
The Algorithm Environment

Otfried Schwarzkopf

The LATEX2ε package algo.sty provides an algorithm environment that makes
it easier to write algorithms in pseudo code in a uniform style. We use this package
to typeset the algorithms in our book.1

The environment comes in two flavors, one where algorithms are numbered like
theorems, and one where algorithms are named explicitely. You can select the flavor
using an option to the algo package as follows:

\usepackage[named]{algo}

or
\usepackage[numbered]{algo}

The default are named algorithm environments.
The environment is invoked as follows.

\begin{algorithm}{algorithm name}[parameters]{algorithm header}

algorithm body, lines terminated by \\

\end{algorithm}

If you are using named algorithms, the algorithm name and parameters arguments
are used for the algorithm heading. (The parameters argument is optional. If
present, it will be enclosed in parentheses and will by typeset in math mode.)

For numbered algorithms, the name and parameters arguments are ignored,
and the algorithm heading contains the algorithm’s number. You can share num-
bers with another theorem-like environment like definition, using the following
command in the preamble.

\algorithmcounter{definition}

The algorithm header is used to add the following headings to the algorithm (the
\qprocedure command is ignored for named algorithms):

\qinput{description of algorithm input}

\qoutput{description of algorithm output}

\qcomment{description of procedure}

\qprocedure[parameters]{procedure name}

You can also put a \label command in the algorithm header. The label will
be set to the algorithm’s number (for numbered algorithms) or to the algorithm
name (for named algorithms). This means that you can refer to an algorithm
by “Algorithm~\ref{alg:pipapo}” regardless of whether you prefer named or
numbered algorithms.

The body of the algorithm consists of several lines, separated by \\. The lines
are numbered automatically. To reference a line number, put a \label command
in the text of a line. There are macros for all keywords that should be used.

1Mark de Berg, Marc van Kreveld, Mark Overmars, Otfried Schwarzkopf. Computational

Geometry by Example. To appear.

1

To properly format keywords and indentation of the algorithm, you have two sets
of macros. The macros \qif, \qthen, \qelse, \qfi, \qfor, \qdo, \qrof, \qwhile,
\qelihw, \qrepeat, \quntil serve to describe the control structure, and are typeset
as keywords. The algorithm environment will automatically indent subsequent lines,
and break statements into multiple lines if necessary. All control structures can be
nested, but you have to obey a certain format: control structure keywords should be
the first commands on the line, and you have to break the structures into multiple
lines. Note that \qendif, \qendfor, and \qend are synonyms for \qfi, \qrof,
and \qelihw (like in the C-shell). Algorithm IfForWhile presents the four different
control structures.

Algorithm IfForWhile

(∗ demonstrates control structures ∗)
1. for i← 1 to n

2. do xi ← x2
i ;

3. yi ← xi − yi

4. if A = B

5. then do whatever is necessary if A equals B

6. else do something else
7. and wait for better times
8. while Q 6= ∅
9. do let q be the first element of Q and remove it from Q

10. do something with q

11. repeat

12. do something really weird
13. until you get sufficiently tired of it
14. return 42

You must use a \qthen statement on the line after a \qif command, and you must

use a \qdo statement on the line following a \qfor or \qwhile command. The
three control structures are terminated by a \qfi, \qrof, or \qend command, which
should come on the last line of the control structure, before the \\ macro. \quntil
should not be preceeded by the \\ macro. The source code for this algorithm is
shown in Figure 1. Note the use of \label commands to refer tot the algorithm
itself and to its line 4.

The remaining macros are pretty simple, they are just shorthands for some
keywords and have no other side effect.

