook.
@end ifdocbook

The preceding example produces the following line:
This text will appear only in the printed manual.

Notice that you only see one of the input lines, depending on which version of the manual
you are reading.

In complex documents, you may want Texinfo to issue an error message in some condi-
tionals that should not ever be processed. The @errormsg{text} command will do this; it
takes one argument, the text of the error message.

We mention @errormsg{} here even though it is not strictly related to conditionals,
since in practice it is most likely to be useful in that context. Technically, it can be used
anywhere. See Section 17.6 [External Macro Processors|, page 156, for a caveat regarding
the line numbers which @errormsg emits in TEX.

16.2 Conditional Not Commands

You can specify text to be included in any output format other than a given one with the
@ifnot... environments:

@ifnotdocbook ... @end ifnotdocbook
@ifnothtml ... @end ifnothtml
Q@ifnotinfo ... Q@end ifnotinfo
@ifnotplaintext ... @end ifnotplaintext
@ifnottex ... Qend ifnottex
@ifnotxml ... Q@end ifnotxml
The @ifnot... command and the @end command must appear on lines by themselves in

your actual source file.
If the output file is being made in the given format, the region is ¢gnored. Otherwise, it
is included.

There is one exception (for historical compatibility): @ifnotinfo text is omitted for
both Info and plain text output, not just Info. To specify text which appears only in Info
and not in plain text, use @ifnotplaintext, like this:

@ifinfo
@ifnotplaintext

Chapter 16: Conditionally Visible Text 141

This will be in Info, but not plain text.
Q@end ifnotplaintext
@end ifinfo

The regions delimited by these commands are ordinary Texinfo source as with @iftex,
not raw formatter source as with @tex (see Section 16.3 [Raw Formatter Commands],
page 141).

16.3 Raw Formatter Commands

The @if... conditionals just described must be used only with normal Texinfo source. For
instance, most features of plain TEX will not work within @iftex. The purpose of @if. ..
is to provide conditional processing for Texinfo source, not provide access to underlying
formatting features. For that, Texinfo provides so-called raw formatter commands. They
should only be used when truly required (most documents do not need them).

The first raw formatter command is @tex. You can enter plain TEX completely, and use
‘\’ in the TEX commands, by delineating a region with the @tex and @end tex commands.
All plain TEX commands and category codes are restored within a @tex region. The sole
exception is that the @ character still introduces a command, so that @end tex can be
recognized. Texinfo processors will not output material in such a region, unless TEX output
is being produced.

In complex cases, you may wish to define new TEX macros within @tex. You must use
\gdef to do this, not \def, because @tex regions are processed in a TEX group. If you need
to make several definitions, you may wish to set \globaldefs=1 (its value will be restored
to zero as usual when the group ends at @end tex, so it won’t cause problems with the rest
of the document).

As an example, here is a displayed equation written in plain TEX:

Otex
$$ \chi"2 = \sum_{i=1}"N
\left (y_i - (a + b x_1i)
\over \sigma_i\right)~2 $$
Q@end tex

The output of this example will appear only in a printed manual. If you are reading this in
a format not generated by TEX, you will not see the equation that appears in the printed
manual.

= Z (yi— (a+bxi)>2

i=1 Gi

Analogously, you can use @ifhtml ... @end ifhtml to delimit Texinfo source to be
included in HTML output only, and @html ... @end html for a region of raw HTML.

Likewise, you can use @ifxml ... @end ifxml to delimit Texinfo source to be included
in XML output only, and @xml ... @end xml for a region of raw XML. Regions of raw
text in other formats will also be present in the XML output, but with protection of XML
characters and within corresponding elements. For example, the raw HTML text:

Chapter 16: Conditionally Visible Text 142

Ohtml

@end html
will be included in the XML output as:

<html>

</html>

Again likewise, you can use @ifdocbook ... @end ifdocbook to delimit Texinfo source

to be included in Docbook output only, and @docbook ... @end docbook for a region of

raw Docbook.
The behavior of newlines in raw regions is unspecified.

In all cases, in raw processing, @ retains the same meaning as in the remainder of the
document. Thus, the Texinfo processors must recognize and even execute, to some extent,
the contents of the raw regions, regardless of the final output format. Therefore, specifying
changes that globally affect the document inside a raw region leads to unpredictable and
generally undesirable behavior. For example, using the @kbdinputstyle command inside
a raw region is undefined.

The remedy is simple: don’t do that. Use the raw formatter commands for their intended
purpose, of providing material directly in the underlying format. When you simply want to
give different Texinfo specifications for different output formats, use the @if. .. conditionals
and stay in Texinfo syntax.

16.4 Inline Conditionals: @inline, @inlineifelse, @inlineraw
Texinfo provides a set of conditional commands with arguments given within braces:

@inlinefmt{format, text}
Process the Texinfo text if format output is being generated.

@inlinefmtifelse{format, then-text, else-text}
Process the Texinfo then-text if format output is being generated; otherwise,
process else-text.

@inlineraw{format, text}
Similar, but for raw text (see Section 16.3 [Raw Formatter Commands],
page 141).
The supported format names are:
docbook html info plaintext tex =xml
For example,
@inlinefmt{html, @emph{HTML-only textl}}
is nearly equivalent to

Q@ifhtml
Q@emph{HTML-only text}
Q@end ifhtml

except that no whitespace is added, as happens in the latter (environment) case.

Chapter 16: Conditionally Visible Text 143

In these commands, whitespace is ignored after the comma separating the arguments,
as usual, but is not ignored at the end of text.

To insert a literal at sign, left brace, or right brace in one of the arguments, you must use
the alphabetic commands @atchar{} (see Section 12.1.1 [Inserting an Atsign]|, page 103),
and @lbracechar{} or @rbracechar{} (see Section 12.1.2 [Inserting Braces], page 103), or
the parsing will become confused.

With @inlinefmtifelse, it is also necessary to use @comma{} to avoid mistaking a *,’
in the text for the delimiter. With @inlinefmt and @inlineraw, @comma{} is not required
(though it’s fine to use it), since these commands always have exactly two arguments.

For TgX, the processed text cannot contain newline-delimited commands. Text to be
ignored (i.e., for non-TEX) can, though.

Two other @inline. .. conditionals complement the @ifset and @ifclear commands;
see the next section.

16.5 Flags: @set, @Qclear, conditionals, and @value

You can direct the Texinfo formatting commands to format or ignore parts of a Texinfo file
with the @set, @clear, @ifset, and @ifclear commands.

Here are brief descriptions of these commands, see the following sections for more details:

@set flag [value]
Set the variable flag, to the optional value if specified.

Q@clear flag
Undefine the variable flag, whether or not it was previously defined.

@ifset flag
If flag is set, text through the next @end ifset command is formatted. If flag
is clear, text through the following @end ifset command is ignored.

@inlineifset{flag, text}
Brace-delimited version of @ifset.

Q@ifclear flag
If flag is set, text through the next @end ifclear command is ignored. If flag
is clear, text through the following @end ifclear command is formatted.

@inlineifclear{flag, text}
Brace-delimited version of @ifclear.

16.5.1 @set and @value

You use the @set command to specify a value for a flag, which is later expanded by the
@value command.

(0 [

A flag (aka variable) name is an identifier starting with an alphanumeric, ‘-’, or
Subsequent characters, if any, may not be whitespace, ‘@, braces, angle brackets, or any of
‘“*~+]’; other characters, such as ‘%’, may work. However, it is best to use only letters and
numerals in a flag name, not ‘=’ or ‘_’ or others—they will work in some contexts, but not
all, due to limitations in TEX.

Chapter 16: Conditionally Visible Text 144

The value is the remainder of the input line, and can contain anything. However, unlike
most other commands which take the rest of the line as a value, @set need not appear at
the beginning of a line.

Write the @set command like this:
@set foo This is a string.
This sets the value of the flag foo to “This is a string.”.

The Texinfo formatters then replace a @value{flag} command with the string to which
flag is set. Thus, when foo is set as shown above, the Texinfo formatters convert this:

@value{foo}
to this:
This is a string.

You can write a @value command within a paragraph; but you must write a @set
command on a line of its own.

If you write the @set command like this:
O@set foo
without specifying a string, the value of foo is the empty string.

If you clear a previously set flag with @clear flag, a subsequent @value{flag} com-
mand will report an error.

For example, if you set foo as follows:
@set howmuch very, very, very
then the formatters transform

It is a @value{howmuch} wet day.
into
It is a very, very, very wet day.
If you write
@clear howmuch
then the formatters transform

It is a @value{howmuch} wet day.
into
It is a {No value for "howmuch"} wet day.
@value cannot be reliably used as the argument to an accent command (see Section 12.4
[Inserting Accents|, page 108). For example, this fails:

@set myletter a
@'@value{myletter}

16.5.2 Q@ifset and @ifclear

When a flag is set, the Texinfo formatting commands format text between subsequent
pairs of @ifset flag and @end ifset commands. When the flag is cleared, the Texinfo
formatting commands do not format the text. @ifclear operates analogously.

Write the conditionally formatted text between @ifset flagand @end ifset commands,
like this:

Chapter 16: Conditionally Visible Text 145

Q@ifset flag
conditional-text
Q@end ifset

For example, you can create one document that has two variants, such as a manual for
a ‘large’ and ‘small’ model:

You can use this machine to dig up shrubs
without hurting them.

@set large

Q@ifset large
It can also dig up fully grown trees.
Q@end ifset

Remember to replant promptly ...

In the example, the formatting commands will format the text between @ifset large and
Q@end ifset because the large flag is set.

When flag is cleared, the Texinfo formatting commands do not format the text between
Q@ifset flag and @end ifset; that text is ignored and does not appear in either printed or
Info output.

For example, if you clear the flag of the preceding example by writing an @clear large
command after the @set large command (but before the conditional text), then the Tex-
info formatting commands ignore the text between the @ifset large and @end ifset com-
mands. In the formatted output, that text does not appear; in both printed and Info output,
you see only the lines that say, “You can use this machine to dig up shrubs without hurting

7

them. Remember to replant promptly ...”.

If a flag is cleared with a @clear flag command, then the formatting commands format
text between subsequent pairs of @ifclear and @end ifclear commands. But if the flag is
set with @set flag, then the formatting commands do not format text between an @ifclear
and an @end ifclear command; rather, they ignore that text. An @ifclear command looks
like this:

Q@ifclear flag

16.5.3 @inlineifset and @inlineifclear

@inlineifset and @inlineifclear provide brace-delimited alternatives to the @ifset
and @ifclear forms, similar to the other @inline... Commands (see Section 16.4 [Inline
Conditionals|, page 142). The same caveats about argument parsing given there apply here
too.

@inlineifset{var, text}
Process the Texinfo text if the flag var is defined.

@inlineifclear{var, text}
Process the Texinfo text if the flag var is not defined.

Except for the syntax, their general behavior and purposes is the same as with @ifset
and @ifclear, described in the previous section.

Chapter 16: Conditionally Visible Text 146

16.5.4 @value Example

You can use the @value command to minimize the number of places you need to change
when you record an update to a manual. See Section C.2 [GNU Sample Texts|, page 253,
for the full text of an example of using this to work with Automake distributions.

This example is adapted from The GNU Make Manual.

1. Set the flags:

@set EDITION 0.35 Beta

O@set VERSION 3.63 Beta

Oset UPDATED 14 August 1992
Oset UPDATE-MONTH August 1992

2. Write text for the @copying section (see Section 3.3.1 [@copying], page 19):

Qcopying

This is Edition @value{EDITION},

last updated @value{UPDATED},

of Qcite{The GNU Make Manual},

for @code{make}, version @value{VERSION}.

Copyright

Permission is granted ...
Q@end copying

3. Write text for the title page, for people reading the printed manual:

@titlepage

Otitle GNU Make

Osubtitle A Program for Directing Recompilation
@subtitle Edition @value{EDITION},

O@subtitle @value{UPDATE-MONTH}

Opage

Q@insertcopying

Q@end titlepage
(On a printed cover, a date listing the month and the year looks less fussy than a date
listing the day as well as the month and year.)

4. Write text for the Top node, for people reading the Info file:

Q@ifnottex
OGnode Top
@top Make

This is Edition @value{EDITION},

last updated @value{UPDATED},

of @cite{The GNU Make Manuall,

for @code{make}, version @value{VERSION}.
@end ifnottex

Chapter 16: Conditionally Visible Text 147

After you format the manual, the @value constructs have been expanded, so the output
contains text like this:

This is Edition 0.35 Beta, last updated 14 August 1992,
of “The GNU Make Manual', for “make', Version 3.63 Beta.

When you update the manual, you change only the values of the flags; you do not need
to edit the three sections.

16.6 Testing for Texinfo Commands: @ifcommanddefined,
@ifcommandnotdefined

Occasionally, you may want to arrange for your manual to test if a given Texinfo command is
available and (presumably) do some sort of fallback formatting if not. There are conditionals
@ifcommanddefined and @ifcommandnotdefined to do this. For example:

Q@ifcommanddefined node
Good, @samp{@@node} is defined.
Q@end ifcommanddefined

will output the expected ‘Good, ‘@node’ is defined.’.

This conditional will also consider any new commands defined by the document via
@macro, @alias, @definfoenclose, and @def(code)index (see Chapter 17 [Defining New
Texinfo Commands], page 149) to be true. Caveat: the TEX implementation reports internal
TEX commands, in addition to all the Texinfo commands, as being “defined”; the makeinfo
implementation is reliable in this regard, however.

You can check the NEWS file in the Texinfo source distribution and linked from the Texinfo
home page (http://www.gnu.org/software/texinfo) to see when a particular command
was added.

These command-checking conditionals themselves were added in Texinfo 5.0, released in
2013—decades after Texinfo’s inception. In order to test if they themselves are available,
the predefined flag txicommandconditionals can be tested, like this:

@ifset txicommandconditionals
@ifcommandnotdefined foobarnode

(Good, @samp{@@foobarnode} is not defined.)
@end ifcommandnotdefined

Q@end ifset

Since flags (see the previous section) were added early in the existence of Texinfo, there
is no problem with assuming they are available.

We recommend avoiding these tests whenever possible—which is usually the case. For
many software packages, it is reasonable for all developers to have a given version of Texinfo
(or newer) installed, and thus no reason to worry about older versions. (It is straightforward
for anyone to download and install the Texinfo source; it does not have any problematic
dependencies.)

The issue of Texinfo versions does not generally arise for end-users. With properly
distributed packages, users need not process the Texinfo manual simply to build and install
the package; they can use preformatted Info (or other) output files. This is desirable in
general, to avoid unnecessary dependencies between packages (see Section “Releases” in
GNU Coding Standards).

http://www.gnu.org/software/texinfo

Chapter 16: Conditionally Visible Text 148

16.7 Conditional Nesting

Conditionals can be nested; however, the details are a little tricky. The difficulty comes
with failing conditionals, such as @ifhtml when HTML is not being produced, where the
included text is to be ignored. However, it is not to be completely ignored, since it is useful
to have one @ifset inside another, for example—that is a way to include text only if two
conditions are met. Here’s an example:

@ifset somevar

@ifset anothervar

Both somevar and anothervar are set.
Q@end ifset

@ifclear anothervar

Somevar is set, anothervar is not.
@end ifclear

@end ifset

Technically, Texinfo requires that for a failing conditional, the ignored text must be
properly nested with respect to that failing conditional. Unfortunately, it’s not always
feasible to check that all conditionals are properly nested, because then the processors
could have to fully interpret the ignored text, which defeats the purpose of the command.
Here’s an example illustrating these rules:

Q@ifset a

Qifset b

@ifclear ok - ok, ignored
Q@end junky - ok, ignored
Q@end ifset

Oc WRONG - missing Qend ifset.

Finally, as mentioned above, all conditional commands must be on lines by themselves,
with no text (even spaces) before or after. Otherwise, the processors cannot reliably deter-
mine which commands to consider for nesting purposes.

149

17 Defining New Texinfo Commands

Texinfo provides several ways to define new commands (in all cases, it’s not recommended
to try redefining existing commands):

e A Texinfo macro allows you to define a new Texinfo command as any sequence of text
and/or existing commands (including other macros). The macro can have any number
of parameters—text you supply each time you use the macro.

Incidentally, these macros have nothing to do with the @defmac command, which is
for documenting macros in the subject area of the manual (see Section 14.1 [Def Cmd
Template], page 123).

e ‘Galias’ is a convenient way to define a new name for an existing command.

e ‘@definfoenclose’ allows you to define new commands with customized output for all
non-TEX output formats.

Most generally of all (not just for defining new commands), it is possible to invoke any
external macro processor and have Texinfo recognize so-called #line directives for error
reporting.

If you want to do simple text substitution, @set and @value is the simplest approach
(see Section 16.5 [@set @clear @value], page 143).

17.1 Defining Macros

You use the Texinfo @macro command to define a macro, like this:

@macro macroname{paraml, param2, ...}
text ... \parami\ ...
@end macro

The parameters paraml, param?2, . .. correspond to arguments supplied when the macro
is subsequently used in the document (described in the next section).

For a macro to work consistently with TEX, macroname must consist entirely of letters:
no digits, hyphens, underscores, or other special characters. So, we recommend using only
letters. However, makeinfo will accept anything consisting of alphanumerics, and (except
as the first character) ‘=’. The ‘_’ character is excluded so that macros can be called inside
@math without a following space (see Section 12.7 [Inserting Math], page 111).

If a macro needs no parameters, you can define it either with an empty list (‘macro foo
{}’) or with no braces at all (‘Gmacro foo’).

The definition or body of the macro can contain most Texinfo commands, including
macro invocations. However, a macro definition that defines another macro does not work
in TEX due to limitations in the design of @macro.

In the macro body, instances of a parameter name surrounded by backslashes, as in
‘\param1\’ in the example above, are replaced by the corresponding argument from the
macro invocation. You can use parameter names any number of times in the body, including
Zero.

To get a single ‘\’ in the macro expansion, use ‘\\’. Any other use of ‘\’ in the body
yields a warning.

Chapter 17: Defining New Texinfo Commands 150

The newline characters after the @macro line and before the @end macro line are ignored,
that is, not included in the macro body. All other whitespace is treated according to the
usual Texinfo rules.

To allow a macro to be used recursively, that is, in an argument to a call to itself, you
must define it with ‘@rmacro’, like this:

@rmacro rmac {arg}

a\arg\b
@end rmacro

Ormac{1@rmac{text}2}
This produces the output ‘alatextb2b’. With ‘@macro’ instead of ‘@rmacro’, an error
message is given.
You can undefine a macro foo with @unmacro foo. It is not an error to undefine a macro

that is already undefined. For example:

Qunmacro foo

17.2 Invoking Macros

After a macro is defined (see the previous section), you can invoke (use) it in your document
like this:

Omacroname {argl, arg2, ...}

and the result will be more or less as if you typed the body of macroname at that spot. For
example:

@macro foo {p, g}
Together: \p\ & \q\.
Q@end macro

@foofa, b}

produces:
Together: a & b.

Thus, the arguments and parameters are separated by commas and delimited by braces;
any whitespace after (but not before) a comma is ignored. The braces are required in
the invocation even when the macro takes no arguments, consistent with other Texinfo
commands. For example:

@macro argless {}
No arguments here.
Q@end macro
@argless{}

produces:
No arguments here.

Passing macro arguments containing commas requires care, since commas also separate
the arguments. To include a comma character in an argument, the most reliable method is
to use the @comma{} command. For makeinfo, you can also prepend a backslash character,
as in ‘\,’, but this does not work with TEX.

Chapter 17: Defining New Texinfo Commands 151

It’s not always necessary to worry about commas. To facilitate use of macros, makeinfo
implements two rules for automatic quoting in some circumstances:

1. If a macro takes only one argument, all commas in its invocation are quoted by default.
For example:

@macro TRYME{text}
@strong{TRYME: \text\}
@end macro

QTRYME{A nice feature, though it can be dangerous.?}
will produce the following output
TRYME: A nice feature, though it can be dangerous.

And indeed, it can. Namely, makeinfo does not control the number of arguments
passed to one-argument macros, so be careful when you invoke them.

2. If a macro invocation includes another command (including a recursive invocation of
itself), any commas in the nested command invocation(s) are quoted by default. For
example, in

@say{@strong{Yes, I do}, person one}

the comma after ‘Yes’ is implicitly quoted. Here’s another example, with a recursive
macro:

@rmacro cat{a,b}
\a\\b\

@end rmacro

Q@cat{@cat{foo, bar}, baz}
will produce the string ‘foobarbaz’.
3. Otherwise, a comma should be explicitly quoted, as above, for it to be treated as a
part of an argument.
The backslash itself can be quoted in macro arguments with another backslash. For
example:
O@macname {\\bleh}
will pass the argument ‘\bleh’ to macname.

makeinfo also recognizes ‘\{’ and ‘\}’ sequences for curly braces, but these are not
recognized by the implementation in TEX. There should, however, rarely be a need for
these, as they are only needed when a macro argument contains unbalanced braces.

If a macro is defined to take exactly one argument, it can be invoked without any braces,
taking all of the line after the macro name as the argument. For example:

@macro bar {p}
Twice: \p\ & \p\.
@end macro

@bar aah

produces:
Twice: aah & aah.

Chapter 17: Defining New Texinfo Commands 152

In these arguments, there is no escaping of special characters, so each ‘\’ stands for itself.

If a macro is defined to take more than one argument, but is called with only one (in
braces), the remaining arguments are set to the empty string, and no error is given. For
example:

@macro addtwo {p, q}
Both: \p\\a\.
@end macro
Q@addtwo{a}

produces simply:
Both: a.

17.3 Macro Details and Caveats

By design, macro expansion does not happen in the following contexts in makeinfo:
e Omacro and @unmacro lines;
e Qif... lines, including @ifset and similar;
e (Oset, Oclear, Q@value;
e Oclickstyle lines;

e Qend lines.

Unfortunately, TEX may do some expansion in these situations, possibly yielding errors.

Also, quite a few macro-related constructs cause problems with TEX; some of the caveats
are listed below. Thus, if you get macro-related errors when producing the printed version
of a manual, you might try expanding the macros with makeinfo by invoking texi2dvi
with the ‘~E’ option (see Section 19.2 [Format with texi2dvi], page 163). Or, more reliably,
eschew Texinfo macros altogether and use a language designed for macro processing, such
as M4 (see Section 17.6 [External Macro Processors|, page 156).

e As mentioned earlier, macro names must consist entirely of letters.

e It is not advisable to redefine any TEX primitive, plain, or Texinfo command name as
a macro. Unfortunately this is a large and open-ended set of names, and the possible
resulting errors are unpredictable.

e Arguments to macros taking more than one argument cannot cross lines.

e Macros containing a command which must be on a line by itself, such as a conditional,
cannot be invoked in the middle of a line. Similarly, macros containing line-oriented
commands or text, such as @example environments, may behave unpredictably in TEX.

e If you have problems using conditionals within a macro, an alternative is to use separate
macro definitions inside conditional blocks. For example, instead of

Omacro Mac

Q@iftex

text for TeX output
@end iftex

@ifnottex

text for not TeX output
@end ifnottex

Chapter 17: Defining New Texinfo Commands 153

Q@end macro
you can do the following instead:

@iftex

@macro Mac

text for TeX output
@end macro

@end iftex

Q@ifnottex

@macro Mac

text for not TeX output
@end macro

@end ifnottex

Texinfo commands in the expansion of a macro in the text of an index entry may end
up being typeset as literal text (including an “@” sign), instead of being interpreted
with their intended meaning.

White space is ignored at the beginnings of lines.

Macros can’t be reliably used in the argument to accent commands (see Section 12.4
[Inserting Accents|, page 108).

The backslash escape for commas in macro arguments does not work; @comma{} must
be used.

Likewise, if you want to pass an argument with the Texinfo command @, (to produce a
cedilla, see Section 12.4 [Inserting Accents|, page 108), you have to use @value or an-
other work-around. Otherwise, the comma may be taken as separating the arguments.
For example,

@macro mactwo{argfirst, argsecond}
\argfirst\+\argsecond\.

@end macro

@set fc Fran@,cois
@mactwo{@value{fc},}

produces:

Francois+.
Ending a macro body with ‘@c’ may cause text following the macro invocation to be
ignored as a comment in makeinfo. This is not the case when processing with TEX.
This was often done to “comment out” an unwanted newline at the end of a macro
body, but this is not necessary any more, as the final newline before ‘@end macro’ is
not included in the macro body anyway.
In general, you can’t arbitrarily substitute a macro (or @value) call for Texinfo com-
mand arguments, even when the text is the same. Texinfo is not M4 (or even plain
TEX). It might work with some commands, it fails with others. Best not to do it at
all. For instance, this fails:

OGmacro offmacro

off

@end macro

Chapter 17: Defining New Texinfo Commands 154

Gheadings Qoffmacro

This looks equivalent to @headings off, but for TEXnical reasons, it fails with a mys-
terious error message (namely, ‘Paragraph ended before @headings was complete’).

e Macros cannot define macros in the natural way. To do this, you must use conditionals
and raw TEX. For example:

Q@ifnottex

@macro ctor {name, arg}

@macro \name\

something involving \arg\ somehow
Q@end macro

Q@end macro

@end ifnottex

Otex

\gdef\ctor#i{\ctorx#1,?}
\gdef\ctorx#1,#2,{\def#1{something involving #2 somehowl}}
Q@end tex

The makeinfo implementation also has the following limitations (by design):

e @verbatim and macros do not mix; for instance, you can’t start a verbatim block
inside a macro and end it outside (see Section 8.5 [@verbatim|, page 75). Starting
any environment inside a macro and ending it outside may or may not work, for that
matter.

e Macros that completely define macros are ok, but it’s not possible to have incompletely
nested macro definitions. That is, @macro and @end macro (likewise for @rmacro) must
be correctly paired. For example, you cannot start a macro definition within a macro,
and then end that nested definition outside the macro.

In the makeinfo implementation before Texinfo 5.0, ends of lines from expansion of a
@macro definition did not end an @-command line-delimited argument (@chapter, @center,
etc.). This is no longer the case. For example:

@macro twolines{}
aaa

bbb

@end macro

@center @twolines{}

In the current makeinfo, this is equivalent to:

Qcenter aaa
bbb

with just ‘aaa’ as the argument to @center. In the earlier implementation, it would have
been parsed as this:

Qcenter aaa bbb

17.4 ‘@alias new=existing’

The ‘@alias’ command defines a new command to be just like an existing one. This is useful
for defining additional markup names, thus preserving additional semantic information in
the input even though the output result may be the same.

Chapter 17: Defining New Texinfo Commands 155

Write the ‘@alias’ command on a line by itself, followed by the new command name,
an equals sign, and the existing command name. Whitespace around the equals sign is
optional and ignored if present. Thus:

@alias new = existing

For example, if your document contains citations for both books and some other media
(movies, for example), you might like to define a macro @moviecite{} that does the same
thing as an ordinary @cite{} but conveys the extra semantic information as well. You’d
do this as follows:

@alias moviecite = cite

Macros do not always have the same effect as aliases, due to vagaries of argument parsing.
Also, aliases are much simpler to define than macros. So the command is not redundant.

Unfortunately, it’s not possible to alias Texinfo environments; for example, @alias
lang=example is an error.

Aliases must not be recursive, directly or indirectly.

It is not advisable to redefine any TEX primitive, plain TEX, or Texinfo command name
as an alias. Unfortunately this is a very large set of names, and the possible resulting errors
from TEX are unpredictable.

makeinfo will accept the same identifiers for aliases as it does for macro names, that is,
alphanumerics and (except as the first character) ‘-’

17.5 @definfoenclose: Customized Highlighting

An @definfoenclose command may be used to define a highlighting command for all
the non-TEX output formats. A command defined using @definfoenclose marks text by
enclosing it in strings that precede and follow the text. You can use this to get closer control
of your output.

Presumably, if you define a command with @definfoenclose, you will create a corre-
sponding command for TEX, either in texinfo.tex, texinfo.cnf, or within an ‘@iftex’
or ‘@tex’ in your document.

Write a @definfoenclose command at the beginning of a line followed by three comma-
separated arguments. The first argument to @definfoenclose is the @-command name
(without the @); the second argument is the start delimiter string; and the third argument
is the end delimiter string. The latter two arguments enclose the highlighted text in the
output.

A delimiter string may contain spaces. Neither the start nor end delimiter is required.
If you do not want a start delimiter but do want an end delimiter, you must follow the
command name with two commas in a row; otherwise, the end delimiter string you intended
will naturally be (mis)interpreted as the start delimiter string.

If you do a @definfoenclose on the name of a predefined command (such as @emph,
@strong, @t, or @i), the enclosure definition will override the built-in definition. We don’t
recommend this.

An enclosure command defined this way takes one argument in braces, since it is intended
for new markup commands (see Chapter 7 [Marking Text], page 61).

Chapter 17: Defining New Texinfo Commands 156

For example, you can write:
@definfoenclose phoo,//,\\

near the beginning of a Texinfo file to define @phoo as an Info formatting command that
inserts ‘//’ before and ‘\\’ after the argument to @phoo. You can then write @phoo{bar}
wherever you want ‘//bar\\’ highlighted in Info.

For TEX formatting, you could write

@iftex
OGglobal@let@phoo=0i
Q@end iftex

to define @phoo as a command that causes TEX to typeset the argument to @phoo in italics.

Each definition applies to its own formatter: one for TEX, the other for everything else.
The raw TEX commands need to be in ‘@iftex’. @definfoenclose command need not be
within ‘@ifinfo’, unless you want to use different definitions for different output formats.

Here is another example: write
@definfoenclose headword, ,

near the beginning of the file, to define @headword as an Info formatting command that
inserts nothing before and a colon after the argument to @headword.

‘@definfoenclose’ definitions must not be recursive, directly or indirectly.

17.6 External Macro Processors: Line Directives

Texinfo macros (and its other text substitution facilities) work fine in straightforward cases.
If your document needs unusually complex processing, however, their fragility and limita-
tions can be a problem. In this case, you may want to use a different macro processor
altogether, such as M4 (see M4) or CPP (see The C Preprocessor).

With one exception, Texinfo does not need to know whether its input is “original” source
or preprocessed from some other source file. Therefore, you can arrange your build system
to invoke whatever programs you like to handle macro expansion or other preprocessing
needs. Texinfo does not offer built-in support for any particular preprocessor, since no one
program seemed likely to suffice for the requirements of all documents.

The one exception is line numbers in error messages. In that case, the line number should
refer to the original source file, whatever it may be. There’s a well-known mechanism for
this: the so-called ‘#1ine’ directive. Texinfo supports this.

17.6.1 ‘#line’ Directive
An input line such as this:
#line 100 "foo.ptexi"

indicates that the next line was line 100 of the file foo.ptexi, and so that’s what an
error message should refer to. Both M4 (see Section “Preprocessor features” in GNU M4)
and CPP (see Section “Line Control” in The C Preprocessor, and Section “Preprocessor
Output” in The C Preprocessor) can generate such lines.

The makeinfo program recognizes these lines by default, except within @verbatim blocks
(see Section 8.5 [@verbatim|, page 75. Their recognition can be turned off completely

Chapter 17: Defining New Texinfo Commands 157

with CPP_LINE_DIRECTIVES (see Section 20.6.4 [Other Customization Variables|, page 192),
though there is normally no reason to do so.

For those few programs (M4, CPP, Texinfo) which need to document ‘#line’ direc-
tives and therefore have examples which would otherwise match the pattern, the command
@hashchar{} can be used (see Section 12.1.5 [Inserting a Hashsign], page 104). The example
line above looks like this in the source for this manual:

@hashchar{}1line 100 "foo.ptexi"

The @hashchar command was added to Texinfo in 2013. If you don’t want to rely on it,
you can also use @set and @value to insert the literal ‘#’:

O@set hash #
@value{hash}line 1 "example.c"

Or, if suitable, a @verbatim environment can be used instead of @example. As mentioned
above, #line-recognition is disabled inside verbatim blocks.

17.6.2 ‘#line’ and TEX

As mentioned, makeinfo recognizes the ‘#line’ directives described in the previous section.
However, texinfo.tex does not and cannot. Therefore, such a line will be incorrectly
typeset verbatim if TEX sees it. The solution is to use makeinfo’s macro expansion options
before running TEX. There are three approaches:

e If yourun texi2dvi or its variants (see Section 19.2 [Format with texi2dvi], page 163),
you can pass -E and texi2dvi will run makeinfo first to expand macros and eliminate
‘#line’.

e If you run makeinfo or its variants (see Chapter 20 [Generic Translator texi2any],
page 176), you can specify --no-ifinfo --iftex -E somefile.out, and then give
somefile.out to texi2dvi in a separate command.

e Or you can run makeinfo --dvi --Xopt -E. (Or --pdf instead of --dvi.) makeinfo
will then call texi2dvi -E.

One last caveat regarding use with TEX: since the #line directives are not recognized,
the line numbers emitted by the @errormsg{} command (see Section 16.1 [Conditional
Commands|, page 139), or by TEX itself, are the (incorrect) line numbers from the derived
file which TEX is reading, rather than the preprocessor-specified line numbers. This is
another example of why we recommend running makeinfo for the best diagnostics (see
Section 21.1.1 [makeinfo Advantages], page 201).

17.6.3 ‘#line’ Syntax Details

Syntax details for the ‘#line’ directive: the ‘#’ character can be preceded or followed by
whitespace, the word ‘line’ is optional, and the file name can be followed by a whitespace-
separated list of integers (these are so-called “flags” output by CPP in some cases). For those
who like to know the gory details, the actual (Perl) regular expression which is matched is
this:

/" \s*#\s*(line)? (\d+) (C "([""1+)") (\s+\d+)*) ?\s*$/

As far as we’ve been able to tell, the trailing integer flags only occur in conjunction with
a filename, so that is reflected in the regular expression.

Chapter 17: Defining New Texinfo Commands 158

As an example, the following is a syntactically valid ‘#1line’ directive, meaning line 1 of
/usr/include/stdio.h:
1 "/usr/include/stdio.h" 2 3 4
Unfortunately, the quoted filename (‘"..."’) has to be optional, because M4 (especially)
can often generate ‘#line’ directives within a single file. Since the ‘line’ is also optional,
the result is that lines might match which you wouldn’t expect, e.g.,
1
The possible solutions are described above (see Section 17.6.1 [‘#line’ Directivel,
page 156).

159

18 Include Files

When a Texinfo processor sees an @include command in a Texinfo file, it processes the
contents of the file named by the @include and incorporates them into the output files
being created. Include files thus let you keep a single large document as a collection of
conveniently small parts.

18.1 How to Use Include Files

To include another file within a Texinfo file, write the @include command at the beginning
of a line and follow it on the same line by the name of a file to be included. For example:

@include buffers.texi

@-commands are expanded in file names. The one most likely to be useful is @value
(see Section 16.5.1 [@set @value], page 143), and even then only in complicated situations.

An included file should simply be a segment of text that you expect to be included as is
into the overall or outer Texinfo file; it should not contain the standard beginning and end
parts of a Texinfo file. In particular, you should not start an included file with a line saying
“\input texinfo’; if you do, that text is inserted into the output file literally. Likewise,
you should not end an included file with a @bye command; nothing after @bye is formatted.

In the long-ago past, you were required to write an @setfilename line at the beginning
of an included file, but no longer. Now, it does not matter whether you write such a line.
If an @setfilename line exists in an included file, it is ignored.

18.2 texinfo-multiple-files-update

GNU Emacs Texinfo mode provides the texinfo-multiple-files-update command. This
command creates or updates ‘Next’, ‘Previous’, and ‘Up’ pointers of included files as well as
those in the outer or overall Texinfo file, and it creates or updates a main menu in the outer
file. Depending on whether you call it with optional arguments, the command updates only
the pointers in the first @node line of the included files or all of them:

M-x texinfo-multiple-files-update
Called without any arguments:

— Create or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of the first @node
line in each file included in an outer or overall Texinfo file.

— Create or update the ‘Top’ level node pointers of the outer or overall file.
— Create or update a main menu in the outer file.
C-u M-x texinfo-multiple-files-update
Called with C-u as a prefix argument:
— Create or update pointers in the first @node line in each included file.
— Create or update the ‘Top’ level node pointers of the outer file.

— Create and insert a master menu in the outer file. The master menu is
made from all the menus in all the included files.

Chapter 18: Include Files 160

C-u 8 M-x texinfo-multiple-files—-update
Called with a numeric prefix argument, such as C-u 8:

— Create or update all the ‘Next’, ‘Previous’, and ‘Up’ pointers of all the
included files.

— Create or update all the menus of all the included files.
— Create or update the ‘Top’ level node pointers of the outer or overall file.

— And then create a master menu in the outer file. This is similar to invoking
texinfo-master-menu with an argument when you are working with just
one file.

Note the use of the prefix argument in interactive use: with a regular prefix argument,
just C-u, the texinfo-multiple-files-update command inserts a master menu; with a
numeric prefix argument, such as C-u 8, the command updates every pointer and menu in
all the files and then inserts a master menu.

18.3 Include Files Requirements

If you plan to use the texinfo-multiple-files-update command, the outer Texinfo file
that lists included files within it should contain nothing but the beginning and end parts
of a Texinfo file, and a number of @include commands listing the included files. It should
not even include indices, which should be listed in an included file of their own.

Moreover, each of the included files must contain exactly one highest level node (conven-
tionally, @chapter or equivalent), and this node must be the first node in the included file.
Furthermore, each of these highest level nodes in each included file must be at the same
hierarchical level in the file structure. Usually, each is a @chapter, an @appendix, or an
@unnumbered node. Thus, normally, each included file contains one, and only one, chapter
or equivalent-level node.

The outer file should contain only one node, the ‘Top’ node. It should not contain any
nodes besides the single ‘Top’ node. The texinfo-multiple-files-update command will
not process them.

18.4 Sample File with @include

Here is an example of an outer Texinfo file with @include files within it before running
texinfo-multiple-files-update, which would insert a main or master menu:

\input texinfo @c -*-texinfo-*-
@settitle Include Example

. See Appendix C [Sample Texinfo Files], page 252, for
examples of the rest of the frontmatter ...

@ifnottex

OGnode Top

Q@top Include Example
Q@end ifnottex

Chapter 18: Include Files 161

@include foo.texinfo
@include bar.texinfo
@include concept-index.texinfo
@bye
An included file, such as foo.texinfo, might look like this:

Onode First
Q@chapter First Chapter

Contents of first chapter ...
The full contents of concept-index.texinfo might be as simple as this:

Onode Concept Index
@unnumbered Concept Index

Oprintindex cp
The outer Texinfo source file for The GNU Emacs Lisp Reference Manual is named
elisp.texi. This outer file contains a master menu with 417 entries and a list of 41
@include files.

18.5 @verbatiminclude file: Include a File Verbatim

You can include the exact contents of a file in the document with the @verbatiminclude
command:

Qverbatiminclude filename

The contents of filename is printed in a verbatim environment (see Section 8.5
[@verbatim|, page 75). Generally, the file is printed exactly as it is, with all special
characters and white space retained. No indentation is added; if you want indentation,
enclose the @verbatiminclude within @example (see Section 8.4 [@example|, page 74).

The name of the file is taken literally, with a single exception: @value{var} references are
expanded. This makes it possible to include files in other directories within a distribution,
for instance:

Q@uerbatiminclude @value{top_srcdir}/NEWS
(You still have to get top_srcdir defined in the first place.)

For a method on printing the file contents in a smaller font size, see the end of the section
on @verbatim.

18.6 Evolution of Include Files

When Info was first created, it was customary to create many small Info files on one subject.
Each Info file was formatted from its own Texinfo source file. This custom meant that Emacs
did not need to make a large buffer to hold the whole of a large Info file when someone
wanted information; instead, Emacs allocated just enough memory for the small Info file
that contained the particular information sought. This way, Emacs could avoid wasting
memory.

References from one file to another were made by referring to the file name as well
as the node name. (See Section 4.9.6 [Referring to Other Info Files|, page 41. Also, see
Section 6.4.4 [@xref with Four and Five Arguments|, page 53.)

162

Include files were designed primarily as a way to create a single, large printed manual
out of several smaller Info files. In a printed manual, all the references were within the same
document, so TEX could automatically determine the references’ page numbers. The Info
formatting commands used include files only for creating joint indices; each of the individual
Texinfo files had to be formatted for Info individually. (Each, therefore, required its own
@setfilename line.)

However, because large Info files are now split automatically, it is no longer necessary to
keep them small.

Nowadays, multiple Texinfo files are used mostly for large documents, such as The GNU
Emacs Lisp Reference Manual, and for projects in which several different people write
different sections of a document simultaneously.

In addition, the Info formatting commands have been extended to work with the
@include command so as to create a single large Info file that is split into smaller files if
necessary. This means that you can write menus and cross-references without naming the
different Texinfo files.

163

19 Formatting and Printing Hardcopy

Running the texi2dvi or texi2pdf command is the simplest way to create printable output.
These commands are installed as part of the Texinfo package.

In more detail, three major shell commands are used to print formatted output from
a Texinfo manual: one converts the Texinfo source into something printable, a second
sorts indices, and a third actually prints the formatted document. When you use the shell
commands, you can either work directly in the operating system shell or work within a shell
inside GNU Emacs (or some other computing environment).

If you are using GNU Emacs, you can use commands provided by Texinfo mode instead
of shell commands. In addition to the three commands to format a file, sort the indices,
and print the result, Texinfo mode offers key bindings for commands to recenter the output
buffer, show the print queue, and delete a job from the print queue.

Details are in the following sections.

19.1 Use TEX

The typesetting program called TEX is used to format a Texinfo document for printable
output. TEX is a very powerful typesetting program and, when used correctly, does an
exceptionally good job.

See Section 19.16 [Obtaining TEX], page 175, for information on how to obtain TEX. It
is not included in the Texinfo package, being a vast suite of software in itself.

19.2 Format with texi2dvi

The texi2dvi program takes care of all the steps for producing a TEX DVI file from a
Texinfo document. Similarly, texi2pdf produces a PDF file.

To run texi2dvi or texi2pdf on an input file foo.texi, do this (where ‘prompt$ ’ is
your shell prompt):

prompt$ texi2dvi foo.texi
prompt$ texiZpdf foo.texi

As shown in this example, the input filenames to texi2dvi and texi2pdf must include
any extension, such as ‘.texi’. (Under MS-DOS and perhaps in other circumstances, you
may need to run ‘sh texi2dvi foo.texi’ instead of relying on the operating system to
invoke the shell on the ‘texi2dvi’ script.)

For a list of all the options, run ‘texi2dvi --help’. Some of the options are discussed
below.

With the --pdf option, texi2dvi produces PDF output instead of DVI (see Section 19.15
[PDF Output], page 174), by running pdftex instead of tex. Alternatively, the command
texi2pdf is an abbreviation for running ‘texi2dvi --pdf’. The command pdftexi2dvi
is also provided as a convenience for AUC-TEX (see AUC-TEX), as it prefers to merely
prepend ‘pdf’ to DVI producing tools to have PDF producing tools.

With the --dvipdf option, texi2dvi produces PDF output by running TEX and then a
DVI-to-PDF program: if the DVIPDF environment variable is set, that value is used, else the
first program extant among dvipdfmx, dvipdfm, dvipdf, dvi2pdf, dvitopdf. This method
generally supports CJK typesetting better than pdftex.

Chapter 19: Formatting and Printing Hardcopy 164

With the --ps option, texi2dvi produces PostScript instead of DVI, by running tex
and then dvips (see Dvips). (Or the value of the DVIPS environment variable, if set.)

texi2dvi can also be used to process KTEX files. Normally texi2dvi is able to guess
the input file language by its contents and file name extension; however, if it guesses wrong
you can explicitly specify the input language using --language=lang command line option,
where lang is either ‘latex’ or ‘texinfo’.

One useful option to texi2dvi is ‘~-command=cmd’. This inserts cmd on a line by itself,
after a @setfilename line in a temporary copy of the input file, before running TEX. With
this, you can specify different printing formats, such as @smallbook (see Section 19.11
[@smallbook|, page 172), @afourpaper (see Section 19.12 [A4 Paper|, page 173), or
Opagesizes (see Section 19.13 [@pagesizes|, page 173), without actually changing the
document source. (You can also do this on a site-wide basis with texinfo.cnf; see
Section 19.9 [Preparing for TEX], page 170).

The option -E (equivalently, —e and --expand) does Texinfo macro expansion using
makeinfo instead of the TEX implementation (see Section 17.3 [Macro Details], page 152).
Each implementation has its own limitations and advantages. If this option is used, no line
in the source file may begin with the string @c _texi2dvi or the string @c (_texi2dvi).

texi2dvi takes the —-build=mode option to specify where the TEX compilation takes
place, and, as a consequence, how auxiliary files are treated. The build mode can also be
set using the environment variable TEXI2DVI_BUILD_MODE. The valid values for mode are:

‘local’ Compile in the current directory, leaving all the auxiliary files around. This is
the traditional TeX use.

‘tidy’ Compile in a local *.t2d directory, where the auxiliary files are left. Output
files are copied back to the original file.
Using the ‘tidy’ mode brings several advantages:
- the current directory is not cluttered with plethora of temporary files.

- clutter can be even further reduced using --build-dir=dir: all the *.t2d
directories are stored there.

- clutter can be reduced to zero using, e.g., ——build-dir=/tmp/\$USER. t2d
or ——build-dir=\$HOME/.t2d.

- the output file is updated after every successful TEX run, for sake of con-
current visualization of the output. In a ‘local’ build the viewer stops
during the whole TEX run.

- if the compilation fails, the previous state of the output file is preserved.

- PDF and DVI compilation are kept in separate subdirectories preventing
any possibility of auxiliary file incompatibility.

On the other hand, because ‘tidy’ compilation takes place in another di-
rectory, occasionally TEX won’t be able to find some files (e.g., when using
\graphicspath): in that case, use -I to specify the additional directories to
consider.

‘clean’ Same as ‘tidy’, but remove the auxiliary directory afterwards. Every compila-
tion therefore requires the full cycle.

