
Drawing with dpic
Dwight Aplevich1

2018.02.01

Contents

1 Introduction 2

2 Dpic usage 2
2.1 Options 2
2.2 Lexical error messages 4

3 Dpic programming 4
3.1 Blocks 4

3.1.1 Positioning blocks . . . 5
3.1.2 Defining scope 5

3.2 Dpic macros 6
3.2.1 Finding roots 7
3.2.2 Composing statements . 8
3.2.3 Evaluating arguments . 8
3.2.4 Branching 9

3.3 Hiding variables 9
3.4 Looping 10
3.5 M4 macros 11

3.5.1 Branching 11
3.5.2 Perpendiculars 12
3.5.3 Setting directions 12

3.6 Subscripts 13
3.6.1 Assigning an array of

numbers 13
3.7 Splines 14

3.7.1 Curve fitting 14
3.8 Postprocessor commands and

color 15
3.8.1 Color 16
3.8.2 Filling with color 16
3.8.3 External files 17

4 SVG, PDF, and Postscript output 18
4.1 Bounding boxes 18

5 Pic processor differences 19
5.1 Command-line options 19
5.2 Output formats 19
5.3 . lines and program-generated

pic 20
5.4 \ lines 20
5.5 for-loop and if bodies 20
5.6 End of line 20
5.7 Logic 21
5.8 then 21
5.9 line, spline, arrow, move . . 21
5.10 Arc defaults 22
5.11 Strings 22
5.12 print arg, 23
5.13 command arg, 23
5.14 Operating system commands . 23
5.15 copy 23
5.16 plot 24
5.17 fill 24
5.18 Scaling 24
5.19 Arrowheads 24
5.20 Compass corners 25
5.21 continue 26
5.22 Subscripted variables and loca-

tions 26
5.23 Splines 26
5.24 Arithmetic 26
5.25 Vector arithmetic 27
5.26 Positions 27
5.27 int() 27
5.28 exec 27
5.29 Functions 27
5.30 PSTricks anomaly 28

6 Appendix A: dpic man page 30

7 Appendix B: dpic grammar 43
1Copyright c© 2018 J. D. Aplevich, all rights reserved. This document version is made available under the

Creative Commons attribution licence version 3.0 (http://creativecommons.org/licenses/by/3.0/); you are
free to copy and distribute this document provided proper attribution is given by identifying the author.

1

1 Introduction

This document is meant for persons using dpic to produce diagrams for LaTeX documents or
web files. You are assumed to have basic knowledge of the pic language as described for the
original Documenter’s Workbench (ATT) pic [3] or the current GNU pic (gpic) processor [4].
However, a concise dpic language reference is included here in Appendix A, and the context-
free dpic input grammar is given in Appendix B.

Dpic accepts gpic input for the most part but there are minor differences. The outputs of
gpic and dpic are quite different but both can serve as preprocessors that create diagrams for
inclusion in LaTeX documents.

The pic language is particularly suited for easily creating line diagrams such as electric circuits,
and many persons use a set of macros called Circuit_macros, which are processed using the
m4 macro processor and Dpic. The pic language itself allows macro definitions, and both pic
and m4 macros will be described.

Dpic usage will be reviewed, some programming examples that illustrate dpic extensions of
the pic language will be given, and then the differences among pic translators will be itemized,
particularly the differences between gpic and dpic.

There had better be a disclaimer: The temptation to change the pic language has been
resisted most of the time so that valid diagrams can be processed with minimal changes using
the original Documenter’s Workbench (ATT) pic, with gpic, or dpic. There are exceptions:
embedded word-processor commands principally, but also minor differences in defaults for
valid pic input, a few gpic constructs that dpic does not implement directly, and some dpic
extensions that gpic does not implement. For details, see Section 5.

2 Dpic usage

In the following, items in square brackets [] are optional and items separated by a vertical
line | are alternatives. To produce .tex output (for LaTeX, PSTricks, TikZ-PGF, mfpic pro-
cessing):
dpic [options] file.pic > file.tex

or
cat file.pic | dpic [options] > file.tex

To produce other formats:
dpic [-d|e|f|g|h|m|p|r|s|t|v|x] [-z] file.pic > file[.tex|eps|pdf|mp|fig|svg]

2.1 Options

Dpic accepts the following options:

(none) Latex picture-environment output (very limited font-based drawing commands)
-d PDF output

2

-e pict2e output
-f Postscript output with psfrag strings
-g TikZ-PGF output
-h write out these options and quit
-m mfpic output
-p PSTricks output
-r raw Postscript output
-s MetaPost output
-t eepicemu output
-v SVG output
-x xfig 3.2 output
-z safe mode (disabled sh, copy, and print to file)

The -p option produces output for postprocessing by the LaTeX package PSTricks. Similarly,
the -g option produces output for the TikZ-PGF packages and makes pdf production via
pdflatex a one-step process.

Mfpic and MetaPost output are provided for compatibility.

The -r option produces Postscript eps files, in which font changes or typesetting must be done
explicitly. The -f option writes Postscript strings in psfrag format for tex or latex typesetting.

The -d option produces PDF files. This format is most useful for diagrams containing graphics
only, since there is no simple way to change or manipulate fonts for labels. The Courier fixed-
width font is employed by default. To produce PDF files containing significant text content,
use an option such as TikZ with pdflatex.

The -v option produces SVG for inserting figures into web documents or for further processing
by the Inkscape graphics editor, for which SVG is the native format. When the SVG output
is used directly in a web document, then any required text formatting generally must be
included explicitly. The other possibility for SVG output is that an SVG library of elements
can be drawn with dpic, and Inkscape used to place and connect copies of the elements. Then
Inkscape can export the graphics as eps for processing by LATEX or as pdf for processing by
pdflatex. Inkscape will also export a tex file from which labels can be formatted and overlaid
on the imported eps or pdf.

In all cases, arbitrary postprocessor commands (that is, arbitrary PSTricks, SVG, Postscript,
or other commands) can be inserted into the dpic output directly from the source. This
possibility adds considerable power for manipulating diagram elements.

The -z option disables the commands that access external files. These commands can be
permanently disabled by the use of a compile-time option.

The file Examples.txt contains a minimal example of each of these options except -z. Consult
the appropriate manual for processing mfpic, PSTricks, MetaPost, pgf, or psfrag output.

Invoking dpic without options produces basic LaTeX drawing commands by default. LaTeX
line slopes, for example, are very limited and you must ensure that lines and arrows are drawn
only at acceptable slopes. Dpic sets the maximum slope integer to be 6 for LaTeX, 453 for
eepic, and 1000 for pict2e. To see the effect of the slope limitations, process the following:

3

.PS
dtor = atan2(0,-1)/180
for d = 0 to 360 by 2 do {

line from (0,0) to (cos(d*dtor),sin(d*dtor))
}

line from (-1.2,0) to (1.2,0)
line from (0,-1.2) to (0,1.2)
.PE

2.2 Lexical error messages

Lexical error messages are generated automatically, and state the lexical value that was found
and what was expected. Some slightly less than obvious expected lexical values are:

corner a compass corner or .c, .start, .end
envvar environmental variable
primitiv box, circle, ellipse, arc, line, arrow, move, spline

3 Dpic programming

Pic is a simple language with a good ratio of power to complexity, so surprisingly sophisticated
diagrams can be produced in several areas of application. Arbitrary postprocessor commands
can be included in the output and several of the postprocessors are powerful drawing languages
in their own right, so it can be argued that dpic has all the power of these languages. However,
if you find yourself writing extensive postprocessor code then you might ask why you are not
programming exclusively in that language.

Pic is very suitable for line diagrams, and recent language extensions allow for basic color.
Elaborate fills and cropping are the domain of the postprocessors, but can be included easily
with the use of macros.

The following sections are intended to help you become familiar with dpic language features.
Some of these details are exclusive to dpic and are not described in the GNU manual but are
discussed in Section 5 of this document.

3.1 Blocks

The basic planar objects in pic are box, circle, and ellipse, the placing of which is done
according to the current drawing direction or by explicit placement such as
box at position

which places the object so that its center is at position.

A block (or a composite object) is a group of elements enclosed by square brackets, such as
Q: [B: [A: arc]; circle].

4

3.1.1 Positioning blocks

A block is placed by default as if it were a box, after which the compass points (Q.n, Q.sw, . . .
in the previous example) are automatically defined as for a box of the same size and position.

A block can also be positioned by specifying the location of one of its defined points. A defined
point is one of the following:

1. A compass corner .center, .n, .ne, . . . of the block, e.g.,
Q: [B: [A: arc]; circle] with .ne at position

2. A defined point of a labeled object or position within the block, preceded by a dot, e.g.,
Q: [B: [A: arc]; circle] with .B.A.ne at position

3. A defined point of an enumerated object in the block, preceded by a dot (but make sure
there is a space after the dot if it is followed by a number), e.g.,

Q: [B: [A: arc]; circle] with . 1st circle at position
Even better, put braces around the ordinal value, which can now be any expression, e.g.,

. . . with .{10-9}th circle at . . .

4. A displacement (x,y) from the lower left corner of the block, e.g.,
Q: [B: [A: arc]; circle] with (0.5,0.2) at position

Reference to a defined point may correspond to drilling down through several block layers, as
the second example above shows.

3.1.2 Defining scope

Variables defined within a block are accessible only within the block itself or its sub-blocks.
Thus, the statement x = 5 creates the variable x and assigns it a value. If the statement is
x := 5 then x must already have been defined either in the block or in a scope containing the
block. Limiting the scope to a block avoids name conflicts but occasionaly results in subtle
behavior. The code
x = 5
[x = x + 2; print x]
print x

prints 7 on the first line and 5 on the second because the assignment within brackets creates
variable x with scope within the brackets. However, Dpic allows a second line of the form
[x += 2; print x]

which changes the previously defined variable x and the value 7 is printed twice.

Locations inside a block are accessible from outside as shown in the previous section, but the
values of variables are not; thus, an error results from
Q: [v = 5]; y = Q.v

The := assignment operator in
v = 0; Q: [v := 5]; y = v

works around this problem, but this method requires the internal name v to be known and
defined in advance of the block.

5

Variable values can be exported by the use of macro arguments as shown later in Section 3.2
or, if you must, by using the following trick:
Q: [v = 5; w = 6
Origin: (0,0); Export: (v,w)]

v = Q.Export.x - Q.Origin.x
w = Q.Export.y - Q.Origin.y

This method works because all locations (Origin and Export) inside the block will be trans-
lated by the same amount no matter where the block is positioned.

3.2 Dpic macros

Macros can be used to turn the basic dpic language into a powerful tool for producing line
drawings. A macro serves to

• specialize the pic language in order to draw components from an application area
• abbreviate long sequences of repetitive commands
• substitute particular values in commands by the use of macro arguments
• provide conditional text replacement depending on the value of its arguments
• provide recursive looping

Macro definitions are not local to blocks so care must be taken to avoid conflicts with macro
names.

