Some Applications of Irverted Indexes on the UNIX System

M. E. Lesk

Bell Laboratories
Murray Hill, New Jerse 07974

ABSTRACT

I. Some Applications of Irverted Indexes — Overview

This memorandum describes a set of programs whicte rimekerted indees to
UNIX* text files, and their application to retrieving and formatting citations for docu-
ments prepared usinpff.

These indexing and searching programs enkdyword indexes to wlumes of
material too large for linear searching. Searches for combinations of single words can be
performed quickly The programs are divided into dwphases. Théirst males an inde
from the original data; the second searches thexiade retrieves items. Bothof these
phases are furtheruliled into tw parts to separate the data-dependent and algorithm
dependent code.

The major current application of these programs istnifé preprocessorefer. A
list of 4300 references is maintained on line, containing primarily papers written and
cited by local authorsWheneer one of these references is required in a pagpdew
words from the title or author list will retrie it, and the user need not bother to re-enter
the exact citation. Alternatgly, authors can use their own lists of papers.

This memorandum is of interest to those who are interestedilitiés for search-
ing large but relatiely unchanging text files on the UNIX system, and those who are
interested in handling bibliographic citations with UNBX4ff.

II. Updating Publication Lists

This section is a brief note describing the auxiliary programs for managing the
updating processinglt is written to aid clerical users in maintaining lists of references.
Primarily, the programs described permit a large amount ofighgidl control @er the
content of publication lists while retaining the usefulness of the files to other users.

[ll. Manual Pages

This section contains the pages from the UNIX programsmeenual for the
lookall, pubindexandrefer commands. lis useful for reference.

* UNIX is a Trademark of Bell Laboratories.

1. Introduction.

The uNIX® system has manutilities (e.g.grep, awk, lex, grep, fgrep, .). to search through files of
text, but most of them are based on a linear scan through the entire file, using some deterministic automa-
ton. Thismemorandum discusses a program which usestéud indees' and can thus be used on much
larger data bases.

1D. Knuth, The Art of Computer Bgramming: Vol. 3, Sorting and Sehing, Addison-Weslg, Reading,
Mass. (1977). See section 6.5.



As with ary indexing system, of course, there are some disadvantages; once aisinsle, the
files that hae keen indeed can not be changed without remaking the id&hus applications are
restricted to those making masearches of relately stable data. Furthermore, these programs depend on
hashing, and can only search for exact matches of wiegleokds. Itis not possible to look for arithmetic
or logical expressions (e.g. “date greater than 1970") or for regujaiession searching such as that in
lex2

Currently there are tavuses of this software, thefer preprocessor to format references, and the
lookall command to search through all text files onulkex system.

The remaining sections of this memorandum discuss the searching programs and th&ects®s.
2 explains the operation of the searching algorithm and describes the data collected for useloakathe
command. Thenore important applicatiomefer has a uses description in section 3. Section 4 goes into
more detail on reference files for the benefit of those who wish to add references to data bases ar write ne
troff macros for use witlnefer. The options to makrefer collect identical citations, or otherwise relocate
and adjust references, are described in sectiohh®&.UNIx manual sections faefer, lookall, and associ-
ated commands are attached as appendices.

2. Seaching.

The indexing and searching process idddid into tw phases, each made ofdwarts. Thesare
shown belov.

A. Constructhe index.

(1) Findkeys — turn the input files into a sequence of tags a@yd, kvhere each tag identifies a
distinct item in the input and theeys for each such item are the strings under which it is to be
indexed.

(2) Hashand sort — prepare a set oférted indexes from which, gven a ®t of keys, the appro-
priate item tags can be found quickly.

B. Retrieve an item in response to a query.

(3) Search— Given some leys, look through the files prepared by the hashing and sosilgyf
and denve the appropriate tags.

(4) Delver — Given the tags, find the original items. This completes the searching process.

The first phase, making the index, is presumably doneveainfrequently It should, of course, be done
wheneer the data being inded change. Incontrast, the second phase, reirig items, is presumably
done often, and must be rapid.