Chapter 19: Formatting and Printing Hardcopy 165

texi2dvi will use etex (or pdfetex) if it is available, because it runs faster in some cases,
and provides additional tracing information when debugging texinfo.tex. Nevertheless,
this extended version of TEX is not required, and the DVI output is identical. (These days,
pdftex and pdfetex are exactly the same, but we still run pdfetex to cater to ancient TEX
installations.)

texi2dvi attempts to detect auxiliary files output by TEX, either by using the -recorder
option, or by scanning for ‘\openout’ in the log file that a run of TEX produces. You may
control how texi2dvi does this with the TEXI2DVI_USE_RECORDER environment variable.
Valid values are:

‘yes’ use the -recorder option, no checks.
‘no’ scan for ‘\openout’ in the log file, no checks.
‘yesmaybe’

check whether -recorder option is supported, and if yes use it, otherwise check
for tracing ‘\openout’ in the log file is supported, and if yes use it, else it is an
error.

‘nomaybe’ same as ‘yesmaybe’, except that the ‘\openout’ trace in log file is checked first.

The default is ‘nomaybe’. This environment variable is provided for troubleshooting
purposes, and may change or disappear in the future.

19.3 Format with tex/texindex

You can do the basic formatting of a Texinfo file with the shell command tex followed by
the name of the Texinfo file. For example:

tex foo.texi

TEX will produce a DVI file as well as several auxiliary files containing information for
indices, cross-references, etc. The DVI file (for DeVice Independent file) can be printed on
virtually any device, perhaps after a further conversion (see the previous section).

The tex formatting command itself does not sort the indices; it writes an output file
of unsorted index data. To generate a printed index after running the tex command, you
first need a sorted index to work from. The texindex command sorts indices. (texi2dvi,
described in the previous section, runs tex and texindex as necessary.)

tex outputs unsorted index files under names following a standard convention: the name
of your main input file with any ‘.texi’ or similar extension replaced by the two letter index
name. For example, the raw index output files for the input file foo.texi would be, by
default, foo.cp, foo.vr, foo.fn, foo.tp, foo.pg and foo.ky. Those are exactly the
arguments to give to texindex.

Instead of specifying all the unsorted index file names explicitly, it’s typical to use ‘77’
as shell wildcards and give the command in this form:
texindex foo.77?
This command will run texindex on all the unsorted index files, including any two letter
indices that you have defined yourself using @defindex or @defcodeindex. You can safely

run ‘texindex foo.?7?’ even if there are files with two letter extensions that are not index
files, such as ‘foo.el’. The texindex command reports but otherwise ignores such files.

Chapter 19: Formatting and Printing Hardcopy 166

For each file specified, texindex generates a sorted index file whose name is made by
appending ‘s’ to the input file name; for example, foo.cps is made from foo.cp. The
@printindex command looks for a file with that name (see Section 11.4 [Printing Indices
& Menus], page 99). TEX does not read the raw index output file, and texindex does not
alter it.

After you have sorted the indices, you need to rerun tex on the Texinfo file. This
regenerates the output file, this time with up-to-date index entries.

Finally, you may need to run tex one more time, to get the page numbers in the cross-
references correct.

To summarize, this is a five step process. (Alternatively, it’s a one-step process: run
texi2dvij; see the previous section.)

1. Run tex on your Texinfo file. This generates a DVI file (with undefined cross-references
and no indices), and the raw index files (with two letter extensions).

2. Run texindex on the raw index files. This creates the corresponding sorted index files
(with three letter extensions).

3. Run tex again on your Texinfo file. This regenerates the DVI file, this time with indices
and defined cross-references, but with page numbers for the cross-references from the
previous run, generally incorrect.

4. Sort the indices again, with texindex.

5. Run tex one last time. This time the correct page numbers are written for the cross-
references.

19.3.1 Formatting Partial Documents

Sometimes you may wish to print a document while you know it is incomplete, or to print
just one chapter of a document. In such a case, the usual auxiliary files that TEX creates
and warnings TEX gives about undefined cross-references are just nuisances. You can avoid
them with the @novalidate command, which you must give before any sectioning or cross-
reference commands.

Thus, the beginning of your file would look approximately like this:

\input texinfo
Onovalidate

@novalidate also turns off validation in makeinfo, just like its ~—no-validate option (see
Section 20.5 [Pointer Validation], page 184).

Furthermore, you need not run texindex each time after you run tex. The tex format-
ting command simply uses whatever sorted index files happen to exist from a previous use
of texindex. If those are out of date, that is usually ok while you are creating or debugging
a document.

19.3.2 Details of texindex

In Texinfo version 6, released in 2015, the texindex program was completely reimplemented.
The principal functional difference is that index entries beginning with a left brace or right
brace (‘{’ resp. ‘}’) can work properly. For example, these simple index entries are processed
correctly, including the “index initial” shown in the index:

Q@cindex @{

Chapter 19: Formatting and Printing Hardcopy 167

O@cindex @}

O@printindex cp
However, to enable this behavior, it’s necessary (for the time being) to give a special
option to TEX early in a source document:

Otex
\global\usebracesinindexestrue
Q@end tex

This is because the previous texindex implementation aborted with an incorrect error
message (‘No page number in \entry...’) on such index entries when handled in the nor-
mal way. Therefore TEX wrote out an incorrect “sort string” using the ‘|’ character; this
did not affect the text of the entry, but the index initial was the incorrect ‘|’, and sorting
was not perfect.

Because of that fatal error, and because relatively few documents have index entries
beginning with braces, we want to provide some transition time for installations to have
the new texindex. At some point in the future, we’ll make \usebracesinindexes true by
default (the above TEX code will continue to work fine).

Although not a matter of functionality, readers may be interested to know
that the new texindex is a literate program (http: //en . wikipedia . org/wiki /
Literate_programming) using Texinfo for documentation and (portable) awk for code.
A single source file, texindex/ti.twjr in this case, produces the runnable program, a
printable document, and an online document.

The system is called TexiWeb Jr. and was created by Arnold Robbins, who also wrote
the new texindex. Not coincidentally, he is also the long-time maintainer of gawk (GNU
Awk, see The GNU Awk User’s Guide). The file texindex/Makefile.am shows example
usage of the system.

19.4 Print with 1pr from Shell

The way to print a DVI file depends on your system installation. Two common ones are
‘dvips foo.dvi -o’ to make a PostScript file first and then print that, and ‘1pr -d foo.dvi’
to print a DVI file directly.

For example, the following commands will (probably) suffice to sort the indices, for-
mat, and print this manual using the texi2dvi shell script (see Section 19.2 [Format with
texi2dvil, page 163).

texi2dvi texinfo.texi
dvips texinfo.dvi -o
lpr texinfo.ps

Depending on the 1pr setup on your machine, you might able to combine the last two
steps into 1pr -d texinfo.dvi.

You can also generate a PDF file by running texi2pdf instead of texi2dvi; a PDF is
often directly printable. Or you can generate a PCL file by using dvilj instead of dvips,
if you have a printer that prefers that format.

1pr is a standard program on Unix systems, but it is usually absent on MS-DOS/MS-
Windows. If so, just create a PostScript or PDF or PCL file, whatever is most convenient,

http://en.wikipedia.org/wiki/Literate_programming
http://en.wikipedia.org/wiki/Literate_programming

Chapter 19: Formatting and Printing Hardcopy 168

and print that in the usual way for your machine (e.g., by sending to the appropriate port,
usually ‘PRN’).

19.5 Printing From an Emacs Shell

You can give formatting and printing commands from a shell within GNU Emacs, just like
any other shell command. To create a shell within Emacs, type M-x shell (see Section
“Shell” in The GNU Emacs Manual). In this shell, you can format and print the document.
See Chapter 19 [Format and Print Hardcopy]|, page 163, for details.

You can switch to and from the shell buffer while tex is running and do other editing.
If you are formatting a long document on a slow machine, this can be very convenient.

For example, you can use texi2dvi from an Emacs shell. Here is one way to use
texi2pdf to format and print Using and Porting GNU CC from a shell within Emacs:

texi2pdf gcc.texi
lpr gcc.pdf
See the next section for more information about formatting and printing in Texinfo
mode.

19.6 Formatting and Printing in Texinfo Mode

Texinfo mode provides several predefined key commands for TEX formatting and print-
ing. These include commands for sorting indices, looking at the printer queue, killing the
formatting job, and recentering the display of the buffer in which the operations occur.

C-c C-t C-b
M-x texinfo-tex-buffer
Run texi2dvi on the current buffer.

C-c C-t C-r
M-x texinfo-tex-region
Run TEX on the current region.

C-c C-t C-1
M-x texinfo-texindex
Sort the indices of a Texinfo file formatted with texinfo-tex-region.

C-c C-t C-p

M-x texinfo-tex-print
Print a DVI file that was made with texinfo-tex-region or texinfo-tex-
buffer.

C-c C-t C—q
M-x tex-show-print-queue
Show the print queue.

C-c C-t C-d

M-x texinfo-delete-from-print—-queue
Delete a job from the print queue; you will be prompted for the job num-
ber shown by a preceding C-c C-t C-q command (texinfo-show-tex-print-
queue).

Chapter 19: Formatting and Printing Hardcopy 169

C-c C-t C-k

M-x tex—kill-job
Kill the currently running TEX job started by either texinfo-tex-region or
texinfo-tex-buffer, or any other process running in the Texinfo shell buffer.

C-c C-t C-x

M-x texinfo-quit-job
Quit a TEX formatting job that has stopped because of an error by sending an
x to it. When you do this, TEX preserves a record of what it did in a .log file.

C-c C-t C-1

M-x tex-recenter-output-buffer
Redisplay the shell buffer in which the TEX printing and formatting commands
are run to show its most recent output.

Thus, the usual sequence of commands for formatting a buffer is as follows (with com-
ments to the right):

C-c C-t C-b Run texi2dvi on the buffer.
C-c C-t C-p Print the DVI file.
C-c C-t C—q Display the printer queue.

The Texinfo mode TEX formatting commands start a subshell in Emacs called the
tex-shell. The texinfo-tex-command, texinfo-texindex-command, and tex-dvi-
print-command commands are all run in this shell.

You can watch the commands operate in the ‘*tex-shell#’ buffer, and you can switch
to and from and use the ‘*tex-shell*’ buffer as you would any other shell buffer.

The formatting and print commands depend on the values of several variables. The
default values are:

Variable Default value
texinfo-texi2dvi-command "texi2dvi"
texinfo-tex-command "tex"
texinfo-texindex-command "texindex"
texinfo-delete-from-print-queue-command "lprm"
texinfo-tex-trailer "@bye"
tex-start-of-header "Yxxstart"
tex-end-of-header "Yxkend"
tex-dvi-print-command "lpr -d"
tex-show-queue-command "lpq"

You can change the values of these variables with the M-x set-variable command (see
Section “Examining and Setting Variables” in The GNU Emacs Manual), or with your
.emacs initialization file (see Section “Init File” in The GNU Emacs Manual).

Beginning with version 20, GNU Emacs offers a user-friendly interface, called Customize,
for changing values of user-definable variables. See Section “Easy Customization Interface”
in The GNU Emacs Manual, for more details about this. The Texinfo variables can be found
in the ‘Development/Docs/Texinfo’ group, once you invoke the M-x customize command.

Chapter 19: Formatting and Printing Hardcopy 170

19.7 Using the Local Variables List

Yet another way to apply the TEX formatting command to a Texinfo file is to put that
command in a local variables list at the end of the Texinfo file. You can then specify the
tex or texi2dvi commands as a compile-command and have Emacs run it by typing M-x
compile. This creates a special shell called the *compilation* buffer in which Emacs runs
the compile command. For example, at the end of the gdb.texi file, after the @bye, you
could put the following:

Local Variables:
compile-command: "texi2dvi gdb.texi"
End:

This technique is most often used by programmers who also compile programs this way; see
Section “Compilation” in The GNU Emacs Manual.

19.8 TEX Formatting Requirements Summary
Every Texinfo file that is to be input to TEX must begin with a \input command:

\input texinfo
This instructs TEX to load the macros it needs to process a Texinfo file.

Every Texinfo file must end with a line that terminates TEX’s processing and forces out
unfinished pages:

Q@bye
Strictly speaking, these two lines are all a Texinfo file needs to be processed successfully
by TEX.
Usually, however, the beginning includes a @settitle command to define the title of
the printed manual, a title page, a copyright page, permissions, and a table of contents.

Besides @bye, the end of a file usually includes indices. (Not to mention that most manuals
contain a body of text as well.)

For more information, see:
e Section 3.2.4 [@settitle], page 18.
e Section 3.7.2 [@setchapternewpage|, page 27.

Appendix E [Headings|, page 270.

Section 3.4 [Titlepage & Copyright Page], page 20.

Section 11.4 [Printing Indices & Menus|, page 99.

Section 3.5 [Contents], page 24.

19.9 Preparing for TEX

TEX needs to know where to find the texinfo.tex file that the ‘\input texinfo’ command
on the first line reads. The texinfo.tex file tells TEX how to handle @-commands; it is
included in all standard GNU distributions. The latest version released for general use is
available from the usual GNU servers and mirrors:

http://ftp.gnu.org/gnu/texinfo/texinfo.tex
http://ftpmirror.gnu.org/texinfo/texinfo.tex

http://ftp.gnu.org/gnu/texinfo/texinfo.tex
http://ftpmirror.gnu.org/texinfo/texinfo.tex

Chapter 19: Formatting and Printing Hardcopy 171

The latest development version is available from the Texinfo source repository:

http://svn.savannah.gnu.org/viewvc/trunk/doc/texinfo.tex?root=texinfo&view=log

texinfo.tex is essentially a standalone file, and compatibility is of utmost concern; so,
if you need or want to try a newer version than came with your system, it nearly always
suffices to download it and put it anywhere that TEX will find it (first). You can replace
any existing texinfo.tex with a newer version (of course saving the original in case of
disaster).

Also, you should install epsf . tex, if it is not already installed from another distribution.
More details are at the end of the description of the @image command (see Section 10.2
[Images], page 92).

To use quotation marks other than those used in English, you’ll need to have the Euro-
pean Computer Modern fonts (e.g., ecrm1000) and (for PDF output) CM-Super fonts (see
Section 12.5 [Inserting Quotation Marks|, page 109).

To use the @euro command, you’ll need the ‘feymx’ fonts (e.g., feymr10). See
Section 12.8.6 [@euro], page 113.

All of the above files (and a whole lot more) should be installed by default in a reasonable
TEX installation.

Optionally, you may create a file texinfo.cnf for site configuration. This file is read by
TEX at the beginning of a Texinfo file. You can put any commands you like there, according
to local site-wide conventions. They will be read by TEX when processing any Texinfo
document. For example, if texinfo.cnf contains the line ‘Gafourpaper’ (see Section 19.12
[A4 Paper], page 173), then all Texinfo documents will be processed with that page size in
effect. If you have nothing to put in texinfo.cnf, you do not need to create it.

If neither of the above locations for these system files suffice, you can specify the di-
rectories explicitly. For texinfo.tex, you can do this by writing the complete path for
the file after the \input command. Another way, that works for both texinfo.tex and
texinfo.cnf (and any other file TEX might read), is to set the TEXINPUTS environment
variable in your .profile or .cshrec file.

Whether you use .profile or .cshrc depends on whether you use a Bourne shell-
compatible (sh, bash, ksh, ...) or C shell-compatible (csh, tcsh) command interpreter,
respeictvely.

In a .profile file, you could use the following sh command sequence:

TEXINPUTS=. : /home/me/mylib:
export TEXINPUTS

While in a .cshrec file, you could use the following csh command sequence:
setenv TEXINPUTS .:/home/me/mylib:

On MS-DOS/MS-Windows, you’d do this (note the use of the ¢;’ character as directory
separator, instead of ‘:"):
set TEXINPUTS=.;d:/home/me/mylib;c:
It is customary for DOS/Windows users to put such commands in the autoexec.bat file,
or in the Windows registry.

These settings would cause TEX to look for \input file first in the current directory, indi-
cated by the ‘.’, then in a hypothetical user ‘me’’s mylib directory, and finally in the system

http://svn.savannah.gnu.org/viewvc/trunk/doc/texinfo.tex?root=texinfo&view=log

Chapter 19: Formatting and Printing Hardcopy 172

directories. (A leading, trailing, or doubled :’ indicates searching the system directories at
that point.)

19.10 Overfull “hboxes”

TEX is sometimes unable to typeset a line within the normal margins. This most often
occurs when TEX comes upon what it interprets as a long word that it cannot hyphenate,
such as an electronic mail network address or a very long identifier. When this happens,
TEX prints an error message like this:

Overfull @hbox (20.76302pt too wide)

(In TEX, lines are in “horizontal boxes”, hence the term, “hbox”. ‘@hbox’ is a TEX primitive
not used in the Texinfo language.)

TEX also provides the line number in the Texinfo source file and the text of the offending
line, which is marked at all the places that TEX considered hyphenation. See Section F.3
[Debugging with TEX], page 276, for more information about typesetting errors.

If the Texinfo file has an overfull hbox, you can rewrite the sentence so the overfull hbox
does not occur, or you can decide to leave it. A small excursion into the right margin often
does not matter and may not even be noticeable.

If you have many overfull boxes and/or an antipathy to rewriting, you can coerce TEX
into greatly increasing the allowable interword spacing, thus (if you're lucky) avoiding many
of the bad line breaks, like this:

Otex
\global\emergencystretch = .9\hsize
Q@end tex

(You should adjust the fraction as needed.) This huge value for \emergencystretch cannot
be the default, since then the typeset output would generally be of noticeably lower quality;
its default value is ‘. 15\hsize’. \hsize is the TEX dimension containing the current line
width.

For any overfull boxes you do have, TgX will print a large, ugly, black rectangle beside
the line that contains the overfull hbox unless told otherwise. This is so you will notice the
location of the problem if you are correcting a draft.

To prevent such a monstrosity from marring your final printout, write the following in
the beginning of the Texinfo file on a line of its own, before the @titlepage command:

@finalout

19.11 @smallbook: Printing “Small” Books

By default, TEX typesets pages for printing in an 8.5 by 11 inch format. However, you can
direct TEX to typeset a document in a 7 by 9.25 inch format that is suitable for bound
books by inserting the following command on a line by itself at the beginning of the Texinfo
file, before the title page:

@smallbook

(Since many books are about 7 by 9.25 inches, this command might better have been called
the @regularbooksize command, but it came to be called the @smallbook command by
comparison to the 8.5 by 11 inch format.)

Chapter 19: Formatting and Printing Hardcopy 173

If you write the @smallbook command between the start-of-header and end-of-header
lines, the Texinfo mode TEX region formatting command, texinfo-tex-region, will format
the region in “small” book size (see Section 3.2.2 [Start of Header]|, page 17).

See Section 8.15 [@small...], page 80, for information about commands that make it
easier to produce examples for a smaller manual.

See Section 19.2 [Format with texi2dvi], page 163, and Section 19.9 [Preparing for
TEX], page 170, for other ways to format with @smallbook that do not require changing
the source file.

19.12 Printing on A4 Paper

You can tell TEX to format a document for printing on European size A4 paper (or Ab)
with the @afourpaper (or @afivepaper) command. Write the command on a line by itself
near the beginning of the Texinfo file, before the title page. For example, this is how you
would write the header for this manual:

\input texinfo Qc —*-texinfo-*-
@c %**start of header

@settitle Texinfo

O@afourpaper

@c Y**end of header

See Section 19.2 [Format with texi2dvi|, page 163, and Section 19.9 [Preparing for TEX],
page 170, for other ways to format for different paper sizes that do not require changing
the source file.

You may or may not prefer the formatting that results from the command @afourlatex.
There’s also @afourwide for A4 paper in wide format.

19.13 @pagesizes [width][, height]: Custom Page Sizes

You can explicitly specify the height and (optionally) width of the main text area on the
page with the @pagesizes command. Write this on a line by itself near the beginning of
the Texinfo file, before the title page. The height comes first, then the width if desired,
separated by a comma. Examples:

Opagesizes 200mm, 150mm
and
Opagesizes 11.5in

This would be reasonable for printing on B5-size paper. To emphasize, this command
specifies the size of the text area, not the size of the paper (which is 250 mm by 177 mm for
B5, 14in by 8.51in for legal).

To make more elaborate changes, such as changing any of the page margins, you must
define a new command in texinfo.tex or texinfo.cnf.

See Section 19.2 [Format with texi2dvi], page 163, and Section 19.9 [Preparing for
TEX], page 170, for other ways to specify @pagesizes that do not require changing the
source file.

Chapter 19: Formatting and Printing Hardcopy 174

19.14 Cropmarks and Magnification

You can (attempt to) direct TEX to print cropmarks at the corners of pages with the
Q@cropmarks command. Write the @cropmarks command on a line by itself near the begin-
ning of the Texinfo file, before the title page, like this:

O@cropmarks

This command is mainly for printers that typeset several pages on one sheet of film; but
you can attempt to use it to mark the corners of a book set to 7 by 9.25 inches with the
@smallbook command. (Printers will not produce cropmarks for regular sized output that
is printed on regular sized paper.) Since different printing machines work in different ways,
you should explore the use of this command with a spirit of adventure. You may have to
redefine the command in texinfo.tex.

The @cropmarks command is recognized and ignored in non-TEX output formats.

You can attempt to direct TEX to typeset pages larger or smaller than usual with the
\mag TEX command. Everything that is typeset is scaled proportionally larger or smaller.
(\mag stands for “magnification”.) This is not a Texinfo @-command, but is a raw TEX
command that is prefixed with a backslash. You have to write this command between @tex
and @end tex (see Section 16.3 [Raw Formatter Commands], page 141).

Follow the \mag command with an ‘=" and then a number that is 1000 times the magni-
fication you desire. For example, to print pages at 1.2 normal size, write the following near
the beginning of the Texinfo file, before the title page:

Qtex
\global\mag=1200
Q@end tex

With some printing technologies, you can print normal-sized copies that look better than
usual by giving a larger-than-normal master to your print shop. They do the reduction,
thus effectively increasing the resolution.

Depending on your system, DVI files prepared with a nonstandard-\mag may not print
or may print only with certain magnifications. Be prepared to experiment.

19.15 PDF Output

The simplest way to generate PDF output from Texinfo source is to run the convenience
script texi2pdf (or pdftexi2dvi); this executes the texi2dvi script with the —-pdf option
(see Section 19.2 [Format with texi2dvi], page 163). If for some reason you want to process
the document by hand, you can run the pdftex program instead of plain tex. That is, run
‘pdftex foo.texi’ instead of ‘tex foo.texi’.

PDF stands for ‘Portable Document Format’. It was invented by Adobe Systems some
years ago for document interchange, based on their PostScript language. Related links:

e GNU GV, a Ghostscript-based PDF reader (http://www.gnu.org/software/gv/).
(It can also preview PostScript documents.)

e xpdf, a freely available standalone PDF reader (http://www.foolabs.com/xpdf/) for
the X window system.

e PDF at Wikipedia (https://en.wikipedia.org/wiki/Portable_Document_Format).

http://www.gnu.org/software/gv/
http://www.foolabs.com/xpdf/
https://en.wikipedia.org/wiki/Portable_Document_Format

Chapter 19: Formatting and Printing Hardcopy 175

At present, Texinfo does not provide ‘@ifpdf’ or ‘@pdf’ commands as for the other output
formats, since PDF documents contain many internal low-level offsets and cross-references
that would be hard or impossible to specify at the Texinfo source level.

PDF files require dedicated software to be displayed, unlike the plain ASCII formats
(Info, HTML) that Texinfo supports. They also tend to be much larger than the DVT files
output by TEX by default. Nevertheless, a PDF file does define an actual typeset document
in a self-contained file, notably including all the fonts that are used, so it has its place.

19.16 Obtaining TEpX

TEX is a document formatter that is used by the FSF for its documentation. It is the easiest
way to get printed output (e.g., PDF and PostScript) for Texinfo manuals. TeX is freely
redistributable, and you can get it over the Internet or on physical media. See http://
tug.org/texlive.

http://tug.org/texlive
http://tug.org/texlive

176

20 texi2any: The Generic Translator for Texinfo

texil2any is the generic translator for Texinfo that can produce different output formats
and is highly customizable. It supports these formats:

Info (by default, or with --info),
HTML (with --html),

plain text (with --plaintext),
Docbook (with —-docbook),
Texinfo XML (with —-xm1).

makeinfo is an alias for texi2any. By default, both texi2any and makeinfo generate
Info output; indeed, there are no differences in behavior based on the name.

Beside these default formats, command line options to texi2any can change many as-
pects of the output. Beyond that, initialization files provide even more control over the final
output—mnearly anything not specified in the Texinfo input file. Initialization files are writ-
ten in Perl, like the main program, and anything which can be specified on the command
line can also be specified within a initialization file.

The rest of this chapter goes into the details.

20.1 texi2any: A Texinfo Reference Implementation

Above, we called texi2any “the” translator for Texinfo instead of just “a” translator, even
though (of course) it’s technically and legally possible for other implementations to be
written. The reason is that alternative implementations are very likely to have subtle, or
not-so-subtle, differences in behavior, and thus Texinfo documents would become dependent
on the processor. Therefore, it is important to have a reference implementation that defines
parts of the language not fully specified by the manual (often intentionally so). It is equally
important to have consistent command-line options and other behavior for all processors.

For this reason, the once-independent texi2html Perl Texinfo processor was made
compatible with the C implementation of makeinfo, to avoid continuing with two dif-
ferent implementations (see Section 1.6 [History], page 7). The current implementation,
texi2any, serves as the reference implementation. It inherited the design of customization
and other features from texi2html (for more on texi2html compatibility, see Section 20.9
[texi2html], page 198). However, texi2any is a full reimplementation: it constructs a
tree-based representation of the input document for all back-ends to work from.

Extensive tests of the language were developed at the same time as texiZ2any; we plead
with anyone thinking of writing a program to parse Texinfo input to at least make use of
these tests.

The texi2html wrapper script (see Section 20.9 [texi2html], page 198) provides a very
simple example of calling texi2any from a shell script; it’s in util/texi2html in the
Texinfo sources. More consequentially, texi-elements-by-size is an example Perl script
using the Texinfo::Parser module interface; it’s also in the util source directory. (Its
functionality may also be useful to authors; see [texi-elements-by-size|, page 250.)

With the release of texi2any as the reference implementation, development of both the
C implementation of makeinfo and texi2html has been halted. Going forward, we ask
authors of Texinfo documents to use only texi2any.

Chapter 20: texi2any: The Generic Translator for Texinfo 177

20.2 Invoking texi2any/makeinfo from a Shell

To process a Texinfo file, invoke texi2any or makeinfo (the two names are synonyms for
the same program; we’ll use the names interchangeably) followed by the name of the Texinfo
file. Also select the format you want to output with the appropriate command line option
(default is Info). Thus, to create the Info file for Bison, type the following to the shell:

texi2any --info bison.texinfo

You can specify more than one input file name; each is processed in turn. If an input
file name is ‘-’, standard input is read.

The texi2any program accepts many options. Perhaps the most basic are those that
change the output format. By default, texi2any outputs Info.

Y

Each command line option is either a long name preceded by ‘--’ or a single letter
preceded by ‘-=’. You can use abbreviations for the long option names as long as they are
unique.

For example, you could use the following shell command to create an Info file for
bison.texinfo in which lines are filled to only 68 columns:

texi2any --fill-column=68 bison.texinfo
You can write two or more options in sequence, like this:
texi2any --no-split --fill-column=70 ...

(This would keep the Info file together as one possibly very long file and would also set the
fill column to 70.)

The options are (approximately in alphabetical order):

—-—commands—-in-node—names
This option now does nothing, but remains for compatibility. (It used to ensure
that @-commands in node names were expanded throughout the document,
especially @value. This is now done by default.)

--conf-dir=path
Prepend path to the directory search list for finding customization files that
may be loaded with ——init-file (see below). The path value can be a single
directory, or a list of several directories separated by the usual path separator

character (‘:” on Unix-like systems, ‘;” on Windows).

--css-include=file
When producing HTML, literally include the contents of file, which should
contain W3C cascading style sheets specifications, in the ‘<style>’ block of
the HTML output. If file is ‘-’, read standard input. See Section 22.3 [HTML
CSS], page 213.

--css-ref=url
When producing HTML, add a ‘<1ink>’ tag to the output which references a
cascading style sheet at url. This allows using standalone style sheets.

-D var

-D 'var value'
Cause the Texinfo variable var to be defined. This is equivalent to @set var in
the Texinfo file (see Section 16.5 [@set @clear @value|, page 143).

Chapter 20: texi2any: The Generic Translator for Texinfo 178

The argument to the option is always one word to the shell; if it contains internal
whitespace, the first word is taken as the variable name and the remainder as the
value. For example, -D 'myvar someval' is equivalent to @set myvar someval.

--disable-encoding

—--enable-encoding
By default, or with --enable-encoding, output accented and special char-
acters in Info and plain text output based on ‘@documentencoding’. With
--disable-encoding, 7-bit ASCII transliterations are output. See Section 15.2
[@documentencoding], page 137, and Section 12.4 [Inserting Accents], page 108.

—--docbook
Generate Docbook output (rather than Info).

--document-language=lang
Use lang to translate Texinfo keywords which end up in the output document.
The default is the locale specified by the @documentlanguage command if there
is one, otherwise English (see Section 15.1 [@documentlanguage|, page 136).

-—dvi Generate a TeX DVI file using texi2dvi, rather than Info (see Section 20.4
[texi2any Printed Output], page 183).

--dvipdf Generate a PDF file using texi2dvi --dvipdf, rather than Info (see
Section 20.4 [texi2any Printed Output], page 183).

—-—error-limit=1imit
-e limit Report LIMIT errors before aborting (on the assumption that continuing would
be useless); default 100.

-—fill-column=width

-f width Specify the maximum number of columns in a line; this is the right-hand edge
of a line. Paragraphs that are filled will be filled to this width. (Filling is the
process of breaking up and connecting lines so that lines are the same length
as or shorter than the number specified as the fill column. Lines are broken
between words.) The default value is 72.

--footnote-style=style

-s style Set the footnote style to style: either ‘end’ for the end node style (the default)
or ‘separate’ for the separate node style. The value set by this option overrides
the value set in a Texinfo file by a @footnotestyle command (see Section 10.3.2
[Footnote Styles]|, page 95).

When the footnote style is ‘separate’, makeinfo makes a new node containing
the footnotes found in the current node. When the footnote style is ‘end’,
makeinfo places the footnote references at the end of the current node.

In HTML, when the footnote style is ‘end’, or if the output is not split, footnotes
are put at the end of the output. If set to ‘separate’, and the output is split,
they are placed in a separate file.

--force
-F Ordinarily, if the input file has errors, the output files are not created. With
this option, they are preserved.

Chapter 20: texi2any: The Generic Translator for Texinfo 179

--help
-h Print a message with available options and basic usage, then exit successfully.

--html Generate HTML output (rather than Info). By default, the HTML output is
split into one output file per Texinfo source node, and the split output is written
into a subdirectory based on the name of the top-level Info file. See Chapter 22
[Generating HTML], page 211.

-I path Append path to the directory search list for finding files that are included
using the @include command. By default, texi2any searches only the current
directory. If path is not given, the current directory is appended. The path
value can be a single directory or a list of several directories separated by the
usual path separator character (‘:’ on Unix-like systems, ‘;’ on Windows).

—--ifdocbook

—-—ifhtml

--ifinfo

--ifplaintext

—-—iftex

--ifxml For the given format, process ‘@if format’ and ‘@format’ commands, and do not
process ‘@ifnotformat’, regardless of the format being output. For instance, if
—--iftex is given, then ‘@iftex’ and ‘@tex’ blocks will be read, and ‘@ifnottex’
blocks will be ignored.

--info Generate Info output. By default, if the output file contains more than about
300,000 bytes, it is split into shorter subfiles of about that size. The name of the
output file and any subfiles is determined by @setfilename (see Section 3.2.3
[@setfilename], page 17). See Section 21.1.5 [Tag and Split Files], page 203.

—-—init-file=file
Load file as code to modify the behavior and output of the generated manual.
It is customary to use the .pm or the .init extensions for these customization
files, but that is not enforced; the file name can be anything. The --conf-dir
option (see above) can be used to add to the list of directories in which these
customization files are searched for.

—-—internal-links=file
In HTML mode, output a tab-separated file containing three columns: the
internal link to an indexed item or item in the table of contents, the name of
the index (or table of contents) in which it occurs, and the term which was
indexed or entered. The items are in the natural sorting order for the given
element. This dump can be useful for post-processors.

--macro-expand=file
-E file Output the Texinfo source, with all Texinfo macros expanded, to file. Normally,
the result of macro expansion is used internally by makeinfo and then discarded.

--no-headers
Do not include menus or node separator lines in the output.

When generating Info, this is the same as using --plaintext, resulting in a
simple plain text file. Furthermore, @setfilename is ignored, and output is

Chapter 20: texi2any: The Generic Translator for Texinfo 180

to standard output unless overridden with -o. (This behavior is for backward
compatibility.)

When generating HTML, and output is split, also output navigation links only
at the beginning of each file. If output is not split, do not include navigation
links at the top of each node at all. See Chapter 22 [Generating HTML)],
page 211.

--no-ifdocbook

--no-ifhtml

--no-ifinfo

--no-ifplaintext

--no-iftex

--no-ifxml
For the given format, do not process ‘@ifformat’ and ‘@format’ commands,
and do process ‘@ifnotformat’, regardless of the format being output. For
instance, if ——no-ifhtml is given, then ‘@ifhtml’ and ‘@html’ blocks will not
be read, and ‘@ifnothtml’ blocks will be.

--no-node-files

--node-files
When generating HTML, create redirection files for anchors and any nodes
not already output with the file name corresponding to the node name (see
Section 22.4.2 [HTML Xref Node Name Expansion], page 215). This makes it
possible for section- and chapter-level cross-manual references to succeed (see
Section 22.4.6 [HTML Xref Configuration], page 219).

If the output is split, this is enabled by default. If the output is not split,
--node-files enables the creation of the redirection files, in addition to the
monolithic main output file. ——no-node-files suppresses the creation of redi-
rection files in any case. This option has no effect with any output format other
than HTML. See Chapter 22 [Generating HTML], page 211.

—--no—number-footnotes
Suppress automatic footnote numbering. By default, footnotes are numbered
sequentially within a node, i.e., the current footnote number is reset to 1 at the
start of each node.

—--no-number-sections

—-—-number-sections
With --number_sections (the default), output chapter, section, and appendix
numbers as in printed manuals. This works only with hierarchically-structured
manuals. You should specify --no-number-sections if your manual is not
normally structured.

--no-pointer-validate

--no-validate
Suppress the pointer-validation phase of makeinfo—a dangerous thing to do.
This can also be done with the @novalidate command (see Section 19.1 [Use
TEX], page 163). Normally, consistency checks are made to ensure that cross-
references can be resolved, etc. See Section 20.5 [Pointer Validation], page 184.

Chapter 20: texi2any: The Generic Translator for Texinfo 181

——no—-warn

Suppress warning messages (but not error messages).

--output=~file

-o file

Specify that the output should be directed to file. This overrides any file name
specified in a @setfilename command found in the Texinfo source. If neither
@setfilename nor this option are specified, the input file name is used to
determine the output name. See Section 3.2.3 [@setfilename|, page 17.

If file is ‘=, output goes to standard output and ‘--no-split’ is implied.

If file is a directory or ends with a ‘/’ the usual rules are used to determine the
output file name (namely, use @setfilename or the input file name) but the files
are written to the file directory. For example, ‘makeinfo -o bar/ foo.texi’,
with or without —-no-split, will write bar/foo.info, and possibly other files,
under bar/.

When generating HTML and output is split, file is used as the name for the di-
rectory into which all files are written. For example, ‘makeinfo —-o bar —-html
foo.texi’ will write bar/index.html, among other files.

—--output-indent=val

-P path

This option now does nothing, but remains for compatibility. (It used to alter
indentation in XML /Docbook output.)

Prepend path to the directory search list for @include. If path is not given,
the current directory is prepended. See ‘-1’ above.

--paragraph-indent=indent
-p indent Set the paragraph indentation style to indent. The value set by this option

overrides the value set in a Texinfo file by an @paragraphindent command (see
Section 3.7.4 [@paragraphindent|, page 29). The value of indent is interpreted
as follows:

‘asis’ Preserve any existing indentation (or lack thereof) at the beginnings
of paragraphs.

‘0’ or ‘none’
Delete any existing indentation.

num Indent each paragraph by num spaces.

The default is to indent by two spaces, except for paragraphs following a section
heading, which are not indented.

——pdf Generate a PDF file using texi2dvi --pdf, rather than Info (see Section 20.4
[texi2any Printed Output], page 183).
--plaintext

Output a plain text file (rather than Info): do not include menus or node
separator lines in the output. This results in a straightforward plain text file
that you can (for example) send in email without complications, or include in
a distribution (for example, an INSTALL file).

With this option, @setfilename is ignored and the output goes to standard
output by default; this can be overridden with -o.

Chapter 20: texi2any: The Generic Translator for Texinfo 182

--ps Generate a PostScript file using texi2dvi --ps, rather than Info (see
Section 20.4 [texi2any Printed Output], page 183).

--set-customization-variable var=value

-c var=value
Set the customization variable var to value. The = is optional, but both var and
value must be quoted to the shell as necessary so the result is a single word.
Many aspects of texi2any behavior and output may be controlled by customiza-
tion variables, beyond what can be set in the document by @-commands and
with other command line switches. See Section 20.6 [Customization Variables],
page 184.

--split=how

--no-split
When generating Info, by default large output files are split into smaller subfiles,
of approximately 300k bytes. When generating HTML, by default each output
file contains one node (see Chapter 22 [Generating HTML], page 211). --no-
split suppresses this splitting of the output.

Alternatively, --split=how may be used to specify at which level the HTML
output should be split. The possible values for how are:

‘chapter’ The output is split at @chapter and other sectioning @-commands
at this level (@appendix, etc.).

‘section’ The output is split at @section and similar.
‘node’ The output is split at every node. This is the default.

Plain text output can be split similarly to HTML. This may be useful for
extracting sections from a Texinfo document and making them available as
separate files.

--split-size=num
Keep Info files to at most num characters if possible; default is 300,000. (How-
ever, a single node will never be split across Info files.)

--transliterate-file-names
Enable transliteration of 8-bit characters in node names for the purpose of file
name creation. See Section 22.4.4 [HTML Xref 8-bit Character Expansion],
page 218.

-U var Cause var to be undefined. This is equivalent to @clear var in the Texinfo file
(see Section 16.5 [@set @clear @value], page 143).

--verbose
Cause makeinfo to display messages saying what it is doing. Normally,
makeinfo only outputs messages if there are errors or warnings.

--version
-V Print the version number, then exit successfully.

--Xopt str
Pass str (a single shell word) to texi2dvi; may be repeated (see Section 20.4
[texi2any Printed Output], page 183).

Chapter 20: texi2any: The Generic Translator for Texinfo 183

--xml Generate Texinfo XML output (rather than Info).

20.3 Environment Variables Recognized by texi2any

makeinfo also reads the environment variable TEXINFO_OUTPUT_FORMAT to determine the
output format, if not overridden by a command line option. The value should be one of:

docbook dvi dvipdf html info pdf plaintext ps =xml
If not set or otherwise specified, Info output is the default.

The customization variable of the same name is also read; if set, that overrides an envi-
ronment variable setting, but not a command-line option. See Section 20.6.2 [Customization
Variables and Options], page 185.

You can control texi2any’s use of Perl extension modules by setting the TEXINFO_XS
environment variable. These modules are compiled native code that the interpreted Perl
code can use. Ideally, these extension modules should just work, and the only noticable
difference they should make is that texi2any finishes running sooner. However, you can
use this environment variable for the purposes of troubleshooting: for example, if you have
problems with the output of texi2any varying depending on whether the extension modules
are in use.

The following values of TEXINFO_XS are recognized by texiZ2any:

‘default’ The default behavior. Try to load extension modules, and silently fall back to
the interpreted Perl implementations if this fails.

‘warn’ Try to load extension modules, and if this fails, give a warning message before
falling back to the interpreted Perl implementations.

‘debug’ Try to load extension modules, printing many messages while doing so.

‘omit’ Do not use extension modules.

20.4 texi2any Printed Output

To justify the name Texinfo-to-any, texi2any has basic support for creating printed output
in the various formats: TEX DVI, PDF, and PostScript. This is done via the simple method
of executing the texi2dvi program when those output formats are requested, after checking
the validity of the input to give users the benefit of texi2any’s error checking. If you don’t
want such error checking, perhaps because your manual plays advanced TEX tricks together
with texinfo.tex, just invoke texi2dvi directly.

The output format options for this are --dvi, --dvipdf, --pdf, and --ps. See
Section 19.2 [Format with texi2dvi], page 163, for more details on these options and
general texi2dvi operation. In addition, the --verbose, --silent, and -—quiet options
are passed on if specified; the -I and -o options are likewise passed on with their
arguments, and --debug without its argument.

The only option remaining that is related to the texi2dvi invocation is -—-Xopt. Here,
just the argument is passed on and multiple --Xopt options accumulate. This provides a
way to construct an arbitrary command line for texi2dvi. For example, running

texi2any --Xopt -t --Xopt Q@adpaper --pdf foo.texi

Chapter 20: texi2any: The Generic Translator for Texinfo 184

is equivalent to running
texi2dvi -t @adpaper --pdf foo.texi
except for the validity check.

Although one might wish that other options to texi2any would take effect, they don’t.
For example, running ‘texi2any --no-number-sections --dvi foo.texi’ still results in a
DVI file with numbered sections. (Perhaps this could be improved in the future, if requests
are received.)

The actual name of the command that is invoked is specified by the TEXI2DVI customiza-
tion variable (see Section 20.6.4 [Other Customization Variables|, page 192). As you might
guess, the default is ‘texi2dvi’.

texi2any itself does not generate any normal output when it invokes texi2dvi, only
diagnostic messages.

20.5 Pointer Validation

If you do not suppress pointer validation with the ‘--no-validate’ option or the
@novalidate command in the source file (see Section 19.1 [Use TgX], page 163), makeinfo
will check the validity of the Texinfo file.

[4

Most validation checks are different depending on whether node pointers are explicitly
or implicitly determined. With explicit node pointers, here is the list of what is checked:

1. If a ‘Next’, ‘Previous’, or ‘Up’ node reference is a reference to a node in the current file
and is not an external reference such as to (dir), then the referenced node must exist.

2. Every node except the ‘Top’ node must have an ‘Up’ pointer.

3. The node referenced by an ‘Up’ pointer must itself reference the current node through
a menu item, unless the node referenced by ‘Up’ has the form ‘(file)’.

With implicit node pointers, the above error cannot occur, as such. (Which is a major
reason why we recommend using this feature of makeinfo, and not specifying any node
pointers yourself.)

Instead, makeinfo checks that the tree constructed from the document’s menus matches
the tree constructed from the sectioning commands. For example, if a chapter-level menu
mentions nodes nl and n2, in that order, nodes n1 and n2 must be associated with @section
commands in the chapter.

Finally, with both explicit and implicit node pointers, makeinfo checks that every node
except the ‘Top’ node is referenced in a menu.

20.6 Customization Variables

Warning: These customization variable names and meanings may change in any
Texinfo release. We always try to avoid incompatible changes, but we cannot
absolutely promise, since needs change over time.

Many aspects of the behavior and output of texi2any may be modified by modifying
so-called customization variables. These fall into a few general categories:

e Those associated with @-commands; for example, @documentlanguage.

Chapter 20: texi2any: The Generic Translator for Texinfo 185

e Those associated with command-line options; for example, the customization variable
SPLIT is associated with the --split command-line option, and TEXINFO_OUTPUT_
FORMAT allows specifying the output format.

e Those associated with customizing the HTML output.

e Other ad hoc variables.

Customization variables may set on the command line using --set-customization-
variable 'var value' (quoting the variable/value pair to the shell) or --set-
customization-variable var=value (using =). A special value is ‘undef’, which sets the
variable to this special “undefined” Perl value.

The sections below give the details for each of these.

20.6.1 Customization Variables for @-Commands

Each of the following @-commands has an associated customization variable with the same
name (minus the leading @):

@allowcodebreaks @clickstyle @codequotebacktick
Q@codequoteundirected Qcontents @deftypefnnewline
Q@documentdescription @documentencoding @documentlanguage
Q@evenfooting Qevenfootingmarks

Q@evenheading @evenheadingmarks

Q@everyfooting Qeveryfootingmarks

Q@everyheading @everyheadingmarks

Q@exampleindent @firstparagraphindent

@fonttextsize @footnotestyle @frenchspacing @headings
O@kbdinputstyle @novalidate

Qoddfooting Q@oddfootingmarks

Qoddheading Qoddheadingmarks

Opagesizes @paragraphindent

O@setchapternewpage @setfilename

Oshortcontents Qurefbreakstyle

Ovalidatemenus @xrefautomaticsectiontitle

Setting such a customization variable to a value ‘foo’ is similar to executing @cmd foo. It
is not exactly the same, though, since any side effects of parsing the Texinfo source are not
redone. Also, some variables do not take Texinfo code when generating particular formats,
but an argument that is already formatted. This is the case, for example, for HTML for
documentdescription.

20.6.2 Customization Variables and Options

The following table gives the customization variables associated with some command line
options. See Section 20.2 [Invoking texi2any|, page 177, for the meaning of the options.

Option Variable
--enable-encoding ENABLE_ENCODING
--document-language documentlanguage
--—error-limit ERROR_LIMIT
-—fill-column FILLCOLUMN
-—footnote-style footnotestyle
--force FORCE

--internal-links INTERNAL_LINKS

Chapter 20: texi2any: The Generic Translator for Texinfo 186

—--macro—expand
--headers
--no-warn
--no-validate
—-number-footnotes
——-number-sections
--node-files
--output
--paragraph-indent
--silent

--split
--split-size
--transliterate-file—names
--verbose

MACRO_EXPAND
HEADERS, SHOW_MENU
NO_WARN

novalidate
NUMBER_FOOTNOTES
NUMBER_SECTIONS
NODE_FILES

0UT, OUTFILE, SUBDIR
paragraphindent
SILENT

SPLIT

SPLIT_SIZE
TRANSLITERATE_FILE_NAMES
VERBOSE

Setting such a customization variable to a value ‘foo’ is essentially the same as specifying
the ——opt=foo if the option takes an argument, or --opt if not.