The pic language includes basic macro facilities, but the m4 macro processor [2, 5] makes a
good companion to the language, so both will be mentioned. General-purpose macro defi-
nitions can be stored in files external to the diagram source and read in automatically. In
particular, the author has written a package called Circuit_macros for drawing electric circuits
and other diagrams using dpic and m4 [1], from which examples will be taken.

A dpic macro is defined by the statement
define name { contents }

where name may begin with a lowercase or uppercase letter. Then any separate appearance of
name in the following lines is replaced by the characters between the defining braces, including
newlines. If the name is given arguments of the form
name(x, y, z, . . .)

then, in the macro body, $n expands to the nth argument, which may be nul, if at least one
argument has been defined and n is a positive integer. Otherwise $n is not evaluated.

The line
undefine name

deletes the macro definition.

Dpic skips white space immediately preceding macro arguments so that, for example,
name(x,
y, z)

is equivalent to
name(x,y,z)

6

In a macro invocation, the arguments are separated by commas. An argument may contain
commas if they are enclosed within strings or () parentheses. A double quote character
within a string must be preceded by a backslash. Thus, for example, the macro invocation
name(ABc"\"t,"(,DE,F))

has one argument.

In a dpic macro, the value of $+ is the number of arguments given to the macro on invocation.
Thus if x is a macro name, the values of $+ when the macro is invoked as x, x(), x(8), x(8,9),
and x(,,) are respectively 0, 1, 1, 2, and 3.

To check whether an argument is null, put it in a string; for example,
if "$3" == "" then { . . . }

Values internal to a scope can be passed back through macro arguments with the := operator;
thus, executing the following
define m {[v = 5; $1 := v]}; y = 0; m(y)

gives y the internal value of v. Notice that y must be defined prior to macro expansion.

The use of macros will be illustrated in the following examples.

3.2.1 Finding roots

A root finder is a powerful tool for determining where lines or curves intersect in diagrams,
and can be implemented using a macro. Consider the trivial example in which we wish to find
the root of x2−1 between 0 and 2. First, define a macro called bisect by reading in a library
file containing definitions using a command such as
copy "filename"

or by writing a definition such as given below, which employs the method of bisection, a
suitably robust (but not particularly fast) algorithm. Define the two-argument macro corre-
sponding to the function of which we want to calculate the root:
define parabola { $2 = ($1)^2 - 1 }

In general, many statements might be required to calculate the function, but the essential
statement is to assign the function value to the name given by the second argument. Then
call the bisect macro using a command such as
bisect(parabola, 0, 2, 1e-8, x)

where the second and third arguments define the search interval, the fourth argument specifies
the solution precision, and the fifth argument is the name of the variable to be set to the root.
A basic version of bisect is given by

define bisect {
x_m = $2; x_M = $3
x_c = (x_m+x_M)/2
if (abs(x_m-x_M) <= $4) then { $5 = x_c } else {

$1(x_m,f_m)
$1(x_c,f_c)
if (sign(f_c)==sign(f_m)) then { bisect($1,x_c,x_M,$4,$5) } \
else { bisect($1,x_m,x_c,$4,$5) } }

}

7

x

y

z
This macro repeatedly calls parabola and then itself,
halving the search interval until it is smaller than the
prescribed precision. The Circuit_macros library ver-
sion operates essentially as above but avoids name
clashes by appending the value of the first argument
to the internal names.

A somewhat more sophisticated use of a root finder is
shown at the right. Drawing the spiral on the surface
of the sphere requires knowing the points of transi-
tion of the curve from visible to hidden and back. A
root finder provides a method that is both simple and
adaptable to other shapes. The source file Spiral.m4
makes use of both m4 macros and pic macros.

3.2.2 Composing statements

Dpic macro arguments can be expanded almost anywhere. Suppose that circles A and B have
been defined, with intersections at positions AB and BA found using the macro cintersect
from Circuit_macros, for example. Then the boundary of the region within both circles might
be drawn using the macro shown, invoked as lozenge(A,B):

define lozenge {
arc from $1$2 to $2$1 with .c at $2
arc from $2$1 to $1$2 with .c at $1 }

A
B

AB

BA

shade(0.5,lozenge(A,B))

3.2.3 Evaluating arguments

A macro argument is referenced as $n, where n must be an integer and may not be an integer
expression. Consequently, the following does not work in a dpic macro:
for i=1 to $+ do { c[i] = $i }

Instead, use the dpic statement
exec string

which executes the contents of string as if it were the current input line. Since
sprintf("format",expression,. . .)

behaves like a string, the following works:
for i=1 to $+ do { exec sprintf("c[i] = $%g",i) }

Macro arguments are passed verbatim, as for example, function(x,y+z), inside which $1 is
replaced by x and $2 is replaced by y+z. To pass arguments by value, use exec sprintf
..., for example, exec sprintf("function(%g,%g)",x,y+z). The recursive calls near the
bottom of the sorting algorithm shown are another example:

dpquicksort(a,lo,hi,ix)
Given array a[lo:hi] and index
array ix[lo:hi] = lo,lo+1,lo+2,...hi, sort

8

a[lo:hi] and do identical exchanges on ix
define dpquicksort { [if $3 > $2 then {
pivot = $1[($2+($3))/2]
loop(lo = $2; hi = $3, lo <= hi,

loop(,$1[lo] < pivot, lo = lo + 1)
loop(,$1[hi] > pivot, hi = hi - 1)
if lo < hi then {
tmp = $1[lo]; $1[lo] := $1[hi]; $1[hi] := tmp
tmp = $4[lo]; $4[lo] := $4[hi]; $4[hi] := tmp }

if lo <= hi then { lo = lo + 1; hi = hi - 1 })
if hi > $2 then { exec sprintf("dpquicksort($1,%g,%g,$4)",$2,hi) }
if lo < $3 then { exec sprintf("dpquicksort($1,%g,%g,$4)",lo,$3) }
}] }

3.2.4 Branching

Pic has a basic if-statement of the form
if expression then { if-true } else { if-false }

but lacks a case statement. Multiple branches can be defined by nested if statements but
there is another way. The macro
define case { exec sprintf("$%g",floor($1+0.5)+1); }

adds 1 to its rounded first argument to determine which alternative among the remaining
arguments should be executed. The semicolon (or a newline) forces dpic to perform the exec
statement before leaving the macro. For example,
case(2,
print "A",
print "B")

executes the second alternative (the third argument) and prints B.

3.3 Hiding variables

As mentioned in Section 3.1.2, locations inside a block are accessible from outside, but the
values of variables are not. Therefore, a block can be used to hide variables internal to a
macro, as in the following example:

define rgbtohsv { $4=0; $5=0; $6=0; [
r = $1; g = $2; b = $3
maxc = max(max(r,g),b)
minc = min(min(r,g),b)
if maxc==minc then { $4 := 0 } \
else {if maxc == r then { $4 := pmod(60*((g-b)/(maxc-minc)),360) } \
else {if maxc == g then { $4 := 60*((b-r)/(maxc-minc)) + 120 } \
else { $4 := 60*((r-g)/(maxc-minc)) + 240 }}}
if maxc == 0 then { $5 := 0 } else { $5 := 1 - (minc/maxc) }
$6 := maxc
] }

9

The three assignments in the first line of the example ensure that the variables exist when the
:= assignments are performed.

This is not the full story, however. Macro arguments are called by name rather than by value;
should the fourth argument, for example, be literally x[minc], then the interior variable minc
prevails. A block is only a partial solution to the problem of hiding variables, and care must
be exercised in chosing the names of arguments. A more robust solution is to call by value
using exec; thus,

exec sprintf("rgbtohsv(%g, %g, %g, h, s, v)",expr1,expr2,expr3)

In this case however, the last three arguments remain vulnerable to name clashes and should
be named with care.

When, as in the example, no drawing commands appear in a [] block, then the block has zero
size but has position Here so the block can affect the diagram bounding box if Here happens
to be outside the bounding box of drawn elements. An alternative to this complication is to
omit the [] brackets and rename the local variables to avoid name clashes. For example, r
above could be r_rgbtohsv and so on for other variables.

3.4 Looping

The pic language includes a basic for-loop, such as the following:
for x = 1 to 10 by 2 do { print x }

but there is no explicit language element (except macro recursion) for executing a block of code
an indefinite number of times. However, the for variable can be reset within the executable
code, as in the following example where the first macro argument is printed and doubled
repeatedly until it becomes greater than the second argument:
define series { x = $1; for i=1 to 2 do {
if x > $2 then { i = 2 } else { print x; x = x*2; i=1 } } }

If this trick seems like an abuse of language, it can be disguised somewhat by the definition
of a C-like loop. For example, suppose we wish to write
loop(x=1, x<10, x*=2,
loop(y=1, y<=4, y+=1,
print (x,y)))

Then the following defines a suitable mechanism with a loop depth index to allow nesting:
ld__ = 0
define loop {ld__+=1; $1
for lx__[ld__]=0 to 1 do {
if $2 then { lx__[ld__]=0; $4; $3 } else {lx__[ld__]=1}}
ld__-=1;}

However, loop() is a macro, so references to arguments in the body will refer to loop()
arguments, which may not be desired. In that case, use a for loop.

10

3.5 M4 macros

M4 is a simple but powerful macro language originally distributed with Unix systems [2], but
free versions are available for other operating systems. The use of this language requires an
extra processing step, but the power and flexibility of the macros easily make up for it. The
macro definitions are read before the text to be processed, typically by a system command
such as
m4 configurationfile.m4 diagram.m4 | dpic -g > diagram.tex

An m4 macro is defined as follows:
define(‘name’,‘contents’)

so that distinct occurrences of name will be replaced by contents in the following text. This
basic description is a vast simplification of the power that results from conditional substitution,
recursion, file inclusion, integer arithmetic, shell commands, and multiple input and output
streams. The online manual [5] is a good source of details.

A general rule might be that floating point computation is in the domain of dpic macros but
text substitution is often better done in m4 macros.

When m4 reads text, it strips off pairs of single quotes: thus, ‘text’ becomes text. If text
is read again, as when it is a macro argument, for example, then the process is repeated.
The single quotes serve to delay the evaluation of macros within text, as in macro definitions
described above. Therefore, to avoid m4 changing dpic macro definitions or LaTeX, enclose
them in single quote pairs.

Some simple applications of m4 macros are illustrated in the subsections that follow.