An effort is made to separate code which depends on the data being handled from code which
depends on the searching procedufée search algorithm isvolved only in steps (2) and (3), while
knowledge of the actual data files is needed only by steps (1) and@{g}. it is easy to adapt to f@difent
data files or different search algorithms.

To dart with, it is necessary to y& ©me way of selecting or generatingyk from input files. For
dealing with files that are basically English, wevdha ley-making program which automatically selects
words and passes them to the hashing and sorting program (step 2). The format used has one line for each
input item, arranged as follows:

name:start,length (tabeid key? key3 ...

wherenameis the file namestart is the starting byte numbeand lengthis the number of bytes in the
entry.

These lines are the only input used to en#iie index. Thefirst field (the file name, byte position,
and byte count) is the tag of the item and can be used toveeitriickly. Normally, an item is either a
whole file or a section of a file delimited by blank lines. After the tab, the second field contaiegsthe k
The leys, if selected by the automatic program, angaphanumeric strings which are not among the 100

2M. E. Lesk, “Lec — A Lexical Analyzer GeneratdrComp. Sci. Tech. Rep. No. 39, Bell Laboratories,
Murray Hill, New Jerseg (October 1975).



most frequent wrds in English and which are not entirely numeric (except for four-digit numbgirs- be
ning 19, which are accepted as datdsgys ae truncated to six characters andweoted to lower case.
Some selection is needed if the original items are vegg lanne rormally just tale the firstn keys, withn
less than 100 or so; this replacey attempt at intelligent selectionOne file in our system is a complete
English dictionary; it would presumably be reted for all queries.

To generate an irerted inde to the list of record tags anceys, the leys ae hashed and sorted to
produce an inde Whatis wanted, ideallyis a ®ries of lists showing the tags associated with eaghto
condense this, what is actually produced is a listvsigpthe tags associated with each hash code, and thus
with some set ofdys. To peed up access and furthevesgpace, a set of three or possibly four files is pro-
duced. Theséles are:

File Contents
entry Pointers to posting file
for each hash code
pasing  Lists of tag pointers for
each hash code

tag Tags for each item
kg Keys for each item
(optional)

The posting file comprises the real data: it contains a sequence of lists of items posted under each hash
code. D geed up searching, the entry file is an array of pointers into the posting file, one per potential
hash code.Furthermore, the items in the lists in the posting file are not referred to by their complete tag,
but just by an address in the tag file, whichegithe complete tags. Thek file is optional and contains a

copy of the lkeys used in the indexing.

The searching process starts with a quesptaining seeral keys. Thegoal is to obtain all items
which were indeed under these é&ys. Thequery leys ae hashed, and the pointers in the entry file used to
access the lists in the posting file. These lists are addresses in the tag file of documents posted under the
hash codes desd from the query The common items from all lists are determined; this must include the
items indeed by every key, but may also contain some items which asd drops, since items referenced
by the correct hash codes need not actualg lantained the correctelys. Normally if there are seral
keys in the querythere are not likely to be mgrialse drops in the final combined listeg though each
hash code is somewhat ambiguous. The actual tags are then obtained from the tag file, and tairgstard ag
the possibility that an item haal$e-dropped on some hash code in the queeyoriginal items are nor
mally obtained from the detery program (4) and the quergys checled against them by string compari-
son.

Usually therefore, the check for bad drops is made against the originaHieever, if the key
derivation procedure is complex, it may be preferable to cheakagthe kys fed to program (2). In this
case the optionaldy file which contains thedys associated with each item is generated, and the item tag is
supplemented by a string

;start,length

which indicates the starting byte number in tleg kle and the length of the string oéys for each item.
This file is not usually necessary with the presaytdelection program, since theys dways appear in
the original document.

There is also an optionGn) for coordination Ieel searching. Thigetrieves items which match all
but n of the query kys. Theitems are retrieed in the order of the number okls that thgg match. Of
course,n must be less than the number of queeysk(nothing is retriged unless it matches at least one
key).