In addition, the customization variable TEXINFO_OUTPUT_FORMAT allows specifying what
makeinfo outputs, either one of the usual output formats that can be specified with options,

or various other forms:

‘docbook’

‘dvi’

‘dvipdf’

‘html’

‘info’

def7

‘plaintext’

(ps7

‘xml’ These correspond to the command-line options (and TEXINFO_OUTPUT_FORMAT
environment variable values) of the same name. See Section 20.2 [Invoking
texi2anyl, page 177.

‘debugtree’
Instead of generating a regular output format, output a text representation of
the tree obtained by parsing the input texinfo document.

‘parse’ Do only Texinfo source parsing; there is no output.

‘plaintexinfo’

Output the Texinfo source with all the macros, @include and @value{} ex-
panded. This is similar to setting —-macro-expand, but instead of being output
in addition to the normal conversion, output of Texinfo is the main output.

‘rawtext’ Output raw text, with minimal formatting. For example, footnotes are ignored
and there is no paragraph filling. This is used by the parser for file names and
copyright text in HTML comments, for example.

‘structure’

Do only Texinfo source parsing and determination of the document structure;

there is no output.

Chapter 20: texi2any: The Generic Translator for Texinfo 187

‘texinfosxml’
Output the document in TexinfoSXML representation, a syntax for writing
XML data using Lisp S-expressions.

‘textcontent’
Output the text content only, stripped of commands; this is useful for spell
checking or word counting, for example. The trivial detexinfo script setting
this is in the util directory of the Texinfo source as an example. It’s one line:

exec texi2any -c TEXINPUT_OUTPUT_FORMAT=textcontent "$@"

20.6.3 HTML Customization Variables

This table gives the customization variables which apply to HTML output only. A few other
customization variable apply to both HTML and other output formats; those are given in
the next section.

AVOID_MENU_REDUNDANCY
For HTML. If set, and the menu entry and menu description are the same,
then do not print the menu description; default false.

AFTER_BODY_OPEN
For HTML. If set, the corresponding text will appear at the beginning of each
HTML file; default unset.

AFTER_ABOUT
For HTML, when an About-element is output. If set, the corresponding text
will appear at the end of the About element; default unset.

AFTER_OVERVIEW

AFTER_TOC_LINES
For HTML. If set, the corresponding text is output after the short table of
contents for AFTER_OVERVIEW and after the table of contents for AFTER_TOC_
LINES; otherwise, a default string is used. At the time of writing, a </div>
element is closed.

In general, you should set BEFORE_OVERVIEW if AFTER_OVERVIEW is set, and you
should set BEFORE_TOC_LINES if AFTER_TOC_LINES is set.

BASEFILENAME_LENGTH
For HTML. The maximum length of the base filenames; default 245. Changing

this would make cross-manual references to such long node names invalid (see
Section 22.4.1 [HTML Xref Link Basics|, page 214).

BEFORE_OVERVIEW

BEFORE_TOC_LINES
For HTML. If set, the corresponding text is output before the short table of
contents for BEFORE_OVERVIEW and before the table of contents for BEFORE_
TOC_LINES, otherwise a default string is used. At the time of writing, a <div
...> element is opened.

In general you should set AFTER_OVERVIEW if BEFORE_OVERVIEW is set, and you
should set AFTER_TOC_LINES if BEFORE_TOC_LINES is set.

Chapter 20: texi2any: The Generic Translator for Texinfo 188

BIG_RULE For HTML. Rule used after and before the top element and before special
elements, but not for footers and headers; default <hr>.

BODYTEXT For HTML, the text appearing in <body>. By default, sets the HTML lang
attribute to the document language (see Section 15.1 [@documentlanguage],
page 136).

CASE_INSENSITIVE_FILENAMES
For HTML. Construct output file names as if the filesystem were case insensitive
(see Section 22.2 [HTML Splitting], page 212); default false.

CHAPTER_HEADER_LEVEL
For HTML. Header formatting level used for chapter level sectioning com-
mands; default ‘2’.

CHECK_HTMLXREF
For HTML. Check that manuals which are the target of external
cross-references (see Section 6.4.4 [Four and Five Arguments|, page 53) are
present in htmlxref.cnf (see Section 22.4.6 [HTML Xref Configuration],
page 219); default false.

COMPLEX_FORMAT_IN_TABLE
For HTML. If set, use tables for indentation of complex formats; default false.

CSS_LINES
For HTML. CSS output, automatically determined by default (see Section 22.3
[HTML CSS]|, page 213).

DATE_IN_HEADER
For HTML. Put the document generation date in the header; off by default.

DEF_TABLE
For HTML. If set, a <table> construction for @deffn and similar @-commands
is used (looking more like the TEX output), instead of definition lists; default
false.

DEFAULT_RULE
For HTML. Rule used between element, except before and after the top ele-
ment, and before special elements, and for footers and headers; default <hr>.

DO_ABOUT For HTML. If set to 0 never do an About special element; if set to 1 always do
an About special element; default 0.

EXTERNAL_DIR
For HTML. Base directory for external manuals; default none. It is better to
use the general external cross-reference mechanism (see Section 22.4.6 [HTML
Xref Configuration|, page 219) than this variable.

EXTRA_HEAD
For HTML. Additional text appearing within <head>; default unset.

FOOTNOTE_END_HEADER_LEVEL
For HTML. Header formatting level used for the footnotes header with the
‘end’ footnotestyle; default ‘4’. See Section 10.3.2 [Footnote Styles], page 95.

Chapter 20: texi2any: The Generic Translator for Texinfo 189

FOOTNOTE_SEPARATE_HEADER_LEVEL
For HTML. Header formatting level used for the footnotes header with the ‘sep-
arate’ footnotestyle; default ‘4’. See Section 10.3.2 [Footnote Styles|, page 95.

FRAMES For HTML. If set, a file describing the frame layout is generated, together with
a file with the short table of contents; default false.

FRAMESET_DOCTYPE
For HTML. Same as DOCTYPE, but for the file containing the frame descrip-
tion.

HEADER_IN_TABLE
For HTML. Use tables for header formatting rather than a simple <div> ele-
ment; default false.

ICONS For HTML. Use icons for the navigation panel; default false.

IMAGE_LINK_PREFIX
For HTML. If set, the associated value is prepended to the image file links;
default unset.

INLINE_CONTENTS
For HTML. If set, output the contents where the @contents and
similar @-commands are located; default true. This is ignored if
@set*contentsaftertitlepage is set (see Section 3.5 [Contents|, page 24).

INLINE_CSS_STYLE
For HTML. Put CSS directly in HTML elements rather than at the beginning
of the output; default false.

KEEP_TOP_EXTERNAL_REF
For HTML. If set, do not ignore ‘Top’ as the first argument for an external ref

to a manual, as is done by default. See Section 6.5 [Referring to a Manual as a
Whole|, page 54.

L2H For HTML. If set, latex2html is used to convert @math and @tex sections;
default false. Best used with --iftex.

L2H_CLEAN
(Relevant only if L2H is set.) If set, the intermediate files generated in relation
with latex2html are removed; default true.

L2H_FILE (Relevant only if L2H is set.) If set, the given file is used as latex2html’s init
file; default unset.

L2H_HTML_VERSION
(Relevant only if L2H is set.) The HTML version used in the latex2html call;
default unset.

L2H_L2H (Relevant only if L2H is set.) The program invoked as latex2html; default is
latex2html.

L2H_SKIP (Relevant only if L2H is set.) If set to a true value, the actual call to latex2html
is skipped; previously generated content is reused instead. If set to 0, the cache
is not used at all. If set to ‘undef’, the cache is used for as many TEX fragments
as possible and for any remaining the command is run. The default is ‘undef’.

Chapter 20: texi2any: The Generic Translator for Texinfo 190

L2H_TMP (Relevant only if L2H is set.) Set the directory used for temporary files. None of
the file name components in this directory name may start with ‘.’; otherwise,
latex2html will fail (because of dvips). The default is the empty string, which
means the current directory.

MAX_HEADER_LEVEL
For HTML. Maximum header formatting level used (higher header formatting
level numbers correspond to lower sectioning levels); default ‘4’.

MENU_SYMBOL
For HTML. Symbol used in front of menu entries when node names are used
for menu entries formatting; default ‘&€bull;’.

MONOLITHIC
For HTML. Output only one file including the table of contents. Set by default,
but only relevant when the output is not split.

NO_CSS For HTML. Do not use CSS; default false. See Section 22.3 [HTML CSS],
page 213.

NODE_FILE_EXTENSION
For HTML. Extension for node files if NODE_FILENAMES is set; default ‘html’.

PRE_ABOUT
For HTML, when an About element is output. If set to a text string, this text
will appear at the beginning of the About element. If set to a reference on a
subroutine, the result of the subroutine call will appear at the beginning of the
About element. If not set (the default), default text is used.

PRE_BODY_CLOSE
For HTML. If set, the given text will appear at the footer of each HTML file;
default unset.

PROGRAM_NAME_TIN_FOOTER
For HTML. If set, output the program name and miscellaneous related infor-
mation in the page footers; default false.

SHORTEXTN
For HTML. If set, use ‘.htm’ as extension; default false.

SHOW_TITLE
For HTML. If set, output the title at the beginning of the document; default
true.

SIMPLE_MENU
For HTML. If set, use a simple preformatted style for the menu, instead of
breaking down the different parts of the menu; default false. See Section 4.9.4
[Menu Parts], page 40.

TOC_LINKS
For HTML. If set, links from headings to toc entries are created; default false.

TOP_FILE This file name may be used for the top-level file. The extension is set appropri-
ately, if necessary. This is used to override the default, and is, in general, only
taken into account when output is split, and for HTML.

Chapter 20: texi2any: The Generic Translator for Texinfo 191

TOP_NODE_FILE
For HTML. File name used for the Top node, if NODE_FILENAMES is set; default
is index.

TOP_NODE_FILE_TARGET
For HTML. File name used for the Top node in cross-references; default is
index.

TOP_NODE_UP_URL
For HTML. A url used for (dir) references; the default is undef, meaning that
the normal rules apply, typically leading to a link to ‘dir.html’ from an implicit
or explicit reference to ‘(dir)’ (see Section 22.4 [HTML Xref], page 214). For
more about the Top node pointers, see Section 4.5 [First Node], page 35. For
overriding the Up pointer in other formats, see TOP_NODE_UP in Section 20.6.4
[Other Customization Variables], page 192.

USE_ACCESSKEY
For HTML. Use accesskey in cross-references; default true.

USE_ISO For HTML. Use entities for doubled single-quote characters (see Section 12.5
[Inserting Quotation Marks], page 109), and ‘---’ and ‘--’ (see Section 2.1
[Conventions], page 10); default true.

USE_LINKS
For HTML. Generate <1ink> elements in the HTML <head> output; default
true.

USE_REL_REV
For HTML. Use rel in cross-references; default true.

VERTICAL_HEAD_NAVIGATION
For HTML. If set, a vertical navigation panel is used; default false.

WORDS_IN_PAGE
For HTML, with output split at nodes. Specifies the approximate minimum
page length at which a navigation panel is placed at the bottom of a page. To
avoid ever having the navigation buttons at the bottom of a page, set this to a
sufficiently large number. The default is 300.

XREF_USE_FLOAT_LABEL
For HTML. If set, for the float name in cross-references, use the float label
instead of the type followed by the float number (see Section 10.1.1 [@float],
page 90). The default is off.

XREF_USE_NODE_NAME_ARG
For HTML. Only relevant for cross-reference commands with no cross reference
name (second argument). If set to 1, use the node name (first) argument in
cross-reference @-commands for the text displayed as the hyperlink. If set to 0,
use the node name if USE_NODES is set, otherwise the section name. If set to
‘undef’, use the first argument in preformatted environments, otherwise use the
node name or section name depending on USE_NODES. The default is ‘undef’.

Chapter 20: texi2any: The Generic Translator for Texinfo 192

20.6.4 Other Customization Variables

This table gives the remaining customization variables, which apply to multiple formats, or
affect global behavior, or otherwise don’t fit into the categories of the previous sections.

CLOSE_QUOTE_SYMBOL
When a closing quote is needed, use this character; default ’ in HTML,
’ in Docbook. The default for Info is the same as OPEN_QUOTE_SYMBOL
(see below).

CPP_LINE_DIRECTIVES
Recognize #1line directives in a “preprocessing” pass (see Section 17.6 [External
Macro Processors|, page 156); on by default.

DEBUG If set, debugging output is generated; default is off (zero).

DOCTYPE For Docbook, HTML, XML. Specifies the SystemLiteral, the entity’s system
identifier. This is a URI which may be used to retrieve the entity, and identifies
the canonical DTD for the document. The default value is different for each of
HTML, Docbook and Texinfo XML.

DUMP_TEXI
For debugging. If set, no conversion is done, only parsing and macro expansion.
If the option ——-macro-expand is set, the Texinfo source is also expanded to the
corresponding file. Default false.

DUMP_TREE
For debugging. If set, the tree constructed upon parsing a Texinfo document is
output to standard error; default false.

ENABLE_ENCODING_USE_ENTITY
For HTML, XML. If --enable-encoding is set, and there is an entity corre-

sponding with the letter or the symbol being output, prefer the entity. Set by
default for HTML, but not XML.

EXTERNAL_CROSSREF_SPLIT
For cross-references to other manuals, this determines if the other manual is
considered to be split or monolithic. By default, it is set based on the value of
SPLIT. See Section 22.4 [HTML Xref], page 214, and see Section 22.4.6 [HTML
Xref Configuration|, page 219.

EXTENSION
The extension added to the output file name. The default is different for each
output format.

FIX_TEXINFO
For “plain Texinfo” (see the PLAINTEXINFO item). If set to false, the resulting
Texinfo does not have all errors corrected, such as missing ‘@end’; default true.
This variable is only relevant when expanding Texinfo; other converters always
try to output something sane even if the input is erroneous.

IGNORE_BEFORE_SETFILENAME
If set, begin outputting at @setfilename, if @setfilename is present; default
true.

Chapter 20: texi2any: The Generic Translator for Texinfo 193

IGNORE_SPACE_AFTER_BRACED_COMMAND_NAME
If set, spaces are ignored after an @-command that takes braces. Default true,
matching the TEX behavior.

INDEX_ENTRY_COLON
Symbol used between the index entry and the associated node or section; default

¢,

INDEX_SPECIAL_CHARS_WARNING
If set, warn about ‘:’ in index entry, as it leads to invalid entries in index menus
in output Info files. For Info and plaintext only.

INFO_SPECIAL_CHARS_QUOTE
If set, whenever there are problematic characters for Info output in places such
as node names or menu items, surround the part of the construct where they
appear with quoting characters, as described in Appendix G [Info Format Spec-
ification], page 282. See Section 4.4 [Node Line Requirements|, page 33.

INFO_SPECIAL_CHARS_WARNING
If set, warn about problematic constructs for Info output (such as the string
‘::7) in node names, menu items, and cross-references; default true. Do not
warn about index entries, since parsing problems there don’t prevent navigation;
readers can still relatively easily find their way to the node in question.

INPUT_ENCODING_NAME
Normalized encoding name suitable for output. Should be a usable charset
name in HTML, typically one of the preferred IANA encoding names. You
should not need to use this variable, since it is set by @documentencoding (see
Section 15.2 [@documentencoding], page 137).

INPUT_PERL_ENCODING
Perl encoding used to process the Texinfo source. You should not need to
use that variable, since it is set by @documentencoding (see Section 15.2
[@documentencoding], page 137).

MAX_MACRO_CALL_NESTING
The maximal number of recursive calls of @-commands defined through
@rmacro; default 100000. The purpose of this variable is to avoid infinite
recursions.

MENU_ENTRY_COLON
Symbol used between the menu entry and the description; default ‘:’.

NO_USE_SETFILENAME
If set, do not use @setfilename to set the document name; instead, base the
output document name only on the input file name. The default is false.

NODE_FILENAMES
If set, node names are used to construct file names. By default, it is set if the
output is split by node, or if NODE_FILES is set and the output is split in any
way.

Chapter 20: texi2any: The Generic Translator for Texinfo 194

NODE_NAME_IN_INDEX
If set, use node names in index entries, otherwise prefer section names; default
true.

NODE_NAME_IN_MENU
If set, use node names in menu entries, otherwise prefer section names; default
true.

OPEN_QUOTE_SYMBOL

When an opening quote is needed, e.g., for ‘@samp’ output, use the specified
character; default ‘ for HTML, ‘ for Docbook. For Info,
the default depends on the enabled document encoding (see Section 15.2
[@documentencoding]|, page 137); if no document encoding is set, or the
encoding is US-ASCII, etc., ‘'’ is used. This character usually appears as
an undirected single quote on modern systems. If the document encoding is
Unicode, the Info output uses a Unicode left quote.

OUTPUT_ENCODING_NAME

Normalized encoding name used for output files. Should be a usable charset
name in HTML, typically one of the preferred IANA encoding names. By
default, if an input encoding is set (typically through @documentencoding or
INPUT_ENCODING_NAME), this information is used to set the output encoding
name. If no input encoding is specified, the default output encoding name
may be set by the output format. In particular, the XML-based formats use
utf-8 for OUTPUT_ENCODING_NAME if the encoding is not otherwise specified.
See Section 15.2 [@documentencoding], page 137.

OVERVIEW_LINK_TO_TOC
If set, the cross-references in the Overview link to the corresponding Table of
Contents entries; default true.

PACKAGE

PACKAGE_VERSION

PACKAGE_AND_VERSION

PACKAGE_URL

PACKAGE_NAME
The implementation’s short package name, package version, package name and
version concatenated, package url, and full package name, respectively. By de-
fault, these variables are all set through Autoconf, Automake, and configure.

PREFIX The output file prefix, which is prepended to some output file names. By
default it is set by @setfilename or from the input file (see Section 3.2.3
[@setfilename|, page 17). How this value is used depends on the value of
other customization variables or command line options, such as whether the
output is split and NODE_FILENAMES. The default is unset.

PROGRAM Name of the program used. By default, it is set to the name of the program
launched, with a trailing ‘. pl’ removed.

Chapter 20: texi2any: The Generic Translator for Texinfo 195

RENAMED_NODES_FILE
If set, use the value for the renamed nodes description file. If not set, the
file is doc_basename-noderename.cnf. See Section 22.4.7 [HTML Xref Link
Preservation], page 220.

RENAMED_NODES_REDIRECTIONS
If set, create redirection files for renamed nodes. Set by default when generating
HTML.

SHOW_MENU
If set, Texinfo menus are output. By default, it is set unless generating Docbook
or if ——no-headers is specified.

SORT_ELEMENT_COUNT
If set, the name of a file to which a list of elements (nodes or sections, de-
pending on the output format) is dumped, sorted by the number of lines they
contain after removal of @-commands; default unset. This is used by the pro-
gram texi-elements-by-size in the util/ directory of the Texinfo source
distribution (see [texi-elements-by-size|, page 250).

SORT_ELEMENT_COUNT_WORDS
When dumping the elements-by-size file (see preceding item), use word counts
instead of line counts; default false.

TEST If set to true, some variables which are normally dynamically generated anew
for each run (date, program name, version) are set to fixed and given values.
This is useful to compare the output to a reference file, as is done for the tests.
The default is false.

TEXI2DVI Name of the command used to produce PostScript, PDF, and DVI; default
‘texi2dvi’. See Section 20.4 [texi2any Printed Output], page 183.

TEXI2HTML
Generate HTML and try to be as compatible as possible with texi2html; de-
fault false.

TEXINFO_DTD_VERSION
For XML. Version of the DTD used in the XML output preamble. The default
is set based on a variable in configure.ac.

TEXTCONTENT _COMMENT
For stripped text content output (i.e., when TEXINFO_OUTPUT_FORMAT is set to
textcontent). If set, also output comments. Default false.

TOP_NODE_UP
Up node for the Top node; default ‘ (dir)’. For overriding the url in HTML out-
put, see TOP_NODE_UP_URL in Section 20.6.3 [HTML Customization Variables],
page 187.

TREE_TRANSFORMATIONS
The associated value is a comma separated list of transformations that can be
applied to the Texinfo tree prior to outputting the result. If more than one
is specified, the ordering is irrelevant; each is always applied at the necessary
point during processing.

Chapter 20: texi2any: The Generic Translator for Texinfo 196

The only one executed by default is ‘move_index_entries_after_items’ for
HTML and Docbook output. Here’s an example of updating the master menu
in a document:

makeinfo \

-c TREE_TRANSFORMATIONS=regenerate_master_menu \

-c PLAINTEXINFO=1 \

mydoc.texi \

-o /tmp/out
(Caveat: Since PLAINTEXINFO output does expand Texinfo macros and con-
ditionals, it’s necessary to remove any such differences before installing the
updates in the original document. This will be remedied in a future release.)

The following transformations are currently supported (many are used in the
pod2texi utility distributed with Texinfo; see Section 20.8 [Invoking pod2texi],
page 198):

‘complete_tree_nodes_menus’
Add menu entries or whole menus for nodes associated with sections
of any level, based on the sectioning tree.

‘fill_gaps_in_sectioning’
Adds empty @unnumbered. .. sections in a tree to fill gaps in sec-
tioning. For example, an @unnumberedsec will be inserted if a
@chapter is followed by a @subsection.

‘insert_nodes_for_sectioning_commands’
Insert nodes for sectioning commands lacking a corresponding node.

‘move_index_entries_after_items’
In @enumerate and Q@itemize, move index entries appearing just
before an @item to just after the @item. Comment lines between
index entries are moved too. As mentioned, this is always done for
HTML and Docbook output.

‘regenerate_master_menu’
Update the Top node master menu, either replacing the (first)
@detailmenu in the Top node menu, or creating it at the end of
the Top node menu.

‘simple_menu’
Mostly the same as SIMPLE_MENU: use a simple preformatted style
for the menu. It differs from setting SIMPLE_MENU in that SIMPLE_
MENU only has an effect in HTML output.

USE_NODES
Preferentially use nodes to decide where elements are separated. If set to false,
preferentially use sectioning to decide where elements are separated. The de-
fault is true.

USE_NODE_TARGET
If set, use the node associated with a section for the section target in cross-
references; default true.

Chapter 20: texi2any: The Generic Translator for Texinfo 197

USE_NUMERIC_ENTITY
For HTML and XML. If set, use numeric entities instead of ASCII characters
when there is no named entity. By default, set to true for HTML.

USE_UP_NODE_FOR_ELEMENT_UP
Fill in up sectioning direction with node direction when there is no sectioning
up direction. In practice this can only happen when there is no @Qtop section.
Not set by default.

USE_SETFILENAME_EXTENSION
Default is on for Info, off for other output. If set, use exactly what
@setfilename gives for the output file name, including the extension. You
should not need to explicitly set this variable.

USE_TITLEPAGE_FOR_TITLE
Use the full @titlepage as the title, not a simple title string; default false.

USE_UNIDECODE
If set to false, do not use the Text::Unidecode Perl module to transliterate
more characters; default true.

20.7 Internationalization of Document Strings

texi2any writes fixed strings into the output document at various places: cross-references,
page footers, the help page, alternate text for images, and so on. The string chosen de-
pends on the value of the documentlanguage at the time of the string being output (see
Section 15.1 [@documentlanguage], page 136, for the Texinfo command interface).

The Gettext framework is used for those strings (see Gettext). The 1libintl-perl pack-
age is used as the gettext implementation; more specifically, the pure Perl implementation
is used, so Texinfo can support consistent behavior across all platforms and installations,
which would not otherwise be possible. libintl-perl is included in the Texinfo distribu-
tion and always installed, to ensure that it is available if needed. It is also possible to use
the system gettext (the choice can be made at build-time).

The Gettext domain ‘texinfo_document’ is used for the strings. Translated strings are
written as Texinfo, and may include @-commands. In translated strings, the varying parts of
the string are not usually denoted by %s and the like, but by ‘{arg_name}’. (This convention
is common for gettext in Perl and is fully supported in GNU Gettext; see Section “Perl
Format Strings” in GNU Gettext.) For example, in the following, ‘{section}’ will be
replaced by the section name:

see {section}

These Perl-style brace format strings are used for two reasons: first, changing the order
of printf arguments is only available since Perl 5.8.0; second, and more importantly, the
order of arguments is unpredictable, since @-command expansion may lead to different
orders depending on the output format.

The expansion of a translation string is done like this:

1. First, the string is translated. The locale is @documentlanguage . @documentencoding.
If the @Qdocumentlanguage has the form ‘11_CC’, that is tried first, and then just ‘11’.
If that does not exist, and the encoding is not us-ascii, then us-ascii is tried.

Chapter 20: texi2any: The Generic Translator for Texinfo 198

The idea is that if there is a us-ascii encoding, it means that all the characters in the
charset may be expressed as @-commands. For example, there is a fr.us-ascii locale
that can accommodate any encoding, since all the Latin 1 characters have associated
@-commands. On the other hand, Japanese has only a translation ja.utf-8, since
there are no @-commands for Japanese characters.

2. Next, the string is expanded as Texinfo, and converted. The arguments are substituted;
for example, ‘{arg_name}’ is replaced by the corresponding actual argument.

In the following example, ‘{date}’, ‘{program_homepage}’ and ‘{program}’ are the
arguments of the string. Since they are used in @uref, their order is not predictable.
‘{date}’, ‘{program_homepagel}’ and ‘{program}’ are substituted after the expansion:

Generated on Qemph{{date}} using
Quref{{program_homepage}, @emph{{program}}}.

This approach is admittedly a bit complicated. Its usefulness is that it supports hav-
ing translations available in different encodings for encodings which can be covered by
@-commands, and also specifying how the formatting for some commands is done, indepen-
dently of the output format—yet still be language-dependent. For example, the ‘@pxref’
translation string can be like this:

see {node_file_href} section ~{section}\' in @cite{{book}}

which allows for specifying a string independently of the output format, while nevertheless
with rich formatting it may be translated appropriately in many languages.

20.8 Invoking pod2texi: Convert POD to Texinfo

The pod2texi program translates Perl pod documentation file(s) to Texinfo. There are
two basic modes of operation: generating a standalone manual from each input pod, or
(if --base-level=1 or higher is given) generating Texinfo subfiles suitable for use with
@include.

Although ordinarily this documentation in the Texinfo manual would be the best place
to look, in this case we have documented all the options and examples in the pod2texi
program itself, since it may be useful outside of the rest of Texinfo. Thus, please see the
output of pod2texi --help, the version on the web at http://www.gnu.org/software/
texinfo/manual/pod2texi.html, etc.

For an example of using pod2texi to make Texinfo out of the Perl documentation itself,
see contrib/perldoc-all (http://svn.savannah.gnu.org/viewvc/trunk/contrib/
perldoc-all/?root=texinfo) in the Texinfo source distribution (the output is available
at http://www.gnu.org/software/perl/manual).

20.9 texi2html: Ancestor of texi2any

Conceptually, the texi2html program is the parent of today’s texi2any program.
texi2html was developed independently, originally by Lionel Cons in 1998; at the time,
makeinfo could not generate HI'ML. Many other people contributed to texi2html over
the years.

The present texi2any uses little of the actual code of texi2html, and has quite a
different basic approach to the implementation (namely, parsing the Texinfo document into
a tree), but still, there is a family resemblance.

http://www.gnu.org/software/texinfo/manual/pod2texi.html
http://www.gnu.org/software/texinfo/manual/pod2texi.html
http://svn.savannah.gnu.org/viewvc/trunk/contrib/perldoc-all/?root=texinfo
http://svn.savannah.gnu.org/viewvc/trunk/contrib/perldoc-all/?root=texinfo
http://www.gnu.org/software/perl/manual

Chapter 20: texi2any: The Generic Translator for Texinfo 199

By design, texi2any supports nearly all the features of texi2html in some way. How-
ever, we did not attempt to maintain strict compatibility, so no texi2html executable is
installed by the Texinfo package. An approximation can be run with an invocation like this
(available as util/texi2html in the Texinfo source):

texi2any --set-customization-variable TEXI2HTML=1 ...

but, to emphasize, this is not a drop-in replacement for the previous texi2html. Here are
the biggest differences:

e Most blatantly, the command line options of texi2html are now customization vari-
ables, for the most part. A table of approximate equivalents is given below.

e The program-level customization API is very different in texi2any.
e Indices cannot be split.

e Translated strings cannot be customized; we hope to introduce this feature in texi2any
in the future.

Aside from the last, we do not intend to reimplement these differences. Therefore, the
route forward for authors is alter manuals and build processes as necessary to use the
new features and methods of texi2any. The texi2html maintainers (one of whom is the
principal author of texi2any) do not intend to make further releases.

Here is the table showing texi2html options and corresponding texi2any customization
variables.

-—toc-links TOC_LINKS
-—short-ext SHORTEXTN
—--prefix PREFIX
—-short-ref SHORT_REF
--idx-sum IDX_SUMMARY
-—def-table DEF_TABLE
--ignore-preamble-text IGNORE_PREAMBLE_TEXT
--html-xref-prefix EXTERNAL_DIR
--12h L2H
--12h-12h L2H_L2H
--12h-skip L2H_SKIP
--12h-tmp L2H_TMP
--12h-file L2H_FILE
--12h-clean L2H_CLEAN
—--use-nodes USE_NODES
--monolithic MONOLITHIC
--top-file TOP_FILE
-—toc-file TOC_FILE
—--frames FRAMES
--menu SHOW_MENU
--debug DEBUG
--doctype DOCTYPE
--frameset-doctype FRAMESET _DOCTYPE

--test TEST

200

Finally, any texi2html users seeking more detailed information can check the draft file
doc/texi2oldapi.texi in the Texinfo source repository. It consists mainly of very rough
notes, but may still be useful to some.

201

21 Creating and Installing Info Files

This chapter describes how to create and install Info files. See Section 1.3 [Info Files],
page 5, for general information about the file format itself.

21.1 Creating an Info File

makeinfo is a program that converts a Texinfo file into an Info file, HTML file, or plain
text. texinfo-format-region and texinfo-format-buffer are GNU Emacs functions
that convert Texinfo to Info.

For information on installing the Info file in the Info system, see Section 21.2 [Installing
an Info File|, page 204.

21.1.1 makeinfo Advantages

The makeinfo utility creates an Info file from a Texinfo source providing better error mes-
sages than either of the Emacs formatting commands. We recommend it. The makeinfo
program is independent of Emacs. You can run makeinfo in any of three ways: from an
operating system shell, from a shell inside Emacs, or by typing the C-¢c C-m C-r or the C-c
C-m C-b command in Texinfo mode in Emacs.

The texinfo-format-region and the texinfo-format-buffer commands may be use-
ful if you cannot run makeinfo.

21.1.2 Running makeinfo Within Emacs

You can run makeinfo in GNU Emacs Texinfo mode by using either the makeinfo-region
or the makeinfo-buffer commands. In Texinfo mode, the commands are bound to C-c
C-m C-r and C-c C-m C-b by default.

C-c C-m C-r
M-x makeinfo-region
Format the current region for Info.

C-c C-m C-b
M-x makeinfo-buffer
Format the current buffer for Info.

When you invoke makeinfo-region the output goes to a temporary buffer. When you
invoke makeinfo-buffer output goes to the file set with @setfilename (see Section 3.2.3
[@setfilename], page 17).

The Emacs makeinfo-region and makeinfo-buffer commands run the makeinfo pro-
gram in a temporary shell buffer. If makeinfo finds any errors, Emacs displays the error
messages in the temporary buffer.

You can parse the error messages by typing C-x ~ (next-error). This causes Emacs
to go to and position the cursor on the line in the Texinfo source that makeinfo thinks
caused the error. See Section “Running make or Compilers Generally” in The GNU Emacs
Manual, for more information about using the next-error command.

In addition, you can kill the shell in which the makeinfo command is running or make
the shell buffer display its most recent output.

Chapter 21: Creating and Installing Info Files 202

C-c C-m C-k

M-x makeinfo-kill-job
Kill the current running makeinfo job (from makeinfo-region or
makeinfo-buffer).

C-c C-m C-1
M-x makeinfo-recenter-output-buffer
Redisplay the makeinfo shell buffer to display its most recent output.

(Note that the parallel commands for killing and recentering a TEX job are C-c C-t C-k
and C-c C-t C-1. See Section 19.6 [Texinfo Mode Printing], page 168.)

You can specify options for makeinfo by setting the makeinfo-options variable with
either the M-x customize or the M-x set-variable command, or by setting the variable in
your .emacs initialization file.

For example, you could write the following in your .emacs file:

(setq makeinfo-options
"--paragraph-indent=0 --no-split
--fill-column=70 --verbose")

For more information, see [makeinfo Options|, page 177, as well as “Easy Customization
Interface,” “Examining and Setting Variables,” and “Init File” in The GNU Emacs Manual.

21.1.3 The texinfo-format... Commands

In GNU Emacs in Texinfo mode, you can format part or all of a Texinfo file with the
texinfo-format-region command. This formats the current region and displays the for-
matted text in a temporary buffer called ‘*Info Regionx*’.

Similarly, you can format a buffer with the texinfo-format-buffer command. This
command creates a new buffer and generates the Info file in it. Typing C-x C-s will save
the Info file under the name specified by the @setfilename line which must be near the
beginning of the Texinfo file.

C-c C-e C-r
texinfo-format-region
Format the current region for Info.

C-c C-e C-b
texinfo-format-buffer
Format the current buffer for Info.

The texinfo-format-region and texinfo-format-buffer commands provide you
with some error checking, and other functions can provide you with further help in
finding formatting errors. These procedures are described in an appendix; see Appendix F
[Catching Mistakes|, page 275. However, the makeinfo program provides better error
checking (see Section 21.1.2 [makeinfo in Emacs]|, page 201).

A peculiarity of the texinfo-format-buffer and texinfo-format-region commands
is that they do not indent (nor fill) paragraphs that contain @w or @ commands.

Chapter 21: Creating and Installing Info Files 203

21.1.4 Batch Formatting

You can format Texinfo files for Info using batch-texinfo-format and Emacs batch mode.
You can run Emacs in batch mode from any shell, including a shell inside of Emacs. (See
Section “Initial Options” in The GNU Emacs Manual.)

Here is a shell command to format all the files that end in .texinfo in the current
directory:

emacs -batch -funcall batch-texinfo-format *.texinfo

Emacs processes all the files listed on the command line, even if an error occurs while
attempting to format some of them.

Run batch-texinfo-format only with Emacs in batch mode as shown; it is not inter-
active. It kills the batch mode Emacs on completion.

batch-texinfo-format is convenient if you lack makeinfo and want to format several
Texinfo files at once. When you use Batch mode, you create a new Emacs process. This frees
your current Emacs, so you can continue working in it. (When you run texinfo-format-
region or texinfo-format-buffer, you cannot use that Emacs for anything else until the
command finishes.)

21.1.5 Tag Files and Split Files

If a Texinfo file has more than 30,000 bytes, texinfo-format-buffer automatically creates
a tag table for its Info file; makeinfo always creates a tag table. With a tag table, Info can
jump to new nodes more quickly than it can otherwise.

In addition, if the Texinfo file contains more than about 300,000 bytes, texinfo-format-
buffer and makeinfo split the large Info file into shorter indirect subfiles of about 300,000
bytes each. Big files are split into smaller files so that Emacs does not need to make a large
buffer to hold the whole of a large Info file; instead, Emacs allocates just enough memory for
the small, split-off file that is needed at the time. This way, Emacs avoids wasting memory
when you run Info. (Before splitting was implemented, Info files were always kept short
and include files were designed as a way to create a single, large printed manual out of the
smaller Info files. See Chapter 18 [Include Files|, page 159, for more information. Include
files are still used for very large documents, such as The Emacs Lisp Reference Manual, in
which each chapter is a separate file.)

When a file is split, Info itself makes use of a shortened version of the original file that
contains just the tag table and references to the files that were split off. The split-off files
are called indirect files.

The split-off files have names that are created by appending ‘-1’, ‘-2’ ‘-3’ and so on
to the file name specified by the @setfilename command. The shortened version of the
original file continues to have the name specified by @setfilename.

At one stage in writing this document, for example, the Info file was saved as the file
test-texinfo and that file looked like this:

Chapter 21: Creating and Installing Info Files 204

Info file: test-texinfo, —*-Text—*-
produced by texinfo-format-buffer
from file: new-texinfo-manual.texinfo

Indirect:
test-texinfo-1: 102
test-texinfo-2: 50422
test-texinfo-3: 101300
“_"L

Tag table:

(Indirect)

Node: overview~ 7104
Node: info file™ 71271
Node: printed manual~74853
Node: conventions~ 76855

(But test-texinfo had far more nodes than are shown here.) Each of the split-off, indirect
files, test-texinfo-1, test-texinfo-2, and test-texinfo-3, is listed in this file after the
line that says ‘Indirect:’. The tag table is listed after the line that says ‘Tag table:’.

In the list of indirect files, the number following the file name records the cumulative
number of bytes in the preceding indirect files, not counting the file list itself, the tag table,
or any permissions text in the first file. In the tag table, the number following the node
name records the location of the beginning of the node, in bytes from the beginning of the
(unsplit) output.

If you are using texinfo-format-buffer to create Info files, you may want to run the
Info-validate command. (The makeinfo command does such a good job on its own,
you do not need Info-validate.) However, you cannot run the M-x Info-validate node-
checking command on indirect files. For information on how to prevent files from being split
and how to validate the structure of the nodes, see Section F.6.1 [Using Info-validate],
page 280.

21.2 Installing an Info File

Info files are usually kept in the info directory. You can read Info files using the standalone
Info program or the Info reader built into Emacs. (See Info, for an introduction to Info.)

21.2.1 The Directory File dir

For Info to work, the info directory must contain a file that serves as a top level directory
for the Info system. By convention, this file is called dir. (You can find the location of
this file within Emacs by typing C-h i to enter Info and then typing C-x C-f to see the
pathname to the info directory.)

The dir file is itself an Info file. It contains the top level menu for all the Info files in
the system. The menu looks like this:

Chapter 21: Creating and Installing Info Files 205

* Menu:

* Info: (info). Documentation browsing system.

* FEmacs: (emacs) . The extensible, self-documenting
text editor.

* Texinfo: (texinfo). With one source file, make

either a printed manual using
Q@TeX{} or an Info file.

Each of these menu entries points to the ‘Top’ node of the Info file that is named in
parentheses. (The menu entry does not need to specify the ‘Top’ node, since Info goes to
the ‘Top’ node if no node name is mentioned. See Section 4.9.6 [Nodes in Other Info Files],
page 41.)

Thus, the ‘Info’ entry points to the ‘Top’ node of the info file and the ‘Emacs’ entry
points to the ‘Top’ node of the emacs file.

In each of the Info files, the ‘Up’ pointer of the ‘Top’ node refers back to the dir file.
For example, the line for the ‘Top’ node of the Emacs manual looks like this in Info:
File: emacs Node: Top, Up: (DIR), Next: Distrib

In this case, the dir file name is written in uppercase letters—it can be written in either
upper- or lowercase. This is not true in general, it is a special case for dir.

21.2.2 Listing a New Info File

To add a new Info file to your system, you must write a menu entry to add to the menu
in the dir file in the info directory. For example, if you were adding documentation for
GDB, you would write the following new entry:

* GDB: (gdb). The source-level C debugger.

The first part of the menu entry is the menu entry name, followed by a colon. The second
part is the name of the Info file, in parentheses, followed by a period. The third part is the
description.

The name of an Info file often has a .info extension. Thus, the Info file for GDB might
be called either gdb or gdb.info. The Info reader programs automatically try the file name
both with and without .info'; so it is better to avoid clutter and not to write ‘.info’
explicitly in the menu entry. For example, the GDB menu entry should use just ‘gdb’ for
the file name, not ‘gdb.info’.

21.2.3 Info Files in Other Directories

If an Info file is not in the info directory, there are three ways to specify its location:

1. Write the pathname in the dir file as the second part of the menu.

2. Specify the Info directory name in the INFOPATH environment variable in your .profile
or .cshrc initialization file. (Only you and others who set this environment variable
will be able to find Info files whose location is specified this way.)

3. If you are using Emacs, list the name of the file in a second dir file, in its directory;

and then add the name of that directory to the Info-directory-1ist variable in your
personal or site initialization file.

1 On MS-DOS /MS-Windows systems, Info will try the .inf extension as well.

Chapter 21: Creating and Installing Info Files 206

This variable tells Emacs where to look for dir files (the files must be named dir).
Emacs merges the files named dir from each of the listed directories. (In Emacs version
18, you can set the Info-directory variable to the name of only one directory.)

For example, to reach a test file in the /home/bob/info directory, you could add an
entry like this to the menu in the standard dir file:

* Test: (/home/bob/info/info-test). Bob's own test file.

In this case, the absolute file name of the info-test file is written as the second part of
the menu entry.

If you don’t want to edit the system dir file, you can tell Info where to look by setting
the INFOPATH environment variable in your shell startup file. This works with both the
Emacs and standalone Info readers.

Specifically, if you use a Bourne-compatible shell such as sh or bash for your shell com-
mand interpreter, you set the INFOPATH environment variable in the .profile initialization
file; but if you use csh or tcsh, you set the variable in the .cshrc initialization file. On
MS-DOS/MS-Windows systems, you must set INFOPATH in your autoexec.bat file or in
the registry. Each type of shell uses a different syntax.

e In a .cshrc file, you could set the INFOPATH variable as follows:
setenv INFOPATH .:~/info:/usr/local/emacs/info

e In a .profile file, you would achieve the same effect by writing:
INFOPATH=. : $HOME/info: /usr/local/emacs/info
export INFOPATH
e In a autoexec.bat file, you write this command (note the use of ‘;’ as the directory
separator, and a different syntax for using values of other environment variables):
set INFOPATH=.;%HOME},/info;c:/usr/local/emacs/info

The .’ indicates the current directory as usual. Emacs uses the INFOPATH environment vari-
able to initialize the value of Emacs’s own Info-directory-1list variable. The standalone
Info reader merges any files named dir in any directory listed in the INFOPATH variable into
a single menu presented to you in the node called ‘(dir)Top’.

However you set INFOPATH, if its last character is a colon (on MS-DOS/MS-Windows
systems, use a semicolon instead), this is replaced by the default (compiled-in) path. This
gives you a way to augment the default path with new directories without having to list all
the standard places. For example (using sh syntax):

INFOPATH=/home/bob/info:

export INFOPATH
will search /home/bob/info first, then the standard directories. Leading or doubled colons
are not treated specially.

When you create your own dir file for use with Info-directory-1list or INFOPATH, it’s
easiest to start by copying an existing dir file and replace all the text after the ‘* Menu:’
with your desired entries. That way, the punctuation and special CTRL-_ characters that
Info needs will be present.

As one final alternative, which works only with Emacs Info, you can change the
Info-directory-1list variable. For example:

(add-hook 'Info-mode-hook '(lambda ()

Chapter 21: Creating and Installing Info Files 207

(add-to-1list 'Info-directory-list
(expand-file-name "~/info"))))

21.2.4 Installing Info Directory Files

When you install an Info file onto your system, you can use the program install-info
to update the Info directory file dir. Normally the makefile for the package runs
install-info, just after copying the Info file into its proper installed location.

In order for the Info file to work with install-info, you include the commands
@dircategory and @direntry. ..@end direntry in the Texinfo source file. Use @direntry
to specify the menu entries to add to the Info directory file, and use @dircategory to
specify which part of the Info directory to put it in. Here is how these commands are used
in this manual:

@dircategory Texinfo documentation system

@direntry

* Texinfo: (texinfo). The GNU documentation format.
* install-info: (texinfo)Invoking install-info. ...

ééﬁd direntry
Here’s what this produces in the Info file:

INFO-DIR-SECTION Texinfo documentation system
START-INFO-DIR-ENTRY

* Texinfo: (texinfo). The GNU documentation format.
* install-info: (texinfo)Invoking install-info. ...

END- INFO-DIR-ENTRY
The install-info program sees these lines in the Info file, and that is how it knows what
to do.

Always use the @direntry and @dircategory commands near the beginning of the
Texinfo input, before the first @node command. If you use them later on in the input,
install-info will not notice them.

install-info will automatically reformat the description of the menu entries it is
adding. As a matter of convention, the description of the main entry (above, ‘The GNU
documentation format’) should start at column 32, starting at zero (as in what-cursor-
position in Emacs). This will make it align with most others. Description for individual
utilities best start in column 48, where possible. For more information about format-
ting see the ‘--calign’, ‘--align’, and ‘--max-width’ options in Section 21.2.5 [Invoking

install-info|, page 208.

If you use @dircategory more than once in the Texinfo source, each usage specifies the
‘current’ category; any subsequent @direntry commands will add to that category.

When choosing a category name for the @dircategory command, we recommend con-
sulting the Free Software Directory (http://www.gnu.org/directory). If your program
is not listed there, or listed incorrectly or incompletely, please report the situation to the
directory maintainers (http://directory.fsf.org) so that the category names can be
kept in sync.

Here are a few examples (see the util/dir-example file in the Texinfo distribution for
large sample dir file):

Emacs

http://www.gnu.org/directory
http://directory.fsf.org

Chapter 21: Creating and Installing Info Files 208

Localization

Printing

Software development

Software libraries

Text creation and manipulation

Each ‘Invoking” node for every program installed should have a corresponding
@direntry. This lets users easily find the documentation for the different programs they
can run, as with the traditional man system.

21.2.5 Invoking install-info

install-info inserts menu entries from an Info file into the top-level dir file in the Info sys-
tem (see the previous sections for an explanation of how the dir file works). install-info
also removes menu entries from the dir file. It’s most often run as part of software instal-
lation, or when constructing a dir file for all manuals on a system. Synopsis:

install-info [option...] [info-file [dir-file]]

If info-file or dir-file are not specified, the options (described below) that define
them must be. There are no compile-time defaults, and standard input is never used.
install-info can read only one Info file and write only one dir file per invocation.

If dir-file (however specified) does not exist, install-info creates it if possible (with
no entries).

If any input file is compressed with gzip (see Gzip), install-info automatically uncom-
presses it for reading. And if dir-file is compressed, install-info also automatically leaves
it compressed after writing any changes. If dir-file itself does not exist, install-info tries
to open dir-file.gz, dir-file.xz, dir-file.bz2, dir-file.lz, and dir-file.lzma, in
that order.

Options:

—--add-once
Specifies that the entry or entries will only be put into a single section.

--align=column
Specifies the column that the second and subsequent lines of menu entry’s
description will be formatted to begin at. The default for this option is ‘35’. It
is used in conjunction with the ‘--max-width’ option. column starts counting
at 1.