3.5.1 Branching

As an illustration of m4 macros, suppose that commands that are specific to the postprocessor
must be generated. Then the macro
ifpgf(‘pgf-specific commands’,‘other commands’)

for example, should expand to its first argument if pgf is to be the postprocessor, otherwise it
should expand to the second argument. To implement this, ifpgf is defined in the statement
define(‘ifpgf’,‘ifelse(m4postprocessor,pgf,‘$1’,‘$2’)’)

which tests for equality of the character sequences m4postprocessor and pgf. However, if
m4postprocessor is a macro, it is replaced by the macro text before the test is performed, and
if the macro text is pgf, then the first argument of ifpgf is evaluated. In the Circuit_macros
package, m4 is required to read a postprocessor-specific file before anything else, and that file
contains the required definition of m4postprocessor.

The built-in macro ifelse can have multiple branches, as illustrated below:
ifelse(m4postprocessor,pstricks,‘PSTricks code’,
m4postprocessor,pgf,‘TikZ PGF code’,
m4postprocessor,mfpic,‘Mfpic code’,
m4postprocessor,mpost,‘MetaPost code’,
m4postprocessor,xfig,‘Xfig code’,
m4postprocessor,postscript,‘Postscript code’,

11

m4postprocessor,pdf,‘PDF code’,
m4postprocessor,svg,‘SVG code’,
‘default code’)

3.5.2 Perpendiculars

The Circuit_macros vperp macro illustrates how m4 macros can extend the pic language.
The purpose is to generate a pair of values representing the unit vector perpendicular to a
given line, say.

define(‘vperp’,
‘define(‘m4pdx’,‘(‘$1’.end.x-‘$1’.start.x)’)dnl
define(‘m4pdy’,‘(‘$1’.end.y-‘$1’.start.y)’)dnl
-m4pdy/vlength(m4pdx,m4pdy),m4pdx/vlength(m4pdx,m4pdy)’)

The macro can be invoked as vperp(A) where A is the name of a line. Another invocation
might be vperp(last line). First, two macros (beginning with m4 to avoid name clashes) are
defined as the x-distance dx and y-distance dy of the end of the line from the start. The macro
evaluates to the pair −dy/

√
(dx)2 + (dy)2, dx/

√
(dx)2 + (dy)2, where the denominators are

calculated by the macro vlength.

3.5.3 Setting directions

The pic language defines the concept of the current drawing direction, which is limited to up,
down, left, and right. Two-terminal circuit elements, for example, might have to be drawn
in any direction, which calls for the ability to define diagrams without knowing their final
orientation and to rotate the result at will. This capability can be added to the basic pic
language by judicious use of macros.

First, instead of specifying positions in the usual way, such as in
line from (x1,y1) to (x2,y2)

for example, let us agree to write
line from vec_(x1,y1) to vec_(x2,y2)

where vec_(x1,y1) evaluates to
(a*x1 + b*y1, c*x1 + d*y1)

Then if a and d are cos(theta), b is -sin(theta), and c is sin(theta), this transformation
corresponds to rotating the argument vector by an angle theta. To produce relative coordi-
nates, the macro rvec_(x,y) evaluates to
Here + vec_(x,y),

so writing
line to rvec_(x1,y1)

draws a line from the current position Here to a point (x1,y1) defined with respect to rotated
coordinates relative to Here.

The Circuit_macros package makes extensive use of versions of the above two macros. The
angle and transformation constants are set using macros

12

Point_(degrees), point_(radians), or setdir_([U|D|L|R|degrees],default)
which have angles as arguments.

This usage is illustrated by the macro lbox, which draws a pic-like box oriented in the current
direction. It can be defined as

define(‘lbox’,
‘define(‘m4bwd’,ifelse(‘$1’,,boxwid,‘($1)’))dnl
define(‘m4bht’,ifelse(‘$2’,,boxht,‘($2)’))dnl
line from rvec_(m4bwd,0) to rvec_(m4bwd,m4bht/2) \

then to rvec_(0,m4bht/2) \
then to rvec_(0,-m4bht/2) \
then to rvec_(m4bwd,-m4bht/2) \
then to rvec_(m4bwd,0) ‘$3’ ’)

The macro is invoked as lbox(width, height, type); for example,
Point_(20); lbox(,,fill 0.9)

draws a light gray-filled box of default size at an angle of 20 degrees from the horizontal. In
the macro, the width and height of the box are first defined, using default values if the first
and second arguments are not given. Then a line is drawn to outline the box, and the fill
0.9 argument is appended to the line command to fill the box. A slightly more elaborate
version that encloses the box in [,] brackets is given by the Circuit_macros rotbox macro.

3.6 Subscripts

Dpic allows variables and capitalized labels to have subscripts; thus x and x[4] are distinct
variable names, and can be employed in expressions as usual. Similarly, P and P[3] are distinct
labels.

3.6.1 Assigning an array of numbers

We can assign an array of numbers to subscripted variables using statements such as
x[1] = 47
x[2] = 63
...

and so on, but generating the subscripts is inconvenient, particularly when these statements
are obtained by editing a data file. One way of entering the data is to employ the m4 macro
definition
define(‘inx’,‘define(‘m4x’,ifdef(‘m4x’,‘incr(m4x)’,1))m4x’)

Then, writing
x[inx] = 47
x[inx] = 63
...

and processing with m4 automatically generates the required subscripts. The macro sets m4x
to 1 if it is not yet defined, otherwise it increments m4x, and then it evaluates to m4x. On
completion of the assignments, m4x has the value of the last subscript.

13

Another way of assigning variables to a subscripted variable is by the definition
define array {
for i=2 to $+ do { exec sprintf("$1[%g] = $%g",i-1,i); } }

which equates the subscripted first argument to the values in argument 2, 3, . . . so that, for
example,
array(x,9,-4,7,4.2,0,0,7.9,0,0,10,11,12,13,14,10)

assigns the second to sixteenth arguments to x[1] to x[15] respectively.

Dpic does not define vector operations, but it is easy to define macros for them. For example,
macros can be used to define 3-dimensional vectors, transform them, and to project them onto
a drawing plane.

3.7 Splines

Dpic implements standard pic splines by default, as on the left in the following figure, which
shows the result of the command
spline up 1.5 then right 2 then down 1.5

x = .2

.6

1.0

1.4

A straight line is drawn along the first half of the first segment and the last half of the last
segment. The curve is tangent to the centres of the segments. The dpic result of including an
expression after spline, as in
spline x up 1.5 then right 2 then down 1.5

is shown on the right of the figure, as the tension parameter x varies from 0.2 to 1.4. The
curve begins at the start of the first segment and terminates at the end of the last segment.
The tension parameter can be varied to assist in fitting a multisegment spline to a curve. It
turns out, for example, that the optimum tension for approximating a circle using four splines
is the value 0.551784.

3.7.1 Curve fitting

Splines are drawn with respect to control points, but only pass through the first and last
point. Suppose that a sequence of points X[0], X[1], . . . X[n] has been given, and a spline is
to be found to pass through each point. The control points P[0], P[1], . . . P[n] have to be
calculated. These points satisfy the following equations:
P[0] = X[0]
P[i-1]/8 + P[i]*3/4 + P[i+1]/8 = X[i] for i = 1 to n-1
P[n] = X[n]

14

The Circuit_macros fitcurve macro performs the required calculations and draws the spline
to pass through the given points.

3.8 Postprocessor commands and color

Arbitrary postprocessor commands can be interspersed with pic statements to achieve effects
such as gradient fills, clipping, and transformations. There are two ways of passing commands
into dpic output.

Dpic lines beginning with the backslash \ are passed through to the output without modi-
fication. This method works well for TeX statements, LaTeX statements, and commands to
postprocessors that rely on the TeX macro processing.

The second method is the form
command "text"

or
command sprintf("format",expression,. . .)

both of which pass the contents of the string into the output stream without the enclosing
quotes. The string need not start with a backslash.

Both of the above methods add considerable power to the pic language, but there are two
issues. The first is that if a postprocessor transformation changes the size of a drawn element,
the pic processor will not know the new size parameters unless they are explicitly calculated.
The second is the challenge of designing a single macro that produces appropriate postproces-
sor code to have identical effect with different postprocessors.

The Circuit_macros library contains several routines that produce equivalent or nearly equiv-
alent results for several postprocessors. It is probably a good rule to stick with one or two
postprocessors such as Tikz-pgf or PSTricks.

Dpic defines a number of internal variables for controlling actions that depend on output
format. Internal variables optTeX, opttTeX, optpict2e, optPSTricks, optPDF, optPGF,
optMFpic, optPS, optPSfrag, optMpost, optSVG, and optxfig have numerical values 1 to
12 respectively, and variable dpicopt is given the value corresponding to the output format
specified on the command line. Therefore, conditional drawing with a case statement as
described on page page 9, or with if as in the following can be performed:

if (dpicopt==optPS) || (dpicopt==optPDF) then {
drawing commands for postscript or pdf }\

else { drawing commands for latex-related formats }

The variable optsafe is set to true if option -z has been specified or if dpic has been compiled
to allow only safe mode.

15

3.8.1 Color

From version 18, gpic allows coloured lines and filled objects as follows, and dpic allows them
where the postprocessor supports them:

object outlined string
object shaded string
object colored string

where string specifies a colour compatible with the postprocessor. For planar objects, the
third case is equivalent to

object outlined string shaded string
For the linear objects line, arrow, spline, dpic treats
colored string

to be the same as
outlined string

but fill can be added by explicitly writing
outlined string shaded string

The original pic language did not include the outlined or shaded attributes. Current pro-
cessors recognize these but know nothing about color except as strings attached to drawing
elements. What the string should contain depends on the postprocessor.

3.8.2 Filling with color

Basic pic shapes such as boxes, circles, and ellipses can be colored and filled using, for example,
ellipse shaded "color" outlined "color"

and, if the two colors are the same, this can be abbreviated as
ellipse colored "color"

where the color strings are compatible with the postprocessor. The m4 macro
rgbstring(red fraction,green fraction,blue fraction)

evaluates to a string compatible with the postprocessor (for postprocessors that allow it; that
is, Tikz PGF, PSTricks, SVG, MetaPost, PDF, and raw Postscript) so that the following
produces a circle filled in gold, for example:
circle shaded rgbstring(1,0.84,0).

More elaborate options can also be invoked. For example, with Tikz PGFoutput, the command
box shaded "orange, opacity=0.5"

sets the opacity of the fill, and with PSTricks output, the sequence
box shaded "lightgray,fillstyle=hlines*,linecolor=blue,
hatchwidth=0.5pt,hatchsep=5pt,hatchcolor=red,hatchangle=45"

produces a hatched multicoloured fill and is equivalent to
command "\pscustom[fillcolor=lightgray,fillstyle=hlines*,linecolor=blue,"
command "hatchwidth=0.5pt,hatchsep=5pt,hatchcolor=red,hatchangle=45]{%"
box

command "}%"

One limitation of the pic language is that it lacks the concept of a path composed of different
basic curves such as lines, splines, and arcs. Dpic, however, extends the shaded and outlined
directives to linear objects such as lines or splines where the output postprocessor allows.