As an eample, consider one set of 4377 references, comprising 660,000 bytes. This included 51,000
keys, of which 5,900 were distincels. Thehash table isépt full to sae pace (at the expense of time);
995 of 997 possible hash codes were used. The total set »ffilede(no ley fie) included 171,000 bytes,
about 26% of the original file size. It took 8 minutes of processor time to hash, sort, and writexhe inde
To sarch for a single query with the resulting ndeok 1.9 seconds of processor time, while to find the



same paper with a sequential linear search ugieg(reading all of the tags anaeys) took 12.3 seconds
of processor time.

We havealso used this software to indell of the English stored on ownix system. Thids the
index searched by théokall command. Ora typical day there were 29,000 files in our user file system,
containing about 152,000,000 byteSf these 5,300 files, containing 32,000,000 bytes (about 21%) were
English tet. Thetotal number of ‘words’ (determined mechanically) was 5,100,000. Of these 227,000
were selected ais; 19,000 were distinct, hashing to 4,900 (of 5,000 possible) different hash dbees.
resulting iverted file indees used 845,000 bytes, or about 2.6% of the size of the original Tiles.par
ticularly small indees ae caused by the fact thagys ae talen from only the first 50 nhon-commoromds
of some very long input files.

Even this lagelookall index can be searched quicklyror example, to find this document by looking
for the leys “lesk inverted indexes” required 1.7 seconds of processor time and system Byeompari-
son, just to search the 800,000 byte dictionary (smaller tiiem tbe irverted indexes, let alone the
32,000,000 bytes of text files) witlrep takes 29 seconds of processor timiehe lookall program is thus
useful when looking for a document which you bedies dored on-line, but do not kmowhere. for
example, mayp memos from the Computing Science Research Center areuniigile system, but it is
often difficult to guess where a particular memo might be (it might kaveal authors, each with mgan
directories, and ha& keen vorked on by a secretary with yet more directories). Instructions for the use of
thelookall command are gén in the manual section, shown in the appendix to this memorandum.

The only indees maintained routinely are those of publication lists and all English filesmake
other indees, the programs for makingys, sorting them, searching the irde and deliering answers
must be usedSince thg are usually inoked as f@rts of higheidevel commands, theare not in the defult
command directorybut are &ailable to ay user in the directorjust/lib/refer. Three programs are of inter
est: mlkey, which isolates &ys from input files;inv, which makes an indefrom a set of &ys; andhunt,
which searches the indend delvers the items. Note that the dvparts of the retrieal phase are combined
into one program, tovaid the excessie g/stem work and delay which would result from running these as
separate processes.

These three commandsviesa hrge number of options to adapt to different kinds of inftite user
not interested in the detailed description that fiollows may skip to section 3, which describes refer
program, a packaged-up version of these tools specifically oriemadisoformatting references.

Make Keys. The programmiey is the ley-making program corresponding to step (1) in phase A.
Normally, it reads its input from the file namewsai as aguments, and if there are nagaments it reads
from the standard inputlt assumes that blank lines in the input delimit separate items, for each of which a
different line of leys should be generated. The lines @yk ae written on the standard outplfeys ae
ary aphanumeric string in the input not among the most frequent words in English and not entirely
numeric (except that all-numeric strings are acceptableyfatebetween 1900 and 1999). In the output,
keys are translated to lower case, and truncated to six characters in leggths@riated punctuation is
removed. Thefollowing flag arguments are recognizedrbigy.

—cname Name of file of common words; default/isst/lib/eign.
—-fname Read a list of files fromameand tale each as an input argument.
—-ichars Ignore all lines which begin with ‘%’ followed by wrcharacter in

chars.

—-kn Use at mosh keys per input item.

=In Ignore items shorter thanletters long.

-nm Ignore as a &y any vord in the firstm words of the list of common
English words. Thedefault is 100.

-s Remae the labeldfile:start,length)from the output; just gé the leys.
Used when searching rather than indexing.

-w Each whole file is a separate item; blank lines in files arevergle

The normal arguments for indexing references are the defaults, whiett &ser/lib/eign —n100,
and-I3. For searching, thes option is also needed. When the ligkall index of al English files is run,
the options are-w, —k50, and —f (filelist). When running on textual input, thekey program processes



about 1000 English words per processor second. Unlesktbption is used (and the input files are long
enough for it to tad ef ect) the output ofmkeyis comparable in size to its input.