—--append-new-sections
Instead of alphabetizing new sections, place them at the end of the DIR file.

--calign=column
Specifies the column that the first line of menu entry’s description will be for-
matted to begin at. The default for this option is ‘33’. It is used in conjunction
with the ‘--max-width’ option. When the name of the menu entry exceeds
this column, entry’s description will start on the following line. column starts
counting at 1.

--debug Report what is being done.

Chapter 21: Creating and Installing Info Files 209

-—delete Delete the entries in info-file from dir-file. The file name in the entry in dir-file
must be info-file (except for an optional ‘.info’ in either one). Don’t insert any
new entries. Any empty sections that result from the removal are also removed.

--description=text
Specify the explanatory portion of the menu entry. If you don’t specify a
description (either via ‘--entry’, ‘--item’ or this option), the description is
taken from the Info file itself.

--dir-file=name
Specify file name of the Info directory file. This is equivalent to using the dir-file
argument.

--dry-run
Same as ‘--test’.

-—entry=text
Insert text as an Info directory entry; text should have the form of an Info menu
item line plus zero or more extra lines starting with whitespace. If you specify
more than one entry, they are all added. If you don’t specify any entries, they
are determined from information in the Info file itself.

--help Display a usage message with basic usage and all available options, then exit
successfully.

-—info-file=file
Specify Info file to install in the directory. This is equivalent to using the
info-file argument.

--info-dir=dir
Specify the directory where the directory file dir resides. Equivalent to
‘--dir-file=dir/dir’.

-—infodir=dir
Same as ‘--info-dir’.

-—item=text
Same as ‘--entry=text’. An Info directory entry is actually a menu item.

--keep-o0ld
Do not replace pre-existing menu entries. When ‘--remove’ is specified, this
option means that empty sections are not removed.

--max-width=column
Specifies the column that the menu entry’s description will be word-wrapped
at. column starts counting at 1.

—--maxwidth=column
Same as ‘--max-width’.

-—menuentry=text
Same as ‘--name’.

--name=text
Specify the name portion of the menu entry. If the text does not start with an
asterisk ‘*’, it is presumed to be the text after the ‘*’ and before the parentheses

210

that specify the Info file. Otherwise text is taken verbatim, and is taken as
defining the text up to and including the first period (a space is appended if
necessary). If you don’t specify the name (either via ‘--entry’, ‘--item’ or
this option), it is taken from the Info file itself. If the Info does not contain the
name, the basename of the Info file is used.

--no-indent
Suppress formatting of new entries into the dir file.

--quiet
--silent Suppress warnings, etc., for silent operation.

--remove Same as ‘—-—delete’.

--remove-exactly
Also like ‘--delete’, but only entries if the Info file name matches exactly;
.info and/or .gz suffixes are not ignored.

-—section=sec
Put this file’s entries in section sec of the directory. If you specify more than one
section, all the entries are added in each of the sections. If you don’t specify any
sections, they are determined from information in the Info file itself. If the Info
file doesn’t specify a section, the menu entries are put into the Miscellaneous
section.

--section regex sec
Same as ‘--regex=regex --section=sec --add-once’.

install-info tries to detect when this alternate syntax is used, but does not
always guess correctly. Here is the heuristic that install-info uses:

1. If the second argument to --section starts with a hyphen, the original
syntax is presumed.

2. If the second argument to --section is a file that can be opened, the
original syntax is presumed.

3. Otherwise the alternate syntax is used.

When the heuristic fails because your section title starts with a hyphen, or it
happens to be a filename that can be opened, the syntax should be changed to
‘--regex=regex —-section=sec -—add-once’.

--regex=regex
Put this file’s entries into any section that matches regex. If more than one
section matches, all of the entries are added in each of the sections. Specify
regex using basic regular expression syntax, more or less as used with grep, for
example.

--test Suppress updating of the directory file.

--version
Display version information and exit successfully.

211

22 Generating HTML

makeinfo generates Info output by default, but given the —-html option, it will generate
HTML, for web browsers and other programs. This chapter gives some details on such
HTML output.

makeinfo has many user-definable customization variables with which you can influence
the HTML output. See Section 20.6 [Customization Variables], page 184.

makeinfo can also produce output in XML and Docbook formats, but we do not as yet
describe these in detail. See Section 1.2 [Output Formats|, page 4, for a brief overview of
all the output formats.

22.1 HTML Translation

First, the HTML generated by makeinfo is standard HTML 4. It also tries to be compatible
with earlier standards (e.g., HTML 2.0, RFC-1866). Thus, please report output from an
error-free run of makeinfo which has practical browser portability problems as a bug (see
Section 1.1 [Reporting Bugs|, page 3).

Some known exceptions to HTML 3.2 (using ‘--init-file=html32.pm’ produces strict
HTML 3.2 output; see Section 20.2 [Invoking texi2any], page 177):

1. HTML 3.2 tables are generated for the @multitable command (see Section 9.5 [Multi-
column Tables], page 87), but they should degrade reasonably in browsers without
table support.

The HTML 4 ‘lang’ attribute on the ‘<html>’ attribute is used.
Entities that are not in the HTML 3.2 standard are also used.
CSS is used (see Section 22.3 [HTML CSS], page 213).

A few HTML 4 elements are used: thead, abbr, acronym.

ANl S

To achieve maximum portability and accessibility among browsers (both graphical and
text-based), systems, and users, the HTML output is intentionally quite plain and generic.
It has always been our goal for users to be able to customize the output to their wishes
via CSS (see Section 22.3 [HTML CSS], page 213) or other means (see Section 20.6 [Cus-
tomization Variables], page 184). If you cannot accomplish a reasonable customization, feel
free to report that.

However, we do not wish to depart from our basic goal of widest readability for the core
output. For example, using fancy CSS may make it possible for the HTML output to more
closely resemble the TEX output in some details, but this result is not even close to being
worth the ensuing difficulties.

It is also intentionally not our goal, and not even possible, to pass through every con-
ceivable validation test without any diagnostics. Different validation tests have different
goals, often about pedantic enforcement of some standard or another. Our overriding goal
is to help users, not blindly comply with standards.

To repeat what was said at the top: please report output from an error-free run of
makeinfo which has practical browser portability problems as a bug (see Section 1.1 [Re-
porting Bugs], page 3).

A few other general points about the HTML output follow.

Chapter 22: Generating HTML 212

Navigation bar: By default, a navigation bar is inserted at the start of each node,
analogous to Info output. If the ‘--no-headers’ option is used, the navigation bar is
only inserted at the beginning of split files. Header <link> elements in split output can
support Info-like navigation with browsers like Lynx and Emacs W3 which implement this
HTML 1.0 feature.

Footnotes: for HI'ML, when the footnote style is ‘end’, or if the output is not split,
footnotes are put at the end of the output. If the footnote style is set to ‘separate’, and
the output is split, they are placed in a separate file. See Section 10.3.2 [Footnote Styles],
page 95.

Raw HTML: makeinfo will include segments of Texinfo source between @ifhtml and
@end ifhtml in the HTML output (but not any of the other conditionals, by default). Source
between @html and @end html is passed without change to the output (i.e., suppressing the
normal escaping of input ‘<’, *>” and ‘&’ characters which have special significance in HTML).
See Section 16.1 [Conditional Commands], page 139.

22.2 HTML Splitting

When splitting output at nodes (which is the default), makeinfo writes HTML output into
(basically) one output file per Texinfo source @node.

Each output file name is the node name with spaces replaced by ‘=”’s and special char-
acters changed to ‘_’ followed by their code point in hex (see Section 22.4 [HTML Xref],
page 214). This is to make it portable and easy to use as a filename. In the unusual case
of two different nodes having the same name after this treatment, they are written consec-

utively to the same file, with HT'ML anchors so each can be referred to independently.

If makeinfo is run on a system which does not distinguish case in file names, nodes
which are the same except for case (e.g., ‘index’ and ‘Index’) will also be folded into the
same output file with anchors. You can also pretend to be on a case insensitive filesystem
by setting the customization variable CASE_INSENSITIVE_FILENAMES.

It is also possible to split at chapters or sections with ——split (see Section 20.2 [Invoking
texi2any|, page 177). In that case, the file names are constructed after the name of the
node associated with the relevant sectioning command. Also, unless —-no-node-files
is specified, a redirection file is output for every node in order to more reliably support
cross-references to that manual (see Section 22.4 [HTML Xref], page 214).

When splitting, the HTML output files are written into a subdirectory, with the name
chosen as follows:

1. makeinfo first tries the subdirectory with the base name from @setfilename (that is,
any extension is removed). For example, HTML output for @setfilename gcc.info
would be written into a subdirectory named ‘gecc/’.

2. If that directory cannot be created for any reason, then makeinfo tries appending
‘.html’ to the directory name. For example, output for @setfilename texinfo would
be written to ‘texinfo.html/’.

3. If the ‘name.html’ directory can’t be created either, makeinfo gives up.

In any case, the top-level output file within the directory is always named ‘index.html’.

Chapter 22: Generating HTML 213

Monolithic output (-—no-split) is named according to @setfilename (with any ‘. info’
extension is replaced with ‘.html’), -—output (the argument is used literally), or based on
the input file name as a last resort (see Section 3.2.3 [@setfilename], page 17).

22.3 HTML CSS

Cascading Style Sheets (CSS for short) is an Internet standard for influencing the display
of HTML documents: see http://www.w3.0rg/Style/CSS/.

By default, makeinfo includes a few simple CSS commands to better implement the
appearance of some Texinfo environments. Here are two of them, as an example:

pre.display { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }

A full explanation of CSS is (far) beyond this manual; please see the reference above. In
brief, however, the above tells the web browser to use a ‘smaller’ font size for @smalldisplay
text, and to use the same font as the main document for both @smalldisplay and @display.
By default, the HTML ‘<pre>’ command uses a monospaced font.

You can influence the CSS in the HTML output with two makeinfo options: --css-
include=file and --css-ref=url.

The option --css-ref=url adds to each output HTML file a ‘<1ink>’ tag referenc-
ing a CSS at the given url. This allows using external style sheets. You may find the
file texi2html/examples/texinfo-bright-colors.css useful for visualizing the CSS ele-
ments in Texinfo output.

The option —--css-include=file includes the contents file in the HTML output, as you
might expect. However, the details are somewhat tricky, as described in the following, to
provide maximum flexibility.

The CSS file may begin with so-called ‘@import’ directives, which link to external CSS
specifications for browsers to use when interpreting the document. Again, a full description
is beyond our scope here, but we’ll describe how they work syntactically, so we can explain
how makeinfo handles them.

There can be more than one ‘@import’, but they have to come first in the file, with
only whitespace and comments interspersed, no normal definitions. (Technical exception: a
‘Qcharset’ directive may precede the ‘@import’’s. This does not alter makeinfo’s behavior,
it just copies the ‘@charset’ if present.) Comments in CSS files are delimited by ‘/* ...
x/’ as in C. An ‘@import’ directive must be in one of these two forms:

Q@import url(http://example.org/foo.css);
@import "http://example.net/bar.css";

As far as makeinfo is concerned, the crucial characters are the ‘@’ at the beginning and
the semicolon terminating the directive. When reading the CSS file, it simply copies any
such ‘@’-directive into the output, as follows:

e If file contains only normal CSS declarations, it is included after makeinfo’s default
CSS, thus overriding it.

e If file begins with ‘@import’ specifications (see below), then the ‘import’’s are included
first (they have to come first, according to the standard), and then makeinfo’s default

http://www.w3.org/Style/CSS/

Chapter 22: Generating HTML 214

CSS is included. If you need to override makeinfo’s defaults from an ‘@import’, you
can do so with the ‘! important’ CSS construct, as in:

pre.smallexample { font-size: inherit ! important }

e If file contains both ‘@import’ and inline CSS specifications, the ‘@import’’s are in-
cluded first, then makeinfo’s defaults, and lastly the inline CSS from file.

e Any @-directive other than ‘@import’ and ‘@charset’ is treated as a CSS declaration,
meaning makeinfo includes its default CSS and then the rest of the file.

If the CSS file is malformed or erroneous, makeinfo’s output is unspecified. makeinfo
does not try to interpret the meaning of the CSS file in any way; it just looks for the special
‘@’ and ‘;’ characters and blindly copies the text into the output. Comments in the CSS
file may or may not be included in the output.

In addition to the possibilities offered by CSS, makeinfo has many user-definable cus-
tomization variables with which you can influence the HTML output. See Section 20.6
[Customization Variables], page 184.

22.4 HTML Cross-references

Cross-references between Texinfo manuals in HTML format become, in the end, a stan-
dard HTML <a> link, but the details are unfortunately complex. This section describes
the algorithm used in detail, so that Texinfo can cooperate with other programs, such as
texi2html, by writing mutually compatible HTML files.

This algorithm may or may not be used for links within HTML output for a Texinfo file.
Since no issues of compatibility arise in such cases, we do not need to specify this.

We try to support references to such “external” manuals in both monolithic and split
forms. A monolithic (mono) manual is entirely contained in one file, and a split manual
has a file for each node. (See Section 22.2 [HTML Splitting], page 212.)

The algorithm was primarily devised by Patrice Dumas in 2003-04.

22.4.1 HTML Cross-reference Link Basics

For our purposes, an HTML link consists of four components: a host name, a directory
part, a file part, and a target part. We always assume the http protocol. For example:

http://host/dir/file.html#target

The information to construct a link comes from the node name and manual name in the
cross-reference command in the Texinfo source (see Chapter 6 [Cross References], page 49),
and from external information (see Section 22.4.6 [HTML Xref Configuration], page 219).

We now consider each part in turn.

The host is hardwired to be the local host. This could either be the literal string
‘localhost’, or, according to the rules for HTML links, the ‘http://localhost/’ could be
omitted entirely.

The dir and file parts are more complicated, and depend on the relative split/mono
nature of both the manual being processed and the manual that the cross-reference refers
to. The underlying idea is that there is one directory for Texinfo manuals in HTML, and

Chapter 22: Generating HTML 215

a given manual is either available as a monolithic file manual.html, or a split subdirectory
manual/*.html. Here are the cases:

e If the present manual is split, and the referent manual is also split, the directory is
‘../referent/’ and the file is the expanded node name (described later).

e If the present manual is split, and the referent manual is mono, the directory is ../’
and the file is referent.html.

e If the present manual is mono, and the referent manual is split, the directory is
referent/ and the file is the expanded node name.

e If the present manual is mono, and the referent manual is also mono, the directory is
./ (or just the empty string), and the file is referent.html.

Another rule, that only holds for filenames, is that base filenames are truncated to 245
characters, to allow for an extension to be appended and still comply with the 255-character
limit which is common to many filesystems. Although technically this can be changed with
the BASEFILENAME_LENGTH customization variable (see Section 20.6.4 [Other Customization
Variables], page 192), doing so would make cross-manual references to such nodes invalid.

Any directory part in the filename argument of the source cross reference command is
ignored. Thus, @xref{,,,../foo} and @xref{,,,foo} both use ‘foo’ as the manual name.
This is because any such attempted hardwiring of the directory is very unlikely to be useful
for both Info and HTML output.

Finally, the target part is always the expanded node name.

Whether the present manual is split or mono is determined by user option; makeinfo
defaults to split, with the -—no-split option overriding this.

Whether the referent manual is split or mono, however, is another bit of the external in-
formation (see Section 22.4.6 [HTML Xref Configuration|, page 219). By default, makeinfo
uses the same form of the referent manual as the present manual.

Thus, there can be a mismatch between the format of the referent manual that the
generating software assumes, and the format it’s actually present in. See Section 22.4.5
[HTML Xref Mismatch|, page 218.

22.4.2 HTML Cross-reference Node Name Expansion

As mentioned in the previous section, the key part of the HTML cross reference algorithm
is the conversion of node names in the Texinfo source into strings suitable for XHTML
identifiers and filenames. The restrictions are similar for each: plain ASCII letters, numbers,
and the ‘-’ and ‘_’ characters are all that can be used. (Although HTML anchors can contain
most characters, XHTML is more restrictive.)

Cross-references in Texinfo can refer either to nodes or anchors (see Section 6.8 [@anchor],
page 56). However, anchors are treated identically to nodes in this context, so we’ll continue
to say “node” names for simplicity.

A special exception: the Top node (see Section 3.6 [The Top Node], page 25) is always
mapped to the file index.html, to match web server software. However, the HTML target
is ‘Top’. Thus (in the split case):

@xref{Top,,, emacs, The GNU Emacs Manual}.

Chapter 22: Generating HTML 216

=
1. The standard ASCII letters (a-z and A-Z) are not modified. All other characters may
be changed as specified below.
2. The standard ASCII numbers (0-9) are not modified except when a number is the first
character of the node name. In that case, see below.

3. Multiple consecutive space, tab and newline characters are transformed into just one
space. (It’s not possible to have newlines in node names with the current implementa-
tion, but we specify it anyway, just in case.)

4. Leading and trailing spaces are removed.

5. After the above has been applied, each remaining space character is converted into a
‘=’ character.

6. Other ASCII 7-bit characters are transformed into ‘_00xx’, where xx is the ASCII
character code in (lowercase) hexadecimal. This includes ‘_’, which is mapped to
‘_005f".

7. If the node name does not begin with a letter, the literal string ‘g_t’ is prefixed to the
result. (Due to the rules above, that string can never occur otherwise; it is an arbitrary
choice, standing for “GNU Texinfo”.) This is necessary because XHTML requires that
identifiers begin with a letter.

For example:

Onode A node --- with _'Y%
= A-node-_002d_002d_002d-with-_005f_0027_0025

Example translations of common characters:
e ‘' = ‘_005f’
o ‘-7 = °_0024d’
e ‘Anode’ = ‘A-node’
On case-folding computer systems, nodes differing only by case will be mapped to the
same file. In particular, as mentioned above, Top always maps to the file index.html.
Thus, on a case-folding system, Top and a node named ‘Index’ will both be written to

index.html. Fortunately, the targets serve to distinguish these cases, since HTML target
names are always case-sensitive, independent of operating system.

22.4.3 HTML Cross-reference Command Expansion
Node names may contain @-commands (see Section 4.4 [Node Line Requirements], page 33).
This section describes how they are handled.

First, comments are removed.

Next, any @value commands (see Section 16.5.1 [@set @value|, page 143) and macro
invocations (see Section 17.2 [Invoking Macros], page 150) are fully expanded.
Then, for the following commands, the command name and braces are removed, and the
text of the argument is recursively transformed:
Q@asis @b Ocite Qcode @command @dfn @dmn Qdotless
@emph Qenv @file @i @indicateurl @kbd Qkey
O@samp @sansserif @sc @slanted @strong @sub @sup

Chapter 22: Generating HTML 217

0t QU Qvar Qverb Qw
For @sc, any letters are capitalized.

In addition, the following commands are replaced by constant text, as shown below. If
any of these commands have non-empty arguments, as in @TeX{bad}, it is an error, and
the result is unspecified. In this table, ‘(space)’ means a space character and ‘(nothing)’
means the empty string. The notation ‘U+hhhh’ means Unicode code point hhhh (in hex,
as usual).

There are further transformations of many of these expansions to yield the final file or

other target name, such as space characters to ‘-’, etc., according to the other rules.
@(newline) (space)
@(space) (space)
@(tab) (space)
Q! ‘v

@ (space)
Q- (nothing)
Q. <

Q: (nothing)
(g e

0@ ‘@’

o{ L

Q} ‘¥
@LaTeX ‘LaTeX’
Q@TeX ‘TeX’
Q@arrow U+2192
@bullet U+2022
Q@comma .
Qcopyright U+00A9
@dots U+2026
Q@enddots o)
@equiv U+2261
Q@error ‘error-->’
@euro U+20AC
@exclamdown U+00A1
Q@expansion U+21A6
Qgeq U+2265
Q@leq U+2264
Ominus U+2212
Qordf U+00AA
Q@ordm U+00BA
@point U+2605
@pounds U+00A3
Oprint U+22A3
Qquestiondown U+00BF
Q@registeredsymbol U+00AE
Q@result U+21D2

Otextdegree

U+00B0

Chapter 22: Generating HTML 218

Qtie (space)

Quotation mark @-commands (@quotedblright{} and the like), are likewise replaced
by their Unicode values. Normal quotation characters (e.g., ASCII ¢ and ’) are not altered.
See Section 12.5 [Inserting Quotation Marks], page 109.

Any @acronym, @abbr, @email, and @image commands are replaced by their first argu-
ment. (For these commands, all subsequent arguments are optional, and ignored here.) See
Section 7.1.14 [@acronym|, page 68, and Section 7.1.16 [@email], page 69, and Section 10.2
[Images|, page 92.

Accents are handled according to the next section.

Any other command is an error, and the result is unspecified.

22.4.4 HTML Cross-reference 8-bit Character Expansion

Usually, characters other than plain 7-bit ASCII are transformed into the corresponding
Unicode code point(s) in Normalization Form C, which uses precomposed characters where
available. (This is the normalization form recommended by the W3C and other bodies.)
This holds when that code point is Oxffff or less, as it almost always is.

These will then be further transformed by the rules above into the string ‘_hhhh’, where
hhhh is the code point in hex.

For example, combining this rule and the previous section:

@node @b{A} @TeX{} @u{B} @point{}@enddots{}
= A-TeX-B_0306-_2605_002e_002e_002e

Notice: 1) @enddots expands to three periods which in turn expands to three ‘_002e’’s;
2) @u{B} is a ‘B’ with a breve accent, which does not exist as a pre-accented Unicode
character, therefore expands to ‘B_0306’ (B with combining breve).

4

When the Unicode code point is above Oxffff, the transformation is ‘__xxxxxx’, that
is, two leading underscores followed by six hex digits. Since Unicode has declared that their
highest code point is 0x10f££f, this is sufficient. (We felt it was better to define this extra
escape than to always use six hex digits, since the first two would nearly always be zeros.)

This method works fine if the node name consists mostly of ASCII characters and con-
tains only few 8-bit ones. But if the document is written in a language whose script is not
based on the Latin alphabet (for example, Ukrainian), it will create file names consisting
almost entirely of ‘_xxxx’ notations, which is inconvenient and all but unreadable. To han-
dle such cases, makeinfo offers the ——transliterate-file-names command line option.
This option enables transliteration of node names into ASCII characters for the purposes
of file name creation and referencing. The transliteration is based on phonetic principles,
which makes the generated file names more easily understanable.

For the definition of Unicode Normalization Form C, see Unicode report UAX#15,
http://www.unicode . org/reports/tris/. Many related documents and implemen-
tations are available elsewhere on the web.

22.4.5 HTML Cross-reference Mismatch

As mentioned earlier (see Section 22.4.1 [HTML Xref Link Basics], page 214), the generating
software may need to guess whether a given manual being cross referenced is available in

http://www.unicode.org/reports/tr15/

Chapter 22: Generating HTML 219

split or monolithic form—and, inevitably, it might guess wrong. However, when the referent
manual is generated, it is possible to handle at least some mismatches.

In the case where we assume the referent is split, but it is actually available in mono,
the only recourse would be to generate a manual/ subdirectory full of HTML files which
redirect back to the monolithic manual .html. Since this is essentially the same as a split
manual in the first place, it’s not very appealing.

On the other hand, in the case where we assume the referent is mono, but it is actually
available in split, it is possible to use JavaScript to redirect from the putatively monolithic
manual .html to the different manual/node.html files. Here’s an example:

function redirect() {
switch (location.hash) {
case "#Nodel":
location.replace("manual/Nodel.html#Nodel"); break;
case "#Node2"
location.replace("manual/Node2.html#Node2"); break;

default:;
}
}

Then, in the <body> tag of manual.html:
<body onLoad="redirect();">

Once again, this is something the software which generated the referent manual has to
do in advance, it’s not something the software generating the cross-reference in the present
manual can control.

22.4.6 HTML Cross-reference Configuration: htmlxref.cnf

makeinfo reads a file named htmlxref.cnf to gather information for cross-references to
other manuals in HTML output. It is looked for in the following directories:

v (the current directory)

./ .texinfo/
(under the current directory)

~/.texinfo/
(where ~ is the current user’s home directory)

sysconfdir/texinfo/
(where sysconfdir is the system configuration directory specified at compile-
time, e.g., /usr/local/etc)

datadir/texinfo/
(likewise specified at compile time, e.g., /usr/local/share)

All files found are used, with earlier entries overriding later ones. The Texinfo distribu-
tion includes a default file which handles many GNU manuals; it is installed in the last of
the above directories, i.e., datadir/texinfo/htmlxref.cnf.

Chapter 22: Generating HTML 220

The file is line-oriented. Lines consisting only of whitespace are ignored. Comments are
indicated with a ‘# at the beginning of a line, optionally preceded by whitespace. Since ‘#’
can occur in urls (like almost any character), it does not otherwise start a comment.

Each non-blank non-comment line must be either a variable assignment or manual in-
formation.

A variable assignment line looks like this:

varname = varvalue

Whitespace around the ‘=’ is optional and ignored. The varname should consist of

letters; case is significant. The varvalue is an arbitrary string, continuing to the end of the
line. Variables are then referenced with ‘${varname}’; variable references can occur in the
varvalue.

A manual information line looks like this:
manual keyword urlprefix

with manual the short identifier for a manual, keyword being one of: mono, node, section,
chapter, and urlprefix described below. Variable references can occur only in the urlprefix.
For example (used in the canonical htmlxref.cnf):

G = http://www.gnu.org

GS = ${G}/software

hello mono ${GS}/hello/manual/hello.html

hello chapter ${GS}/hello/manual/html_chapter/

hello section ${GS}/hello/manual/html_section/

hello node ${GS}/hello/manual/html_node/

If the keyword is mono, urlprefix gives the host, directory, and file name for manual as

one monolithic file.

If the keyword is node, section, or chapter, urlprefix gives the host and directory for
manual split into nodes, sections, or chapters, respectively.

When available, makeinfo will use the “corresponding” value for cross-references between
manuals. That is, when generating monolithic output (--no-split), the mono url will be
used, when generating output that is split by node, the node url will be used, etc. However,
if a manual is not available in that form, anything that is available can be used. Here is the
search order for each style:

node = node, section, chapter, mono
section = section, chapter, node, mono
chapter = chapter, section, node, mono
mono = mono, chapter, section, node

These section- and chapter-level cross-manual references can succeed only when the
target manual was created using —-node-files; this is the default for split output.

If you have additions or corrections to the htmlxref.cnf distributed with Texinfo,
please email bug-texinfo@gnu.org as usual. You can get the latest version from http://
ftpmirror.gnu.org/texinfo/htmlxref.cnf.

22.4.7 HTML Cross-reference Link Preservation:
manual-noderename. cnf

Occasionally changes in a program require removing (or renaming) nodes in the manual in
order to have the best documentation. Given the nature of the web, however, links may

mailto:bug-texinfo@gnu.org
http://ftpmirror.gnu.org/texinfo/htmlxref.cnf
http://ftpmirror.gnu.org/texinfo/htmlxref.cnf

Chapter 22: Generating HTML 221

exist anywhere to such a removed node (renaming appears the same as removal for this
purpose), and it’s not ideal for those links to simply break.

Therefore, Texinfo provides a way for manual authors to specify old node names
and the new nodes to which the old names should be redirected, via the file man-
ual-noderename.cnf, where manual is the base name of the manual. For example, the
manual texinfo.texi would be supplemented by a file texinfo-noderename.cnf. (This
name can be overridden by setting the RENAMED_NODES_FILE customization variable; see
Section 20.6 [Customization Variables|, page 184).

The file is read in pairs of lines, as follows:

old-node-name
©@@{} new-node-name
The usual conversion from Texinfo node names to HTML names is applied; see this
entire section for details (see Section 22.4 [HTML Xref]|, page 214). The unusual ‘@e{}’
separator is used because it is not a valid Texinfo construct, so can’t appear in the node
names.
The effect is that makeinfo generates a redirect from old-node-name to new-node-name
when producing HTML output. Thus, external links to the old node are preserved.
Lines consisting only of whitespace are ignored. Comments are indicated with a ‘@c’ at
the beginning of a line, optionally preceded by whitespace.
Another approach to preserving links to deleted or renamed nodes is to use anchors (see
Section 6.8 [@anchor], page 56). There is no effective difference between the two approaches.

222

Appendix A @-Command Details

Here are the details of @-commands: information about their syntax, a list of commands,
and information about where commands can appear.

A.1 @-Command Syntax

Texinfo has the following types of @-command:

1. Brace commands
These commands start with @ followed by a letter or a word, followed by
an argument within braces. For example, the command @dfn indicates the
introductory or defining use of a term; it is used as follows: ‘In Texinfo,
@0-commands are @dfn{mark-up} commands.’

2. Line commands
These commands occupy an entire line. The line starts with @, followed by
the name of the command (a word); for example, @center or @cindex. If no
argument is needed, the word is followed by the end of the line. If there is an
argument, it is separated from the command name by a space. Braces are not
used.

3. Block commands
These commands are written at the start of a line, with general text on follow-
ing lines, terminated by a matching @end command on a line of its own. For
example, @example, then the lines of a coding example, then @end example.
Some of these block commands take arguments as line commands do; for ex-
ample, @enumerate A opening an environment terminated by @end enumerate.
Here ‘A’ is the argument.

4. Symbol insertion commands with no arguments
These commands start with @ followed by a word followed by a left and right-
brace. These commands insert special symbols in the document; they do not
take arguments. Some examples: @dots{} = ‘...’ Gequiv{} = ‘=’, @TeX{}
= ‘TgX’, and @bullet{} = ‘o’

5. Non-alphabetic commands
The names of commands in all of the above categories consist of alphabetic
characters, almost entirely in lower-case. Unlike those, the non-alphabetic com-
mands commands consist of an @ followed by a punctuation mark or other
character that is not part of the Latin alphabet. Non-alphabetic commands are
almost always part of text within a paragraph. The non-alphabetic commands
include @@, @{, @}, @., @SPACE, and most of the accent commands.

6. Miscellaneous commands
There are a handful of commands that don’t fit into any of the above categories;
for example, the obsolete command @refill, which is always used at the end
of a paragraph immediately following the final period or other punctuation
character. @refill takes no argument and does not require braces. Likewise,
@tab used in a @multitable block does not take arguments, and is not followed
by braces.

Appendix A: @Q-Command Details 223

Thus, the alphabetic commands fall into classes that have different argument syntaxes.
You cannot tell to which class a command belongs by the appearance of its name, but you
can tell by the command’s meaning: if the command stands for a glyph, it is in class 4 and
does not require an argument; if it makes sense to use the command among other text as
part of a paragraph, the command is in class 1 and must be followed by an argument in
braces. The non-alphabetic commands, such as @:, are exceptions to the rule; they do not
need braces.

The purpose of having different syntax for commands is to make Texinfo files easier to
read, and also to help the GNU Emacs paragraph and filling commands work properly.

A.2 @-Command List

Here is an alphabetical list of the @-commands in Texinfo. Square brackets, [], indicate
optional arguments; an ellipsis, ‘. ..’, indicates repeated text.

Owhitespace
An @ followed by a space, tab, or newline produces a normal, stretchable, in-
terword space. See Section 12.3.1 [Multiple Spaces], page 105.

Q! Produce an exclamation point that ends a sentence (usually after an end-of-
sentence capital letter). See Section 12.3.3 [Ending a Sentence|, page 107.

@ll

@' Generate an umlaut or acute accent, respectively, over the next character, as
in 6 and 6. See Section 12.4 [Inserting Accents|, page 108.

@* Force a line break. See Section 13.2 [Line Breaks], page 119.

@,{c} Generate a cedilla accent under c, as in ¢. See Section 12.4 [Inserting Accents],
page 108.

@- Insert a discretionary hyphenation point. See Section 13.3 [@- @hyphenation],
page 120.

@. Produce a period that ends a sentence (usually after an end-of-sentence capital
letter). See Section 12.3.3 [Ending a Sentence], page 107.

e/ Produces no output, but allows a line break. See Section 13.2 [Line Breaks],
page 119.

Q: Tell TEX to refrain from inserting extra whitespace after an immediately pre-
ceding period, question mark, exclamation mark, or colon, as TEX normally
would. See Section 12.3.2 [Not Ending a Sentence], page 106.

0= Generate a macron (bar) accent over the next character, as in 6. See Section 12.4
[Inserting Accents|, page 108.

Q7 Produce a question mark that ends a sentence (usually after an end-of-sentence
capital letter). See Section 12.3.3 [Ending a Sentence], page 107.

@@

@atchar{}

Insert an at sign, ‘@’. See Section 12.1.1 [Inserting an Atsign], page 103.

Appendix A: @Q-Command Details 224

o\

@backslashchar{}
Insert a backslash, ‘\’; @backslashchar{} works anywhere, while @\ works
only inside @math. See Section 12.1.4 [Inserting a Backslash], page 104, and
Section 12.7 [Inserting Math], page 111.

o

@ Generate a circumflex (hat) or grave accent, respectively, over the next charac-
ter, as in 6 and e. See Section 12.4 [Inserting Accents|, page 108.

o{

@lbracechar{}
Insert a left brace, ‘{’. See Section 12.1.2 [Inserting Braces], page 103.

@}

@rbracechar{}
Insert a right brace, ‘}’. See Section 12.1.2 [Inserting Braces], page 103.

@~ Generate a tilde accent over the next character, as in N. See Section 12.4
[Inserting Accents|, page 108.

@AA{}

@aa{} Generate the uppercase and lowercase Scandinavian A-ring letters, respectively:
A, 4. See Section 12.4 [Inserting Accents|, page 108.

@abbr{abbreviation}
Indicate a general abbreviation, such as ‘Comput.’. See Section 7.1.13 [@abbr],
page 68.

Q@acronym{acronym}
Indicate an acronym in all capital letters, such as ‘NASA’. See Section 7.1.14
[@acronym|, page 68.

QAE{}

Qae{} Generate the uppercase and lowercase AE ligatures, respectively: A, . See
Section 12.4 [Inserting Accents], page 108.

O@afivepaper
Change page dimensions for the A5 paper size. See Section 19.12 [A4 Paper],
page 173.

O@afourlatex

O@afourpaper

OGafourwide
Change page dimensions for the A4 paper size. See Section 19.12 [A4 Paper],
page 173.

Q@alias new=existing
Make the command ‘@new’ a synonym for the existing command ‘@existing’.
See Section 17.4 [@alias|, page 154.

Q@allowcodebreaks true-false
Control breaking at ‘=" and ‘_” in TEX. See Section 13.4 [@allowcodebreaks],
page 120.

Appendix A: @Q-Command Details 225

@anchor{name}
Define name as the current location for use as a cross-reference target. See
Section 6.8 [@anchor]|, page 56.

O@appendix title
Begin an appendix. The title appears in the table of contents. In Info, the
title is underlined with asterisks. See Section 5.4 [@unnumbered Q@appendix],
page 44.

O@appendixsec title

O@appendixsection title
Begin an appendix section within an appendix. The section title appears
in the table of contents. In Info, the title is underlined with equal signs.
@appendixsection is a longer spelling of the @appendixsec command. See
Section 5.7 [@unnumberedsec @appendixsec @heading], page 45.

OGappendixsubsec title
Begin an appendix subsection. The title appears in the table of contents. In
Info, the title is underlined with hyphens. See Section 5.9 [@unnumberedsubsec
@appendixsubsec @subheading], page 45.

O@appendixsubsubsec title
Begin an appendix subsubsection. The title appears in the table of contents. In
Info, the title is underlined with periods. See Section 5.10 [@subsubsection],
page 46.

@arrow{} Generate a right arrow glyph: ‘—’. Used by default for @click. See
Section 12.9.8 [Click Sequences], page 117.

@asis Used following @table, @ftable, and @vtable to print the table’s first column
without highlighting (“as is”). See [@asis]|, page 86.

Q@author author
Typeset author flushleft and underline it. See Section 3.4.3 [@title @subtitle
@author], page 22.

@b{text} Set text in a bold font. No effect in Info. See Section 7.2.3 [Fonts], page 70.

@bulletq{}
Generate a large round dot, e (‘*’ in Info). Often used with @table. See
Section 12.8.5 [@bullet|, page 113.

@bye Stop formatting a file. The formatters do not see anything in the input file
following @bye. See Section 3.8 [Ending a File], page 30.

Q@c comment
Begin a comment in Texinfo. The rest of the line does not appear in any
output. A synonym for @comment. DEL also starts a comment. See Section 2.2
[Comments], page 11.

@caption Define the full caption for a @float. See Section 10.1.2 [@caption
@shortcaption|, page 91.

Appendix A: @Q-Command Details 226

Q@cartouche
Highlight an example or quotation by drawing a box with rounded corners
around it. Pair with @end cartouche. No effect in Info. See Section 8.14
[@cartouche], page 79.

Q@center line-of-text
Center the line of text following the command. See Section 3.4.2 [@titlefont
@center @sp|, page 21.

Q@centerchap line-of-text
Like @chapter, but centers the chapter title. See Section 5.3 [@chapter],
page 43.

@chapheading title
Print an unnumbered chapter-like heading, but omit from the table of contents.
In Info, the title is underlined with asterisks. See Section 5.5 [@majorheading
@chapheading], page 44.

Q@chapter title
Begin a numbered chapter. The chapter title appears in the table of contents. In
Info, the title is underlined with asterisks. See Section 5.3 [@chapter], page 43.

Q@cindex entry
Add entry to the index of concepts. See Section 11.3 [Defining the Entries of
an Index|, page 98.

Qcite{reference}
Highlight the name of a book or other reference that has no companion Info
file. See Section 6.11 [@cite], page 60.

Q@clear flag
Unset flag, preventing the Texinfo formatting commands from formatting text
between subsequent pairs of @ifset flag and @end ifset commands, and pre-
venting @value{flag} from expanding to the value to which flag is set. See
Section 16.5 [@set @clear @value], page 143.

@click{} Represent a single “click” in a GUI. Used within @clicksequence. See
Section 12.9.8 [Click Sequences|, page 117.

@clicksequencef{action @click{} action}
Represent a sequence of clicks in a GUI. See Section 12.9.8 [Click Sequences],
page 117.

Q@clickstyle @cmd
Execute @Qcmd for each @click; the default is @arrow. The usual following
empty braces on @cmd are omitted. See Section 12.9.8 [Click Sequences],
page 117.

Q@code{sample-code}
Indicate an expression, a syntactically complete token of a program, or a pro-
gram name. Unquoted in Info output. See Section 7.1.2 [@code|, page 62.

Appendix A: @Q-Command Details 227

Q@codequotebacktick on-off

Q@codequoteundirected on-off
Control output of ~ and ' in code examples. See Section 12.2 [Inserting Quote
Characters|, page 105.

@comma{} Insert a comma ‘,” character; only needed when a literal comma would be taken
as an argument separator. See Section 12.1.3 [Inserting a Comma|, page 104.

Q@command{command-name}
Indicate a command name, such as 1s. See Section 7.1.10 [@command], page 67.

Q@comment comment
Begin a comment in Texinfo. The rest of the line does not appear in any output.
A synonym for @c. See Section 2.2 [Comments|, page 11.

Q@contents
Print a complete table of contents. Has no effect in Info, which uses menus
instead. See Section 3.5 [Generating a Table of Contents], page 24.

Q@copying Specify copyright holders and copying conditions for the document. Pair with
@end copying. See Section 3.3.1 [@copying], page 19.

@copyright{}
Generate the copyright symbol (©. See Section 12.8.2 [@copyright]|, page 112.

Q@defcodeindex index—name
Define a new index and its indexing command. Print entries in an @code font.
See Section 11.6 [Defining New Indices], page 101.

Q@defcv category class name

@defcvx category class name
Format a description for a variable associated with a class in object-oriented
programming. Takes three arguments: the category of thing being defined, the
class to which it belongs, and its name. See Chapter 14 [Definition Commands],
page 123.

@deffn category name arguments. ..

Q@deffnx category name arguments. ..
Format a description for a function, interactive command, or similar entity that
may take arguments. @deffn takes as arguments the category of entity being
described, the name of this particular entity, and its arguments, if any. See
Chapter 14 [Definition Commands|, page 123.

Q@defindex index-name
Define a new index and its indexing command. Print entries in a roman font.
See Section 11.6 [Defining New Indices|, page 101.

@definfoenclose newcmd, before, after
Must be used within @ifinfo; create a new command @newcmd for Info that
marks text by enclosing it in strings that precede and follow the text. See
Section 17.5 [@definfoenclose], page 155.

Appendix A: @Q-Command Details 228

Q@defivar class instance-variable—name

Q@defivarx class instance-variable-name
Format a description for an instance variable in object-oriented programming.
The command is equivalent to ‘@defcv {Instance Variable} ...’. See
Chapter 14 [Definition Commands], page 123.

@defmac macroname arguments. ..

@defmacx macroname arguments. ..
Format a description for a macro; equivalent to ‘@deffn Macro
Chapter 14 [Definition Commands], page 123.

See

Q@defmethod class method-name arguments. ..

@defmethodx class method-name arguments. ..
Format a description for a method in object-oriented programming; equivalent
to ‘@defop Method ...’. See Chapter 14 [Definition Commands], page 123.

@defop category class name arguments. ..

@defopx category class name arguments. ..
Format a description for an operation in object-oriented programming. @defop
takes as arguments the name of the category of operation, the name of the
operation’s class, the name of the operation, and its arguments, if any. See
Chapter 14 [Definition Commands|, page 123, and Section 14.5.6 [Abstract
Objects|, page 130.

Q@defopt option-name

@defoptx option-name
Format a description for a user option; equivalent to ‘@defvr {User Option}
...". See Chapter 14 [Definition Commands|, page 123.

Q@defspec special-form—name arguments. ..

Q@defspecx special-form—name arguments. ..
Format a description for a special form; equivalent to ‘@deffn {Special Form}
...". See Chapter 14 [Definition Commands]|, page 123.

Q@deftp category name-of-type attributes...

@deftpx category name-of-type attributes...
Format a description for a data type; its arguments are the category, the name
of the type (e.g., ‘int’) , and then the names of attributes of objects of that
type. See Chapter 14 [Definition Commands|, page 123, and Section 14.5.5
[Data Types], page 130.

Q@deftypecv category class data-type name

@deftypecvx category class data-type name
Format a description for a typed class variable in object-oriented programming.
See Chapter 14 [Definition Commands], page 123, and Section 14.5.6 [Abstract
Objects], page 130.

@deftypefn category data-type name arguments. ..

Q@deftypefnx category data-type name arguments. ..
Format a description for a function or similar entity that may take arguments
and that is typed. @deftypefn takes as arguments the category of entity being

Appendix A: @Q-Command Details 229

described, the type, the name of the entity, and its arguments, if any. See
Chapter 14 [Definition Commands], page 123.

Q@deftypefnnewline on-off
Specifies whether return types for @deftypefn and similar are printed on lines
by themselves; default is off. See Section 14.5.3 [Functions in Typed Languages],
page 128.

@deftypefun data-type function-name arguments. ..

Q@deftypefunx data-type function-name arguments. ..
Format a description for a function in a typed language. The command is equiv-
alent to ‘@deftypefn Function ...’". See Chapter 14 [Definition Commands],
page 123.

@deftypeivar class data-type variable—name

@deftypeivarx class data-type variable-name
Format a description for a typed instance variable in object-oriented program-
ming. See Chapter 14 [Definition Commands|, page 123, and Section 14.5.6
[Abstract Objects], page 130.

Q@deftypemethod class data-type method—-name arguments. ..

@deftypemethodx class data-type method-name arguments. ..
Format a description for a typed method in object-oriented programming. See
Chapter 14 [Definition Commands], page 123.

@deftypeop category class data-type name arguments. ..

Q@deftypeopx category class data-type name arguments. ..
Format a description for a typed operation in object-oriented programming.
See Chapter 14 [Definition Commands], page 123, and Section 14.5.6 [Abstract
Objects|, page 130.

@deftypevar data-type variable-name

Q@deftypevarx data-type variable-name
Format a description for a variable in a typed language. The command is equiv-
alent to ‘@deftypevr Variable ...’. See Chapter 14 [Definition Commands],
page 123.

Q@deftypevr category data-type name

@deftypevrx category data-type name
Format a description for something like a variable in a typed language—an
entity that records a value. Takes as arguments the category of entity being
described, the type, and the name of the entity. See Chapter 14 [Definition
Commands]|, page 123.

Q@defun function-name arguments. ..

@defunx function-name arguments. ..
Format a description for a function; equivalent to ‘@deffn Function ...’. See
Chapter 14 [Definition Commands], page 123.

Q@defvar variable-name

Q@defvarx variable-name
Format a description for a variable; equivalent to ‘@defvr Variable See
Chapter 14 [Definition Commands], page 123.

Appendix A: @Q-Command Details 230

Q@defvr category name

Q@defvrx category name
Format a description for any kind of variable. @defvr takes as arguments the
category of the entity and the name of the entity. See Chapter 14 [Definition
Commands]|, page 123.

Q@detailmenu
Mark the (optional) detailed node listing in a master menu. See Section 3.6.2
[Master Menu Parts|, page 26.

@dfn{term}
Indicate the introductory or defining use of a term. See Section 7.1.12 [@dfn],
page 67.

@DH{}

@dh{} Generate the uppercase and lowercase Icelandic letter eth, respectively: D, 8.

See Section 12.4 [Inserting Accents], page 108.

Q@dircategory dirpart
Specify a part of the Info directory menu where this file’s entry should go. See
Section 21.2.4 [Installing Dir Entries|, page 207.

@direntry
Begin the Info directory menu entry for this file. Pair with @end direntry. See
Section 21.2.4 [Installing Dir Entries], page 207.

@display Begin a kind of example. Like @example (indent text, do not fill), but do not
select a new font. Pair with @end display. See Section 8.7 [@display], page 76.

@dmn{dimension}
Format a unit of measure, as in 12 pt. Causes TEX to insert a thin space before
dimension. No effect in Info. See Section 12.3.5 [@dmn], page 108.

@docbook Enter Docbook completely. Pair with @end docbook. See Section 16.3 [Raw
Formatter Commands|, page 141.

Q@documentdescription
Set the document description text, included in the HTML output. Pair with
@end documentdescription. See Section 3.7.1 [@documentdescription],
page 27.

@documentencoding enc
Declare the input encoding to be enc. See Section 15.2 [@documentencoding],
page 137.

@documentlanguage CC
Declare the document language as the two-character [ISO-639 abbreviation CC.
See Section 15.1 [@documentlanguage|, page 136.