16

Consider, for example, the following macro:

define slantbox { [# wid, ht, xslant, yslant, attributes
w = $1 ; h = $2 ; xs = $3 ; ys = $4
NE: (w+xs,h+ys)/2 ; SE: (w-xs,-h+ys)/2
SW: (-w-xs,-h-ys)/2 ; NW: (-w+xs,h-ys)/2
N: 0.5 between NW and NE ; E: 0.5 between NE and SE
S: 0.5 between SE and SW ; W: 0.5 between SW and NW
C: 0.5 between SW and NE
line $5 from N to NE then to SE then to SW then to NW then to N
] }

This macro implements a version of the xslanted and yslanted attributes recently introduced
for gpic boxes, for example
box wid 0.1 ht 0.5 xslanted 0 yslanted 0.1 \
shaded "Dandelion" outlined "black"

The slantbox macro defines the implied compass corners N, S, NE, Its fifth argument can
be used to fill or otherwise specify the line. For example, the command
slantbox(0.1,0.5,0,0.1,shaded "Dandelion" outlined "black")

is equivalent to the gpic example. The above macro can be modified easily to produce arbitrary
polygons, for example. The color Dandelion is automatically defined for PSTricks by the
LaTeX line
\usepackage[dvipsnames]{pstricks}

For TikZ-PGF, try
\usepackage[usenames,dvipsnames]{xcolor}
\usepackage{tikz}

3.8.3 External files

Dpic can send print output to a file (operating system permitting) using the command
print arg > "filename"

which creates the named file, or
print arg >> "filename"

which appends output to the named file if it exists and creates the file if not. If the -z option
has been invoked or dpic was compiled in safe mode, both of these give warning messages
rather than writing to the file.

External files can be used to implement forward referencing. For example, sometimes the final
size of a diagram component is required in order to draw a background object that will be
overlaid by the component. One solution is to process the diagram twice. In the following
code fragment, an assignment to x is written to an external file so that the required value of
x will be known after the file is read on the second pass.
x = default value
print "" » "datafile" # Make sure the file exists
copy "datafile" # On second pass, read x = required value
... draw objects and calculate required value y ...
print sprintf("x = %g",y) > "datafile" # Write out the assignment

17

4 SVG, PDF, and Postscript output

The -r (raw Postscript), -v (SVG), -d (PDF), and -x (xfig) options of dpic produce output
that is not intended to be processed directly by LaTeX or, in some cases, printed on paper.
Postscript output can be inserted into a document with the \includegraphics macro. This
command will also import pdf for processing by pdflatex.

4.1 Bounding boxes

The bounding box of a diagram is not always known exactly or even defined exactly, since it
can depend on the context in which the diagram is to be used. Within a diagram, different
line widths, mitred joints, splines, colored output, over-painting, arbitrary text, arbitrary
Postscript or SVG, and other complications are allowed; consequently dpic can only provide
an estimate of the exact bounding box.

There is apparently no reliable way to know the exact bounding box of arbitrary SVG text,
so dpic uses an approximation, and text placement on diagrams may have to be adjusted by
hand.

Truncated text: The dpic textht environmental variable often gives dpic a good estimate of
the actual height of embedded text, but the width of the text is more difficult to estimate.
Consequently, text is often truncated by the figure bounding box at the left or right edge
of the figure. Setting the width of strategic strings by hand, e.g. "string" wid 0.75 often
serves as a quick cure in specific cases, but is better done automatically as described in
the Circuit_macros documentation [1]. Otherwise, strategic move commands can be used to
enlarge the bounding box as illustrated at the end of the discussion below.

Dpic uses the constant-width Courier font in pdf files, which allows the width of strings to
be calculated from their height, which is specified by textht with default 11pt, or by the
“height number” attribute. The string width is calculated from the height and character
count, but can be set explicitly by using width number as the rightmost string attribute.

Psfrag output is another special case. If textht is set to a nonzero value, then its value
relative to 11bp is given as a scale factor to the psfrag \tex command. An alternative way
of changing the diagram text height is to set it in the main document; for example, {\small
\includegraphics{file.eps}}.

Postscript bounding boxes: For a while, the dpic %%BoundingBox output line simply gave the
nominal bounding box determined by line ends and other control points. The use of dpic
in server mode has induced a change that correctly defines the bounding box for very basic
diagrams. More explicitly, consider

.PS
box with .sw at 0,0
.PE

which draws a box with southwest corner line centres intersecting at Postscript coordinates
0,0 and northeast intersection at 54,36. Dpic -r augments this nominal bounding box by half

18

of the last linethick value (default linethick is 0.8 bp) in the outermost diagram scope to
produce the Postscript bounding-box definitions

%%BoundingBox: -1 -1 55 37
%%HiResBoundingBox: -0.4 -0.4 54.4 36.4

The %%BoundingBox line contains integer values that enclose the high-resolution coordinates.

PDF bounding boxes: PDF includes a MediaBox element which serves approximately the same
purpose as the postscript BoundingBox, and is calculated the same way. By default, dpic puts
the lower left corner of PDF output at coordinates (0, 0).

Manual bounding box adjustment: It may be necessary to adjust the bounding box manually.
To zero the automatic adjustment, put linethick=0 at the end of the outermost scope. Then
arbitrary margins can be added to the nominal box as shown below, where 2, 1, 1, and 0
points are added to the left, bottom, right, and top margins respectively:

.PS
Diagram: [

drawing commands
]
linethick = 0
move from Diagram.sw-(2,1)/72*scale to Diagram.ne+(1,0)/72*scale
.PE

5 Pic processor differences

Differences among processors, and between dpic and gpic particularly, are summarized below.
Normally, the only changes required to process correct pic or gpic input with dpic are changes
to {. . .} instead of X. . .X syntax as explained below, together with text formatting if the original
code was written for groff. The remaining differences documented below are small syntactical
differences or relate to the use of PSTricks or the other dpic output formats. Sometimes,
differences in default syntax (such as for arcs) must be considered.

Gpic is being actively maintained so some of the items below apply only to older versions.

5.1 Command-line options

They are completely different, of course. Type dpic -h to see a list of dpic options.

5.2 Output formats

Gpic -t output consists of a sequence of \special statements contained in the TeX box
\box\graph. The \special statements are automatically copied into the .dvi file for inter-
pretation by a printer driver such as dvips.

19

Dpic does not generate tpic specials. See the option list in Section 2 for output formats.

5.3 . lines and program-generated pic

Gpic passes lines beginning with . through to the output, thereby allowing arbitrary Troff
macros to be interspersed with pic drawing commands. Some programs that generate pic
output automatically insert the Troff line
.ps 11

on the assumption that the text point size should be 11. Dpic ignores non-continuation
lines beginning with . within pictures. Some programs (e.g., pstoedit) add Troff comment
lines beginning with .\" outside the .PS, .PE delimiters. These lines must be dealt with
separately.

5.4 \ lines

Both gpic and dpic pass lines beginning with \ to the output but dpic does not automatically
append a % at the end as gpic does.

5.5 for-loop and if bodies

In gpic, a for loop has the form
for variable = expr1 to expr2 [by [*]expr3] do X body X

where X is any character not occurring in body, but { body } is also allowed. In dpic only
the latter is allowed. Similarly, the required form of an if statement for dpic is
if expr then { if-true } [else { if-false }]

The test for termination of the multiplicative form of the for loop is not identical for dpic and
gpic but the effects are identical for positive parameters.

Both gpic and recent versions of dpic allow the loop index variable to be changed within the
loop, so infinite repetition or control of termination by a test are possible.

5.6 End of line

The line end is significant in the pic grammar. However, dpic ignores line ends following then,
{, else, or end of line. Both the CR (octal 015) and NL (octal 012) characters are treated as
line ends.

If the last character of a line is \ (but not within a string), then reading is continued on the
next line. Dpic allows this to occur within keywords or constants. Strings can contain multiple
lines.

The # character begins a comment which ends at the end of the line.

The construction

20

if condition then { if-true }
else { if-false }

produces an error with all pic interpreters. To avoid this error, write
if condition then { if-true } \
else { if-false }

5.7 Logic

Dpic and gpic give slightly different default precedences to the logical operators !, &&, ||, ==,
!=, >=, <=, <, and >, so judicious use of parentheses may sometimes be in order. Dpic also
requires comparisons to be put in parentheses in numerical expressions; e.g.,
x = ("text1" == "text2")

The construct x<A,B> is intended to have the same meaning as (x between A and B) but,
in some obscure circumstances, all pic interpreters have difficulty determining whether the <
character is part of such an expression or is a logical comparison operator. Dpic treats < as a
comparison in the expression following if so the form (x between A and B) should be used
in such expressions, e.g.
if (0.5 between A and B).y < 2 then { . . . }

5.8 then

Versions of gpic up to 1.19 ignore the then keyword, so that
line -> then up 0.5

draws one line segment and is the same as
line -> up 0.5

whereas dpic does not ignore then, and draws two line segments. Newer versions of gpic also
draw two segments.

5.9 line, spline, arrow, move

Dpic treats the defaults for linear objects consistently with planar objects with respect to the
at modifier. Versions of gpic up to 1.19 treated them differently:

In dpic, line at Here means line with .center at Here.
In gpic, line at Here means line with .start at Here.

In dpic, the location corresponding to last line is last line.c.
In gpic, the location corresponding to last line is last line.start.

In dpic version 2017.01.01 and later, last line.wid returns the arrowhead width of the line
or the default arrowhead width if the line has not been given an arrowhead; similarly for .ht
and for the other linear objects including move and, of course, arrow.

21

The compass corners of multisegmented linear objects are not defined in descriptions of the
pic grammar and they should be used with care.

5.10 Arc defaults

Gpic and dpic have different algorithms for picking a default radius. The best practice is to
specify arcs completely. There is also ambiguity in the pic language. The statement
arc cw rad x from A to B

does not define a unique arc. There are two arcs, with centres on opposite sides of the line
joining A and B, that satisfy this specification, and the interpreter will choose one. Instead,
use
arc cw from A to B with .c at C

5.11 Strings

Strings are arbitrary character sequences between double quotes, with double quotes in strings
preceded by the backslash character. Equivalently, a string is produced by the C-like sprintf
function
sprintf("format" [, expression, . . .])

The C sprintf function is used for implementing this; therefore, the precision of default formats
such as %g may vary by machine and compiler. To produce transportable results, specify the
precision completely, e.g. %8.5f. As in C, the pair %% in the format string prints the percent
character. Only the f, e, g formatting parameters are valid, since expressions are stored as
floating-point numbers, e.g.
line sprintf("%g%g0", 2, 0) above

is equivalent to
line "200" above

Similarly,
command sprintf("\pscircle(%g,%g){%g}",0,0,0.5)

places the formatted string into the output. The numerical sprintf arguments can be arbi-
trary expressions rather than the constants shown.