Hash and invert. Theinv program computes the hash codes and writes tieeted files. It reads
the output ofmkey and writes the set of files described earlier in this sectibexpects one gument,
which is used as the base name for the three (or four) files to be wAdsoming an argument dfidex
(the default) the entry file is naméntlex.ig the posting fildndex.ih the tag fileindex.ic and the ley file
(if present)index.id Theinv program recognizes the following options:

-a Append the n& keys to a pevious set of imerted files, making ne
files if there is no old set using the same base name.
-d Write the optional &y file. Thisis needed when you can not check for

false drops by looking for theelys in the original inputs, i.e. when the
key derivation procedure is complicated and the outpeyskae not
words from the input files.

-hn The hash table size s (default 997);n should be prime.Making n
bigger saes ®arch time and spends disk space.

—-i[u] name Take input from filename instead of the standard inputyifis present
nameis unlinked when the sort is started. Using this option permits the
sort scratch space to@lap the disk space used for inpet&.

-n Make a @mpletely nev set of inverted files, ignoring previous files.

-p Pipe into the sort program, rather than writing a temporary input file.
This saes dsk space and spends processor time.

-V Verbose mode; print a summary of the number &fslwhich finished
indexing.

About half the time used inv is in the contained sortAssuming the sort is roughly lingdoweve,
a guess at the total timing famv is 250 leys per second. The space used is usually of more importance: the
entry file uses four bytes per possible hash (note-theption), and the tag file around 15-20 bytes per
item indexed. Roughly the posting file contains one item for eadly instance and one item for each pos-
sible hash code; the items areotiytes long if the tag file is less than 65336 bytes long, and the items are
four bytes wide if the tag file is greater than 65536 bytes l@ogninimize storage, the hash tables should
be orer-full; for most of the files indeed in this way, there is no other real choice, since émryfile must
fit in memory.

Searching and Retrieving. The huntprogram retriges items from an inde It combines, as men-
tioned abwe, the two parts of phase (B): search and dely. The reason whit is eficient to combine
delivery and search is partly tw@id starting unnecessary processes, and partly because treeydmtiera-
tion must be a part of the search operation incase. Becausef the hashing, the search part takes place
in two gages: first items are retvied which have the right hash codes associated with them, and then the
actual items are inspected to determisd drops, i.e. to determine if anything with the right hash codes
doesnt really have the right leys. Sincethe original item is retrieed to check on &lse drops, it is &tient
to present it immediatelyather than only ging the tag as output and later retrieving the itemiraglf
there were a separateykfile, this argument would not applyut separatedy files are not common.

Input tohuntis taken from the standard input, one query per line. Each query shouldnbeyins
output format; all lower case, no punctuatiorhe hunt program takes one argument which specifies the
base name of the inddiles to be searchednly one set of indefiles can be searched at a time, although
mary text files may be indeed as a goup, of course. If one of the text files has been changed since the
index, that file is searched witigrep; this may occasionally stodown the searching, and care should be
taken to ®oid having mawg out of date files. The following option arguments are recognizédihy.

-a Give dl output; ignore checking for false drops.

-Cn Coordination legel n; retrieve items with not more than terms of the
input missing; defult CO, implying that each search term must be in
the output items.



-Flynd]  “-Fy” gives the text of all the items found;-Fn” suppresses them.
“—Fd” whered is an integer gies the text of the firstl items. The
default is—Fy.

-g Do not usefgrep to search files changed since the indes made;

print an error comment instead.

—-istring  Takestring as input, instead of reading the standard input.

-In The maximum length of internal lists of candidate items;idefault
1000.

—ostring  Put text output (~Fy”’) in string; of useonly when irvoked from
another program.

-p Print hash code frequencies; mostly for use in optimizing hash table
sizes.
-Tlynd] “-Ty” gives the tags of the items found:-Tn" suppresses them.

“—=Td” w hered is an integer gies the firstd tags. Thedefault is—Tn.
-t string  Put tag output *Ty’’) in string; of use only when irvoked from
another program.