@dotaccent{c}
Generate a dot accent over the character c, as in 6. See Section 12.4 [Inserting
Accents|, page 108.

Appendix A: @Q-Command Details 231

@dotless{i-or-j}
Generate dotless i (‘1) and dotless j (‘)’). See Section 12.4 [Inserting Accents],
page 108.

@dots{} Generate an ellipsis, ‘...". See Section 12.8.4 [@dots], page 113.

Qemail{address[, displayed-text]}
Indicate an electronic mail address. See Section 7.1.16 [@email], page 69.

Q@emph{text}
Emphasize text, by using italics where possible, and enclosing in asterisks in
Info. See Section 7.2 [Emphasizing Text], page 69.

Q@end environment
Ends environment, as in ‘Gend example’. See [@-commands]|, page 10.

@enddots{}
Generate an end-of-sentence ellipsis, like this: ... See Section 12.8.4 [@dots],
page 113.

Q@enumerate [number-or-letter]
Begin a numbered list, using @item for each entry. Optionally, start list with
number-or-letter. Pair with @end enumerate. See Section 9.3 [@enumerate],
page 84.

Qenv{environment-variable}
Indicate an environment variable name, such as PATH. See Section 7.1.8 [@env],
page 66.

¢)

Q@equiv{} Indicate to the reader the exact equivalence of two forms with a glyph:
See Section 12.9.6 [@equiv], page 116.

@error{} Indicate to the reader with a glyph that the following text is an error message:
‘ ’. See Section 12.9.5 [@error], page 116.

Q@errormsg{msg}
Report msg as an error to standard error, and exit unsuccessfully. Texinfo com-
mands within msg are expanded to plain text. See Chapter 16 [Conditionals],
page 139, and Section 17.6 [External Macro Processors|, page 156.

Qeuro{} Generate the Euro currency sign. See Section 12.8.6 [@euro], page 113.

@evenfooting [left] @| [center] @| [right]

Q@evenheading [left] @| [center] @| [right]
Specify page footings resp. headings for even-numbered (left-hand) pages. See
Section E.4 [How to Make Your Own Headings], page 272.

Qeveryfooting [left] @| [center] @| [right]

Q@everyheading [left] @| [center] @| [right]
Specify page footings resp. headings for every page. Not relevant to Info. See
Section E.4 [How to Make Your Own Headings], page 272.

@example Begin an example. Indent text, do not fill, and select fixed-width font. Pair
with @end example. See Section 8.4 [@example], page 74.

Appendix A: @Q-Command Details 232

Q@exampleindent indent
Indent example-like environments by indent number of spaces (perhaps 0). See
Section 3.7.6 [@exampleindent]|, page 30.

@exclamdown{}
Generate an upside-down exclamation point. See Section 12.4 [Inserting Ac-
cents|, page 108.

Q@exdent line-of-text
Remove any indentation a line might have. See Section 8.9 [@exdent]|, page 77.

Q@expansion{}
Indicate the result of a macro expansion to the reader with a special glyph:
‘—’. See Section 12.9.3 [@expansion|, page 115.

@file{filename}
Highlight the name of a file, buffer, node, directory, etc. See Section 7.1.9
[@file], page 67.

@finalout
Prevent TEX from printing large black warning rectangles beside over-wide lines.
See Section 19.10 [Overfull hboxes|, page 172.

@findex entry
Add entry to the index of functions. See Section 11.3 [Defining the Entries of
an Index|, page 98.

@firstparagraphindent word
Control indentation of the first paragraph after section headers according to
word, one of ‘none’ or ‘insert’. See Section 3.7.5 [@firstparagraphindent],
page 29.

@float Environment to define floating material. Pair with @end float. See
Section 10.1 [Floats], page 90.

@flushleft

@flushright
Do not fill text; left (right) justify every line while leaving the right (left) end
ragged. Leave font as is. Pair with @end flushleft (@end flushright). See
Section 8.10 [@flushleft @flushright|, page 77.

@fonttextsize 10-11
Change the size of the main body font in the TEX output. See Section 7.2.3
[Fonts], page 70.

@footnote{text-of-footnote}
Enter a footnote. Footnote text is printed at the bottom of the page by TEX;
Info may format in either ‘End’ node or ‘Separate’ node style. See Section 10.3
[Footnotes|, page 94.

@footnotestyle style
Specify an Info file’'s footnote style, either ‘end’ for the end node style or
‘separate’ for the separate node style. See Section 10.3 [Footnotes|, page 94.

Appendix A: @Q-Command Details 233

@format Begin a kind of example. Like @display, but do not indent. Pair with @end
format. See Section 8.4 [@example], page 74.

@frenchspacing on-off
Control spacing after punctuation. See Section 12.3.4 [@frenchspacing],
page 107.

@ftable formatting-command
Begin a two-column table, using @item for each entry. Automatically enter
each of the items in the first column into the index of functions. Pair with @end
ftable. The same as @table, except for indexing. See Section 9.4.2 [@ftable
@vtable], page 87.

Qgeq{} Generate a greater-than-or-equal sign, ‘>’. See Section 12.8.10 [@geq @leq],
page 114.

Q@group Disallow page breaks within following text. Pair with @end group. Ignored in
Info. See Section 13.9 [@group], page 121.

Qguillemetleft{}

Qguillemetright{}

@guillemotleft{}

Q@guillemotright{}

Qguilsinglleft{}

Qguilsinglright{}
Double and single angle quotation marks: « » < ». @guillemotleft and
Qguillemotright are synonyms for @guillemetleft and @guillemetright.
See Section 12.5 [Inserting Quotation Marks], page 109.

@H{c} Generate the long Hungarian umlaut accent over c, as in 0.

@hashchar{}
Insert a hash ‘#’ character; only needed when a literal hash would intro-
duce #line directive. See Section 12.1.5 [Inserting a Hashsign]|, page 104, and
Section 17.6 [External Macro Processors], page 156.

QGheading title
Print an unnumbered section-like heading, but omit from the table of
contents. In Info, the title is underlined with equal signs. See Section 5.7
[@unnumberedsec @appendixsec @heading], page 45.

Q@headings on-off-single-double
Turn page headings on or off, and/or specify single-sided or double-sided page
headings for printing. See Section 3.7.3 [@headings], page 28.

QGheaditem
Begin a heading row in a multitable. See Section 9.5.2 [Multitable Rows],
page 88.

@headitemfont{text}
Set text in the font used for multitable heading rows; mostly useful in multitable
templates. See Section 9.5.2 [Multitable Rows|, page 88.

Appendix A: @Q-Command Details 234

@html Enter HTML completely. Pair with @end html. See Section 16.3 [Raw Format-
ter Commands|, page 141.

@hyphenation{hy-phen-a-ted words}
Explicitly define hyphenation points. See Section 13.3 [@- @hyphenation],
page 120.

@i{text} Set text in an italic font. No effect in Info. See Section 7.2.3 [Fonts], page 70.

@ifclear txivar
If the Texinfo variable txivar is not set, format the following text. Pair with
@end ifclear. See Section 16.5 [@set @clear @value], page 143.

Q@ifcommanddefined txicmd

Q@ifcommandnotdefined txicmd
If the Texinfo code ‘@txicmd’ is (not) defined, format the follow text. Pair with
the corresponding @end ifcommand. ... See Section 16.6 [Testing for Texinfo
Commands]|, page 147.

@ifdocbook

@ifhtml

@ifinfo Begin text that will appear only in the given output format. @ifinfo output
appears in both Info and (for historical compatibility) plain text output. Pair
with @end ifdocbook resp. @end ifhtml resp. @end ifinfo. See Chapter 16
[Conditionals], page 139.

@ifnotdocbook

Q@ifnothtml

Q@ifnotplaintext

Q@ifnottex

Q@ifnotxml
Begin text to be ignored in one output format but not the others. @ifnothtml
text is omitted from HTML output, etc. Pair with the corresponding @end
ifnotformat. See Chapter 16 [Conditionals], page 139.

@ifnotinfo
Begin text to appear in output other than Info and (for historical compatibility)
plain text. Pair with @end ifnotinfo. See Chapter 16 [Conditionals], page 139.

@ifplaintext
Begin text that will appear only in the plain text output. Pair with @end
ifplaintext. See Chapter 16 [Conditionals], page 139.

Q@ifset txivar
If the Texinfo variable txivar is set, format the following text. Pair with @end
ifset. See Section 16.5 [@set @clear @value|, page 143.

@iftex Begin text to appear only in the TEX output. Pair with @end iftex. See
Chapter 16 [Conditionally Visible Text], page 139.

@ifxml Begin text that will appear only in the XML output. Pair with @end ifxml.
See Chapter 16 [Conditionals], page 139.

Appendix A: @Q-Command Details 235

@ignore Begin text that will not appear in any output. Pair with @end ignore. See
Section 2.2 [Comments and Ignored Text|, page 11.

Q@image{filename, [width], [height], [alt], [ext]l}
Include graphics image in external filename scaled to the given width
and/or height, using alt text and looking for ‘filename.ext’ in HTML. See
Section 10.2 [Images]|, page 92.

@include filename
Read the contents of Texinfo source file filename. See Chapter 18 [Include Files],
page 159.

@indent Insert paragraph indentation. See Section 8.13 [@indent], page 79.

@indentedblock
Indent a block of arbitary text on the left. Pair with @end indentedblock. See
Section 8.3 [@indentedblock], page 74.

Q@indicateurl{indicateurl}
Indicate text that is a uniform resource locator for the World Wide Web. See
Section 7.1.15 [@indicateurl], page 69.

Q@inforef{node-name, [entry-namel], info-file-name}
Make a cross-reference to an Info file for which there is no printed manual. See
Section 6.9 [@inforef], page 57.

@inlinefmt{fmt, text}
Insert text only if the output format is fimt. See Section 16.4 [Inline Condition-
als], page 142.

@inlinefmtifelse{fmt, text, else-text}
Insert text if the output format is fmt, else else-text.

@inlineifclear{var, text}
@inlineifset{var, text}
Insert text only if the Texinfo variable var is (not) set.

@inlineraw{fmt, raw-text}
Insert text as in a raw conditional, only if the output format is fmt.

\input macro-definitions-file
Use the specified macro definitions file. This command is used only in the first
line of a Texinfo file to cause TEX to make use of the texinfo macro definitions
file. The \ in \input is used instead of an @ because TEX does not recognize @
until after it has read the definitions file. See Section 3.2 [Texinfo File Header],
page 16.

@insertcopying
Insert the text previously defined with the @copying environment. See
Section 3.3.2 [@insertcopying], page 20.

@item Indicate the beginning of a marked paragraph for @itemize and @enumerate;
indicate the beginning of the text of a first column entry for @table, @ftable,
and @vtable. See Chapter 9 [Lists and Tables], page 82.

Appendix A: @Q-Command Details 236

Q@itemize mark-generating-character—-or-command
Begin an unordered list: indented paragraphs with a mark, such as @bullet,
inside the left margin at the beginning of each item. Pair with @end itemize.
See Section 9.2 [@itemize], page 83.

@itemx Like @item but do not generate extra vertical space above the item text. Thus,
when several items have the same description, use @item for the first and @itemx
for the others. See Section 9.4.3 [@itemx]|, page 87.

@kbd{keyboard-characters}
Indicate characters of input to be typed by users. See Section 7.1.3 [@kbd],
page 63.

@kbdinputstyle style
Specify when @kbd should use a font distinct from @code according to style:
code, distinct, example. See Section 7.1.3 [@kbd], page 63.

Q@key{key-name}
Indicate the name of a key on a keyboard. See Section 7.1.4 [@key]|, page 64.

Q@kindex entry
Add entry to the index of keys. See Section 11.3 [Defining the Entries of an
Index], page 98.

QL{}

@1{} Generate the uppercase and lowercase Polish suppressed-L letters, respectively:
Lt

@LaTeX{} Generate the ITEX logo. See Section 12.8.1 [@TeX @LaTeX], page 112.

Q@leq{} Generate a less-than-or-equal sign, ‘<’. See Section 12.8.10 [@geq @leq],
page 114.

@lisp Begin an example of Lisp code. Indent text, do not fill, and select fixed-width
font. Pair with @end 1isp. See Section 8.6 [@1isp], page 76.

@listoffloats
Produce a table-of-contents-like listing of @floats. See Section 10.1.3
[@listoffloats], page 91.

@lowersections
Change subsequent chapters to sections, sections to subsections, and so on. See
Section 5.12 [@raisesections and @lowersections], page 47.

@macro macroname {params}
Define a new Texinfo command @macroname{params}. Pair with @end macro.
See Section 17.1 [Defining Macros], page 149.

Gmajorheading title
Print an unnumbered chapter-like heading, but omit from the table of
contents. This generates more vertical whitespace before the heading than the
@chapheading command. See Section 5.5 [@majorheading @chapheading],
page 44.

Appendix A: @Q-Command Details 237

OGmath{mathematical-expression}
Format a mathematical expression. See Section 12.7 [Inserting Math], page 111.

@menu Mark the beginning of a menu of nodes. No effect in a printed manual. Pair
with @end menu. See Section 4.9 [Menus|, page 38.

Ominus{} Generate a minus sign, ‘—’. See Section 12.8.9 [@minus], page 114.

Omultitable column-width-spec
Begin a multi-column table. Begin each row with @item or @headitem, and
separate columns with @tab. Pair with @end multitable. See Section 9.5.1
[Multitable Column Widths], page 88.

OGneed n Start a new page in a printed manual if fewer than n mils (thousandths of an
inch) remain on the current page. See Section 13.10 [@need|, page 122.

Onode name, next, previous, up
Begin a new node. See Section 4.3 [Writing a Node], page 32.

OGnoindent
Prevent text from being indented as if it were a new paragraph. See Section 8.12
[@noindent], page 78.

Onovalidate
Suppress validation of node references and omit creation of auxiliary files with
TEX. Use before any sectioning or cross-reference commands. See Section 20.5
[Pointer Validation], page 184.

@o{}

©o{} Generate the uppercase and lowercase O-with-slash letters, respectively: @, .

Qoddfooting [left] @| [center] @| [right]

Q@oddheading [left] @| [center] @| [right]
Specify page footings resp. headings for odd-numbered (right-hand) pages. See
Section E.4 [How to Make Your Own Headings|, page 272.

@OE{}

Q@oe{} Generate the uppercase and lowercase OE ligatures, respectively: (B, ce. See
Section 12.4 [Inserting Accents]|, page 108.

Q@ogonek{c}

Generate an ogonek diacritic under the next character, as in a. See Section 12.4
[Inserting Accents|, page 108.

Qoption{option-name}
Indicate a command-line option, such as -1 or --help. See Section 7.1.11
[@option|, page 67.

@ordf{}
@ordm{} Generate the feminine and masculine Spanish ordinals, respectively: 2, 2. See
Section 12.4 [Inserting Accents]|, page 108.

Qpage Start a new page in a printed manual. No effect in Info. See Section 13.8
[@page]|, page 121.

Appendix A: @Q-Command Details 238

Q@pagesizes [width] [, height]
Change page dimensions. See [pagesizes|, page 173.

@paragraphindent indent
Indent paragraphs by indent number of spaces (perhaps 0); preserve source file
indentation if indent is asis. See Section 3.7.4 [@paragraphindent]|, page 29.

O@part title
Begin a group of chapters or appendixes; included in the tables of contents and
produces a page of its own in printed output. See Section 5.11 [@part]|, page 46.

Opindex entry
Add entry to the index of programs. See Section 11.3 [Defining the Entries of
an Index|, page 98.

@point{} Indicate the position of point in a buffer to the reader with a glyph: ‘*’. See
Section 12.9.7 [@point]|, page 116.

@pounds{}
Generate the pounds sterling currency sign. See Section 12.8.7 [@pounds],
page 113.

@print{} Indicate printed output to the reader with a glyph: ‘-’. See Section 12.9.4
[@print], page 115.

Oprintindex index-name
Generate the alphabetized index for index-name (using two columuns in a printed
manual). See Section 11.4 [Printing Indices & Menus], page 99.

@pxref{node, [entryl, [node-title], [info-file], [manuall}
Make a reference that starts with a lowercase ‘see’ in a printed manual. Use
within parentheses only. Only the first argument is mandatory. See Section 6.7
[@pxref], page 55.

@questiondown{}
Generate an upside-down question mark. See Section 12.4 [Inserting Accents],
page 108.

@quotation
Narrow the margins to indicate text that is quoted from another work. Takes
optional argument specifying prefix text, e.g., an author name. Pair with @end
quotation. See Section 8.2 [@quotation|, page 73.

@quotedblleft{}

@quotedblright{}

@quoteleft{}

Qquoteright{}

Q@quotedblbase{}

@quotesinglbase{}
Produce various quotation marks:
tation Marks|, page 109.

W

s 5. See Section 12.5 [Inserting Quo-

@r{text} Set text in the regular roman font. No effect in Info. See Section 7.2.3 [Fonts],
page 70.

Appendix A: @Q-Command Details 239

Oraggedright
Fill text; left justify every line while leaving the right end ragged. Leave
font as is. Pair with @end raggedright. No effect in Info. See Section 8.11
[@raggedright], page 78.

Q@raisesections
Change subsequent sections to chapters, subsections to sections, and so on. See
Section 5.12 [Raise/lower sections], page 47.

Q@ref{node, [entry], [node-titlel], [info-filel, [manuall}
Make a plain reference that does not start with any special text. Follow com-
mand with a punctuation mark. Only the first argument is mandatory. See
Section 6.6 [@ref], page 55.

@refill This command used to refill and indent the paragraph after all the other pro-
cessing has been done. It is no longer needed, since all formatters now automat-
ically refill as needed, but you may still see it in the source to some manuals,
as it does no harm.

Q@registeredsymbol{}
Generate the legal symbol ® See Section 12.8.3 [eregisteredsymbol],
page 112.

@result{}
Indicate the result of an expression to the reader with a special glyph: ‘=’. See
Section 12.9.2 [@result|, page 115.

@ringaccent{c}
Generate a ring accent over the next character, as in 6. See Section 12.4 [In-
serting Accents], page 108.

@samp{text}
Indicate a literal example of a sequence of characters, in general. Quoted in
Info output. See Section 7.1.5 [@samp], page 65.

@sansserif{text}
Set text in a sans serif font if possible. No effect in Info. See Section 7.2.3
[Fonts], page 70.

O@sc{text}
Set text in a small caps font in printed output, and uppercase in Info. See
Section 7.2.2 [Smallcaps|, page 70.

O@section title
Begin a section within a chapter. The section title appears in the table of
contents. In Info, the title is underlined with equal signs. Within @chapter
and @appendix, the section title is numbered; within @unnumbered, the section
is unnumbered. See Section 5.6 [@section], page 44.

O@set txivar [string]
Define the Texinfo variable txivar, optionally to the value string. See
Section 16.5 [@set @clear @value], page 143.

Appendix A: @Q-Command Details 240

O@setchapternewpage on-off-odd
Specify whether chapters start on new pages, and if so, whether on odd-
numbered (right-hand) new pages. See Section 3.7.2 [@setchapternewpage],
page 27.

O@setfilename info-file—-name
Provide a name to be used for the output files. This command is ignored for
TEX formatting. See Section 3.2.3 [@setfilename|, page 17.

@settitle title
Specify the title for page headers in a printed manual, and the default document
title for HTML ‘<head>’. See Section 3.2.4 [@settitle], page 18.

@shortcaption
Define the short caption for a @float. See Section 10.1.2 [@caption
@shortcaption], page 91.

@shortcontents
Print a short table of contents, with chapter-level entries only. Not relevant to
Info, which uses menus rather than tables of contents. See Section 3.5 [Gener-
ating a Table of Contents], page 24.

@shorttitlepage title
Generate a minimal title page. See Section 3.4.1 [@titlepage]|, page 20.

O@slanted{text}
Set text in a slanted font if possible. No effect in Info. See Section 7.2.3 [Fonts],
page 70.

@smallbook
Cause TEX to produce a printed manual in a 7 by 9.25 inch format rather than
the regular 8.5 by 11 inch format. See Section 19.11 [@smallbook|, page 172.
Also, see Section 8.15 [@small...], page 80.

Osmalldisplay
Begin a kind of example. Like @display, but use a smaller font size where
possible. Pair with @end smalldisplay. See Section 8.15 [@small. . .|, page 80.
@smallexample
Begin an example. Like @example, but use a smaller font size where possible.
Pair with @end smallexample. See Section 8.15 [@small...], page 80.
@smallformat
Begin a kind of example. Like @format, but use a smaller font size where
possible. Pair with @end smallformat. See Section 8.15 [@small...], page 80.
@smallindentedblock
Like @indentedblock, but use a smaller font size where possible. Pair with
@end smallindentedblock. See Section 8.15 [@small...], page 80.
@smalllisp

Begin an example of Lisp code. Same as @smallexample. Pair with @end
smalllisp. See Section 8.15 [@small...]|, page 80.

Appendix A: @Q-Command Details 241

O@smallquotation
Like @quotation, but use a smaller font size where possible. Pair with @end
smallquotation. See Section 8.15 [@small. . .|, page 80.

@sortas {key}
Used in the arguments to index commands to give a string by which the index
entry should be sorted. See Section 11.2 [Indexing Commands], page 98.

@sp n Skip n blank lines. See Section 13.7 [@sp|, page 121.

@ss{} Generate the German sharp-S es-zet letter, . See Section 12.4 [Inserting Ac-
cents|, page 108.

@strong {text}
Emphasize text more strongly than @emph, by using boldface where possible;
enclosed in asterisks in Info. See [Emphasizing Text], page 70.

@sub {text}
Set text as a subscript. See Section 12.6 [Inserting Subscripts and Superscripts],
page 111.

Q@subheading title
Print an unnumbered subsection-like heading, but omit from the table of con-
tents of a printed manual. In Info, the title is underlined with hyphens. See
Section 5.9 [@unnumberedsubsec @appendixsubsec @subheading], page 45.

Osubsection title
Begin a subsection within a section. The subsection title appears in the table of
contents. In Info, the title is underlined with hyphens. Same context-dependent
numbering as @section. See Section 5.8 [@subsection], page 45.

O@subsubheading title
Print an unnumbered subsubsection-like heading, but omit from the table of
contents of a printed manual. In Info, the title is underlined with periods. See
Section 5.10 [@subsubsection], page 46.

O@subsubsection title
Begin a subsubsection within a subsection. The subsubsection title
appears in the table of contents. In Info, the title is underlined with
periods. Same context-dependent numbering as @section. See Section 5.10
[@subsubsection], page 46.

O@subtitle title
In a printed manual, set a subtitle in a normal sized font flush to the right-
hand side of the page. Not relevant to Info, which does not have title pages.
See Section 3.4.3 [@title @subtitle Qauthor], page 22.

O@summarycontents
Print a short table of contents. Synonym for @shortcontents. See Section 3.5
[Generating a Table of Contents|, page 24.

@sup {text}
Set text as a superscript. See Section 12.6 [Inserting Subscripts and Super-
scripts], page 111.

Appendix A: @Q-Command Details 242

Osyncodeindex from-index to-index
Merge the index named in the first argument into the index named in the
second argument, formatting the entries from the first index with @code. See
Section 11.5 [Combining Indices], page 100.

Osynindex from-index to-index
Merge the index named in the first argument into the index named in the second
argument. Do not change the font of from-index entries. See Section 11.5
[Combining Indices], page 100.

et{text} Set text in a fixed-width, typewriter-like font. No effect in Info. See
Section 7.2.3 [Fonts|, page 70.

Q@tab Separate columns in a row of a multitable. See Section 9.5.2 [Multitable Rows],
page 88.

O@table formatting—command
Begin a two-column table (description list), using @item for each entry. Write
each first column entry on the same line as @item. First column entries are
printed in the font resulting from formatting-command. Pair with @end table.
See Section 9.4 [Making a Two-column Table|, page 85. Also see Section 9.4.2
[eftable @vtable], page 87, and Section 9.4.3 [@itemx|, page 87.

QTeX{} Generate the TEX logo. See Section 12.8.1 [@TeX @LaTeX], page 112.

Qtex Enter TEX completely. Pair with @end tex. See Section 16.3 [Raw Formatter
Commands], page 141.

@textdegree{}
Generate the degree symbol. See Section 12.8.8 [@textdegree], page 113.

@thischapter

@thischaptername

Othischapternum

O@thisfile

Q@thispage

O@thistitle
Only allowed in a heading or footing. Stands for, respectively, the number and
name of the current chapter (in the format ‘Chapter 1: Title’), the current
chapter name only, the current chapter number only, the filename, the current
page number, and the title of the document, respectively. See Section E.4 [How
to Make Your Own Headings|, page 272.

@TH{}

eth{} Generate the uppercase and lowercase Icelandic letter thorn, respectively: P,
b. See Section 12.4 [Inserting Accents|, page 108.

Qtie{} Generate a normal interword space at which a line break is not allowed. See
Section 13.6 [@tie], page 121.

@tieaccent{cc}

Generate a tie-after accent over the next two characters cc, as in ‘6o’. See
Section 12.4 [Inserting Accents]|, page 108.

Appendix A: @Q-Command Details 243

Otindex entry
Add entry to the index of data types. See Section 11.3 [Defining the Entries of
an Index|, page 98.

@title title
In a printed manual, set a title flush to the left-hand side of the page in a
larger than normal font and underline it with a black rule. Not relevant to
Info, which does not have title pages. See Section 3.4.3 [@title @subtitle
@author|, page 22.

@titlefont{text}
In a printed manual, print text in a larger than normal font. See Section 3.4.2
[@titlefont @center @sp], page 21.

@titlepage
Begin the title page. Write the command on a line of its own, paired with
@end titlepage. Nothing between @titlepage and @end titlepage appears
in Info. See Section 3.4.1 [@titlepage], page 20.

@today{} Insert the current date, in ‘1 Jan 1900’ style. See Section E.4 [How to Make
Your Own Headings|, page 272.

QOtop title
Mark the topmost @node in the file, which must be defined on the line
immediately preceding the @top command. The title is formatted as a
chapter-level heading. The entire top node, including the @node and @top
lines, are normally enclosed with @ifnottex ... @end ifnottex. In TEX
and texinfo-format-buffer, the @top command is merely a synonym for
@unnumbered. See Section 4.8 [makeinfo Pointer Creation|, page 37.

@U{hex} Output a representation of Unicode character U+hex. See Section 12.10 [In-
serting Unicode], page 118.

Qu{c}

Qubaraccent{c}

Qudotaccent{c}
Generate a breve, underbar, or underdot accent, respectively, over or under the
character ¢, as in 0, 0, 0. See Section 12.4 [Inserting Accents], page 108.

@unmacro macroname
Undefine the macro @macroname if it has been defined. See Section 17.1 [Defin-
ing Macros], page 149.

Qunnumbered title
Begin a chapter that appears without chapter numbers of any kind. The title
appears in the table of contents. In Info, the title is underlined with asterisks.
See Section 5.4 [@unnumbered Qappendix], page 44.

Qunnumberedsec title
Begin a section that appears without section numbers of any kind. The title
appears in the table of contents of a printed manual. In Info, the title is
underlined with equal signs. See Section 5.7 [@unnumberedsec @appendixsec
@heading]|, page 45.

Appendix A: @Q-Command Details 244

Qunnumberedsubsec title
Begin an unnumbered subsection. The title appears in the table of contents. In
Info, the title is underlined with hyphens. See Section 5.9 [@unnumberedsubsec
@appendixsubsec @subheading], page 45.

Ounnumberedsubsubsec title
Begin an unnumbered subsubsection. The title appears in the table of contents.
In Info, the title is underlined with periods. See Section 5.10 [@subsubsection],
page 46.

Quref{url[, displayed-text] [, replacement}

Qurl{url[, displayed-text] [, replacement}
Define a cross-reference to an external uniform resource locator, e.g., for the
World Wide Web. See Section 6.10 [@url], page 57.

Qurefbreakstyle style
Specify how @uref/@url should break at special characters: after, before,
none. See Section 6.10 [@url], page 57.

ov{c} Generate check accent over the character c, as in 6. See Section 12.4 [Inserting
Accents|, page 108.

@validatemenus on-off
Control whether menus can be automatically generated. See Section 4.9.1 [Writ-
ing a Menu], page 38.

@value{txivar}
Insert the value, if any, of the Texinfo variable txivar, previously defined by
@set. See Section 16.5 [@set @clear @value|, page 143.

Q@var{metasyntactic-variable}
Highlight a metasyntactic variable, which is something that stands for another
piece of text. See Section 7.1.7 [@var], page 66.

@verb{delim literal delim}
Output literal, delimited by the single character delim, exactly as is (in the
fixed-width font), including any whitespace or Texinfo special characters. See
Section 7.1.6 [@verb], page 65.

Qverbatim
Output the text of the environment exactly as is (in the fixed-width font). Pair
with @end verbatim. See Section 8.5 [@verbatim|, page 75.

Q@verbatiminclude filename
Output the contents of filename exactly as is (in the fixed-width font). See
Section 18.5 [@verbatiminclude], page 161.

Q@vindex entry
Add entry to the index of variables. See Section 11.3 [Defining the Entries of
an Index|, page 98.

Qvskip amount
In a printed manual, insert whitespace so as to push text on the remainder of
the page towards the bottom of the page. Used in formatting the copyright

Appendix A: @Q-Command Details 245

page with the argument ‘Opt plus 1£fi111’. (Note spelling of ‘£i111’.) @vskip
may be used only in contexts ignored for Info. See Section 3.4.4 [Copyright],
page 23.

@vtable formatting-command
Begin a two-column table, using @item for each entry. Automatically enter
each of the items in the first column into the index of variables. Pair with @end
vtable. The same as @table, except for indexing. See Section 9.4.2 [@ftable
@vtable], page 87.

@w{text} Disallow line breaks within text. See Section 13.5 [@w], page 120.

@xml Enter XML completely. Pair with @end xml. See Section 16.3 [Raw Formatter
Commands]|, page 141.

@xref{node, [entryl], [node-title], [info-filel, [manuall}
Make a reference that starts with ‘See’ in a printed manual. Follow command
with a punctuation mark. Only the first argument is mandatory. See Section 6.4
[exref], page 51.

Oxrefautomaticsectiontitle on-off
By default, use the section title instead of the node name in cross references.
See Section 6.4.3 [Three Arguments|, page 52.

A.3 @-Command Contexts

Here we describe approximately which @-commands can be used in which contexts. It not
exhaustive or meant to be a complete reference. Discrepancies between the information
here and the makeinfo or TEX implementations are most likely to be resolved in favor of
the implementation.

By general text below, we mean anything except sectioning and other such outer-level
document commands, such as @section, @node, and @setfilename.

@c, @comment and @if ... @end if conditional commands may appear anywhere (except
the conditionals must still be on lines by themselves). @caption may only appear in @float
but may contain general text. @footnote content likewise.

@-commands with braces marking text (such as @strong, @sc, @asis) may contain
raw formatter commands such as @html but no other block commands (other commands
terminated by @end) and may not be split across paragraphs, but may otherwise contain
general text.

In addition to the block command restriction, on @center, @exdent and @item in @table
lines, @-commands that makes only sense in a paragraph are not accepted, such as @indent.

In addition to the above, sectioning commands cannot contain @anchor, @footnote or
Qverb.

In addition to the above, remaining commands (@node, @anchor, @printindex, @ref,
@math, @cindex, Gurl, @image, and so on) cannot contain cross-reference commands (@ref,
@xref, @pxref and @inforef). In one last addition, @shortcaption may only appear inside
@float.

For precise and complete information, we suggest looking into the test suite in the
sources, which exhaustively tries combinations.

Appendix A: @Q-Command Details 246

A.4 Obsolete @-Commands

Here are Texinfo @-commands which are obsolete or have been removed completely. This
section is for historical purposes.

O@setcontentsaftertitlepage
In the past, the contents commands were sometimes placed at the end of the
file, after any indices and just before the @bye, but we no longer recommend
this. This command could be used by a user printing a manual, to force the
contents to be printed after the title page (after the ‘@end titlepage’ line) even
if the @contents command was at the end of the manual. It now does nothing.

O@setshortcontentsaftertitlepage
This placed the short table of contents after the ‘@end titlepage’ command
even if the @shortcontents command was at the end. It now does nothing.

247

Appendix B Tips and Hints

Here are some tips for writing Texinfo documentation:

e Write in the present tense, not in the past or the future.

b

e Write actively! For example, write “We recommend that ...” rather than “It is rec-

ommended that ...”.
e Use 70 or 72 as your fill column. Longer lines are hard to read.
e Include a copyright notice and copying permissions.

Index, Index, Index!

Write many index entries, in different ways. Readers like indices; they are helpful and
convenient.

Although it is easiest to write index entries as you write the body of the text, some people
prefer to write entries afterwards. In either case, write an entry before the paragraph to
which it applies. This way, an index entry points to the first page of a paragraph that is
split across pages.

Here are more index-related hints we have found valuable:

e Write each index entry differently, so each entry refers to a different place in the doc-
ument.

e Write index entries only where a topic is discussed significantly. For example, it is not
useful to index “debugging information” in a chapter on reporting bugs. Someone who
wants to know about debugging information will certainly not find it in that chapter.

e Consistently capitalize the first word of every concept index entry, or else consistently
use lowercase. Terse entries often call for lowercase; longer entries for capitalization.
Whichever case convention you use, please use one or the other consistently! Mixing
the two styles looks bad.

e Always capitalize or use uppercase for those words in an index for which this is proper,
such as names of countries or acronyms. Always use the appropriate case for case-
sensitive names, such as those in C or Lisp.

e Write the indexing commands that refer to a whole section immediately after the
section command, and write the indexing commands that refer to a paragraph before
that paragraph.

In the example that follows, a blank line comes after the index entry for “Leaping”:

O@section The Dog and the Fox
Ocindex Jumping, in general
O@cindex Leaping

@cindex Dog, lazy, jumped over

O@cindex Lazy dog jumped over

Ocindex Fox, jumps over dog

@cindex Quick fox jumps over dog

The quick brown fox jumps over the lazy dog.
(Note that the example shows entries for the same concept that are written in different
ways—‘Lazy dog’, and ‘Dog, lazy—so readers can look up the concept in different
ways.)

Appendix B: Tips and Hints 248

Blank Lines

e Insert a blank line between a sectioning command and the first following sentence or
paragraph, or between the indexing commands associated with the sectioning command
and the first following sentence or paragraph, as shown in the tip on indexing. It makes
the source easier to read.

e Always insert a blank line before a @table command and after an @end table com-
mand; but never insert a blank line after an @table command.

For example,
Types of fox:

@table @samp
Q@item Quick
Jump over lazy dogs.

@item Brown
Also jump over lazy dogs.
Q@end table

@noindent

On the other hand,
Insert blank lines before and after @itemize ... Q@end itemize and @enumerate ...
@end enumerate in the same way.

Complete Phrases

Complete phrases are easier to read than . ..

e Write entries in an itemized list as complete sentences; or at least, as complete phrases.
Incomplete expressions ... awkward ... like this.

e Write the prefatory sentence or phrase for a multi-item list or table as a complete
expression. Do not write “You can set:”; instead, write “You can set these variables:”.
The former expression sounds cut off.

Editions, Dates and Versions

Include edition numbers, version numbers, and dates in the @copying text (for people
reading the Texinfo file, and for the legal copyright in the output files). Then use
@insertcopying in the @titlepage section for people reading the printed output (see
Section 2.4 [Short Sample], page 12).

It is easiest to handle such version information using @set and @value. See Section 16.5.4
[@value Example], page 146, and Section C.2 [GNU Sample Texts], page 253.

Definition Commands

Definition commands are @deffn, @defun, @defmac, and the like, and enable you to write
descriptions in a uniform format.

e Write just one definition command for each entity you define with a definition com-

mand. The automatic indexing feature creates an index entry that leads the reader to
the definition.

Appendix B: Tips and Hints 249

e Use @table ... @end table in an appendix that contains a summary of functions, not
@deffn or other definition commands.

Capitalization
e Capitalize “Texinfo”; it is a name. Do not write the ‘x’ or ‘i’ in uppercase.
e C(Capitalize “Info”; it is a name.

o Write TEX using the @TeX{} command. Note the uppercase ‘T’ and ‘X’. This command
causes the formatters to typeset the name according to the wishes of Donald Knuth,
who wrote TEX. (Likewise @LaTeX{} for IATEX.)

Spaces

Do not use spaces to format a Texinfo file, except inside of @example ... @end example
and other literal environments and commands.
For example, TiX fills the following;:
@kbd{C-x v}
@kbd{M-x vc-next-action}
Perform the next logical operation
on the version-controlled file
corresponding to the current buffer.

so it looks like this:

C-x v M-x vc-next-action Perform the next logical operation on the version-
controlled file corresponding to the current buffer.

In this case, the text should be formatted with @table, @item, and @itemx, to create a
table.

@code, @samp, @Qvar, and ‘---’
e Use @code around Lisp symbols, including command names. For example,
The main function is @code{vc-next-action},
e Avoid putting letters such as ‘s’ immediately after an ‘@code’. Such letters look bad.
e Use @var around meta-variables. Do not write angle brackets around them.

¢

e Use three hyphens in a row, ‘-=-’, to indicate a long dash. TEX typesets these as a
long dash and the Info formatters reduce three hyphens to two.

Periods Outside of Quotes

Place periods and other punctuation marks outside of quotations, unless the punctuation is
part of the quotation. This practice goes against some publishing conventions in the United
States, but enables the reader to distinguish between the contents of the quotation and the
whole passage.

For example, you should write the following sentence with the period outside the end
quotation marks:

Evidently, ‘au’ is an abbreviation for ~~author''.

since ‘au’ does not serve as an abbreviation for ‘author.’ (with a period following the word).

Appendix B: Tips and Hints 250

Introducing New Terms

e Introduce new terms so that a reader who does not know them can understand them
from context; or write a definition for the term.

For example, in the following, the terms “check in”, “register” and “delta” are all
appearing for the first time; the example sentence should be rewritten so they are
understandable.

The major function assists you in checking in a file to your version control
system and registering successive sets of changes to it as deltas.

e Use the @dfn command around a word being introduced, to indicate that the reader
should not expect to know the meaning already, and should expect to learn the meaning
from this passage.

Program Invocation Nodes

You can invoke programs such as Emacs, GCC, and gawk from a shell. The documentation
for each program should contain a section that describes this. Unfortunately, if the node
names and titles for these sections are all different, they are difficult for users to find.

So, there is a convention to name such sections with a phrase beginning with the word
‘Invoking’, as in ‘Invoking Emacs’; this way, users can find the section easily.

ANSI C Syntax

When you use @example to describe a C function’s calling conventions, use the ANSI C
syntax, like this:
void dld_init (char *@var{path});
And in the subsequent discussion, refer to the argument values by writing the same argument
names, again highlighted with @var.
Avoid the obsolete style that looks like this:
#include <dld.h>

dld_init (path)
char *path;

Also, it is best to avoid writing #include above the declaration just to indicate that
the function is declared in a header file. The practice may give the misimpression that the
#include belongs near the declaration of the function. Either state explicitly which header
file holds the declaration or, better yet, name the header file used for a group of functions
at the beginning of the section that describes the functions.

Node Length

Keep nodes (sections) to a reasonable length, whatever reasonable might be in the given
context. Don’t hesitate to break up long nodes into subnodes and have an extensive tree
structure; that’s what it’s there for. Many times, readers will probably try to find a single
specific point in the manual, using search, indexing, or just plain guessing, rather than
reading the whole thing from beginning to end.

You can use the texi-elements-by-size utility to see a list of all nodes (or sections)
in the document, sorted by size (either lines or words), to find candidates for splitting. It’s
in the util/ subdirectory of the Texinfo sources.

Appendix B: Tips and Hints 251

Bad Examples
Here are several examples of bad writing to avoid:
In this example, say, “ ... you must @dfn{check in} the new version.” That flows better.
When you are done editing the file, you must perform a @dfn{check in}.
In the following example, say, “. .. makes a unified interface such as VC mode possible.”

SCCS, RCS and other version-control systems all perform similar functions in
broadly similar ways (it is this resemblance which makes a unified control mode
like this possible).

And in this example, you should specify what ‘it’ refers to:
If you are working with other people, it assists in coordinating everyone’s
changes so they do not step on each other.

And Finally ...

e Pronounce TEX as if the ‘X’ were a Greek ‘chi’, as the last sound in the name ‘Bach’.
But pronounce Texinfo as in ‘speck’ “teckinfo”.

e Write notes for yourself at the very end of a Texinfo file after the @bye. None of the
formatters process text after the @bye; it is as if the text were within @ignore ... @end
ignore.

252

Appendix C Sample Texinfo Files

The first example from the first chapter (see Section 2.4 [Short Sample], page 12) is given
here in its entirety, without commentary. The second example includes the full texts to be
used in GNU manuals.

C.1 Short Sample

Here is a complete, short sample Texinfo file. You can see this file, with comments, in the
first chapter. See Section 2.4 [Short Sample], page 12.

In a nutshell: The makeinfo program transforms a Texinfo source file such as this into
an Info file or HTML; and TEX typesets it for a printed manual.

\input texinfo
Osettitle Sample Manual 1.0

Qcopying
This is a short example of a complete Texinfo file.

Copyright Qcopyright{} 2016 Free Software Foundation, Inc.
Q@end copying

@titlepage

Otitle Sample Title
Opage

Q@vskip Opt plus 1filll
Q@insertcopying

@end titlepage

@c Output the table of the contents at the beginning.
Q@contents

@ifnottex
OGnode Top
Otop GNU Sample

This manual is for GNU Sample
(version @value{VERSION}, @value{UPDATED}).
@end ifnottex

OGmenu

* First Chapter:: The first chapter is the
only chapter in this sample.

* Index:: Complete index.

Q@end menu

Appendix C: Sample Texinfo Files 253

Onode First Chapter
Ochapter First Chapter

@cindex chapter, first

This is the first chapter.
O@cindex index entry, another

Here is a numbered list.

Q@enumerate
Q@item
This is the first item.

Q@item
This is the second item.
Q@end enumerate

Onode Index
Qunnumbered Index

O@printindex cp
Qbye

C.2 GNU Sample Texts

Following is a sample Texinfo document with the full texts that should be used (adapted
as necessary) in GNU manuals.

As well as the legal texts, it also serves as a practical example of how many elements in a
GNU system can affect the manual. If you're not familiar with all these different elements,
don’t worry. They’re not required and a perfectly good manual can be written without
them. They’re included here nonetheless because many manuals do (or could) benefit from
them.

See Section 2.4 [Short Sample|, page 12, for a minimal example of a Texinfo file. See
Chapter 3 [Beginning and Ending a File], page 15, for a full explanation of that minimal
example.

Here are some notes on the example:

e The ‘$Id:’ comment is for the CVS (http://www.nongnu.org/cvs/), RCS (see
Revision Control System) and other version control systems, which expand it into a
string such as:

$Id: texinfo.texi 7927 2017-08-11 12:08:40Z mthl $
(This is potentially useful in all sources that use version control, not just manuals.)
You may wish to include the ‘$Id:’ comment in the @copying text, if you want a
completely unambiguous reference to the documentation source version.

http://www.nongnu.org/cvs/

Appendix C: Sample Texinfo Files 254

If you want to literally write Id, use @w: @w{$}Id$. Unfortunately, this technique
does not work in plain text output, where it’s not clear what should be done.

The version.texi in the @include command is maintained automatically by Au-
tomake (see GNU Automake). It sets the ‘VERSION’ and ‘UPDATED’ values used else-
where. If your distribution doesn’t use Automake, but you do use Emacs, you may
find the time-stamp.el package helpful (see Section “Time Stamps” in The GNU Emacs
Manual).

The @syncodeindex command reflects the recommendation to use only one index where
possible, to make it easier for readers to look up index entries.

The @dircategory is for constructing the Info directory. See Section 21.2.4 [Installing
Dir Entries|, page 207, which includes a variety of recommended category names.

The ‘Invoking’ node is a GNU standard to help users find the basic information about
command-line usage of a given program. See Section “Manual Structure Details” in
GNU Coding Standards.

It is best to include the entire GNU Free Documentation License in a GNU manual,
unless the manual is only a few pages long. Of course this sample is even shorter than
that, but it includes the FDL anyway in order to show one conventional way to do
so. The £d1.texi file is available on the GNU machines and in the Texinfo and other
GNU source distributions.

The FDL provides for omitting itself under certain conditions, but in that case the sam-
ple texts given here have to be modified. See Appendix H [GNU Free Documentation
License|, page 289.

If the FSF is not the copyright holder, then use the appropriate name.

If your manual is published on paper by the FSF or is longer than 400 pages, you should
include the standard FSF cover texts (see Section “License Notices for Documentation”
in GNU Maintainer Information).

For documents that express your personal views, feelings or experiences, it is more
appropriate to use a license permitting only verbatim copying, rather than the FDL.
See Section C.3 [Verbatim Copying License], page 256.

Here is the sample document:

\input texinfo @c -*-texinfo-*-

Qcomment $IdCw{$}

@comment %**start of header

@include version.texi

@settitle GNU Sample @value{VERSION}

O@syncodeindex pg cp

@comment %**end of header

Qcopying

This manual is for GNU Sample (version @value{VERSION}, @value{UPDATED}),
which is an example in the Texinfo documentation.

Copyright @copyright{} 2016 Free Software Foundation, Inc.

@quotation

Appendix C: Sample Texinfo Files

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
Texts. A copy of the license is included in the section entitled
""GNU Free Documentation License''.

@end quotation

@end copying

O@dircategory Texinfo documentation system
Q@direntry

* sample: (sample)Invoking sample.

@end direntry

@titlepage

Otitle GNU Sample

@subtitle for version @value{VERSION}, @value{UPDATED}
@author A.U. Thor (Q@email{bug-sample@@gnu.org})

Gpage

Ovskip Opt plus 1filll

Q@insertcopying

Q@end titlepage

Q@contents
Q@ifnottex

OGnode Top
@top GNU Sample

This manual is for GNU Sample (version Ovalue{VERSION}, @value{UPDATED}).

Q@end ifnottex

@menu

* Invoking sample::

* GNU Free Documentation License::
* Index::

@end menu

Onode Invoking sample
Q@chapter Invoking sample

O@pindex sample
@cindex invoking @command{sample}

This is a sample manual. There is no sample program to
invoke, but if there were, you could see its basic usage

255

Appendix C: Sample Texinfo Files 256

and command line options here.