Dpic allows strings to be concatenated by the + operator; thus,
"abc" + sprintf(" def%g",2)

is equivalent to "abc def2".

In a macro, a dollar sign followed by an integer in a string will expand to the corresponding
macro argument if it is defined. Separate the dollar sign from the integer to avoid expansion,
as in the TeX strings "{\$}1", "$\$ 1$", or "${0}$", for example.

Both dpic and gpic treat \ as an escape character prior to the double-quote character in a
string, so "\"" is a length-one string containing the double quote. Otherwise, the backslash
is an ordinary string character. For example, the characters \\"U in a string are output as
\"U to produce Ü when processed by LaTeX. A string with a backslash as last character
has to be generated using a macro; for example, if we write define charstr {"$1"} then
charstr(abc\) evaluates to a string containing the required final backslash.

22

Both dpic and gpic allow logical comparison of strings. Put the comparison in parentheses if
it is to be used in a numerical expression.

String height and width are unscaled on final output from dpic since these depend on later
formatting by LaTeX.

5.12 print arg, . . .

Dpic allows only one argument, which may be an expression, position, or string. To print
several quantities at once, use
print sprintf(. . .)

to generate a string and, if the string is complicated, remember that string1 + string2 + . . .
evaluates to one string.

5.13 command arg, . . .

Arbitrary commands are sent to the standard output stream. Dpic allows only one argument,
which is a string or sprintf(. . .).

5.14 Operating system commands

With dpic, the required form for a shell (operating system) command is
sh "shell command"

or
sh sprintf("format",expression,. . .).

The value returned by the operating system can be captured by putting the command in
parentheses; for example,
if (sh "shell command") == 0 then {...}

5.15 copy

Dpic supports the command
copy "filename"

but does not directly support the gpic commands
copy [filename] thru X body X [until word]
copy [filename] thru macro [until word]

These functions and many more are readily implementable with dpic in any unix-like envi-
ronment. For example, a basic implementation of copy filename thru macro is given by the
following macro:

copythru(macro_name,"filename")
Implements copy filename thru macro_name
for data separated by commas, spaces, or tabs

23

define copythru { sh "sed -e ’s/^[\t]*/$1(/’ -e ’s/[\t]*$/)/’ \
-e ’s/[, \t][\t]*/,/g’ $2 > copy_tmp__"

copy "copy_tmp__"
sh "rm -f copy_tmp__" }

The lines of the filename file are changed to calls of the macro_name macro and written into a
temporary file, which is then read by dpic. Such usage is not as simple as a built-in function
but allows greater flexibility of data because the copythru macro can be replaced by one
customized to suit.

5.16 plot

The plot command is deprecated in gpic and not allowed in dpic.

5.17 fill

In gpic, a fill value of 0 means white, 1 means black. Dpic uses 0 as black and 1 as white as
do Postscript and the original ATT pic.

The pic language specifies fill only for box, ellipse, and circle, but fill is supported by dpic
using the shaded directive. The concept of a path containing several arbitrary linear objects
does not exist in the pic language but can be implemented using postprocessor commands
inserted into command string statements. Arbitrary paths can also be constructed using a
single spline and the continue statement.

5.18 Scaling

Dpic implements a scaled attribute, so that
box scaled 1.2

produces a box with dimensions scaled by 1.2, and
[box; line scaled 3; circle] scaled 0.5

scales all objects within the block by 0.5. The latter can be used when different parts of a
diagram require different scaling. For example, if file component.pic contains a component
scaled by 25.4, then the following allow it to be used:
[copy("component.pic")] scaled 1/25.4

As always, line thicknesses are not scaled.

5.19 Arrowheads

Pic processors provide a limited variety of built-in arrowhead shapes. Dpic draws arrowheads
according to the environment variable arrowhead as shown below.

arrowhead = 0
arrowhead = 3

default

24

Any other value of arrowhead produces the default filled head shown but also results in an a
head shape native to the postprocessor in some cases. The default value of arrowhead is 1 in
conformance with other pic processors. Postprocessor parameters can be changed using lines
of the form
command "postprocessor commands"

Changing the line thickness does not affect arrowhead size parameters, which have to be
changed explicitly by either of the following methods. The line thickness is specified in points
but the arrowhead size parameters are in drawing units:

Method 1 (global change within the current block):
linethick = 2 # default 0.8 (bp)
arrowht = 0.18 # default 0.1 (in)
arrowwid = 0.09 # default 0.05 (in)
arrowhead = 0 # default 1
arrow

Method 2 (put a type 0 arrowhead on the current object):
arrow -> 0 thick 2 ht 0.18 wid 0.09

There is a subtle language problem concerning arrowheads. Let us agree that the following
examples should all produce an arrow of length 1 inch and arrowhead width 1 millimetre:

.PS
arrow right 1 width 1/25.4

.PE

.PS
scale = 25.4
arrow right 25.4 width 1

.PE

.PS 1
arrow right 1/4 width 1/25.4

.PE

The original (ATT) pic fails on the second example, insisting that arrowhead dimensions be
given in inches. Gpic fails on the third by scaling the arrowhead on final output. Although it
might be argued that this is a feature, it causes serious awkwardness when diagrams are to be
scaled to exact final dimensions using the .PS x construction, since the effective scale factor
is unknown until the .PE line is processed. Dpic generates the same arrow in all three cases,
treating arrowhead parameters like line thickness (unscaled) parameters on final output.

5.20 Compass corners

Dpic consistently requires a dot before compass corners, so the gpic line
x at center of last box

should be written for dpic as
x at .center of last box

25

5.21 continue

In dpic, the continue command appends a linear drawn object to the previous drawn object
as if then had been used in the original command, but calculations can be performed to
determine size or placement of the appended part as in, for example,
line up right

calculations
continue down

more calculations
continue up left

The keyword continue can also be used slightly differently. The line drawn by
move to (0,0); line right 1 then to (Here,(2,1))

terminates at (0,1) since Here is the position (0,0), whereas the following terminates at
(1,1) since Here is (1,0):
move to (0,0); line right 1; continue to (Here,(2,1))

Input parsing would be possible if continue were to be replaced by then:
move to (0,0); line right 1; then to (Here,(2,1))

The keyword continue would not have been necessary but it has been retained for historical
compatibility.

5.22 Subscripted variables and locations

Dpic allows subscripted variables and positions, as an aid in geometric calculations such as
fitting splines to a set of points. Thus Pos[expression] is a valid name for a position. The
rounded integer value of the expression is used. Similarly, x[expression] is a valid variable
name. There are no array operations, but it is easy to write macros for them.

5.23 Splines

Gpic extends the ATT pic grammar to make line 0.5 legal and mean “a line of length 0.5
in the current direction.” All linear objects are treated similarly. Dpic does the same except
for splines. In the statement
spline x from A to B then to C . . .

the parameter x is a tension parameter, normally between 0 and 1, to control the spline
curvature. If x is not present as in the normal pic grammar, the curve starts with a straight
line halfway along the first segment and ends with a straight line along the second half of the
last segment. However when x is present, dpic draws the spline from the start of the first
segment to the end of the last segment.

5.24 Arithmetic

In an expression, gpic allows terms of the form x*-y, whereas dpic produces an error message.
Use x*(-y) or the equivalent.

26

Dpic allows the assignment operators +=, -=, *=, /=, %=, which do not create a new variable but
update the value of the variable already defined. Thus, the assignment x += 1 is equivalent
to x := x + 1.

5.25 Vector arithmetic

The dpic grammar permits the following:
X: Y + Z

where Y and Z are defined positions. Gpic requires
X: Y + (Z.x,Z.y)

Dpic also allows scalar multiplication:
X: Y*2/3 (but not X: 2/3*Y)

5.26 Positions

If X is a position, then (X) is a valid position for dpic but not old versions of gpic, which gave
an error for
(a between A and B) + (x,y)

Dropping the parentheses to avoid the error gives
a between A and B + (x,y)

which is not the same resulting position. Use dpic or a recent gpic if you need this construction.

5.27 int()

Gpic int() up to version 1.19 computed the floor of its argument rather than the integer part
as specified by ATT pic. Dpic provides both the floor() and int() functions but int()
does not compute the same value as these versions of gpic int() for non-integer negative
arguments.

5.28 exec

In dpic the contents of a string can be executed using
exec string

or
exec sprintf(format string, args)

as if the string were the next line of input. This enables the programmed generation of names
and labels, for example:
for i=1 to 10 do exec sprintf("A%g: x%g,y%g",i,2*i,3*i)

5.29 Functions

A few additional mathematical functions are defined in dpic: abs, acos, asin, expe, floor,
loge, sign, tan, and pmod.

27

5.30 PSTricks anomaly

At some time in the mid 2000 to 2010 interval, the behaviour of the low-level PSTricks
command \psbezier was changed to match the existing context-dependent behavior of the
\pscurve command within the \pscustom environment2. Dpic does not generate the \pscurve
command, but the new behaviour affects dpic-defined filled splines. The “normal” PSTricks
spline syntax is
\psbezier(x1,y1)(x2,y2)(x3,y3)(x4,y4) . . .

However, if a correctly defined path containing this spline as its second or later subpath is
now enclosed in a \pscustom environment, the path coordinates are incorrect; (x1,y1) must
be omitted since, under these conditions, \psbezier takes its first coordinate pair to be the
current position. This anomaly would not be a significant problem if it were always known at
the time of generating the \psbezier coordinates whether the curve will be enclosed within
\pscustom, but such is not the case.

Dpic always generates four (or more) coordinate-pair arguments as in the normal syntax, some-
times resulting in the addition of an extraneous path segment produced within \pscustom.

For some versions of PSTricks, a workaround for the problem has been to insert a PSTricks
patch in your LaTeX code if you are enclosing splines within \pscustom commands. More
recent versions of the PSTricks package have changed again but, starting from the August 27,
2010 pstricks.tex distribution file, a parameter noCurrentPoint has been introduced, which
prevents \psbezier (and other commands) from taking the current point as the first coor-
dinate pair. The following line inserted into a latex document avoids an error message if the
PSTricks version is August 2010 or later:

\psset{noCurrentPoint}

Older versions of PSTricks are handled using the following workaround:

command "\makeatletter\@ifundefined{ifPst@noCurrentPoint}%
{\@ifundefined{MPS@Patch}{\gdef\MPS@Patch{}%
\typeout{ Dpic -p: patching psbezier in pstricks.tex (some versions) }%
\def\psbezier@ii{\addto@pscode{%
\ifshowpoints true \else false \fi\tx@OpenBezier%
\ifshowpoints\tx@BezierShowPoints\fi}\end@OpenObj}}{}}%

{\@ifundefined{MPS@PatchMsg}{\gdef\MPS@PatchMsg{}%
\typeout{ Dpic -p: Setting noCurrentPoint to use all coord pairs }}{}%
\psset{noCurrentPoint}}\makeatother%"

This patch need only be executed once per LaTeX run rather than with every diagram.