The timing ofhuntis comple. Normallythe hash table isverfull, so that there will be marfalse
drops on ay single term; but a multi-term query will tia few false drops on all terms. Thus if a query is
underspecified (one search term) snpatential items will be xxamined and discarded as false dropsstw
ing time. If the query iswerspecified (a dozen search terms) ynkeys will be examined only to erify
that the single item under consideration has tegtfosted. Thevariation of search time with number of
keys is shown in the table b&lo Queries of arying length were constructed to retdea @rticular docu-
ment from the file of referencesn the sequence to the left, search terms were chosen so as to select the
desired paper as quickly as possible.the sequence on the right, terms were choseficiestly, so hat
the query did not uniquely select the desired document until &ysriad been usedThe same document
was the taget in each case, and the final set of eigly lkre also identical; the differences at five, six and
seven keys ae produced by measurement errat by the slightly different &y lists.

Efficient Keys Inefficient Keys
No. keys Total drops Retrieed Search time No. &ys Total drops Retrieed Search time
(incl. false) Documents  (seconds) (incltalse) Documents  (seconds)
1 15 3 1.27 1 68 55 5.96
2 1 1 011 2 29 29 2.72
3 1 1 014 3 8 8 0.95
4 1 1 0.17 4 1 1 0.18
5 1 1 0.19 5 1 1 0.21
6 1 1 0.23 6 1 1 0.22
7 1 1 0.27 7 1 1 0.26
8 1 1 0.29 8 1 1 0.29

As would be expected, the optimal search is aedigvhen the query just specifies the answerydwer,
overspecification is quite cheapgroughly the time required blyuntcan be approximated as 30 millisec-
onds per searchek dus 75 milliseconds per dropped document (whether it ialse fdrop or a real
answer). Ingeneral, gerspecification can be recommended; it protects the user against additions to the
data base which turn previously uniquely-answered queries into ambiguous queries.

The careful reader will v roted an enormous discrepgnoetween these times and the earlier
quoted time of around 1.9 seconds for a search. The times here are purely for the searchvahdistrie
are measured by running nyasearches through a singlevatation of thehunt program alone.Usually,
the UNIX command processor (the shell) must start botim#ey and hunt processes for each queand
arrange for the output afhkeyto be fed to thénuntprogram. Thisadds a fixed werhead of about 1.7 sec-
onds of processor time to\asingle search.Furthermore, remember that all these times are processor
times: on a typical morning on oepp11/70 system, with about one dozen people logged on, to obtain 1
second of processor time for the search program took between 2 and 12 seconds of real time, with a median
of 3.9 seconds and a mean of 4.8 secoiitisis, although the workinlved in a single search may be only



200 milliseconds, after you add the 1.7 seconds of startup processor time and then assume a 4:1
elapsed/processor time ratio, it will be 8 seconds befgreesponse is printed.

3. Selectingand Formatting References for ROFF

The major application of the retvia software isrefer, which is atroff preprocessor likeqn® It scans
its input looking for items of the form

[

imprecise citation
]

where an imprecise citation is merely a string ofds found in the rel@nt bibliographic citation. This is
translated into a properly formatted referentfehe imprecise citation does not correctly identify a single
paper (either selecting no papers or too many) a messageris §hedata base of citations searched may

be tailored to each system, and individual users may specify their own citation files. On our system, the
default data base is accumulated from the publication lists of the members ofaniration, plus about

half a dozen personal bibliographies that were collected. The present total is about 4300 citétibiss, b
increases steadilyEven now, the data base wers a large fraction of local citations.

For example, the reference for tlegnpaper abee was specified as

preprocessor like

deqn.

!

kernighan cherry acm 1975
]

It scans its input looking for items

This paper was itself printed usimgfer. The abee input text was processed bsfer as well agbl and
troff by the command

refer memo-file | tbl | trdf-ms

and the reference was automatically translated into a correct citation t@C¥epAper on mathematical
typesetting.