Gnode GNU Free Documentation License
Q@appendix GNU Free Documentation License

@include fdl.texi

Onode Index
Qunnumbered Index

O@printindex cp
Qbye

C.3 Verbatim Copying License

For software manuals and other documentation, it is critical to use a license permitting free
redistribution and updating, so that when a free program is changed, the documentation
can be updated as well.

On the other hand, for documents that express your personal views, feelings or experi-
ences, it is more appropriate to use a license permitting only verbatim copying.

Here is sample text for such a license permitting verbatim copying only. This is just the
license text itself. For a complete sample document, see the previous sections.
Qcopying
This document is a sample for allowing verbatim copying only.

Copyright @copyright{} 2016 Free Software Foundation, Inc.

Q@quotation

Permission is granted to make and distribute verbatim copies
of this entire document without royalty provided the
copyright notice and this permission notice are preserved.
Q@end quotation

Q@end copying

C.4 All-permissive Copying License

For software manuals and other documentation, it is important to use a license permitting
free redistribution and updating, so that when a free program is changed, the documentation
can be updated as well.

On the other hand, for small supporting files, short manuals (under 300 lines long) and
rough documentation (README files, INSTALL files, etc.), the full FDL would be overkill.
They can use a simple all-permissive license.

Here is sample text for such an all-permissive license. This is just the license text itself.
For a complete sample document, see the previous sections.

257

Copyright Qcopyright{} 2016 Free Software Foundation, Inc.

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved.

258

Appendix D Using Texinfo Mode

You may edit a Texinfo file with any text editor you choose. A Texinfo file is no different
from any other ASCII file. However, GNU Emacs comes with a special mode, called Texinfo
mode, that provides Emacs commands and tools to help ease your work.

D.1 Texinfo Mode Overview

Texinfo mode provides special features for working with Texinfo files. You can:
e Insert frequently used @-commands.
e Automatically create @node lines.
e Show the structure of a Texinfo source file.
e Automatically create or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of a node.
e Automatically create or update menus.
e Automatically create a master menu.
e Format a part or all of a file for Info.
e Typeset and print part or all of a file.

Perhaps the two most helpful features are those for inserting frequently used
@-commands and for creating node pointers and menus.

D.2 The Usual GNU Emacs Editing Commands

In most cases, the usual Text mode commands work the same in Texinfo mode as they
do in Text mode. Texinfo mode adds new editing commands and tools to GNU Emacs’
general purpose editing features. The major difference concerns filling. In Texinfo mode,
the paragraph separation variable and syntax table are redefined so that Texinfo commands
that should be on lines of their own are not inadvertently included in paragraphs. Thus, the
M-q (fill-paragraph) command will refill a paragraph but not mix an indexing command
on a line adjacent to it into the paragraph.

In addition, Texinfo mode sets the page-delimiter variable to the wvalue of
texinfo-chapter-level-regexp; by default, this is a regular expression matching the
commands for chapters and their equivalents, such as appendices. With this value for
the page delimiter, you can jump from chapter title to chapter title with the C-x]
(forward-page) and C-x [(backward-page) commands and narrow to a chapter with the
C-x n p (narrow-to-page) command. (See Section “Pages” in The GNU Emacs Manual,
for details about the page commands.)

You may name a Texinfo file however you wish, but the convention is to end a Texinfo
file name with one of the extensions .texinfo, .texi, .txi, or .tex. A longer extension
is preferred, since it is explicit, but a shorter extension may be necessary for operating
systems that limit the length of file names. GNU Emacs automatically enters Texinfo mode
when you visit a file with a .texinfo, .texi or .txi extension. Also, Emacs switches to
Texinfo mode when you visit a file that has ‘-—*-texinfo-*-’ in its first line. If ever you
are in another mode and wish to switch to Texinfo mode, type M-x texinfo-mode.

Like all other Emacs features, you can customize or enhance Texinfo mode as you wish.
In particular, the keybindings are very easy to change. The keybindings described here are
the default or standard ones.

Appendix D: Using Texinfo Mode 259

D.3 Inserting Frequently Used Commands

Texinfo mode provides commands to insert various frequently used @-commands into the
buffer. You can use these commands to save keystrokes.

The insert commands are invoked by typing C-c twice and then the first letter of the
@-command:

C-cC-cc
M-x texinfo-insert-Q@code
Insert @code{} and put the cursor between the braces.

C-c C-cd
M-x texinfo-insert-@dfn
Insert @dfn{} and put the cursor between the braces.

C-cC-ce

M-x texinfo-insert-Q@end
Insert @end and attempt to insert the correct following word, such as ‘example’
or ‘table’. (This command does not handle nested lists correctly, but inserts
the word appropriate to the immediately preceding list.)

C-cC-ci1
M-x texinfo-insert-Q@item
Insert @item and put the cursor at the beginning of the next line.

C-c C-ck
M-x texinfo-insert-Qkbd
Insert @kbd{} and put the cursor between the braces.

C-cC-cn

M-x texinfo-insert-@node
Insert @node and a comment line listing the sequence for the ‘Next’, ‘Previous’,
and ‘Up’ nodes. Leave point after the @node.

C-cC-co
M-x texinfo-insert-@noindent
Insert @noindent and put the cursor at the beginning of the next line.

C-cC-cs
M-x texinfo-insert-0@samp
Insert @samp{} and put the cursor between the braces.

C-cC-ct
M-x texinfo-insert-Q@table
Insert @table followed by a SPC and leave the cursor after the SPC.

C-cC-cv
M-x texinfo-insert-Qvar
Insert @var{} and put the cursor between the braces.

C-c C-cx
M-x texinfo-insert-Q@example
Insert @example and put the cursor at the beginning of the next line.

Appendix D: Using Texinfo Mode 260

C-cC-c{
M-x texinfo-insert-braces
Insert {} and put the cursor between the braces.

C-c }

C-c]

M-x up-list
Move from between a pair of braces forward past the closing brace. Typing C-c
] is easier than typing C-c }, which is, however, more mnemonic; hence the two
keybindings. (Also, you can move out from between braces by typing C-f.)

To put a command such as @code{. ..} around an existing word, position the cursor in
front of the word and type C-u 1 C-c C-c c¢. This makes it easy to edit existing plain text.
The value of the prefix argument tells Emacs how many words following point to include
between braces—‘1’ for one word, ‘2’ for two words, and so on. Use a negative argument to
enclose the previous word or words. If you do not specify a prefix argument, Emacs inserts
the @-command string and positions the cursor between the braces. This feature works
only for those @-commands that operate on a word or words within one line, such as @kbd
and Qvar.

This set of insert commands was created after analyzing the frequency with which differ-
ent @-commands are used in the GNU Emacs Manual and the GDB Manual. If you wish to
add your own insert commands, you can bind a keyboard macro to a key, use abbreviations,
or extend the code in texinfo.el.

C-c C-c C-d (texinfo-start-menu-description) is an insert command that works dif-
ferently from the other insert commands. It inserts a node’s section or chapter title in the
space for the description in a menu entry line. (A menu entry has three parts, the entry
name, the node name, and the description. Only the node name is required, but a de-
scription helps explain what the node is about. See Section 4.9.4 [The Parts of a Menu],
page 40.)

To use texinfo-start-menu-description, position point in a menu entry line and type
C-c C-c C-d. The command looks for and copies the title that goes with the node name,
and inserts the title as a description; it positions point at beginning of the inserted text
so you can edit it. The function does not insert the title if the menu entry line already
contains a description.

This command is only an aid to writing descriptions; it does not do the whole job. You
must edit the inserted text since a title tends to use the same words as a node name but a
useful description uses different words.

D.4 Showing the Sectioning Structure of a File

You can show the sectioning structure of a Texinfo file by using the C-c C-s command
(texinfo-show-structure). This command lists the lines that begin with the @-commands
for @chapter, @section, and the like. It constructs what amounts to a table of contents.
These lines are displayed in another buffer called the ‘*0ccur*’ buffer. In that buffer, you
can position the cursor over one of the lines and use the C-¢ C-¢ command (occur-mode-
goto-occurrence), to jump to the corresponding spot in the Texinfo file.

Appendix D: Using Texinfo Mode 261

C-c C-s
M-x texinfo-show-structure
Show the @chapter, @section, and such lines of a Texinfo file.

C-c C-c

M-x occur-mode-goto-occurrence
Go to the line in the Texinfo file corresponding to the line under the cursor in
the *0ccur* buffer.

If you call texinfo-show-structure with a prefix argument by typing C-u C-c C-s, it
will list not only those lines with the @-commands for @chapter, @section, and the like,
but also the @node lines. You can use texinfo-show-structure with a prefix argument to
check whether the ‘Next’, ‘Previous’, and ‘Up’ pointers of an @node line are correct.

Often, when you are working on a manual, you will be interested only in the structure
of the current chapter. In this case, you can mark off the region of the buffer that you
are interested in by using the C-x n n (narrow-to-region) command and texinfo-show-
structure will work on only that region. To see the whole buffer again, use C-x n w
(widen). (See Section “Narrowing” in The GNU Emacs Manual, for more information
about the narrowing commands.)

In addition to providing the texinfo-show-structure command, Texinfo mode sets the
value of the page delimiter variable to match the chapter-level @Q-commands. This enables
you to use the C-x] (forward-page) and C-x [(backward-page) commands to move
forward and backward by chapter, and to use the C-x n p (narrow-to-page) command to
narrow to a chapter. See Section “Pages” in The GNU Emacs Manual, for more information
about the page commands.

D.5 Updating Nodes and Menus

Texinfo mode provides commands for automatically creating or updating menus and node
pointers. The commands are called “update” commands because their most frequent use is
for updating a Texinfo file after you have worked on it; but you can use them to insert the
‘Next’, ‘Previous’, and ‘Up’ pointers into an @node line that has none and to create menus
in a file that has none.

If you do not use any updating commands, you need to write menus by hand, which is
a tedious task.

D.5.1 The Updating Commands

You can use the updating commands to:
e insert or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of a node,
e insert or update the menu for a section, and
e create a master menu for a Texinfo source file.
You can also use the commands to update all the nodes and menus in a region or in a
whole Texinfo file.

The updating commands work only with conventional Texinfo files, which are structured
hierarchically like books. In such files, a structuring command line must follow closely after
each @node line, except for the ‘Top’ @node line. (A structuring command line is a line
beginning with @chapter, @section, or other similar command.)

Appendix D: Using Texinfo Mode 262

You can write the structuring command line on the line that follows immediately after
an @node line or else on the line that follows after a single @comment line or a single @ifinfo
line. You cannot interpose more than one line between the @node line and the structuring
command line; and you may interpose only a @comment line or an @ifinfo line.

Commands which work on a whole buffer require that the ‘Top’ node be followed by a
node with a @chapter or equivalent-level command. The menu updating commands will
not create a main or master menu for a Texinfo file that has only @chapter-level nodes!
The menu updating commands only create menus within nodes for lower level nodes. To
create a menu of chapters, you must provide a ‘Top’ node.

The menu updating commands remove menu entries that refer to other Info files since
they do not refer to nodes within the current buffer. This is a deficiency. Rather than use
menu entries, you can use cross references to refer to other Info files. None of the updating
commands affect cross-references.

Texinfo mode has five updating commands that are used most often: two are for updating
the node pointers or menu of a single node (or a region); two are for updating every node
pointer and menu in a file; and one, the texinfo-master-menu command, is for creating a
master menu for a complete file, and optionally, for updating every node and menu in the
whole Texinfo file.

The texinfo-master-menu command is the primary command:

C-cC-um

M-x texinfo-master—-menu
Create or update a master menu that includes all the other menus (incorporat-
ing the descriptions from pre-existing menus, if any).

With an argument (prefix argument, C-u, if interactive), first create or update
all the nodes and all the regular menus in the buffer before constructing the
master menu. (See Section 3.6 [The Top Node and Master Menu]|, page 25, for
more about a master menu.)

For texinfo-master-menu to work, the Texinfo file must have a ‘Top’ node
and at least one subsequent node.

After extensively editing a Texinfo file, you can type the following;:
C-u M-x texinfo-master-menu

or
C-u C-c C-um

This updates all the nodes and menus completely and all at once.

The other major updating commands do smaller jobs and are designed for the person
who updates nodes and menus as he or she writes a Texinfo file.

The commands are:

C-c C-u C-n

M-x texinfo-update-node
Insert the ‘Next’, ‘Previous’, and ‘Up’ pointers for the node that point is within
(i.e., for the @node line preceding point). If the @node line has pre-existing
‘Next’, ‘Previous’, or ‘Up’ pointers in it, the old pointers are removed and new
ones inserted. With an argument (prefix argument, C-u, if interactive), this

Appendix D: Using Texinfo Mode 263

command updates all @node lines in the region (which is the text between point
and mark).

C-c C-u C-m

M-x texinfo-make-menu
Create or update the menu in the node that point is within. With an argument
(C-u as prefix argument, if interactive), the command makes or updates menus
for the nodes which are either within or a part of the region.

Whenever texinfo-make-menu updates an existing menu, the descriptions from
that menu are incorporated into the new menu. This is done by copying de-
scriptions from the existing menu to the entries in the new menu that have the
same node names. If the node names are different, the descriptions are not
copied to the new menu.

C-c C-u C-e
M-x texinfo-every-node-update

Insert or update the ‘Next’, ‘Previous’, and ‘Up’ pointers for every node in the
buffer.

C-c C-u C-a

M-x texinfo-all-menus-update
Create or update all the menus in the buffer. With an argument (C-u as prefix
argument, if interactive), first insert or update all the node pointers before
working on the menus.

If a master menu exists, the texinfo-all-menus-update command updates it;
but the command does not create a new master menu if none already exists.
(Use the texinfo-master-menu command for that.)

When working on a document that does not merit a master menu, you can type
the following:

C-u C-c C-u C-a
or

C-u M-x texinfo-all-menus-update

This updates all the nodes and menus.

The texinfo-column-for-description variable specifies the column to which menu
descriptions are indented. By default, the value is 32 although it can be useful to reduce it to
as low as 24. You can set the variable via customization (see Section “Customization” in The
GNU Emacs Manual) or with the M-x set-variable command (see Section “Examining
and Setting Variables” in The GNU Emacs Manual).

Also, the texinfo-indent-menu-description command may be used to indent ex-
isting menu descriptions to a specified column. Finally, if you wish, you can use the
texinfo-insert-node-lines command to insert missing @node lines into a file. (See
Section D.5.3 [Other Updating Commands|, page 264, for more information.)

D.5.2 Updating Requirements

To use the updating commands, you must organize the Texinfo file hierarchically with
chapters, sections, subsections, and the like. When you construct the hierarchy of the
manual, do not ‘jump down’ more than one level at a time: you can follow the ‘Top’ node

Appendix D: Using Texinfo Mode 264

with a chapter, but not with a section; you can follow a chapter with a section, but not with
a subsection. However, you may ‘jump up’ any number of levels at one time—for example,
from a subsection to a chapter.

Each @node line, with the exception of the line for the ‘Top’ node, must be followed by
a line with a structuring command such as @chapter, @section, or @unnumberedsubsec.

Each @node line/structuring-command line combination must look either like this:

@node Comments, Minimum, Conventions, Overview
Q@Qcomment mnode-name, next, previous, up
@section Comments

or like this (without the @comment line):

Onode Comments, Minimum, Conventions, Overview
O@section Comments

or like this (without the explicit node pointers):

@node Comments
@section Comments

In this example, ‘Comments’ is the name of both the node and the section. The next node is
called ‘Minimum’ and the previous node is called ‘Conventions’. The ‘Comments’ section is
within the ‘Overview’ node, which is specified by the ‘Up’ pointer. (Instead of an @comment
line, you may also write an @ifinfo line.)

If a file has a ‘Top’ node, it must be called ‘top’ or ‘Top’ and be the first node in the file.

The menu updating commands create a menu of sections within a chapter, a menu of
subsections within a section, and so on. This means that you must have a ‘Top’ node if you
want a menu of chapters.

Incidentally, the makeinfo command will create an Info file for a hierarchically organized
Texinfo file that lacks ‘Next’, ‘Previous’ and ‘Up’ pointers. Thus, if you can be sure that
your Texinfo file will be formatted with makeinfo, you have no need for the update node
commands. (See Section 21.1 [Creating an Info File], page 201, for more information about
makeinfo.)

D.5.3 Other Updating Commands

In addition to the five major updating commands, Texinfo mode possesses several less
frequently used updating commands:

M-x texinfo-insert-node-lines
Insert @node lines before the @chapter, @section, and other sectioning com-
mands wherever they are missing throughout a region in a Texinfo file.

With an argument (C-u as prefix argument, if interactive), the command
texinfo-insert-node-lines not only inserts @node lines but also inserts the
chapter or section titles as the names of the corresponding nodes. In addition,
it inserts the titles as node names in pre-existing @node lines that lack names.
Since node names should be more concise than section or chapter titles, you
must manually edit node names so inserted.

For example, the following marks a whole buffer as a region and inserts @node
lines and titles throughout:

C-x h C-u M-x texinfo-insert-node-lines

Appendix D: Using Texinfo Mode 265

This command inserts titles as node names in @node lines; the texinfo-start-
menu-description command (see Section D.3 [Inserting], page 259) inserts
titles as descriptions in menu entries, a different action. However, in both
cases, you need to edit the inserted text.

M-x texinfo-multiple-files-update

Update nodes and menus in a document built from several separate files. With
C-u as a prefix argument, create and insert a master menu in the outer file.
With a numeric prefix argument, such as C-u 2, first update all the menus
and all the ‘Next’, ‘Previous’, and ‘Up’ pointers of all the included files before
creating and inserting a master menu in the outer file. The texinfo-multiple-
files-update command is described in the appendix on @include files. See
Section 18.2 [texinfo-multiple-files-update|, page 159.

M-x texinfo-indent-menu-description
Indent every description in the menu following point to the specified column.
You can use this command to give yourself more space for descriptions. With an
argument (C-u as prefix argument, if interactive), the texinfo-indent-menu-
description command indents every description in every menu in the region.
However, this command does not indent the second and subsequent lines of a
multi-line description.

M-x texinfo-sequential-node-update

Insert the names of the nodes immediately following and preceding the current
node as the ‘Next’ or ‘Previous’ pointers regardless of those nodes’ hierarchi-
cal level. This means that the ‘Next’ node of a subsection may well be the
next chapter. Sequentially ordered nodes are useful for novels and other docu-
ments that you read through sequentially. (However, in Info, the g * command
lets you look through the file sequentially, so sequentially ordered nodes are
not strictly necessary.) With an argument (prefix argument, if interactive),
the texinfo-sequential-node-update command sequentially updates all the
nodes in the region.

D.6 Formatting for Info

Texinfo mode provides several commands for formatting part or all of a Texinfo file for Info.
Often, when you are writing a document, you want to format only part of a file—that is, a
region.

You can use either the texinfo-format-region or the makeinfo-region command to
format a region:

C-c C-e C—r
M-x texinfo-format-region
C-c C-m C-r
M-x makeinfo-region
Format the current region for Info.

You can use either the texinfo-format-buffer or the makeinfo-buffer command to
format a whole buffer:

Appendix D: Using Texinfo Mode 266

C-c C-e C-b
M-x texinfo-format-buffer
C-c C-m C-b
M-x makeinfo-buffer
Format the current buffer for Info.

For example, after writing a Texinfo file, you can type the following:

C-u C-c C-um
or
C-u M-x texinfo-master-menu

This updates all the nodes and menus. Then type the following to create an Info file:

C-c C-m C-Db
or
M-x makeinfo-buffer

See Section 21.1 [Creating an Info File], page 201, for details about Info formatting.

D.7 Printing

Typesetting and printing a Texinfo file is a multi-step process in which you first create
a file for printing (called a DVI file), and then print the file. Optionally, you may also
create indices. To do this, you must run the texindex command after first running the
tex typesetting command; and then you must run the tex command again. Or else run
the texi2dvi command which automatically creates indices as needed (see Section 19.2
[Format with texi2dvi], page 163).

Often, when you are writing a document, you want to typeset and print only part of a file
to see what it will look like. You can use the texinfo-tex-region and related commands
for this purpose. Use the texinfo-tex-buffer command to format all of a buffer.

C-c C-t C-b

M-x texinfo-tex-buffer
Run texi2dvi on the buffer. In addition to running TEX on the buffer, this
command automatically creates or updates indices as needed.

C-c C-t C-r
M-x texinfo-tex-region
Run TEX on the region.

C-c C-t C-1

M-x texinfo-texindex
Run texindex to sort the indices of a Texinfo file formatted with texinfo-tex-
region. The texinfo-tex-region command does not run texindex auto-
matically; it only runs the tex typesetting command. You must run the
texinfo-tex-region command a second time after sorting the raw index files
with the texindex command. (Usually, you do not format an index when
you format a region, only when you format a buffer. Now that the texi2dvi
command exists, there is little or no need for this command.)

Appendix D: Using Texinfo Mode 267

C-c C-t C-p
M-x texinfo-tex-print
Print the file (or the part of the file) previously formatted with texinfo-tex-
buffer or texinfo-tex-region.

For texinfo-tex-region or texinfo-tex-buffer to work, the file must start with a
‘\input texinfo’ line and must include a @settitle line. The file must end with @bye on
a line by itself. (When you use texinfo-tex-region, you must surround the @settitle
line with start-of-header and end-of-header lines.)

See Chapter 19 [Hardcopy], page 163, for a description of the other TEX related com-
mands, such as tex-show-print-queue.

D.8 Texinfo Mode Summary

In Texinfo mode, each set of commands has default keybindings that begin with the same
keys. All the commands that are custom-created for Texinfo mode begin with C-c. The
keys are somewhat mnemonic.

Insert Commands

The insert commands are invoked by typing C-c twice and then the first letter of the @-
command to be inserted. (It might make more sense mnemonically to use C-c C-i, for
‘custom insert’, but C-c C-c is quick to type.)
C-c
C-c

Q
O

C Insert ‘@code’.
Insert ‘@dfn’.
Insert ‘@end’.
Insert ‘@item’.
Insert ‘@node’ .
Insert ‘@samp’.
Insert ‘@var’.

Insert braces.

[
| |
O 0O o0 o0 00
< 0B oA

Qo
O o0 o0 o0 o0 o0 00
‘-H'—'r‘-\OCI)OOOO

Move out of enclosing braces.

Cc-d Insert a nodefls section title
in the space for the description
in a menu entry line.

Q
o
Q
o

Show Structure

The texinfo-show-structure command is often used within a narrowed region.
C-c C-s List all the headings.

The Master Update Command

The texinfo-master-menu command creates a master menu; and can be used to update
every node and menu in a file as well.
C-c C-um
M-x texinfo-master-menu
Create or update a master menu.

Appendix D: Using Texinfo Mode 268

C-u C-c C-um With C-u as a prefix argument, first
create or update all nodes and regular
menus, and then create a master menu.

Update Pointers
The update pointer commands are invoked by typing C-c C-u and then either C-n for
texinfo-update-node or C-e for texinfo-every-node-update.

C-c C-u C-n Update a node.
C-c C-u C-e Update every node in the buffer.

Update Menus

Invoke the update menu commands by typing C-c C-u and then either C-m for
texinfo-make-menu or C-a for texinfo-all-menus-update. To update both nodes and
menus at the same time, precede C-c C-u C-a with C-u.

C-c C-u C-m Make or update a menu.

C-c C-u C-a Make or update all
menus in a buffer.

C-u C-c C-u C-a With C-u as a prefix argument,
first create or update all nodes and
then create or update all menus.

Format for Info
The Info formatting commands that are written in Emacs Lisp are invoked by typing C-c
C-e and then either C-r for a region or C-b for the whole buffer.

The Info formatting commands that are written in C and based on the makeinfo program
are invoked by typing C-c C-m and then either C-r for a region or C-b for the whole buffer.

Use the texinfo-format... commands:
C-c C-e C-r Format the region.
C-c C-e C-b Format the buffer.
Use makeinfo:
C-c¢ C-m C-r Format the region.
C-c C-m C-b Format the buffer.
C-c C-m C-1 Recenter the makeinfo output buffer.
C-c C-m C-k Kill the makeinfo formatting job.

Typeset and Print

The TEX typesetting and printing commands are invoked by typing C-c C-t and then
another control command: C-r for texinfo-tex-region, C-b for texinfo-tex-buffer,
and so on.

C-c C-t C-r Run TEX on the region.
C-c C-t C-b Run texi2dvi on the buffer.
C-c C-t C-1i Run texindex.

Appendix D: Using Texinfo Mode 269

C-c C-p Print the DVI file.

C-c C-q Show the print queue.

C-c C-t C-d Delete a job from the print queue.

C-c C-k Kill the current TEX formatting job.

C-c C-x Quit a currently stopped TEX formatting job.
C-c c-1 Recenter the output buffer.

Other Updating Commands

The remaining updating commands do not have standard keybindings because they are
rarely used.

M-x texinfo-insert-node-lines
Insert missing @node lines in region.
With C-u as a prefix argument,
use section titles as node names.

M-x texinfo-multiple-files-update
Update a multi-file document.
With C-u 2 as a prefix argument,
create or update all nodes and menus
in all included files first.

M-x texinfo-indent-menu-description
Indent descriptions.

M-x texinfo-sequential-node-update
Insert node pointers in strict sequence.

270

Appendix E Page Headings

Most printed manuals contain headings along the top of every page except the title and
copyright pages. Some manuals also contain footings. Headings and footings have no
meaning in Info or the other output formats.

E.1 Headings Introduced

Texinfo provides standard page heading formats for manuals that are printed on one side of
each sheet of paper and for manuals that are printed on both sides of the paper. Typically,
you will use these formats, but you can specify your own format if you wish.

In addition, you can specify whether chapters should begin on a new page, or merely
continue the same page as the previous chapter; and if chapters begin on new pages, you
can specify whether they must be odd-numbered pages.

By convention, a book is printed on both sides of each sheet of paper. When you open
a book, the right-hand page is odd-numbered, and chapters begin on right-hand pages—a
preceding left-hand page is left blank if necessary. Reports, however, are often printed on
just one side of paper, and chapters begin on a fresh page immediately following the end of
the preceding chapter. In short or informal reports, chapters often do not begin on a new
page at all, but are separated from the preceding text by a small amount of whitespace.

The @setchapternewpage command controls whether chapters begin on new pages, and
whether one of the standard heading formats is used. In addition, Texinfo has several
heading and footing commands that you can use to generate your own heading and footing
formats.

In Texinfo, headings and footings are single lines at the tops and bottoms of pages; you
cannot create multiline headings or footings. Each header or footer line is divided into three
parts: a left part, a middle part, and a right part. Any part, or a whole line, may be left
blank. Text for the left part of a header or footer line is set flushleft; text for the middle
part is centered; and, text for the right part is set flushright.

E.2 Standard Heading Formats

Texinfo provides two standard heading formats, one for manuals printed on one side of each
sheet of paper, and the other for manuals printed on both sides of the paper.

By default, nothing is specified for the footing of a Texinfo file, so the footing remains
blank.

The standard format for single-sided printing consists of a header line in which the left-
hand part contains the name of the chapter, the central part is blank, and the right-hand
part contains the page number.

A single-sided page looks like this:

chapter page number

I
I
I
Start of text ... |
I
I

Appendix E: Page Headings 271

The standard format for two-sided printing depends on whether the page number is even
or odd. By convention, even-numbered pages are on the left- and odd-numbered pages are
on the right. (TEX will adjust the widths of the left- and right-hand margins. Usually,
widths are correct, but during double-sided printing, it is wise to check that pages will bind
properly—sometimes a printer will produce output in which the even-numbered pages have
a larger right-hand margin than the odd-numbered pages.)

In the standard double-sided format, the left part of the left-hand (even-numbered) page
contains the page number, the central part is blank, and the right part contains the title
(specified by the @settitle command). The left part of the right-hand (odd-numbered)
page contains the name of the chapter, the central part is blank, and the right part contains
the page number.

Two pages, side by side as in an open book, look like this:

| |
page number title		chapter page number
Start of text ... I	More text ...	
I ...		

The chapter name is preceded by the word “Chapter”, the chapter number and a colon.
This makes it easier to keep track of where you are in the manual.

E.3 Speciftying the Type of Heading

TEX does not begin to generate page headings for a standard Texinfo file until it reaches
the @end titlepage command. Thus, the title and copyright pages are not numbered.
The @end titlepage command causes TEX to begin to generate page headings according
to a standard format specified by the @setchapternewpage command that precedes the
@titlepage section.

There are four possibilities:

No @setchapternewpage command
Cause TEX to specify the single-sided heading format, with chapters on new
pages. This is the same as @setchapternewpage on.

O@setchapternewpage on
Specify the single-sided heading format, with chapters on new pages.

O@setchapternewpage off
Cause TEX to start a new chapter on the same page as the last page of the
preceding chapter, after skipping some vertical whitespace. Also cause TEX to
typeset for single-sided printing. (You can override the headers format with the
@headings double command; see Section 3.7.3 [@headings], page 28.)

O@setchapternewpage odd
Specify the double-sided heading format, with chapters on new pages.

Texinfo lacks a @setchapternewpage even command.

Appendix E: Page Headings 272

E.4 How to Make Your Own Headings

You can use the standard headings provided with Texinfo or specify your own. By default,
Texinfo has no footers, so if you specify them, the available page size for the main text will
be slightly reduced.

Texinfo provides six commands for specifying headings and footings:

e Qeveryheading and @everyfooting generate page headers and footers that are the
same for both even- and odd-numbered pages.

e Qevenheading and Qevenfooting command generate headers and footers for even-
numbered (left-hand) pages.

e @oddheading and @oddfooting generate headers and footers for odd-numbered (right-
hand) pages.

Write custom heading specifications in the Texinfo file immediately after the @end
titlepage command. You must cancel the predefined heading commands with the
@headings off command before defining your own specifications.

Here is how to tell TEX to place the chapter name at the left, the page number in the
center, and the date at the right of every header for both even- and odd-numbered pages:

Oheadings off
Q@everyheading @thischapter @| Q@thispage @| @today{}

You need to divide the left part from the central part and the central part from the right
part by inserting ‘@|’ between parts. Otherwise, the specification command will not be able
to tell where the text for one part ends and the next part begins.

Each part can contain text or @-commands. The text is printed as if the part were within
an ordinary paragraph in the body of the page. The @-commands replace themselves with
the page number, date, chapter name, or whatever.

Here are the six heading and footing commands:

Qeveryheading left @| center @| right

Q@everyfooting left @| center @| right
The ‘every’ commands specify the format for both even- and odd-numbered
pages. These commands are for documents that are printed on one side of each
sheet of paper, or for documents in which you want symmetrical headers or
footers.

Q@evenheading left @| center @| right

Qoddheading left @| center @| right

Q@evenfooting left @| center @| right

Qoddfooting left @| center @| right
The ‘even’ and ‘odd’ commands specify the format for even-numbered pages
and odd-numbered pages. These commands are for books and manuals that
are printed on both sides of each sheet of paper.

Use the ‘@this. .. series of @-commands to provide the names of chapters and sections
and the page number. You can use the ‘@this. ..’ commands in the left, center, or right
portions of headers and footers, or anywhere else in a Texinfo file so long as they are between
@iftex and @end iftex commands.

Appendix E: Page Headings 273

Here are the ‘@this. ..’ commands:

O@thispage
Expands to the current page number.

Othissectionname
Expands to the name of the current section.

@thissectionnum
Expands to the number of the current section.

@thissection
Expands to the number and name of the current section, in the format ‘Section
1: Title’.

O@thischaptername
Expands to the name of the current chapter.

@thischapternum
Expands to the number of the current chapter, or letter of the current appendix.

@thischapter
Expands to the number and name of the current chapter, in the format ‘Chapter
1: Title’.

O@thistitle
Expands to the name of the document, as specified by the @settitle command.

@thisfile
For @include files only: expands to the name of the current @include file. If
the current Texinfo source file is not an @include file, this command has no
effect. This command does not provide the name of the current Texinfo source
file unless it is an @include file. (See Chapter 18 [Include Files], page 159, for
more information about @include files.)

You can also use the @today{} command, which expands to the current date, in ‘1 Jan
1900’ format.

Other @-commands and text are printed in a header or footer just as if they were in the
body of a page. It is useful to incorporate text, particularly when you are writing drafts:

QGheadings off
Q@everyheading @emph{Draft!} @| @thispage @| @thischapter
Q@everyfooting @| @| Versiom: 0.27: @today{}

Beware of overlong titles: they may overlap another part of the header or footer and
blot it out.

If you have very short chapters and/or sections, several of them can appear on a single
page. You can specify which chapters and sections you want @thischapter, @thissection
and other such macros to refer to on such pages as follows:

Q@everyheadingmarks ref

Qeveryfootingmarks ref
The ref argument can be either top (the @this... commands will refer to the
chapter/section at the top of a page) or bottom (the commands will reflect the

274

situation at the bottom of a page). These ‘@every. ..’ commands specify what
to do on both even- and odd-numbered pages.

Q@evenheadingmarks ref
@oddheadingmarks ref
Q@evenfootingmarks ref
Qoddfootingmarks ref

These ‘@even. .. and ‘@odd. ..’ commands specify what to do on only even- or
odd-numbered pages, respectively. The ref argument is the same as with the
‘Gevery. ..’ commands.

Write these commands immediately after the @...contents commands, or after the
@end titlepage command if you don’t have a table of contents or if it is printed at the end
of your manual.

By default the @this... commands reflect the situation at the bottom of a page both
in headings and in footings.

275

Appendix F Catching Mistakes

Besides mistakes in the content of your documentation, there are two kinds of mistake
you can make with Texinfo: you can make mistakes with @-commands, and you can make
mistakes with the structure of the nodes and chapters.

Emacs has two tools for catching the @-command mistakes and two for catching struc-
turing mistakes.

For finding problems with @-commands, you can run TEX or a region formatting com-
mand on the region that has a problem; indeed, you can run these commands on each region
as you write it.

For finding problems with the structure of nodes and chapters, you can use C-c C-
s (texinfo-show-structure) and the related occur command and you can use the M-x
Info-validate command.

F.1 makeinfo Preferred

The makeinfo program does an excellent job of catching errors and reporting them—far
better than texinfo-format-region or texinfo-format-buffer. In addition, the various
functions for automatically creating and updating node pointers and menus remove many
opportunities for human error.

If you can, use the updating commands to create and insert pointers and menus.
These prevent many errors. Then use makeinfo (or its Texinfo mode manifestations,
makeinfo-region and makeinfo-buffer) to format your file and check for other errors.
This is the best way to work with Texinfo. But if you cannot use makeinfo, or your
problem is very puzzling, then you may want to use the tools described in this appendix.

F.2 Catching Errors with Info Formatting

After you have written part of a Texinfo file, you can use the texinfo-format-region or
the makeinfo-region command to see whether the region formats properly.

Most likely, however, you are reading this section because for some reason you cannot
use the makeinfo-region command; therefore, the rest of this section presumes that you
are using texinfo-format-region.

If you have made a mistake with an @Q-command, texinfo-format-region will stop
processing at or after the error and display an error message. To see where in the buffer
the error occurred, switch to the ‘“*Info Region*’ buffer; the cursor will be in a position
that is after the location of the error. Also, the text will not be formatted after the place
where the error occurred (or more precisely, where it was detected).

For example, if you accidentally end a menu with the command @end menus with an ‘s’
on the end, instead of with @end menu, you will see an error message that says:

@end menus is not handled by texinfo

The cursor will stop at the point in the buffer where the error occurs, or not long after it.
The buffer will look like this:

Appendix F: Catching Mistakes 276

* Using texinfo-show-structure:: How to use
“texinfo-show-structure'
to catch mistakes.

* Running Info-validate:: How to check for
unreferenced nodes.

@end menus

—————————— Buffer: *Info Region¥* -—-—-----——-

The texinfo-format-region command sometimes provides slightly odd error messages.
For example, the following cross-reference fails to format:

(exref{Catching Mistakes, for more info.)

In this case, texinfo-format-region detects the missing closing brace but displays a
message that says ‘Unbalanced parentheses’ rather than ‘Unbalanced braces’. This is
because the formatting command looks for mismatches between braces as if they were
parentheses.

Sometimes texinfo-format-region fails to detect mistakes. For example, in the fol-
lowing, the closing brace is swapped with the closing parenthesis:

(@xref{Catching Mistakes), for more info.}
Formatting produces:
(*Note for more info.: Catching Mistakes)

The only way for you to detect this error is to realize that the reference should have
looked like this:

(*Note Catching Mistakes::, for more info.)

Incidentally, if you are reading this node in Info and type f RET (Info-follow-
reference), you will generate an error message that says:

No such node: "Catching Mistakes) The only way ...

This is because Info perceives the example of the error as the first cross-reference in this
node and if you type a RET immediately after typing the Info £ command, Info will attempt
to go to the referenced node. If you type f catch TAB RET, Info will complete the node
name of the correctly written example and take you to the ‘Catching Mistakes’ node. (If
you try this, you can return from the ‘Catching Mistakes’ node by typing 1 (Info-last).)

F.3 Debugging with TEX

You can also catch mistakes when you format a file with TEX.

Usually, you will want to do this after you have run texinfo-format-buffer (or, better,
makeinfo-buffer) on the same file, because texinfo-format-buffer sometimes displays
error messages that make more sense than TEX. (See Section F.2 [Debugging with Info],
page 275, for more information.)

For example, TEX was run on a Texinfo file, part of which is shown here:

—————————— Buffer: texinfo.texi --—-—-------

Appendix F: Catching Mistakes 277

name of the Texinfo file as an extension. The
@samp{??} are “wildcards' that cause the shell to
substitute all the raw index files. (@xref{sorting
indices, for more information about sorting
indices.)@refill

—————————— Buffer: texinfo.texi --—————-—-

(The cross-reference lacks a closing brace.) TEX produced the following output, after which
it stopped:

—————————— Buffer: *tex-shell* ----—-———-—-
Runaway argument?
{sorting indices, for more information about sorting
indices.) @refill QETC.
! Paragraph ended before @xref was complete.
<to be read again>
Opar
1.27

—————————— Buffer: *tex-shell* --————-——-
In this case, TEX produced an accurate and understandable error message:
Paragraph ended before @xref was complete.
‘@par’ is an internal TEX command of no relevance to Texinfo. ‘1.27" means that TEX

detected the problem on line 27 of the Texinfo file. The ‘?’ is the prompt TEX uses in this
circumstance.

Unfortunately, TEX is not always so helpful, and sometimes you must truly be a Sherlock
Holmes to discover what went wrong.

In any case, if you run into a problem like this, you can do one of three things.
1. You can tell TEX to continue running and ignore just this error by typing RET at the
“?” prompt.
2. You can tell TEX to continue running and to ignore all errors as best it can by typing
r RET at the ‘?’ prompt.

This is often the best thing to do. However, beware: the one error may produce a
cascade of additional error messages as its consequences are felt through the rest of the
file. To stop TEX when it is producing such an avalanche of error messages, type C-c
(or C-c C-c, if you are running a shell inside Emacs).

3. You can tell TEX to stop this run by typing x RET at the ‘?’ prompt.

If you are running TEX inside Emacs, you need to switch to the shell buffer and line at
which TEX offers the ‘?” prompt.

Sometimes TEX will format a file without producing error messages even though there
is a problem. This usually occurs if a command is not ended but TEX is able to continue
processing anyhow. For example, if you fail to end an itemized list with the @end itemize
command, TEX will write a DVI file that you can print out. The only error message that
TEX will give you is the somewhat mysterious comment:

(Gend occurred inside a group at level 1)

Appendix F: Catching Mistakes 278

However, if you print the DVI file, you will find that the text of the file that follows the
itemized list is entirely indented as if it were part of the last item in the itemized list. The
error message is the way TEX says that it expected to find an @end command somewhere
in the file; but that it could not determine where it was needed.

Another source of notoriously hard-to-find errors is a missing @end group command. If
you ever are stumped by incomprehensible errors, look for a missing @end group command
first.

If the Texinfo file lacks header lines, TEX may stop in the beginning of its run and display
output that looks like the following. The ‘*’ indicates that TEX is waiting for input.

This is TeX, Version 3.14159 (Web2c 7.0)
(test.texinfo [1])
*

In this case, simply type \end RET after the asterisk. Then write the header lines in the
Texinfo file and run the TEX command again. (Note the use of the backslash, ‘\’. TEX uses
‘\’ instead of ‘@’; and in this circumstance, you are working directly with TEX, not with
Texinfo.)

F.4 Using texinfo-show-structure

It is not always easy to keep track of the nodes, chapters, sections, and subsections of a
Texinfo file. This is especially true if you are revising or adding to a Texinfo file that
someone else has written.

In GNU Emacs, in Texinfo mode, the texinfo-show-structure command lists all the
lines that begin with the @Q-commands that specify the structure: @chapter, @section,
@appendix, and so on. With an argument (C-u as prefix argument, if interactive), the
command also shows the @node lines. The texinfo-show-structure command is bound
to C-c C-s in Texinfo mode, by default.

The lines are displayed in a buffer called the ‘*0Occur*’ buffer, indented by hierarchi-
cal level. For example, here is a part of what was produced by running texinfo-show-
structure on this manual:

Lines matching "~@\\(chapter \\|sect\\|subs\\|subh\\|
unnum\\ |major\\|chapheading \\|heading \\|appendix\\)"
in buffer texinfo.texi.

4177 :Q@chapter Nodes

4198: @heading Two Paths

4231: O@section Node and Menu Illustration

4337: @section The @code{@@node} Command

4393: Osubheading Choosing Node and Pointer Names
4417 : @subsection How to Write a @code{@@node} Line
4469: @subsection Q@code{@@node} Line Tips

This says that lines 4337, 4393, and 4417 of texinfo.texi begin with the @section,
@subheading, and @subsection commands respectively. If you move your cursor into the
‘*0ccur*’ window, you can position the cursor over one of the lines and use the C-c C-
¢ command (occur-mode-goto-occurrence), to jump to the corresponding spot in the

Appendix F: Catching Mistakes 279

Texinfo file. See Section “Using Occur” in The GNU Emacs Manual, for more information
about occur-mode-goto-occurrence.

The first line in the ‘*0ccur*’ window describes the regular expression specified by
texinfo-heading-pattern. This regular expression is the pattern that texinfo-show-
structure looks for. See Section “Using Regular Expressions” in The GNU Emacs
Manual, for more information.

When you invoke the texinfo-show-structure command, Emacs will display the struc-
ture of the whole buffer. If you want to see the structure of just a part of the buffer, of one
chapter, for example, use the C-x n n (narrow-to-region) command to mark the region.
(See Section “Narrowing” in The GNU Emacs Manual.) This is how the example used
above was generated. (To see the whole buffer again, use C-x n w (widen).)

If you call texinfo-show-structure with a prefix argument by typing C-u C-c C-s, it
will list lines beginning with @node as well as the lines beginning with the @-sign commands
for @chapter, @section, and the like.

You can remind yourself of the structure of a Texinfo file by looking at the list in the
‘*0ccur*’ window; and if you have mis-named a node or left out a section, you can correct
the mistake.

F.5 Using occur

Sometimes the texinfo-show-structure command produces too much information. Per-
haps you want to remind yourself of the overall structure of a Texinfo file, and are over-
whelmed by the detailed list produced by texinfo-show-structure. In this case, you can
use the occur command directly. To do this, type:

M-x occur

and then, when prompted, type a regexp, a regular expression for the pattern you want
to match. (See Section “Regular Expressions” in The GNU Emacs Manual.) The occur
command works from the current location of the cursor in the buffer to the end of the
buffer. If you want to run occur on the whole buffer, place the cursor at the beginning of
the buffer.

For example, to see all the lines that contain the word ‘@chapter’ in them, just type
‘@chapter’. This will produce a list of the chapters. It will also list all the sentences with
‘Qchapter’ in the middle of the line.

If you want to see only those lines that start with the word ‘@chapter’, type ‘~@chapter’
when prompted by occur. If you want to see all the lines that end with a word or phrase,
end the last word with a ‘$’; for example, ‘catching mistakes$’. This can be helpful when
you want to see all the nodes that are part of the same chapter or section and therefore
have the same ‘Up’ pointer.

See Section “Using Occur” in The GNU Emacs Manual, for more information.

F.6 Finding Badly Referenced Nodes

You can use the Info-validate command to check whether any of the ‘Next’, ‘Previous’,
‘Up’ or other node pointers fail to point to a node. This command checks that every node
pointer points to an existing node. The Info-validate command works only on Info files,
not on Texinfo files.

Appendix F: Catching Mistakes 280

The makeinfo program validates pointers automatically, so you do not need to use
the Info-validate command if you are using makeinfo. You only may need to use
Info-validate if you are unable to run makeinfo and instead must create an Info file
using texinfo-format-region or texinfo-format-buffer, or if you write an Info file
from scratch.

F.6.1 Using Info-validate
To use Info-validate, visit the Info file you wish to check and type:

M-x Info-validate

Note that the Info-validate command requires an uppercase ‘I’. You may also need to
create a tag table before running Info-validate. See Section F.6.3 [Tagifying], page 281.

If your file is valid, you will receive a message that says “File appears valid”. However,
if you have a pointer that does not point to a node, error messages will be displayed in a
buffer called ‘*problems in info filex’.

For example, Info-validate was run on a test file that contained only the first node of
this manual. One of the messages said:

In node "Overview", invalid Next: Texinfo Mode

This meant that the node called ‘Overview’ had a ‘Next’ pointer that did not point to
anything (which was true in this case, since the test file had only one node in it).

Now suppose we add a node named ‘Texinfo Mode’ to our test case but we do not specify
a ‘Previous’ for this node. Then we will get the following error message:

In node "Texinfo Mode", should have Previous: Overview

This is because every ‘Next’ pointer should be matched by a ‘Previous’ (in the node where
the ‘Next’ points) which points back.

Info-validate also checks that all menu entries and cross-references point to actual
nodes.

Info-validate requires a tag table and does not work with files that have been split.
(The texinfo-format-buffer command automatically splits large files.) In order to use
Info-validate on a large file, you must run texinfo-format-buffer with an argument
so that it does not split the Info file; and you must create a tag table for the unsplit file.