If the above fix does not work then, for now, do not insert spline commands into paths within
the \pscustom environment, unless the spline is the first path segment. It is probably safe to

2The context-dependency of \pscurve was taken to be a feature rather than a bug. An alternative that
preserves command orthogonality would have been to define two curve (and spline) commands for the in-
pscustom and out of pscustom contexts. Such are the difficulties of software library maintenance.

28

say that this anomaly does not occur very often, but it can cause considerable difficulty when
it does; the cure is to update your PSTricks files.

Legacy diagrams can often be treated in the following way, if pstricks97.tex is available on your
machine as in MiKTeX distributions, for example. Replace the line \usepackage{pstricks}
with \usepackage[97]{pstricks} or \input{pstricks97.tex}. However, this method pre-
cludes using the newer PSTricks facilities.

References

[1] J. D. Aplevich. M4 macros for electric circuit diagrams in latex documents, 2015. Avail-
able with the CTAN Circuit_macros distribution: http://www.ctan.org/tex-archive/
graphics/circuit_macros/doc/CMman.pdf.

[2] B. W. Kernighan and D. M. Richie. The M4 macro processor. Technical report, Bell
Laboratories, 1977.

[3] B. W. Kernighan and D. M. Richie. PIC—A graphics language for typesetting, user
manual. Technical Report 116, AT&T Bell Laboratories, 1991.

[4] E. S. Raymond. Making pictures with GNU PIC, 1995. In GNU groff source distribution;
also http://www.kohala.com/start/troff/gpic.raymond.ps.

[5] R. Seindal et al. GNU m4, 1994. http://www.gnu.org/software/m4/manual/m4.html.

29

http://www.ctan.org/tex-archive/graphics/circuit_macros/doc/CMman.pdf
http://www.ctan.org/tex-archive/graphics/circuit_macros/doc/CMman.pdf
http://www.kohala.com/start/troff/gpic.raymond.ps
http://www.gnu.org/software/m4/manual/m4.html

DPIC(1) DPIC(1)

6 Appendix A: dpic man page

NAME

dpic - convert pic-language input to LaTeX-compatible and other formats

SYNOPSIS

dpic [-defghmprstvx] [-z] [infile] [> outfile]

Typically, infile is of the form name [.pic] and outfile is of
the form name .[tex|eps|pdf|fig|mp|svg]

OPTIONS

(none) LaTeX picture-environment output (very limited font-based drawing com-
mands)
-d PDF output, basic strings
-e pict2e output
-f Postscript output, strings in psfrag format
-g TikZ-pgf output
-h write help message and quit
-m mfpic output (see mfpic documentation)
-p PSTricks output
-r raw Postscript output, no automatic string formatting
-s MetaPost output
-t eepicemu output (slightly less limited than LaTeX picture output)
-v svg output
-x xfig 3.2 output
-z safe mode (access to external files disabled)

DESCRIPTION

Dpic accepts a tight subset of the pic drawing language accepted by GNU pic (some-
times named gpic) or AT&T pic, and emits lower-level drawing commands for inser-
tion into LaTeX documents, for processing by the xfig or Inkscape drawing tools, or
for direct display as encapsulated Postscript, PDF, or SVG. LaTeX-compatible out-
put can contain arbitrary text for formatting. Commands to be passed through to the
postprocessor (PSTricks, Tikz-pgf, etc.) can be included. Dpic returns EXIT_SUCCESS
(normally 0) if messages no more severe than warnings were generated, otherwise
EXIT_FAILURE (normally 1).

A few pic-language extensions unique to dpic are implemented for specific purposes.

30 2018.02.01

DPIC(1) DPIC(1)

LANGUAGE SUMMARY

Input consists of a sequence of lines. The first line of a picture is .PS and the last
is .PE, with lines between these two converted into low-level drawing commands for
the postprocessor chosen by the option. Lines outside of .PSPE pass through
dpic unchanged.

Coordinates
Coordinate axes in the pic language point to the right and up. The drawing units are
inches by default but the statement

scale = 25.4

at the beginning of the diagram has the effect of changing the units to millimetres.

Drawn objects
The primitive drawn objects consist of the planar objects box, circle, ellipse;
the linear objects line, arrow, move, spline; and arc, which has characteristics
of both planar and linear objects. A block is a pair of square brackets enclosing other
objects: [anything] and is a planar object. The complete diagram is contained
implicitly in a block.

A string is a planar object similar to a box, but the pic language also allows strings
to be attached to other objects as overlays, in which case they are part of the object.

The current drawing position Here is always defined. Initially and at the beginning of
a block, Here is 0,0. Similarly, the current direction, which can be any of up, down,
left, right, is set as right initially.

Each drawn object has an entry point and exit point that depend on the current
direction. The entry point is placed by default at the current position. Objects can
also be placed explicitly with respect to absolute coordinates or relative to other
objects. The exit point becomes the new current position.

Labels
A label in pic is an alphameric sequence that starts with an uppercase letter. Dpic
allows variables and labels to be subscripted; thus T and T[5] are distinct labels. The
value in brackets can be any expression but it is rounded to the nearest integer value.
A label gives a symbolic name to a position or drawn object; for example,

Post: Here + (1,2)
Bus[23]: line right 4

Defined points
Once drawn, a linear object has defined points .start, .center, and .end, which
can be referenced as known positions, for example,

L: line; line up 0.5 from L.c

where .center has been abbreviated as .c

The defined points for a planar object are the compass points on its periphery given by

31 2018.02.01

DPIC(1) DPIC(1)

.n, .s, .e, .w, .nw, .ne, .se, .sw, together with .center, .top, .bottom,

.right, .left. For an arc, these points correspond to the circle of which the arc is
a part, with the addition of .start and .end.

A block has defined points similar to a box, but can also have others in its interior.
For the example

A: [circle; Q: [line; circle]; T: Q.n]

the defined points are as follows:

The points of the outer block as if it were a box, for example, A.ne

A position defined in the block, for example, A.T

The defined points of labeled objects inside the block, preceded by a dot, for example,
A.Q (the centre of block Q), or A.Q.ne (the northeast point of Q).

The defined points of enumerated objects inside the block, preceded by a dot (but
make sure there is a space after the dot if it is followed by a number rather than
an expression in braces), for example, A.Q. 1st circle.n or (better) A.Q.{1}st
circle.n

Language elements
The lines defining a picture are separated by newline characters or semicolons. New-
lines are significant except after then, ;, :, {, else, or newline.

A line is continued to the next if the rightmost character is a backslash.

Non-continuation lines beginning with a period are ignored, except for .PS and .PE
lines.

The pic source may be commented by placing each comment to the right of a #
character (unless the # is in a string).

The language elements include the following:

A drawing command with optional label, for example, box or A: box

A position-label definition, for example A: position

An assignment to a variable, for example x = 5

A direction (to change the default), for example, up

Branching is performed by

if expr then { dotrue } else { dofalse }.

The looping facility is

for variable = expr to expr [by [*] incr] do { anything }.

The loop variable is incremented by 1 by default, otherwise by incr (which may be

32 2018.02.01

DPIC(1) DPIC(1)

a negative expression) unless it is preceded by the asterisk, in which case the loop
variable is multiplied by incr. The loop variable may be changed by statements in
the loop, thereby controlling the number of loop repetitions.

Braces occur in several contexts. When used independently of other language ele-
ments, as

{ anything }

the left brace saves the current position and direction, and the right brace restores
them to the saved values after the enclosed lines have been processed.

Arbitrary postprocessor commands can be generated using

command string,

which inserts the contents of string into the output. The string contents must be
compatible with the chosen postprocessor. Similarly, any line that begins with a
backslash is copied literally to the output.

The line

exec string

executes the contents of string as if it were a normal input line.

To execute operating-system shell commands, use

sh string

and to read lines from an external file, use

copy string

These commands are disabled by the dpic option -z or by a compile-time switch.

The command

print expr|position|string [> string | >> string]

prints or appends its argument to the file named in the string on the right, or by
default to the standard error. Printing to a file is disabled by the -z option.

Macros
The pic language includes macro definition and expansion, using

define name { anything },

so that, when name appears alone or with arguments as name (arg, ...) then it is
replaced by the contents between the braces in the definition. A comma in an argu-
ment list is ignored within a string or parentheses. In this substitution, occurrences
of $1 are replaced literally by the first argument (not by its value, if any), and so on
for other arguments.

33 2018.02.01

DPIC(1) DPIC(1)

The value $+ in a macro is the number of arguments given to the macro. dpic ignores
white space (spaces, new lines, and tab characters) that directly precede an argument
in a macro invocation. A macro definition can be deleted by

undefine name

Macro definitions are global, which may require judicious undefinition of macros if
there is a risk of name clashes.

Drawing commands
An object is drawn using the following general format:

[Label :] object [attributes] [placement] [strings]

The items following object can occur in any order, but the order can make a difference
to the drawn result, since lines are read and interpreted from left to right. Defaults
are assumed for all drawing parameters as necessary. For example, the sequence

circle "Chew"; arrow; box "Swallow"
line; arc cw ->; ellipse "Digest"

draws a simple flow diagram using default sizes for all objects, with centered words
in the circle, box, and ellipse.

Attributes
An attribute is a keyword or keywords followed by expressions as appropriate. Attributes
are used to set parameters that control the placement, size, and appearance of objects.

The dimension attributes are the following, showing valid abbreviations:

height|ht|width|wid|radius|rad|diameter|diam|scaled expr

When appended to linear objects, height and width apply to arrowhead dimensions.
The scaled attribute scales the object by expr.

The postprocessed size of a string is unknown in advance to the pic processor, but
once known, the bounding box dimensions can be specified explicitly as for other
drawn objects, as shown:

string wid expr ht expr

The thickness of lines defining an object are modified using the environmental variable
linethick or the attribute

thickness|thick expr

expressed in points. Line thickness is independent of any scaling.

Solid lines are drawn by default; this can be modified with

solid|invisible|invis

or with

34 2018.02.01

DPIC(1) DPIC(1)

dotted|dashed [expr]

the optional expression in the latter setting the length and distance between dashes
or dots.

The following attributes are for putting arrowheads at the start, end, or both ends of
a linear object:

<-|->|<-> [expr]

The default for arrow objects is ->. The shape parameter expr may be omitted, in
which case the value of the environment variable arrowhead is used. The accepted
values of expr are currently 0, 1, and 3, with 1 the default.

The drawing direction of an arc is changed by the attribute

ccw|cw

with ccw the default.

To fill an object with a shade of gray, use the attribute

fill [expr]

where the value of expr can vary from 1, meaning white, to 0, meaning black. A
linear object defining a path can be filled where the postprocessor allows, currently
for MFpic, MPost, PDF, PGF, PS, PSfrag, PSTricks, and SVG output.