The procedure to use to place a reference in a paperrefndgs as follavs. First,use thdookbib
command to check that the paper is in the data base and to find outeyghakeknecessary to retvie i.
This is done by typindpokbib and then typing some potential queries until a suitable query is fdtond.
example, had one started to find #gnpaper shown abe by presenting the query

$ lookbib
kernighan cherry
(EOT)

lookbibwould have found seeral items; experimentation would quicklyveadown that the query gen
abore is adequate. Oerspecifying the query is of course harmless; ivenhalesirable, since it decreases
the risk that a document added to the publication data base in the future will hedetrialdition to the
intended document. The extra time taken gnea gossly werspecified query is quite smalh particu-
larly careful reader may ke roticed that‘acm” does not appear in the printed citation; weehaipple-
mented some of the data base items with extsavérds, such as common abbreviations for journals or
other sources, to aid in searching.

If the reference is in the data base, the query thatvedriecan be inserted in the text, betweén
and.] braclets. Ifit is not in the data base, it can be typed into e ifile of references, using the format
discussed in the next section, and then-theoption used to search this yate file. Such a command

3B. W. Kernighan and L. L. CherryA System for Typesetting Mathematit§omm. Assoc. Comp. Mag
18, pp. 151-157, Bell Laboratories, Murray Hill, Wéerse/ (March 1975).



might read (if the pviate references are calleulyfile
refer —p myfile document | thl | egn | tfefms. . .

wheretbl and/oregncould be omitted if not needed. The use of tnes macroé or some other macro
package, hwever, is essential. Referonly generates the data for the references; exact formatting is done by
some macro package, and if none is supplied the references will not be printed.

By default, the references are numbered sequenialythe—ms macros format references as foot-
notes at the bottom of the pagehis memorandum is an example of that style. Other possibilities are dis-
cussed in section 5 belo

4. Reference Files.

A reference file is a set of bibliographic references usablereéféh It can be indeed using the soft-
ware described in section 2 for fast searchilighatrefer does is to read the input document stream, look-
ing for imprecise citation referencel.then searches through reference files to find the full citations, and
inserts them into the documenrthe format of the full citation is arranged to raak convenient for a
macro package, such as thms macros, to format the reference for printing. Since the format of the final
reference is determined by the desired style of output, which is determined by the macnefeusedids
forcing ary kind of reference appearance. All it does is define a set of string registers which contain the
basic information about the reference; and provide a macro call which is expanded by the macro package to
format the reference. It is the responsibility of the final macro package to see that the reference is actually
printed; if no macros are used, and the outpuéfef fed untranslated twoff, nothing at all will be printed.

The strings defined bigfer are talen directly from the files of references, which are in theviotig
format. Thereferences should be separated by blank likeh reference is a sequence of linagrbéng
with % and followed by a &y-letter The remainder of that line, and succesdines until the next line
beaginning with %, contain the information specified by theydetter In general,refer does not interpret
the information, bt merely presents it to the macro package for final formatthgser with a separate
macro package, for example, can add key-letters or use the existing ones for other purposes without
botheringrefer.

The meaning of thedy-letters gven below, in particular is that assigned by themsmacros. Noall
information, olviously, is used with each citationFor example, if a document is both an internal memo-
randum and a journal article, the macros ignore the memorandum version and cite only the journal article.
Some kinds of information are not used at all in printing the reference; if a user does fintliilg refer
ences by specifying title or authoeyvords, and prefers to add specifeywords to the citation, a field is
awailable which is searched but not print&J.(

The ley letters currently recognized Ibgfer and—ms, with the kind of information implied, are:

Key Information specified Key Information specified
A Author’s rame N  Issue number
B Title of book containing item 0] Other information
C City of publication P Page(s) of article
D Date R  Technical report reference
E Editor of book containing item T Title
G Government (NTIS) ordering number V Volume number
I Issuer (publisher)
J Jurnal name
K Keys (for searching) X or
L Label Y or
M Memorandum label z Information not used bigefer

For example, a sample reference could be typed as:

4M. E. Lesk,Typing Documents on UNIX and GCOS: The -ms Macrosrfuff {L977).



%T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%Z ctr127

%A A. V. Aho

%A D. S. Hirschberg

%A J. D. Ullman

%J J. ACM

%V 23

%N 1

%P 1-12

%M abcd-78

%D Jan. 1976

Order is irrelgant, except that authors are shown in the ordeengi Theoutput ofrefer is a stream of
string definitions, one for each of the fields of each reference, as shown belo

J-

.ds [A authors’ names.
ds [T title...