F.6.2 Creating an Unsplit File

You can run Info-validate only on a single Info file that has a tag table. The command will
not work on the indirect subfiles that are generated when a master file is split. If you have
a large file (longer than 300,000 bytes or so), you need to run the texinfo-format-buffer
or makeinfo-buffer command in such a way that it does not create indirect subfiles. You
will also need to create a tag table for the Info file. After you have done this, you can run
Info-validate and look for badly referenced nodes.

The first step is to create an unsplit Info file. To prevent texinfo-format-buffer from
splitting a Texinfo file into smaller Info files, give a prefix to the M-x texinfo-format-
buffer command:

C-u M-x texinfo-format-buffer
or else
C-u C-c C-e C-b

Appendix F: Catching Mistakes 281

When you do this, Texinfo will not split the file and will not create a tag table for it.

F.6.3 Tagifying a File
After creating an unsplit Info file, you must create a tag table for it. Visit the Info file you
wish to tagify and type:
M-x Info-tagify
(Note the uppercase ‘I’ in Info-tagify.) This creates an Info file with a tag table that
you can validate.
The third step is to validate the Info file:
M-x Info-validate
(Note the uppercase ‘I’ in Info-validate.) In brief, the steps are:
C-u M-x texinfo-format-buffer
M-x Info-tagify
M-x Info-validate
After you have validated the node structure, you can rerun texinfo-format-buffer in

the normal way so it will construct a tag table and split the file automatically, or you can
make the tag table and split the file manually.

F.6.4 Splitting a File Manually

You should split a large file or else let the texinfo-format-buffer or makeinfo-buffer
command do it for you automatically. (Generally you will let one of the formatting com-
mands do this job for you. See Section 21.1 [Creating an Info File], page 201.)

The split-off files are called the indirect subfiles.

Info files are split to save memory. With smaller files, Emacs does not have make such
a large buffer to hold the information.

If an Info file has more than 30 nodes, you should also make a tag table for it. See
Section F.6.1 [Using Info-validate|, page 280, for information about creating a tag table.
(Again, tag tables are usually created automatically by the formatting command; you only
need to create a tag table yourself if you are doing the job manually. Most likely, you will
do this for a large, unsplit file on which you have run Info-validate.)

Visit the Info file you wish to tagify and split and type the two commands:
M-x Info-tagify
M-x Info-split
(Note that the ‘I’ in ‘Info’ is uppercase.)

When you use the Info-split command, the buffer is modified into a (small) Info file
which lists the indirect subfiles. This file should be saved in place of the original visited file.
The indirect subfiles are written in the same directory the original file is in, with names
generated by appending ‘-’ and a number to the original file name.

The primary file still functions as an Info file, but it contains just the tag table and a
directory of subfiles.

282

Appendix G Info Format Specification

Here we describe the technical details of the Info format.

In this formal description, the characters <>x() |=# are used for the language of the
description itself. Other characters are literal. The formal constructs used are typical:
<...> indicates a metavariable name, ‘=" means definition, ‘*’ repetition, ‘?’ optional, ‘()’
grouping, ‘|’ alternation, ‘#’ comment. Exception: ‘*’ at the beginning of a line is literal.

In general, programs that read Info files should try to be case-insensitive to keywords
that occur in the file (for example, ‘Tag Table’ and ‘Tag table’ should be equivalent) in
order to support Info-generating programs that use different capitalization.

The sections in an Info file (such as nodes or tag tables) are separated with a sequence:
L7 _(CCL)?7J
That is, a ‘CTRL-_’ character followed by a newline, with optional formfeed characters. We
refer to such sequences as <separator>.

We specify literal parentheses (those that are part of the Info format) with <1paren> and
<rparen>, meaning the single characters ‘(" and ‘)’ respectively. We specify the ‘CTRL-?7’
character (character number 127) . Finally, the two-character sequence ‘"x’ means
the single character ‘CTRL-x’, for any x.

This format definition was written some 25 years after the Info format was first devised.
So in the event of conflicts between this definition and actual practice, practice wins. It
also assumes some general knowledge of Texinfo; it is meant to be a guide for implementors
rather than a rigid technical standard. We often refer back to other parts of this manual
for examples and definitions, rather than redundantly spelling out every detail.

G.1 Info Format General Layout

This section describes the overall layout of Info manuals.

Info Format: A Whole Manual

To begin, an Info manual is either nonsplit (contained wholly within a single file) or split
(across several files).

The syntax for a nonsplit manual is:

<nonsplit info file> =
<preamble>
<node>*
<tag table>?
<local variables>?

When split, there is a main file, which contains only pointers to the nodes given in other
subfiles. The main file looks like this:

<split info main file> =
<preamble>
<indirect table>
<tag table>
<local variables>?

Appendix G: Info Format Specification 283

The subfiles in a split manual have the following syntax:

<split info subfile> =
<preamble>
<node>*

Note that the tag table is not optional for split files, as it is used with the indirect table
to deduce which subfile a particular node is in.
Info Format: Preamble

The <preamble> is text at the beginning of all output files. It is not intended to be visible
by default in an Info viewer, but may be displayed upon user request.

<preamble> =
<identification> # "This is FILENAME, produced by ..."
<copying text> # Expansion of Qcopying text.
<dir entries> # Derived from Q@dircategory and @direntry.

These pieces are:

<identification line>
An arbitrary string beginning the output file, followed by a blank line.

<copying text>
The expansion of a @copying environment, if the manual has one (see
Section 3.3.1 [@copying], page 19).

<dir entries>
The result of any @dircategory and @direntry commands present in the man-
ual (see Section 21.2.4 [Installing Dir Entries|, page 207).

Info Format: Indirect Table

<indirect table> =
<separator>
Indirect:
(<filename>: <bytepos>)*

The indirect table is written to the main file in the case of split output only. It specifies,
as a decimal integer, the starting byte position (zero-based) that the first node of each
subfile would have if the subfiles were concatenated together in order, not including the
top-level file. The first node of actual content is pointed to by the first entry.

As an example, suppose split output is generated for the GDB manual. The top-level
file gdb.info will contain something like this:

<separator>
Indirect:
gdb.info-1: 1878
gdb.info-2: 295733

This tells Info viewers that the first node of the manual occurs at byte 1878 of the file
gdb.info-1 (which would be after that file’s preamble.) The first node in the gdb.info-2
subfile would start at byte 295733 if gdb.info-2 were appended to gdb.info-1, including
any preamble sections in both files.

Appendix G: Info Format Specification 284

Unfortunately, Info-creating programs such as makeinfo have not always implemented
these rules perfectly, due to various bugs and oversights. Therefore, robust Info viewers
should fall back to searching “nearby” the given position for a node, instead of giving up
immediately if the position is not exactly at a node beginning.

Info Format: Tag Table

<tag table> =
<separator>
Tag Table:
(<1lparen>Indirect<rparen>)?
(Node|Ref) : <nodeid>"7<bytepos>
<separator>
End Tag Table

The ‘(Indirect)’ line appears in the case of split output only.

The tag table specifies the starting byte position of each node and anchor in the file. In
the case of split output, it is only written in the main output file.

Each line defines an identifier as either an anchor or a node, as specified. For ex-
ample, ‘Node: Top~ 71647’ says that the node named ‘Top’ starts at byte 1647 while ‘Ref:
Overview-Footnote-1"730045’ says that the anchor named ‘Overview-Footnote-1’ starts
at byte 30045. It is an error to define the same identifier both ways.

In the case of nonsplit output, the byte positions simply refer to the location in the
output file. In the case of split output, the byte positions refer to an imaginary file created
by concatenating all the split files (but not the top-level file). See the previous section.

Here is an example:

~

Tag Table:
Node: Top~789
Node: Ch177292

~

End Tag Table

This specifies a manual with two nodes, ‘Top’ and ‘Chl’, at byte positions 89 and 292
respectively. Because the ‘(Indirect)’ line is not present, the manual is not split.

Preamble sections or other non-node sections of files do not have a tag table entry.

Info Format: Local Variables

The local variables section is optional and is currently used to give the encoding information.
It may be augmented in the future.

<local variables> =
<separator>
Local Variables:
coding: <encoding>
End:

See Section 15.2 [@documentencoding], page 137.

Appendix G: Info Format Specification 285

Info Format: Regular Nodes
Regular nodes look like this:

<node> =
<separator>
File: <fn>, Node: <id1>, (Next: <id2>,)7 (Prev: <id3>,)7 Up: <id4>

<general text, until the next “_ or end-of-file>

At least one space or tab must be present after each colon and comma, but any number of
spaces are ignored. The <id> node identifiers have following format:

<id> = (<lparen><infofile><rparen>)?(?<nodename>?)?
| <id> = (<1lparen><infofile><rparen>)?(<nodename>)?

This <node> defines <id1> in file <fn>, which is typically either ‘manualname’ or
‘manualname.info’. No parenthesized <infofile> component may appear within <id1>.

Each of the identifiers after Next, Prev and Up refer to nodes or anchors within a file.
These pointers normally refer within the same file, but ‘(dir)’ is often used to point to the
top-level dir file. If an <infofile> component is used then the node name may be omitted,
in which case the node identifier refers to the ‘Top’ node within the referenced file.

The Next and Prev pointers are optional. The Up pointer is technically also optional,
although most likely this indicates a mistake in the node structuring. Conventionally, the
nodes are arranged to form a tree, but this is not a requirement of the format.

Node names containing periods, commas, colons or parentheses (including @-commands
which produce any of these) can confuse Info readers. If it is necessary to refer to a
node whose name contains any of these, the <nodename> should be surrounded by a
pair of characters. There is support in makeinfo for adding these characters (see
[INFO_SPECIAL_CHARS_QUOTE], page 193); however, we don’t recommend you make
use of this support until such time as Info-reading programs that recognize this syntax are
common. See Section 4.4 [Node Line Requirements|, page 33.

The use of non-ASCII characters in the names of nodes is permitted, but can cause prob-
lems in cross-references between nodes in Info files with different character encodings, and
also when node names from many different files are listed (for example, with the -—apropos
option to the standalone Info browser), so we recommend avoiding them whenever feasible.
For example, prefer the use of the ASCII apostrophe character (’) to Unicode directional
quotes.

The <general text> of the node can include the special constructs described next.

G.2 Info Format Text Constructs

These special Info constructs can appear within the text of a node.

G.2.1 Info Format: Menu

Conventionally menus appear at the end of nodes, but the Info format places no restrictions
on their location.
<menu> =
* Menu:

Appendix G: Info Format Specification 286

(<menu entry> | <menu comment>)*

The parts of a <menu entry> are also described in Section 4.9.4 [Menu Parts|, page 40.
They have the same syntax as cross-references (see Section G.2.4 [Info Format Cross Ref-
erence], page 287). Indices extend the menu format to specify the destination line; see
Section G.2.3 [Info Format Printindex], page 286.

A <menu comment> is any line not beginning with ‘*’ that appears either at the beginning
of the menu or is separated from a menu entry by one or more blank lines. These comments
are intended to be displayed as part of the menu, as-is (see Section 4.9.1 [Writing a Menu],
page 38).

G.2.2 Info Format: Image

The @image command results in the following special directive within the Info file (see
Section 10.2 [Images], page 92):

<image> =
"@"H[image src="<image file>"
(text="<txt file contents>")?
(alt="<alt text>")?
"@"H]
The line breaks and indentation in this description are editorial; the whitespace between
the different parts of the directive in Info files is arbitrary.

‘no

In the strings <image file>, <txt file contents> and <alt text>, is quoted as

‘A" and ‘\’ is quoted as ‘\\’. The txt and alt specifications are optional.

The alt value serves the same purpose as in HTML: A prose description of the image.
In text-only displays or speech systems, for example, the alt value may be used instead of
displaying the (typically graphical) <image file>.

The <txt file contents>, if present, should be taken as an ASCII representation of
the image, for possible use on a text-only display.

The format does not prescribe the choice between displaying the <image file>, the
<alt text> or the <txt file contents>.

G.2.3 Info Format: Printindex

Indices in Info format are generally written as a menu (see Chapter 11 [Indices], page 97),
but with an additional directive at the beginning marking this as an index node:

<printindex> =
“@"H[index"@"H]
* Menu:

<index entry>*

The <index entry> items are similar to normal menu entries, but the free-format de-
scription is replaced by the line number of where the entries occurs in the text:

<index entry> =
* <entry text>: <entry node>. <lparen>line <lineno><rparen>

Appendix G: Info Format Specification 287

The <entry text> is the index term. The <lineno> is an unsigned integer, given relative
to the start of the <entry node>. There may be arbitrary whitespace after the colon and
period, as usual in menus, and may be broken across lines. Here is an example:
“@"H[index~ @ H]
* Menu:

* thunder: Weather Phenomena. (line 5)

This means that an index entry for ‘thunder’ appears at line 5 of the node ‘Weather
Phenomena’.

G.2.4 Info Format: Cross-reference
A general cross-reference in Info format has one of the following two forms:

<cross-reference> =
* (N|n)ote <id>::
| * (NIn)ote <label>:<id>(.|,)

<id> = (<lparen><infofile><rparen>)?(?7<nodename>?)?
| <id> = (<1lparen><infofile><rparen>)?(<nodename>)?
<label> = 7<label text>?

9

No space should occur between the ‘*’ character and the following ‘N’ or ‘n’. ‘*Note’
should be used at the start of a sentence, otherwise ‘*note’ should be used. (Some Info
readers, such as the one in Emacs, can display ‘*Note’ and ‘*note’ as ‘See’ and ‘see’
respectively.) In both cases, <label text> is descriptive text.

In both forms the <id> refers to a node or anchor, in the same way as a reference
in the node information line does (see [Info Format Regular Nodes], page 285). The op-
tional parenthesized ‘<infofile>’ is the filename of the manual being referenced, and the
<nodename> is the node or anchor within that manual,

The second form has a descriptive label. A cross-reference in this form should usually
be terminated with a comma or period, to make it feasible to find the end of the <id>.

If <label> contains a colon character (:), it should be surrounded with a pair of
characters. Likewise, if <nodename> contains problematic characters (such as commas or
periods), it should be surrounded by a pair of characters; then a terminating comma
or period is not needed.

As with node names, this quoting mechanism has as of the time of writing limited support
in Info-reading programs; hence we do not recommend using it until this changes.

The format does not prescribe how to find other manuals to resolve such references.

Here are some examples:

*note GNU Free Documentation License::

*note Tag table: Info Format Tag Table, for details.
xNote Overview: (make)Top.

xNote ~“7:7°7: (bash)Bourne Shell Builtins.

*Note alloca.h: (gnulib)~7alloca.h”?.

The first shows a reference to a node in the current manual using the short form.

Appendix G: Info Format Specification 288

The second also refers to a node in the current manual, namely ‘Info Format Tag Table’;
the ‘Tag table’ before the ‘:’ is only a label on this particular reference, and the ‘for
details.’ is text belonging to the sentence, not part of the reference.

The third example refers to the node ‘Top’ in another manual, namely ‘make’, with
‘Overview’ being the label for this cross-reference.

The fourth example shows a colon character being quoted in a label, and the fifth example
shows a period being quoted in a node name.

See Chapter 6 [Cross References|, page 49.

289

Appendix H GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

Appendix H: GNU Free Documentation License 290

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix H: GNU Free Documentation License 291

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix H: GNU Free Documentation License 292

=

N.

O.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix H: GNU Free Documentation License 293

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix H: GNU Free Documentation License 294

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix H: GNU Free Documentation License 295

10.

11.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix H: GNU Free Documentation License 296

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ~~GNU
Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

297

Command and Variable Index

This is an alphabetical list of all the @-commands, assorted Emacs Lisp functions, and
several variables. To make the list easier to use, the commands are listed without their

preceding ‘@’.

!

! (end of sentence).................. ... 107

"

" (umlaut accent)............ . il 108

9

' (acute accent) i 108

*

* (force line break) 119

Y

, (cedilla accent) ... 108

- (in image alt string) 93, 120

. (end of sentence)................. ... 107

/ (allow line break)ccoiiiin.... 119
... 106

= (macron accent) ..., 108

7

? (end of sentence) ...l 107

@ (literal ‘@)ooviii i 103

"~ (circumflex accent)...................o.o..L. 108
¢

 (grave accent) ... 108
\ (literal \ in @math)................c.oooien. 112

A ——

(literal “L7) ..o 103
F(literal ‘F) ..o 103
~ (tilde accent) ... 108
A
B . 109
BA 109
ADDT . 68
ACTOIYM .+« vvvvttttteette e 68
B 109
AE 109
afivepaper............. ... il 173
afourlatex...............iiiiiiiiiii 173
afourpaper............. ... 173
afourwide........ il 173
alias............ooiiaa 154
allowcodebreaksooiiiiiiiii.. 120
ANCHOT . .ottt 56
AppendiX ...t 44
appendixsec........ ...l 45
appendixsection...........l 45
appendixsubsec i il 45
appendixsubsubsec..................l 46
APPLY. .o 133
= e}~ PPN 117
asis.......o 86
atchar{} (literal ‘@)............... 103

Command and Variable Index

B

b (bold font)............oooiiii 71
\backslash............cooiiiiiiiiiinnannnnn.. 104
backslashchar, 104
bulleto 113
bye.. ... 30

C et 11
caption.............. ..ol 91
cartouche........... ..o 79
CENTET . . ittt 21
CeNTErChAD . ..ttt 44
chapheading.......... ..., 44
chapterol 43
cindex...... ... 97
Cite . 60
clear. 143
ClicK. .ot 117
clicksequencel 117
clickstyle.........oooiiiiiiiiiiiiiii i, 117
COAE . ittt 62
codequotebacktick...............l 105
codequoteundirected 105
<colon> (suppress end-of-sentence space)... ... 106
columnfractionscouiiiiiiiiiiina.. 88
COMMA. .. v vt ettt e ettt et e e eaeee s 104
COMMANA . . vttt ettt et e e 67
o3 111 1=5 4 11
complete_tree_nodes_menus.................. 196
CONTENTS .\ttt 24
copying ... 19
copyrightl 19, 112
CTOPMATKS . . vttt 174
D

debugtree.......... 186
defcodeindexiiiia, 101
defcv.. ... il 131
defCVx .. 125
deffn.......l 126
deffnx ... 125
defindexl 101
definfoenclose.............. ...l 155
defivar ...t 131
defivarx........cooiiiiiiiiii 125
defmac i 126
defmacx ...t 125
defmethod.................................... 133
defmethodx.......... ... 125
defop..........o 132
defopt .o 127
defoptxX ... 125
defopxX 125
defspec........ ... 126

defspecxX ..o 125

298
deftp..............l 130
deftpX ..o 125
deftypecv........ooiiiiiii 131
deftypecvx.........ooiiiiiiiii i 125
deftypefn..........l 128
deftypefnnewline............................ 129
deftypefnx.............. ...l 125
deftypefun............l 129
deftypefunx..............oiiiiiiii 125
deftypeivar.............ooiiiiiiiiii 131
deftypeivarxcoiiiiiiiiiiiiii, 125
deftypemethod 133
deftypemethodx 125
deftypeop.......ooiiiiiii 132
deftypeopX. ... 125
deftypevar................oiiiiiiiiiiiii, 130
deftypevarx...............oiiiiiiiiiii.. 125
deftypevr.......... i 129
deftypevrx...........oiiiiiiiii 125
defun.............ol 126
defunx o i 125
defvar oo 127
defvarxl 125
defvr.............. 127
defvrx ... 125
DEL (comment character)....................... 11
detailmenu.................coiiiiiiia. 26, 38
dfn.. .. 67
dh.o 109
DH .o 109
dircategory...........ooiiiiiiiiii 207
direntry........... 207
displaycoooiiiiiiiiiii 76
Amn . ..o 108
docboOk ... 142, 186
documentdescription.............. ... ool 27
documentencoding.................. ...l 137
documentlanguage..................o.iiiinnin. 136
dotaccent.............. ..., 108
dotless il 109
AOtS . 113
AVi .o 186
dvipdf ... 186
E
email............ i 69
\emergencystretch........................... 172
GMPIL. .ot 70
I .\t 72, 82
enddotsl 113
ENUMETAte 84
1S5 2 66
eQUIV. ... 116
15 o o 116
1= o e o 1= P 140
errormsg, and line numbers in TEX 157
QUIO .ttt 113

Command and Variable Index

evenfooting................ ...l 272
evenfootingmarks........................... 274
evenheading....................... ...l 272
evenheadingmarks............................ 274
everyfootingl 272
everyfootingmarks.............. ... 273
everyheadingl 272
everyheadingmarks........................... 273
eXaMPLle ...\ 74
exampleindentl 30
exclamdown............oiiiiiiii i 109
exdent. 77
@XPANSIOoNottt 115
F

file.. .o 67
fill_gaps_in_sectioning.................... 196
finalout.........oooiiiiiiiiiiii 172
findexX.. ... 97
firstparagraphindent 29
float.. ..o 90
flushleft 77
flushright..........l 7
fn-name ... 124
fonttextsize........... ool 70
foobar. ... 125, 128
footnotel 94
footnotestylel 95
format.............. 77
forward-word ... 123
frenchspacingol 107
ftable........ 87
G

\gdef within @tex 141
==Y 114
\globaldefs within @tex 141
BLOUD . « et vttt ettt ettt 121
guillemetleft 110
guillemetrightt 110
guillemotleft 110
guillemotright 110
guilsinglleft 110
guilsinglright 110

299
H
H (Hungarian umlaut accent).................. 108
hashchar{} (literal ‘#) 104
BDOX . e e 172
headingl 45
headingsl 28
headitem......... ... 88
headitemfont.............ooiiiiiiiniinnennn... 88
headwordcoiiiiiin it 156
html ... 141, 186
hyphenation...............l 120
I
i (italic font) 71
ifclearo 145
ifcommanddefined............................ 147
ifcommandnotdefined 147
ifdocbook ... 139, 142
ifhtml. 139, 141
ifinfo ... 139
ifnotdocbook ... 140
ifnothtml....... 140
ifnotinfo..... 140
ifnotplaintext 140
ifnottex 140
ifnotxml 140
ifplaintext...........l 139
AfsSet. oo 144
= 139
ifxml. ... 139, 141
IGNOTE. .t 11
image. ...l 92
includeo e 159
indent. e 79
indentedblocCkot 74
indicateurl........ ...t 69
Info. .o 186
inforef 57
Info-validateccoviiiviiininnnnnn.. 279
inlinefmb 142
inlinefmtifelse......... ..., 142
inlineifclear ... 145
inlineifset.......... ... i 145
S =3 - PP 142
\input (raw TEX startup)...................... 12
insert_nodes_for_sectioning_commands..... 196
insertcopying ..., 20
isearch-backward..............cooviiiiinn... 125
isearch-forward.............. 125
B =) 83, 86, 88
itemize ... 83

Command and Variable Index

Kbd. ... 63
kbdinputstyleo il 63
Rey oo 64
kindex....... ... 97

Lo 109
LaTeX . oot e 112
1bracechar{} (literal ‘{’)..................... 103
=Y 114
NLinKCOLOT .\t e et e 59
5 76
listoffloats........coviiiiiiiii ... 91
1oWersectionsiiiiii 47
Lo 109

11 E= Y of o TP 149
\mag (raw TEX magnification)................. 174
majorheading.............. ...l 44
makeinfo-buffer.............. oL 201
makeinfo-kill-job............ 202
makeinfo-recenter-output-buffer........... 202
makeinfo-region............l 201
math........... . o ool 111
\RAthOPSUP . ..ottt 111
11T 4 38
MINUS. ...t 114
move_index_entries_after_items............ 196
multitable..............ooiiiiiiiii 87

Need. .ot 122
<newline> 105
FAT=51 A5 o PP 201
o Yo L= PO 32
noindent i 78
novalidate.........oiiiiiiiiniii i 166

O i 109
OCCUT . oottt et ettt i 279
occur-mode-goto-0oCCUrrence 261
0ddfooting.....coiitiiii 272
oddfootingmarks..................l 274
oddheading................ 272
oddheadingmarksooiiiiii 274
0 ittt 109
OE 109
OgOMEK ... 108
OPtion. ... 67

300
OFAM. .\ttt 109
0 109
P
P e o ettt 121
page, within @titlepage....................... 20
pagesizes............ ... 173
paragraphindento ool 29
o= o= P 186
PaTt . 46
PAf 186
Phoo......... 155
PindeX.ot 97
plaintexinfol 186
plaintext............l 186
POINt. .. 116
pounds ... 113
Print........ooiiiiiiii 115
printindex.......................ooL 99
P e 186
pxref 55
Q
questiondown ... 109
quotation............ol 73
quotedblbase ...t 110
quotedblleftl 110
quotedblright 110
quoteleft................... il 110
quoteright..............l 110
quotesinglbasel 110
R
r (roman font).......... ... i 71
raggedright............ i 78
raisesectionsl 47
rawteXt ... 186
rbracechar{} (literal ‘}’) 103
ref . 55
refill ... i 239
regenerate_master_menu..................... 196
registeredsymbol............. it 112
result 115
ringaccent............. ... 108
TIMACTO .« o vvt ittt ettt 150

Command and Variable Index

S

T V11 o 65
sansserif (sans serif font)..................... 71
sc (small caps font)............. ... 70
SeCtion ... 44
St . 143
setchapternewpage.................c.oiiui..n. 27
O@setcontentsaftertitlepage 246
setfilename.............. il 17
Osetshortcontentsaftertitlepage........... 246
settitle...... ... 18
shortcaption...........ol 91
shortcontentso, 24
shorttitlepage o ... 21
simple_menu...............ooiiiiiiiiiiiii., 196
slanted (slanted font) 71
smallbook..........coiiiiiiiii 172
smalldisplay.................... ... 76
smallexample...............oooiiiiiii... 80
smallformat, 77, 80
smallindentedblock........................... 74
smalllisp.........cooiiiiiiiiiiii 80
smallquotation............................ 74, 80
<o - Y= 98
sp (line spacing)c.oovviiniiiiiniin.. 121
sp (titlepage line spacing)............c..oooou... 21
KSPACED « ottt 105
= 109
SETONg. .. .o 70
structure.......... ... i 186
SUD . . 111
subheading..............l 45
subsection.............l 45
subsubheading ool 46
subsubsection 46
SUDTItLle ..ttt e 22
SUMMAryCcoNtentsuuuurunnennnnnnnnnnnn 24
<] 1 J 111
syncodeindexl 100
synindex 101

t (typewriter font)ot 71
A . 88
<EAD> . o 105
table. ... 85
7= S PP 141
Texinfo::Parser module 176
texinfo-all-menus-update................... 263
texinfo-every-node-update.................. 263
texinfo-format-buffer 202, 266
texinfo-format-region................. 202, 265
texinfo-indent-menu-description........... 265
texinfo-insert-braces...................... 260
texinfo-insert-Qcode 259
texinfo-insert-@dfn 259
texinfo-insert-@end 259

301
texinfo-insert-Qexample.................... 259
texinfo-insert-Qitem....................... 259
texinfo-insert-@kbd 259
texinfo-insert-@node 259
texinfo-insert-node-lines.................. 264
texinfo-insert-@noindent................... 259
texinfo-insert-@samp 259
texinfo-insert-@table...................... 259
texinfo-insert-Qvar 259
texinfo-make-menu................l 263
texinfo-master-menu 262
texinfo-multiple-files-update............. 159
texinfo-multiple-files-update (in brief) ... 265
texinfo-sequential-node-update............ 265
texinfo-show-structure................ 261, 278
texinfo-start-menu-description............ 260
texinfosxml.t 187
texinfo-tex-buffer.................... 266
texinfo-tex-print................. 267
texinfo-tex-region............ 266
texinfo-update-node 262
textcontent........, 187
textdegree.............. ...l 113
=Y 112
B 109
thischapter.................o 273
thischaptername............................. 273
thischapternum.............................. 273
thisfile......oooiiiiiiiiiiii i 273
thispagecovviiiii i 273
thissection............ oo il 273
thissectionname....................... 273
thissectionnum............ 273
thistitle. ... 273
TH e 109
tie (unbreakable interword space) 121
tieaccent..... ...l 108
tindeX. ..o 97
Batle . e 22
titlefont ... 21
titlepage 20
today. ... 273
173 25, 35
U
u (breve accent)ol 108
ubaraccent........... ... ool 108
udotaccento 108
ULIMACTO &+« evvvvveeaee ettt eeeeeeees 150
unnumbered 44
UNNUMbEredsSecCovvutt it 45
unnumberedsubsec........., 45
unnumberedsubsubsec...............coiii... 46
up-list 260
uref ... 57
urefbreakstyle 58

\urefurlonlylinktrue 59

Command and Variable Index

L0 57
\NUT1COLOT oo ot 59
\usebracesinindexestrue.................... 167
U 118

V (CATOI) « .ttt 108
validatemenusoiiiiiiiiiii.. 39
ValUe. .ttt e 143
L2 5 P 66
=5 o < J 65
verbatim........coiiiii 75

302
VINAEX . .ottt 97
vskip TEX vertical skip........................ 23
vtable. 87
W o e e et e e e e e e 120
X
XML Lo 141, 186
Xref . 51
xrefautomaticsectiontitle................... 52

General Index

,, (double low-9 quotation mark)
" (undirected double quote character).........

#

‘“#line’ directive.........ol
‘#line’ directives, not processing with TEX. ...
‘#line’ syntax details...........

(dir) as Up node of Top node

b
, (single low-9 quotation mark)................

-, breakpoint within @code

303

Q@

‘@’ as continuation in definition commands 124
‘~@"H’ for imagesin Info 93
_, breakpoint within @code.................... 120
4
P 110
P 110
8
8-bit characters, in HTML cross-references 218
A
L 109
A4 paper, printingon.............. 173
A5 paper, printing on.................o.a.. 173
P 109
A 109
<abbr> and <abbrev> tags 68
Abbreviations for keys oL 64
Abbreviations, tagging............. 68
Abstract of document........... 27
Abstract syntax tree

representation of documents 176
Accents, inserting.................ciiiii... 108
accesskey, customization variable for......... 191
accesskey, in HTML output of menus 39
accesskey, in HTML output of nodes.......... 31
<acknowledgements> Docbook tag 44
<ACTONYM> TG « o oottt 68
Acronyms, tagging.........coeuiiiiiieiiiiia... 68
Acute accent...... ... 108
Adding anew Infofile.............. 205
Additional output formats....................... 6
--add-once, for install-info................ 208
Advice on writing entries.............. 98
P 109
B 109
after, value for Qurefbreakstyle.............. 59
AFTER_ABOUTot 187
AFTER_BODY_OPENot 187
AFTER_OVERVIEWttt 187
AFTER_TOC_LINESot 187
Aliases, command.ccoviiiiieinna.. 154

--align=column, for install-info............ 208

General Index

Allow line breako, 119
All-permissive copying license................. 256
Alphabetical @-command list 223
Alt attribute for images.............. 93
ANnchorsoo 56
Angle quotation marks........................ 110
Another Info directory................ 205
--append-new-sections, for install-info.... 208
Arguments, repeated and optional............. 125
ASCII text output with --plaintext 181
ASCII, source document portability using..... 118
Aspect ratio of imagesl 93
At sign, inserting o i 103
Auk, bird species 110
autoexec.bat ... 206
automake, and version info.................... 254
Automatic pointer creation with makeinfo...... 37
Automatic quoting of commas

for some macrosc.oviiiiiiiiiia... 150
Automatically insert nodes, menus............ 261
Auxiliary files, omitting....................... 166
AVOID_MENU_REDUNDANCYcoiuienaan.. 187

B

Bb5 paper, printingon............ 173
Back-end output formats........................ 4
Backslash in macros L 149
Backslash, and macros........................ 150
Backslash, in macro arguments................ 151
Backslash, inserting............ L 104
backtick 105
Badly referenced nodes 279
BASEFILENAME_LENGTH.................... 187, 215
Bastard title page.........ol 21
Batch formatting for Info.............. 203
Beebe, Nelson. ... 5
before, value for Qurefbreakstyle............. 59
BEFORE_OVERVIEW......... ..o, 187
BEFORE_TOC_LINES............. ... 187
Beginning a Texinfo file........................ 15
Beginning line of a Texinfo file................. 16
Berry, Karl ... oo 7
Bigpoints......... . 94
BIG_RULE0t 188
Black rectangle in hardcopy................... 172
Blank linesco i 121
<blockquote> HTML tag...................... 73
Body of amacro.............o 149
<body> text, customizing...................... 188
BODYTEXT ..ottt e 188
Bold fonto 71
Bolio ... 7
Book characteristics, printed 6
Book, printing small 172
border-pattern of Window 131, 132
BoTEX ..o 7
Box with rounded corners...................... 79

304
Box, ugly black in hardcopy................... 172
Brace-delimited conditional text 142
Brace-delimited flag conditionals.............. 145
Braces and argument syntax.................. 223
Braces, in index entries 166
Braces, in macro arguments................... 151
Braces, inserting oo 103
Braces, when touse............. ... i 10
Breakpoints within urls..................... ... 58
Breaksinaline................ oo 119
Breaks, within @code 120
Breveaccent........... ... i 108
Buffer formatting and printing 266
Bugs, reporting oo i 3
Bzipped dir files, reading...................... 208
C
—C VAr=valul@......c.uuiuiiineiin i 182
--calign=column, for install-info 208
Capitalization of index entries.................. 98
Captions, for floats................. ... 91
CaATOIL .« e vttt 108
Cascading Style Sheets, and HTML output. ... 213
Caseinnode name..............coooeiiiiea... 34
Case, not altering in @code..................... 62
CASE_INSENSITIVE_FILENAMES 188
Catching errors with Info formatting.......... 275
Catching errors with TEX formatting.......... 276
Catching mistakesoooa.. 275
Catcode for comments in TEX.................. 11
Categories, choosing, 207
Category codes, of plain TEX.................. 141
<caution> Docbook tag................. 73
Caveats for macro usage 152
Cedilla accent ..., 108
Centimeters. ..., 94
Chapter structuring.............. 42
<chapter> Docbook tag........................ 44
CHAPTER_HEADER_LEVEL 188
Chapters, formatting one at a time............ 166
Character set, declaring....................... 137
Characteristics, printed books or manuals 6
Characters, basic input 10
Characters, invalid in node name............... 34
Chassell, Robert J............. ..., 7
Check accent ..o .. 108
CHECK_HTMLXREF i, 188
Checking for badly referenced nodes........... 279
Checking for Texinfo commands............... 147
Checklist for bug reports........................ 3
CICETOS & vttt et 94
Circumflex accent.............., 108
Click sequencesocoiiiiiiiiiia... 117
CLOSE_QUOTE_SYMBOL.cviitiieeene.. 192
Closing punctuation, and sentence ending 107
CM-Super fonts. ..., 110

CM-Super fonts, installing 171

General Index

Code point of Unicode

character, inserting by 118
code, value for @kbdinputstyle................ 63
Collapsing whitespace around continuations ... 124
Colon innodename............................ 34
Colon, last in INFOPATHccvvinnnnn... 206
<colophon> Docbook tag....................... 44
Colored links, in PDF output 59
Column widths, defining for multitables........ 88
Combining indices ... 100
Comma after cross-reference 51
Comma in node name...................ou... 34
Comma, in macro arguments.................. 150
Comma, inserting............. ... 104
Command aliasescooiviiiniiiin . 154
Command definitions 133
@-command list. ... 223
Command names, indicating 67
Command Syntax..........cooveeiieeneenn.. 222
@-command Syntaxooiiiiiiiii... 222
--command, for texi2dvi...................... 164
Command-line options of texi2html 199
@Q-commands.uuiiiiii i 10
@-commands in node names.................... 33
Commands in node names 33
Commands to insert special characters........ 103
Commands using raw TEX 141
@-commands, customization variables for...... 185
Commands, inserting them.................... 259
Commands, testing for Texinfo................ 147
--commands-in-node-names................... 177
COMMENTS .+« ottt 11
Comments, in CSS files 213
compatibility, with texi2html................. 195
Compile command for formatting 170
COMPLEX_FORMAT_IN_TABLE.................... 188
Compressed dir files, reading.................. 208
Computer Modern fonts 137
Conditional commands, inline................. 142
Conditionally visible text 139
Conditionals, nested 148
Conditions for copying Texinfo.................. 2
——conf-dir=path............................. 177
Configuration, for HTML

cross-manual references..................... 219
Cons, Lionel ..., 8, 198
Contents, after title page...................... 246
Contents, table of 24
Contents-like outline of file structure.......... 260
Contexts, of @-commands..................... 245
Continuation lines in definition commands 124
Control keys, specifying........................ 64
Controlling line breaks........................ 119
Conventions for writing definitions 133
Conventions, syntacticcoooue... 10
Copying conditions............c.cooiiiieininn... 2
Copying Permissions...................... ..., 18

Copying text, including 20

305

Copyright holder for FSF works................ 19
Copyright pageooviii i 23
Copyright symbol............................. 112
Copyright word, always in English.............. 19
Correcting mistakes........................... 275
Country codes........oovuiiiiiiiiiiin.. 136
cp (concept) index ... 97
CPP_LINE_DIRECTIVES...............c.... 156, 192
Create nodes, menus automatically............ 261
Creating an Info file 201
Creating an unsplit file.............. 280
Creating index entries.......................... 98
Creating pointers with makeinfo............... 37
Critical editions............ ..o 95
Cropmarks for printing 174
Cross-reference configuration, for HTML 219
Cross-reference parts................ 50
Cross-reference targets, arbitrary............... 56
Cross-references. ... 49
Cross-references using @inforef................ 57
Cross-references using @pxref 55
Cross-references using @ref 55
Cross-references using @xref 51
Cross-references, in HTML output 214
Cross-references, in Info format 287
.cshrc initialization file....................... 170
CSS, and HTML output 213
CSS_LINES ...t e e 188
--—css-include 177
——css-ref 177
CTRL=1. . . it 10
Custom page sizes ... 173
Customization variables for @-commands. 185
Customization variables for options 185
Customize Emacs package

(Development/Docs/Texinfo)............... 169
Customized highlighting 155
Customizing of TEX for Texinfo............... 171
CVS SId. ..ot 253
D
SD VAT 177
Dash, breakpoint within @code................ 120
Dashes in source..........coviiiiiiiiiiee... 10
DATE_IN_HEADERottt 188
--debug, for install-info.................... 208
debugging document, with tree

representationo 186
Debugging the Texinfo structure 275
Debugging with Info formatting............... 275
Debugging with TEX formatting............... 276
DEBUG. . ..ottt e e e 192
<dedication> Docbook tag.................... 44
DEF _TABLE.ttt 188
Default fontco 71
DEFAULT_RULE0t 188
Defining indexing entries....................... 98

General Index

Defining macros oo 149
Defining new indices.......................... 101
Defining new Texinfo commands.............. 149
Definition command headings, continuing 124
Definition commands 123
Definition conventions 133
Definition lists, typesetting..................... 86
Definition of Info format...................... 282
Definition template 123
Definitions grouped together.................. 125
Degree symbol.......... ... 113
--delete, for install-info 209
Delimiter character, for verbatim............... 65
Depth of text area........... 173
Description for menu, start.................... 260
Description of document 27
--description=text, for install-info....... 209
Detaill menu ... 38
Detailed menu..............ooiiiiiiii, 26
Details of macrousage..............ooovunnn.. 152
detexinfo........... il 187
Didét points 94
Different cross-reference commands............. 49
Dimension formatting......................... 108
Dimensions and image sizes.................... 93
Dir categories, choosing....................... 207
dir directory for Info installation 204
dir file listing o 205
dir file, creating your own.................... 206
dir files and Info directories 205
Dir files, compressed oLl 208
dir, created by install-info................. 208
--dir-file=name, for install-info.......... 209
--disable-encoding.................oiiiaa 178
Display formatting.............. 76
Displayed equation, in plain TEX.............. 141
Displayed equations................ 112
distinct, value for @kbdinputstyle 63
Distorting images............. 93
DO_ABOUT .. .ot e e 188
==doCboOk 178
Docbook and prefatory sections................ 44
Docbook output, overview....................... 5
Docbook, including raw....................... 142
DOCTYPE . . i 192
Document description..............., 27
Document input encoding..................... 137
Document language, declaring................. 136
Document Permissions......................... 18
Document strings, internationalization of...... 197
Document strings, translation of 136
Document structure, of Texinfo 31
Document title, specifying 18
Documentation identification.................. 253
--document-language 178
documentlanguage customization variable..... 197
Dot accent...........ooooiiiiiii i 108

Dotless i, j...oooeiii 109

306
Dots, inserting................oo i 113
Double angle quotation marks................. 110
Double guillemets.................coooiit. 110
Double left-pointing angle quotation mark.. ... 110
Double low-9 quotation mark 110
Double quotation marks 110
Double right-pointing angle quotation mark... 110
Double structure, of Texinfo documents 31
Double-colon menu entries 40
—--dry-run, for install-info................. 209
DTD, for Texinfo XMLcoio.a. 5
Dumas, Patrice................. o 8, 214
DUMP_TEXTI ...oiiit e 192
DUMP_TREE....... .. . 192
B« & RPN 178
DVIfile ..o 165
DVI output, overviewl 4
DVIoutputinoooiiiiiiiL, 163
—=AVIpAE 178
—-dvipdf, for texi2dvi....................... 163
Avipdfmx 163
AVIpS .. 4, 163
o 109
B 109
E
—e 1imit .. e 178
“Efile. ..o 179
ECfonts. ... 110
EC fonts, installingooiit 171
Ellipsis, inserting 113
Em dash, compared to minus sign............. 114
Em dash, producing............... ...l 10
Emacs........ooo i 258
Emacs shell, format, print from 168
Emacs-W3 ... 4
Emphasizing textot 69
Emphasizing text, font for 70
En dash, producing 10
enable 129
ENABLE_ENCODINGcvvuuiiiniinnnennnnn. 185
ENABLE_ENCODING_USE_ENTITY 192
--enable-encoding..............l 178
Encoding, declaring................, 137
‘End’ node footnote style....................... 95
End of header line 18
End titlepage starts headings................... 24
Ending a Sentence.............. 107
Ending a Texinfo file........... 30
Entity reference in HTML et al................ 118
Entries for an index............... 98
Entries, making index.......................... 98
--entry=text, for install-info.............. 209
Enumeration............oo. oo 84
Environment indentation....................... 30
Environment variable INFOPATH............... 206

General Index

Environment variable

TEXINFO_OUTPUT_FORMATo, 183
Environment variable TEXINPUTS 171
eps image format.............l 92
epsf.texX 94
epsf.tex, installing............... 171
Equation, displayed, in plain TEX 141
Equations, displayed 112
Equivalence, indicating 116
Error message, indicating 116
Error messages, line numbersin............... 156
ERROR_LIMIT......ooiiiiiiiiiiiii i 185
——error-limit=I1imit 178
Errors, parsing......... ... o oo 201
Escaping to HTML 212
Es-zet ..o 109
1o = 165
Eth..ooo 109
Eurofont.......... ... o 113
Euro font, installing 171
Euro symbol, and encodings 137
Euro symbol, producing....................... 113
European Ad paper............ 173
FEuropean Computer Modern fonts 110
European Computer Modern fonts, installing.. 171
Evaluation glyphl 115
Example beginning of Texinfo file.............. 15
Example indentation................ ... 30
Example menu...........o oL 39
example, value for @kbdinputstyle............. 63
Examples in smaller fonts................... ... 80
Examples of using texi2any 176
Examples, formatting them 74
Examples, glyphs for............. 114
Expanding macros.............. ... ool 150
Expansion of 8-bit characters in

HTML cross-references 218
Expansion of macros, contexts for............. 152
Expansion, indicating.................. 115
expansion, of node names in HTML

cross-references.........ol 215
Expressions in a program, indicating 62
EXTENSION.ot 192
External macro processors.................... 156
EXTERNAL_CROSSREF_SPLIT.................... 192
EXTERNAL DIR ..o 188
EXTRA_HEAD 188

F

Sfwidth ... 178
SF 178
Family names, in all capitals................... 68
Features of Texinfo, adapting to............... 147
Feminine ordinal L. 109
feymrlO ... 113
feymr10, installing............ 171

File beginningl 15

307
Fileendingcooiiiii .. 30
File name collision 18
File sectioning structure, showing 260
filename recorder for TEX 165
--fill-column=widthc..co..... 178
FILLCOLUMN.t 185
filll TEX dimension........... ..., 23
Final output.......... .o i 172
Finding badly referenced nodes 279
Fine-tuning, and hyphenation................. 120
First line of a Texinfo file...................... 16
Firstnodeo i i 35
First paragraph, suppressing indentation of..... 29
FIX_TEXINFO. ... 0ottt 192
Fixed-width font....... o L 71
Flag conditionals, brace-delimited............. 145
Float environment, 90
Floating accents, inserting 108
Floating, not yet implemented 90
Floats, in general 90
Floats, list of ... i 91
Floats, making unnumbered.................... 90
Floats, numbering of 91
Flooding......... ... oo i i i 55
fn (function) index 97
Font for multitable heading rows............... 88
Font size, reducing o . 70
Fonts for indices ...t 101
Fonts for printing 70
Footings........ o i 270
Footnote styles, in HTML..................... 212
FOOTNOTE_END_HEADER_LEVEL.................. 188
FOOTNOTE_SEPARATE_HEADER_LEVEL............ 189
Footnotes............co i 94
footnotestyleLL 185
--footnote-style=style..................... 178
——force 178
Force line break.............. oo 119
FORCE. ... e e 185
Forcing indentation 79
Forcing line and page breaks.................. 119
Form feed characters........................... 10
Format a dimension........................... 108
Format and print hardcopy 163
Format and print in Texinfo mode 168
Format with the compile command............ 170
Format, print from Emacs shell 168
Formats for images....................oooiia.. 92
Formatting a file for Info...................... 201
Formatting commands 10
Formatting examples.............. 74
Formatting for Info........... 265
Formatting for printing 266
Formatting headings and footings............. 270
Formatting partial documents................. 166
Formatting requirements...................... 170
Formatting with tex and texindex............ 165
Formulas, mathematical....................... 111

General Index

Four- and five argument forms of

cross-references........... ... i 53
Fox, Brian........... 7
FRAMES . .. 189
FRAMESET _DOCTYPE.ciiiiiiinnon.. 189
Free Documentation License,

including entire............. ... o L 254
Free software........... .o i i 2
Free Software Directory....................... 207
French quotation marks.................... ... 110
French spacing................. .ol 107
Frequently used commands, inserting.......... 259
Frontmatter, text in oo L. 15
Full texts, GNUo 253
Function definitions........................... 133
Functions, in typed languages................. 128
Future of Texinfo implementations............ 176