Line color can be set using

outline|outlined string

The pic language knows no details about color; the string contents must be compatible
with the postprocessor. For example, the predefined colours of LaTeX or Tikz-pdf
packages can be specified, or custom colors can be defined using the

command string

facility so that the postprocessor will know about them.

Filling by color is similar, using the attribute

shaded string

and, when the object is planar and both the fill and outline colors are the same, the
two attributes can be combined as

colour|color|colored|coloured string

in which all four spellings are equivalent.

Finally, the attribute

same

35 2018.02.01

DPIC(1) DPIC(1)

duplicates the properties of the previously drawn object of the same type, but with
the current default placement.

In addition to scale changes effected by the scale variable, the size of the complete
picture can be set by appending one or two terms to the .PS line as shown:

.PS [x [y]]

where x and y evaluate to constant values. On encountering the .PE line, the picture
width w and height h are calculated. If x > 0 then the picture is scaled so that w = x.
If h > y > 0 or if x = 0 and y > 0 then the picture is scaled so that h = y. Horizontal
and vertical scaling are not independent. Text size, line thickness, and arrowheads
are not scaled. The units are inches, so for example,

.PS 100/25.4

sets the final picture width to 100 mm. Printed string text may extend beyond the
rectangular boundaries defined by w and h unless the text dimensions have been
explicitly set.

If the final diagram width exceeds the environment variable maxpswid or the height
exceeds maxpsht, both of which can be changed by assignment, then the diagram is
scaled as for x and y above.

Placement of drawn objects
An object is placed by default so that its entry is at the current point.

Explicit placement is obtained with

object at position

which centers the object at position, or

object with defined point at position

for example,

arc cw from position to position with .c at position

A block can also be positioned by reference to a displacement from its lower left
corner, for example,

A: [contents] with (0.5,0.2) at position.

Linear objects are placed by default with the .start point placed at the current
drawing postion; otherwise linear objects are defined using a linespec, which is of the
form

linespec = from position | to position | direction [expr]
| linespec linespec
| linespec then linespec

where the second line means that linespecs can be concatenated, and the third that

36 2018.02.01

DPIC(1) DPIC(1)

multisegment linear objects are drawn using multiple linespecs separated by then.

As an example, the following draws a triangle with the leftmost vertex at the current
point:

line up 2 right 1.5 then down 3 then to Here

Exceptionally, the linespec

to position to position to ...

is multiple and does not require the then keyword.

A single expr is also an acceptable linespec immediately after a linear object and
means that the object is drawn to length expr in the current direction. The exception
to this is

spline [expr] linespec

for which the expr is a spline tension parameter. If expr is omitted, a straight line is
drawn to the midpoint of the first two spline control points and from the midpoint of
the last two to the last point; the spline is tangent to all midpoints between control
points. If expr is present, the spline is tangent at the first and last control points
and at all other midpoints, and the spline tension can be adjusted. Tension values
between 0 and 1 are typical.

In cases where all of the points of a multisegment linear object are not known in
advance or inconvenient to calculate, the drawing command

continue linespec

will append a segment to the previously drawn linear object as if continue were
then, with two differences. Arbitrary calculations may be done between the previous
object and the continue statement, and the current point is the exit point of the
previous object.

The construction

line from position to position chop [expr]

truncates the line at each end by the value of expr or, if expr is omitted, by the current
value of environment variable circlerad

Otherwise

line from position to position chop expr1 chop expr2

truncates the line by the two specified distances at the ends. Truncation values can
be negative.

The attribute

by position

37 2018.02.01

DPIC(1) DPIC(1)

is for positioning, for example,

move by (5,6)

Variables and expressions
Variable names are alphameric sequences beginning with a lower-case letter, option-
ally subscripted as for labels, and are defined by assignment. For example, the fol-
lowing line defines the variable x if it does not already exist in the current scope:

x = expr

The scope of pic variables is the current block in which they are defined, including
blocks defined later within the current block. The assignment

x := expr

or any assignment using an operator in the set

:= += -= *= /= %=

requires x to have been defined previously in the current block or an enclosing block.

Expressions consist of floating-point values combined using the unary operator "!" for
logical negation and the usual parentheses and binary operators in decreasing order
of precedence:

ˆ
* / %
+ -
== != >= <= < >
&&
||

In logical tests, the value 0 is equivalent to false and a nonzero value to true, with
resulting true value of 1.

A floating-point value is obtained as an integer, a number with e syntax, a function
value, a size value of a drawn object, for example,

last box.ht,

or the horizontal or vertical coordinate of a position, obtained respectively as

position .x|.y

The single-argument functions are abs, acos, asin, cos, exp, expe, int, log,
loge, sign, sin, sqrt, tan, floor. The functions exp and log are base 10.
The function rand() delivers a random number between 0 and 1, and rand (expr)
initializes the random number generator.

The two-argument functions are atan2, max, min, pmod where pmod is the modulo
function delivering a positive value.

38 2018.02.01

DPIC(1) DPIC(1)

Predefined variables
The following variables are predefined on invocation of dpic: optTeX, opttTeX,
optPict2e, optPSTricks, optPDF, optPGF, optMFpic, optPS, optPSfrag,
optMpost, and optSVG. Variable dpicopt is set according to the output option cho-
sen, so that if one of options -p or -g has been invoked for example, then the test

if dpicopt == optPSTricks || dpicopt == optPGF then { ... }

will selectively execute its body statements. In addition, variable optsafe has value
true if the -z option has been selected or dpic has been compiled in safe mode.

Predefined environment variables
A set of environment variables establishes the default values of drawing parameters
within the scope of the current block. Their values are inherited from the superior
block, but can be changed by assignment. They can be used in expressions like other
variables. The variables, their default values, and default uses are given below

arcrad 0.25 arc radius
arrowht 0.1 length of arrowhead
arrowwid 0.05 width of arrowhead
boxht 0.5 box height
boxrad 0 radius of rounded box corners
boxwid 0.75 box width
circlerad 0.25 circle radius
dashwid 0.05 dash length for dashed lines
ellipseht 0.5 ellipse height
ellipsewid 0.75 ellipse width
lineht 0.5 height of vertical lines
linewid 0.5 length of horizontal lines
movewid 0.5 length of horizontal moves
movewid 0.5 length of horizontal moves
textht 0 assumed height of text (11pt for postscript or PDF)
textoffset 2.5/72 text justification gap
textwid 0 assumed width of text

When a value is assigned to the environment variable scale, all of the above values
are multiplied by the new value of scale. This is normally done once at the top of
the outermost scope of a diagram. Drawing units are thereby changed but the default
physical sizes of drawn objects remain unchanged since dimensions are divided by the
outermost scale value on ouput. In addition when scale is changed, the following
are unchanged:

arrowhead 1 arrowhead shape
fillval 0.5 fill density
linethick 0.8 line thickness in points
maxpsht 11.5 maximum allowed diagram height
maxpswid 8.5 maximum allowed diagram width

The variables maxpswid and maxpsht may have to be redefined for large diagrams or
landscape figures, for example.

39 2018.02.01

DPIC(1) DPIC(1)

Positions
A position is equivalent to a coordinate pair defined in current drawing units, and
can be expressed in the following forms:

Here The current drawing position.

expr,expr A pair of expressions separated by a comma.

(position) A position in parentheses for grouping.

(position , position) Takes the horizontal value from the first position and the
vertical value from the second.

position +|- position Vector addition.

position *|/ expr Scalar postmultiplication.

Label The label of a defined position or object. The position is the center of the
object.

expr [of the way] between position and position

The example x between A and B is equal to A*(1-x) + B*x. Any value of expr is
allowed.

expr < position, position > An abbreviated equivalent of the previous form.

number st|rd|nd|th [last] object An object within the current block, enumerated
in order of definition.

The object is one of

line, move, arrow, arc, box, ellipse, circle, spline, [], "" .

The number can be replaced by { expr }. For example, last "" means the last
string, and {2ˆ2}nd [] means the fourth block in the current scope. The position is
the center of the object.

Parentheses may be required when composite positions or expressions are used in the
above forms.

Finally, a position can be given as

object . defined point

Strings
A string is a sequence of characters enclosed in double quotes. To include a double
quote in a string, precede it with a backslash. Strings can be concatenated using the
+ operator. The C-like function

sprintf(format string, expr, ...)

is equivalent to a string. Expressions are floating-point values, so the only applicable
number formats are e, f, and g.

40 2018.02.01

DPIC(1) DPIC(1)

Multiple strings such as "text1" "text2" are stacked and centered vertically.

A string attached to an object overlays the object at the center, and any height
or width attributes apply to the object, not the string. However, the justification
attributes ljust and rjust can be applied to the individual strings of a stack over-
laying an object.

An independent string is placed with its center at the current point by default, or by
specifying the position of one of its defined points as for any object, for example,

"Animal crackers" wid 82.3/72 ht 9.7/72 with .sw at Q

The placement qualifiers above, below, ljust, rjust place the string above, below,
or justified with respect to the placement point. For example,

"Animal crackers" at Q ljust above

places the string above and textoffset units to the right of Q.

EXAMPLES

Source file example.pic:

\documentclass{article}
\usepackage{tikz}
\begin{document}
.PS
box dashed "Hello" "World"
.PE
\end{document}

The command

dpic -g example.pic > example.tex; pdflatex example

produces example.pdf containing a dashed box with Hello and World stacked inside.

To produce a .tex file containing PSTricks drawing commands for insertion into a
LaTeX document using the \input command, delete the first three and last lines in
the above source and process using the -p option of dpic.

Similarly, the picture source

.PS
\definecolor{puce}{rgb}{0.8,0.53,0.6}%
box shaded "puce"
.PE

produces a box filled with a flea-like color when processed with dpic -g or dpic -p
and the resulting file is inserted into a latex source file invoking, respectively, the tikz
or pstricks package.

41 2018.02.01

DPIC(1) DPIC(1)

SEE ALSO

E. S. Raymond, E. S., Making Pictures with GNU PIC, 1995. In GNU groff source dis-
tribution; http://www.kohala.com/start/troff/gpic.raymond.ps (A good intro-
duction to the pic language, with elementary illustrations.)

J. D. Aplevich, Drawing with dpic, 2018, http://ece.uwaterloo.ca/~aplevich/
dpic/dpic-doc.pdf (Specific discussion of dpic facilities and extensions, with differ-
ences between dpic and GNU pic.)

B. W. Kernighan, B. W. and D. M. Richie, PIC - A Graphics Language for Type-
setting, User Manual, 1991. AT&T Bell Laboratories, Computing Science Technical
Report 116. (The original Unix pic.)

J. D. Aplevich, M4 Macros for Electric Circuit Diagrams in LaTeX Documents,
2017. File CMman.pdf in the graphics/Circuit_macros section of CTAN reposito-
ries. (Extension of the pic language using the m4 macro processor for drawing electric
circuits and other diagrams.)