\qlet ←
\qto to

\qdownto downto

\qand and

\qor or

\qnot not

\qreturn return

\qqif if

\qqthen then

\qqelse else

\stop stop

\qnil nil

\qtrue true

\qfalse false

\qcom{comment} (∗ comment ∗)
\qproc[args]{proc name} proc name(args)

2

\begin{algorithm}{IfForWhile}{

\label{algo:ifforwhile}

\qcomment{demonstrates control structures}}

\qfor $i \qlet 1$ \qto n \\

\qdo $x_{i} \qlet x_{i}^{2}$; \\

$y_{i} \qlet x_{i} - y_{i}$ \qrof\\

\qif $A = B$ \label{line:ifAisB}\\

\qthen do whatever is necessary if A equals B\\

\qelse do something else\\

and wait for better times \qfi\\

\qwhile $Q \neq \emptyset$ \\

\qdo let q be the first element of Q and remove it from Q\\

do something with q \qend \\

\qrepeat \\

do something really weird

\quntil you get sufficiently tired of it\\

\qreturn 42

\end{algorithm}

Figure 1: LATEX-source for Algorithm IfForWhile

The parameterless macros use the xspace package. This means that they will au-
tomatically be followed by a space, unless some punctuation character follows the
macro. Refer to the xspace documentation for details.

The first argument to \qproc is optional. If present, args is enclosed in paren-
theses and typeset in math mode. You can also use \qproc to refer to named
algorithms.

Here are some more examples, demonstrating nested control structures. The
source for this document (and therefore all these examples) can be found on the
world wide web.2

Algorithm FuzzyChromatic(T)
Input: A tree T

Output: The Fuzzy Chromatic Number of T

1. for ν is a leaf of T

2. do compute k = σ(S) by testing all rectangles in S. This is a pretty
complicated operation, but can be written on a single line within your
algorithm environment, which will then break it automatically, as you
can see.

3. if ν has property B
4. then take appropriate action.
5. and recursively compute FuzzyChromatic(T)
6. else locate ` in Ξ(L). Let t be the triangle containing it. compute

k(`).
7. return a random number between 0 and k(`).

And here is another example.

Algorithm NonSense(A)
(∗ Computes nothing, but does it fast ∗)
1. if ν is a leaf then use naive algorithm
2. if A = B

3. then if B = C then do this

2at http://graphics.postech.ac.kr/otfried/tex/algodoc.tex

3

4. else if A = C

5. then (∗ should not arise too often ∗)
6. add some more things.
7. else do other stuff
8. Again, there is no limit on how much you can put on a line. The line

will be broken by the algorithm environment.
9. for i ∈ N

10. do something with i

11. for j ∈M

12. do compute ki.
13. we are still in the outer for-loop.
14. return ∅.

Remember that if you want to use if and then on one line like on line 1 or line 4 of
Algorithm NonSense, then you must use \qqif and \qqthen instead of \qif and
\qthen. These commands have no influence on the indentation of the algorithm.

Algorithm Make monotone(P)
Input: A simple polygon P .
Output: A set of diagonals that partition P into x-monotone polygons.
(∗ A real algorithm from our book ∗)
1. repeat

2. Delete the leftmost vertex vj from ∆.
3. Advance the sweep-line to contain vj .
4. if vj is a start vertex
5. then if the interior of P to its left
6. then search with xj in T to find the edge ei vertically below

vj .
7. Choose the diagonal vjvm, where vm is the vertex asso-

ciated to ei

8. (∗ Now vj is not a start vertex in either of the polygons
obtained by the new diagonal. ∗)

9. Insert ej into T and let vj be the vertex associated to it.
10. else insert ej−1 in T and let vj be the vertex associated to it.
11. else if vj is an end vertex
12. then delete ej and its associated vertex from T
13. if the interior of P lies to its right
14. then delete ej−1 from tree.
15. Let ei be the edge vertically below vj . Replace

its associated vertex with vj .
16. else (∗ when vj is a bend vertex ∗) if the interior of P lies

above vj

17. then delete ej−1 and its associated vertex from T
18. Insert ej+1 with vj as its associated vertex.
19. else delete ej+1 and its associated vertex from T
20. Insert ej−1 with vj as its associated vertex.
21. until ∆ is empty.

4