G

General syntactic conventions.................. 10
Generating HTML.............. 211
Generating menus with indices................. 99
Generating page headings...................... 24
Generating plain text files with

—-no-headers 179
Generating plain text files with -—-plaintext .. 181
German quotation marks 110
German S 109
Global Document Commands 27
Globbing oo 165
Glyphs for programming...................... 114
Glyphs for text L 112
GNUEmMAaCS ...ooiiiiiiii e 258
GNU Emacs shell, format, print from 168
GNU Free Documentation License,

including entire............ L 254
GNU sample textscoviiiininn... 253
Going to other Info files’ nodes................. 41
Grave acCent...........ooiuiiiiiiiiiiiia.. 108
grave accent, standalone 105
Grave accent, vs. left quote 109
Group (hold text together vertically).......... 121
Grouping two definitions together............. 125
GUI click sequence.c.ovviueeeennnnn.. 117
Guillemets...........ooo i 110
Guillemots.oovi 110

308
H
AP 179
Hacek accento o il 108
Hardcopy, printing it................. 163
Hash sign, inserting........................... 104
‘hbox’, overfull oo i 172
<head> HTML tag, and <link> 191
Header for Texinfo files 16
Header of a Texinfo file 16
HEADER_IN_TABLE.......oiiiiiiiinn... 189
HEADERS 195
Heading row, in table.......................... 88
Headings ... 270
Headings, indentation after..................... 29
Headings, page, begin to appear................ 24
Height of images............ ...t 93
Height of text area............. ..., 173
—-help, for texi2any 179
—-help, for texindex 209
help2manl 7
Hierarchical documents, and menus 38
Highlighting text............. ... i it 61
Highlighting, customized...................... 155
Hints. ... 247
History of Texinfo............ 7
Holder of copyright for FSF works.............. 19
Holding text together vertically 121
href, producing HTML 57
—=html o 179
html32.pm.........oo 211
HTML cross-reference 8-bit
character expansion 218
HTML cross-reference command expansion. ... 216
HTML cross-reference configuration........... 219
HTML cross-reference link basics.............. 214
HTML cross-reference link preservation 220
HTML cross-reference mismatch 218
HTML cross-reference node name expansion. .. 215
HTML cross-references. 214
HTML output, and encodings................. 137
HTML output, browser compatibility of....... 211
HTML output, overviewcooun.. 4
HTML output, splitooooiiiia... 212
HTML translationoouo... 211
HTML, and CSS........coiiiiii 213
HTML, including raw......................... 141
htmlxref.cnf i 219
http-equiv, and charset specification......... 137
Hungarian umlaut accent 108
Hurricanes...........co i 55
Hyphen, breakpoint within @code 120
Hyphen, compared to minus 114
Hyphenation patterns, language-dependent 136
Hyphenation, helping TEX do................. 120
Hyphenation, preventing 121

Hyphens in source, two or three in a row 10

General Index

I

1(dotless 1) .o 109
ST path. .. 179
118n, of document strings 197
Tcelandic. ... 109
TCONS . .ottt 189
Identification of documentation 253
If text conditionally visible.................... 139
——ifdocbook....... ..o i 179
—=ifhtml 179
——ifinfo..... ... 179
—-ifplaintext ool 179
——iftex 179
—=ifxmlooLL 179
IGNORE_BEFORE_SETFILENAME.................. 192
IGNORE_SPACE_AFTER_BRACED_COMMAND_NAME... 193
Ignored before @setfilename................... 17
Ignored text ... 11
Image formatsl 92
IMAGE_LINK_PREFIX............oiiiiiiinn... 189
Images, alternate text for 93
Images, in Info format 286
Images, inserting............. L. 92
Images, scaling.coiiiiiiiiia.. 93
Implementation, texi2any as reference........ 176
Implicit pointer creation with makeinfo........ 37
‘@import’ specifications, in CSS files........... 213
<important> Docbook tag 73
Incheso 94
@include file sample............. 160
Include file sample............ 160
Include files. ... 159
Include files requirements 160
Include files, and section levels................. 47
Including a file verbatim 161
Including permissions text 20
Indentation undoing oL 77
Indentation, forcing........... L 79
Indentation, omitting 78
Indented text block o 74
Indenting environments 30
Indenting paragraphs, control of................ 29
Indenting, suppressing of first paragraph 29
Index entries.......... ..o i 98
Index entries, advice on writing 98
Index entries, making oo 98
Index file names oo 165
Index font types ... 98
index SOrting..........coouiiiuiinnininonine.n. 98
INDEX_ENTRY_COLON...... ..ot 193
INDEX_SPECIAL_CHARS_WARNING............... 193
Indexing table entries automatically............ 87
Indicating commands, definitions, etc........... 61
Indicating evaluation.......................... 115
Indices. ..o 97
Indices, combining them 100
Indices, defining new............... 101
Indices, in Info format 286

309
Indices, printing and menus.................... 99
Indices, sorting i i 163
Indices, two letter names...................... 101
Indirect subfiles........... ... it 203
Indirect table, in Info format.................. 283
—mANFO L 179
Info batch formatting......................... 203
Info file installation............ 204
Info file name, choosing 18
Info file, listing anew............ 205
Info file, splitting manually.................... 281
Infofiles.......cooiiiii 5
Info format specification 282
Info format text constructs.................... 285
Info format, and menus 40
Info formattingo i 265
Info installed in another directory............. 205
Info nodes, in Info format..................... 285
Info output, and encoding..................... 137
Info output, overview il 4
Info validating a large file..................... 280
Info, creating an online file.................... 201
Info; other files’ nodes.............. ... 41
INFO_SPECIAL_CHARS_QUOTE................... 193
INFO_SPECIAL_CHARS_WARNING 193
--info-dir=dir, for install-info............ 209
--info-file=file, for install-info......... 209
INFOPATH . ..ot et 206
——init-file=file.......... i, 179
Initialization file for TEX input................ 170
Inline conditionals, 142
INLINE_CONTENTSottt 189
INLINE_CSS_STYLE....... ..., 189
Input encoding, declaring 137
‘\input’ source line ignored 17
INPUT_ENCODING_NAME, 193
INPUT_PERL_ENCODINGcovuienennennnn. 193
Insert nodes, menus automatically 261
Inserting @ (literal ‘@)........................ 103
Inserting # 104
Inserting accents................. ..ol 108
Inserting dots. ..., 113
Inserting ellipsis ... 113
Inserting frequently used commands........... 259
Inserting indentation................. 79
Inserting quotation marks..................... 109
Inserting quote characters..................... 105
Inserting space.......... il 105
Inserting special characters and symbols....... 103
INSTALL file, generating 181
install-info il 208
Installing an Info file........... 204
Installing Info in another directory............ 205
Internal links, of HTML 179
INTERNAL_LINKS ... ot 185
—-internal-links=file...................... 179
Internationalization................... 136

Internationalization of document strings....... 197

General Index

Introduction to Texinfo 3
Invalid characters in node names............... 34
Invoking macros ool 150
Invoking nodes, including in dir file 208
Invoking pod2texi...........l 198
ISO 3166 country codes....................... 136
ISO 639-2 language codes..................... 136
ISO 8859-1 . i 110
TSO 8859-15 . oo 110
ISO 8859-15, and Euro........................ 113
Ttalic font ... 71
--item=text, for install-info............... 209
Itemization L 83

J

J(dotless j) ..o 109
jpeg image format............................ 92

K

KEEP_TOP_EXTERNAL_REF 189
--keep-o0ld, for install-info................ 209
Keyboard input.........l 63
Keys, recommended names..................... 64
Keyword expansion, preventing 121
Keywords, indicating.............. 62
Knuth, Donald................ ...t 6
ky (keystroke) index 97

b 109
Lo 109
L2H et 189
L2H_CLEAN s 189
L2H FILE ...ttt i 189
L2H_HTML_VERSION...........coiiiiiinn... 189
L2H _L2H .. oo e 189
L2H_SKIP ...t e 189
L2H_TMP ..o e 190
lang, HTML attribute........................ 188
Language codes............... 136
Language, declaring........................... 136
--language, for texi2dvi.............. 164
Larger or smaller pages 174
TATEX 10G0 .« oo e et 112
IATEX, processing with texi2dvi.............. 164
Latin 1..... . 110
Latin 9 ..o 110
Latin 9, and Euro............. 113
Left quotation marks 110
Left-pointing angle quotation marks........... 110
Legal paper, printingon 173
Length of file nameso. .. 18
Less cluttered menu entry...................... 40
libintl-perl Gettext implementation........ 197
Libre software.c i i 2

310
License for all-permissive copying 256
License for verbatim copying.................. 256
Limited scope of Texinfo........................ 3
Line breaking, and urls......................... 58
Line breaks, awkward......................... 119
Line breaks, controlling 119
Line breaks, preventing 120
Line length, column widths as fraction of....... 88
Line numbers, in error messages............... 156
Line spacing ..., 121
<lineannotation> Docbook tag................ 71
<link> HTML tag, in <head>................. 191
Links, coloring in PDF output 59
Links, preserving to renamed nodes 220
Lispexample ... 76
Lisp examples in smaller fonts.................. 80
List of @-commands 223
List of floats ... 91
Listing a new Info file......................... 205
Lists and tables, making 82
Literate programming..................... 6
Literate programming, with Texinfo and awk .. 167
Local variable section, in Info format.......... 284
Local variables................ oot 170
Local Variables section, for encoding.......... 137
Locale, declaring...................o.ooL 136
Location of menus 40
Logos, TEX oo 112
Longest nodes, finding 195
Looking for badly referenced nodes............ 279
Lowering and raising sections 47
1pr (DVI print command) 167
1lpr-d, replacements on
MS-DOS/MS-Windows 167
LynX o 4
Lzip-compressed dir files, reading 208
LZMA-compressed dir files, reading 208
M
Macro definitions, programming-language 133
Macro definitions, Texinfo..................... 149
Macrodetails...............oo il 152
Macro expansion, contexts for................. 152
Macro expansion, indicating................... 115
Macro invocation o oo 150
Macro names, valid charactersin.............. 149
Macro processors, external 156
MACRO_EXPANDot 186
--macro-expand=file........................ 179
Macron accent oL 108
Macros ..o 149
Macros, undefining. oL 150
Magnified printing.......... L 174
Mailto link. ... 69
makeinfo....... il 177
makeinfo inside Emacs............... 201

makeinfo options ...l 177

General Index

Making a printed manual 163
Making a tag table automatically 203
Making a tag table manually.................. 281
Making cross-references 49
Making line and page breaks.................. 119
Making lists and tables 82
Man page output, not supported 7
Man page, reference to...............oii.L. 57
Manual characteristics, printed.................. 6
Manual, referring to as a whole................. 54
manual-noderename.cnf 220
Margins on page, not controllable............. 173
Marking text within a paragraph............... 61
Marking words and phrases 61
Masculine ordinal ool 109
Master menu..........oooeeiiiiiiiiiiiiiie... 26
Math italic font............ ... oo 111
Mathematical expressions, inserting 111
MathML, not used............coovviiiea.... 111
MAX_HEADER_LEVEL.........o i, 190
MAX_MACRO_CALL_NESTING..........cooveunn... 193
--max-width=column, for install-info....... 209
Menu description, start 260
Menu entries with two colons................... 40
Menu example 39
Menu location ... 40
Menu parts ... 40
Omenu PartS. ... 40
Menu writing ...t 38
Menu, master........c.oouiiiiiiiiiiiiiie... 26
MENU_ENTRY_COLON........ooniiiiiiinennn 193
MENU_SYMBOL.ottt et 190
--menuentry=text, for install-info......... 209
Menus . ..o v 38
Menus generated with indices.................. 99
Menus, automatically generating 39
Menus, in Info format......................... 285
Menus, omitting with --no-headers 179
Menus, omitting with --plaintext............ 181
Meta keys, specifying 64

<meta> HTML tag, and charset specification .. 137
<meta> HTML tag, and document description .. 27

META Key. ..o 64
Meta-syntactic chars for arguments 125
Methods, object-oriented...................... 132
Millimetersovvnn e 94
Mils, argument to @need 122
Minimal requirements for formatting.......... 170
Minimal Texinfo file (requirements) 12
Minus Sign. ... 114
Mismatched HTML cross-reference

source and target............. il 218
Mistakes, catching 275
Mode, using Texinfo.............. 258
monolithic manuals, for HTML

cross-references......... o ol 220
MONOLITHIC. ...ttt 190

Monospace font...........oo i 71

311

Mozilla 4
Multiple dashes in source 10
Multiple spaces.........coiiiiiiiiii 105
Multitable column widths................... ... 88
Multitable rows...... ... 88
Must have in Texinfo file....................... 12
N
--name=text, for install-info............... 209
Names for indices............coooiiiiiii... 101
Names of index files........................... 165
Names of macros, valid characters of 149
Names recommended for keys 64
NASA, as aCronym.oovenenninnennennnn.. 68
Navigation bar, in HTML output 211
Navigation footer........... 191
Navigation links, omitting..................... 180
Navigation panel, bottom of page 191
Need space at page bottom 122
Nested footnotes..................ooiiiiiii, 95
Nesting conditionals 148
New index defining 101
New Info file, listing it in dir file.............. 205
New Texinfo commands, defining.............. 149
Newlines, avoiding in conditionals............. 142
NEWS file for Texinfo 147
Next node of Topnode..............cooviinin. 35
NO_CSS .ot e 190
NO_USE_SETFILENAME....... oo o... 193
NO_WARN ..ot 186
Node line requirements......................... 33
Node line writing 32
@node line writing............. L. 32
node name expansion, in HTML

cross-references..................iiiiil 215
Node names must be unique 33
Node names, choosing.......................... 32
Node names, invalid charactersin.............. 34
Node renaming, and preserving links.......... 220
Node separators, omitting with

--no-headers i, 179
Node separators, omitting with --plaintext .. 181
Node, “Top’ . ..ot 25
Node, defined ..., 31
NODE_FILE_EXTENSIONcovuiininnen... 190
NODE_FILENAMESo 193
NODE_FILES.....couuiiiiiiiiiiiiiennen 186
NODE_NAME_IN_INDEX..........coiiiiniinnnnn.. 194
NODE_NAME_IN_MENU............iiiiinienn... 194
--node-filesl 180
--node-files, and HTML cross-references 220
noderename.cnf ool 220
Nodes in other Info files........................ 41
Nodes, catching mistakes...................... 275
Nodes, checking for badly referenced 279
Nodes, deleting or renaming.................... 56
--no-headers.................... 179, 195

General Index

--no-ifdocbook o ol 180
——no-ifhtml........ il 180
--no-ifinfo........ ool 180
--no-ifplaintext.............. 180
——no-iftex....... ... il 180
——mo-ifxml. ...l 180
--no-indent, for install-info............... 210
Non-breakable space, fixed 120
Non-breakable space, variable................. 121
none, value for Qurefbreakstyle............... 59
--no-node-files.................. . ..l 180
Nonsplit manuals, Info format of 282
--no-number-footnotes 180
--no-number-sections 180
--no-pointer-validate...................... 180
Normalization Form C, Unicode............... 218
——no-split.......... 182
Not ending a sentence......................... 106
<note> Docbook tag 73
--no-validate.............. 180, 186
STIOTWATIL . o vttt 181
Number sign, inserting........................ 104
NUMBER_FOOTNOTESt 186
NUMBER_SECTIONSitiiiiiiiiiiiinnen 186
Numbering of floats............ 91
--number-sections................... 180

—0 File. . it 181
P 109
O’Dea, Brendan................oooiiiiiiin... 7
O e 109
Object-oriented programming................. 130
Oblique font ... 71
Obtaining TEXt 175
Occurrences, listing with @occur 279
Octotherp, inserting 104
0 109
B 109
Ogonek diacritic...........o 108
Old nodes, preserving links to................. 220
Omitting indentation 78
One-argument form of cross-references.......... 51
OPEN_QUOTE_SYMBOL.........coiuiiiniiinnennn. 194
“\openout’ line in log file...................... 165
Optional and repeated arguments............. 125
Options for makeinfo...................o.o.n. 177
Options for texi2any 177
Options of texi2html............c.ooviuue.... 199
Options, customization variables for........... 185
Ordinals, Romance 109
Ordinary TEX commands, using............... 141
Orphans, preventingcooo.... 122
Other Info files’ nodes.......................... 41
OUTFILE ...ttt e e e 186

Outline of file structure, showing.............. 260

312
Output document strings,
internationalization of 197
Output file name, required 17
Output file splitting. 182
Output formats......... ... 4
Output formats, supporting more 6
Output, in PDF ... 174
Output, printed through texi2any............ 183
——output=file............................... 181
OUTPUT_ENCODING_NAME 194
—-outputindentl 181
Outputting HTML............ ...t 211
0] P 186
Overfull ‘hboxes’ ..., 172
Overview of Texinfo............ 3
OVERVIEW_LINK_TO_TOCc.covvvnveenn... 194
Owner of copyright for FSF works.............. 19
P
-pindent ...l 181
“P Path. 181
PACKAGEo e 194
PACKAGE_AND_VERSIONccoviinnienn... 194
PACKAGE_NAME 194
PACKAGE_URL.ot 194
PACKAGE_VERSIONoiiiiiiii... 194
Page breaks, awkward 119
Page breaks, forcingL. 121
Page delimiter in Texinfo mode 261
Page headings o il 270
Page numberingol 270
Page sizes for books.............ol 172
Page sizes, customized 173
page-delimiter................. 261
Pages, starting odd ool 27
Paper size, Ad. i, 173
Paragraph indentation control.................. 29
Paragraph, marking text within................ 61
paragraphindent.................. 186
--paragraph-indent=indent.................. 181
Parameters to macros........................ 149
Parentheses in node name...................... 34
Parsing errors......... ... oo 201
Part of file formatting and printing............ 266
Part pages. ... 46
Partial documents, formatting 166
Parts of a cross-reference....................... 50
Parts of a master menu........................ 26
Partsof amenu................ o 40
Patches, contributing............. 4
PCL file, for printing 167
—opdf 181
pdf image inclusions................... 92
—-pdf, for texi2dvi............... ...l 163
PDF outputooo oot 174
PDF output of urls ...l 59
PDF output, overview. ... 5

General Index

pdfetex 165
pdftex 174
pdftex, and images 92
pdftexi2dvi........... ool 163
Period in node name........................... 34
Periods, inserting ... 106
Perl extension modules (XS).................. 183
Perl format strings for translation............. 197
Perl POD, converting to Texinfo.............. 198
Permissions text, including..................... 20
Permissions, printedo L 23
pg (program) indexc.oveiiiiniiin... 97
Picas ... 93
Pictures, insertingo 92
Pinard, Frangois 7
Plain TEX .o 141
Plain text output with --plaintext........... 181
Plain text output, overview 4
—-plaintext.............l 181
png image format..........o ool 92
pod2texi ... 198
POD, converting to Texinfo................... 198
Point, indicating in a buffer................... 116
Pointer creation with makeinfo................. 37
Pointer validation with makeinfo.............. 184
Pointer validation, suppressing................ 166
Pointer validation, suppressing

from command line......................... 180
Points (dimension)..............coiiiiiia.. 93
PostScript output, overview 4
Pounds symbol oo 113
PRE_ABOUT . ..ottt e 190
PRE_BODY_CLOSEttt 190
Preamble, in Info format...................... 283
Predefined names for indices.................. 101
Preface, etc., and Docbook..................... 44
<preface> Docbook tag........................ 44
PREFIX ... 194
Preparing for TEX ..., 170
Preserving HTML links to old nodes 220
Prev node of Topnode......................... 35
Preventing first paragraph indentation 29
Preventing line and page breaks............... 119
Print and format in Texinfo mode............. 168
Print, format from Emacs shell................ 168
Printed book and manual characteristics......... 6
Printed output, indicating 115
Printed output, through texi2any 183
Printed permissions.................. ..l 23
Printing a region or buffer 266
Printing anindex................ ... oo 99
Printing cost, reducing 70
Printing cropmarks ool 174
Printing DVT files, on

MS-DOS/MS-Windowso.oenen.. 167
Printing hardcopy 163
Problems, catching................. 275

.profile initialization file 170

313
Program names, indicating..................... 67
PROGRAM_NAME_IN_FOOTER............. ..., 190
Programming, glyphs for................... ... 114
PROGRAMo 194
Pronunciation of Texinfo........................ 3
Prototype row, column widths defined by....... 88
DS 182
—-ps, for texi2dvi............ ...t 163
Q
--quiet, for install-info.................... 210
Quotation characters (‘’), in source............ 109
Quotation marks, French...................... 110
Quotation marks, German 110
Quotation marks, inserting.................... 109
QuUotations.o 73
Quotations in smaller fonts..................... 80
Quote characters, inserting.................... 105
Quoting, automatic for some macros.......... 150
R
Ragged left, without filling..................... 7
Ragged right, with filling....................... 78
Ragged right, without filling 7
Raising and lowering sections 47
Raw formatter commands..................... 141
Raw HTML ... 212
raw text output.......... ... oo 186
RCS SId ..o 253
Recommended names for keys.................. 64
Rectangle, black in hardcopy.................. 172
Recursive macro invocations 150
Reducing font sizeo 70
Reference implementation..................... 176
Reference to @-commands 223
References ..., 49
References using @inforef 57
References using @pxref........................ 55
References using @ref 55
References using @xref................covinin. 51
Referring to an entire manual 54
Referring to other Info files..................... 41
--regex=regex, for install-info............. 210
Region formatting and printing 266
Region printing in Texinfo mode 168
Registered symbol L 112
Regular expression, for ‘#line’................ 157
Reid, Brian oo i 7
--remove, for install-info 210
--remove-exactly, for install-info......... 210
RENAMED_NODES_FILE..................... 195, 221
RENAMED_NODES_REDIRECTIONS 195
Renaming nodes, and preserving links......... 220
Repeated and optional arguments............. 125
Reporting bugs ... 3
Required in Texinfo file........................ 12

General Index

Requirements for formatting 170
Requirements for include files................. 160
Requirements for updating commands......... 263
Reserved words, indicating..................... 62
Restrictions on node names 33
Result of an expression 115
Return type, own line for 129
RGB color specification. 59
ridt.eps........ ... 94
Right quotation marks........................ 110
Right-pointing angle quotation marks......... 110
Ring accent........... oL 108
Robbins, Arnold oL 167
Roman font. ... 71
Romance ordinals......................... .. 109
Rounded rectangles, around text 79
Rows, of a multitable 88
Running an Info formatter.................... 265
Running macros ...l 150
Running makeinfo in Emacs.................. 201

S

—8 SEYLe 178
Sample function definition 133
Sample @include file............ 160
Sample Texinfo file, no comments............. 252
Sample Texinfo file, with comments 12
Sample Texinfo files........................... 252
Sample texts, GNUt 253
Sans serif font 71
Scaled points ... 94
Scaling imagesooviii i 93
Schwab, Andreas...................iiii.. 7
SCribe 7
S SUIZES . ot vt 55
--section regex sec, for install-info....... 210
--section=sec, for install-info............. 210
Sectioning i 42
Sectioning structure of a file, showing 260
Sections, raising and lowering 47
Semantic markupo 3
Sentence ending punctuation.................. 107
Sentence non-ending punctuation 106
Sentences, spacing after....................... 107
‘Separate’ footnote style........................ 95
Sequence of clicks.............ooiiiiiiia. 117
--set-customization-variable var=value... 182
S-expressions, output format.................. 187
SGML-tools output format...................... 6
Sharp sign (not), inserting 104
Sharp S...ooi 109
Shell formatting with tex and texindex....... 165
Shell printing, on MS-DOS/MS-Windows 167
Shell, format, print from...................... 168
Shell, running makeinfoin.................... 201
Short captions, for lists of floats................ 91
Short table of contents......................... 24

314
SHORTEXTN . .ottt e e e e 190
SHOW_MENUco e 195
SHOW_TITLE.o 190
Showing the sectioning structure of a file...... 260
Showing the structure of a file 278
Shrubberyo i 145
--silent, for install-info 210
SILENT ... 186
SIMPLE_MENU.ttt 190
Single angle quotation marks.................. 110
Single guillemets. ... 110
Single left-pointing angle quotation mark...... 110
Single low-9 quotation mark 110
Single quotation marks........... 110
Single right-pointing angle quotation mark 110
Site-wide Texinfo configuration file............ 171
Size of printed bookl 172
Slanted font o i i 71
Slanted typewriter font, for @kbd 63
Small book size. ...t 172
Small caps fonto 70
Small examples 80
Small verbatim 76
<small> tag ..ot 70
Smaller fonts....... ... i 70
sort keys for index entries...................... 98
Sort string, incorrect ‘|’......l 167
SORT_ELEMENT_COUNT........c.ouiiniunennnn... 195
SORT_ELEMENT_COUNT_WORDS................... 195
Sorting indices. ... 163
Sorting nodes by size 195
Source file formatol 3
Source files, characters used.................... 10
Space, after sentences......................... 107
Space, inserting horizontal 105
Space, inserting vertical....................... 121
Spaces I Macrosovvvuuieineenneennn.n. 149
Spaces in node name.............ooiueeeeann.. 34
Spaces, IN MeNUS.o.vvieteie .. 38
Spacing, at ends of sentences.................. 107
Spacing, in the middle of sentences............ 106
Spacing, inserting......... 105
Special characters, inserting................... 103
Special displays...........coooiiiiiiiiii L, 90
Special insertions 103
Specification of Info format 282
Specifying index entries........................ 98
spell checking............ 187
Spelling of Texinfo........... 3
Split HTML output............... 212
split manuals, for HTML cross-references. 220
Split manuals, Info format of............... ... 282
—=SPlit=hoW.......cciiiiiiiii 182
—-split-size=num............................ 182
Splitting an Info file manually................. 281
Splitting of output files 182
SPL I . et 186

General Index

B 109
Stallman, Richard M. 7
Start of header line 17
Starting chaptersol 27
stripping Texinfo commands 187
Structure of a file, showing.................... 260
Structure, catching mistakes in................ 275
Structure, of Texinfo documents................ 31
Structuring of chapters............... 42
SUBDIR ..ottt e 186
Subscripts and superscripts, text.............. 111
Subsection-like commands...................... 45
Subsub sectioning commands................... 46
Suggestions for Texinfo, making................. 3
Summary of document 27
Suppressing first paragraph indentation 29
Suppressing indentation........................ 78
SVG images, used in Docbook.................. 92
SXML output «...ovvvvii i 187
Syntactic conventions, 10
Syntactic tokens, indicating 62
Syntax details, ‘#1line’........................ 157
Syntax tree representation of documents 176
Syntax, of @-commands....................... 222
Syntax, optional & repeated arguments 125
SystemLiteral 192

T

Table of contents.oooiiiiiiii... 24
Table of contents, after title page 246
Table of contents, for floats 91
Tables and lists, making 82
Tables with indexing........................... 87
Tables, making multi-column................... 87
Tables, making two-column 85
Tabs; don’t use!........ .. i 11
Tag table, in Info format................... ... 284
Tag table, making automatically 203
Tag table, making manually................... 281
Targets for cross-references, arbitrary........... 56
Template for a definition................... ... 123
--test, for install-info..................... 210
Testing for Texinfo commands 147
Tests, of Texinfo language..................... 176
TEST . o e 195
TEX and ‘#line’ directives.................... 157
TEX commands, using ordinary 141
TEX index sorting. ..., 163
TEX input initialization................ 170
TEX logo ... 112
TEX, how to obtain..................... ..., 175
texi2any......... ...l 177
texil2any options..............ol 177
texi2any, as reference implementation........ 176
texi2dvi (shell script)........................ 163
texi2html...... 198

texi2oldapi.texi, for texi2any.............. 199

315
TEXI2DVI ..ttt e e e e 195
TEXI2HTMLo e 195
texi-elements-by-size...................... 195
texindex i 165
Texinfo commands, defining new.............. 149
Texinfo commands, testing for 147
Texinfo document structure.................... 31
Texinfo file beginning 15
Texinfo fileending L. 30
Texinfo file header 16
Texinfo file minimum, 12
Texinfo file sectioning structure, showing 260
Texinfo history......... L 7
Texinfo language tests 176
Texinfo mode......... ..o 258
Texinfo overview 3
Texinfo parsers, discouraging more.............. 7
Texinfo printed book characteristics............. 6
Texinfo requires @setfilename................. 17
Texinfo XML output, overview 5
Texinfo, and literate programming 167
Texinfo, introduction to................. 3
texinfo.cnf installation...................... 171
texinfo.dtd...... 5
texinfo.tex, installing 171
texinfo_document Gettext domain............ 197
TEXINFO_DTD_VERSIONcoioiinien... 195
TEXINFO_OUTPUT_FORMAT 183, 186
TEXINFO_XS. ..ot 183
texinfo-bright-colors.css.................. 213
TEXINPUTS ..o 171
texiwebjr... ... 167
text constructs, Info format................... 285
Text width and height 173
Text, conditionally visible..................... 139
Text, marking up ..ot 61
Text::Unidecodecooiiiiiio... 197
TEXTCONTENT_COMMENTt 195
Textual glyphs............o il 112
D 109
Do 109
<thead> HTML/XML tag.........c.ccovvunen... 88
Thin space between number, dimension 108
Thorn ..o 109
Three-argument form of cross-references. 52
Tl EWIT . 167
Tie-after accent....... ... 108
Tied space. ... 121
Tilde accent ... 108
time-stamp.ell 254
<tip> Docbook tag il 73
DS ettt 247
Title page ... 20
Title page, bastard................ .o 21
<title> Docbook tag............ 44
<title> HTML tag.......ccoviinn, 18
Titlepage end starts headings 24
TOC_LINKS ...t e 190

General Index

Topnode.......oooii i 25
Top node example ... 25
Top node is firstt 35
TOP_FILE ... @i 190
TOP_NODE_FILE0ttt 191
TOP_NODE_FILE_TARGET 191
TOP_NODE_UP.c ittt et 195
TOP_NODE_UP_URLc.iiiriiiinnnn .. 191
tp (data type) index..........l 97
Translating strings in output documents....... 197
TRANSLITERATE_FILE_NAMES................... 186
--transliterate-file-names 182
Transliteration of 8-bit characters in

HTML cross-references 218
Tree representation of documents 176
tree representation, for debugging............. 186
Tree structuring ... 42
TREE_TRANSFORMATIONS ..., 195
Two ‘First’ Lines for @deffn.................. 125
Two letter names for indices 101
Two named items for @table................... 87
Two part menuentry 40
Two-argument form of cross-references 51
txi-cc.teX .. i 136
txicodequotebacktick, obsolete variable...... 105
txicodequoteundirected, obsolete variable ... 105
txicommandconditionals..................... 147
txiindexatsignignore 98
txiindexbackslashignore..................... 98
txiindexhyphenignore 98
txiindexlessthanignore...................... 98
txixml2texi........ o i 5
Typed functionso 128
Typed variables............. ..o i 129
Typewriter font............ i, 71
U
Ugly black rectangles in hardcopy............. 172
Umlaut accento, 108
Unbreakable space, fixed 120
Unbreakable space, variable................... 121
Uncluttered menu entry........................ 40
Undefining macros...............coooeiieo... 150
Underbar accent ..., 108
Underdot accent ..., 108
Underscore, breakpoint within @code.......... 120
undirected single quote 105
Unicode and TEXo i 118
Unicode character, inserting................... 118
Unicode quotation characters 109
Uniform resource locator, indicating............ 69
Uniform resource locator, referring to 57
Unique index entriescooviiiieann.. 99
Unique node names requirement. 33
Unnumbered float, creating 90
Unprocessed text ..o, 11
Unsplit file creation............... ... 280

316
Upnode of Topnode ...t 35
UPDATED Automake variable................... 254
Updating nodes and menus 261
Updating requirements. 263
URI syntax for Info.......... 6
Qurl, examples of using.............. 58
URL, examples of displaying 58
URL, indicating............ ... oo i, 69
URL, referring to ...t 57
<URL...> convention, not used 58
URLs, coloring in PDF output 59
URLs, PDF output of................... 59
Usage tips......oovviiiiiii i 247
us-ascii encoding, and translations.......... 197
USE_ACCESSKEY 191
LS o 1 191
USE_LINKSttt 191
USE_NODE_TARGET, 196
USE_NODESot i 196
USE_NUMERIC_ENTITY........cooiiuiininnennnn.. 197
USE_REL_REV. 191
USE_SETFILENAME_EXTENSION.................. 197
USE_TITLEPAGE_FOR_TITLE.................... 197
USE_UNIDECODEottt 197
USE_UP_NODE_FOR_ELEMENT_UP 197
User inputvvuunn e 63
User options, marking 127
User-defined Texinfo commands............... 149
Using Info-validate......................... 280
Using Texinfo in general......................... 3
UTF-8. . 110
UTF-8, output from QU 118
\V
SV 182
Validating a large file......................... 280
Validation of pointers......................... 184
Value of an expression, indicating............. 115
Variables, in typed languages 129
Variables, object-oriented 130
Verbatim copying license...................... 256
Verbatim environment 75
Verbatim in-line text............ o ... 65
Verbatim, include file......................... 161
Verbatim, small................................ 76
—=VerboSe 182
VERBOSEot e 186
Version control keywords,
preventing expansion of..................... 121
Version number, for install-info................ 210
--version, for install-info................. 210
—--version, for texi2any...................... 182
VERSION Automake variable................... 254
Versions of Texinfo, adapting to............... 147
VERTICAL_HEAD_NAVIGATION................... 191
Vertically holding text together 121
Visibility of conditional text 139

General Index

Visualizing Texinfo CSS....................... 213
vr (variable) index.............l 97

\%\%

@w, for blank items............ 83
W3 consortiumcoooiiiiii i 4
<warning> Docbook tag........................ 73
Weinberg, Zacko i 7
Weisshaus, Melissa...............coooiiiiiii.. 7
White space in node name 34
Whitespace in macros.ooovunnnn.. 149
Whitespace, collapsed around continuations ... 124
Whitespace, controlling in conditionals........ 142
Whitespace, inserting......................... 105
Whole manual, in Info format................. 282
Width of images i 93
Width of text area............... ... 173
Widths, defining multitable column 88
Wildcards ...ooovvvii 165
word counting o oo 187
Words and phrases, marking them.............. 61
WORDS_IN_PAGEo 191

Writingamenu........... 38

317
Writing an @node line.......................... 32
Writing index entries............ 98
X
KAV .« ottt e 4
S=XIML L 183
XML Docbook output, overview................. 5
XML Texinfo output, overview 5
XML, including raw 141
—=Xopt Str........ ...l 182
XPM image format............ 93
XREF_USE_FLOAT_LABELoou... 191
XREF_USE_NODE_NAME_ARG..................... 191
XZ-compressed dir files, reading............... 208
Y
Years, in copyright line............... 19
Z
Zaretskii, Eli....... ... i 7
Zuhn, David D...........oo oo 7

	Texinfo Copying Conditions
	Overview of Texinfo
	Reporting Bugs
	Output Formats
	Info Files
	Printed Books
	Adding Output Formats
	History

	Writing a Texinfo File
	General Syntactic Conventions
	Comments
	What a Texinfo File Must Have
	A Short Sample Texinfo File

	Beginning and Ending a Texinfo File
	Sample Texinfo File Beginning
	Texinfo File Header
	The First Line of a Texinfo File
	Start of Header
	@setfilename: Set the Output File Name
	@settitle: Set the Document Title
	End of Header

	Document Permissions
	@copying: Declare Copying Permissions
	@insertcopying: Include Permissions Text

	Title and Copyright Pages
	@titlepage
	@titlefont, @center, and @sp
	@title, @subtitle, and @author
	Copyright Page
	Heading Generation

	Generating a Table of Contents
	The `Top' Node and Master Menu
	Top Node Example
	Parts of a Master Menu

	Global Document Commands
	@documentdescription: Summary Text
	@setchapternewpage: Blank Pages Before Chapters
	The @headings Command
	@paragraphindent: Controlling Paragraph Indentation
	@firstparagraphindent: Indenting After Headings
	@exampleindent: Environment Indenting

	Ending a Texinfo File

	Nodes
	Texinfo Document Structure
	Choosing Node Names
	Writing an @node Line
	@node Line Requirements
	The First Node
	The @top Sectioning Command
	Node and Menu Illustration
	makeinfo Pointer Creation
	Menus
	Writing a Menu
	A Menu Example
	Menu Location
	The Parts of a Menu
	Less Cluttered Menu Entry
	Referring to Other Info Files

	Chapter Structuring
	Tree Structure of Sections
	Structuring Command Types
	@chapter: Chapter Structuring
	@unnumbered, @appendix: Chapters with Other Labeling
	@majorheading, @chapheading: Chapter-level Headings
	@section: Sections Below Chapters
	@unnumberedsec, @appendixsec, @heading
	@subsection: Subsections Below Sections
	The @subsection-like Commands
	@subsection and Other Subsub Commands
	@part: Groups of Chapters
	Raise/lower Sections: @raisesections and @lowersections

	Cross-references
	What References Are For
	Different Cross-reference Commands
	Parts of a Cross-reference
	@xref
	@xref with One Argument
	@xref with Two Arguments
	@xref with Three Arguments
	@xref with Four and Five Arguments

	Referring to a Manual as a Whole
	@ref
	@pxref
	@anchor: Defining Arbitrary Cross-reference Targets
	@inforef: Cross-references to Info-only Material
	@url, @uref{url[, text][, replacement]}
	@url Examples
	URL Line Breaking
	@url PDF Output Format
	PDF Colors

	@cite{reference}

	Marking Text, Words and Phrases
	Indicating Definitions, Commands, etc.
	Highlighting Commands are Useful
	@code{sample-code}
	@kbd{keyboard-characters}
	@key{key-name}
	@samp{text}
	@verb{chartextchar}
	@var{metasyntactic-variable}
	@env{environment-variable}
	@file{file-name}
	@command{command-name}
	@option{option-name}
	@dfn{term}
	@abbr{abbreviation[, meaning]}
	@acronym{acronym[, meaning]}
	@indicateurl{uniform-resource-locator}
	@email{email-address[, displayed-text]}

	Emphasizing Text
	@emph{text} and @strong{text}
	@sc{text}: The Small Caps Font
	Fonts for Printing

	Quotations and Examples
	Block Enclosing Commands
	@quotation: Block Quotations
	@indentedblock: Indented text blocks
	@example: Example Text
	@verbatim: Literal Text
	@lisp: Marking a Lisp Example
	@display: Examples Using the Text Font
	@format: Examples Using the Full Line Width
	@exdent: Undoing a Line's Indentation
	@flushleft and @flushright
	@raggedright: Ragged Right Text
	@noindent: Omitting Indentation
	@indent: Forcing Indentation
	@cartouche: Rounded Rectangles
	@small... Block Commands

	Lists and Tables
	Introducing Lists
	@itemize: Making an Itemized List
	@enumerate: Making a Numbered or Lettered List
	Making a Two-column Table
	Using the @table Command
	@ftable and @vtable
	@itemx: Second and Subsequent Items

	@multitable: Multi-column Tables
	Multitable Column Widths
	Multitable Rows

	Special Displays
	Floats
	@float [type][,label]: Floating Material
	@caption & @shortcaption
	@listoffloats: Tables of Contents for Floats

	Inserting Images
	Image Syntax
	Image Scaling

	Footnotes
	Footnote Commands
	Footnote Styles

	Indices
	Predefined Indices
	Defining the Entries of an Index
	Making Index Entries
	Printing Indices and Menus
	Combining Indices
	@syncodeindex: Combining indices using @code
	@synindex: Combining indices

	Defining New Indices

	Special Insertions
	Special Characters: Inserting @ {} , #
	Inserting `@' with @@ and @atchar{}
	Inserting `{ `}' with @{ @} and @l rbracechar{}
	Inserting `,' with @comma{}
	Inserting `' with @backslashchar{}
	Inserting `#' with @hashchar{}

	Inserting Quote Characters
	Inserting Space
	Multiple Spaces
	Not Ending a Sentence
	Ending a Sentence
	@frenchspacing val: Control Sentence Spacing
	@dmn{dimension}: Format a Dimension

	Inserting Accents
	Inserting Quotation Marks
	@sub and @sup: Inserting Subscripts and Superscripts
	@math: Inserting Mathematical Expressions
	Glyphs for Text
	@TeX{} (TeX{}) and @LaTeX{} (LaTeX{})
	@copyright{} (copyright)
	@registeredsymbol{} (R)
	@dots (...) and @enddots (...)
	@bullet (bullet)
	@euro (euro): Euro Currency Symbol
	@pounds (pounds): Pounds Sterling
	@textdegree (o): Degrees Symbol
	@minus (-): Inserting a Minus Sign
	@geq (>=) and @leq (<=): Inserting Relations

	Glyphs for Programming
	Glyphs Summary
	@result{} (=>): Result of an Expression
	@expansion{} (==>): Indicating an Expansion
	@print{} (-|): Indicating Generated Output
	@error{} (error): Indicating an Error Message
	@equiv{} (==): Indicating Equivalence
	@point{} (.): Indicating Point in a Buffer
	Click Sequences

	Inserting Unicode: @U

	Forcing and Preventing Breaks
	Break Commands
	@* and @/: Generate and Allow Line Breaks
	@- and @hyphenation: Helping TeX{} Hyphenate
	@allowcodebreaks: Control Line Breaks in @code
	@w{text}: Prevent Line Breaks
	@tie{}: Inserting an Unbreakable Space
	@sp n: Insert Blank Lines
	@page: Start a New Page
	@group: Prevent Page Breaks
	@need mils: Prevent Page Breaks

	Definition Commands
	The Template for a Definition
	Definition Command Continuation Lines
	Optional and Repeated Arguments
	@deffnx, et al.: Two or More `First' Lines
	The Definition Commands
	Functions and Similar Entities
	Variables and Similar Entities
	Functions in Typed Languages
	Variables in Typed Languages
	Data Types
	Object-Oriented Programming
	Object-Oriented Variables
	Object-Oriented Methods

	Conventions for Writing Definitions
	A Sample Function Definition

	Internationalization
	@documentlanguage ll[_cc]: Set the Document Language
	@documentencoding enc: Set Input Encoding

	Conditionally Visible Text
	Conditional Commands
	Conditional Not Commands
	Raw Formatter Commands
	Inline Conditionals: @inline, @inlineifelse, @inlineraw
	Flags: @set, @clear, conditionals, and @value
	@set and @value
	@ifset and @ifclear
	@inlineifset and @inlineifclear
	@value Example

	Testing for Texinfo Commands: @ifcommanddefined, @ifcommandnotdefined
	Conditional Nesting

	Defining New Texinfo Commands
	Defining Macros
	Invoking Macros
	Macro Details and Caveats
	@alias new=existing
	@definfoenclose: Customized Highlighting
	External Macro Processors: Line Directives
	#line Directive
	#line and TeX{}
	#line Syntax Details

	Include Files
	How to Use Include Files
	texinfo-multiple-files-update
	Include Files Requirements
	Sample File with @include
	@verbatiminclude file: Include a File Verbatim
	Evolution of Include Files

	Formatting and Printing Hardcopy
	Use TeX{}
	Format with texi2dvi
	Format with tex/texindex
	Formatting Partial Documents
	Details of texindex

	Print with lpr from Shell
	Printing From an Emacs Shell
	Formatting and Printing in Texinfo Mode
	Using the Local Variables List
	TeX{} Formatting Requirements Summary
	Preparing for TeX{}
	Overfull ``hboxes''
	@smallbook: Printing ``Small'' Books
	Printing on A4 Paper
	@pagesizes [width][, height]: Custom Page Sizes
	Cropmarks and Magnification
	PDF Output
	Obtaining TeX{}

	texi2any: The Generic Translator for Texinfo
	texi2any: A Texinfo Reference Implementation
	Invoking texi2any/makeinfo from a Shell
	Environment Variables Recognized by texi2any
	texi2any Printed Output
	Pointer Validation
	Customization Variables
	Customization Variables for @-Commands
	Customization Variables and Options
	HTML Customization Variables
	Other Customization Variables

	Internationalization of Document Strings
	Invoking pod2texi: Convert POD to Texinfo
	texi2html: Ancestor of texi2any

	Creating and Installing Info Files
	Creating an Info File
	makeinfo Advantages
	Running makeinfo Within Emacs
	The texinfo-format... Commands
	Batch Formatting
	Tag Files and Split Files

	Installing an Info File
	The Directory File dir
	Listing a New Info File
	Info Files in Other Directories
	Installing Info Directory Files
	Invoking install-info

	Generating HTML
	HTML Translation
	HTML Splitting
	HTML CSS
	HTML Cross-references
	HTML Cross-reference Link Basics
	HTML Cross-reference Node Name Expansion
	HTML Cross-reference Command Expansion
	HTML Cross-reference 8-bit Character Expansion
	HTML Cross-reference Mismatch
	HTML Cross-reference Configuration: htmlxref.cnf
	HTML Cross-reference Link Preservation: manual-noderename.cnf

	@-Command Details
	@-Command Syntax
	@-Command List
	@-Command Contexts
	Obsolete @-Commands

	Tips and Hints
	Sample Texinfo Files
	Short Sample
	GNU Sample Texts
	Verbatim Copying License
	All-permissive Copying License

	Using Texinfo Mode
	Texinfo Mode Overview
	The Usual GNU Emacs Editing Commands
	Inserting Frequently Used Commands
	Showing the Sectioning Structure of a File
	Updating Nodes and Menus
	The Updating Commands
	Updating Requirements
	Other Updating Commands

	Formatting for Info
	Printing
	Texinfo Mode Summary

	Page Headings
	Headings Introduced
	Standard Heading Formats
	Specifying the Type of Heading
	How to Make Your Own Headings

	Catching Mistakes
	makeinfo Preferred
	Catching Errors with Info Formatting
	Debugging with TeX{}
	Using texinfo-show-structure
	Using occur
	Finding Badly Referenced Nodes
	Using Info-validate
	Creating an Unsplit File
	Tagifying a File
	Splitting a File Manually

	Info Format Specification
	Info Format General Layout
	Info Format Text Constructs
	Info Format: Menu
	Info Format: Image
	Info Format: Printindex
	Info Format: Cross-reference

	GNU Free Documentation License
	Command and Variable Index
	General Index