AUTHOR

Dwight Aplevich <aplevich at uwaterloo dot ca>

42 2018.02.01

http://www.kohala.com/start/troff/gpic.raymond.ps
http://ece.uwaterloo.ca/~aplevich/dpic/dpic-doc.pdf
http://ece.uwaterloo.ca/~aplevich/dpic/dpic-doc.pdf

DPIC(1) DPIC(1)

7 Appendix B: dpic grammar

The tokens recognized by the dpic parser are as shown. The tokens in < > pairs are
generated internally. Equated tokens (";" = "<NL>") have identical effect.

emptyterm: "<EMPTY>"

terminals:
"<ERROR>"
"<" "cw" "ccw"
"(" ")" "*" "+" "-" "/" "%" ";" = "<NL>"
"^" "!" "&&" "||"
"," ":" "[" "]" "{" "}" "." "[]" "‘" "’"
"=" ":=" "+=" "-=" "*=" "/=" "%=" (* the order matters *)
"&"
"<float>" "<name>" "<Label>" "<LaTeX>"
’"’ = "<string>"
"#"
"$" = "<arg>"
"<START>" "<END>"
"ht" = "height" "wid" = "width"
"rad" = "radius" "diam" = "diameter"
"thick" = "thickness"
"scaled"
"from" "to" "at" "with" "by" "then" "continue"
"chop" "same"
"of" "the" "way" "between" "and" "Here"
"st" = "rd" = "nd" = "th" "last"
"fill" = "filled"
".x" ".y"
"print" "copy" "reset" "exec" "sh" "command"
"define" "undef" = "undefine"
"rand"
"if" "else" "for" "do" "<endfor>"
"sprintf"

"<corner>"
".ne" ".se" ".nw" ".sw"
".t" = ".top" = "top" = ".north" = ".n"
".b" = ".bot" = ".bottom" = "bottom" = ".south" = ".s"
".right" = ".r" = ".east" = ".e"
".left" = ".l" = ".west" = ".w"
".start" = "start"
".end" = "end"
".center" = ".centre" = ".c"

"<compare>"
"==" "!=" ">=" "<=" ">"

"<param>"

43 2018.02.01

DPIC(1) DPIC(1)

".height" = ".ht"
".width" = ".wid"
".radius" = ".rad"
".diameter" = ".diam"
".thickness" = ".thick"
".length"

"<func1>"
"abs" "acos" "asin" "cos" "exp" "expe" "int" "log" "loge"
"sign" "sin" "sqrt" "tan" "floor"

"<func2>"
"atan2" "max" "min" "pmod"

"<linetype>"
"solid" "dotted" "dashed" "invis" = "invisible"

"<colrspec>"
"color" = "colour" = "colored" = "coloured"
"outline" = "outlined"
"shade" = "shaded"

"<textpos>"
"centre" = "center" "ljust" "rjust" "above" "below"

"<arrowhd>"
"<-" "->" "<->"

"<directon>"
"up" "down" "right" "left"

"<primitiv>"
"box" "circle" "ellipse" "arc" "line" "arrow" "move" "spline"

"<envvar>"
"arcrad" "arrowht" "arrowwid" "boxht" "boxrad" "boxwid"
"circlerad" "dashwid" "ellipseht" "ellipsewid" "lineht"
"linewid" "moveht" "movewid" "textht" "textoffset" "textwid"

= "<lastsc>" (* marker for last scaled env var *)
"arrowhead" "fillval" "linethick" "maxpsht" "maxpswid" "scale"

= "<lastenv>" (* marker for last env var *)

The expanded dpic grammar follows:

0 METAGOAL = input "<EOF>"

1 input = "<EMPTY>"
2 | input picture NL

3 picture = start NL elementlist "<END>"
4 | start NL elementlist NL "<END>"

5 NL = ";"
6 | "<ERROR>"

7 start = "<START>"
8 | "<START>" term

44 2018.02.01

DPIC(1) DPIC(1)

9 | "<START>" term term

10 elementlist = "<EMPTY>"
11 | element
12 | elementlist NL element

13 term = factor
14 | term "*" factor
15 | term "/" factor
16 | term "%" factor

17 element = namedobj
18 | "<Label>" suffix ":" position
19 | assignlist
20 | "<directon>"
21 | "<LaTeX>"
22 | command
23 | lbrace "{" elementlist optnl "}"
24 | ifpart
25 | elsehead "{" elementlist optnl "}"
26 | for "}"
27 | "command" stringexpr
28 | "exec" stringexpr

29 lbrace = "<EMPTY>"

30 namedobj = object
31 | "<Label>" suffix ":" object

32 suffix = "<EMPTY>"
33 | "[" expression "]"

34 position = pair
35 | expression "between" position "and" position
36 | expression "of" "the" "way" "between" position "and" position
37 | expression "<" position "," position "<compare>" shift

38 assignlist = assignment
39 | assignlist "," assignment

40 command = "print" expression redirect
41 | "print" position redirect
42 | "print" stringexpr redirect
43 | "reset"
44 | "reset" resetlist
45 | systemcmd
46 | "copy" stringexpr
47 | defhead optnl "{" "}"

45 2018.02.01

DPIC(1) DPIC(1)

48 | "undefine" "<name>"
49 | "undefine" "<Label>"

50 optnl = "<EMPTY>"
51 | NL

52 ifpart = ifhead "{" elementlist optnl "}"

53 elsehead = ifpart "else"

54 for = forhead "{" elementlist optnl
55 | for forincr "<endfor>" elementlist optnl

56 stringexpr = string
57 | stringexpr "+" string

58 string = "<string>"
59 | sprintf ")"

60 assignment = "<name>" suffix "=" expression
61 | "<name>" suffix "=" assignment
62 | "<envvar>" "=" expression
63 | "<envvar>" "=" assignment

64 expression = term
65 | "+" term
66 | "-" term
67 | expression "+" term
68 | expression "-" term

69 ifhead = setlogic "if" logexpr "then"

70 setlogic = "<EMPTY>"

71 logexpr = logprod
72 | logexpr "||" logprod

73 forhead = "for" assignlist "to" expression do

74 forincr = "<EMPTY>"

75 do = "do"
76 | by expression "do"

77 by = "by"
78 | "by" "*"

79 redirect = "<EMPTY>"

46 2018.02.01

DPIC(1) DPIC(1)

80 | "<compare>" stringexpr
81 | "<compare>" "<compare>" stringexpr

82 resetlist = "<envvar>"
83 | resetlist "," "<envvar>"

84 systemcmd = "sh" stringexpr

85 defhead = "define" "<name>"
86 | "define" "<Label>"

87 sprintf = "sprintf" "(" stringexpr
88 | "sprintf" "(" stringexpr "," exprlist

89 exprlist = expression
90 | expression "," exprlist

91 object = block
92 | object "height" expression
93 | object "width" expression
94 | object "radius" expression
95 | object "diameter" expression
96 | object "thickness" expression
97 | object "scaled" expression
98 | object "<directon>" optexp
99 | object "<linetype>" optexp
100 | object "chop" optexp
101 | object "filled" optexp
102 | object "<arrowhd>" optexp
103 | object "then"
104 | object "cw"
105 | object "ccw"
106 | object "same"
107 | object stringexpr
108 | object "by" position
109 | object "from" position
110 | object "to" position
111 | object "at" position
112 | object "<textpos>"
113 | object "<colrspec>" stringexpr
114 | objectwith "at" position
115 | objectwith "<corner>" "at" position
116 | objectwith pair "at" position
117 | "continue"

118 openblock = "<EMPTY>"

119 block = "<primitiv>" optexp

47 2018.02.01

DPIC(1) DPIC(1)

120 | stringexpr
121 | openblock "[" closeblock "]"
122 | openblock "[]"

123 optexp = "<EMPTY>"
124 | expression

125 closeblock = elementlist optnl

126 objectwith = object "with"
127 | objectwith "." "<Label>" suffix
128 | objectwith "." nth primobj

129 pair = expression "," expression
130 | location shift

131 nth = ncount "th"
132 | ncount "th" "last"
133 | "last"

134 primobj = "<primitiv>"
135 | "[]"
136 | "<string>"
137 | "[" "]"

138 shift = "<EMPTY>"
139 | shift "+" location
140 | shift "-" location

141 location = "(" position ")"
142 | "(" position "," position ")"
143 | place
144 | location "*" factor
145 | location "/" factor

146 place = placename
147 | placename "<corner>"
148 | "<corner>" placename
149 | "<corner>" "of" placename
150 | "Here"

151 factor = primary
152 | "!" primary
153 | primary "^" factor

154 placename = "<Label>" suffix
155 | nth primobj
156 | placename "." "<Label>" suffix

48 2018.02.01

DPIC(1) DPIC(1)

157 | placename "." nth primobj

158 ncount = "<float>"
159 | "‘" expression "’"
160 | "{" expression "}"

161 logprod = logval
162 | logprod "&&" logval

163 logval = lcompare
164 | stringexpr "<" stringexpr
165 | expression "<" expression

166 lcompare = expression
167 | stringexpr
168 | lcompare "<compare>" expression
169 | lcompare "<compare>" stringexpr

170 primary = "<envvar>"
171 | "<name>" suffix
172 | "<float>"
173 | "(" logexpr ")"
174 | location ".x"
175 | location ".y"
176 | placename "<param>"
177 | "rand" "(" ")"
178 | "rand" "(" expression ")"
179 | "<func1>" "(" expression ")"
180 | "<func2>" "(" expression "," expression ")"
181 | "(" assignlist ")"
182 | "(" systemcmd ")"

49 2018.02.01

	Contents
	Introduction
	Dpic usage
	Options
	Lexical error messages

	Dpic programming
	Blocks
	Positioning blocks
	Defining scope

	Dpic macros
	Finding roots
	Composing statements
	Evaluating arguments
	Branching

	Hiding variables
	Looping
	M4 macros
	Branching
	Perpendiculars
	Setting directions

	Subscripts
	Assigning an array of numbers

	Splines
	Curve fitting

	Postprocessor commands and color
	Color
	Filling with color
	External files

	SVG, PDF, and Postscript output
	Bounding boxes

	Pic processor differences
	Command-line options
	Output formats
	. lines and program-generated pic
	92 lines
	for-loop and if bodies
	End of line
	Logic
	then
	line, spline, arrow, move
	Arc defaults
	Strings
	print arg, …
	command arg, …
	Operating system commands
	copy
	plot
	fill
	Scaling
	Arrowheads
	Compass corners
	continue
	Subscripted variables and locations
	Splines
	Arithmetic
	Vector arithmetic
	Positions
	int()
	exec
	Functions
	PSTricks anomaly

	References
	Appendix A: dpic man page
	Appendix B: dpic grammar