.ds [J journal..

][ type-number

The refer program, in general, does not concern itself with the significance of the stilihgsdiferent

fields are treated identically befer, except that the X, Y and Z fields are ignored (see-theption of

miey) in indexing and searchingAll refer does is select the appropriate citation, based oneyge Khe

macro package must arrange the strings so as to produce an appropriately formatted citation. In this pro-
cess, it uses the camtion that the ‘T’ field is the title, the ‘J’ field the journal, and so forth.

The refer program does arrange the citation to simplify the macro packde’havever. The spe-
cial macro.]- precedes the string definitions and the special ma¢rollows. Theseare changed from
the input.[ and.] so that running the same file througfer again is harmlessThe .]- macro can be used
by the macro package to initializ&he .][ macro, which should be used to print the referenceyéen gn
argumentype-numbeto indicate the kind of reference, as follows:

Value Kind of reference
1 Journal article
2 Book
3 Article within book
4 Technical report
5 Bell Labs technical memorandum
0 Other

The type is determined by the presence or absence of particular fields in the citation (a journal article must
have a J’ field, a book must ha an ‘I’ field, and so forth).To a $nall extent, this violates the almle

thatrefer does not concern itself with the contents of the citationelier, the classification of the citation

in troff macros would require a refatly expensve and obscure programAny macro writer may of

course, preseevoonsistenyg by ignoring the argument to thg macro.

The reference is flagged in the text with the sequence
\* ([ .number\* (]

wherenumberis the footnote numbefThe stringd. and.] should be used by the macro package to format
the reference flag in thexte Thesestrings can be replaced for a particular footnote, as described in section
5. Thefootnote number (or other signal) igadable to the reference macrd as the string gister[F. To
simplify dealing with a text reference that occurs at the end of a sentefiecéreats a reference which fol-
lows a period in a specialay. The period is remaed, and the reference is preceded by a call for the string
<. and followed by a call for the strirg For example, if a reference follows “erid.t will appear as



-10-

end\*(<\*([ .number\*(]\*(>.

wherenumberis the footnote numberThe macro package should turn either the stringr <. into a
period and delete the other oriEhis permits the output to Y@ dther the form ‘end[31]” or “end3" as

the macro package wishelote that in one case the period precedes the number and in the othewd follo
the number.

In some cases users wish to suspend the searching, and merely use the reference macro formatting.
That is, the user doeswant to provide a searctek between.[ and.] braclets, but merely the reference
lines for the appropriate documemlternatively, the user can wish to add avféields to those in the refer
ence as in the standard file, mewmide some fields Altering or replacing fields, or supplying whole refer
ences, is easily done by inserting lines beginning %ittany such line is taken as direct input to the refer
ence processor rather thagyk to be sarched. Thus

!

keyl key2 key3 ...

%Q Neav format item

%R Override report name

]

malkes the indicates changes to the result of searching forelse Il of the search d&ys nust be gren
before the firs% line.

If no search &ys ae provided, an entire citation can be provided in-line in tkie téor example, if
the egnpaper citation were to be inserted in thigywather than by searching for it in the data base, the
input would read

preprocessor like

deqn.

!

%A B. W. Kernighan

%A L. L. Cherry

%T A System for Typesetting Mathematics
%J Comm. ACM

%V 18

%N 3

%P 151-157

%D March 1975

]

It scans its input looking for items

This would produce a citation of the same appearance as that resulting from the file search.

As shown, fields are normally turned irtoff strings. Sometimessers would rather kia them
defined as macros, so that ottreff commands can be placed into the data. When this is necessgty
double the control charact# in the data. Thus the input

1|

%V 23

%%M

Bell Laboratories,
Murray Hill, N.J. 07974
J

is processed bxefer into



-11-

.ds[V 23

.de [M

Bell Laboratories,
Murray Hill, N.J. 07974

The information afte®%M is defined as a macro to bedked by .[M while the information afte¥V is
turned into a string to bevoked by \({[V. At present-msexpects all information as strings.

5. CollectingReferences and other Refer Options

Normally, the combination ofefer and—ms formats output asoff footnotes which are consectdly
numbered and placed at the bottom of the patvever, options exist to place the references at the end;
to arrange references alphabetically by senior author; and to indicate references by strings in the text of the
form [Namel1975a] rather than by numb&¥hene&er references are not placed at the bottom of a page
identical references are coalesced.

For example, the-e option torefer specifies that references are to be collected; in this cagerthe
output wheneer the sequence

-[
$LISTS

]

is encountered. Thus, to place references at the end of a th@peser would rurefer with the—e option
and place the abe $.IST$ commands after the last line of thatteReferwill then move dl the refer
ences to that pointTo ad in formatting the collected referencesfer writes the references preceded by
the line

J<
and followed by the line
J>
to invoke gecial macros before and after the references.

Another possible option teefer is the —s option to specify sorting of reference¥he default, of
course, is to list references in the order presented.—$bption implies the-e option, and thus requires a

!
$LISTS

]

entry to call out the reference listhe —s option may be followed by a string of letters, numbers, and ‘+’
signs indicating hw the references are to be sorted. The sort is done using the fields widsiteks are

in the string as sortingelys; the numbers indicate Wwamary of the fields are to be considered, with ‘+’
taken as a large numbefFhus the default issAD meaning ‘Sort on senior authpthen daté. To sort on

all authors and then title, specifgA+T. And to sort on tw authors and then the journal, writa A2J.

Other options taefer change the signal or label inserted in the text for each refer&taenally
these are just sequential numbers, and their exact placement (withiatbrasksuperscripts, etc.) is deter
mined by the macro packag&he -I option replaces reference numbers by strings composed of the senior
authors last name, the date, and a disambiguating lefter number follows the as in—I3 only that maw
letters of the last name are used in the label strilngebbreviate the date as well the foriim,nshortens
the last name to the firstletters and the date to the lasligits. For example, the optionl3,2 would refer
to theeqnpaper (reference 3) by the sigrédr75a, snce it is the first cited reference by Kernighan in
1975.

A user wishing to specify particular labels for avgie bibliograply may use the-k option. Specify-
ing —kx causes the field to be used as a label. The defaulLislf this field ends in-, that character is
replaced by a sequence letter; otherwise the field is used exactigras gi



-12-

If none of therefer-produced signals are desired, theoption entirely suppresses automatic text sig-
nals.

If the user wishes toverride the-mstreatment of the reference signal (which is normally to enclose
the number in brackets inroff and malk it a siperscript introff ) this can be done easilyf the lines.[ or .]
contain anything follewing these characters, the remainders of these lines are used to surround the reference
signal, instead of the dailt. Thusfor example, to say “See reference {2and avoid “See referencé’
the input might appear

See reference

L (

imprecise citation ...
D).

Note that blanks are significant in this construction. If a permanent change is desired in the style of refer
ence signals, heever, it is probably easier to redefine the striigsaand.] (which are used to bracket each
signal) than to change each citation.

Although normallyrefer limits itself to retrieving the data for the reference, angdedo a nacro
package the job of arranging that data as required by the local format, there gyedal options for rear
rangements that can not be done by macro packades-c option puts fields into all upper caseafG-
SmvALL CAPsin troff output). Thekey-letters indicated what information is to be translated to upper case
follow the ¢, so hat—cAJ means that authors’ names and journals are to be in Taps-a option writes
the names of authors last name first, that.i®. Hall, Jr is written asHall, A. D. Jr. The citation form of
the Journal of the &AM, for example, would require bothcA and —a options. Thisproduces authors’
names in the styl&ERNIGHAN B. W AND CHERRY L. L. for the previousxample. The-a option may be
followed by a number to indicatevaanarny author names should beveesed;—al (without ary —c option)
would produceKernighan, B. Wand L. L. Cherryfor example.

Finally, there is also the pvusly-mentioned-p option to let the user specify a\ate file of refer
ences to be searched before the public filste thatrefer does not insist on a previously made xéler
these files.If a file is named which contains reference data but is nokéddé will be searched (more
slowly) by refer usingfgrep. In this way it is easy for users tedp small files of e references, which can
later be added to the public data bases.



